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Problem statement

We aim to create a dynamic hedging model for a Norwegian hydropower producer that seeks to reduce their
exposure to risk factors such as price, inflow and currency exchange rate. We are interested in obtaining the
relationship between the currency risk and the other risk factors, and we want to quantify the risk-reduction
effect of including currency derivatives in a firm’s hedging strategy. Further, we want to investigate how a
dynamic hedging model performs compared to a heuristical approach used by many Norwegian hydropower
companies.
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Abstract

This master’s thesis consists of two articles. In the first article, we present a global, dynamic model for
hedging of hydropower production. We include stochastic processes for spot and futures prices, reservoir
inflow and currency exchange rate. We present a sequential approach, obtaining optimal production and
hedging decisions separately. To manage the risk, we allow for trading in currency forwards and power
futures contracts. Risk preferences are modelled using conditional risk mapping. The risk-reduction effect
of currency hedging is found to be moderate - currency hedging increases the 5% CVaR of the terminal
discounted cash flows by 2.4%. We also find that including monthly power futures in the hedging strategy
allows for precision hedging that can contribute to substantial reductions in risk. In the second paper, we
propose a medium-term scheduling model for hydropower production. We use a multi-factor price process
in which the price of futures contracts is used to forecast future spot prices. Further, we include a short-term
correlation between prices and local inflow. Our main contribution is a comparison of the performance of
our scheduling model to a model in which price and local inflow are assumed to be independent and a model
in which price movements are described using only one factor. We quantify the loss in expected revenues
of using the latter two models compared to the case where price movements are in fact driven by multiple
factors and correlated with local inflow. In both situations, we find the loss to be approximately 2-3 %.





Summary in Norwegian

Denne masteroppgaven består av to artikler. I den første artikkelen presenterer vi en global, dynamisk modell
for sikring av vannkraftproduksjon. Vi inkluderer stokastiske prosesser for spot- og futurespriser, lokalt tilsig
og valutakurs. Vi foreslår en sekvensiell tilnærming, der optimale produksjons- og sikringsbeslutninger blir
funnet separat. For å redusere risikoen tillater vi handel i forwardkontrakter for valuta og futureskontrakter
for kraft. Risikopreferanser modelleres ved bruk av conditional risk mapping. Risikoreduksjonseffekten av
å inkludere valutasikring viser seg å være moderat – valutasikring øker 5 % CVaR av de totale diskonterte
kontantstrømmene med 2.4 %. Vi finner også ut at bruken av månedlige futureskontrakter for kraft muliggjør
presisjonssikring som kan bidra til en betydelig risikoreduksjon. I den andre artikkelen presenterer vi
en mellomlangsiktig produksjonsplanleggingsmodell for vannkraft. Vi bruker en flerfaktorprosess til å
modellere endringer i pris, der prisen til futureskontrakter brukes til å forutse fremtidige spotpriser. Vi
inkluderer også en kortsiktig korrelasjon mellom pris og lokalt tilsig. Vårt hovedbidrag er en sammenligning
av ytelsen til vår foreslåtte modell og ytelsen til en modell der pris og lokalt tilsig er antatt å være uavhengige,
og ytelsen til en modell der prisbevegelser bare er drevet av én risikofaktor. Vi regner ut reduksjonen
i forventede neddiskonterte kontantstrømmer av å bruke de to sistnevnte modellene gitt at prisbevegelser
faktisk er drevet av flere faktorer eller faktisk er korrelert med lokalt tilsig. I begge situasjonene er
reduksjonen på ca. 2-3 %.
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Introduction

A hydropower producer with reservoir capacity is faced with multiple decision problems. First, they must
dispatch the water in their reservoirs optimally so that they can maximize their revenues from production
and avoid costly spillage. Second, they are exposed to numerous sources of uncertainty that affect their
cash flows. These risk factors must be identified, analyzed and responded to. In this master’s thesis, we
aim to investigate both of these decision problems, and propose different approaches for how a hydropower
company can 1) obtain optimal production policies and 2) manage the market risk associated with their
production revenues.

This master’s thesis consists of two academic articles, in which the first article builds on the findings and
methods of the second. The first article, Dynamic hedging for a Norwegian hydropower producer: Electricity

prices, inflow and currency risk, is the main contribution of this thesis. It proposes a dynamic model
for hydropower risk management. Uncertainty in spot and futures prices, reservoir inflow, and currency
exchange rate is considered. The paper uses a modified version of the scheduling model presented in the
second paper to obtain optimal production decisions. The cash flows from production are then subject to
hedging using financial instruments. A case study is conducted, using data from a Norwegian hydropower
plant. The article has been written with the intention of being published in an academic journal, either in its
current form or after additional adjustments. The second article, Hydropower reservoir management using

multi-factor price model and correlation between price and local inflow, has been accepted at the 41st IAEE
International Conference held in June 2018, where the authors will present its content. Subsequently, it will
be published in the conference proceedings database of IAEE. The paper is based on the project thesis written
in the fall of 2017, subject to corrections, improvements, and restructuring. Primarily, the paper proposes a
multistage stochastic program for hydropower reservoir management, which has been tested using data from
the aforementioned plant.

In the first article, we have three main contributions to the field of hydropower hedging. First, we include
currency exchange risk and quantify the potential risk reduction obtainable by hedging it using derivatives.
Second, we model the risk preferences of the hydropower firm using conditional convex risk mapping
(Ruszczynski and Shapiro, 2006), more specifically the nested conditional value-at-risk (nested CVaR),
initially proposed by Shapiro et al. (2013). According to Shapiro (2009) and Löhndorf and Wozabal (2017),
risk measures like the nested CVaR are time consistent. To the authors’ knowledge, conditional risk mapping
has not been used in previous papers on dynamic hedging of electricity production. Third, we propose
using variables to track confirmed future cash flows from a portfolio of forward positions in a multistage
stochastic program. These variables enable us to accurately replicate the timing of the cash flows from
financial contracts that are marked-to-market regularly, and they are necessary to incorporate the currency
risk. Additionally, we investigate how the performance of a sequential approach compares to a simultaneous
approach. In the sequential approach, production decisions and hedging decisions are made separately, while
all decisions are taken simultaneously in an integrated model. Finally, we assess how the sequential approach
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performs compared to heuristics used by industry practitioners.

In the hydropower scheduling paper, we use a multi-factor process to model spot price movements. This
method is in contrast to existing models for hydropower scheduling, which often use single-factor processes.
Further, we calculate the correlation coefficient between movements in inflow and the first factor of the price
process, thereby treating inflow and price as dependent variables. We also quantify the loss in expected
cash flows if price and local inflow are assumed to be independent when they are in fact correlated, and
equivalently, the losses that occur when using a single factor price process if price movements are in fact
described by multiple factors. At last, we perform a backtest to compare the decision policies of our model
to the realized decisions and cash flows of the case plant.

The master’s thesis is organized as follows. First, we present a section considering advantages of managing
risk in the context of hydropower production, serving as motivation for writing a paper on hydropower
risk management. Next comes the first article, Dynamic hedging for a Norwegian hydropower producer:

Electricity prices, inflow and currency risk. It is followed by Hydropower risk management using multi-factor

price model and correlation between price and local inflow. Afterward, we provide some discussions on both
papers as a whole and propose some further work that may be conducted. Finally, we include an extensive
appendix which provides depth to the methods, concepts, and results of both articles. The appendix also
contains relevant work that is not included in the final versions of the articles.

There are minor differences between the nomenclature used in the first and second paper. The list of
nomenclature found at the end of the hedging paper is meant for that paper only. Additionally, while
the production model used in the first article is based on the one proposed in the production paper, some
aspects are slightly different. This includes, among others, the dynamics of the price process and the model
granularity.
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The motivation behind hedging for a power producer

Risk aversion is usually the primary motivation for hedging, as hedging can reduce the variability of cash
flows. The traditional hedging perspective is that of the risk-averse producer who uses financial markets to
reduce the diversifiable risk of their profits (Anderson and Danthine, 1980). Norwegian power producers
are predominantly publicly owned, according to the Norwegian Ministry of Petroleum and Energy (2017).
Typically, the producers pay out large yearly dividends that contribute to financing public authorities (Sanda
et al., 2013). Fluctuations in these dividends can have large consequences for the public owners. Thus, owner
risk-aversion can be an important motivation for hedging among Norwegian hydropower producers.

Neoclassical economics and theory on perfect markets (e.g. Modigliani and Miller, 1958) state that hedging
cannot add value to a firm, other than reducing their level of risk. However, evidence can be found in the
literature that hedging can add value, beyond risk reduction. Smith and Stulz (1985) propose multiple types
of non-linear costs that companies can reduce through risk management. These are, among others, related
to tax function convexity and reduced default risk. The first cost is irrelevant for Norwegian companies, as
they are allowed to carry forward losses to the next year, meaning that their tax function is linear. Sanda
et al. (2013) argue that the reduced default risk is an irrelevant argument as well. They claim that most
hydroelectric companies in Norway have a negligible risk of default because they are publicly owned and
their variable costs related to production are low. However, we believe this to be too generalizing. The main
drivers of default risk of a company is its leverage and the earning capacity, not whether the ownership is
public or private.

Stulz (1996) argues that since hedging can reduce the default risk of a company, firms that hedge their profit
can benefit from a more leveraged capital structure. In many countries, there is a tax advantage to debt
financing due to deductable interest cost. Besides, increasing the debt ratio releases equity capital. The
equity can be paid back to the shareholders, or it can be invested in promising or strategically important
projects within the company. As stated in May and Neuhoff (2017), power systems based on renewable
energy sources like solar and wind are associated with high upfront investment costs. Thus, hydropower
companies that want to extend their power generation portfolio with new sources of energy can benefit from
hedging to increase their total amount of available capital. Finally, the company can choose to keep its capital
structure constant. Assuming that hedging contributes to reduced default risk, hedging should result in an
improved credit rating and decreased costs of raising funds.

Stulz (1996) introduces the term selective hedging. His research shows that many companies let their market
views influence their hedging practice, thereby taking speculative positions in their portfolios. Sanda et
al. (2013) show that selective hedging is present in many of the hydropower companies they study, even
documenting negative hedge ratios in some of the companies. Adam and Fernando (2006) separate hedging
into two components, namely predictive and selective hedging. As opposed to selective or speculative
hedging, predictive hedging focuses on hedging predicted cash flows from a firm’s fundamental operations.
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Analyzing hedging in the gold mining industry, Adam and Fernando (2006) found that the value contribution
from selective hedging was minimal, only resulting in a larger cash flow volatility. Sanda et al. (2013) do,
however, find evidence of increased profits among Norwegian power companies engaging in speculative
hedging, subject to increased volatility. Since the focus of the first paper is on risk management and selective
hedging is shown to increase risk, it only considers predictive hedging.
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Dynamic hedging for a Norwegian hydropower producer: Electricity
prices, inflow and currency risk

Joakim Dimoskia,∗, Sveinung Nerstena,†

aNorwegian University of Science and Technology, Norway

Abstract

In this paper, we present a global dynamic model for the risk management problem of a hydropower producer.
The problem is formulated as a multistage stochastic linear program. We focus on market risk and include
stochastic processes for spot and futures prices, reservoir inflow and foreign exchange rate. We present a
sequential approach, obtaining optimal production and hedging decisions separately. To manage the risk,
we allow for trading in currency forward and power futures contracts. The paper presents three main
contributions to the field of hydropower hedging; the inclusion of currency risk and currency derivatives,
modeling risk preferences using conditional risk mapping and introducing variables for accurate replication
of the cash flow structure from a portfolio of financial contracts. We quantify the risk-reduction effect of
currency hedging when there is currency risk. It is found to be moderate - currency hedging increases the 5%
CVaR of the terminal discounted cash flows by 2.4%. We also find that including monthly power futures in
the hedging strategy allows for precision hedging that can contribute to substantial reductions in risk.

Keywords: Risk management, hydropower production, currency risk, Markov processes, stochastic dynamic
programming

3.1 Introduction
For a hydropower company, an important
challenge lies in utilizing the water in their
reservoirs optimally such that the value of their
long-term production cash flows is maximized.
Simultaneously, these cash flows are subject to
large uncertainties associated with different types
of risks. In this article, we focus on the market
risk of a hydropower producer, and how it can

be managed. Market risk includes risk factors
such as price risk, exchange rate risk and interest
rate risk. We also account for inflow risk. By
utilizing financial derivatives like forward contracts
and options, risk-averse companies can lower their
market risk exposure in accordance with their risk
preference.

The activity of reducing a firm’s market risk is

∗E-mail: joakim.dimoski@gmail.com
†E-mail: sveinung.nersten@gmail.com
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referred to as hedging or risk management, and the
literature presents multiple approaches to how this
can be conducted. As shown in Stulz (1996), most
older academic theory emphasizes that the target of
risk management should be to minimize the cash
flow variance. While acknowledging that variance
minimization is a useful goal for companies seeking
to manage their risk, he proposes that the primary
target should rather be to provide protection against
the possibility of costly lower-tail outcomes. This
complies with the findings of Sanda et al. (2013).
They find that multiple Norwegian hydropower
companies aim for downside protection in their risk
management practices. Other reasons for firms
to manage their risk include reduced default risk,
implying that the firm can benefit from a more
flexible capital structure and larger debt capacity
(Stulz, 1996), and tax advantages (Smith and Stulz,
1985).

Dupuis et al. (2016) classify hedging procedures
into two categories, namely static and dynamic

hedging. Actors using static hedging only
trade hedging derivatives at one point in time
with no subsequent rebalancing of their hedging
portfolio. The objective in such models is to reduce
the risk associated with the end-of-horizon cash
flows. Static hedging for hydropower producers
is proposed in multiple papers, e.g. Fleten et al.
(2010). On the contrary, actors using dynamic
hedging adjust their portfolio continuously as new
market information becomes available. Dupuis
et al. (2016) further present two sub-categories
of dynamic hedging, local and global. While
local hedging procedures focus on minimizing the
short-term risk, that is, until the next rebalancing,
global hedging procedures seek to minimize risk

associated with all future cash flows. Examples
of papers on local hedging in electricity markets
include Zanotti et al. (2010) and Liu et al. (2010),
while Mo et al. (2001a), Fleten et al. (2002)
and Dupuis et al. (2016) propose global models.
Fleten et al. (2002) show that a dynamic approach
yields better results than a static approach for
a hydropower producer. Dupuis et al. (2016)
obtain similar results, taking the perspective of a
risk-averse retailer.

Wang et al. (2015) analyze 18 different
minimum-variance strategies for 24 commodity,
currency and equity markets. They find that a
naive hedging strategy (hedge ratio = 1) performs
better or almost as well as the minimum-variance
strategies in all of the tested markets. This shows
that engaging in a sophisticated hedging process
may have limited value added. They do, however,
not include the electricity market, and use a static
approach with a rolling window method instead of
dynamic hedging.

In this paper, we present a global dynamic
hedging model for a price-taking hydropower
producer owning a single plant1 that participates
in the Nordic electricity market. We propose
a sequential approach, first using a dynamic
production planning model to obtain production
policies that maximize the expected terminal cash
flows. Then, the production decisions are stored
and used as stochastic variables in a dynamic
hedging model. Production policies are obtained
using a modified version of the production model
proposed by Dimoski et al. (2018), incorporating
correlated inflow and spot price scenarios generated
using the price of futures contracts. For the

1Note that hedging is typically undertaken on a company level, hedging the production of multiple hydropower plants. Generally,
our hedging approach can be applied to a portfolio of hydropower plants as well.
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hedging model, we allow the producer to trade in
the monthly, quarterly and yearly power futures
contracts available at the Nordic power derivatives
market. As we take the perspective of a Norwegian
producer and all prices in the Nordic market
are given in euros (EUR), we also treat the
currency spot exchange rate between EUR and the
Norwegian krone (NOK) as stochastic. To hedge
this uncertainty, we allow the producer to trade
in currency forward contracts as well. To model
risk preferences, we use the nested conditional
value-at-risk (nested CVaR), proposed initially by
Shapiro et al. (2013) and later used in Löhndorf
and Wozabal (2017). We have a time horizon
of two years and use semi-monthly granularity.
Furthermore, we include transaction and tax costs.

We have three main contributions to the field of
hydropower hedging. First, we include currency
exchange rate as a stochastic variable, thereby
incorporating this as a risk factor. To manage the
foreign exchange risk, we also allow for trading in
currency derivatives. Second, we model the risk
preferences of the producer using conditional risk
mapping and nested CVaR. While multiple papers
use conditional risk mapping in other industries,
there exists no research on this in the field of
hydropower hedging to the authors’ knowledge.
Third, to replicate the cash flows from currency
and power futures as realistically as possible, we
propose using variables for confirmed future cash
flows. It is necessary to include such variables
to incorporate the uncertainty in the currency
exchange spot rate. We also quantify the effect of
removing the option to hedge currency risk and the
effect of using a sequential approach instead of a
simultaneous. Further, we test how our proposed
hedging approach compares to an heuristical
approach using hedge ratio requirements, based on

the practice of a Norwegian hydropower producer.

Due to the large dimensionality of our problem,
obtaining optimal decision policies is very
computationally demanding using classic stochastic
dynamic programming. Therefore, we use a
modified version of stochastic dual dynamic
programming (SDDP, Pereira and Pinto, 1991)
known as approximate dual dynamic programming
(ADDP, Löhndorf et al., 2013). SDDP and similar
approaches are widely used in existing literature
on hydropower scheduling (e.g. Mo et al., 2001b
and Rebennack, 2015) and hedging (e.g. Fleten
et al., 2002 and Iliadis et al., 2006). ADDP
integrates SDDP with Markov processes, meaning
that both decision problems must be formulated
as Markov Decision Processes (MDP). Given a
current state of the world, the next state value
of a variable following a Markov process is only
dependent on its current state value, irrespective
of its history. Similarly, in an MDP, all decisions
are made based on the current state of the world.
Treating hydropower production planning as an
MDP is common in literature, as shown in Lamond
and Boukhtouta (1996). Further, we discretize all
state variables into a scenario lattice, as this is
a requirement for using ADDP. To construct the
lattice, we use the method proposed by Löhndorf
and Wozabal (2017).

Some papers, e.g. Mo et al. (2001a), propose
integrated models where production and hedging
decisions are made simultaneously. However,
Wallace and Fleten (2003) claim that it is favorable
to treat production planning and risk management
as sequential activities. Among others, they argue
that it is not possible to increase the value of a
power portfolio by trading hedging derivatives in
an efficient market, as this can only be achieved
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through a change in production. Therefore, a
hydropower producer should first seek to obtain a
production schedule that maximizes their expected
cash flows, and then use hedging to reduce the risk
of their portfolio to the desired level.

The proposed method for risk preference modeling,
the nested CVaR, is based on conditional convex
risk mapping (see Ruszczynski and Shapiro, 2006).
Boda and Filar (2006) and Shapiro (2009) show
that global hedging strategies aiming to reduce
risk associated with terminal cash flows are
time-inconsistent, meaning that decision policies in
such models are affected by past gains and losses.
However, this is not the case for the nested CVaR.
The issue with time consistency of CVaR is also
discussed in Godin (2016), who proposes using a
similar version of the nested CVaR known as the
conditional CVaR.

To generate scenarios for spot and power futures
prices, we use a multivariate HJM model (Heath
et al., 1992) explaining movements in a forward
curve. In a liquid power market, the available future
and forward contracts traded at a given time should
represent the current time risk-adjusted market
expectations for future spot prices. Furthermore,
a high-resolution forward curve can be constructed
using the price and delivery periods of all available
futures contracts, as shown in e.g. Fleten and
Lemming (2003), Benth et al. (2008) and Kiesel et
al. (2018). Thus, a model explaining the evolution
of a forward curve can both be used to find future
spot prices and to calculate the price of futures
contracts with different delivery periods.

We also incorporate stochastic processes for
the risk factors inflow and currency. In
hydropower-dominated systems, there is typically a

negative correlation between inflow and electricity
price, since the inflow largely determines the supply
side of the market. This provides a natural hedging

effect. We are also interested in investigating the
magnitude of the currency risk, as well as how
it relates to the other risk factors. A preliminary
hypothesis is that the system price is negatively
correlated with the EURNOK exchange rate as well.
Our reasoning is that because all bid and ask orders
in the Nordic market are placed by companies
operating with their local currency, this should
influence the system price, denoted in EUR/MWh.

The paper is organized as follows. In Section
3.2, we present relevant background information
about hydropower risk management in the Nordic
countries. Section 3.3 includes a description of
the hedging problem, formulated as a multistage
stochastic program. We also give an overview of
the algorithms used to construct a scenario lattice
and solve the decision problems. In Section 3.4,
we show how the dynamics behind the risk factors
can be modelled, and Section 3.5 is devoted to
numerical results. Conclusions are made in Section
3.6.

3.2 Hydropower risk management
In this section, we give an overview of relevant
aspects for risk management in the context of
hydropower production in the Nordic countries.
First, we underline important risk factors and
derivatives that can be used to reduce the exposure
of a hydropower company. Then, we present some
relevant risk measures firms can use to quantify
the extent of their risk exposure. The section
is concluded with a brief overview of how risk
management is practiced in the industry today.
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3.2.1 Risk factors and mitigating derivatives

A hydropower company is exposed to a variety of
financial risk factors which can negatively affect
their production cash flows. The Basel Committee
on Banking Supervision (2012) categorizes
financial risk into credit risk, operational risk,
liquidity risk and market risk. The credit risk, which
is the potential that the counter-party will not live
up to its contractual obligations, can be relevant for
the hydropower producer if they enter long term
OTC contracts. The operational risk is related
to losses caused by inadequate or failed internal
processes, people and systems, or from external
events. This includes political risk, which Fleten
et al. (2012) identify as an important risk factor
for hydropower producers, as their cash flows are
sensitive to changes in e.g. government regulations
and tax rates. Liquidity risk is the risk that trading
an asset adversely affects the market price. For
hydropower producers, it is relevant for the EPAD
futures, discussed below.

Neither the operational risk, credit risk nor the
liquidity risk will be treated here - the focus of
this article is the market risk. The market risk
includes factors such as commodity price risk,
currency risk and interest rate risk. Furthermore,
there are two market risk factors specific to a
Nordic hydropower producer: Inflow risk and area
price difference risk. Fleten et al. (2012) identify
inflow and price uncertainty as the major risks for a
hydropower producer. To hedge the market risk, it
is possible to use derivatives for the electricity price
and the exchange rate which are traded in financial
markets. Currently, there exists no liquid market
for derivatives based on inflow uncertainty in the
Nordic countries. However, as shown in Foster
et al. (2015), there have been developed methods
for pricing such contracts based on hydraulic and

weather indices.

The primary trading place for Nordic hydropower
producers is the Nord Pool day-ahead market,
colloquially referred to as the spot market. This
market is divided into several bidding areas, where
the spot price of each area is calculated based on
the supply-demand equilibrium of each area and
constraints on transmission capacity between the
areas. All prices are denoted in EUR/MWh. Nord
Pool also calculates the system price, which is an
unconstrained market clearing reference price for
the entire Nord Pool market. Financial contracts
for the Nordic market are traded at NASDAQ OMX
Commodities Europe (hereby NASDAQ OMX).
The market is purely financial in the sense that no
physical energy is exchanged - only cash. This
is in contrast to the day-ahead market, which is a
physical market.

The system price risk can be hedged by trading
futures and options at NASDAQ OMX. Unlike
traditional forward and futures contracts, which are
contracts for trading an asset at a specified point in
time, the power futures traded at NASDAQ OMX
have delivery periods spanning a day, week, month,
quarter or year. Thus, their nature is more similar
to financial swaps. As explained in Fleten et al.
(2010), futures contracts are marked-to-market each
day prior to the beginning of the delivery period.
Contracts that are in delivery are settled daily based
on the difference between the spot price and the
last price of the futures contract before going into
delivery.

