Intercalation of CO₂, water and diglyme in MXenes using molecular simulations

Alexander Bjørlo

Chemical Engineering and Biotechnology
Submission date: July 2018
Supervisor: Sondre Kvalvåg Schnell, IMA
Co-supervisor: Jacob Hadler-Jacobsen, IMT

Norwegian University of Science and Technology
Department of Materials Science and Engineering
Summary

Since its discovery in 2011, MXenes have gained a lot of attention for their application in energy storage. Their combination of being a two dimensional material, as well as having excellent electronic and mechanical properties, makes them an interesting material for electronic energy storages, as well as for CO$_2$ capture. This is emphasized the weak Van der Waals forces between the layers. Both small ions and large organic molecules have been successfully intercalated between the MXene layers. MXenes are hydrophilic, and water intercalate easily between their layer. This can be problematic for its applications in energy storage, where water may be present.

This study investigates the adsorption properties of Ti$_2$C MXenes terminated with Fluor and Oxygen. This is done using Monte Carlo methods and Molecular dynamics simulations in the osmotic ensemble. The adsorbates studied are the two water models SPC/E and TIP5p, Diglyme and CO$_2$. The simulations are performed at small pressure discretizations in a flexible multilayered MXene framework. The simulations are performed with the software package RASPA. The simulations show many uncertainties, although some results were gathered. The adsorption of water was found to be higher than the adsorption of CO$_2$, which corresponds well with the hydrophilic nature of MXenes. Results suggests that the adsorption was a physical adsorption, by evaluating the isosteric heat of adsorption, although the isosteric heat of adsorption shows nonphysical behaviour. Diglyme was not adsorbed to the framework at any temperatures, which most likely is due to the unit cell volume being close to constant throughout the simulation. This is the case for all of the adsorbate-adsorbent systems simulated. The adsorption of SPC/E water, TIP5p water and CO$_2$ were most likely limited by kinetics at low temperatures, and thermodynamics at high temperatures. This contradicts with the Monte Carlo methods, which should not be restricted by kinetics. The simulations performed, although some evidence of adsorption were observed, are most likely not of any significance. This is due to several nonphysical phenomena observed. These phenomena are probably due to too few Monte Carlo cycles, and viable results may be obtained using several more cycles.
Sammendrag

Siden oppdagelsen i 2011, har MXener fått mye oppmerksomhet som materiale til anvendelse i energilagring. Kombinasjonen av at det er et todimensjonalt materiale, samtidig som det har umterkede mekaniske og elektroniske egenskaper, gjør at det er et interessant materiale å anvende til energilagring, så vel som for CO$_2$ fangst. Dette er underbygget av de svake Van der Waals kreftene som virker mellom lagene. Både små ioner og store organiske molekyler har blitt interkalert mellom MXene lagene. MXener er hydrofile, og vann interkalerer lett mellom lagene. Dette kan være problematisk for bruk i energilagring, hvor vann kan være til stede.

Preface

This master thesis have been carried out at Norwegian University of Science and Technology (NTNU) at the Department of Material Science and Engineering as a part of my master’s degree in chemical engineering and biotechnology. The master thesis has been supervised by Assoc. Professor Sondre K. Schnell and PhD candidate Jacob Hadler-Jacobsen at NTNU. The idea behind the project is credited to Assoc Professor Sondre K. Schnell.

Acknowledgements
First and foremost i would like to thank my supervisor Sondre K. Schnell for his guidance throughout this thesis. His knowledge regarding computational chemistry has been of great value to me. Secondly, i would like to thank my co-supervisor Jacob Hadler-Jacobsen. Your guidance during this thesis has been excellent.

I would also like to thank my parents, who have been both supportive and critical (when needed) towards my decisions and priorities. Lastly i would like to thank Trine for her support during these months.
Table of Contents

Summary i

Sammendrag ii

Preface iii

Table of Contents viii

List of Tables x

List of Figures xii

Nomenclature xiii

1 Introduction 1

1.1 Motivation .. 1

1.2 Approach ... 2

2 Theory 3

2.1 MXenes ... 3
6.1 Additional plots .. 53
6.1.1 C-lattice parameter as a function of loading 53
6.1.2 Heat of adsorption calculated by RASPA 57
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Monte Carlo cycles and time step for Molecular dynamics simulations.</td>
</tr>
<tr>
<td>3.2</td>
<td>Parameters used to define the force field for Ti$_2$C(O$_x$, F$_x$).</td>
</tr>
<tr>
<td>3.3</td>
<td>Parameters used to define the force field for the SPC/E water model.</td>
</tr>
<tr>
<td>3.4</td>
<td>Parameters used to define the electrostatic interactions and the LJ potential for the TIP5p water model. L denotes the charge used to describe the lone pair in a water molecule. All parameters are self-parameters, and their interactions are calculated by Lorentz-Berthelot mixing rule (equation 2.27).</td>
</tr>
<tr>
<td>3.5</td>
<td>Parameters used to define the electrostatic interactions and the LJ potential for the CO$_2$ molecule.</td>
</tr>
<tr>
<td>3.6</td>
<td>Parameters used to define the electrostatic interactions and the LJ potential for the diglyme molecule.</td>
</tr>
<tr>
<td>4.1</td>
<td>Amounts CO$_2$ adsorbed in the MXene framework at the different temperatures and pressures.</td>
</tr>
<tr>
<td>4.2</td>
<td>Amounts of SPC/E adsorbed in the MXene framework at the different temperatures and pressures.</td>
</tr>
<tr>
<td>4.3</td>
<td>Amounts of TIP5p adsorbed in the MXene framework at the different temperatures and pressures.</td>
</tr>
<tr>
<td>4.4</td>
<td>Spacing between the layers at the pressure where the adsorption began for all temperatures for CO$_2$.</td>
</tr>
</tbody>
</table>
4.5 Spacing between the layers at the pressure where the adsorption began for all temperatures.

4.6 Spacing between the layers at the pressure where the adsorption began for all temperatures.
List of Figures

2.1 This figure shows the composition of a bulk mxene with chemical composition Ti$_2$C. This MXene are surface terminated by Oxygen and Fluor. The brown atoms represent Carbon, the blue represent Titanium, the red Oxygen and the white Fluor. .. 3

2.2 The 6 different types of adsorption isotherms. 5

2.3 Inter- and intra molecular forces described by a force field. 12

3.1 Unit cell with the different MXene layers. The brown atoms represents Carbon, the blue atoms represents Titan, the red atoms Oxygen, and the white atoms fluor. PBC is applied, so in reality this represents 4 mxene layers. The spacing between the layers are indicated as they are presented in the results section .. 19

4.1 Adsorption isotherms for CO$_2$.. 24

4.2 Adsorption isotherms for SPC/E water model 25

4.3 Adsorption isotherms for TIP5p water model 27

4.4 Isosteric heat of adsorption for CO$_2$ at various loadings 28

4.5 Isosteric heat of adsorption for SPC/E water at various loadings 29

4.6 Isosteric heat of adsorption for TIP5p water at various loadings 30
4.7 C-lattice parameters [Å] for CO₂ at all temperatures as a function of pressure. The black vertical line indicates at which pressure the adsorption started. If no black vertical line is presented, there was no adsorption. The mean value of all the C-lattice parameters are also presented. The lines between each point is only included to guide the eyes. 31

4.8 C-lattice parameters [Å] for SPC/E water model at all temperatures as a function of pressure. The black vertical line indicates at which pressure the adsorption started. The mean value of all the C-lattice parameters are also presented. The lines between each point is only to guide the eyes. 34

4.9 C-lattice parameters [Å] for TIP5p water model at all temperatures as a function of pressure. The black vertical line indicates at which pressure the adsorption started. The mean value of all the C-lattice parameters are also presented. The lines between each point is only to guide the eyes. 37

6.1 C-lattice parameter as a function of loading for CO₂, for all temperatures. 54

6.2 C-lattice parameter as a function of loading for the SPC/E water model, for all temperatures. 55

6.3 C-lattice parameter as a function of loading for the TIP5p water model, for all temperatures. 56

6.4 Haat of adsorption for the adsorbed molecules calculated by RASPA 57
Nomenclature

Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>MD</td>
<td>Molecular dynamics</td>
</tr>
<tr>
<td>MC</td>
<td>Monte Carlo</td>
</tr>
<tr>
<td>MCMC</td>
<td>Markov Chain Monte Carlo</td>
</tr>
<tr>
<td>MH</td>
<td>Metropolis-Hasting</td>
</tr>
<tr>
<td>CFMC</td>
<td>Continuous fractional Monte Carlo</td>
</tr>
<tr>
<td>LJ</td>
<td>Lennard-Jones potential</td>
</tr>
</tbody>
</table>
Mathematical symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔG</td>
<td>Gibbs free energy kJmol^{-1}</td>
</tr>
<tr>
<td>ΔH</td>
<td>Enthalpy kJmol^{-1}</td>
</tr>
<tr>
<td>T</td>
<td>Temperature K</td>
</tr>
<tr>
<td>P</td>
<td>Pressure Pa</td>
</tr>
<tr>
<td>R</td>
<td>Ideal gas constant J(molK)^{-1}</td>
</tr>
<tr>
<td>V</td>
<td>Volume of the system Å^3</td>
</tr>
<tr>
<td>m_{host}</td>
<td>Mass of host particles g</td>
</tr>
<tr>
<td>m_{ads}</td>
<td>Mass of adsorbed particles g</td>
</tr>
<tr>
<td>r</td>
<td>Radius Å</td>
</tr>
<tr>
<td>N</td>
<td>Number of atoms</td>
</tr>
<tr>
<td>μ_{ads}</td>
<td>Chemical potential</td>
</tr>
<tr>
<td>N_{host}</td>
<td>Number of atoms in the framework</td>
</tr>
<tr>
<td>μ</td>
<td>Old state</td>
</tr>
<tr>
<td>ν</td>
<td>New state</td>
</tr>
<tr>
<td>P_{μ}</td>
<td>Probability to find the system in state μ</td>
</tr>
<tr>
<td>P_{ν}</td>
<td>Probability to find the system in state ν</td>
</tr>
<tr>
<td>$P(\mu \rightarrow \nu)$</td>
<td>Probability to perform a transition from state μ to ν</td>
</tr>
<tr>
<td>\hat{s}</td>
<td>Position of all atoms in the system</td>
</tr>
<tr>
<td>h</td>
<td>Planck constant</td>
</tr>
<tr>
<td>k_b</td>
<td>Boltzmann constant</td>
</tr>
<tr>
<td>U^ν</td>
<td>Energy of the system when in the new state ν</td>
</tr>
<tr>
<td>U^μ</td>
<td>Energy of the system when in the old state μ</td>
</tr>
<tr>
<td>V_{μ}</td>
<td>Volume of system at old state μ</td>
</tr>
<tr>
<td>V_{ν}</td>
<td>Volume of system at new state ν</td>
</tr>
<tr>
<td>λ</td>
<td>Scaling parameter for the CFMC algorithm</td>
</tr>
<tr>
<td>ϵ</td>
<td>Well-depth LJ potential</td>
</tr>
<tr>
<td>σ</td>
<td>Collision diameter LJ potential</td>
</tr>
<tr>
<td>u_{Coul}</td>
<td>Electrostatic energy as coulombic potential</td>
</tr>
<tr>
<td>ϵ_0</td>
<td>Permittivity of free space</td>
</tr>
<tr>
<td>q_i</td>
<td>Charge of particle i</td>
</tr>
<tr>
<td>q_j</td>
<td>Charge of particle j</td>
</tr>
<tr>
<td>$E(\vec{r}, \vec{p})$</td>
<td>Energy of a molecular system as a function of momentum and length</td>
</tr>
<tr>
<td>$\kappa(P)$</td>
<td>Kinetic energy as a function of momentum</td>
</tr>
<tr>
<td>m_i</td>
<td>Mass of particle i</td>
</tr>
<tr>
<td>$3N-N_c$</td>
<td>Degrees of freedom for a molecular system</td>
</tr>
<tr>
<td>t</td>
<td>Time</td>
</tr>
<tr>
<td>F_{xi}</td>
<td>Force on particle i in direction x</td>
</tr>
<tr>
<td>U</td>
<td>Molecular energy</td>
</tr>
</tbody>
</table>
\(u_b(r) \) Energy change of a molecule due to bond stretching
\(u_{\theta}(\theta) \) Energy change of a molecule due to bending of bond
\(u_{\phi}(\phi) \) Energy change of a molecule due to torsion
\(u_{nb}(r) \) Energy change of a molecule due to non-bonded interactions
\(k \) Spring constant
\(V_n \) Amplitude height
\(n \) Number of minima in energy
\(\phi \) Phase factor
\(\hat{n} \) All directions in a supercell
\(\alpha \) Gaussian curves
\(\hat{k} \) Reciprocal vector
\(S(\hat{k}) \) Structure factor
\(r_{off} \) End of switching function
\(r_{on} \) Start of switching function
Chapter 1

Introduction

1.1 Motivation

The energy demand increases as more countries worldwide prosper. Simultaneously the pollution from extracting and consuming the energy increases the global warming in prevalence and serenity. The world's energy consumption in 2015 was 110358 TWh and are expected to increase further for the years to come [1]. 87 % of the energy consumed was obtained from coal, oil and natural gas. There is no doubt that a paradigm shift is needed in the production and consumption of energy, and the need for better materials for CO$_2$ capture are huge. Adsorption can be used to separate CO$_2$ from gas mixtures [2]. At the same time, development and utilization of batteries have potential to solve the CO$_2$ emission problems from today’s coal and fossil fuel driven energy production. In 2004 an interesting discovery was made, Geim et al. discovered the first two dimensional material, Graphene [3]. Two dimensional materials are generally of interest due to their physical and electrical properties compared to bulk materials [4]. Several two dimensional materials have been discovered since then, and in 2011 Naguib et al. discovered the first MXenes [5]. MXenes are synthesized from a family of compounds, and as of 2017, 20 different MXenes has been synthesized with dozen of more predicted to be stable [6]. Of all MXenes, Ti$_2$C has the highest specific surface area of all MXenes synthesized, which makes it an interesting material regarding adsorption [7].

Since its discovery, MXenes has gained a lot of attention from the scientific community. Especially the application as a cathode material in lithium and magnesium batteries is profound [8, 9]. There have also been investigations of MXenes as a CO$_2$ capture material, with promising results [10]. Several studies has shown promising results regarding intercalation of small ions, as well as large organic molecules [11, 12, 13, 14]. These adsorptive properties is most likely due to the uneven layered nature of multilayered MXenes [15].
Although there have been a lot of theoretical studies on MXenes, few investigate multilayered MXenes [16].

1.2 Approach

The object of this thesis is to study adsorption in multilayered bulk Ti$_2$C MXene with O and F as termination groups. This will be done by molecular simulations, Monte Carlo methods and Molecular dynamics in the osmotic ensemble. The adsorbents consists of two water models, TIP5p and SPC/E, CO$_2$ and diglyme. The simulation of the water models is done to investigate the hydrophilic properties of MXenes. The simulations CO$_2$ in MXenes is done to investigate MXenes as a CO$_2$ capture and storage material, whereas Diglyme is simulated to investigate MXenes properties in electronic storage devices (Diglyme is often used as an electrolyte in batteries). These simulations will be performed in RASPA, which is a software package developed to perform simulations on flexible molecule frameworks.
Chapter 2

Theory

2.1 MXenes

MXenes are a family of 2D transition metal carbides and/or carbonitrides [7]. The chemical composition of the MXene is \(M_{n+1}X_nT_x \), where \(M \) refers to an early transition metal, \(X \) is Carbon or Nitrogen, and \(T_X \) is a surface termination group which must be present for the MXene to be stable. Non surface-terminated MXenes has not yet been synthesized, and are predicted to be thermodynamically unstable [17].

Figure 2.1: This figure shows the composition of a bulk mxene with chemical composition Ti\(_2\)C. This MXene are surface terminated by Oxygen and Fluor. The brown atoms represent Carbon, the blue represent Titanium, the red Oxygen and the white Fluor.

Figure 2.1 shows the atomic layers of a bulk mxene. Here, the brown atoms represent Car-
bon, and the blue atoms represent Titanium. The red and the white atoms show the surface termination groups and represent Oxygen and Fluoro respectively. The interlayer forces in an MXene is a combination of two forces, hydrogen forces between the surface termination groups, and weak Van der Waals forces between the layers \[15\]. The c-lattice parameter of MXenes also show that there is an uneven spacing between the layers. The surface termination groups of MXenes makes it possible to alter electronic properties properties. Bare MXene layers are metallic, whereas when terminated they become semiconducting \[7\]. This termination also impart hydrophilicity to the MXene \([6, 7]\). The hydrophilic nature makes it possible for water to intercalate between the MXene layers spontaneous at ambient conditions \[11\].

2.1.1 Adsorptive properties

The high specific surface area of MXenes, and especially of the M\(_2\)X\(_1\) materials (M\(_2\)X\(_1\) MXenes are showed to have the highest specific surface area of all MXenes) are of great interest regarding adsorption \[7\]. There have been several reports of intercalation of atoms, molecules and ions into MXene layers \([11, 12, 13, 14]\). This includes Lead, H\(_2\), CO\(_2\), water, and large organic molecules. Intercalation between MXene layers have shown a significant increase in the c-lattice parameter between the layers \[11\]. This increase intuitively weaken the interaction between the layers. Due to the stacking of many layered MXenes, which has shown a big variation in the c-lattice parameter between the layers, it is possible to intercalate large organic molecules between the MXene layers.

2.2 Adsorption

Adsorption of atoms and/or molecules are typically divided into two segments, chemical adsorption and physical adsorption \[18\]. The chemical adsorption is an irreversible process where a chemical bonding occurs between the adsorbate and the adsorbents. This is typically a slow process, which requires some activation energy to occur. Physical adsorption is the result of Van der Waals forces between the adsorbates and the adsorbents. This is a quick, reversible reaction that occurs at lower temperature than chemical adsorption. The extent of adsorption on a solid is dependent on several thermodynamic factor. Since adsorption generally is an exothermic process, it should increase with decreasing temperature. The description of thermodynamic properties of adsorption can be done in several ways. In this thesis, two classification methods shall be used, Heat of adsorption and adsorption isotherms.

2.2.1 Thermodynamics

For adsorption at a constant pressure, the Gibbs free energy can be expressed as
2.2 Adsorption

Figure 2.2: The 6 different types of adsorption isotherms.

\[\Delta G = \Delta H - T \Delta S \] \hspace{1cm} (2.1)

where \(\Delta H \) is the enthalpy, \(T \) is the temperature and \(\Delta S \) is the entropy [19]. For an exothermic process, the value of \(\Delta H \) is negative, whereas \(\Delta H \) is positive for an endothermic process. \(\Delta G \) either increases or decreases for an exothermic or endothermic process respectively. This has three implications for equation 2.1.

1. \(\Delta H \) or \(\Delta S \) are negative, and the term involving \(\Delta S \) dominates the expression
2. \(\Delta H \) is negative and \(\Delta S \) is Positive
3. \(\Delta H \) or \(\Delta S \) are negative and the term involving \(\Delta H \) dominates the expression

Case 1 is an entropy driven adsorption, case 2 gives an exothermic process with increased disorder, whereas case 3 is an enthalpy driven adsorption.

Adsorption isotherms

An adsorption isotherm represents the amount adsorbed in a solid as a function of equilibrium pressure [20]. This is used to gain insight of the amount adsorbed in a solid. It gives an idea of how the pressure affects the adsorption, and what the adsorbed amounts are at different pressures. The typical adsorption isotherm shows an decrease in adsorption as the temperature increases, due to that adsorption generally are exothermic. The shape of the different adsorption isotherms can tell what type of adsorption is occurring inside the framework. There are 6 different types of adsorption isotherms classified by IUPAC [21].

Figure 2.2 represents the adsorption isotherms used for classification. The isotherm obtained from an experiment or simulation is classified with respect to their shape [22]. A type I adsorption isotherm represents an Langmuir isotherm. It is represented with a
convergence towards an adsorbed amount even at higher pressure. Type II and III represent adsorption on macroporous adsorbents with a weak interaction between adsorbate-adsorbents. Types IV and V represent mono and multilayer adsorption, with capillary condensation, and a type VI isotherm represents an adsorption isotherm with more than one step, which is typical for multilayered 2 dimensional materials [23]

Heat of adsorption

The heat of adsorption gives an indication of how strong the interaction is between the adsorbate and the adsorbent, and are used to distinguish between physical and chemical adsorption [24]. Heat of adsorption values below 50 kJ/mol indicates physical adsorption, whereas heat of adsorption values above 50 kJ/mole indicates chemical adsorption. This is because chemical adsorption involve the formation and breakage of chemical bonds, which involves higher energies than physical adsorption. There are several ways to measure the Heat of adsorption, but the most popular is the isosteric heat of adsorption [20]. The isosteric heat of adsorption are obtained from adsorption isotherms, at a constant loading, and calculated from the Clausius-Clapeyron equation [25].

\[
\frac{\delta \ln P}{\delta T} = \frac{q_{st}}{RT^2}
\]

(2.2)

Equation 2.2 shows the Clausius-Clapeyron equation on differential form. Here, P is the pressure at constant loading, T is the temperature, \(q_{st} \) is the isosteric heat of adsorption, and R is the gas constant. The isosteric heat of adsorption for a system can be obtained by plotting \(\ln P \) against \(T^{-1} \) for various loadings. \(q_{st} \) are a positive quantity, meaning that negative values for heat of adsorption is nonphysical.

2.3 Molecular simulations

Molecular simulations is a wide variety of computational methods used for the simulation of molecular systems [26]. Although many methods exist, Molecular Dynamics simulations and Monte Carlo methods are two very powerful methods that’s applicable for a wide variety of molecular systems. These two methods will be used to study adsorption in MXenes in this thesis.