Since the producer receives the area spot price for
their production while the system spot price serves
as the underlying of the traded power futures, there
is basis risk between the area price and the power

9



futures. NASDAQ OMX also offers contracts for
hedging the area price difference, whose reference
is the difference between the system spot price
and the price in a specific bidding area. These
contracts are known as EPADs, and they are
significantly less liquid than the power futures.
Also, they are only available for certain bidding
areas. As shown in Houmøller (2017), there is a
high correlation between the hourly system price
and the price of most Norwegian areas, averaging
at approximately 0.89 for all areas combined in
2013-2016. This is above the limit (0.8) set by
the IAS 39 accounting standard to qualify for hedge
accounting, and therefore, Houmøller (2017) argues
that it is sufficient for power producers in most
Norwegian areas to disregard the area difference in
their hedging strategy and hedge only with system
price contracts.

The revenues of a Norwegian hydropower producer
are generated in EUR, while the base currency of
the producer is NOK. Because the exchange rate
is fluctuating, there exists significant currency risk
for the producer. The currency risk can be hedged
using forward exchange contracts. The market for
currency derivatives is highly liquid, with negligible
bid-ask spreads for corporate customers. Currency
forwards are over-the-counter (OTC) instruments,
as they do not trade on a centralized exchange.
Typically, an investor enters into a contract with a
bank as the counterparty. Since all bid orders and
ask orders in a price area are placed by companies
operating with their local currency, the system price
denoted in EUR/MWh should be influenced by the
base currencies of the different areas. Therefore, we
expect the system price to be negatively correlated
with the EURNOK exchange rate, providing a

natural hedging effect.

3.2.2 Risk measurement

Through risk measurement, a company can quantify
its risk factors, and also assess the effect of
their hedging strategy. For hydropower producers,
risk measurement is typically based on the
end-of-horizon cash flows, as these are simple to
interpret (Fleten et al., 2010). Historically, standard
deviation has been one of the most used metrics
for risk management, as illustrated in Stulz (1996).
While the standard deviation represents deviations
from expected cash flows, both in positive and
negative direction, Stulz (1996) argues that it is
more interesting to consider risk associated with the
downside of the cash flow distribution. A common
metric for measuring this risk is the value-at-risk
(VaR). For a given significance level α , the VaR of
H discrete representations of the terminal cash flows
hi is defined as VaRα = min{hi |∑ j|h j≤hi 1/H ≥α}.
That is, the VaR for a significance level α is the
cash flow that will be exceeded with a confidence
level (probability) of 1− α . While VaR gives a
risk manager information about their worst case
scenario with a 1−α confidence level, it gives no
information about the cash flow distribution in the
tail below the VaR. CVaR represents the cash flows
a producer can expect if they fall below the level
given by the VaR. A benefit of CVaR is that it better
captures tail-effects, such as kurtosis and skewness.
Mathematically, the CVaR of a discrete distribution
with significance level α is given by CVaRα =

∑ j|h j≤VaRα
h j/(Hα). As opposed to VaR, CVaR is

also a coherent2 risk measure, making it convenient
to use in frameworks for risk management (Godin,
2016).

2Specifically, VaR does not qualify for the subadditivity axiom when the underlying loss distribution is non-normal. A risk measure
Φ(X) is subadditive if Φ(X1 +X2)≤Φ(X1)+Φ(X2).
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3.2.3 Industry practice

It is informative to see how risk management
is performed in the hydropower industry, as this
provides useful benchmarks. Therefore, we give a
overview of some aspects of the industry practice,
focusing on the Norwegian market specifically.

In their paper, Sanda et al. (2013) analyze the
hedging strategies of 12 Norwegian hydropower
companies, whose total production comprises
approximately 34.4% of the total production in
Norway. The authors find that none of these use an
integrated model to obtain optimal production and
hedging decisions. Five of the firms use a sequential
approach, first obtaining the optimal production
decisions in a separate model and then use these
as the basis for their hedging decisions. The seven
remaining firms use historical production scenarios
to predict their future exposure.

Further, none of the firms analyzed by Sanda et al.
(2013) use dynamic programming to obtain their
hedging policy. They all use more static approaches.
Eight of the firms use a hedge ratio approach in
which their short positions in the financial market
must be within a predefined range for a given time
to maturity. Two of the firms have a minimum
requirement for the VaR of their terminal cash
flows, while the last two have no written hedging
policy. Less than half of the firms include options
and EPAD contracts in their hedging strategy, and
in 11 out of 12 firms, futures contracts are the most
used derivatives in terms of hedged volume. On
average, approximately 90% of the traded derivative
volume [MWh] among the firms was in quarterly
and yearly contracts.

Stulz (1996) shows that many companies let their
own market views influence their hedging practice,

thereby taking speculative positions in their
portfolios. He describes this as selective hedging.
Sanda et al. (2013) show that selective hedging is
present in many of the hydropower companies they
study, even documenting negative hedge ratios for
some of the companies. Adam and Fernando (2006)
separate hedging into two components, namely
predictive and selective hedging. As opposed to
selective or speculative hedging, predictive hedging
focuses on hedging predicted cash flows from a
firm’s fundamental operations. In this paper, we
only focus on predictive hedging, and remove all
possibilities for speculative trades.

3.3 Methods
In this section, we formulate the decision problems
associated with production planning and hedging
as multistage stochastic linear programs. We also
introduce the algorithms used for discretizing all
state variables into a scenario lattice and to obtain
optimal decision policies.

3.3.1 Assumptions

We consider the problem faced by a price-taking
hydropower producer participating in a deregulated
market. The producer can compose a power
portfolio consisting of long positions in physical
production and short positions in financial futures
contracts. Based on a broad set of endogenous
and exogenous variables, like reservoir level, inflow,
spot and forward prices, they must obtain both
a production policy and a portfolio of derivatives
satisfying their risk preferences. The producer owns
a single hydropower plant, and to illustrate our
approach, we consider a real plant located in the
NO3 price area in Norway. The plant consists of
two interconnected reservoirs and one turbine. The
plant is mid-sized in terms of regulating capacity
and production capacity, having a mean yearly
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production of 191.3 GWh. Figure 3.1 illustrates
some relevant properties of the plant.

Figure 3.1: Properties of the hydropower plant

Following the findings of Wallace and Fleten
(2003), we treat the problem of optimal production
and hedging using a sequential approach. To
obtain optimal production policies, we use a
modified version of the reservoir management
model proposed by Dimoski et al. (2018), which
considered the same hydropower plant as this
article. They treat the problem of obtaining
optimal production decisions as a Markov decision
process (MDP), which is common in most of the
literature on medium-term reservoir management
(e.g. Lamond and Boukhtouta, 1996). For the
hedging problem, we propose using a dynamic
approach, also modeling it as an MDP. While the
findings of Sanda et al. (2013) show that none of
the analyzed Norwegian companies use dynamic
hedging, Fleten et al. (2010) argue that further
research should be done within that field, motivating
our approach.

Like Bjerksund et al. (2008), we assume that the
decision maker participates in a complete market
with no risk-free arbitrages. This means that all
state transition probabilities can be represented by
a unique martingale (risk-neutral) measure Q. For
both the scheduling model and the hedging model,

we use a time horizon of approximately two years,
which is in accordance with previous models on
medium-term production scheduling (Wolfgang et
al., 2009 and Abgottspon and Andersson, 2014)
and hydropower risk management (Fleten et al.,
2002 and Fleten et al., 2010). Further, we use
semi-monthly granularity, meaning that each time
stage has the length of half a month. Table A.1
in Appendix A.1 shows the time intervals that were
used. A semi-monthly resolution was chosen such
that the discrete stages could coincide conveniently
with the delivery periods of monthly, quarterly and
yearly futures contracts traded at NASDAQ OMX.
Simultaneously, semi-monthly periods are short
enough to be used in a medium-term scheduling
model, which typically use weekly granularity.

For each time stage, multiple stochastic variables
affect the decisions of the hydropower producer.
In the production model, the only variables that
are decision relevant are spot price Ft,t and
reservoir inflow Y1,t and Y2,t . This is common
in commercial software for production planning,
as shown in Wolfgang et al. (2009) and Fleten et
al. (2012). For the hedging model, we allow the
producer to trade in monthly, quarterly and yearly
power futures contracts whose delivery periods
are within the chosen time horizon of T̂ = 49
semi-months. These contracts are chosen since they
have high liquidity on NASDAQ OMX, and are
the most common derivatives used by Norwegian
hydropower producers (Sanda et al., 2013). Thus,
additional state variables are the prices of six
monthly, eight quarterly and one yearly futures
contracts, denoted Ft,Mi for i = [1, ...,6], Ft,Q j for
j = [1, ...,8] and Ft,Y 1. The reference price of the
futures contracts is the system spot price. As EPAD
contracts are not available for the NO3 area, they are
not included in the model. Due to the high empirical

12



correlation between the system and NO3 spot price,
we also disregard the area price difference risk, and
assume that the producer receives the system spot
price and not the area spot price3.

The production model disregards uncertainties in
currency exchange rate, which is common in
present-day production models. Nevertheless, we
allow the producer to hedge the currency risk
in the hedging problem. Therefore, the hedging
model also includes the stochastic variables for spot
exchange rate (Qt,t ) and for forward exchange rate
at time t for maturity at time T (Qt,T ). Further, we
denote by Wt the stochastic level of production used
in the hedging model. The value of Wt is found
using the production model, in which the production
level wt is a decision variable. Since we also
include taxation effects, we let γc and γr denote the
corporate and resource rent tax rate, respectively.
Lastly, we include variable transaction costs cF for
trading in the power futures market. Transactions
cost are negligible in the currency forwards market.

Further, we propose using the nested conditional
value-at-risk (nested CVaR) to model the risk
preferences of the producer. Unlike the terminal

CVaR, which considers the CVaR of the total
terminal cash flows, the nested CVaR considers the
CVaR of the cash flows in all subsequent periods,
irrespective of past cash flows. For a random
variable X , significance level α and a weighting
coefficient λ we define the function ψλ ,α(X) =

λCVaRα(X) + (1− λ )E(X), where CVaRα(X) is
defined as in Section 3.2.2. Using the formulation
in Shapiro et al. (2013), the nested CVaR for a
sequence of random variables X1,X2,X3, ... can be

defined as

CVaRNEST
α,λ (X1,X2,X3, ...) =

X1 +ψα,λ (X2 +ψα,λ (X3 + ...)) (3.1)

In Section 3.3.2 and 3.3.3, we introduce decision
variables for the linear programs. Unless otherwise
stated, these are restricted to non-negative values.

3.3.2 Production planning problem

In this section, we formulate the production
planning problem as a linear program. First, we
define wt as the time t spot production, denoted in
[MWh]. When obtaining the optimal production
plan, the objective of the production planner is
to maximize their expected discounted terminal
cash flows. Ignoring variable costs related to e.g.
generator and turbine start-up, which is common
in other papers concerning hydropower production
planning (Wallace and Fleten, 2003), the cash flows
earned by the producer can be set equal to the
discounted revenues earned from physical sales. If
the time t cash flows are given by Ft,t ·wt and βt is
a time-dependent discount factor, the value function
V P

t , which serves as the time t objective function of
the MDP, is given by

V P
t = Ft,twt(1− γc− γr)

+βtE[V P
t+1 | Ft,t ,Y1,t ,Y2,t ,πt ] (3.2)

Here, πt denotes the decision policy at time t, and
as the value functions suggest, cash flows from
production are subject to both resource rent and
corporate tax. Further, we let v1,t and v2,t denote the
water level [m3] in both reservoirs, sc,t the amount
of water flowing from reservoir 2 into reservoir 1,
and ss,t the amount of spilled water. Using this, the

3Note that we have estimated the parameters of a stochastic process for the area price difference in Appendix A.7.4.
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volume balance in each reservoir is given by

v1,t = v1,t−1−wt ·κ−1 + sc,t +Y1,t − ss,t (3.3)

v2,t = v2,t−1 +Y2,t − sc,t (3.4)

Here, κ is the energy coefficient [MWh/m3]. While
this is normally a function of e.g. turbine and
generator efficiency, reservoir elevation and water
density, it must be treated as a constant in order
to keep the problem linear. This was also the
case in Dimoski et al. (2018). Treating κ as a
constant is in compliance with the EOPS model
(SINTEF, 2017b), which is a common software
used for medium-term production planning in the
Nordic countries. Further, the upper and lower
bounds for the water levels in reservoir 1 and 2
are summarized in (3.5). While there is no lower
restriction in reservoir 1, reservoir 2 has a lower
restriction in summertime set by local authorities.
To prevent infeasibility scenarios, we add the slack
variable vS

2,t to the last constraint. Violating this
bound will result in a penalty cost given by υ · vS

2,t ,
which is added to the objective function.

v1,t ≤ v1, v2,t ≤ v2

v1,t ≥ 0, v2,t + vS
2,t ≥ v2,t

(3.5)

At last, there is a production capacity constraint
(3.6). Here, ξ is the maximum flow rate [m3/s]
allowed through the turbine of the hydropower plant
and ςt is the number of seconds in a semi-month t.

wt ≤ wt = ξ ·κ · ςt (3.6)

By combining all expressions and constraints, the
production planning problem can be summarized as
solving the following subproblem at all time stages
t

max V P
t (Ft,t ,Y1,t ,Y2,t ,πt)−υ · vS

2,t

subject to (3.3),(3.4),(3.5),(3.6)

3.3.3 Hedging problem

In this section, we formulate the hedging problem
as a linear program. We must define variables and
constraints for the trading of currency and power
derivatives. In both cases, we include variables and
balance constraints for tracking both financial short

positions and confirmed future cash flows. Together,
these are formulated such that the structure of the
cash flows from the derivatives replicate their actual
payoff structure. The model only allows for short
positions in currency and power futures, excluding
long positions. For hedging purposes, this should
be sufficient, as the producer already has a long
position in their physical production.

We assume that the exchange rate forward contract
is settled at the contract maturity. Figure 3.2
illustrates an example of the cash flows from a
currency forward contract with delivery in stage 8.
No cash is exchanged until the maturity date, at
which the difference in the forward and spot price is
settled. We let zt,T denote the producer’s total short
position [EUR] at time t in currency forwards with
maturity at stage T . New short positions entered at
stage t for delivery in T are denoted xt,T . This gives
the following balance constraint for t < T , where
T ≤ T̂

zt,T = zt−1,T + xt,T , T > t (3.7)

Since a forward contract with instantaneous
delivery is a spot trade, the balance constraint for
T = t is given by

zt,t = zt−1,t , T = t (3.8)
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Figure 3.2: Cash flows from short position x0,8 in currency
forward contract with maturity T = 8 made at t = 0 .

The currency forward rate is denoted Qt,T

[NOK/EUR]. We let yC
t,T [NOK] denote the

confirmed, positive cash flows that the producer
is certain to receive at stage T given their trading
activity in the currency forward market. For T > t,
the balance for the confirmed part of the currency
cash flows is given by (3.9). Note that cash flows
from forward trading are subject to corporate tax
rate γc only. This is in contrast to cash flows
from physical production, which are subject to both
resource rent tax rate γr and corporate tax rate γc.

yC
t,T = yC

t−1,T + xt,T Qt,T (1− γc), T > t (3.9)

In (3.9), the decision variable yC
t,T can be interpreted

as the positive part of the cash flows that are to
occur at maturity time T , as illustrated in Figure 3.2.
When maturity is reached at t = T , the time t cash
flows from currency hedging are given by (3.10).
In (3.10), the negative cash flows from the forward
positions are added to the positive ones to obtain
the time t cash flows yC

t,t . Note that yC
t,t can take both

positive and negative values.

yC
t,t = yC

t−1,t − zt,tQt,t(1− γc), T = t (3.10)

We move on to the variables and constraints for
the trading of power futures. Power futures have
a more complex cash flow structure than currency
forwards, due to the following circumstances. First,

they have a delivery period, which can be monthly,
quarterly or yearly, instead of delivery at a specific
point in time. Second, power futures have daily
settlement. Before delivery, the settlement is based
on the price change between two successive trading
days. Within the delivery period, the settlement is
based on the difference between the system spot
price and the last price for which the contract was
traded before entering into delivery. Contracts in
delivery are not tradable. We replicate this structure
as closely as possible assuming semi-monthly
settlement. Figure 3.3 shows an example of the
cash flows of a quarterly contract with a delivery
period from stage 3 to 8. To receive the cash flows
in NOK, they are multiplied by their respective spot
exchange rate Qt,t .

Figure 3.3: Cash flows from short position w0,Q1 in a power
futures contract with delivery in the upcoming quarter. The light
blue part of the figures denotes time stages prior to the start of the
delivery period, whereas the darker part denotes stages within the
delivery period. During the delivery period, the quantity of the
short position is divided by 6, as this is the number of stages
covered by the contract delivery period.

We introduce decision variables for short positions.
Let ut,Mi, ut,Q j and ut,Y 1 [MWh] denote the total
short position at stage t in futures contracts with
delivery in i months, j quarters and one year,
respectively. While the latter three variables denote
the position in contracts that have not yet entered
delivery, we must also store the short positions in
the monthly, quarterly and yearly contracts that are
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currently in delivery. These are denoted ut,M , ut,Q

and ut,Y [MWh], respectively. wt,Mi, wt,Q j and
wt,Y 1 [MWh] denote new short positions entered
into at stage t. If the delivery period of a contract
exceeds the model horizon T̂ = 49 semi-months,
the corresponding decision variable (wt,Mi, wt,Q j or
wt,Y 1) is restricted to zero to ensure no trading.

We need to define balance constraints for short
positions in power futures. The balances will be
different depending on whether the time stage t

represents the first or second part of a month, the
beginning of a new quarter or the beginning of a
new year. If t represents the second part of a month,
the total short position will be given by the previous
stage value plus new short positions for contracts
not yet in delivery.

ut,M = ut−1,M, ut,Q = ut−1,Q, ut,Y = ut−1,Y

ut,Mi = ut−1,Mi +wt,Mi, i = [1, ...,6]

ut,Q j = ut−1,Q j +wt,Q j, j = [1, ...,8]

ut,Y 1 = ut−1,Y 1 +wt,Y 1
(3.11)

When t represents the first part of a month, the
contract that was the 1 month ahead (M1) in t − 1
will enter into delivery. Further, M2 will become
M1, and all other monthly contracts are shifted in
the same manner. A new contract is introduced for
delivery in six months (M6). If t represents the
first part of the month, but not a new quarter, the
constraints will be given by (3.12).

ut,M = ut−1,M1, ut,Q = ut−1,Q, ut,Y = ut−1,Y

ut,Mi = ut−1,Mi+1 +wt,Mi, i = [1, ...,5]

ut,M6 = wt,M6

ut,Q j = ut−1,Q j +wt,Q j, j = [1, ...,8]

ut,Y 1 = ut−1,Y 1 +wt,Y 1
(3.12)

Using the same logic, the balance constraints for

stages marking the beginning of a quarter, but not
a new year, is given by (3.13).

ut,M = ut−1,M1, ut,Q = ut−1,Q1, ut,Y = ut−1,Y

ut,Mi = ut−1,Mi+1 +wt,Mi, i = [1, ...,5]

ut,Q j = ut−1,Q j+1 +wt,Q j, j = [1, ...,7]

ut,M6 = wt,M6, ut,Q8 = wt,Q8

ut,Y 1 = ut−1,Y 1 +wt,Y 1
(3.13)

If t represents the beginning of a year, the short
position balance constraints are given by (3.14).

ut,M = ut−1,M1, ut,Q = ut−1,Q1, ut,Y = ut−1,Y 1

ut,Mi = ut−1,Mi+1 +wt,Mi, i = [1, ...,5]

ut,Q j = ut−1,Q j+1 +wt,Q j, j = [1, ...,7]

ut,M6 = wt,M6, ut,Q8 = wt,Q8, ut,Y 1 = 0
(3.14)

Having established the balance constraints for short
positions in power futures, we can define variables
and restrictions for the cash flows of the power
futures portfolio. We first explain all variables, and
define them mathematically afterwards. yF

t,t denotes
the stage t cash flow from power futures trading. yF

t,t

can take positive and negative values, and is part of
the value function of the hedging problem (3.22).
Since the currency spot rate at which the cash flows
occur is not known in advance, yF

t,t is denoted in
EUR, as opposed to yC

t,t , which is denoted in NOK.

yF
t,T tracks the confirmed, positive part of the cash

flows from power futures trading that will occur at
t = T . yF

t,T , where T > t, is not part of the value
function and is only used to store the positive part of
the cash flows that will occur in subsequent periods.
In (3.21), the negative part of the cash flows is added
the positive ones to obtain the time t cash flows yF

t,t .
yF

t,t+1 stores two types of cash flows. The first type
is related to changes in the value of the portfolio
of contracts not yet in delivery. Since all contracts
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are marked-to-market regularly, we need to store
the forward prices in stage t to calculate the price
changes in stage t + 1. The second type of cash
flows is associated with contracts in delivery. yF

t,T

for T > t + 1 stores the positive part of cash flows
associated with contracts in delivery only. Because
the longest delivery period spanned by any of the
available contracts is 24 semi-months, it is only
necessary to define yF

t,T for T = [t +1, ..., t +24].

First, we consider the case where t represents the
first part of a month. Then, the cash flow balances
will be given by

yF
t,t+1 = yF

t−1,t+1 +(1− γc)
( 6

∑
i=1

ut,MiFt,Mi

+
8

∑
j=1

ut,Q jFt,Q j +ut,Y 1Ft,Y 1

)
yF

t,T = yF
t−1,T , t +2≤ T ≤ t +23

yF
t,T = 0, T = t +24

(3.15)

In this case, only yF
t,t+1 is updated. This is because

the next stage is within the same month as the
current stage, meaning that no new contracts will
enter into delivery. Therefore, the cash flows added
to yF

t,t+1 are only based on contracts not yet in
delivery.

If t is the second part of a month, multiple contracts
can potentially enter into delivery in the upcoming
stage (t + 1). We must store the price and position
of the futures contracts that enter delivery. The
cash flows must be stored for the next two, six
or 24 periods, depending on whether the contract
which enters delivery is monthly, quarterly or
yearly, respectively. To make the formulation more
compact, we introduce the indicator functions IQ

and IY . They will take the values 1 if the next stage
(t + 1) marks the beginning of a new quarter and
year, respectively, and 0 otherwise. Using this, the

cash flow balances are given by

yF
t,t+1 = yF

t−1,t+1 +(1− γc)
(

ut,M1Ft,M1

2
+ IQ

ut,Q1Ft,Q1

6
+ IY

ut,Y 1Ft,Y 1

24

+
6

∑
i=2

ut,MiFt,Mi

+(1− IQ)ut,Q1Ft,Q1 +
8

∑
j=2

ut,Q jFt,Q j

+(1− IY )ut,Y 1Ft,Y 1

)
(3.16)

yF
t,t+2 = yF

t−1,t+2 +(1− γc)
(ut,M1Ft,M1

2

+ IQ
ut,Q1Ft,Q1

6
+ IY

ut,Y 1Ft,Y 1

24

) (3.17)

yF
t,t+i = yF

t−1,t+i +(1− γc)
(
IQ

ut,Q1Ft,Q1

6

+ IY
ut,Y 1Ft,Y 1

24

)
, i = [3, ...,6]

(3.18)

yF
t,t+i = yF

t−1,t+i +(1− γc)IY
ut,Y 1Ft,Y 1

24
,

i = [7, ...,23]
(3.19)

yF
t,t+24 = (1− γc)IY

ut,Y 1Ft,Y 1

24
(3.20)

Based on this, we formulate the stage t cash flows
from power trading (yF

t,t ) in (3.21). As was the case
for currency forwards, the expression consists of the
confirmed, positive cash flows saved in yF

t−1,t and
all negative cash flows. Note that we must subtract
wt,Mi,wt,Q j and wt,Y 1 from the positions ut,Mi,ut,Q j

and ut,Y 1 to obtain the negative part of the cash flows
associated with price changes in contracts prior to
delivery, as these are based on the previous state
positions. In addition, we also include variable
transaction costs, represented by cF [EUR/MWh].