2.3.1 ensemble

Statistical mechanics distinguish between two sets of states, microstates and macrostate. Macrostates represents macroscopic properties of the system, such as temperature and
2.3 Molecular simulations

Pressure. Microstates refer to the state of the system by referring to the position and momenta of each particle inside the system. Simulations on a many-body thermodynamic system involves taking time-averages over the phase-space curve of the system [27]. The phase-space is the combination of all of the microscopic states in the system [28]. To describe a microscopic state of the system, 6N variables is needed [27]. Each of the N atoms in the system has three positions and three momenta. There are eight ensembles to perform both MD and MC simulations in [27]. These simulations have different applications for the properties calculated of the system. In this thesis, the osmotic ensemble will be elaborated further.

Osmotic ensemble calculations

It is well established that the osmotic ensemble is the right ensemble to simulate adsorption in a flexible framework [29, 30, 31, 32]. The osmotic ensemble has a fixed chemical potential for the adsorption molecule (μ_{ads}), a fixed number of atoms in the framework (N_{host}), constant temperature and constant pressure [33]. $\mu_{ads}N_{host}TP$ ensemble describes a system open to adsorbate exchange with a reservoir with fixed chemical potential, which is in contact with a thermal reservoir with fixed temperature, and a pressure reservoir with fixed pressure. Since the ensemble has a fixed pressure the volume of the host-framework will adjust to hold the pressure constant [27].

2.3.2 Markov Chain Monte Carlo methods

A Markov Chain Monte Carlo (MCMC) method is a numerical method to estimate average properties of systems with a large number of accessible states [27]. Markov chain refers to a chain of states where the probability of each state depends on the previous state [34]. Here, the generated state could be either a new state, or the same old state. In essence, an MCMC method, if run long enough, generates a set of equilibrated probability distributions. For the method to generate the right probability distribution, some requirements must be fulfilled. One of these is the condition of ergodicity, which is the requirement that it should be possible for the markov process to access any state of the system from any other state of the system. Another requirement to generate the right distribution is the condition of detailed balance. This requirement states that the probability flux between each state is zero. In mathematical terms the condition of detailed balance is written as

$$p_\mu P(\mu \rightarrow \nu) = p_\nu P(\nu \rightarrow \mu) \quad (2.3)$$

Equation 2.3 shows the condition of detailed balance [34]. Here, p_μ defines the probability to find the system in state μ, and $P(\mu \rightarrow \nu)$ is the probability of a transition from state μ to state ν.
\[
\frac{P(\mu \rightarrow \nu)}{P(\nu \rightarrow \mu)} = \frac{p_\nu}{p_\mu} = e^{-\beta(E_\nu - E_\mu)}
\]

Equation 2.4 shows the transition probability. Here, \(\beta = (k_b T)^{-1}\), and \(k_b\) is the Boltzmann constant. \(E_\nu\) and \(E_\mu\) is the energy of state \(\nu\) and state \(\mu\). By fulfilling the condition of ergodicity, the condition of detailed balance, and having a transition probability on the form shown in equation 2.4, the right probability distribution for the system is generated.

The most famous MCMC algorithm is the one of Metropolis et al. called the Metropolis-Hasting algorithm [35]. This algorithm applies all of the requirements mentioned above, and has an acceptance probability defined as

\[
P(\mu \rightarrow \nu) = \min(1, \frac{P_\mu}{P_\nu})
\]

Equation 2.5 shows the acceptance probability in the MH algorithm. It states that, for a transition from state \(\mu\) to state \(\nu\) to be accepted, a random number generated from a uniform distribution must be between 1 and the value of \(\frac{P_\mu}{P_\nu}\).

Several different algorithms exist for MCMC methods, and simulations in different ensembles are possible [34]. When simulating adsorption in flexible frameworks, as mentioned earlier, the Osmotic ensemble is a natural ensemble to choose. There are four distinct changes MCMC methods tries to perform on the system in the osmotic ensemble [33].

1. Configurational change of particles
 - Bond stretching
 - Bond bending
 - Bond torsion

2. Change of the volume and/or size of the system

3. Creation of an adsorbate particle at a random place in the system

4. Deletion of a random adsorption particle in the system

The equilibrated probability distribution for the osmotic ensemble has the form [27]

\[
P(\hat{s}, V, N_{ads}) \propto \frac{1}{\Lambda_h^{3N_{host}} N_{host}!} \frac{V^N e^{\beta N_{ads} N_{ads}}}{\Lambda_{ads}^{3N_{ads}} N_{ads}!} e^{-\beta(U(\hat{s}, h) + pV)}
\]

Equation 2.6 shows the probability distribution for simulations in the osmotic ensemble. Here, \(\Lambda_{host} = h/\sqrt{2 \pi m_{host} k_b T}\) and \(\Lambda_{ads} = h/\sqrt{2 \pi m_{ads} k_b T}\). \(\hat{s}\) is the position of all atoms. From equation 2.6 the probability to perform the four system changes can be written as
2.3 Molecular simulations

Configurational change of particles

\[
\frac{P_\mu}{P_\nu} = e^{-\beta[U_\nu(s^N;\hat{h}) - U_\mu(s^N;\hat{h})]}
\]

(2.7)

Where \(\beta\) represents \((k_B T)^{-1}\), and \(k_B\) is the Boltzmann constant. \(U_\nu\) for the new state, and \(U_m\nu\) is the energy for the old state.

Insertion to framework

\[
\frac{P_\mu}{P_\nu} = \frac{Ve^{\beta \mu_{ads}}}{\Lambda^3_{ads}(N_{ads} + 1)} e^{-\beta[U_n(s^{N+1};\hat{h}) - U_\mu(s^N;\hat{h})]}
\]

(2.8)

Where \(V\) is the volume of the unit-cell, \(\mu_{ads}\) is the chemical potential of adsorbates and \(N_{ads}\) is the number of adsorbate molecules.

Deletion from framework

\[
\frac{P_\mu}{P_\nu} = \frac{\Lambda^3_{ads} N_{ads}}{Ve^{\beta \mu_{ads}}} e^{-\beta[U_\nu(s^{N-1};\hat{h}) - U_\mu(s^N;\hat{h})]}
\]

(2.9)

Change of volume of the unit-cell

\[
\frac{P_\mu}{P_\nu} = \frac{V_\nu}{V_\mu} e^{-\beta p(V_\nu - V_\mu)} e^{-\beta[U_\nu(s^N;\hat{h}) - U_\nu(s^N;\hat{h})]}
\]

(2.10)

Where \(V_\nu\) is the new volume, \(V_\mu\) is the old volume, \(N\) is the number of framework atoms and \(p\) is the pressure. To perform one of the moves mentioned above on the system, the acceptance rule presented in equation 2.5 must be fulfilled.

2.3.3 Continuous fractional Monte Carlo

At high densities, insertion and deletion of molecules in a flexible framework become vanishingly low [36]. To overcome these difficulties, Shi et al. proposed a Monte Carlo Scheme called Continuous Fractional Monte Carlo (CFMC) [36, 37]. The CFMC method relaxes a physical system by fading in (or out) the interaction between fractional and whole...
molecules. It does so by using an scaling in Lennard-Jones potential and electrostatic potential, with a parameter λ [27].

$$u_{LJ}(r) = 4\epsilon \left[\frac{1}{\left(\frac{1}{2} - \lambda \right)^2 + \sigma^6} - \frac{1}{\left(\frac{1}{2} - \lambda \right)^2 + \sigma^6} \right]$$

Equation 2.11 shows the scaling of Lennard-Jones potential in the CFMC scheme. The scaling of electrostatic interactions takes the form

$$u_{Coul} = \lambda^5 \frac{q_i q_j}{4\pi \epsilon_0 r}$$

The scaling in equation 2.11 and 2.12 makes the system slowly “inflate” and “deflate” molecules in the framework like a balloon. In addition to the system moves presented in equation 2.7-2.10, an additional change in λ is possible. This change is made according to $\lambda(\nu) = \lambda(\mu) + \Delta \lambda$. Here, the $\Delta \lambda$ is chosen uniformly between $-\Delta \lambda_{\text{max}}$ and $\Delta \lambda_{\text{max}}$. For the change $\lambda(\mu \to \nu)$, there are three potential outcomes.

1. λ remains between 0 and 1
 The inter molecular energy of the fractional molecule, $\lambda(\mu \to \nu)$ changes with a Metropolis like acceptance ratio (equation 2.5).

 $$\frac{p_\mu}{p_\nu} = \min(1, e^{-\beta(U_\nu - U_\mu) + \eta(\lambda(\nu) - \eta(\lambda(\mu)))})$$

 No real change to the system is performed, only λ and the inter molecular energies change.

2. λ becomes larger than 1
 The current fractional molecule is made fully present in the framework, and a new fractional particle is randomly inserted.

3. λ is less than 0
 The current fractional molecule is deleted from the framework, and a new fractional molecule is added.

Adaption to the osmotic ensemble have been made, such that the implementation to this ensemble is possible [36].

2.3.4 Molecular dynamics

It is possible to consider a classical many body molecular system as mechanical [26]. By doing this, it is possible to apply the general laws of mechanics to calculate velocities,
forces and energy for this system. The energy is generally split in two terms, kinetic energy, \(\kappa(P) \) and the potential energy \(U(r) \).

\[
E(\dot{r}, \dot{p}) = U(\dot{r}) + \kappa(\dot{p})
\]

(2.14)

The instantaneous temperature is related through the systems kinetic energy via the momentum

\[
\kappa = \sum_{i=1}^{N} \frac{|\dot{p}_i|}{m_i} = \frac{k_b T}{2} (3N - N_c)
\]

(2.15)

where \(3N - N_c \) represents the degrees of freedom for the system, and \(\dot{p}_i \) is the momentum vector. \(k_b \) represents the boltzmann constant. The information about the interaction of the molecules are represented in the potential energy term. These interactions are described earlier (equation 2.25 and 2.21). When simulating a molecular system, the interactions arising from the potential function can be used to describe the forces in an equation of motion, and the entire time-evolution of the system can be calculated.

These principles are applied in Molecular Dynamics simulations, which evolves around the integration of Newton’s laws of motion [26]. By solving the differential equation embodied in newtons second law, it produces a trajectory which specifies how the positions and the velocities of the system vary with time.

\[
\frac{d^2\ddot{r}}{dt^2} = F_{x_i} / m_i
\]

(2.16)

Equation 2.16 shows the differential equation obtained from Newtons second law. Here \(x \) denotes the position of direction, \(t \) is the time, \(F_{x_i} \) is the force that acts upon the particle in the x-direction, and \(m_i \) is the mass of the particle. By solving this equation, the trajectory is created.

2.3.5 Hybrid Monte Carlo method

The hybrid Monte Carlo method was first proposed by Duane et al [38]. This Monte Carlo scheme uses MD to generate MC trial moves [39]. This is an advantage because the constraints on what defines a good MC move are not as strict as for a good MD move. Especially regarding the time step MD uses to integrate newtons laws of motion. Using hybrid MC, it is possible to take a time step that is too long for MD, as long as the algorithm is time reversible and area preserving, and use this as a criterion for the acceptance of an MC move. In hybrid MC, every trial move chooses the particle velocities at random from the Maxwell-Boltzmann distribution.
2.4 Molecular force fields

Molecular force fields are a set of parameters used to define the interactions inside a molecules, as well as interactions between molecules [39]. These parameters makes it able to treat a molecular system as mechanical, thus making it possible to simulate using either MCMC, MD or a combination thereof. The intermolecular interactions usually consist of bond stretching, angle bending and torsion. The interaction between molecules, so-called non-bonded interaction are Van der Waals interactions and electrostatic interactions.

\[U = \sum_{\text{bonds}} u_b(l) + \sum_{\text{bends}} u_\theta(\theta) + \sum_{\text{torsions}} u_\phi(\phi) + \sum_{\text{non-bonded}} u_{nb}(r) \] \hspace{1cm} (2.17)

Equation 2.17 shows the molecular energy as a Taylor expansion in bonds, bends, torsions etc [27]. The change in bond, bend and torsion are self parameters, and only change the molecular energy. The non-bonded interactions describe the interaction between the molecules, and are Van der Waals force and electrostatic interactions [26]. These interactions are usually modelled as Lennard-Jones potential and Coulombic interactions.

Figure 2.3: Inter- and intra molecular forces described by a force field.

Figure 2.3 illustrates how the different changes inside a molecule apply, as well as the non-bonded interactions between molecules

2.4.1 Bond-, bend- and torsion potential

The easiest way to simulate the bond stretching and bending inside a molecule is with use of harmonic motions [26].

\[u_{\text{bond}}(l) = \frac{k}{2}(l - l_0)^2 \] \hspace{1cm} (2.18)

Equation 2.18 shows the bond stretching inside a molecule modelled as a harmonic motion.
2.4 Molecular force fields

Here k is a constant, l_0 is the initial bond position and l is the offset bond position. The angle bending is also described the same way.

$$u_{bond}(\theta) = \frac{k}{2} (\theta - \theta_0)^2$$

Equation 2.19 shows the angle bending inside a molecule modelled as a harmonic motion. Here θ_0 is the initial position of the bond, and θ is the offset position after the bond has been bent x degrees. Both equation 2.18 and 2.19 can also be modelled with the use of hook's law.

The torsion inside a molecule describes the energy change when a twist around a central atom occur [26]. It describe how atoms move around an axis, and interact with the electron cloud of other atoms in the molecule. This can be modelled as a periodic motion.

$$u(\omega) = \frac{V_n}{2} [1 + \cos(n\omega - \gamma)]$$

Equation 2.20 describes the energy change of a molecule due to torsion. V_n is the amplitude height, n describes the number of minima in the energy, and γ is the phase factor.

Several terms can be added to equation 2.17 and equation 2.20 to more accurately simulate the bond stretching/angle bending and torsion inside a molecule, or even express hydrogen bonding. In reality this is a trade-off between realistic behaviour and computational power, and a complicated computational-heavy model is usually not an advantage.

2.4.2 Electrostatic interactions

Electrostatic interactions are a type of non-bonded interactions which occurs due to charge differences between particles [26]. These interactions are described by a Coulombic potential, which decays proportionally to r^{-1} [27]. In a system with several particles, the electrostatic potential energy between particles with point charge q_i at the position \hat{r}_i is given by

$$U(r) = \frac{1}{4\pi\epsilon_0} \sum_{i<j} \frac{q_i q_j}{|\hat{r}_{ij}|}$$

Equation 2.21 shows how the electrostatic interactions typically are modelled in a force field. ϵ_0 is the permittivity of free space. For a system consisting of only a small number of molecules, equation 2.21 is easy to evaluate. However, in molecular mechanics it is usually of interest to compute macroscopic properties of the system, whilst the number of particles is as low as possible. By applying Periodic boundary conditions (PBC) to the
system, it is possible to study an infinite system with a finite number of particles [26]. PBC replicates the unit cell through space. Thus, if a particle is in one side of the unit cell, it reappears on the other side of the unit cell. When applying PBC to a system, it is usual to also apply the minimum image convention of the electrostatic potential. For a periodic system, a particle should be able to ”see” all the other particles in the system.

\[U(r) = \sum_{j,n} \frac{q_j}{|r_{ij} + \hat{n}L|} \]

(2.22)

Equation 2.22 shows the coulombic potential when the minimum image convention is applied [39]. The prime in the summation indicates that the sum is over all periodic images \(\hat{n} \) except when \(j = i \) if \(\hat{n} = 0 \). \(L \) represents the supercell. \(L = |x|, |y|, |z| \). For a periodic system, equation 2.22 is conditionally convergent and cannot be used to calculate the electrostatic energy. To be able to solve equation 2.22, numerical methods must be applied. One such method is Ewald summation [40]. Ewald summation splits the summation to two series, which converges faster [27].

\[\frac{1}{r} = \frac{\text{erf}(\alpha r)}{r} + \frac{\text{erfc}(\alpha r)}{r} \]

(2.23)

Equation 2.23 deals with the rapid variation of \(\frac{1}{r} \) at small \(r \), and the slow decay of \(\frac{1}{r} \) at long \(r \). \(\alpha \) represents the gaussian curves.

The Ewald method assumes that each point charge is surrounded by an neutralizing charge distribution of equal magnitude, but opposite sign [26]. Equation 2.23 shows that the charges has been splitted to a dual summation, the charges, plus the neutralising distribution. This is done to convert the conditionally convergent sum from equation 2.22, to a convergent sum. By applying the Ewald summation for a periodic system on the Coulombic interaction, the ewald expression for the Coulombic energy reads \(^1\)

\[
\frac{U}{V} = \frac{1}{2V\epsilon_0} \sum_{k \neq 0} \exp \left(-\frac{k^2}{4\alpha} \right) S(\hat{k})S(-\hat{k}) \\
+ \frac{1}{2} \sum_{i,j} \sum_{\hat{n}} q_i q_j \text{erfc} \left(\alpha |r_{ij} + \hat{n}| \right) \frac{1}{|r_{ij} - \hat{n}|} \\
- \sum_i \frac{2\alpha}{\sqrt{\pi}} q_i^2 \]

(2.24)

In equation 2.24, the first term represents a summation in the reciprocal space, where

\(^1\)The complete derivation of this can be found in [39]
\(\hat{k} = \frac{2\pi \hat{n}}{L} \), and is a reciprocal vector. \(\alpha \) is the gaussian curves, and thus a lower \(\alpha \) leads to a faster convergence. The second term represents the real space summation. This summation also contains the gaussian curve \(\alpha \), but in this term a higher \(\alpha \) leads to faster convergence. It is therefore obvious that a balanced \(\alpha \) must be chosen for the optimal convergence. The third term denotes the correction of the sum of the Gaussian functions in real space that interacts with itself, and must therefore be subtracted.

2.4.3 Van der Waals interaction

Van der Waals forces accounts for the charges that is not due to charge differences between particles [26]. These interactions are weaker than electrostatic interactions, and consists of both. At a long range, the interaction energy between two particles are zero, and at short range they diverge. The attraction between the molecules are due to dispersive forces, which occurs due to fluctuations in the electron clouds. The repulsive forces occurs when two particles are very close to each other. When the particles get two close to each other, same-spin electrons will overlap and cause a divergence in the potential energy of the particles. This is also known as the Pauli principle.

Van der Waals forces between molecules, and between framework and molecules, are usually modelled as a Lennard-Jones potential.

\[
\begin{align*}
 u_{vdw}(r) &= 4\epsilon_{ij} \left[\left(\frac{\sigma_{ij}}{r} \right)^{12} - \left(\frac{\sigma_{ij}}{r} \right)^{6} \right] \\
 \epsilon_{ij} &= \sqrt{\epsilon_i \epsilon_j} \\
 \sigma_{ij} &= \frac{\sigma_i + \sigma_j}{2}
\end{align*}
\]

Equation 2.25 shows the Van der Waals forces between particles as a Lennard-Jones potential. Here \(\epsilon \) represents the well-depth, and \(\sigma \) represents the collision diameter [26]. \(r^{-12} \) represents the repulsive part, and \(r^{-6} \) the attractive part, thus, Lennard-Jones potential combines the Van der Waals forces and the Pauli repulsion.

The molecular parameters (\(\epsilon \) and \(\sigma \)) used when calculating the LJ potential is usually defined as self-parameters, meaning that they are defined as interactions between equal molecules or atoms. To be able to compute the interaction between several different molecules, a mixing of these molecules must be performed. The Lorentz-Berthelot mixing rule is a way to do this [41].

\[
\begin{align*}
 \epsilon_{ij} &= \sqrt{\epsilon_i \epsilon_j} \\
 \sigma_{ij} &= \frac{\sigma_i + \sigma_j}{2}
\end{align*}
\]

Equation 2.27 shows Lorentz-Berthelot mixing rule used to define the Lennard-Jones potential between different particles.
The realism on the simulations depends heavily on the long-range interactions, but they are also computational heavy. By assigning a cut-off to the LJ potential, which neglects the long range interactions after a certain distance, the computations can be made more efficient \cite{42}. This is possible because the long tail on the LJ potential for large distances. For MC simulations, the potential can be truncated after the cutoff, and the resulting error in the potential is the are between the x-axis and the LJ potential \cite{27}. For MD simulations on the other hand, a truncation of the potential leads to divergence in the forces, and other means must be considered. A typical way to deal with this is the use of a switching function, which forces the potential to go smoothly to zero at the cutoff. One of these switching functions was proposed by Steinbach et. al. \cite{42}.

\begin{equation}
 u(r_{ij}) = \begin{cases}
 u(r_{ij}) & \text{if } r_{ij} < r_{on} \\
 u(r_{ij})(r_{off}^2-r^2)(r_{off}^2+2r^2-3r_{on}) \left(\frac{r_{off}^2}{r_{off}^2-r_{on}^2} \right)^3 & \text{if } r_{on} \leq r_{ij} \leq r_{off} \\
 0 & \text{if } r_{ij} > r_{off}
 \end{cases} \tag{2.28}
\end{equation}

Equation 2.28 shows how the potential are switched during MD simulations. The switching term occurs when \(r_{on} \leq r \leq r_{off} \). This is represented as a cubic function, which must satisfy \(u(r_{on}) = 1 \), \(u(r_{off}) = 0 \), \(\frac{du}{dr}(r_{on}) = 0 \) and \(\frac{du}{dr}(r_{off}) = 0 \), which gives a continuous potential energy and force. When considering a cut-off distance, it is required that the smallest perpendicular distance of the simulation cell is larger than twice the cut-off distance \cite{27}.
Chapter 3

Computational procedure

This chapter addresses the simulations performed in this thesis. Algorithms, approximation methods, temperature- and pressure discretization will be elaborated. All simulations are implemented in RASPA, which is a molecular software package for simulation of adsorption and diffusion in flexible nanoporous materials [43].