17



yF
t,t = yF

t−1,t +(1− γc)
[

− (ut,M/2+ut,Q/6+ut,Y/24)Ft,t

−
( 6

∑
i=1

(ut,Mi−wt,Mi)Ft,Mi

+
8

∑
j=1

(ut,Q j−wt,Q j)Ft,Q j

+(ut,Y 1−wt,Y 1)Ft,Yi

)
− cF(

6

∑
i=1

wt,Mi +
8

∑
j=1

wt,Q j +wt,Y 1)
]

(3.21)

For the hedging problem, we define the value
function V H

t as a linear combination of the stage t

cash flows and ψα,λ (X). ψα,λ (X) is a risk measure
with risk preference weighting λ and significance
level α , defined in Section 3.3.1. The stage t cash
flows is the sum of the cash flows from currency
forward trading, power futures trading and spot
production. Wt denotes the production in stage
t [MWh], which is a stochastic variable in the
sequential hedging approach.

V H
t = yC

t,t + yF
t,tQt,t +WtFt,tQt,t(1− γc− γr)

+βtψα,λ [V
H

t+1 | Ft,t ,Qt,t ,Wt ,πt ] (3.22)

We recall that λ adjusts the weighting between the
CVaR and expected value of a random variable
X . In this case X is the next stage value function
V H

t+1. Setting λ = 0 will thus turn (3.22) into the
classic Bellman equation of dynamic programming
associated with value maximization, while λ = 1
implies that (3.22) will maximize the stage t cash
flows and the CVaR of V H

t+1. For the sequential
approach, setting λ 6= 1 makes little sense, as the
expected profit from trading forward contracts is
zero under the risk-neutral probability measure.
Thus, one should set λ = 1 to solve the hedging
problem in the sequential model. Adjusting λ

does, however, make sense in a simultaneous model.
Such a model can be formulated by combining the
constraints and decision variables of the production
and hedging problems and replacing the stochastic
production level Wt with the decision variable wt .

3.3.4 Building a scenario lattice

As in Löhndorf and Wozabal (2017), we build a
scenario lattice by reducing the continuous Markov
processes driving the state variables into discrete
nodes. Each node contains one entry for each
stochastic variable, which in our case are inflow,
spot price, exchange rate and multiple forward
prices. Generally, we keep the number of nodes
per stage Nt in the lattice constant. In comparison,
the number of nodes per stage in a non-recombining
scenario tree grows exponentially with the number
of time stages. Thus, the lattice approach allows for
a higher number of time stages and scenarios while
keeping the problem computationally feasible.

The nodes are found by a two-step algorithm
proposed by Löhndorf and Wozabal (2017). The
first step in constructing the lattice is finding the
value of its nodes, which is done by first drawing
a set of K Monte-Carlo simulations (Sk) of the
underlying, correlated stochastic processes, where
k = [1, ...,K]. We let St,n denote the nth node in time
stage t. To find the value of the lattice nodes, we
minimize the total squared distance between all Nt

nodes and K simulations Sk
t for each time stage t.

The second step of the algorithm involves finding
the transition probabilities. For two subsequent
nodes St,n and St+1,m, the transition probability
ptnm is initially found by counting the number of
simulated paths whose stage t and t + 1 states
are located closest to the nodes St,n and St+1,m

and dividing by the total number of paths that are
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located closest to St,n. As shown in Löhndorf and
Wozabal (2017), a problem with this procedure is
that the conditional expected next stage value of a
state variable for t < T̂ can slightly deviate from
its true expected value, given by the continuous
process. Such a bias can result in positive expected
gains from trading in the futures market (or even
arbitrage opportunities), although the continuous
process used to generate the lattice indicates
expected gains of zero. To avoid this and obtain
an unbiased lattice, we use a procedure known
as backwards estimation. For all stages t < T̂ ,
the entries in each node are adjusted such that
their conditional expected successor node value is
equal to the conditional mean of the true process.
This is done iteratively, starting at t = T̂ and
working backward through the lattice. An extensive
explanation can be found in Appendix A.2 or in
Löhndorf and Wozabal (2017).

3.3.5 Solution method

For both the production and hedging problem, we
use ADDP (Löhndorf et al., 2013) to obtain the
decision policies πt,n in all lattice nodes. Like
SDDP, ADDP is based on a stochastic extension of
Benders decomposition and can be used to obtain
approximate, near-optimal decision policies. When
using ADDP, one of the main simplifications is
that the value function is approximated to be a
piece-wise linear, concave function of all resource
variables (e.g., reservoir levels and financial short
positions). In short, the value function is found
by first drawing a given number of forward

passes through the lattice, that is, a sequence of
states. For each forward pass, the optimal decision
policies are found by maximizing the approximate
post-decision value functions. After each forward

pass, a backward pass is performed, in which the
approximated value functions are updated relative
to the sampled sequence of states and all state
decision policies. In practice, the approximate value
function of each state is constructed by a set of
supporting hyperplanes (linear constraints), where
each pair of forward and backward passes results in
the addition of a new hyperplane to the set.

3.4 Risk factor dynamics
In this section, we present the dynamics behind
the stochastic variables driving the risk factors.
We include stochastic variables for local inflow,
currency spot and forward rates, and electricity spot
and futures prices. All processes are estimated
using average semi-monthly observations, with
estimation windows as shown in Table 3.1. At last,
we also show how the state variables are discretized
using a scenario lattice, including the discretization
of production decisions.

Start End

Electricity forward price 03.04.2011 31.12.2014
Inflow 01.01.1958 31.12.2014
EURNOK 04.01.1999 31.12.2014

Table 3.1: Data window for parameter estimation in the
stochastic processes

3.4.1 Price process

We generate future scenarios of spot and futures
prices using movements in a forward curve. As
explained earlier, tradable forward and future
contracts in the Nordic power market do not have
delivery at a single point in time; instead, they have
delivery periods stretching over a time period. A
forward curve4 aims to estimate the forward price
for delivery at specific points in time, based on all
contracts available in the market. In other words,

4The term forward curve might be confusing, as this paper considers futures contracts. However, as NASDAQ OMX only offered
forward and not futures contracts for delivery periods exceeding one week before 2016, most literature uses the term forward curve.
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the value of the curve at time T represents the
price of a fictional forward contract with delivery
exactly at time T . Multiple ways of constructing
high-resolution forward curves are presented in the
literature, e.g. by Fleten and Lemming (2003),
Benth et al. (2007), Alexander (2008) and Kiesel
et al. (2018).

We let Ft,T denote the time t price of a forward
contract with maturity at time T . For a forward
contract with immediate delivery (T = t), the
price of that contract is the current time spot
price Ft,t . Thus, a stochastic process for the
evolution of a forward curve can be used to generate
future scenarios of its underlying, in this case,
the spot price. The generated scenarios will also
incorporate the seasonality of electricity prices,
which Johnson and Barz (1999) found to be an
essential characteristic of the market.

To represent the evolution of the electricity forward
curve we use the HJM framework, originally
presented by Heath et al. (1992). As we use the
risk-neutral measure and the initial investment of a
forward contract is zero, the expected return of the
forward contract must be zero. Like Koekebakker
and Ollmar (2005), we let the volatility of a forward
contract with maturity at T , σt,T , be a function
of time to maturity T − t = τ only. The process
explaining movements in the forward curve will
then be given by5

dFt,T

Ft,T
= σt,T dZt,T = στ dZτ,t

E(dZτ,t ,dZτ̂,t) = ρτ,τ̂ dt, τ, τ̂ ∈ [τ]

(3.23)

Here, dZτ,t and dZτ̂,t are Wiener processes
associated with forward contracts with time to
maturity τ and τ̂ , respectively. dZτ,t and dZτ̂,t are

correlated by ρτ,τ̂ . [τ] denotes the set of all time to
maturities where ∆t ≤ τ ≤ T̂ . Since our decision
problem considers discrete time stages, (3.23) must
be discretized. By using Ito’s lemma and setting
dt = ∆t, the process can be written as

Ft,T =Ft−∆t,T ·exp
(
− 1

2
σ

2
τ+∆t∆t+στ+∆t

√
∆tετ,t

)
(3.24)

Here, ∆Zτ,t =
√

∆tετ,t , where ετ,t ∼N(0,1). We can
modify (3.24) into an expression for the spot price
as a function of Ft−∆t,t , given by

Ft,t = Ft−∆t,t · exp
(
− 1

2
σ

2
∆t∆t +σ∆t

√
∆tε∆t,t

)
(3.25)

In the final lattice, each node contains a forward
curve covering the remaining periods of the model
horizon. In other words, the forward curve at stage
t has T̂ − t discrete price points Ft,T , where T =

[t, ..., T̂ ]. The price with the largest time to maturity
τ is removed in every transition. Ft,T represents
the price of a non-traded forward contract with
delivery in time stage T , whose delivery period is
a semi-month. The spot price Ft,t is the first element
of the curve. The price of the contracts traded in the
market (Ft,Mi, Ft,Q j and Ft,Y 1) are obtained using the
forward curve. They can be found by calculating
the average price of the forward curve covering the
delivery periods of the corresponding contracts. To
construct the underlying curve used as input in the
first time stage of the model, we use the method
proposed by Fleten and Lemming (2003)6.

To estimate the correlation matrix and the
volatilities that describe the electricity forward
curve dynamics, we must construct a set of
semi-monthly log returns for all forward contracts
with time to maturity τ ∈ [τ]. In our case, [τ] =

5See Appendix A.7.1 for more extensive details and analyzes of the implemented price process.
6See Appendix A.3 for an explanation of the method for constructing forward curves.
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[1, ...,48] semi-months. To calculate these returns
series, Koekebakker and Ollmar (2005) propose
constructing multiple high-resolution forward
curves for a large set of historical trading days.
For this, we adopt the method of Alexander (2008),
which uses linear interpolation of forward prices
in the market to estimate the forward curves7.
Although the forward curves constructed using
the method of Fleten and Lemming (2003) are
smooth and continuous, we experience issues with
unrealistic oscillations in the near end of some of
the forward curves. The curves constructed using
the method of Alexander (2008) are neither smooth
nor continuous, but they resulted in a reasonable
volatility curve, as shown in Figure 3.4. The
log returns are calculated between the average
semi-monthly values of the forward curves of two
consecutive periods8. Using log returns allows us
to aggregate returns over longer time periods by
addition, an approach also used by Bjerksund et al.
(2008).

Figure 3.4: Annualized volatility curve στ for electricity
forward contracts.

Using the time series of returns, we can estimate
the volatility curve for the term structure of forward
prices. In Figure 3.4, the volatility curve can be
understood as the volatility of returns of forward
contracts with time to maturity τ . The volatility
is monotonically decreasing with increasing time

to maturity. This is called the Samuelson effect,
originally proposed by Samuelson (1965). It means
that forward prices tend to change more the closer
they come to maturity. The reasoning behind
this phenomenon is that an information shock
that affects the short-term price has an effect on
the succeeding prices that decreases as the time
to maturity increases. Weather forecasts are an
example of information that one would expect
to have short-term effects only on the electricity
forward prices.

3.4.2 Inflow process

Since the inflow time series provided from the case
plant only contains data on aggregated inflow into
both reservoirs, we must treat inflow as a single
stochastic variable Yt =Y1,t +Y2,t . In order to obtain
Y1,t and Y2,t , we have used the historical inflow split.
We let ζ = 0.395 denote the historical fraction of
inflow flowing into reservoir 1, giving us Y1,t = ζYt

and Y2,t = (1−ζ )Yt .

We fit the geometric periodic autoregressive
(GPAR) model suggested by Shapiro et al. (2013)
to the inflow data for the hydropower plant9.
Shapiro et al. (2013) found that a first-order periodic
autoregressive process for the log-inflows provides
a good description of their dataset. We find that it is
suitable for our dataset as well. The inflow process
is given by

Yt = Y φt
t−∆t exp(µ̂t −φt µ̂t−∆t + εY,t) (4.19)

Here,

• Yt is the inflow in period t = 1, ...,24
• µ̂t is the mean log inflow in period t =

1, ...,24
• φt is the time-dependent coefficient in the

7See Appendix A.4 for an explanation of the method for constructing forward curves.
8See Appendix A.5 for detailed procedure.
9See Appendix A.7.2 for an uncertainty diagram of the process.
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autoregressive process in period t = 1, ...,24
• εY,t ∼N(0,σ2

Y,t) is the error term representing
the difference between the observed and
predicted value in the autoregressive process
• σY,t is the time-dependent standard deviation

of the error terms in semi-month t = 1, ...,24

Since inflow Yt is a function of its first lag only,
future values of inflow are only dependent on their
current value and not the entire history. Thus, inflow
follows a Markov process, which is one of the
prerequisites for representing a decision problem as
a Markov decision process.

For a right-skewed inflow distribution such as the
one that can be seen in Figure 3.5(a), a geometric
process is better suited than an arithmetic process.
It better captures the inflow dynamics, which
can be extreme. Further, a geometric process
does not allow for negative inflows. Shapiro
et al. (2013) found the inflow distribution for
Brazilian hydropower plants to be right-skewed as
well, favoring a log transformation of the inflow
observations.

(a) Inflow (b) Log inflow

Figure 3.5: Historical distribution of semi-monthly inflow and
log inflow for case plant.

The deviation of the log inflows from their mean,
lnYt − µt , is represented as an AR(1) process. The
suitability of a 1-lag process can be determined
by investigating the partial autocorrelation of the

historical data for lnYt − µt . Partial autocorrelation
is the correlation for a time series with its own
lagged variables, but removing the correlation
effects of the values of the time series at all shorter
lags. Figure 4.6 shows the partial autocorrelation
of the lnYt − µt time series. Similar to the findings
of Shapiro et al. (2013), our dataset shows a high
value at lag 1 and insignificant values for larger lags,
indicating that it is sufficient to include one lag only
in the autoregressive model.

Figure 3.6: Partial autocorrelation of the logYt −µt time series

3.4.3 Exchange rate process

Exchange forward rates can be priced using covered

interest rate parity, as demonstrated by Aliber
(1973). We adopt this method. Covered interest
rate parity states that the interest rate differential
between two currencies in the money markets
should equal the differential between the forward
and spot exchange rates. Otherwise, one could
make arbitrage profits by simultaneously trading
spot and forward10. Covered interest parity is given
by

Qt,T = Qt,t exp [(r− r f )(T − t)] (3.26)

Here, Qt,T is the forward exchange rate at time t

with maturity at time T , Qt,t is the spot exchange
rate, r is the domestic interest rate and r f is the
foreign interest rate.

In reality, covered interest rate parity holds closely,
but not exactly (Levi, 2005). The failure to

10Such an arbitrage is demonstrated in Appendix A.6.
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achieve exact covered interest parity could be due to
transaction costs, political risks, and tax differences.

Further, we assume that uncovered interest rate
parity holds. Uncovered interest rate parity states
that the interest rate differential between two
currencies in the money markets should equal the
differential between the expected future exchange
rate and spot exchange rates, as explained in Cumby
and Obstfeld (1982). Uncovered interest rate parity
is given by

E(QT,T ) = Qt,t exp [(r− r f )(T − t)] (3.27)

According to Bekaert et al. (2007), uncovered
interest rate parity generally does not hold. The
reason we include such a relationship is that under
the risk-neutral probability measure, the forward
exchange rate must equal the expected exchange
rate. Since the upfront investment of a forward
contract is zero, there can be no expected gains
from entering into a contract under the risk-neutral
probability measure.

To model the uncertainty in the exchange rate, we
follow Huchzermeier and Cohen (1996) and use a
geometric Brownian motion with drift equal to the
interest rate differential, given by

dQt,t

Qt,t
= (r− r f )dt +σQdZ (3.28)

Here, σQ is the annualized volatility of exchange
rate returns. In discrete time, using εC,t ∼ N(0,1),
we have that

Qt,t =Qt−∆t,t−∆t exp
(
(r−r f −

1
2

σ
2
Q)∆t+σQ

√
∆tεC,t

)
(3.29)

The EURNOK volatility is estimated using
historical semi-monthly returns. The parameters
of the currency process are shown in Table 3.2.

EURIBOR
3yr

NIBOR
3yr

Initial EURNOK
rate

Annualized
volatility

r f r Q0 σQ

0.13% 1.26 % 8.7035 5.7%

Table 3.2: Parameters of the currency process. Interest rates are
logarithmic.

Figure A.6 in Appendix A.7.3 shows that the
empirical forward curve dynamics of EURNOK
exchange rate exhibit almost perfect correlation.
Thus, for practical purposes, all currency risk is
assumed to originate from the spot exchange rate,
and a single factor model for the currency spot
rate is sufficient. Once the spot rate is known,
the forward rate will be deterministically given by
the interest rate differential. This is in contrast to
electricity markets, in which there is uncertainty
both in the spot price and the forward curve. Due
to the non-storable nature of electricity, there is no
equivalent relationship between the electricity spot
and forward prices.

3.4.4 Correlation between increments

We investigate the correlation between the
increments of the stochastic processes. They are
estimated using their historical Pearson correlation
coefficients.

The electricity forward return series show a
substantial degree of inter-correlation. This can
be seen from the correlation matrix that is shown
in Figure 3.7. Further, the correlation matrix
shows that there is a clear decreasing trend in the
correlation between contracts with larger maturity
spreads. Using a 1% significance level, all
intercorrelations of the electricity forward curve
were found to be significant11.

The increments of the inflow process and the
11The significance level of all correlations can be found in Appendix A.7.5.
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price process show a weak negative correlation,
ranging from -0.18 to -0.03 for different parts of
the forward curve. Thus, there seems to have
been a weak, natural hedging effect historically.
However, all inflow-price correlations were found to
be insignificant at both a 1% and a 5% significance
level.

Figure 3.7: Correlation matrix for the increments of the
stochastic processes. price1 denotes the first element of the
forward curve (the spot price), and so on.

The increments of the currency process and
the price process generally show a weak
negative correlation, mainly between the currency
increments and the long end of the electricity
forward curve. For time to maturity τ ≥ 6
semi-months, the correlation coefficient ranges
from -0.28 to -0.14 for different parts of the
forward curve. Thus, there seems to have been a
weak, natural hedging effect historically also here.
The currency-price correlations were found to be
insignificant at a 1% significance level. At a 5%

significance level, they were significant for τ ≥ 28
semi-months.

3.4.5 Scenario lattice for state variables

To solve the MDP, we must discretize the Markov
processes that describe movements in inflow,
currency, and the electricity forward curve. We use
a joint lattice for inflow and the forward curve with
100 nodes per stage. Each node at time t contains
state variables for inflow, spot electricity price, and
48− t forward prices comprising the forward curve.
The increments of these processes are correlated
by their historical correlation coefficients, shown
in Figure 3.7. The currency lattice is generated
separately with ten nodes per stage, meaning that
currency is treated as independent from inflow
and price. We believe this is an acceptable
approximation, as the price-currency relationship
is not very strong in our dataset12. To create a
combined lattice of currency, inflow, and prices,
we calculate the cross-product of the price-inflow
lattice and the currency lattice. This results in a
combined lattice consisting of 49 stages and 1000
nodes per stage.

Due to the backwards estimation adjustment of
the position of the nodes, there is some variation
in the values assigned to a particular node when
creating multiple lattices with the same processes.
Thus, when we constructed the final lattice, we
attempted to obtain initial node values that were
consistent with the true input parameters. Further,
we use the same lattice for all analyses to eliminate
inaccuracies. Some of the true start values used in
the processes, the start values in the final lattice
and the standard deviation of the start values for
multiple lattices are given in Table 3.313.

12Another reason for creating the currency lattice independently is that we were not able to create a high-quality joint lattice of spot
price, forward prices, inflow, and currency, due to issues with the backwards estimation algorithm.

13A more comprehensive analysis of the lattice stability is found in Appendix A.8.
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True value Std.dev Lattice value

Inflow Y0 80.60 3.83 75.94
Currency Q0,0 8.704 0.0029 8.704
Spot F0,0 25.53 0 25.53

Table 3.3: Comparison of true starting values, lattice values and
the standard deviation of the ones constructed by the lattice for
March 16, 2015

(a) Inflow lattice, 100 nodes

(b) Spot price lattice, 100 nodes

(c) Currency lattice, 10 nodes

Figure 3.8

For our case study, we use March 16, 2015 as the
starting date, resulting in a model whose ultimate

stage is in the end of March 2017. This is usually
right before the start of the spring precipitation
in Norway, and many reservoirs are close to
empty. Therefore, we find it reasonable to disregard
constraints on the terminal reservoir levels in the
production model. As start values, we use the
mean inflow recorded for the second half of March
2015 and the currency rate at this date. The initial
state forward curve was constructed using the close
prices of all monthly, quarterly and yearly contracts
at the starting date. The scenario lattices for inflow,
spot price and currency are plotted in Figure 3.8.

In the hydropower scheduling problem, the
production in period t, wt , is a decision variable.
For the hedging problem, we treat production
as an exogenous, stochastic variable Wt . To
obtain the stochastic production levels, we first
obtain the optimal production decisions in all
nodes by running the production model. For
this, we only use the price-inflow lattice, as we
treat production decisions as independent from the
currency exchange rate. Thus, we obtain a unique
stochastic production level for all states of price
and inflow. Next, we run 105 simulations of the
production model, and calculate the production
Wt in node St,n as the average of all simulated
production decisions made in that particular node.
During the 105 simulations, the least visited node
had 127 visits. Figure 3.9(a) shows the simulated
realizations of the production decisions obtained
by the production model, and Figure 3.9(b) shows
how the production decisions were discretized
into a lattice with 100 nodes per stage. The
red line, which represents the mean production
at stage t, is almost identical in both figures.
This ensures that the expected total production is
changed only marginally (0.1% increase) by the
discretization of the production decisions. The
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mean yearly production values obtained by the
production model, in the production lattice and
historically are listed in Table 3.4.

(a) Simulated production decisions

(b) Discretized production lattice

Figure 3.9

Production model Production lattice Historical

192.03 192.18 191.30

Table 3.4: Yearly mean production in production model,
production lattice and historically in GWh. The former two
values are based on 5 ·105 simulations

3.5 Numerical results
In this section, we summarize the numerical results
of the hedging model. Unless otherwise stated, we
use the sequential approach and treat production as
a stochastic variable. For all analyzes, we have
used the lattices presented in Section 3.4.5 and the
coefficient values in Appendix A.9. Further, we
have used maximum 500 pairs of forward-backward
passes in the ADDP algorithm, and all simulated

results are based on 105 simulations14. All
code has been implemented in MATLAB and R,
and we have used QUASAR, a general-purpose
solver for stochastic optimization (Löhndorf, 2017),
to construct the lattices and perform ADDP.
Computations were conducted on a computer with
32 GB memory and 3.6 GHz speed.

3.5.1 Hedging performance

Here, we present the main results of the sequential
hedging model. We are, in particular, interested in
the risk reduction hedging can provide compared
to the case of no hedging. Additionally, we also
seek to explain the decision policies driving this
reduction. To quantify the hedging effect, we use
statistical measures of the discounted terminal cash
flows over the two-year horizon. For different
model specifications, we find the mean and standard
deviation of the terminal discounted cash flows,
in addition to the terminal VaR and CVaR at the
significance levels 0.05 and 0.01. In Table 3.5, we
have displayed the results for the cases with trading
in all contracts, with trading in all contracts except
for monthly power futures, and with no forward
trading and only production. Recall that we use
the nested CVaR to model risk preferences, which is
different from the terminal CVaR. However, to the
authors’ knowledge, it is not possible to quantify the
nested CVaR, favoring the terminal CVaR for risk
measurement purposes.