The adsorbates simulated in the MXene framework are;

1. CO$_2$
2. SPC/E water model
3. TIP5p water model
4. Diglyme

3.1 Approximations

All of the components simulated share some settings regarding their approximation methods. All molecules have a spherical cut-off at 12.0 Å. At this length, all non-bonded interactions are neglected. During the MC cycles the potential are truncated at 12.0 Å, whereas during the MD cycles the potential are shifted by the switching function presented in equation 2.28, and are 0 at 12.0 Å. The electrostatic interactions are approximated by the Ewald summation (equation 2.24), with a precision of 10^{-5}. The time steps for the different adsorbates are presented in table 3.1. The framework is simulated as flexible, with a defined probability to perform a volume change of unit cell. A probability to attempt a hybrid MC
Chapter 3. Computational procedure

move using MD in the NVE-ensemble is also defined. MD integrates Newton’s equation of motion for the whole system, and accepts or rejects this move with the standard MC rule showed in equation 2.5. These two probabilities are defined relative to each other, and scaled to be accepted 50% of the times.

Table 3.1: Monte Carlo cycles and time step for Molecular dynamics simulations.

<table>
<thead>
<tr>
<th>Molecule</th>
<th>Number of Cycles</th>
<th>Number of Initialization cycles</th>
<th>Time step</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO$_2$</td>
<td>70000</td>
<td>10000</td>
<td>0.00025</td>
</tr>
<tr>
<td>SPCE water</td>
<td>70000</td>
<td>10000</td>
<td>0.0005</td>
</tr>
<tr>
<td>TIP5p water</td>
<td>70000</td>
<td>10000</td>
<td>0.0005</td>
</tr>
<tr>
<td>Diglyme</td>
<td>100000</td>
<td>10000</td>
<td>0.00025</td>
</tr>
</tbody>
</table>

3.2 Initialization

The initialization of the system is done to ensure the desired temperature in an equilibrium configuration [27]. First in the initialization process, N molecules are inserted into the box at random positions, as long as no overlaps occur. For a solid framework, inaccessible pockets may be present. These boxes are blocked off, and no molecule will be inserted in these. Then, an NVT MC simulation is performed to rapidly equilibrate. After this is done, all the velocities are assigned to the molecules from the Maxwell-Boltzmann distribution at the desired average temperature. The total momentum of the system is set to zero to avoid centre of mass drift of the system.

3.3 Molecular force fields

The creation of all molecular force fields used in the calculation are presented below. All the force fields uses the same type of inter and intra molecular energy terms, provided in equation 2.18, 2.19, 2.20, 2.21 and 2.25. The mixing of these parameters are calculated with the use of Lorenz-Berthelot mixing rule, provided in equation 2.27

3.3.1 Mxene framework

The MXene framework are created in accordance to the force field provided by Muckly et al. [44]. It has chemical composition Ti$_2$C, with O and F as termination groups. The termination groups has stoichiometry O$_2$F$_{0.8835}$, to ensure that the framework has a net charge of 0.
Figure 3.1: Unit cell with the different MXene layers. The brown atoms represents Carbon, the blue atoms represents Titan, the red atoms Oxygen, and the white atoms fluor. PBC is applied, so in reality this represents 4 mxene layers. The spacing between the layers are indicated as they are presented in the results section.

Figure 3.1 shows the MXene framework simulated. The spacings indicated in the figure are presented in the result section, and gathered by using Vesta [45].

<table>
<thead>
<tr>
<th>Atom</th>
<th>q_i [e]</th>
<th>ϵ [K]</th>
<th>σ [Å]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ti</td>
<td>1.53189</td>
<td>78.18</td>
<td>3.166</td>
</tr>
<tr>
<td>C</td>
<td>1.24356</td>
<td>78.18</td>
<td>3.166</td>
</tr>
<tr>
<td>F</td>
<td>-0.7</td>
<td>78.18</td>
<td>3.5532</td>
</tr>
<tr>
<td>O</td>
<td>-0.9</td>
<td>78.18</td>
<td>3.5532</td>
</tr>
</tbody>
</table>

Table 3.2 shows the parameters used to define the MXene force field.

3.3.2 Water models

Creating water-like models for use in molecular simulations has proven to be challenging [46]. There are several reasons for this. One is that in comparison to other liquids, water presents a number of anomalies [47]. In solid state, the phase diagram is complex, with fifteen different solid structures [46]. This being said, some models manage to replicate water behaviour at ambient conditions. In this work, the SPC/E and TIP5p water models are being used to simulate water adsorption in the MXene framework.
Chapter 3. Computational procedure

SPC/E

The extended simple point charge (SPC/E) water model is modelled as a rigid isosceles triangle, with charges on each of the three atoms [48]. These charges are three point charges, one for each atom in the molecule. It is defined with long range Lennard-Jones interactions (see equation 2.25). In the SPC/E water model, the Lennard-Jones parameters are self-parameters with interaction based on Oxygen-Oxygen repulsion/attraction.

Table 3.3: Parameters used to define the force field for the SPC/E water model.

<table>
<thead>
<tr>
<th>Atom</th>
<th>(q_i) [e]</th>
<th>(\epsilon) [K]</th>
<th>(\sigma) [Å]</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>-0.8476</td>
<td>78.18</td>
<td>3.166</td>
</tr>
<tr>
<td>H</td>
<td>0.4238</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Force Field

<table>
<thead>
<tr>
<th>Bond length [Å]</th>
<th>Bond angle [deg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>O-H=1.00</td>
<td>O-H-O = 109.47</td>
</tr>
</tbody>
</table>

Table 3.3 shows the parameters used to define the force field for the SPC/E water model.

TIP5p

The TIP5p water model is modelled as a 5 site water molecule, where two of the sites simulates the lone electron pair of oxygen in the water molecule [49]. The oxygen atom possesses no charge, but has a Lennard-Jones potential working between the oxygen atoms of the water molecules. The electrostatic interactions are calculated for every charged site on the molecule.

Table 3.4: Parameters used to define the electrostatic interactions and the LJ potential for the TIP5p water model. L denotes the charge used to describe the lone pair in a water molecule. All parameters are self-parameters, and their interactions are calculated by Lorentz-Berthelot mixing rule (equation 2.27).

<table>
<thead>
<tr>
<th>Atom</th>
<th>(q_i) [e]</th>
<th>(\epsilon) [K]</th>
<th>(\sigma) [Å]</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>0</td>
<td>78.18</td>
<td>3.097</td>
</tr>
<tr>
<td>H</td>
<td>0.241</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>L</td>
<td>-0.241</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Force Field

<table>
<thead>
<tr>
<th>Bond length</th>
<th>Bond angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>O-H = 0.9572</td>
<td>H-O-H = 104.52</td>
</tr>
<tr>
<td>O-L = 0.7</td>
<td>L-O-L = 109.47</td>
</tr>
</tbody>
</table>

Table 3.4 shows the parameters used to define the force field for the TIP5p water model.
3.3 Molecular force fields

3.3.3 \(\text{CO}_2 \)

The \(\text{CO}_2 \) molecule is made in accordance to the TraPPE force fields [50]. The atoms in the molecule is modelled as three LJ sites, to approximate the overlap and the dispersion forces. At these sites, point charges are placed in the center. The bond lengths between the atoms are fixed at their experimental value.

Table 3.5: Parameters used to define the electrostatic interactions and the LJ potential for the \(\text{CO}_2 \) molecule.

<table>
<thead>
<tr>
<th>Atom</th>
<th>(q_i) [e]</th>
<th>(\epsilon) [k]</th>
<th>(\sigma) [Å]</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>0.7</td>
<td>27.0</td>
<td>2.80</td>
</tr>
<tr>
<td>O</td>
<td>-0.35</td>
<td>79.0</td>
<td>3.43</td>
</tr>
</tbody>
</table>

Table 3.5 shows the parameters used to define the force field for the TIP5p water model.

3.3.4 Diglyme

The diglyme molecule is created in accordance with the force field provided by Barbosa et al [51]. It uses harmonic motions for the treatment of bond stretching and angle bending (see equation 2.18 and 2.19), and a periodic motion for the treatment of torisons (equation 2.20). The Lorentz-Berthelot mixing rules are used to calculate the interaction between the atoms. The intramolecular forces that are separated by one or two bonds are set to 0, whereas the intramolecular forces separated by three bonds are scaled to 0.5 and \(\frac{5}{6} \) for the LJ potential and the electrostatic interactions respectively. The Parameters used to describe the LJ potential, as well as the electrostatic interactions, are presented in table 3.6.

Table 3.6 shows the parameters used to define the force field for the Diglyme molecule.
Table 3.6: Parameters used to define the electrostatic interactions and the LJ potential for the diglyme molecule.

<table>
<thead>
<tr>
<th>Atom</th>
<th>q<sub>i</sub></th>
<th>ε [K]</th>
<th>σ [Å]</th>
</tr>
</thead>
<tbody>
<tr>
<td>C<sub>g1</sub></td>
<td>0.179006</td>
<td>49.547</td>
<td>3.502</td>
</tr>
<tr>
<td>C<sub>g2</sub></td>
<td>0.185194</td>
<td>49.547</td>
<td>3.502</td>
</tr>
<tr>
<td>C<sub>g3</sub></td>
<td>0.454852</td>
<td>49.547</td>
<td>3.502</td>
</tr>
<tr>
<td>O<sub>g1</sub></td>
<td>-0.472073</td>
<td>76.992</td>
<td>3.09</td>
</tr>
<tr>
<td>O<sub>g2</sub></td>
<td>-0.64592</td>
<td>76.992</td>
<td>3.09</td>
</tr>
<tr>
<td>H<sub>g1</sub></td>
<td>0.016637</td>
<td>7.111</td>
<td>2.545</td>
</tr>
<tr>
<td>H<sub>g2</sub></td>
<td>0.010291</td>
<td>7.111</td>
<td>2.545</td>
</tr>
<tr>
<td>H<sub>g3</sub></td>
<td>-0.047256</td>
<td>7.111</td>
<td>2.545</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bond</th>
<th>Bond length [Å]</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-C</td>
<td>1.535</td>
</tr>
<tr>
<td>C-O</td>
<td>1.439</td>
</tr>
<tr>
<td>C-H</td>
<td>1.093</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bond</th>
<th>Bond angle [deg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-O-C</td>
<td>112.45</td>
</tr>
<tr>
<td>H-C-H</td>
<td>109.55</td>
</tr>
<tr>
<td>H-C-O</td>
<td>108.82</td>
</tr>
<tr>
<td>C-C-O</td>
<td>108.42</td>
</tr>
<tr>
<td>C-C-H</td>
<td>110.07</td>
</tr>
</tbody>
</table>
Chapter 4

Results

This chapter addresses the results obtained in this thesis. The main focus will be the adsorption isotherms for the different molecules simulated in the framework, the heat of adsorption obtained from this adsorption, and the variation of the C-lattice parameter for the bulk MXene framework. Regarding the adsorption isotherm, the general isotherm will be presented, as well as the adsorbed amount at 100 000 Pa (1 bar) and 500 000 Pa (5 bar). The heat of adsorption presented are gathered from fluctuations in energy and density from the different molecules simulated. This adsorption is simulated in RASPA, in the osmotic ensemble with a Hybrid MC-MD simulation. This is done with the probability distribution presented in equation 2.6. For the adsorption and deletion of molecules, Equation 2.8 and equation 2.9 is used for the acceptance or rejection. The Volume change is decided according to equation 2.10.

All molecules are simulated at 6 different temperatures;

1. 273 K
2. 293 K
3. 313 K
4. 333 K
5. 353 K
6. 373 K

The C-lattice parameter is presented to get an idea of the movement inside the bulk MXene, and how the C-lattice parameter between the different layers in the MXene vary as a
Chapter 4. Results

function of the pressure (which correlates best with the variation of the C-lattice length). The volume changes of the unit cell gives no significant data, thus they will not be presented.

4.1 Adsorption isotherms

In this section, the adsorption isotherms of each of the species (if an adsorption occurred) will be presented. The adsorption is presented on weight basis, relative to the weight of the framework.

4.1.1 CO$_2$

The CO$_2$ force field is created in accordance with the parameter given in table 3.5, and are simulated as a rigid molecule. The pressures simulated are from 1 Pa, up to 500 000 Pa (5 bar) with a logarithmic spacing between the pressure points.

![Figure 4.1: Adsorption isotherms for CO$_2$]

Figure 4.1 shows the adsorption isotherms of CO$_2$ at the various temperatures. The adsorption at 313 K, 333 K and 273 K starts at 10000 Pa, whereas 353 K and 373 K starts at 50000 Pa and 100000 Pa respectively. The adsorbed amount is highest at 313 K for all pressures, where it seems to converge to 21.38 ± 1.35 mg/g framework. None of the other temperatures shows sign of convergence. At 293 K the framework did not exhibit any adsorption, and the adsorption at 373 K is insignificant compared to the uncertainty calculated. This implies that the isotherms are somewhat unphysical.

Table 4.1 shows the amount adsorbed in the framework at 100 000 Pa and 500 000 Pa. The uncertainties are calculated by RASPA. Note that the framework does not adsorb any molecules at 293 K, and that for 373 K the uncertainty is larger than the adsorbed amount.
Table 4.1: Amounts CO$_2$ adsorbed in the MXene framework at the different temperatures and pressures.

<table>
<thead>
<tr>
<th>Pressure [Pa]</th>
<th>Temperature [K]</th>
<th>Amount adsorbed [mg/g framework]</th>
</tr>
</thead>
<tbody>
<tr>
<td>100000</td>
<td>273</td>
<td>2.295 ± 0.295</td>
</tr>
<tr>
<td></td>
<td>293</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>313</td>
<td>17.3 ± 3.27</td>
</tr>
<tr>
<td></td>
<td>333</td>
<td>9.5 ± 3.65</td>
</tr>
<tr>
<td></td>
<td>353</td>
<td>1.58 ± 0.597</td>
</tr>
<tr>
<td></td>
<td>373</td>
<td>0.0007 ± 0.0028</td>
</tr>
<tr>
<td>500000</td>
<td>273</td>
<td>16.92 ± 5.68</td>
</tr>
<tr>
<td></td>
<td>293</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>313</td>
<td>21.38 ± 1.35</td>
</tr>
<tr>
<td></td>
<td>333</td>
<td>20.25 ± 1.10</td>
</tr>
<tr>
<td></td>
<td>353</td>
<td>4.43 ± 1.66</td>
</tr>
<tr>
<td></td>
<td>373</td>
<td>0.37 ± 0.75</td>
</tr>
</tbody>
</table>

4.1.2 SPC/E water model

The SPC/E water model force field is created with accordance to the parameters given in table 3.3. It is simulated from 0.1 Pa to 500 000 Pa with a logarithmic spacing between each point.

![Figure 4.2: Adsorption isotherms for SPC/E water model](image-url)
Figure 4.2 shows the adsorption isotherms of the SPC/E water model as a function of pressure. The adsorbed amounts is generally very low at low pressures, and increases as the pressure increases. The framework adsorbes most SPC/E water at a temperature of 313 K at 500 000 Pa, with 353 K just below. The isotherms shows no correlation of the adsorption being temperature dependent, meaning that there is no clear trend in either higher or lower temperature adsorbes the most SPC/E water. The adsorbed amount of SPC/E water at 100 000 Pa and 500 000 Pa is presented in the table 4.2.

Table 4.2: Amounts of SPC/E adsorbed in the MXene framework at the different temperatures and pressures.

<table>
<thead>
<tr>
<th>Pressure [Pa]</th>
<th>Temperature [K]</th>
<th>Amount adsorbed [mg/g framework]</th>
</tr>
</thead>
<tbody>
<tr>
<td>100000</td>
<td>273</td>
<td>7.21 ± 0.71</td>
</tr>
<tr>
<td></td>
<td>293</td>
<td>7.32 ± 0.67</td>
</tr>
<tr>
<td></td>
<td>313</td>
<td>7.45 ± 0.74</td>
</tr>
<tr>
<td></td>
<td>333</td>
<td>5.43 ± 1.14</td>
</tr>
<tr>
<td></td>
<td>353</td>
<td>11.76 ± 2.01</td>
</tr>
<tr>
<td></td>
<td>373</td>
<td>5.55 ± 0.55</td>
</tr>
<tr>
<td>500000</td>
<td>273</td>
<td>11.62 ± 1.15</td>
</tr>
<tr>
<td></td>
<td>293</td>
<td>11.09 ± 0.12</td>
</tr>
<tr>
<td></td>
<td>313</td>
<td>11.09 ± 0.12</td>
</tr>
<tr>
<td></td>
<td>333</td>
<td>11.4 ± 1.15</td>
</tr>
<tr>
<td></td>
<td>353</td>
<td>20.17 ± 4.99</td>
</tr>
<tr>
<td></td>
<td>373</td>
<td>12.38 ± 4.47</td>
</tr>
</tbody>
</table>

Table 4.2 shows the amount of SPC/E water adsorbed at 100 000 Pa and 500 000 Pa respectively. The low amount adsorbed is somewhat nonphysical, and the uncertainties presented should most likely be bigger.

4.1.3 TIP5p water model

The TIP5p water model force field is created in accordance with the parameters presented in table 3.4. The molecule is simulated as a rigid molecule, with a pressure discretization ranging from 0.1 Pa to 500 000 Pa with a logarithmic spacing between each point.
Figure 4.3 shows the adsorption isotherms for the adsorption of the TIP5p water molecule. Here, the adsorption shows the same general trend as for SPC/E water with an increase in adsorbed amount as a function of pressure. The temperature with the highest adsorbed amount is 313 K, which also is the same as it was for the SPC/E water model. The adsorption does not show any signs of convergence. A convergence indicates that the maximum adsorbed amount is reached. Table 4.3 shows the adsorbed amount at 100 000 Pa and 500 000 Pa.

Table 4.3: Amounts of TIP5p adsorbed in the MXene framework at the different temperatures and pressures.

<table>
<thead>
<tr>
<th>Pressure [Pa]</th>
<th>Temperature [K]</th>
<th>Amount adsorbed [mg/g framework]</th>
</tr>
</thead>
<tbody>
<tr>
<td>100000</td>
<td>273</td>
<td>6.14 ± 0.79</td>
</tr>
<tr>
<td></td>
<td>293</td>
<td>6.14 ± 0.42</td>
</tr>
<tr>
<td></td>
<td>313</td>
<td>13.36 ± 2.19</td>
</tr>
<tr>
<td></td>
<td>333</td>
<td>6.79 ± 0.88</td>
</tr>
<tr>
<td></td>
<td>353</td>
<td>6.75 ± 0.75</td>
</tr>
<tr>
<td></td>
<td>373</td>
<td>9.06 ± 1.23</td>
</tr>
<tr>
<td>500000</td>
<td>273</td>
<td>15.12 ± 1.25</td>
</tr>
<tr>
<td></td>
<td>293</td>
<td>13.57 ± 0.11</td>
</tr>
<tr>
<td></td>
<td>313</td>
<td>22.54 ± 5.20</td>
</tr>
<tr>
<td></td>
<td>333</td>
<td>15.36 ± 1.36</td>
</tr>
<tr>
<td></td>
<td>353</td>
<td>22.4 ± 1.69</td>
</tr>
<tr>
<td></td>
<td>373</td>
<td>22.39 ± 1.02</td>
</tr>
</tbody>
</table>
Table 4.3 show the adsorbed amount for all temperatures at 100,000 Pa and 500,000 Pa respectively. The low amount adsorbed is somewhat nonphysical, and the uncertainty should most likely be bigger.

4.1.4 Diglyme

Diglyme was not adsorbed in the framework at any temperature, thus no adsorption isotherm were obtained.

4.2 Heat of adsorption

The isosteric heat of adsorption is calculated using Calusius-Clapeyron’s equation, shown in equation 2.2. The calculation is performed on the same adsorbed amounts for the isotherms, at different pressures. The presented plot is a mean isosteric heat of adsorption calculated between the different adsorption isotherms.

4.2.1 CO₂

The isosteric heat of adsorption for CO₂ is calculated from the adsorption isotherms at 273 K, 313 K and 333 K. This is due to the low adsorption amount from the two other isotherms.

![Figure 4.4: Isosteric heat of adsorption for CO₂ at various loadings.](image)
4.2 Heat of adsorption

Figure 4.4 shows the isosteric heat of adsorption for CO$_2$ at different loadings. A sharp increase in the isososteric heat of adsorption is observed at lower loadings, until it reaches a loading of 5 mg/g framework, then it starts to decrease and reaches a final value of 17.21 kJ/mol.

4.2.2 SPC/E water model

The isosteric heat of adsorption for the SPC/E water model is calculated from all of the adsorption isotherms at different loadings. The values appear to fluctuate quite a bit, with isosteric heat of adsorption ranging from 15 to 2 kJ/mol.

![Mean isosteric heat of adsorption vs. loading](image)

Figure 4.5: Isosteric heat of adsorption for SPC/E water at various loadings

Figure 4.5 shows the isosteric heat of adsorption for SPC/E water at different loadings.
4.2.3 TIP5p water model

The isosteric heat of adsorption for the TIP5p water model is calculated from all the adsorption isotherms at different loadings.

![Figure 4.6: Isosteric heat of adsorption for TIP5p water at various loadings](image)

Figure 4.6 shows the isosteric heat of adsorption for TIP5p water at different loadings. The isosteric heat of adsorption are generally very low. It also shows negative values, which is nonphysical due to the isosteric heat of adsorption being a positive quantity.