As the terminal VaR and CVaR in Table 3.5 show,
the dynamic hedging model clearly reduces the
risk compared with the no hedging-case, utilizing
currency forwards and power futures contracts. The
mean terminal cash flow is slightly reduced, which
can largely be explained by transaction costs. The
risk reduction in terms of terminal risk measures

14Sensitivity analysis of results obtained using 500 passes and 105 simulations can be found in Appendix A.10.
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is also evident when using only quarterly and
yearly contracts, but it is higher when trading
in monthly contracts is allowed. Note that the
significance level α used in the nested CVaR does
not necessarily maximize the terminal CVaR with
the same significance level. This can be observed by
comparing the results using α = 0.05 and the results
where α = 0.1. The latter performs better both in
terms of terminal CVaR(5%) and CVaR(1%).

Available
contracts

None All All All
except
Month

All
except
Month

α - 0.05 0.1 0.05 0.1

Mean 40.50 40.26 40.23 40.35 40.35
Std 7.99 4.56 4.34 6.10 5.97
VaR(5%) 28.22 33.06 33.23 30.61 30.84
VaR(1%) 24.25 30.48 30.68 27.17 27.44
CVaR(5%) 25.82 31.45 31.66 28.53 28.75
CVaR(1%) 22.65 29.25 29.44 25.64 25.85

Mean
prod. /yr.

192.18 192.17 192.08 192.22 192.15

Table 3.5: Mean value and statistical measures of the terminal
cash flows in million NOK (M NOK) for a significance level
α used in the nested CVaR expression. If all contracts are
available, currency forwards and monthly, quarterly and yearly
power futures can be traded. For reference, we also include the
average yearly production [GWh] from each test.

The average optimal hedge ratios for power futures
trading highly depends on the availability of
monthly contracts. Table 3.6 shows the mean total
hedge ratio of the four model variants, which is
the mean ratio between the total short position in
financial power contracts and the total amount of
produced energy. It also includes the mean hedge
ratio before the start of a new quarter and the start
of the first year. The large difference between
the quarterly and total hedge ratios for the cases
including all hedging instruments indicates that a
large quantity of monthly contracts is traded in the

last three months ahead of delivery. Generally,
the model prefers using monthly contracts, as the
short position in such contracts constitutes 97% of
the total trading volume [GWh] for the case where
α = 0.10. This might be because they allow for
precision hedging of the expected production in a
given month. They also allow for hedging of the
most near-term cash flows.

Available
contracts

All All All
except
Month

All
except
Month

α 0.05 0.1 0.05 0.1

HR 1.543 1.582 0.479 0.514
HR Q 0.707 0.719 0.479 0.493
HR Y 0.256 0.274 0.172 0.184

Table 3.6: Mean hedge ratios, i.e. total short position in
power futures divided by total expected long position in power
production. The first row (HR) denotes the total hedge ratio,
whereas the second denotes the mean ratios before the start of a
new quarter. The third row denotes the mean hedge ratio before
the start of the first year.

According to Sanda et al. (2013), a full hedge can
be obtained with a hedge ratio of 0.53, due to
taxation effects15. Compared to a hedge ratio of
0.53, the case allowing for trades in all contracts
proposes a significant over-hedge. This might be
an effect of modeling risk preferences using the
nested CVaR. Recall that the cash flows from a short
position in a power futures contract will be positive
if the underlying expected spot price goes down and
negative if it goes up. Assume that there is a positive
correlation between the spot price and production
in a semi-month t, i.e. that the production level is
higher for high-price states than low-price states.
Since the objective of the model is to maximize the
nested CVaR, it will seek to increase the lower-tail
cash flows as much as possible. Thus, a possible
explanation for the over-hedge could be that the

15The derivation of this hedge ratio can be found in Appendix A.11.
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model seeks to obtain a hedge ratio where the total
cash flows from production and hedging are lifted
as much as possible in the states where the price
goes down, thereby increasing the CVaR, while
simultaneously keeping the total cash flows in states
where the price goes up above the lower-tail cash
flows16. Also, as Table 3.6 shows, the largest
amount of the over-hedged short position is entered
less than three months before maturity with monthly
contracts. Due to the short delivery period and low
time to delivery of these contracts, the volatility of
the cash flows from the over-hedged position will
probably be moderate.

Available
contracts

All All All
except
Month

All
except
Month

α 0.05 0.1 0.05 0.1

Hedge ratio 0.563 1.12 0.589 0.95

Maturity 1-5 0.397 0.560 0.684 0.806
Maturity 6-15 0.090 0.100 0.079 0.046
Maturity 16-30 0.192 0.186 0.053 0.049
Maturity 31-48 0.321 0.153 0.184 0.099

Table 3.7: Amount of trading in the currency forward market
for different versions of the model. The first row denotes the
currency hedge ratio, found by dividing the mean total short
position in currency forward contracts minus taxes by the mean
total cash flows from the entire portfolio of production and
hedging, both in EUR. Thus, a full hedge will be obtained by
a hedge ratio of 1. The next rows shows the percentage of trades
performed in different intervals of time to maturities, denoted in
semi-months.

The extent of trading in currency forwards is shown
in Table 3.7. The table shows that the currency
market is extensively used. Similar to the trading
activity in power futures, currency forwards with
shorter maturity times are preferred. However, the
amount of trading in contracts with longer times to
delivery is larger than for the power futures. We also
observe that the extent of currency forward trading

is larger when using α = 0.1 in the nested CVaR
expression, reaching volumes close to a full hedge
position. In reality, we would expect the optimal
level of currency hedging to be slightly lower, due to
the negative correlation between price and currency
that was not included in the final scenario lattices.

(a) Discounted terminal cash flows from production

(b) Total discounted terminal cash flows (after hedging)

(c) Discounted terminal cash flows from power futures trading

(d) Discounted terminal cash flows from currency forward trading

Figure 3.10: Cash flow distributions. From hedging model with
all contracts and α = 0.10

Further, we have plotted the distributions of the
terminal cash flows from production, terminal cash
flows after hedging, terminal cash flows from power

16A numerical example explaining this argument can be found in Appendix A.12.
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futures and terminal cash flows from currency
forwards in Figure 3.10. The cash flows are from
the case in which we specify α = 0.1. The
hedging effect is evident when comparing the
terminal cash flow distribution in Figure 3.10(a) and
3.10(b). The distribution of cash flows is visually
compressed after hedging. Also note that the mean
in Figure 3.10(c) and 3.10(d) is zero, which is
correct assuming that there are no expected gains
from trading in the forward markets.

3.5.2 Comparison of sequential and simultaneous

approach

For comparison, we have also developed an
integrated model that treats the problems of
production and hedging simultaneously. We have
tested this model for different values of the
weighting parameter λ and significance level α , and
analyzed the hedging performance of each version
using the same risk measures as in Table 3.5. The
results are depicted in Table 3.8. In compliance
with the argumentation of Wallace and Fleten
(2003), the results show that the simultaneous
approach performs slightly worse compared to
the sequential one. The main reason for this
is that the model no longer treats production
as a risk-neutral maximization problem, as the
problem is now risk-averse. Thus, the production
decisions in the simultaneous approach will seek to
reduce the lower-tail distribution of the cash flows.
The risk-aversion also affects the decision policies
regarding the water level in reservoir 2, which
has a large penalty cost associated with violating
the summertime restriction. While the ratio of
mean cash flows to production is quite similar
in the simultaneous and the sequential approach,
the risk-aversion results in a lower mean total
production in the former case. This further leads
to lower mean discounted cash flows, terminal VaR

and CVaR. The simultaneous approach also has a
higher standard deviation.

Model
type

Sim. Sim. Sim. Sim. Seq.

Available
contracts

All All All All All

α 0.05 0.1 0.05 0.1 0.1
λ 1 1 0.5 0.5 1

Mean 37.23 37.73 39.50 39.69 40.23
Std 4.60 4.77 4.57 4.64 4.34
VaR(5%) 30.30 30.46 32.45 32.48 33.23
VaR(1%) 28.13 28.06 29.95 29.99 30.68
CVaR(5%) 28.99 29.02 30.92 30.96 31.66
CVaR(1%) 27.13 27.07 28.75 28.80 29.44

Mean
prod. /yr.

177.28 179.46 187.16 188.93 192.08

Mean CF /
prod.

102.9 103.0 103.4 102.9 102.6

Table 3.8: Results of the simultaneous production and hedging
model. For reference, we also include the statistical measures
from the sequential model with α = 0.1. The last metric denotes
the ratio between the mean cash flows and mean production
volume over the entire time horizon in [NOK/MWh].

3.5.3 Effect of currency hedging

One of the main contributions in this paper is the
inclusion of currency risk and currency derivatives.
To quantify the effect of currency hedging, we
compare the hedging performance when currency
forwards can be traded with the case in which
currency derivatives cannot be traded. That is, we
restrict hedging activity to power futures contracts
only, and compare this to the case in which currency
forward trading is allowed. Note that we include
currency risk also when currency hedging is not
allowed. However, we formulate the problem such
that the optimal decision policies are independent
of the uncertain currency rate. The results can be
seen in Table 3.9. They show that when currency
hedging is introduced, the standard deviation of the
terminal cash flows decreases, and the terminal VaR
and CVaR increase. Although currency hedging
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reduces the market risk of the hydropower plant,
the magnitude of the change is relatively small,
less than 10% for all risk measures. This can
be explained by the low volatility of the currency
exchange process compared to that of the electricity
price process.

W/o
currency
hedging

W/o
currency
hedging

W/
currency
hedging

Change

α 0.05 0.1 0.1

Mean 40.43 40.39 40.23
Std 4.99 4.82 4.34 -9.96%
VaR(5%) 32.45 32.71 33.23 1.59%
VaR(1%) 29.42 29.76 30.68 3.09%
CVaR(5%) 30.60 30.91 31.66 2.43%
CVaR(1%) 28.05 28.32 29.44 3.95%

Mean
prod. /yr.

192.26 192.15 192.08

Table 3.9: Effect of currency hedging on terminal cash flows.
The last column denotes the percentual difference in the risk
measures between the cases with and without currency hedging
for α = 0.1 in the nested CVaR expression.

3.5.4 Comparison with heuristics

As shown by Wang et al. (2015), simple hedging
strategies might often yield better or equivalent
hedging performance as more advanced procedures.
Therefore, we have replicated the hedging strategy
of a Norwegian hydropower producer, and compare
its performance to the performance of our model.
As shown in Sanda et al. (2013), most Norwegian
companies use a heuristical approach with specific
hedge ratio ranges for different times to maturity.
Since the time horizon of our model is two years,
we have used the hedging strategy of a firm whose
hedging activity also begins two years prior to
maturity. Figure 3.11 displays a slightly modified
version of the lower and upper bounds of the firm’s
required hedge ratios for delivery in a given month,
as shown in Sanda et al. (2013).

Figure 3.11: Required hedge ratio range of a real company.
For example, in a given time stage, the expected hedge ratio
(hedged volume divided by expected production) for the month
that begins 12 months ahead must lie between 0.18 and 0.6.

To test the performance of the heuristical approach,
we have included the hedge ratio ranges as
constraints on financial short positions in the
dynamic model. We have performed two separate
simulations; one where the hedge ratio is set close
to the lower restriction and one where it is closer
to the upper restriction. As the currency hedging
strategy of the firm is unknown, the option to trade
currency derivatives has been removed. For the two
aforementioned cases, the results are displayed in
Table 3.10. From the perspective of maximizing
terminal CVaR, the results show that a strategy
close to the upper hedge ratio requirement is better
than a strategy close to the lower. However, as
stated in Sanda et al. (2013), the purpose of using
a range instead of a specific requirement is to
enable selective hedging. Therefore, the realized
ratio will be adjusted based on the firm’s market
views. Further, the results show that the heuristical
approach performs worse in terms of terminal risk
measures than the proposed version allowing for
all types of trading, but not by a large margin.
Nevertheless, its performance is almost identical
to the version omitting currency hedging for all
risk measures except variance. These results might
indicate that the over-hedging proposed by our
approach, in which the largest short positions are

30



entered just before maturity, only has minor effects
on the lower tail of the terminal discounted cash
flows. This further illustrates the difference between
the nested CVaR and the terminal CVaR, and that
the former is not necessarily suitable for reducing
risk measured by the latter. At last, the results
show that the heuristical approach outperforms the
one with no option to trade in monthly contracts,
which underlines the benefit provided by precision
hedging with monthly contracts.

Model
type

Heuristic
Lower

Heuristic
Upper

Seq. Seq.

Available
contracts

All except
currency

All except
currency

All except
currency

All

α − − 0.1 0.1

Mean 40.46 40.44 40.39 40.23
Std 5.88 5.10 4.84 4.34
VaR(5%) 31.40 32.50 32.71 33.23
VaR(1%) 28.52 29.63 29.76 30.68
CVaR(5%) 29.64 30.76 30.91 31.66
CVaR(1%) 27.21 28.33 28.32 29.44

Mean
prod. /yr.

192.16 192.11 192.15 192.08

HR 0.302 0.584 1.505 1.582
HR Q 0.301 0.555 0.667 0.719
HR Y 0.259 0.421 0.255 0.274

Table 3.10: Results from hedging with an heuristic. For
reference, we also include the statistical measures from the
sequential model with α = 0.1, both with and without the
opportunity to trade in currency forwards. We also show the
hedge ratios of each simulations, which are calculated in the
same manner as in Table 3.6.

3.6 Conclusions
In this paper, we present a global dynamic model
for hydropower risk management. We treat the
problem sequentially. First, we obtain the optimal
production decisions, and then we hedge the cash
flows from production using currency forwards
and electricity futures. Both the production
planning problem and the hedging problem are
modeled as Markov decision processes. We

include correlated uncertainty in electricity spot and
futures prices and reservoir inflow. The currency
exchange rate is assumed to be independent. In
order to reduce their risk exposure, the decision
maker is allowed to trade in currency forward
contracts and monthly, quarterly and yearly power
futures. Risk preferences are modeled using
the nested CVaR. The stochastic variables are
discretized using a scenario lattice, and the
resulting stochastic-dynamic decision problem is
solved using ADDP. The results show that the
dynamic hedging model substantially reduces the
risk exposure compared to the case with no hedging,
demonstrated by increasing the CVaR(5%) of the
terminal cash flows by 23%.

We quantify the effect of including currency
derivatives in the hedging strategy for a Norwegian
hydropower producer. The effect is found to be
moderate, as including currency derivatives results
in a variance decrease of 9.96% and CVaR(5%)
increase of 2.43% for the terminal cash flows.
While not included in the scenario lattice, we
find that there generally is a weak, negative
correlation between the semi-monthly increments of
the currency spot rate and the electricity forward
curve. The magnitude of the correlation coefficient
is larger for the long end of the forward curve,
ranging from −0.28 to −0.14 for time to maturity
τ ≥ 6 semi-months. Although these values are not
very large and were found to be insignificant at
a 5% significance level for τ ≤ 28 semi-months,
they suggest that there might exist a weak, natural
hedging effect.

Further, we have tested how a simultaneous
approach in which we solve the problems of
production planning and hedging simultaneously
compares to the sequential one. In line with
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the argumentation of Wallace and Fleten (2003),
we find that the sequential outperforms the
simultaneous both in terms of return and risk
management, obtaining higher values for the mean,
VaR and CVaR of the terminal discounted cash
flows, in addition to a lower variance. This is mainly
because the simultaneous model does not treat
production as a risk-neutral maximization problem,
as it considers risk-aversion.

We also investigate how the hedging model
performs compared to a heuristical approach based
on hedge ratio ranges, which is extensively used
by Norwegian hydropower firms. This is done
by implementing the hedge ratios of a company
analyzed by Sanda et al. (2013) as constraints in
the dynamic hedging model. The performance of
the hedge ratio approach is slightly worse than the
base model, (2.8% lower CVaR(5%)), but almost
identical to the case with no currency trading. This
suggests that a simple hedge ratio approach can be
quite efficient, in line with the findings of Wang et
al. (2015).

The results of the base model suggest that it
is optimal to over-hedge expected production,
primarily by using monthly futures contracts. This
might be an effect of using the nested CVaR as the
risk measure. The over-hedge might not have been

experienced if we had modeled risk preferences
based on the terminal cash flows instead. While
the model considers over-hedging to be optimal. the
performance of the hedge ratios approach suggests
that the effect of over-hedging might be minor in
terms of reducing the risk of the terminal cash
flows. This further questions the suitability of the
nested CVaR to represent risk preferences, and also
suggests that more research should be conducted
on risk measurement when using conditional risk
mapping.

Both the base model, the heuristical version and the
version without currency hedging perform better in
terms of terminal risk measures than the approach
with no option to trade in monthly power futures.
Possible explanations for this include that monthly
contracts allow for more precise hedging of the
expected production in a given month than the
contracts with longer maturity periods, as well as
increased flexibility in the timing of trading due to
their shorter delivery period. These findings suggest
that hydropower producers can benefit from using
monthly contracts to a greater extent. While the
case company used in the heuristical analysis has
historically made extensive use of monthly power
futures contracts, their use among the other firms
analyzed by Sanda et al. (2013) is marginal.
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Nomenclature

Parameters
α Significance level
βt Semi-monthly discount factor
γc Corporate tax rate
γr Resource rent tax rate
µ̂t Mean log inflow in period t
κ Energy coefficient [MWh/m3]
λ Risk preference weighting coefficient
φt Periodic auto-regressive coefficient in the GPAR inflow process
ρ Correlation coefficient
σQ Annualized volatility of exchange rate returns
στ Volatility of forward contract with τ time to delivery
σY,t Periodic coefficient in the GPAR inflow process
υ Soft constraint violation penalty
ςt Number of seconds in semi-month t
ξ Maximum discharge through the turbines of the hydropower plant [m3/s]
ζ Split factor for inflow
ptnm Probability for a transition between node n and m at time t
c f Transaction cost [EUR/MWh]
r Domestic interest rate, NIBOR
r f Foreign interest rate, EURIBOR

Stochastic processes
Ft,Mi, i = [1, ...,6] Price of monthly forward contract with delivery period i months ahead [EUR/MWh]
Ft,Q j, j = [1, ...,8] Price of quarterly forward contract with delivery period j quarters ahead [EUR/MWh]
Ft,T Forward price with maturity at time T [EUR/MWh]
Ft,t Spot system price [EUR/MWh]
Ft,Y 1 Price of yearly forward contract with delivery period in the upcoming year [EUR/MWh]
Qt,T Forward exchange rate with maturity at time T [EURNOK]
Qt,t Spot exchange rate [EURNOK]
Wt Stochastic production [MWh]
X ,X1,X2,X3,Xt,l Random variable
Yt Total inflow [m3]
Y1,t ,Y2,t Inflow to reservoir 1 and 2, respectively [m3]
Zt Wiener process

Decision variables
sc,t Amount of water flowing between reservoir 1 and 2 at time t [m3]
ss,t Spilled water at time t [m3]
ut,Mi Total short position [MWh] at time t in monthly contracts with i months to delivery
ut,M Short position [MWh] at time t in the monthly contract currently in delivery
ut,Q j Total short position [MWh] at time t in quarterly contracts with j quarters to delivery
ut,Q Short position [MWh] at time t in the quarterly contract currently in delivery
ut,Y 1 Total short position [MWh] at time t in year ahead contract
ut,Y Short position [MWh] at time t in the yearly contract currently in delivery
vS

2,t Slack variable for reservoir level 2 lower bound [m3]
vi,t Reservoir volume [m3]
wt Spot production [MWh]
wt,Mi New short position [MWh] entered at time t in monthly contracts with i months to delivery
wt,Q j New short position [MWh] entered at time t in quarterly contracts with j quarters to delivery
wt,Y 1 New short position [MWh] entered at time t in the year ahead contract
xt,T New short position [EUR] entered at time t in currency forwards with delivery time T
yC

t,T Confirmed future cash flow from currency forward contract [NOK]
yF

t,T Confirmed future cash flow from electricity forward contract [EUR]
zt,T Short position [EUR] at time t in currency forwards with delivery time T
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Other variables
εt N(0,1) distribution
φ General risk measure given random variable X
πt Optimal decision policy at time t
ψλ ,α (X) Risk measure with risk preference λ and significance level α given random variable X
H Number of terminal cash flows h
K Number of simulations to build lattice
L Number of state variables in a lattice
Nt Number of nodes at stage t
V H

t Value function in the hedging problem
V P

t Value function in the production planning problem
i Number of months ahead of spot, index for terminal cash flow
j Number of quarters ahead of spot
k Simulation index, k ∈ 1, ...,K
l State variable index. l ∈ 1, ...,L
n,m Node index at time t, n,m ∈ 1, ...,Nt
h Mean terminal cash flow
hi Terminal cash flow i ∈ 1, ...,H
E Expectation
IM ,IQ,IY Indicator function that is 1 if the next stage is the beginning of a month/quarter/year and 0 if not
Q Risk-neutral probability measure
Stn The nth node at time t
St Environmental state at time t
Sk

t Simulation k at time t
[τ] Set of all time to maturities
T̂ End of horizon time
τ, τ̂ Time to maturity
T Maturity time of a forward contract
t Time
CVaRα Conditional value at risk with confidence level 1−α

CVaRNEST
α,λ Nested conditional value at risk with confidence level 1−α and risk preference λ

VaRα Value at risk with confidence level 1−α
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Hydropower reservoir management using multi-factor price model
and correlation between price and local inflow

Joakim Dimoskia, Sveinung Nerstena,∗
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Abstract

Hydropower producers with reservoir capacity have a special challenge when it comes to weighing the
short-term profit from selling power in the day-ahead spot market against waiting for better electricity prices.
In this paper, we propose a medium-term scheduling model for a price-taking hydropower producer, using a
horizon of two years. We use the price of forward contracts to forecast future spot prices, and use multiple
factors to describe movements in price. Further, we include a short-term correlation between movements in
electricity price and local inflow. Our main contribution is a comparison of the performance of our scheduling
model to a model in which price and local inflow are assumed to be independent and a model in which price
movements are described using only one factor. We quantify the loss in expected revenues of using the latter
two models compared to the case where price movements are in fact driven by multiple factors and correlated
with local inflow. In both situations, we find the loss to be approximately 2-3 %. We have based our study
on a Norwegian hydropower plant.

Keywords: Hydropower reservoir management, Markov decision process, multi-factor price process, price
and local inflow correlation, stochastic dynamic programming

4.1 Introduction
The decision problem of hydropower producers,
which seek to dispatch the water in their reservoir
optimally, has existed for many years, and multiple
approaches for formulating and modeling such
problems have been proposed. Massé (1946)
argues that deterministic models are not good
enough, as they do not incorporate the flexibility
a production planner has when it comes to

the timing of production. Instead, one should
use a flexible approach which can provide the
hydropower producer with optimal decision policies
for both the current and future states of the world,
incorporating the uncertainty in future states. The
flexible approach proposed by Massé (1946) is
still relevant for how reservoir management is
performed today.

∗Lead author. Kolbjørn Hejes vei 1E, 7034 Trondheim, Norway. +47 458 23 304. sveinung.nersten@gmail.com
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Inspired by Massé (1946) and multiple papers of
more recent date, we aim to create a dynamic
scheduling model for a price-taking hydropower
production planner that participates in a deregulated
power market. The planner operates a plant that
is assumed to be sufficiently small so that the
decisions of the production planner do not affect
the market as a whole. We also assume that
the production planner only participates in the
spot market. Further, we consider two stochastic
variables (spot price and inflow), and we use a
time horizon of two years and weekly granularity
which is suitable for medium-term planning. This
is in compliance with multiple current models for
medium-term reservoir management, as described
in Iladis et al. (2008), Wolfgang et al. (2009) and
Abgottspon and Andersson (2014).