4.3 C-lattice parameter

By looking at the C-lattice parameters (the spacing normal to the surface of the layers in the bulk MXene) it is possible to get an understanding of how the layers vary dependent on pressure and/or adsorption. The different spaces presented are shown in figure 3.1. In this section the C-lattice parameter as a function of pressure will be shown. The pressure where the adsorption starts are indicated with a black vertical line, and the mean layer spacing in between the layers in the bulk MXene are shown.

4.3.1 CO₂
4.3 C-lattice parameter

Figure 4.7: C-lattice parameters [Å] for CO$_2$ at all temperatures as a function of pressure. The black vertical line indicates at which pressure the adsorption started. If no black vertical line is presented, there was no adsorption. The mean value of all the C-lattice parameters are also presented. The lines between each point is only included to guide the eyes.
Figure 4.7 shows how the c-lattice length vary as a function of pressure for the different MXene layers at different temperatures. The adsorption occurs between the layers with the greatest c-lattice length. At the start of the simulation, the inter-layer distance for the bulk MXene is around the same value for all the layers. As pressure increases, the inter-layer distance increases for some layers, and decreases for others. The adsorption does not start until two layers has a much greater spacing than the other, and which layers that is varies. Although there are a great variation of the spacing between the layers across the pressure span, the mean layer spacing seems to be somewhat constant for all the temperatures, independent of adsorbed amount. An important remark to make is that the MXene layers did not adsorb any CO$_2$ at 293 K, shown in figure 4.7b. This graph clearly shows that four layers obtained a greater spacing than the other layers, whereas for all the other temperatures only two layers gained a greater spacing than the others. The inter-layer distance at the point of adsorption between all layers is presented in the table below.

Table 4.4: Spacing between the layers at the pressure where the adsorption began for all temperatures for CO$_2$.

<table>
<thead>
<tr>
<th>Temperature and Pressure [K] [Pa]</th>
<th>Spacing</th>
<th>C-lattice length [Å]</th>
</tr>
</thead>
<tbody>
<tr>
<td>273, 30 000</td>
<td>Spacing 1 8.25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spacing 2 8.94</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spacing 3 8.59</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spacing 4 9.71</td>
<td></td>
</tr>
<tr>
<td>293, no adsorption</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>313, 10 000</td>
<td>Spacing 1 8.86</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spacing 2 8.53</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spacing 3 10.21</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spacing 4 8.48</td>
<td></td>
</tr>
<tr>
<td>333, 30 000</td>
<td>Spacing 1 8.24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spacing 2 8.18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spacing 3 10.65</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spacing 4 8.72</td>
<td></td>
</tr>
<tr>
<td>353, 30 000</td>
<td>Spacing 1 8.76</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spacing 2 9.91</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spacing 3 8.29</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spacing 4 8.43</td>
<td></td>
</tr>
<tr>
<td>373, 50 000</td>
<td>Spacing 1 8.52</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spacing 2 9.63</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spacing 3 9.18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spacing 4 8.32</td>
<td></td>
</tr>
</tbody>
</table>

4.3.2 SPC/E water model
Figure 4.8: C-lattice parameters [Å] for SPC/E water model at all temperatures as a function of pressure. The black vertical line indicates at which pressure the adsorption started. The mean value of all the C-lattice parameters are also presented. The lines between each point is only to guide the eyes.
Figure 4.8 shows the variation between the layers in the bulk MXene as a function of the pressure applied, for the SPC/E water model. The vertical black line represents the pressure where the adsorption first occurred. At 273 K, shown in figure 4.8a, the layers are extremely stable, until around 10^4 Pa. For all the other layers the difference in spacing between the layers appear to become greater after the loading starts. Figure 4.8a, 4.8b and figure 4.8d, two spacings are greater than the other two, compared to the other temperatures. This clearly indicates that the adsorption happens in these two spacings, instead of only one spacing as the other figures show. It also reveals that as long as the adsorption happens in several spacings, the spacing between the layers where the adsorption occurred has a maximum distance around 9.5 to 9.6 Å, whereas for the figures where the adsorption happened between two layers, this spacing becomes larger than this. Regarding the mean layer spacing, which is the mean spacing between all the layers, it is somewhat constant independent of pressure and loading for all temperatures. Table 4.6 shows the different spacings between the layers at the point of loading.

Table 4.5: Spacing between the layers at the pressure where the adsorption began for all temperatures.

<table>
<thead>
<tr>
<th>Temperature and Pressure [K] [Pa]</th>
<th>Spacing</th>
<th>C-lattice length [Å]</th>
</tr>
</thead>
</table>
| 273, 1 | Spacing 1 8.87
Spacing 2 8.84
Spacing 3 8.86
Spacing 4 8.84 |
| 293, 3 | Spacing 1 8.86
Spacing 2 9.1
Spacing 3 8.5
Spacing 4 8.94 |
| 313, 1 | Spacing 1 8.88
Spacing 2 8.75
Spacing 3 8.83
Spacing 4 8.88 |
| 333, 1 | Spacing 1 8.99
Spacing 2 8.8
Spacing 3 8.98
Spacing 4 8.57 |
| 353, 1 | Spacing 1 8.72
Spacing 2 8.84
Spacing 3 9.02
Spacing 4 8.75 |
| 373, 3 | Spacing 1 8.84
Spacing 2 9.06
Spacing 3 8.69
Spacing 4 8.85 |
4.3 C-lattice parameter

4.3.3 TIP5p water model
4.3 C-lattice parameter

Figure 4.9: C-lattice parameters [Å] for TIP5p water model at all temperatures as a function of pressure. The black vertical line indicates at which pressure the adsorption started. The mean value of all the C-lattice parameters are also presented. The lines between each point is only to guide the eyes.
Figure 4.9 shows the variation in the spacing between the layers in the bulk MXene as a function of pressure for the TIP5p water model. The pressure where the adsorption started is indicated with a black vertical line. Figure 4.9a shows that the spacing was close to constant for the bulk MXene at 273 K until it reached a pressure of 10^4 Pa, at this pressure the loading starts to become significant. Here, it is clear that the adsorption occurred between four layers at 353 K in figure 4.9e. The spacing has a maximum value of 9.33 Å where the adsorption occurred. The mean layer spacing (indicated with a black dotted line) are close to constant throughout the pressure span.

Table 4.6: Spacing between the layers at the pressure where the adsorption began for all temperatures.

<table>
<thead>
<tr>
<th>Temperature and Pressure [K] [Pa]</th>
<th>Spacing</th>
<th>C-lattice length [Å]</th>
</tr>
</thead>
<tbody>
<tr>
<td>273, 1</td>
<td>Spacing 1 8.87</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spacing 2 8.84</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spacing 3 8.86</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spacing 4 8.83</td>
<td></td>
</tr>
<tr>
<td>293, 5</td>
<td>Spacing 1 8.86</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spacing 2 8.86</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spacing 3 9.02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spacing 4 8.96</td>
<td></td>
</tr>
<tr>
<td>313, 1</td>
<td>Spacing 1 8.56</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spacing 2 8.92</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spacing 3 8.61</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spacing 4 9.33</td>
<td></td>
</tr>
<tr>
<td>333, 5</td>
<td>Spacing 1 8.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spacing 2 8.91</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spacing 3 8.53</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spacing 4 9.26</td>
<td></td>
</tr>
<tr>
<td>353, 1</td>
<td>Spacing 1 8.894</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spacing 2 8.88</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spacing 3 8.71</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spacing 4 8.85</td>
<td></td>
</tr>
<tr>
<td>373, 3</td>
<td>Spacing 1 8.88</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spacing 2 8.73</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spacing 3 8.89</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spacing 4 8.90</td>
<td></td>
</tr>
</tbody>
</table>
Discussion

This chapter address’s to discuss the results obtained in this thesis. Firstly, the adsorption isotherms will be elaborated, and the effects that might cause them to behave in the way shown will be elaborated. Secondly, the heat of adsorption will be discussed. Lastly, the c-lattice length. A further discussion will follow, which tries to combine all of these topics.

5.1 Adsorption isotherms

The adsorption isotherms for the different species simulated presented in figure 4.1, 4.2 and 4.3 appears to adsorb the most molecules at 313 K, and the adsorption decreases for lower and higher temperatures (with some deviations from this general trend, like CO$_2$ at 293 K). Liu et al found that for methane adsorbed in MXene, the adsorption rose with temperature. They concluded that with an increase in temperature implied an increase in adsorption capacity. It is clear that this conclusion cannot be drawn for any of the species adsorbed in the framework. The adsorption isotherm for TIP5p water model (seen in figure 4.3, the SPC/E water model (seen in figure 4.2) the adsorption of CO$_2$ (seen in figure 4.1) has adsorbed the most molecules at 313 K, whereas the Diglyme molecule were not adsorbed in the framework for any temperature or pressure.

5.1.1 Shape of the isotherms

The different shapes of the isotherms were presented in section 2.2.1. Looking at the adsorption isotherm for CO$_2$, especially at 313 K, it shows a clear convergence towards an adsorbed amount. This implies that the shape of the isotherm correlates with a type
5 adsorption isotherm. It is a reasonable assumption that the other adsorption isotherms for CO₂, will take the for higher loadings. The reason for this is that the only difference between these isotherms is the temperature, which implies that there is no physical reason for the isotherms to take another shape. For the SPC/E water model and the TIP5p water model, which were presented in figure 4.2 and 4.3, the isotherm shape correlate some with an type 3 adsorption isotherm. It is expected that these two water models undergo the same adsorption type, due to the similarity of the models (they simulate the same molecule, even though some parameters are different). The difference in shape of the adsorption isotherms for CO₂, SPC/E water and TIP5p water are probably due to that CO₂ has adsorbed close to its maximum amount at 313 K (which is indicated by the convergence towards a loading amount), whereas SPC/E and TIP5p are able to adsorb more molecules at higher pressures. Regarding the shape of the isotherms, CO₂ shows a different shape than the SPC/E water model. This is probably due to that CO₂ has adsorbed close to its maximum amount between the layers where the adsorption occurred, whereas the two water models are able to adsorb more. Considering the framework simulated is a bulk MXene, there are several more spacing to intercalate molecules in. After a layer has adsorbed its maximum possible molecules, it is clear that it will start to intercalate molecules between the other layers in the MXene. Hence, this would imply that the adsorption isotherm would take the shape of a type 6 adsorption isotherm. The results obtained in this thesis does not provide evidence for this. A reason for this might be that the pressures simulated was not high enough to fill the layers, and thus the filling of other layers were not energetically favorable. Another reason, which is probably more valid, is that the volume of the unit-cell were close to constant throughout the simulations (except for 273 K for SPC/E water and TIP5p water). A constant volume unit-cell has limits regarding adsorption due to the limited movement of the layers. This is also non physical, due to the internal layer movement of a bulk MXene would imply that there would be a significant change in the volume of the whole MXene upon intercalation (significant in the Angstrom scale).

5.1.2 Adsorbed amounts

The adsorbed amount of the different molecules in the framework were presented in table 4.1 for CO₂, table 4.2 for SPC/E water, and table 4.3 for TIP5p water. The amount adsorbed are generally very low compared to existing literature. Due to the hydrophilic nature of MXene, water is known to spontaneous intercalate between the MXene layers at ambient conditions and ambient humidity. Considering this, the adsorbed amount at 100 000 Pa were expected to be a lot higher. In fact, the presented adsorbed amounts of the water model are somewhat nonphysical compared to what would be expected from the existing literature.

Combining the low adsorbed amounts with the isotherms for CO₂, which showed no adsorption at 293 K, and an insignificant adsorption at 373 K (due to the high uncertainty relative to the adsorbed amount), substantiate the assertion of the simulations showing nonphysical behaviour. There is no reason in the physics that the framework should adsorb moleculeas at every pressure except at 293 K.
5.1.3 Diglyme

Diglyme molecules were not adsorbed in the framework at any pressure, thus no adsorption isotherm is presented. Diglyme is a much bigger molecule than the other simulated molecules, with a total of 23 atoms. This makes it a much harder molecule to adsorb. Especially considering the volume evolution was close to constant throughout the simulations, there might not have been enough room for an adsorbance of this molecule to be energetically favorable.

5.1.4 General discussion

None of the adsorption isotherms gathered shows any general trend in the adsorption with respect to temperature. In fact, they appear to be somewhat random. Although, CO$_2$ shows that temperatures below and above 313 K adsorbs less (shown in figure 4.1). The reason for this can be found by considering the thermodynamics of the adsorption, or the kinetics of the adsorption. Looking at the adsorption isotherm for CO$_2$ from figure 4.1, the adsorption into the MXene framework decreases at temperatures below and above 313 K. This indicates that there is an activation energy barrier at lower temperatures (temperatures below 313 K) that the adsorption must overcome to be energetically favorable. This barrier is inversely proportional to the temperature, thus the energy barrier increases as the temperature decreases. Considering the higher temperature (temperatures above 313 K) adsorption, thermodynamic considerations must be taken into account. Even though the energy barrier decreases as the temperature increases, the spontaneity of the reaction (the gibbs free energy) from equation ?? increases as the temperature increases. This makes the entropy term dominate the expression. Kinetics restricting the adsorption at low temperatures imply that too few MCMC cycles were performed. MCMC methods require equilibrated systems to sample from the right probability distribution, thus it should not be restricted by kinetics. This is substantiated by the low amount and high uncertainty for adsorption of CO$_2$ at 373 K, which is nonphysical. Also, the fact that no molecules were adsorbed at 293 K imply this. There is no reason in the physical reason that adsorption should occur at all other temperatures than 293 K. This reason is also valid for the SPC/E water, and the TIP5p water, which shows no correlation in adsorbed amount at the different temperatures.

5.2 Heat of adsorption

The heat of adsorption calculated by RASPA (presented in the appendix) shows huge uncertainties and are insignificant. These huge uncertainties imply that the system was not at equilibrium when the simulations were performed. The isosteric heat of adsorption is presented in figure 4.4 for CO$_2$, figure 4.5 for SPC/E water and figure 4.6 for TIP5p water. All of these curves are below 50 kJ/mol, which implies that the adsorption is of physi-
cal character (physisorption). Even though this is the case, these graphs should be taken with a grain of salt. Especially considering the isosteric heat of adsorption for TIP5p water, shown in figure 4.6, which shows negative isosteric heat of adsorption. This is not physically possible, and substantiate that the simulations performed shows nonphysical behaviour. This is in agreement with the heat of adsorption calculated by RASPA, which show no significant result due to extremely high uncertainties.

5.3 C-lattice parameter

Insertion of a fractional molecule between two random layers in the framework, provided by the CFMC algorithm in section 2.3.3, causes these two layers to drift apart. This is due to repulsion between the adsorbate and the adsorbent. Figure 4.7 for CO$_2$, 4.8 for SPC/E water and 4.9 for TIP5p water shows the c-lattice parameter between the layers in the framework as a function of pressure. Looking at table 4.4, which shows the c-lattice parameter at the pressure where the loading first occurred for CO$_2$, it indicates that a minimum value of 9.71 Å is sufficient for the intercalation of atoms by the regular MCMC scheme (presented in section 2.3.2). For CO$_2$ it is a big spread in the c-lattice parameter at the pressure where the loading first occurred, but the loading amount also varies. Considering the big difference in loading at the first pressure where loading takes place for all the temperatures, it is reasonable to assume that the c-lattice parameter becomes larger for the lattices that had several molecules adsorbed. This is due to the repulsion between adsorbed molecules and the framework. The more adsorbed molecules, the more repulsion, and thus bigger difference in c-lattice parameter. The c-lattice parameter might also explain why the framework did not adsorb any molecules at 293 K for CO$_2$. Looking at figure 4.7b, which shows the variation of spacing between the layers at 293 K, it shows that two layers gained a bigger spacing than the other layers. Considering that the volume of the unit cell was close to unchanged during the whole simulation, which implies that there is a restriction of the space between the layers relative to each other, the maximum distance between the two layers at 293 K might not possibly become larger. For all of the other temperatures, the frameworks adsorbed molecules. Figure 4.7 clearly shows that the the space between two layers became larger than of the others.

Looking at the c-lattice parameter for the SPC/E water model shown in figure 4.8 and the TIP5p water model shown in figure 4.9, they adsorb molecules at a much lower pressure than CO$_2$, and with a much lower spacing between the layers. This is most likely because of the hydrophilic nature of MXenes. The plots that show four layers with a bigger spacing than others, as seen in figure 4.8a, 4.8b and 4.8d for SPC/E water, and figure 4.9, 4.9a and 4.9e for TIP5p, adsorbs molecules between four layers, instead of just two as for the others. This indicates that the CFMC algorithm inserted a fractional molecule in one layer, which later was accepted and turned in to a regular molecule in the framework. Simultaneously, and adsorption from the MCMC scheme occurred between two other layers. The spacing where adsorption happened between four layers, were close to equal, shown in table 4.6 and ??.
Figure 4.8a and figure 4.9a shows the c-layer spacing for both of the water models at 273 K. It is clear that until the loading become of significant size, these lattice spacings are extremely stable. This indicates that the framework was in a meta stable state at 273 K both for SPC/E as well as for TIP5p, which again implies that too few Monte Carlo cycles were used.

Regarding the diglyme atom, it had a constant c-lattice parameter between the layers throughout the simulations. This is due to that the CFMC algorithm was not implemented for Diglyme (Because of an error in the source code). Without a fractional molecule inserted, and no adsorption occurring, there is no external force to alter the c-lattice parameter between the layers. This is substantiated by the volume evolution, which were close to constant throughout the simulations.

5.4 Further discussion

There is several reasons from the obtained results that substantiate the assertion that the system simulated shows nonphysical behaviour. For one, no adsorption at 293 K for CO$_2$ and an insignificant adsorption at 373 K implies that too MCMC cycles were performed. In addition to this, the huge uncertainties in the heat of adsorption calculated by RASPA, as well as the isosteric heat of adsorption which were negative for some loading’s of TIP5p water implies this. The close to constant volume throughout the simulations is also not ideal, as the system were simulated as flexible, thus the volume should vary. The consequence of performing an MCMC simulation with too few cycles is that the ensemble averaging is not done at the equilibrated probability distribution, and the simulations give insignificant and non physical result. A solution to this is obviously to simulate the system with a lot more cycles. This again leads to a longer simulation time, and the simulations performed in this thesis used around 400 000 CPU hours. Considering this, a system with fewer atoms should also be considered.
Chapter 5. Discussion
Chapter 6

Conclusion

The aim of this thesis were to study the adsorption of CO$_2$, water and Diglyme in a flexible MXene framework. The calculations performed are based on Monte Carlo methods and molecular dynamics simulations, and a combination thereof. These calculations were performed in RASPA. The MXene layers were shown to adsorb slightly more water than CO$_2$ at 5 Pa. This corresponds well with the existing literature, which shows that MXenes are hydrophilic, and should adsorb more water than CO$_2$. Still, the amounts of water and CO$_2$ adsorbed does not nearly correspond the predicted amounts. The effects in the isotherms shown in figure 4.1, 4.2 and 4.3 may be due to kinetics limiting the adsorbance at low temperatures, and thermodynamics limiting the adsorbance at higher temperatures. Monte Carlo simulations should not be constricted by kinetics. Even though the simulations started out on low pressures, with a small pressure discretization, this points towards that the simulations should be performed with more cycles. This is substantiated by some nonphysical results, as seen in figure 4.1 where no CO$_2$ were adsorbed at 293 K. Also, the heat of adsorption calculated by RASPA shows no significant results due to extremely large errors. The isosteric heat of adsorption shows that the adsorption of SPC/E water, TIP5p water and CO$_2$ are physical adsorption, with heat of adsorption below 50 kJ/mol at all loading’s. The isosteric heat of adsorption for TIP5p water are negative for some loading’s, which is nonphysical, and substantiate that the simulations were performed with too few cycles. Considering the c-lattice parameters for SPC/E shown in figure 4.8, CO$_2$ shown in figure 4.7, and TIP5p shown in figure 4.9, move initially due to the CFMC algorithm, and the spot where the CFMC algorithm tries to insert a fractional molecule is where the adsorption is most likely to occur. Although an adsorption between several layers were also shown to be possible. these seem to move independent on loading, which implies that the pressure is the driving force behind the movement. Adsorption happened either between two layers or four layers for SPC/E water and TIP5p layer, and only between two layers for CO$_2$. The adsorption between more than two layers occur when two layer spacings have close to equal length, and the length of these two spacings is larger than for
the other spacings. The mean length of the c-lattice parameters are close to constant for all the frameworks at all temperatures. This implies that the volume are unchanged during the simulations, which were the case. The framework was simulated as flexible, and the volume should vary with the loading.

Diglyme was not adsorbed in the framework at all, which is most likely due to the volume being close to constant throughout the simulations, and there was simply not enough space present for adsorption of Diglyme, which is a much bigger molecule than CO\textsubscript{2} and the water models.

This leads to the final conclusion that RASPA did not yield the desired results for the simulations performed in this thesis. This is especially substantiated by the huge error in the heat of adsorption calculated by RASPA, the fact that the volume of the unit cell was close to constant throughout the simulations, and that the adsorption of atoms was restricted by kinetics at lower temperatures. The results could probably be improved by increased number of cycles, thus they would provide results of greater significance.
Bibliography

[9]

Appendix

6.1 Additional plots

6.1.1 C-lattice parameter as a function of loading
Figure 6.1: C-lattice parameter as a function of loading for CO$_2$, for all temperatures.
Figure 6.2: C-lattice parameter as a function of loading for the SPC/E water model, for all temperatures.
Figure 6.3: C-lattice parameter as a function of loading for the TIP5p water model, for all temperatures.
6.1.2 Heat of adsorption calculated by RASPA

(a) Heat of adsorption for CO\textsubscript{2}
(b) Heat of adsorption for the SPC/E water model
(c) Heat of adsorption for the TIP5p water model.

Figure 6.4: Heat of adsorption for the adsorbed molecules calculated by RASPA