Our contributions in this work include the use of a
multi-factor price process, as opposed to existing
models for reservoir management which often use
single-factor processes to describe movements in
price. We include a correlation coefficient between
changes in price and local inflow, thereby treating
them as dependent variables. Further, we quantify
the loss in expected revenues if they assume price
and local inflow to be independent when they are
in fact correlated, and equivalently, the losses that
occur if they use a single factor price process when
price movements are in fact described by multiple
factors.

To obtain optimal decision policies in each
discrete state for the production planner, one
can use stochastic dynamic programming as
introduced by Bellman (1957). An issue with
dynamic programming is the so-called curse of
dimensionality, that is, the problem might become
too complicated to solve when the state space

and number of decision variables become too
large. In order to avoid this, Pereira and
Pinto (1991) introduce an algorithm for stochastic
dynamic programming, a solution approach known
as stochastic dual dynamic programming (SDDP).
SDDP and similar approaches are widely used
in existing literature on hydropower production
scheduling, e.g. in Mo et al. (2001b) and Rebennack
(2015). Löhndorf et al. (2013) introduce a
framework that integrates SDDP with Markov
processes, referred to as approximate dual dynamic
programming (ADDP). Given a current state of the
world, the next state value of a variable following
a Markov process is only dependent on its current
state value, and not its entire history. Similarly, in a
Markov Decision Process (MDP), all decisions are
made based on the current state of the world and its
future expected states, irrelevant of all past states.

Multiple authors, e.g., Lamond and Boukhtouta
(1996), show that it is reasonable to treat
hydropower reservoir management problems as
MDPs, an approach we adopt in this paper.
Therefore, we treat inflows and price movements
as Markov processes and use a scenario lattice
to discretize all future states and transition
probabilities. To construct the lattice, we use the
method proposed by Löhndorf and Wozabal (2017).
We also use their method for solving stochastic
dynamic programs, ADDP, to obtain all optimal
decision policies.

We incorporate two stochastic state variables; spot
price and inflow. EOPS (SINTEF, 2017b), which
is one of the most common commercial programs
for medium-term reservoir management for smaller
systems in the Nordic countries, uses spot price
scenarios generated using EMPS (SINTEF, 2017a).
EMPS is a fundamental model which, among
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others, can forecast spot prices in larger power
systems by using historical scenarios of stochastic
variables like area inflow and demand (Wolfgang
et al., 2009). Mo et al. (2001b) show that there is
a high correlation between the prices of successive
weeks simulated using EMPS. Therefore, until
2000, EOPS used an AR(1) process (a single-factor
model) to describe the price movements found by
EMPS, illustrated in Flatabø et al. (1998). As shown
in Mo et al. (2000), price scenarios in EOPS are
still generated using EMPS, but the prices are now
organized in a lattice using the scenarios directly
instead of expressing them with an autoregressive
process.

In contrast to how spot price scenarios are generated
in EOPS, we generate them using movements
in the price of forward contracts traded in the
market. These movements are modeled using a
multi-factor model, commonly referred to as an
HJM model (Heath et al., 1992). Clewlow and
Strickland (2000), Koekebakker and Ollmar (2005)
and Bjerksund et al. (2008) argue that one-factor
models such as AR(1) are unrealistic for accurately
representing forward and spot price movements.
Instead, they propose using multi-factor models,
which according to them give a much more
realistic representation of the dynamics behind
price movements. Like Koekebakker and Ollmar
(2005), we find the coefficients of the price process
empirically by first constructing forward curves for
many consecutive trading days, and then calculate
daily deviations between the curves and use PCA to
obtain multiple factors.

The other stochastic variable we consider is inflow.
When determining the characteristics of the inflow,
there are several questions that must be answered -
whether the system is a local or a regional system

consisting of a number of power plants, if there is
a seasonal pattern to the inflow, if there are rain
periods or snow melting periods, and the choice
of temporal resolution of the inflow measurements.
For inflow, there is often, depending on the time
resolution, a significant degree of autocorrelation
from one period to the next. E.g., after a period
of precipitation or snow melting, one is likely to
experience consecutive days and weeks of increased
inflow. A significant degree of autocorrelation
favors the use of autoregressive processes. In EOPS,
the inflow for a local system is assumed to follow an
ARIMA(1,1) process. Maceira and Damázio (2006)
propose a periodic autoregressive process (PAR)
for inflow in the Brazilian hydropower system.
Since PAR allows for negative inflows and does not
account for the skewness of the inflow distribution
very well, Shapiro et al. (2013) propose to use
geometric PAR models (GPAR). In GPAR, the
deviations of the log inflows from their periodic
mean are represented as an AR(1) process. We will
adopt this approach in this paper.

For hydropower dominated systems, multiple
papers show that there exists a general a negative
correlation between inflow and the electricity price,
e.g., Mo et al. (2001b). Naturally, when reservoir
levels are low, prices increase as a result of lower
supply. The nature and strength of this correlation
will depend on several factors. Among these is the
choice of time resolution, and whether we look at
local or system-level inflow. All else equal, one will
expect the strength of the relationship to be stronger
for a coarse granularity of time (e.g., quarterly or
yearly data), as the impact on the supply will be
more substantial for inflow aggregated over a longer
time.

The inflow-price relationship is in varying degree
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taken into account in the literature and commercial
software. Kolsrud and Prokosch (2010) found a
relationship between the spot price, the overall
aggregated reservoir level in a given geographical
area and the local reservoir level of a single
plant. Further, EMPS, which is used to find spot
price scenarios to be used in EOPS, finds spot
price as a function of aggregated, regional inflow.
On the contrary, Fosso et al. (1999) show that
EOPS treats movements in local inflow and price
as independent variables. Intuitively, we would
expect the correlation between price and inflow to
be stronger on an aggregated national level, than
between the local inflow of a particular power
plant and the system price. However, we do not
expect local inflow and price to be independent.
This is because the local inflow can be heavily
correlated with the aggregated national inflow, as
found in Boger et al. (2017). Therefore, we include
a correlation between movements in local inflow
and the price of forward contracts in the stochastic
processes.

The paper is organized as follows. In Section
4.2, we present the reservoir management decision
problem as a mathematical program. We also give
an overview of the stochastic processes used to
describe the correlated movements of inflow and
price and how these can be used to generate a
scenario lattice. The section is concluded with
a short description of ADDP, the framework used
to solve the decision problem. In Section 4.3,
we present a multi-reservoir hydropower plant in
Norway on which we have tested our model.
We also present the obtained process coefficients
and correlation and show empirical results from
running the model. The section is concluded with
a calculation of the losses associated with using
a single factor price process and from omitting

the price-inflow correlation. Final conclusions are
made in Section 4.4.

4.2 Methods
In the following sections, we will first formulate
the decision problem associated with reservoir
management as a mathematical program. Then,
we will show how movements in the two relevant
stochastic variables, spot price, and inflow, can
be modeled. Further, we present how all future
states of price and inflow can be discretized using
a scenario lattice, and briefly present the solution
method used to obtain optimal decision policies for
each state.

4.2.1 Hydropower decision problem

In this part, we describe the problem faced by a
price-taking hydropower production planner with
multiple, interconnected reservoirs that participates
in a deregulated market. Based on a broad set
of endogenous and exogenous variables such as
reservoir level, inflow and spot price, they must
decide how much water they should use for power
production in a given period and how much they
should store for future production. The production
planner is limited by multiple constraints, e.g.,
on reservoir volume and turbine capacity, and his
primary concern is how they can utilize their water
to maximize the expected present value of all
discounted future cash flows.

The problem faced by the production planner is a
stochastic dynamic decision problem, meaning that
decisions must be made at different stages in time
and in light of uncertainty about future states of
their environment. For each time step, there are
two stochastic, exogenous variables that affect the
decisions of the production planner; spot price Pt

and inflow Yb,t into all reservoirs b = [1, ...,B]. For
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convenience, we denote Ŷt = {Yb,t : b = [1, ...,B]} as
a set of all inflows to all reservoirs at time t. Like
Bjerksund et al. (2008), we assume that the decision
maker participates in a complete market with no
riskless arbitrage opportunities. Harrison and Pliska
(1981) define a complete market as a market where
the price of all securities is attainable, and there
exists only one single price for each security. In
a complete and arbitrage-free market, there would
exist a unique risk-neutral, martingale measure Q
that represents the risk-neutral probabilities of all
future states for spot price and inflow.

Using the complete market and no-arbitrage
assumption and denoting πt as a decision policy at
time t providing a cash flow of CFt =CFt(Pt ,Ŷt ,πt)

and an appropriate discount factor β < 1, the
expected discounted cash flows over a time horizon
T̂ are given by

max
πt

EQ(
T̂

∑
t=1

βCFt(Pt ,Ŷt ,πt)) (4.1)

Like Lamond and Boukhtouta (1996), we treat
the reservoir management problem as a Markov
decision process (MDP). The objective of MDPs
is to obtain optimal decision policies (πt ) for all
current and future states of the world. These
policies maximize the value of all current and future
cash flows, meaning that the policies do not only
depend on their respective states, but also the space
of potential future states. We denote by Vt the
time t value of the current time cash flow and all
future expected cash flows, and formulate it using
the Bellman equation, first introduced by Bellman
(1957)

Vt(Pt ,Ŷt ,πt) = max
πt

CFt(Pt ,πt)

+βE[Vt+1(Pt+1,Ŷt+1,πt+1|Pt ,Ŷt ,πt)] (4.2)

Equation (4.2) is a recursive formula, meaning that

the time t value of all future cash flows Vt is a
function of the immediate cash flows CFt and the
expected next step value Vt+1. The possible values
of Vt+1 are, however, dependent on the current time
decisions, indicating the importance of choosing πt

such that it does maximize not only the current cash
flow, but also all expected future cash flows.

In hydropower production, the cash flows earned
by the production planner equal the product of
spot price and the amount of produced energy.
When ignoring turbine and generator start-up costs,
which is quite common in other papers discussing
hydropower reservoir management (e.g., Wallace
and Fleten, 2003), cash flows can be set equal to
revenues. Thus, (4.2) can be considered as the
objective function of the decision problem. For a
hydropower system consisting of B interconnected
reservoirs, we denote by wbi,t the amount of water
in [m3] nominated for production in a turbine
connecting reservoir b and reservoir i. In case the
nominated water flows into an outlet (e.g., a river,
lake or fjord), we set i = O. Further, ς and ϖ are
the number of seconds and hours, respectively, the
plant’s turbines are running per week. Given that
the plant produces at constant rate, we can define
qbi,t = wbi,t/ς as the water discharge in [m3/s]
from reservoir b flowing into reservoir i at time t.
Further, we let Hb,t denote the head elevation in
reservoir b, and ηbi,t the efficiency rate of a turbine
connecting reservoir b and i. In reality, these are
typically functions of multiple decision variables,
e.g., reservoir volume and water discharge. While
we do not define these functions now, we discuss
their form further in Section 4.3.2. Lastly, given a
water density ρ and gravitational acceleration G, the
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cash flow CFt at time t can be written as

CFt = Pt ·ρ ·G ·ϖ ·∑
b∈B

[
Hb,t · ∑

i∈B,i 6=b
qbi,t ·ηbi,t

]
t = [1, ..., T̂ ] (4.3)

We denote by vb,t the water level in [m3] in reservoir
b at time t. Further, sbi,t is the amount of water
flowing from reservoir b to reservoir i outside a
turbine, that is, either through a regulated channel
or as spillage. Like above, we set i = O if the water
flows into an outlet. The general volume balance of
all reservoirs will then be given by

vb,t = vb,t−1− ∑
i∈B,i6=b

[wbi,t +sbi,t ]+Yb,t + ∑
i∈B,i6=b

sib,t

t = [0, ..., T̂ ], b = [1, ...,B] (4.4)

Further, the problem faces multiple restrictions. All
reservoirs are subject to a minimum and maximum
level of water, denoted by vb,t and vb,t . These
limits can be based on physical constraints such
as reservoir geometry and dam robustness, but
also on government regulations, some of which
may be seasonal. There are also restrictions in
the turbines, stating the maximum allowed water
discharge qbi that they can handle. In case there
exists no turbine at reservoir b whose water flows
into reservoir i, qbi will logically be 0. Finally, due
to infrastructural reasons (e.g., too small channels
or insufficiently robust spillways), there might be
a maximum constraint on the allowed amount of
water flowing from reservoir b to i, sbi,t . If no water
can flow from reservoir b to i, either due to the
lack of physical connections or the effects of gravity
(the head elevation of reservoir i is higher than that
of reservoir b), sbi,t will logically be 0. All these
constraints can be summarized in (4.5)-(4.8).

vb,t ≤ vb,t for t = [1, ..., T̂ ], b = [1, ...,B]

(4.5)

vb,t ≥ vb,t for t = [1, ..., T̂ ], b = [1, ...,B]

(4.6)

qbi,t ≤ qbi for t = [1, ..., T̂ ],

b = [1, ...,B], i ∈ B, i 6= b (4.7)

sbi,t ≤ sbi,t for t = [1, ..., T̂ ],

b = [1, ...,B], i ∈ B, i 6= b (4.8)

By combining all expressions and restrictions, our
dynamic program can be summarized as solving the
following subproblem at all time stages t

max Vt(Pt ,Ŷt ,πt)

subject to (4.4),(4.5),(4.6),(4.7),(4.8)

4.2.2 Electricity price process

We model spot price movements as a Markov
process and use the price of forward contracts to
forecast future spot prices. At time t, Ft,T is the
price of a forward contract traded in a market with
maturity (or delivery) at time T . For a forward
contract with immediate delivery (T = t), the price
of that contract is simply the current time spot
price, that is Pt = Ft,t . Thus, a stochastic process
for the price development of forward contracts
with different times to maturity can be used to
represent future spot prices. In a liquid power
market, the available future and forward contracts
traded at time t should represent the current time
risk-adjusted market expectations for future spot
prices, meaning that the spot prices projected by
the process will incorporate these expectations.
An additional advantage of using all the prices
of forward contracts traded in the market is that
we include the seasonality of electricity prices, an
important characteristic of electricity spot prices, as
described by Johnson and Barz (1999). This implies
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that the process does not need any deterministic
function to account for seasonality.

As stated previously, we want to use a multi-factor
process to describe movements in price. Including
multiple factors should allow the process to
better explain the real dynamics driving forward
price movements, and thereby make better price
predictions. Such a process can be formulated as a
multi-factor extension of the HJM model, originally
presented by Heath et al. (1992). An HJM model
with I sources of uncertainty is given by

dFt,T

Ft,T
=

I

∑
i=1

σi,t,T dZi,t (4.9)

Here, σi,t,T is the ith volatility function of a forward
contract with maturity at time T , and dZi,t is a
source of uncertainty where Zi,t follows a Wiener
process. Together, σi,t,T for i = [1, ..., I] explain
the dynamics driving the time t movement of a
forward contract with maturity at time T . The
ith volatility function is associated with the ith
source of uncertainty, dZi,t . Since our decision
problem considers discrete time stages, (4.9) must
be discretized. By using Ito’s lemma and setting
dt = ∆t, the process can be written as

Ft,T = Ft−∆t,T · exp
(

− 1
2

N

∑
i=1

σ
2
i,T−t+∆t∆t +

N

∑
i=1

σi,T−t+∆t
√

∆tεi,t

)
(4.10)

Here, ∆Zi,t =
√

∆tεi,t where εi,t ∼ N(0,1). Using
Pt = Ft,t , we can modify (4.10) into an expression
for the spot price Pt as a function of Ft−∆t,t , given
by

Pt = Ft,t = Ft−∆t,t · exp
(

− 1
2

N

∑
i=1

σ
2
i,∆t∆t +

N

∑
i=1

σi,∆t
√

∆tεi,t

)
(4.11)

4.2.3 Estimating the volatility functions of the

price process

In the literature, multiple ways are proposed
on how the volatility functions in (4.9) can be
obtained. Koekebakker and Ollmar (2005) propose
that they can be found empirically as a function
of time to maturity, that is, on the form σi,t,T =

Ψi(T − t). In order to do so, we must construct
a sufficiently large dataset of daily returns for
multiple types of forward contracts m = [1, ...,M]

with time to maturity τm = T − t. Using τ as
time to maturity, the volatility functions can be
denoted σi,τ . In order to calculate these returns
series, Koekebakker and Ollmar (2005) propose
constructing multiple forward curves for a large set
of historical trading days and then calculate daily
returns as the deviations between two consecutive
curves.

In the Nordic power market, tradable forward and
future contracts have delivery periods stretching
over longer time periods. A forward curve is a
curve that aims to explain the expected forward
price for delivery in each hour/day/week in a time
interval (tb,te) based on all contracts available in
the market whose delivery periods span the interval.
Fts,t where t > ts denotes the value of a forward
curve constructed at time ts a for time t, and
intends to represent the price of a fictional forward
contract with delivery exactly at time t. Multiple
ways of constructing forward curves are presented
in the literature, e.g. by Fleten and Lemming
(2003), Benth et al. (2007), Alexander (2008)
and Kiesel et al. (2018). After constructing a
set of curves for multiple consecutive days, we
can use (4.12) to calculate daily returns at time
t j for contracts with time to maturity τa. This
is a modified version of the method used by
Koekebakker and Ollmar (2005), as we choose
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to calculate continuously compounded logarithmic
returns rather than discrete compounded returns.
We do this because it allows us to calculate returns
over longer time periods by addition, thereby
simplifying many calculations. This approach is
also used by Bjerksund et al. (2008).

x j,a = ln(Ft j ,t j+τa)− ln(Ft j−1.t j+τa) (4.12)

Here, j = [2, ...,J] and a = [1, ...,A], where J is
the number of forward curves and A is the number
of maturity dates for which we want to construct
a dataset. The returns series matrix calculated
using J + 1 forward curves (meaning we can find
J returns) and A different time to maturities is then
given by

XJ×A =


x1,1 x1,2 . . . x1,A

x2,1 x2,2 . . . x2,A
...

...
. . .

...
xJ,1 xJ,2 . . . xJ,A

 (4.13)

Having found XJ×A, we use principal component
analysis (PCA) to find the desired I volatility
functions. PCA is an orthogonalization
technique used to reduce the dimensionality of a
dataset consisting of highly correlated variables.
Mathematically, the principal components of XJ×A,
whose correlation matrix is denoted V, are given
by P = XJ×AW. Here, W is a matrix whose
columns are the eigenvectors wi of V sorted in
descending order based on their corresponding
eigenvalue λi. As shown in Clewlow and Strickland
(2000), the volatility functions will then be given by
σi,τa =

√
λiwai, where i = [1, ...,A].

To reduce the dimensionality, we only include
the volatility functions associated with the first I

principal components. Typically, one would choose
I such that the proportion of variance explained by
the first I factors is around 90%-95%. Clewlow and

Strickland (2000) show that only two components
are needed to explain 96.8% of total variation
of NYMEX crude oil futures contracts, whereas
Koekebakker and Ollmar (2005) needed more than
ten components to explain the same proportion for
Nordic electricity forwards in the period 1995-2000.

4.2.4 Inflow process

The inflow process is based on the geometric
periodic autoregressive (GPAR) model presented
by Shapiro et al. (2013). The authors found
that a first-order periodic autoregressive process of
the log-inflows provides a good description of the
dataset, which contained inflow observations from
the Brazilian hydropower system. They found that
the distribution of inflow observations Yt is highly
right-skewed. Therefore, they work with ln(Yt) to
obtain a distribution with less skew.

Let µ̂t , t = 1, ...,52 be the weekly averages of
ln(Yt) and Wt = ln(Yt)− µ̂t be the corresponding
deviations. Shapiro et al. (2013) found that Wt could
be described by an AR(1) process. (4.14) shows
how the deviations of the log inflows from their
mean can be described as an 1-lag autoregressive
process.

Wt = φ0 +φ1Wt−1 + εY,t (4.14)

Here, φ0 and φ1 are parameters of the process, and
εY,t is the error term representing the difference
between the observed and predicted value. To be
able to model the inflow as a stochastic process, we
assume that the error terms are distributed εY,t ∼
N(0,σ2

Y), where σY is the standard deviation of the
error terms. The parameters φ0 and φ1 are estimated
by ordinary least squares regression. Because Wt

observations are themselves deviations, φ0 is highly
insignificant. We set φ0 = 0 and use φ1 = φ from
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this point on. Next, we find the log inflow, Wt + µ̂t

Wt + µ̂t = φWt−1 + εY,t + µ̂t

= φ(Wt−1 + µ̂t−1)−φ µ̂t−1 + εY,t + µ̂t (4.15)

The inflow Yt can be expressed as a function of Wt +

µ̂t . We insert the obtained expression of Wt + µ̂t into
Yt = exp(Wt + µ̂t), and get

Yt = exp(Wt + µ̂t) =

exp(φYt−1)exp(−φ µ̂t−1 + εY,t + µ̂t) (4.16)

By rewriting, we obtain the inflow process
described by (4.18).

Yt = exp(φ lnYt−1)exp(µ̂t −φ µ̂t−1 + εY,t) (4.17)

Yt = exp(εY,t)exp(µ̂t −φ µ̂t−1)Y
φ

t−1 (4.18)

We further allow the error term standard deviation
σY and the coefficient φ to be time-dependent. The
final inflow process can then be expressed as

Yt = exp(εY,t + µ̂t −φt µ̂t−1)Y
φt

t−1 (4.19)

where t is the week number and εY,t now follows
the distribution εY,t ∼ N(0,σ2

Y,t). Since inflow Yt

is a function of its first lag only, future values of
inflow are only dependent on their current value and
not the entire history. Thus, inflow also follows a
Markov process, which was one of the prerequisites
for representing our decision problem as a Markov
decision process.

4.2.5 Scenario lattice for spot price and inflow

To solve the MDP, we must discretize the exogenous
Markov process that describes inflow and price
movements. As in Löhndorf and Wozabal (2017),
we do this by reducing the continuous Markov
process to a discrete scenario lattice. In our case,
each lattice node represents a state of both reservoir
inflow and spot price. Generally, we keep the

number of nodes per stage in the lattice constant.
In comparison, the number of nodes per stage in a
scenario tree grows exponentially with the number
of time stages. Thus, the lattice approach allows for
a higher number of time stages while still keeping
the problem computationally feasible.

In order to construct a lattice, we use the method
proposed by Löhndorf and Wozabal (2017). We
denote Nt as the number of nodes at time t. Further,
Stn = {Ptn,Ytn} denotes the nth state (or node) at
time stage t, where Ptn is the state spot price and
Ytn = {Ib,tn : b = [1, ...,B]} is a set of inflows into all
B reservoirs for the same state. We also let n ∈ [Nt ],
where Nt is the total number of states at time t. In
short, the lattice is constructed by first drawing a
set of K Monte-Carlo simulations (Ŝk) of spot price
and inflow, where Ŝk

t = {Pk
t ,Y

k
t } is the time t state

of simulation k where k ∈ [K]. These simulations
are drawn using (4.11) for the spot price and (4.19)
for inflow, where the error terms εi,t and εY,t are
correlated with ρi. Afterwards, the location of all
states Stn is found by minimizing the Wasserstein
distance between all Nt nodes and the K simulated
draws Ŝk

t for each time stage t. Having located
all nodes, the transition probabilities between two
subsequent nodes Stn and St+1,m can be found by
looking at the number of simulated paths whose
time t and t + 1 states lie closest to the nodes Stn

and St+1,m.

4.2.6 Solution method for optimization problem

We adopt the method known as approximate
dual dynamic programming (ADDP) to find the
near optimal decision policies πtn in all nodes
of the price and inflow lattice. ADDP was
first introduced by Löhndorf et al. (2013). In
principle, obtaining optimal decision policies for
a Markov decision process should be possible
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using traditional dynamic programming (DP) as
introduced by Bellman (1957). Using the notation
introduced in Section 4.2.5, the Bellman equation
given in (4.2) can then be rewritten into

Vt(Stn,πtn) = max
πtn

CFt(Stn,πtn)+

βE[Vt+1(St+1,πt+1|Stn,πtn)] (4.20)

A common problem with dynamic programming is
the curse of dimensionality. It has been addressed
by multiple authors, i.e. by Powell (2011). In
this case, the main issue with a high-dimensional
problem is that the decision space can become too
large to find the optimal decisions for all states
within a reasonable amount of time. We must,
therefore, use a method that resolves this issue by
obtaining decision policies that are approximately
optimal. Multiple such methods are proposed in
the literature, and they are often referred to as
approximate dynamic programming. A method
that has been widely used to manage hydropower
reservoirs is stochastic dual dynamic programming
(SDDP), first introduced by Pereira and Pinto
(1991). Löhndorf et al. (2013) extend the method
of SDDP so that it can also be used for scenario
lattices, calling it ADDP. When using SDDP and
ADDP, one of the main simplifications is that the
value function Vt is approximated to be a piece-wise
linear, concave function of all resource variables
(e.g., reservoir levels). In short, the value function
is found by first drawing a given number of forward

passes through the lattice, that is, a sequences of
states. For each forward pass, the optimal decision
policies are found by maximizing the approximate
post-decision value functions. After each forward
pass, a backward pass is performed, where the
approximated value functions are updated relative
to the sampled sequence of states and all state
decision policies. In practice, the approximate value

function of each state is constructed by a set of
supporting hyperplanes (linear constraints), where
each pair of forward and backward passes results in
the addition of a new hyperplane to the set. For a
more detailed description of the ADDP algorithm,
consult Löhndorf et al. (2013).

4.3 Results
In this section, we summarize the results of a
case study conducted with data from a Norwegian
hydropower producer. The Søa hydropower plant
is presented in Section 4.3.1. In Section 4.3.2,
we discuss the decision problem. Section 4.3.3
discusses the characteristics of the price process and
its associated volatility functions. Then, we present
the parameters of the inflow process in Section 4.3.4
and the price and inflow correlation in Section 4.3.5.
Section 4.3.6 shows how we construct the scenario
lattice using correlated Monte Carlo simulations.
We present the expected revenues by applying the
scheduling model in Section 4.3.7. In Section 4.3.8,
we perform a backtest of our model compared to
historical operations. Further, in Section 4.3.9 we
analyze potential differences and losses in expected
revenues with regards to different values of the
price-inflow correlation. We perform a similar
analysis in Section 4.3.10, considering the case
were the number of factors I used in the forward
price process is altered. All code and calculations
are produced in MATLAB and R, except for the
algorithms used to construct a lattice and the ADDP
solver.

4.3.1 Case: Søa hydropower plant

We have received empirical data from the
Søa hydropower plant, a plant owned and
operated by the integrated electric utility company
TrønderEnergi. Apart from sharing the relevant
characteristics of the plant, TrønderEnergi has also
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provided us with historical time series for inflow
and production. The plant is mid-sized both in
terms of regulating capacity and power capacity,
and it is located in the NO3 area in Norway. It
consists of two reservoirs - Vasslivatn and Søvatn,
and one Francis turbine. The discharge from
the Søvatn reservoir to the Vasslivatn reservoir
is controllable. In Table 4.2, we have listed the
physical boundaries of both reservoirs. There is
also a special summertime restriction that applies
to Søvatn, which is set by local authorities. This
restriction and its duration are also listed in Table
4.2. The outlet of the hydropower plant is in
Hemnefjorden, which has an average head of -1
MASL (meters above sea level).

Figure 4.1: The Søa hydropower plant and the reservoir
capacities. The elevation of 273.1m is the production-weighted
average head difference between Vasslivatn and Hemnefjorden.

Value Unit

Maximum power capacity 36 MW
Mean yearly production 191.3 GWh
Avg. yearly inflow, total 311 mill m3

Average inflow to Søvatn 60.5 % of total
Average inflow directly to Vasslivatn 39.5 % of total
Energy coefficient 0.6748 kWh/m3

Turbine capacity 17 m3/s

Table 4.1: Characteristics of the Søa hydropower plant

The energy coefficient listed in Table 4.1 takes into

account all sources of energy loss in the system,
including head loss, turbine losses, generator losses
and transformer losses. It is calculated using the
production-weighted average head elevation (273.1
m) and production-weighted average discharge to
the turbine.

Reservoir Restriction type Min
[MASL]

Max
[MASL]

Vasslivatn Physical 260.00 279.83
Søvatn Physical 275.00 279.83
Søvatn Regulatory

(May 25 - Oct. 15)
278.33 279.83

Table 4.2: Water level constraints for Søa. All water levels are
denoted in meters above sea level

4.3.2 Revised decision problem

In order to construct the lattice mentioned earlier
and perform ADDP on Søa hydropower plant,
we use QUASAR, a general-purpose solver for
stochastic optimization (Löhndorf, 2017). To keep
computation complexity at bay, we use a linear
reformulation of the problem.

The number of reservoirs is B = 2, and we let v1,t

and v2,t denote the water levels in Vasslivatn and
Søvatn respectively. Also, Y1,t and Y2,t denote the
inflows into each reservoir. Since the system only
contains one turbine which connects Vasslivatn to
the outlet of Hemnefjorden, we denote the amount
of water nominated for production as wt and its
discharge as qt . The amount of water flowing from
Søvatn to Vasslivatn (denoted s12,t using notation
from Section 4.2.1) is now denoted by sc,t , and the
amount of spilled water flowing from Vasslivatn to
Hemnefjorden is denoted by ss,t (previously denoted
s1O,t ). With these new notations, the general
volume balance constraint from (4.4) can be written
as (4.21) and (4.22) for Vasslivatn and Søvatn,
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respectively.

v1,t = v1,t−1−wt − ss,t +Y1,t + sc,t

for t = [1, ..., T̂ ] (4.21)

v2,t = v2,t−1+Y2,t−sc,t for t = [1, ..., T̂ ] (4.22)

Neither sc,t nor ss,t are restricted by an upper
bound si j,t , so this constraint is omitted from
the revised problem formulation. Due to the
linearity requirement, the cash flow expression CFt

defined by (4.3) can only be a function of one
decision variable. While head elevation, turbine and
generator efficiency are typically functions of one
or more decision variables, we must model them
as constants in order to keep the expression linear.
Such simplifications are made in similar models
for reservoir management, e.g., EOPS (SINTEF,
2017b). Madani and Lund (2009) also use a fixed
head and argue that this is a reasonable assumption
for high-elevation hydropower systems. There is
no formal definition of high-elevation plants, but
they typically have a head elevation above 250-300
meters. As the head elevation of Søa is within this
interval, it is not highly unreasonable to argue for
using a constant head. Also, if the head is chosen
as the centre of gravity for the reservoir (i.e., about
270 MASL, indicating an elevation of 271 meters
between the reservoir and the outlet), the deviations
between realized power and approximated power
will be in the range [−3.7%, 3.7%]. We believe
this is acceptable, considering the granularity of our
model.

When we use constant values for head elevation
and efficiency rate, the objective function of the
optimization problem consists of many constants
whose product is the energy coefficient. By
definition, the energy coefficient is the average

amount of energy a hydropower plant can produce
by using one cubic meter of water. In the objective
function, we, therefore, make the simplification
ρGHηϖ/ς = κ , where κ denotes the energy
coefficient.

Further, we only have available data on the
aggregated inflow into both reservoirs, forcing us
to treat inflow as a single stochastic variable Yt =

Y1,t +Y2,t . In order to obtain Y1,t and Y2,t , we have
used the historical inflow split given in Table 4.1.
We let α = 0.395 denote the historical fraction of
inflow flowing into Vasslivatn, and thereby set Y1,t =

αYt and Y2,t = (1− α)Yt . Also, since the water
level in Søvatn is subject to a minimum restriction
during the summer v2,t > 0, we must include a
slack variable vS

2,t to account for cases in which
this constraint cannot be held. Since we do not
know the exact cost of violating the constraint, we
add a sufficiently large cost υ associated with the
slack variable to the value function such that its
value is kept at a minimum. By combining all
the mentioned simplifications and adjustments, our
decision problem at time t is reduced to

max Vt = Pt ·κ ·wt −υ · vS
2,t

+βE[Vt+1|Pt ,Yt ,πt ]

subject to v1,t = v1,t−1−wt − ss,t +αYt + sc,t

v2,t = v2,t−1 +(1−α)Yt − sc,t

v1,t ≤ v1,t

v2,t ≤ v2,t

v1,t ≥ v1,t

v2,t + vS
2,t ≥ v2,t

qt ≤ q

where πt = {wt ,v1,t ,v2,t ,sc,t ,ss,t ,vS
2,t}. All

coefficients and constant parameter values are given
in Table 4.3. We recall that water discharge is
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defined as qt = wt/ς where ς is the number of
seconds of production per week. The larger we
choose ς , the larger becomes the maximum limit
for wt , water nominated for production at time t. In
cases of large inflows, low values for ς will only
result in larger amounts of spilled water, indicating
that ς should be set as large as possible. Also, since
efficiency rate is not modeled as a function of water
discharge qt , the choice of ς will be irrelevant for
the value function in all stages where spillage is
of no concern. We, therefore, set ς = 604800s,
which is the total number of seconds in one week.
Furthermore, we find the discount factor β using the
risk-free rate r given by the Norwegian Interbank
Offered Rate (NIBOR). To get comparable results
between runs for different days, we chose to use a
constant value of r (NIBOR for 6-month maturity
debt on January 7, 2013). Optimally, we would have
used an estimate of the two-year maturity risk-free
rate, but six months was the longest maturity
available. The discount factor β is found using
continuous compounding, given by β = exp(−r∆t).

Coefficient/
Parameter

Value Unit Dates

v1,t 44.5 Mm3 t = [1, ..., T̂ ]
v2,t 22.5 Mm3 t = [1, ..., T̂ ]
v1,t 0 Mm3 t = [1, ..., T̂ ]

v2,t 0 Mm3 t =[October 16,...,May 24]

v2,t 15.05 Mm3 t =[May 25,...,October 15]

κ 0.6747 kWh/m3 t = [1, ..., T̂ ]
ς 604800 s t = [1, ..., T̂ ]
q 17 m3/s t = [1, ..., T̂ ]
r 0.0198 − t = [1, ..., T̂ ]

Table 4.3: Model coefficients and constants

4.3.3 Electricity spot price and forward curve

dynamics

The first step towards obtaining the volatility
functions describing the forward curve dynamics is
to construct historical forward curves. They are

found by interpolating between forward prices as
described by Alexander (2008). The dataset of this
study includes forward prices for all trading days
between April 28, 2011, to December 30, 2016,
resulting in 1450 forward curves. The forward
curves are constructed using closing prices of
futures contracts traded at NASDAQ Commodities.
These contracts are listed in Table 4.4.

Code Length of delivery
period

Trading period

ENOW Week 1 - 6 weeks ahead
ENOM Month 1 - 6 months ahead
ENOQ Quarter 1 - 8 quarters ahead
ENOYR Year 1 - 3 years ahead

Table 4.4: Electricity forward contracts traded on NASDAQ
Commodities

Figure 4.2 shows the forward curve found for
January 7, 2013. It is clear that the forward curves
found using this method will be discontinuous in
the points where we switch from one contract type
to another, as illustrated in Figure 4.2. As can be
seen in Figure 4.2, weekly contracts were used in
the short end of the curve, monthly contracts in the
mid-short part of the curve, quarterly contracts in
the mid-long part of the curve, and yearly contracts
in the long end of the curve.

Figure 4.2: Forward curve created using linear interpolation

A time series of daily log returns is calculated for
each relevant time to delivery, resulting in a 1449×
104 matrix. To obtain a set of volatility functions
that describe forward price movements, PCA is used
on the returns time series as explained in Section
4.2.2. Remember that each volatility function is
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associated with an independent uncertainty factor.
The volatility function determines by how much,
and in which direction the random shock associated
with the uncertainty factor moves each point of
the forward curve. As we use weekly granularity
and a time horizon of 105 weeks, the volatility
functions σi,τ = Ψi(τ) must be constructed for the
same granularity and length. That is, we find the
volatility functions σi,τ for all i = [1, ...,N] and time
to maturity given by τ = [1,2, ...,104] weeks.

Using the time series of returns, we can estimate
an overall volatility curve for the term structure of
forward prices, as well as the volatility functions
associated with the principal components. In Figure
4.3, the overall volatility function can be understood
as the volatility of returns of forward contracts with
time to maturity τ . Since it represents the actual
volatility of forward price returns, it will always be
positive. The volatility functions associated with
the principal components must, however, not be
interpreted the same way as the overall volatility
function, as they do not represent the volatility in
terms of price movements of a single asset. They
can also take negative values, as opposed to the
overall volatility function.

Figure 4.3: Volatility functions found by using method of linear
interpolation. ’Overall’ denotes the overall volatility curve, and
fn i denote the volatility functions given by principal component
i

As can be seen from the dark blue curve in
Figure 4.3, the overall volatility is monotonically

decreasing. One would expect the overall volatility
function to be strictly decreasing for ascending

values of τ , as forward prices tend to change more
the closer they come to maturity. This is called the
Samuelson effect, discussed by Jaeck and Lautier
(2016) and originally proposed by Samuelson
(1965). The reasoning behind this phenomenon is
that an information shock that affects the short-term
price has an effect on the succeeding prices that
decreases as the time to maturity increases. Weather
forecasts are an example of information that one
would expect to have short-term effects only on the
electricity price.

The electricity forward return series show a
substantial degree of inter-correlation. This can be
seen from the correlation matrix that is shown in
Figure 4.4. A high degree if inter-correlation is
in accordance with our experience, which is that
forward electricity prices more often than not move
in the same direction. Further, the correlation matrix
shows that there is a clear decreasing trend in the
correlation between contracts with larger maturity
spreads.

Figure 4.4: Correlation matrix associated with returns of
forward contracts. The column and row names are both the
number of weeks until the beginning of the delivery period
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The high degree of inter-correlation is also
demonstrated by the explanatory power of the first
principal component, which explains 73.3% of
the variance in the dataset. Only six principal
components are needed to explain over 95% of the
cumulative variance, as shown in Table 4.5.

Number of factors 1 2 3 4 5 6
Explained variance 0.73 0.88 0.92 0.93 0.95 0.96

Table 4.5: Proportion of explained variance for different
numbers of explanatory factors

4.3.4 Inflow process parameters

We fit the geometric periodic autoregressive
(GPAR) model suggested by Shapiro et al. (2013)
to the inflow data for the Søa hydropower plant.
The dataset consists of daily inflow observations for
each day between January 1, 1958, and December
31, 2016. According to TrønderEnergi, the data
set has been constructed by combining observations
from two different sources. The observations from
the most accurate source are found by measuring
the change in water level at the reservoirs and
finding the inflow by adjusting for water used in
production and spilled water. For days without
available production data, the inflow is calculated
by measuring the water level in the rivers in the
catchment area of the hydropower plant.

Recall that the inflow is given by

Yt = exp(εY,t + µ̂t −φt µ̂t−1)Y
φt

t−1 (4.19)

Here,

• Yt is the inflow in week t

• µ̂t is the mean log inflow in week t = 1, ...,52
• φt is the coefficient in the autoregressive

process in week t = 1, ...,52
• εY,t ∼N(0,σ2

Y,t) is the error term representing
the difference between the observed and
predicted value in the autoregressive process

• σY,t is the standard deviation of the error
terms in week t = 1, ...,52

For a right-skewed distribution such as the one
that can be seen in Figure 4.5, a geometric
process is better suited than an arithmetic process.
It better captures the inflow dynamics, which
can be extreme. Further, a geometric process
does not allow for negative inflows. Shapiro
et al. (2013) found the inflow distribution for
Brazilian hydropower plants to be right-skewed as
well, favoring a log transformation of the inflow
observations.

Figure 4.5: Distribution of inflow and log inflow observations

Wt , the deviation of the log inflows from their
mean, is represented as an AR(1) process. The
suitability of a 1-lag process can be determined
by investigating the partial autocorrelation of the
historical data for Wt . Partial autocorrelation is the
correlation for a time series with its own lagged
variables, but removing the correlation effects of the
values of the time series at all shorter lags. Figure
4.6 shows the partial autocorrelation of the Wt time
series. Similar to the findings of Shapiro et al.
(2013), our dataset showed a high value at lag 1
and insignificant values for larger lags, indicating
that it is sufficient to include one lag only in the
autoregressive model.

Figure 4.6: Partial autocorrelation of the Wt time series
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The inflow process is periodic in the sense that
it accounts for seasonality - both in terms the
expected weekly log inflow µ̂t , the strength of
the autoregressive coefficient (φt ) and the standard
deviations of the error terms (σY,t ). Figure
4.7 shows the seasonal pattern in the inflows.
Specifically, there is an inflow peak during the
spring due to snow melting, and there are higher
inflow levels in the fall due to high precipitation
levels in September, October, and November.

Figure 4.7: Average inflow for a certain week of the year

4.3.5 Price and inflow correlation

As previously mentioned, we consider the
correlation between the electricity spot price and
inflow to the hydropower plant. In Section 4.2.5,
this was introduced as the correlation ρi between
the error terms εi,t and εY,t from Equation (4.11)
and (4.19), where i = [1, ..., I] indicates a principal
component. Since the first principal component
explains 73.38% of the total variation, we choose
only to calculate ρi for i = 1, and set ρi = 0
for i 6= 1. Therefore, ρ1 is hereby denoted ρ .
Mathematically, the correlation was calculated
by estimating the historical correlation coefficient
between the normalized error term of the inflow
process, εY,t , and the normalized first principal
component (p1).

The error term in the inflow process is the difference
between the predicted and realized log-inflow. To
be able to find a correlation with the weekly inflow
data, p1 had to be transformed into a weekly
resolution as well. Similar to how one would

transform daily log returns to weekly log returns,
the historical p1 observations were aggregated from
daily to weekly observations by simple addition.

The resulting Pearson correlation coefficient was
found to be -0.1765, based on a time series of
248 weekly observations from April 28, 2011,
to December 30, 2016. The 95% confidence
interval was [-0.28, -0.06]. This suggests that there
has been a weak offsetting effect between weekly
inflow deviations and the first principal component,
historically.

4.3.6 Monte Carlo simulations and lattice

construction

In order to create a lattice, we had to run multiple
parallel Monte Carlo simulations of spot price and
inflow paths. The starting values of the price
simulations included one current time spot price and
the price of T̂ − 1 forward contracts. Since we
use weekly granularity and a horizon of T̂ = 105
weeks, this requires 104 weekly forward contracts
with time to delivery τ = [1, ...,104]. However,
only six weekly contracts are traded at NASDAQ
Commodities, meaning that we must construct
99 synthetic weekly contracts. This is done by
constructing a forward curve using the method of
Fleten and Lemming (2003) and then discretizing
it into 104 weekly prices. Unlike the forward
curves used to construct the volatility functions,
which were discontinuous (see Figure 4.2), forward
curves constructed using the method of Fleten and
Lemming (2003) are both continuous and smooth.
The method did, however, not provide us with
plausible volatility functions, as we experienced
issues with unrealistic oscillations in the near end
for some of the forward curves.

Mathematically, the forward price of a contract
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with delivery in a given week W = [2, ...,105] is
calculated using the average value of the forward
curve within the time interval of that particular
week. For the weeks W = [2, ...,7], the weekly
average value of the forward curve will be the price
of the six weekly forward contracts sold in the
market. Also, if the model is run on a Monday, the
starting week spot price is set equal to the price of
the one week ahead weekly contract from the last
trading day. Typically, this will be the previous
week Friday.

It is important to note that while the spot prices
in the Nordic electricity market are area specific,
the price of forward contracts is the same for the
entire Nordic and Baltic region. Thus, the spot price
forecasted by our model is actually the system spot
price and not the NO3 area spot price, the price Søa
hydropower plant receives for their production. In
this paper, have not tried to model the relationship
between the system price and the NO3 price. We
do, however, see that the two prices are quite similar
to each other, and believe that using the system
price instead of the area price is an acceptable
approximation considering the granularity and the
scope of this paper.

To construct the price and inflow scenario lattice,
we have used 380.000 Monte Carlo simulations.
The lattice consists of 100 nodes for all time stages
except the starting one, giving a total count of
10401 nodes. Furthermore, each node has two
entries, inflow and spot price. Figure 4.8(a) displays
the spot price lattice with starting date January 7,
2013, while Figure 4.8(b) displays the inflow lattice.
Since the lattice nodes are found by minimizing
the Wasserstein distance, we have scaled the inflow
values down with a factor of 105 such that their
magnitudes are closer to those of the spot prices.

(a) 105-weeks spot price lattice

(b) 105-weeks inflow lattice

Figure 4.8: Spot price and inflow lattices constructed with data
for January 7, 2013. The Y-axis for all plots denotes the time
stages (weeks), while the X-axis of the price lattice is denotes
the spot price in EUR/MWh. For the inflow lattice, the Y-axis is
denoted in 105m3. The red lines in the figures represent the mean
values. In the case of the spot price lattice, the mean line is the
initial forward curve.

4.3.7 Expected discounted revenues from

hydropower plant

Having constructed the lattice, it is now possible
to run the scheduling model. We run it for five
different starting dates with different underlying
forward curves and historical starting values for the
reservoir levels. One of the key figures we are
interested in is the expected discounted revenues for
the planning horizon. This is the value of production
during the next two years, assuming negligible
variable costs. The revenues are discounted using
the risk-free rate, as we are using risk-neutral
probabilities. Furthermore, a key figure is the
expected discounted revenues per produced unit of
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electricity, which we will call expected discounted

revenues per production. This figure is denominated
in EUR/MWh, and it allows us to compare the
performance of policies without differences in total
production affecting the results. For intuition, this
figure can be thought of as the average price at
which the hydropower producer sells their power.
However, this will be inaccurate in this case,
since the average price should be calculated using
undiscounted revenues.

Table 4.6 shows the expected discounted revenues
for the upcoming 105 weeks, in addition to
the expected discounted revenues per production.
These results are based on the revenues obtained
by 50.000 simulated paths through the lattice. The
number (50.000) is chosen because it enables the
first three digits of all mean values to converge,
while simultaneously keeping the computation time
at an acceptable level.

In Table 4.6, we also include one of the most
important immediate results for the production
planner; the value of w1. We recall that wt is
the amount of water nominated for production at
time stage t. Based on all possible future states
and their corresponding probabilities, w1 tells the
production planner how much water they should
nominate for production in the current week in order
to maximize their expected discounted revenues
over the upcoming 105 weeks. We also include
the average water dispatch q1 = w1/ς , where ς =

604800s is the number of seconds per week.

It is somewhat surprising that the model suggests
no production on multiple starting weeks, especially
those of January 7, 2013, and January 6, 2014.
However, this is because the input forward curve
suggests that the spot prices will be higher in the

upcoming weeks, making it optimal to wait.

Parameter Unit Jan 7
2013

Apr 8
2013

Jul 8
2013

EDR [M EUR] 15.93 15.95 14.36
EDR/Prod. [EUR/MWh] 40.12 41.24 35.35
w1 [M m3] 0 5.21 10.28
q1 [m3/s] 0 8.62 17.00

Parameter Unit Oct 7
2013

Jan 6
2014

EDR [M EUR] 15.26 13.83
EDR/Prod. [EUR/MWh] 38.36 33.21
w1 [M m3] 0 0
q1 [m3/s] 0 0

Table 4.6: Expected discounted revenues (EDR), expected
discounted revenues per production (EDR/Prod.), the amount of
water nominated for production w1, and average water discharge
q1 in week one for five different starting dates. The starting
values for reservoir levels are set according to their historical
values.

An important question that arises is how one should
handle the end level of the reservoir. We have not
imposed any end level restrictions. Thus, there is no
incentive to keep water in the reservoir at the end of
the horizon. In some of the above simulations, e.g.,
the ones starting and ending in January, emptying
the reservoir would probably be a poor decision
in the reality since one would normally expect
high prices in the upcoming periods. Emptying
the reservoirs in the last time stage will result
in expected discounted revenues that are slightly
larger than what one would achieve in reality.
Nevertheless, the end-of-horizon effects should not
affect the optimal immediate decision policy π1,
which is the most interesting one for the production
planner, in addition to most decision policies πtn

when t is substantially smaller than two years.
Note that for cases in which the time horizon ends
during the spring when inflows are typically at their
maximum, it is reasonable to allow emptying the
reservoir as much as possible.
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4.3.8 Backtesting the production policy with

realized price and inflow data

A crucial analysis for assessing the performance
of the scheduling model is a backtest. When
backtesting, we have collected the realized weekly
inflows and average area spot prices over the entire
simulation horizon. Then, we apply the policy to
the realized history of price and inflow and get all
decisions that our model would have made for the
given history of inflow and price. Using this, we
can compare how our model performs compared to
the existing strategies of the hydropower production
planner. Using January 7, 2013, as our starting date,
we have found the realized weekly inflows and spot
prices over the next 105 weeks. Next, we have
found the total revenues earned using the model
policy, and compare this with the actual income
earned by the power plant in the same time interval.
In reality, the Søa power plant generated discounted
revenues of 10.89 million EUR between January 7,
2013, and January 11, 2015, from trading in the
spot market. By applying the policy obtained by
our model, the plant would have had discounted
revenues of 11.69 million EUR, meaning that using
our model could have provided the production
planner with approximately 400.000 EUR in extra
yearly revenues. To explain this difference, we
look at the modeled and realized head elevation
curves for both reservoirs in the corresponding
period. These are interesting to compare, as they
show whether the model policy agrees or disagrees
with the realized strategy. In Figure 4.9 we have
plotted the modeled and realized head curves for
both reservoirs over the simulation period.

By visual inspection, we see that our model empties
both reservoirs in the last time stage, providing
it with some additional revenues compared to the
historical operations. Thus, it might be more

accurate to compare the revenues obtained during
the first 52 weeks - that is, between January 7, 2013,
and January 5, 2014, instead. In this period, the
plant earned discounted revenues of 6.22 million

EUR. On the contrary, using the policies from our
model, the discounted revenues provided to the
plant would be 6.34 million EUR, meaning that
our model performs well compared to reality also
without emptying the reservoir in the last time
stage. Our model did, however, utilize more of
its water for production in these 52 weeks, so
we should also compare the expected discounted
revenues per production as well. In reality, the plant
had discounted revenues per production of 39.00

EUR/MWh between January 7, 2013, and January
5, 2014, while our model had discounted revenues
per production of 38.92 EUR/MWh.

Further inspection of the head curves shows that
our model is less risk-averse than the real-life
production planner. One example of this can be
seen by looking at the figure for Vasslivatnet around
week 36, that is, in the middle of September 2013.
Here, spot prices were quite high, so both our
model and the real-life operation planner chose
to nominate relatively large amounts of water for
production. However, since spot prices tend to
be higher during winter, it is risky to empty the
reservoirs in September. Therefore, the real-life
production planner chooses to nominate only half
of the amount that the model nominates. The model
is, however, expecting high inflows in the upcoming
weeks, and therefore nominates relatively much
water before it fills up the reservoir around week 46.
Another good example is around week 71, that is,
one week before the summertime restriction on the
reservoir level in Søvatnet starts to apply. While the
real-life production planner fills up Søvatnet a few
weeks ahead, the model expects sufficient inflows
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during the next week and decides to reduce the
water level in the reservoir to approximately 1 meter
below the summertime restriction. It does, however,
still manage to fill up the reservoir and meet the
constraint in time.

(a) Vasslivatnet

(b) Søvatnet

Figure 4.9: Modelled (red curve) and realized (blue curve)
reservoir curves for Vasslivatnet and Søvatnet between January
7, 2013 and January 11, 2015.

The aforementioned points should help our model
perform better than the real-life production planner.
Another factor helping our model is that it does not
have to perform maintenance, which is an event that
forces all operation to be temporarily suspended.
However, the real-life production planner has an
advantage that our model does not have. Since our
model uses weekly granularity, it can only make
production decisions on a weekly basis. We assume
that our model sells the electricity at a price equal
to the average price of that week. In real life, the

production planner makes hourly decisions and can
utilize the fluctuations of the electricity spot price
both within a single day and within a week. They
do also have access to the intraday market, allowing
them to optimize their production further. The
opportunity to optimize production on an hourly
level should give the real-life production planner
an advantage compared to our model. At last, the
real-life production planner has access to short-term
weather forecasts that our model does not. Despite
the circumstances discussed above, our model still
manages to achieve similar results.

4.3.9 Loss calculations: Misspecified correlation

coefficient

As previously stated, we incorporate a correlation
between movements in price and local inflow.
It is interesting to test the effect of introducing
this feature, as it can tell us how models that
assume no correlation perform compared to ours.
Therefore, we have first calculated the expected
revenues obtained when using different values of
the correlation coefficient ρ . More importantly,
we have also tested how decision policies obtained
using ρ = 0 perform when inflow and price
movements are in fact correlated, and what losses
in expected revenues a plant can experience when
this assumption is falsely made.

In order to test the effect of introducing
the correlation, we have first made three
lattices with different correlation values ρ =

[0,−0.1765,−0.353]. We then compare the
simulated expected discounted revenues and
average reservoir level curves for all three lattices
and corresponding decision policies to see how
much they deviate. Once again, we have used
50.000 simulated paths, and for all three runs,
the starting date is January 7, 2013. The expected
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discounted revenues of all three runs are displayed
in Table 4.7 and mean optimal reservoir curves for
Vasslivatn are displayed in Figure 4.10.

Correlation
coefficient

[-] 0 −0.1765 −0.35

EDR [M EUR] 16.10 15.93 15.83

Table 4.7: Expected discounted revenues (EDR) obtained using
three different correlation coefficients ρ .

Figure 4.10: Average reservoir curves for Vasslivatnet found
using three different values of the correlation coefficient ρ . The
red curve denotes ρ = 0, the blue curve ρ = −0.1765 and the
green curve ρ =−0.353.

By looking at the expected discounted revenues,
we see that the higher we choose the correlation
coefficient ρ , the larger are the expected discounted
revenues. The correlation coefficient undoubtedly
affects the results, implying that it must be
estimated correctly.

Next, we test how a decision policy created using
the correlation ρ = 0 performs when we use it in
a stochastic process where ρ 6= 0. We test this
by first creating a lattice and obtaining the optimal
decision policies for each node using ρ = 0. Instead
of drawing simulated lattice paths based on the
risk-neutral probabilities provided when ρ = 0, we
draw paths corresponding to a stochastic price and
inflow process where ρ 6= 0. Then, to compare
the policies, we look at the difference between
the expected discounted revenues obtained using
policies with ρ = 0 and policies with ρ 6= 0. In Table
4.8, we present the expected discounted revenues

obtained when the stochastic processes in reality
have a correlation ρ = −0.1765 and ρ = −0.353.
As the results indicate, if the real correlation is
ρ = −0.1765, the policies will provide expected
discounted revenues that are 2.5% lower than if
the policies incorporated this correlation. For
ρ = −0.353, the expected discounted revenues
become 3.1% lower. Although these differences
might seem small, they show that the producer
at Søa can miss out on discounted revenues of
multiple 100.000 EUR yearly if they misspecify
the correlation coefficient. Therefore, we find
it reasonable to conclude that the choice of the
correlation coefficient does have an effect on the
model performance, and should be considered by
the production planner in their model.

Correlation
coefficient

[-] −0.1765 −0.353

EDR [M EUR] 15.54 15.40
Performance
difference

[-] −2.5% −3.1%

Table 4.8: Expected discounted revenues (EDR) calculated
when using a policy in which ρ = 0, but where the real
stochastic process has ρ = [−0.1765,−0.353]. The bottom
row indicates the difference between the expected discounted
revenues obtained using these policies versus the expected
discounted revenues obtained using a policy with the same ρ as
in the stochastic process, as shown in Table 4.7.

4.3.10 Loss calculations: Number of factors in the

price process

Further, up until now, we have used a price process
with six factors to describe the movements of a
forward contract. The number was chosen such that
the proportion of explained variance would be larger
than 95%, a threshold value used by Koekebakker
and Ollmar (2005). However, Bjerksund et al.
(2008) claim that a proportion of 90% is sufficient,
while Clewlow and Strickland (2000) choose the
number of factors such that the proportion becomes
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98.4%. Therefore, we perform a set of calculations
similar to those in Section 4.3.9, but instead of
testing different values of ρ , we use a different
number of factors I in the price process. We
investigate four different numbers of factors: 1
(that is, we use the overall volatility function 2), 3
(91.53% explanation), 6 (96.04% explanation) and
10 (98.44% explanation). The obtained expected
discounted revenues are shown in Table 4.9, and the
mean optimal reservoir levels in Figure 4.11.

Number
of
factors

[-] 1 3 6 10

EDR [M EUR] 15.80 15.86 15.93 16.00

Table 4.9: Expected discounted revenues (EDR) obtained using
different number of factors I to describe the underlying price
process.

Figure 4.11: Average reservoir curves for Vasslivatnet obtained
using different number of factors in the forward price process.
The red curve is from a run with I = 1 factors, the dark blue one
for a run with I = 3, the red curve for I = 6 and the light blue
curve for I = 10.

The results in Table 4.9 show that there is an
increasing trend in expected discounted revenues
when we use more factors to describe the price
process. This should make sense, as more factors
can result in larger price fluctuations, thereby
resulting in a lattice with a larger difference between
the highest and lowest possible price at a time stage.
The optimal policies utilize the higher prices in the
lattices with more factors, and the model thereby
forecasts larger expected discounted revenues.

As for the case with different values of ρ , it might
be more interesting to test how the policies obtained
using a simple one-factor price model perform when
the price process can, in reality, be described using
I = [3,6,10] factors. We, therefore, redo the steps
explained above for the case of different numbers
of factors I instead of correlation coefficient ρ .
The expected discounted revenues are displayed in
Table 4.10. By looking at the numbers, we see
that a policy created using a one-factor price model
will underperform by approximately 2% when the
price process is in fact driven by multiple factors.
Similar to the case for different values of ρ , this can
result in a decrease in revenues of multiple 100.000
EUR yearly for a hydropower plant, underlining the
importance of using a price process that is as correct
as possible when modeling reservoir management.

Number of
factors

[-] 3 6 10

EDR [M EUR] 15.52 15.61 15.63
Performance
difference

[-] −2.1% −2.0% −2.3%

Table 4.10: Expected discounted revenues (EDR) calculated
when using a policy where the number of factors is I = 1,
but where the real stochastic price process is described by I =
[3,6,10]. The bottom row indicates the difference between the
expected discounted revenues using these policies versus the
expected discounted revenues obtained using a policy with the
same number of factors I as in the stochastic process, as shown
in Table 4.9.

4.4 Conclusions
In this paper, we present a medium-term model for
reservoir management. We model the problem as
a Markov decision process, and use a multi-factor
model to describe changes in forward and spot
prices. We incorporate a short-term correlation
between the local inflow model and price model
and solve the resulting stochastic-dynamic decision

2This process disregards the forward curve intercorrelation.
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problem using ADDP, which discretizes the Markov
processes to a scenario lattice and then solves the
problem by learning an outer approximation of the
value function.

We find that there exists a short-term correlation
between the weekly residuals of the inflow model
and the increment associated with the first volatility
function of the forward curve movements. Our
analysis indicates that ignoring correlation can
result in sub-optimal reservoir control decisions.
In our case, we observe a decrease in expected
revenues of 2.5% (that is, multiple 100.000 EUR
yearly) if the correlation coefficient is, in fact, ρ =

−0.1765.

Our analyzes also show that it is important to use
multiple factors when describing price movements.
The result of our case study is that solving the
problem with a one-factor model when the true

model has multiple factors decrease profits by about
2%. The number of factors will depend on the price
data. We confirm the finding of Koekebakker and
Ollmar (2005) that we need more factors than is
typical of commodity price models. In our case, we
use six factors which explain 96% variance.

Compared with historical production decisions,
our model produced similar results, even though
decisions were made in weekly granularity, whereas
the planner makes planning decisions on a daily
basis. Hence, using our model provides reliable
production decisions if used for medium-term
planning. These results are especially interesting
since our model receives the average weekly price,
while the real-life production planner can make
decisions on an hourly basis, allowing them to
produce during periods with higher prices within a
particular week that are not available for our model.
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Further work

Although both papers provide us with interesting results regarding the production and hedging problems,
multiple aspects can be modified, improved or investigated. In this section, we propose some possible work
that can be conducted by researchers or practitioners. As the hedging model was the primary focus of the
master’s thesis, it is emphasized more than the production planning model.

Test other methods for modeling risk preferences
It would be interesting to test the difference in hedging performance if we had modeled risk preferences
using a terminal risk measure instead of the nested CVaR. Naturally, if we had maximized the terminal
CVaR instead of the nested CVaR, the hedging performance measured in terms of the terminal CVaR should
increase. Although the terminal risk measures will result in time inconsistent decision policies, using them
can make sense from a budgetary point of view. Also, using the nested CVaR resulted in very large hedge
ratios, which might not have been the case if we had used a terminal risk measure in the objective function
of the hedging problem.

Include area price difference risk and mitigating derivatives
While EPAD contracts on price difference are not available for NO3, we did, in fact, formulate a stochastic
process representing dynamics of the area price difference1. Due to computational limits and our already
large state space, the area price difference risk was omitted from the final model. However, it would be
interesting to include it as a risk factor in a hedging model to quantify the extent of the uncertainty. This would
be especially interesting from the perspectives of companies located in bidding areas with lower correlations
between the system and area spot price, e.g. in Denmark and Finland.

Treat price and currency as correlated state variables
In the hedging model, we treated the currency exchange rate as independent of changes in price, even though
we found that their increments exhibit a weak, negative correlation. This was due to issues with the algorithm
used to construct the multivariate lattices. By treating currency, prices, and inflow as correlated, the model
could have included the natural hedge in the currency market, which could have resulted in different policies
for optimal currency trading.

Combine hedge ratio heuristics with conditional risk mapping
When implementing the upper and lower hedge ratio requirements of the company analyzed by Sanda et al.
(2013) as constraints in the hedging model, we tried to combine this version of the model with the nested
CVaR. However, this resulted in issues with infeasibility. Nevertheless, we propose that such a combination
of hedge ratio ranges and risk preference modeling should be further tested, as the policies obtained from such
a model would be based on a time-consistent risk measure while simultaneously keeping the hedge ratios on
the desired level. As illustrated, the performance of the hedge ratio approach was quite good compared to the

1See Appendix A.7.4 for the area price difference process.
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nested CVaR approach in terms of reducing the risk of the terminal cash flows.

Combine hedging model with other scenario lattices
It should be trivial to use externally created scenario lattices instead of the ones used in this master’s thesis
in the sequential hedging model. Therefore, we propose testing the model with other scenario lattices for
production, inflow, prices, and currency. An example could be to use price scenarios from EMPS (SINTEF,
2017a) and production and inflow scenarios from EOPS (SINTEF, 2017b). Another possibility is to test the
hedging model with production scenarios from another hydropower plant, or even a wind turbine or a solar
power installations.

Obtain more sophisticated forward curves and volatility functions
In both papers, we use forward curves constructed by the method of Alexander (2008) to obtain the volatility
function explaining the evolution of the forward curve. Simultaneously, the initial forward curve used in the
first stage of the production model was constructed by the method of Fleten and Lemming (2003). To avoid
this combination, we recommend that one should try to use more sophisticated software for forward curve
construction, e.g. Elvis Front Manager. Using a better forward curve construction method may result in both
more correct process coefficients and better starting values.

Further investigate the parameter correlations
In both papers, we investigate different sorts of correlations between prices, inflow, and currency. For the
production planner analyzed in the second paper, we see that the effect of omitting the correlation between
increments of inflow and the first principle component driving movements in the forward curve could result
in large cash flow reductions for the producer. We do, however, have a limited dataset, resulting in a 95%
confidence interval of [−0.28 −0.06] for the correlation coefficient. Therefore, it is important to calculate
the correlation more precisely, as a faulty specification might result in reduced cash flows.

Further, the first paper investigates the correlation between increments of inflow and futures contracts with
different maturity dates. As the correlation matrix in Figure 3.7 shows, the correlation magnitude varied in
a seemingly unstructured way for different times to maturity. The dynamics of price and inflow have been
investigated in many papers, many of which propose more complex relationships than a constant Pearson’s
correlation coefficient. An alternative in our case could be to use different correlation matrices for different
times of the year, e.g. for different seasons. For instance, inflow deviations in the spring might have a different
impact on the forward curve than in other parts of the year. By using seasonal correlation matrices, these
dynamics could have been captured better.

Extend the time horizon of the hedging problem
In Sanda et al. (2013), many of the analyzed firms start their trading activity multiple years prior to maturity.
This suggests that the horizon of the hedging problem should maybe be extended. While the liquidity at
NASDAQ OMX of yearly futures contracts with three or more years to delivery is low (Fleten et al., 2010),
this is not the case for contracts with two years to maturity. Thus, the model horizon could be extended by
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one additional year, incorporating the latter contract. This would, however, require a suitable process for
describing the evolution of the forward curve in the long end. Using our approach, it is only possible to
construct returns series explaining forward curve movements for the first two years of the curve. Thus, a new
method for constructing forward curves with corresponding returns series is necessary to extend the problem
horizon.
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Appendix

A.1 Discretization
Table A.1 shows how the calendar year is discretized into 24 semi-months.

Semi-month number Start date End date Duration [days]

1 1.1 15.1 15
2 16.1 31.1 16
3 1.2 14.2 14
4 15.2 28.2 (29.2) 14 (15)
5 1.3 15.3 15
6 16.3 31.3 16
7 1.4 15.4 15
8 16.4 30.4 15
9 1.5 15.5 15
10 16.5 31.5 16
11 1.6 15.6 15
12 16.6 30.6 15
13 1.7 15.7 15
14 16.7 31.7 16
15 1.8 15.8 15
16 16.8 31.8 16
17 1.9 15.9 15
18 16.9 30.9 15
19 1.10 15.10 15
20 16.10 31.10 16
21 1.11 15.11 15
22 16.11 30.11 15
23 1.12 15.12 15
24 16.12 31.12 16

Table A.1: Semi-monthly discretization. Semi-month 4 consists of 15 days in leap-years.

A.2 Lattice quantization
In order to construct our lattice, we use the two-step method proposed by Löhndorf and Wozabal (2017). The
first step involves optimally locating all nodes and the second step is to find the correct transition probabilities.
For a time stage t with Nt nodes, the location of all nodes is found by minimizing the squared distance between
the nodes and a set of simulated state observations. Consider K Monte-Carlo simulations (Sk) where Sk

t is
the time t state of simulation k where k ∈ [1, ...,K]. Then, the squared distance between a simulated state Sk

t

and its closest node St,n is given by the squared Euclidian distance ||Sk
t −St,n||2. In order to avoid creating a

unbalanced lattice, all state variables l ∈ [1, ...,L] are weighted with a weight θt,l = 1/σXt,l when calculating
the squared distance. Here Xt,l is a random variable representing the possible time t realizations of the ith
variable and σXt,l is its standard deviation. Without weighting, the lattice will be biased towards the state
variables of larger magnitudes. In our case, the inflow magnitudes are very large at certain stages t.
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It is difficult to find the optimal nodes St,n analytically. Therefore, we use a method based on stochastic
gradient descent first proposed by Bally and Pages (2003) and later redeveloped by Löhndorf and Wozabal
(2017). We define a set of stepsizes ν = {νk : k ∈ [K]}. Further, we define Sk

t,n as

Sk
tn =

Sk−1
tn +νk(Sk

t −Sk−1
tn ) if n = arg min

m
{||Sk

t −Sk−1
t,m ||2,m ∈ [Nt ]}

Sk−1
tn otherwise

 (A.1)

where S0
t,n ≡ 0, n ∈ [Nt ], t = 2,3, ..., T̂ and k ∈ [K]. Then, the value of all nodes St,n can be found by setting

St,n ≡ SK
t,n. In order to ensure that the resulting nodes are actually local minimizers of the squared distance,

νk must be defined such that ∑
∞
k=1 νk = ∞ and ∑

∞
k=1 ν2

k < ∞.

Having found all lattice nodes, we must now find all transition probabilities between them. We denote ptnm as
the conditional probability of a node transition from St,n to St+1,m. Bally and Pages (2003) propose estimating
the transition probabilities by

ptnm =
∑

K
k=1 IΓtn(S

k
t )IΓtm(S

k
t+1)

∑
K
k=1 IΓtn(S

k
t )

, n ∈ [Nt ],m ∈ [Nt+1], t ∈ [T̂ −1] (A.2)

Here, IΓt,n(X) is an indicator function taking the value 1 if X is a part of the set Γt,n and 0 otherwise. Γt,n

is the Voronoi decomposition of the nodes St,n. In other words, Γt,n is the set of simulated states Sk
t whose

nearest node defined by the squared distance is St,n. Mathematically, Γt,n can be written as

Γtn =
{

Sk
t : n = arg min

m
{||Sk

t −St,m||2,m ∈ [Nt ]}
}

(A.3)

As shown in Löhndorf and Wozabal (2017), a lattice constructed using (A.1) and (A.2) will be biased, as the
expected successor node of a node at t < T̂ will not equal the expected successor state given by the underlying
processes. To obtain a lattice where this is the case, we use backwards estimation, as used in Löhndorf and
Wozabal (2017). For a given node St,n, its expected successor node is denoted E[St+1 | St,n]. In an unbiased
lattice, the expected successor node of St,n must be given by the expression

E[St+1 | St,n] =
Nt+1

∑
m=1

ptnmSt+1,m, m ∈ [Nt+1], t ∈ [T̂ −1] (A.4)

The identity in (A.4) can be used to adjust the biased lattice so that it becomes unbiased. We let St,n,i denote
the value of the ith state variable included in the node St,n. Then, the expected predecessor state of this node
is denoted E[St−1,i | St,n,i]. Using the conditional transition probabilities ptnm found by (A.2), the adjusted
value of all state variables in each node can be found using

St,n,i =
Nt+1

∑
m=1

ptnmE[St,i | St+1,m,i], i = [1, ...,dim(St+1,m)],m ∈ [Nt+1], t ∈ [T̂ −1] (A.5)

When using (A.5), the nodes must be adjusted iteratively, starting at the end of the lattice and working
backwards to its beginning. The nodes of the last time stage are fixed to their original values. Using this, one
can adjust the value of the nodes in the penultimate stage by (A.5), and so on.
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A.3 Constructing forward curves using method of Fleten and Lemming
Fleten and Lemming (2003) propose a method to construct forward curves with different levels of
smoothness. They model the curve discretely by finding one unique price for a set of constant time steps. We
denote

S=
{
(tb,1, te,1), ...,(tb,M, te,M)

}
(A.6)

as a set of delivery periods for M observable forward contracts. Using these contracts, we can construct a
forward curve starting at tb = tb,1 and ending at te = te,M . We let f (ts) be a forward curve constructed on an
arbitrary date ts, and assume that the curve is constructed using M contracts with delivery intervals given as
in (A.6).

Since the model aims to find the value of the forward curve in discrete time steps, f (ts) can be represented
as a vector f (ts) = [Fts,tb ,Fts,tb+1 , ...,Fts,te ]

′ where Fts,t is the value of the forward curve at time t ∈ [tb, te]. The
dimensions of the vector f (ts) is C×1, where C denotes the number of discrete prices contained by the curve.
Further, we let Fask

t,tb, j ,te, j and Fbid
t,tb, j ,te, j denote the ask and bid price of forward contract j = [1, ...,M], where

(tb, j, tb, j) denotes its delivery period. D(t) = [D(tb),D(tb +1), ...,D(te)]′ denotes an underlying deterministic
price function in vector form, and r is the model discount rate. Lastly, we denote ω ∈ 〈0,∞〉 as the
smoothness parameter. For high values of ω , the method will construct forward curves with maximum
smoothness, whereas lower values create curves with smaller smoothness and larger price jumps. Given all
these parameters, the forward curve f (ts) is constructed by solving the minimization problem

minimize
Fts,t

te

∑
t=tb

(Fts,t −D(t))2 +ω

te−1

∑
t=tb+1

(Fts,t−1−2Fts,t +Fts,t+1)
2

subject to Fbid
ts,tb, j ,te, j ≤

1

∑
te, j
t=tb, j exp(−rt)

te, j

∑
t=tb, j

exp(−rt)Fts,t ≤ Fask
ts,tb, j ,te, j for j ∈ [1, ...,M]

Since we assume a complete market and no drift, we set r = 0. We also set D(t) = 0 to avoid deterministic
elements in our model. Further, if we only consider market closing prices, we can set Fbid

ts,tb, j ,te, j = Fask
ts,tb, j ,te, j =

Fts,tb, j ,te, j . This simplifies the problem to

minimize
Fts,t

te

∑
t=tb

F2
ts,t +ω

te−1

∑
t=tb+1

(Fts,t−1−2Fts,t +Fts,t+1)
2

subject to Fts,tb, j ,te, j =
1

te, j− tb, j

te, j

∑
t=tb, j

Fts,t for j ∈ [1, ...,M]

Using the method of Lagrange multipliers, the problem can be reformulated to solving the matrix equation
given by (A.7), where χ = [χ1, ...,χM]′ is the vector of Lagrange multipliers and f (ts) is the forward curve
on vector form. [

2B A′

A 0

]
·

[
f (ts)

χ

]
=

[
0

Fts

]
(A.7)

In A.7, A is an M×C matrix whose elements A j,t can take the values A j,t = 1 if time t is part of the delivery
period of the jth forward contract and A j,t = 0 otherwise. Fts = [Fts,tb,1,te,1 , ...,Fts,tb,M ,te,M ]

′ is a vector containing
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the price of all M forward contracts traded on the market. The matrix B is C×C and given by (A.8).

B =



1+ω −2ω ω 0 0 0 0 . . . 0
−2ω 1+5ω −4ω ω 0 0 0 . . . 0

ω −4ω 1+6ω −4ω ω 0 0 . . . 0
0 ω −4ω 1+6ω −4ω ω 0 . . . 0
...

. . . . . . . . . . . . . . . . . . . . .
...

0 . . . 0 ω −4ω 1+6ω −4ω ω 0
0 . . . 0 0 ω −4ω 1+6ω −4ω ω

0 . . . 0 0 0 ω −4ω 1+5ω −2ω

0 . . . 0 0 0 0 ω −2ω 1+ω



(A.8)

A.4 Constructing forward curves by linear interpolation
Alexander (2008) presents a different approach for constructing forward curves. It involves creating what
she calls constant maturity futures by interpolating between the prices of adjacent forward contracts traded in
the market. We modify this method so that it can be used to create forward curves. Similar to the method of
Fleten and Lemming (2003) the forward curve is made up of values at discrete, predefined time steps. Note
that since the forward curve is found using linear interpolation, it will generally not be smooth at all points.

There is a special challenge in applying the approach described by Alexander (2008) to electricity forwards,
as it has no obvious way of handling forwards with a delivery period instead of delivery in a specific point in
time. In this method, the value of the forward curve Fts,t constructed on ts for delivery time t is defined as the
value of a forward contract whose delivery period starts at t. The length of the delivery period is, however,
given by the delivery period of the two contracts used to find this value of the curve. This is slightly different
from the method of Fleten and Lemming (2003), in which we used all available contracts to construct a
smooth forward curve where the value of the curve for a given delivery time denoted the price of a forward
contract with delivery on that particular point.

In this method, each element of the forward curve is calculated by linear interpolation. Say that we want to
calculate the price of a forward contract Ft,T at time t with delivery at time T . Intuitively, it can be found by
weighting the market prices of two tradable forward contracts such that their weighted average delivery time
is equal to T . We extend this logic and use it to find every entry of a forward curve f (ts).

As before, we let ts be the date for which a forward curve is constructed and let t be the delivery time of the
forward curve element we want to find. Further, let Fts,tb,i,te,i be the market price of a forward contract with
delivery period (tb,i, te,i) where tb,i ≤ t. Among the contracts with the beginning of the delivery period earlier

than t, Fts,tb,i,te,i is the contract having the beginning of the delivery period tb,i closest in time to t. Let Fts,tb, j ,te, j

be the market price of a future contract with delivery period (tb, j, te, j) where tb, j ≥ t. Among the contracts
with the beginning of the delivery period later than t, Fts,tb, j ,te, j is the contract having the beginning of the
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delivery period tb, j closest in time to t. In summary, we have that

tb,i ≤ t ≤ tb, j (A.9)

By linear interpolation, the forward curve elements Fts,t located in the interval t ∈ (tb,i, tb, j) are given by
(A.10).

Fts,t = Fts,tb,i,te,i +
t− tb,i

tb, j− tb,i
· (Fts,tb, j ,te, j −Fts,tb,i,te,i) (A.10)

Further, we want to interpolate between forward contracts of the same delivery period length, meaning that
the part of the curve spanning the interval (tb,i, tb, j) must be constructed using contracts where

te,i− tb,i = te, j− tb, j (A.11)

Denote R the number of different contract types (e.g., contracts with weekly, monthly, quarterly and yearly
delivery periods). Since we use all contract types available, we will have R different forward curves for each
trading day. To create a complete forward curve with one unique value Fts,t for each value of t, portions
of these forward curves are used for different intervals of time. In the near end of the curve, one should
use contracts with shorter delivery periods (e.g., weekly) to construct the values of the curve. When t is
increased, Fts,t will eventually have to be constructed using contracts with a longer delivery period (e.g.,
monthly). This is due to the nature of electricity forward markets, where the delivery period of the contracts
traded in the market generally increases for larger times to maturity. Therefore, one must use two forward
contracts with larger delivery periods to comply with restriction (A.9). For even larger values of t, the curve is
constructed using a contract type with an even longer delivery period, and so on. Apart from using contracts
with the shortest possible delivery period, a heuristic to decide which contract type is to be used in the
complete forward curve is to choose the contract with the most historical price observations for a given time
to delivery.

A.5 Constructing returns series from forward curves
Having constructed forward curves for multiple consecutive days, one can create a returns dataset that can
be used to find the volatility functions. We apply a modified version of the method used by Koekebakker and
Ollmar (2005), as we choose to calculate continuously compounded logarithmic returns rather than discrete
compounded returns. We do this because it allows us to calculate returns over longer time periods by addition,
thereby simplifying many calculations. This approach is also used by Bjerksund et al. (2008). Since we want
a volatility function on the form σt,T = στ , we must create returns series for a set of contracts with equal time
to maturity τ = T − t. f (t j) denotes a forward curve constructed at date t j, and Ft j ,t j+τa denotes the value of
this curve for a delivery date Ta = t j +τa. We then use (A.12) to calculate daily returns at time t j for contracts
with time to maturity τa.

x j,a = ln(Ft j ,t j+τa)− ln(Ft j−1,t j+τa) (A.12)

Here, j = [2, ...,J] and a = [1, ...,A], where J is the number of forward curves and A is the number of maturity
dates for which we want to construct the returns dataset. The returns series matrix calculated using J + 1
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forward curves (meaning we can find J returns) and A different time to maturities is then given by

XJ×A =


x1,1 x1,2 . . . x1,A

x2,1 x2,2 . . . x2,A
...

...
. . .

...
xJ,1 xJ,2 . . . xJ,A

 (A.13)

A.6 Covered interest arbitrage
Covered interest rate parity can be derived by considering a reverse cash-and-carry arbitrage as presented in
McDonald (2014). Suppose the T − t maturity interest rate is r in the domestic currency and r f in the foreign
currency. Assume that r > r f and that an arbitrageur wants to borrow the foreign currency and invest in the
domestic currency. She borrows at exchange rate Qt,t . To hedge the position, she enters a long forward rate
contract at forward rate Qt,T . The cash flows from the reverse cash-and-carry strategy are shown in Table
A.2.

Time t T

Borrow Qt,t exp
(
− r f (T − t)

)
in foreign currency +Qt,t exp

(
− r f (T − t)

)
−QT,T

Lend Qt,t exp
(
− r f (T − t)

)
in domestic currency −Qt,t exp

(
− r f (T − t)

)
Qt,t exp

(
(r− r f )(T − t)

)
Enter long forward rate contract 0 +QT,T −Qt,T

Sum of cash flows 0 +Qt,t exp
(
(r− r f )(T − t)

)
−Qt,T

Table A.2: Cash flows at time t and T > t from a reverse cash and carry arbitrage in the money markets

The portfolio of positions in Table A.2 is risk-less and requires zero investment. If we assume no arbitrage,
the forward rate Qt,T must be priced such that the total cash flow at time T is zero.

Qt,t exp
(
(r− r f )(T − t)

)
−Qt,T = 0

Qt,T = Qt,t exp
(
(r− r f )(T − t)

) (A.14)

Covered interest rate parity is given by (A.14). Note that Qt,T is independent of the market expectation of the
future exchange rate.

A.7 Process parameter validation
In this section, we validate the parameters that were used in the underlying stochastic processes. We
investigate certain properties of the price, inflow and currency process. Additionally, we propose a
mean-reverting process to represent the area system price difference. Table A.3 shows the estimation
windows that were used.

Start End

Electricity forward price 03.04.2011 31.12.2014
Electricity spot area and system price 01.01.2009 31.12.2014
Inflow 01.01.1958 31.12.2014
EURNOK 04.01.1999 31.12.2014

Table A.3: Data window for parameter estimation in the stochastic processes

70



A.7.1 Price process

To verify the price process, we compare the historical and modeled spot price volatility. Since the spot price
volatility in the price process is estimated using forward price data only, there might be a discrepancy with the
volatility estimated using spot price data. The modeled spot price volatility is given by the most near-term part
of the forward curve shown in Figure 3.4. In other words, it is the volatility of the fictional one semi-month
ahead forward contract. As explained in Section 3.4.1, the HJM framework considers seasonality, while still
incorporating stationary returns distributions. We need to exclude seasonality effects when we estimate the
volatility using historical spot price data. Therefore, the historical spot price volatility is calculated using
seasonality-normalized log returns between semi-monthly average prices.

Table A.4 shows that the deviation between the historical and modeled volatility of the electricity spot price
is relatively small. This strengthens the soundness of the price model. We have chosen not to adjust the
volatility of the price process because this would not only affect the spot price volatility but the volatility of
the entire forward curve as well.

Historical spot price volatility Model spot price volatility

Standard deviation of semi-monthly returns 0.17 0.16
Annualized volatility 0.84 0.81

Table A.4: Spot price volatility validation, using semi-monthly returns

Figure A.1 and A.2 show the scenario lattices for the spot price and forward prices with 3, 6 and 12 months
to delivery. Notice the Samuelson (1965) effect - the volatility is decreasing with increasing time to maturity.

(a) Spot price lattice (b) 3 months to delivery lattice

Figure A.1
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(a) 6 months to delivery lattice (b) 12 months to delivery lattice

Figure A.2

Figure A.3 shows some of the stage t quantiles along with the mean for the spot price. Uncertainty in future
states increases with time.

Figure A.3: Spot price uncertainty diagram

A.7.2 Inflow process

Figure A.4 shows some of the stage t quantiles along with the mean for the inflow. The inflow process
is estimated such that the average standard deviation of the inflows equal the historical average standard
deviation of inflows.
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Figure A.4: Inflow uncertainty diagram

A.7.3 Currency process

Figure A.4 shows some of the stage t quantiles along with the mean for the EURNOK rate.

Figure A.5: Currency uncertainty diagram

To validate that covered interest parity holds, we analyze the dynamics of the EURNOK forward curve
empirically. Figure A.6 shows that the forward curve dynamics of EURNOK exchange rate exhibit almost
perfect correlation. For practical purposes, all currency risk can be considered to originate from the spot
exchange rate, and a single factor model for the currency forward curve is sufficient for our purposes.
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Figure A.6: EURNOK forward rate correlation matrix, showing the correlation of returns for currency forward contracts with number
of months to maturity as indicated by the red numbers in the figure. The forward rate data is collected from the SIX Group. The dataset
consists of daily observations from 2015-03-23 to 2018-03-12.

A.7.4 Area difference process

Since the producer receives the area spot price for their production while the system spot price serves as the
underlying of the traded power futures, there is basis risk between the area price and the power futures. We
have estimated a mean-reverting process to represent the area price difference risk. The area price Fa,t can
be expressed as a function of the system price Ft,t and the log of the area price system price ratio, Ut in the
following way:

Ut = ln
(Fa,t

Ft,t

)
=⇒ Fa,t = Ft,t exp(Ut) (A.15)

We assume that the logarithm of the area price system price ratio, Ut , follows a mean-reverting process. In
particular, it follows the Ornstein-Uhlenbeck process shown in (A.16)

dUt = [η(Ū−Ut−dt)]dt +σU dZ (A.16)

Here, η is the rate of mean-reversion and Ū is the long term mean value of the log ratio. σU denotes the
volatility of U . We discretize (A.16) and get

∆Ut = [η(Ū−Ut−∆t)]∆t +σU
√

∆tεt (A.17)

Here, εt ∼ N(0,1). (A.17) is rewritten into a form suitable for least squares regression analysis.

∆Ut = η0 +η1Ut−∆t +η2εt (A.18)

η0 and η1 and η2 are coefficients to be estimated by regression, following the procedure in Clewlow and
Strickland (2000). By substitution, it can be shown that

η =−η1

∆t
Ū =

η0

η∆t
σU =

η2√
∆t

(A.19)
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In our case, we found the parameters shown in Table A.5. Further, all correlations with price and currency
increments were insignificant at a 5 % significance level. The correlation between the increments of the area
price process and the inflow process was, however, significant at α = 0.05. It was found to be -0.21.

η 10.06971
U 0.030995
σU 0.327369

Table A.5: Area difference process parameters for semi-monthly granularity

A.7.5 Significance of correlation matrix

Table A.6 shows the significance levels of the correlations shown in Table 3.7. For illustration, we also
include the area price difference.

inflow eurnok area diff price1 price3 price5 price7 price19 price28

inflow
eurnok 0.08

area diff -0.21* -0.14
price1 -0.08 0.03 -0.13
price3 -0.12 -0.01 -0.06 0.81****
price5 -0.10 -0.11 0.01 0.67**** 0.93****
price7 -0.14 -0.16 0.00 0.55**** 0.84**** 0.94****

price19 -0.03 -0.16 -0.11 0.53**** 0.76**** 0.78**** 0.75****
price28 -0.15 -0.22* 0.02 0.40**** 0.66**** 0.73**** 0.75**** 0.82****
price48 -0.12 -0.21* 0.01 0.34** 0.56**** 0.63**** 0.65**** 0.82**** 0.88****

Table A.6: p < .0001, ****; p < .001, ***; p < .01, **; p < .05, *

A.7.6 Variability of state variables

Having constructed uncertainty lattices for spot price, production and currency, we can quantify the
variability of each risk factor. Table A.7 shows the quantiles of the distributions for mean spot price, mean
EURNOK rate and yearly production over the time horizon of 49 semi-months. Clearly, price and production
volume have the largest variability, suggesting that these are the major risk factors for the hydropower
producer. However, this might be a hasty generalization as the present value of production revenues is
not necessarily proportional to the mean spot price or mean EURNOK rate. This is because of discounting
effects and since production is not evenly distributed throughout the year.
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Mean spot price
[EUR/MWh]

Production
[GWh/year]

Mean EURNOK

Mean 27.99 192.18 8.80
Std 4.55 20.90 0.44
Q1% -30.5 % -25.6 % -11.0 %
Q5% -24.3 % -18.2 % - 7.8 %
Q95% +29.6 % +17.6 % + 8.4 %
Q99% +43.8 % +24.4 % +12.7 %

Table A.7: We investigate the mean spot price, production per year and mean EURNOK over the time horizon of 49 semi-months. The
table shows the mean, standard deviation, the deviation in percent from the mean value for the 1%, 5%, 95% and 99% quantile. E.g., the
number in the first column and third row show how much the 1% quantile of the mean spot price distribution deviates from the mean of
the mean spot price over 49 semi-months.

A.8 Lattice stability
Due to the backwards estimation adjustment of the position of the nodes, there is some variation in the values
assigned to a particular node when creating multiple lattices with the same processes. Table A.8 show how
much the starting values for some state variables vary between each time a lattice is created.

True value Std.dev Std.dev as a fraction of the true value

Inflow 80.604 3.828 4.75 %
Currency 8.704 0.0029 0.03 %
Spot 25.529 0 0.00 %
1 semi-month to delivery 25.936 0.124 0.48 %
2-48 semi-months to delivery - - 0.13 %*

Table A.8: Lattice stability. Values are the starting values for the state variables. * Average

A.9 Coefficient and parameter values
For all simulations in the hedging article, we have used the coefficient and parameter values given in Table
A.9. The tax rates γr and γc (Thorvaldsen et al., 2018) and transaction costs cF (Nasdaq, 2018) are correct
as of June 6, 2018. As in Dupuis et al. (2016), the variable transaction costs for trading at NASDAQ OMX
are given by the sum of the market trading fee (0.0045 EUR/MWh) and clearing fee (0.0099 EUR/MWh).
This clearing fee is applicable if the total quarterly volume cleared by the firm is below 3 TWh. The
time-dependent discount factor βt is given by βt = exp(−r∆t), where ∆t denotes the length of the semi-month
t. The energy coefficient κ is based on the empirical relationship between production and water dispatch,
and calculations considering the mean empirical reservoir level and turbine/generator efficiency rate. It has
been found to be slightly lower than the one currently used by the plant.
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Coefficient/
Parameter

Explaination Unit Value

v1,t Upper bound for reservoir volume in reservoir 1 Mm3 44.5
v2,t Upper bound for reservoir volume in reservoir 2 Mm3 22.5
v2,t Lower bound for reservoir volume in reservoir 2 between October 16

and May 24
Mm3 0

v2,t Lower bound for reservoir volume in reservoir 2 between May 25 and
October 15

Mm3 15.05

κ Energy coefficient kWh/m3 0.63
ξ Maximum allowed water flow in turbine m3/s 17
r Continuously compounded annual risk free interest rate used in discount

factor, given by 3-year NIBOR
− 0.0126

cF Transaction costs for trading power futures at NASDAQ OMX EUR/MWh 0.0144
γr Resource rent tax rate − 0.357
γc Corporate tax rate − 0.23
ζ Inflow split coefficient − 0.395

Table A.9: Coefficients and constants used in hedging paper

A.10 Sensitivity analysis of hedging results
In this section, we present some results illustrating the sensitivity of using 500 forward-backward passes
and 105 iterations. This has been done by performing six separate runs of the hedging model with α = 0.1
and trading in all contracts, and comparing the mean and standard deviation of the main statistical measures
included in e.g. Table 3.5. These results are summarized in Table A.10. The computational time of each run
is approximately 4.5 hours, and its memory usage is close to the maximum capacity of the computer that is
used.

Mean CF Std CF VaR(5%) VaR(1%) CVaR(5%) CVaR(1%)

Mean 40.20 4.33 33.35 30.81 31.79 29.60
Std 0.106 0.050 0.145 0.179 0.165 0.204

Table A.10: Sensitivity of statistical measures based on six separate runs.

As Table A.10 shows, the obtained results are subject to a certain degree of uncertainty. The standard
deviations indicate that all statistical measures are stable in the first two digits, while there is some uncertainty
in the third digit. This indicates that the results are sufficiently precise to assess and compare the general risk
performance of the model variants, but increasing the number of passes and simulations would result in more
precise results.

A.11 Optimal tax-neutral hedge ratio
In this section, we deduce the calculation of the optimal tax-neutral hedge ratio found in Sanda et al.
(2013). We want to hedge the cash flows from production. The deviation from the expected cash flows
from production in a stage T is given by

(FT,T −E(FT,T )) ·WT (1− γc− γr) (A.20)
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Here, FT,T is the spot price at time T , WT is the production volume, γc is the corporate tax rate and γr is the
resource rent tax rate. Further, the cash flow from a forward contract is given by

(Ft,T −FT,T ) ·uT,T (1− γc) (A.21)

where Ft,T is the forward price at time t for delivery at time T and uT,T denotes the short position in the
forward contract. Further, we assume that the expected spot price equals the forward price and set E(FT,T ) =

Ft,T . We also disregard the uncertainty in production WT . We want the cash flow deviations from the long
position in production and short position in the financial market to perfectly offset each other. Then, we get
that the optimal tax-neutral hedge ratio uT,T

WT
is given by (A.22).

(FT,T −Ft,T ) ·WT (1− γc− γr)+(Ft,T −FT,T ) ·uT,T (1− γc) = 0

(FT,T −Ft,T ) ·WT (1− γc− γr) =−(Ft,T −FT,T ) ·uT,T (1− γc)

uT,T

WT
=

1− γc

1− γc− γr

(A.22)

Using γc = 0.23 and γr = 0.357, we get that uT.T
WT

= 53.6%. This is slightly lower than the hedge ratio of
58.3 % calculated by Sanda et al. (2013), which was based on the Norwegian tax regime of 2010, when the
corporate tax rate was higher and the resource rent was lower.

A.12 Numerical example of cash flows from overhedged position
In this section, we present a numerical example illustrating our argumentation for the large short positions
suggested by the hedging model. We consider a simple two-stage problem with two possible scenarios for
price and production in the second stage t = 1. As assumed, we consider a positive correlation between
production level and spot price. The problem is illustrated in Figure A.7.

Figure A.7: Two-stage problem with stochastic price and production levels. The cash flows from production are subject to resource rent
γr and corporate γc tax, whereas the cash flows from hedging are subject to corporate tax only. Transaction costs are disregarded.
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As the figure shows, the expected production in stage t = 1 is 10 GWh, meaning that a hedge ratio of 1.5
can be achieved with a short position of 15 GWh in the futures market. For simplicity, we assume that the
position is entered in stage t = 0 and only settled in stage t = 1, i.e., its delivery period only covers the time
stage t = 1. If hedging is disregarded, the potential low-price scenario cash flows earned by the producer
will be 82 600 EUR. However, when the large short position is included, the total cash flows in the low-price
scenario are increased by 28 875 EUR. This increase is due to the decrease in spot price from its expected
value, i.e., the futures price F0,1. Thus, the over-hedged position results in low-price scenario cash flows of
111 475 EUR, meaning that the CVaR is lifted. The cash flows in the high-price scenario are decreased by
the same magnitude, but the total cash flows still remain larger than in the low-price scenario.
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