
Magnetic Design for High Temperature, 
High Frequency SiC Power Electronics

Torbjørn Sørsdahl

Master of Energy and Environmental Engineering

Supervisor: Tore Marvin Undeland, ELKRAFT

Department of Electric Power Engineering

Submission date: July 2013

Norwegian University of Science and Technology



 



  2013

 

 
 i 
 

1 Summary 
Power electronic components which can operate at high temperatures would benefit a large number 

of different applications such as in petroleum exploration, aviation and electrical vehicles. Silicon 

carbide semiconductors have in the recent years been introduced commercially in the market. They 

are opening up new possibilities to create high temperature devices, due to its superior properties 

over silicon. Design of high temperature magnetic components is still a tedious process compared to 

normal temperature levels due to little information and software to simplify this process. 

The purpose of this thesis is to develop analytical software for high frequency magnetic design in the 

temperature range from 130°C, and up to 200°C. Care has been taken into developing temperature 

dependent loss models and thermal design. The software is primarily for inductors, but most of the 

theory and discussion are also valid for transformers. Prototypes have been built and tested against 

the software predictions and good correlation has been observed.  

A brief introduction to magnetic materials that can be used at elevated temperatures have been 

included focusing on powder cores and ferrites, since other high frequency materials could not 

operate at 200°C. It was found that for most materials, it is the laminations and binder agents that 

introduce the temperature limit. Materials are designed for specific temperatures which make it 

likely that when there is a larger commercial interest for higher temperatures, new materials will be 

developed. Core characterization of ferrites and powder cores was performed with a Brochause steel 

tester up to 10 kHz, and the losses up to 100 kHz were measured using an oscilloscope and amplifier 

approach. The characterization was performed at 20°C 108°C and 180°C. 

The measurements show that the analytical loss data provided by the manufacturers underestimates 

the losses in Sendust and MPP materials, while there is a good correlation in High Flux, R-ferrite and 

N27. New Steinmetz parameters were calculated for MPP and Sendust for 20 kHz. Temperature 

primarily influences only Sendust up to 180 °C by a factor of 10-20 %, the little temperature 

dependence is in powder cores due to very high curie temperature.  

Winding configurations have been investigated, and Litz wire for 200°C do not seem to exist 

commercially at this date, however wire for 130°C was successfully used in several 180°C 

experiments, but permanent degradation was observed in wires which had been exposed for several 

hours. It was found that the insulation in enamel coated round conductors have problems at 

elevated temperatures under the rated temperature in the areas where the wire was bent, this was 

not observed in Litz wire.    

It has been shown that parallel connection of smaller powder cores can in some cases be used to 

obtain smaller designs with better thermal dissipation than with a single core. Leakage capacitance 

has been measured in several designs and by inserting an air gap between layers the capacitance was 

reduced in the same order as a Bank winding.  

Output filter for dv/dt, Sinus, and a step down converter have been calculated and built. The step 

down filter has been tested in a buck converter, and compared to analytical data.    
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Nomenclature 
Symbol Description Unit 
   
W Energy J s-1 
Al Nominal inductance nH N-2 
   Flux density in the air gap Wb m-2 

   Flux density in the magnetic material Wb m-2 
   Relative permeability 1 
   Permeability of free space defined to be 4π    Henries H·m−1 
µ Permeability H·m−1 
   Cross section area of the air gap m2 

Le Mean magnetic path m 
N Number of turns - 
B Magnetic flux density Wb m-2 
      Core thermal resistance K W-1 
      Winding thermal resistance K W-1 
      External thermal resistance K W-1 

   Power loss core W 
   Power loss winding W 
      Ambient temperature K 
      Surface temperature K 
      Flow temperature K 
T Temperature K 
ΔT Temperature gradient K m-1 
    Heat transfer coefficient W m-2K-1 
  Height of the magnetic component m 
n Constant - 
C Constant - 
   Velocity of the flow outside the boundary layer ms-1 
   The area the flow see of the magnetic component m2 
   Total distance of the boundary layer m 
     Effective enveloped surface m2 

      Radius of the wire m 
    Core outer diameter including wire m 
    Core inner diameter including wire m 
   Core height including wire m 

 𝑦 Core outer diameter mm 

   Core inner diameter mm 

H Height of the magnetic component mm 
    Density m-3 kg 
    Dynamic viscosity N s m-2 
Pr Prandtl number - 
  Kinematic viscosity m2s-1 
   The constant pressure specific heat capacity J kg-1K-1 

  Thermal conductivity Wm-1K-1 
Gr Grashof number - 
  The characteristic length m 
  Gravity constant ms-2 
    The thermal volume expansion coefficient K-1 
   The thermal diffusivity m2s-1 
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   Reynolds  number - 
Nu Nusselt  number - 
ε Permittivity F·cm-2 
      Rise time s 
   Resonance frequency m-1 
fsw Switching frequency m-1 
    Equivalent frequency m-1 

   Relative frequency m-1 
β Parameter in the Steinmetz equation for flux density change - 
  Parameter in the Steinmetz equation for frequency change - 
K Parameter in the Steinmetz equation a constant - 
λ Thermal conductivity W·m-1·°C-1 
   Band-gap eV 

   Critical field V·cm-1 
µn Electron mobility cm2V-1·s-1 
ni Intrinsic concentration cm-3 
   Ionized acceptor density cm-3 
   Ionized donor density cm-3 
   Majority carrier lifetime s 

   Minority  carrier lifetime  s 
q Electron charge  C 
K Boltzmann’s constant  J·K-1 
   Permittivity of vacuum F·cm-2 
   Relative permittivity - 
     Area between the windings m2 
     Distance between the different windings m 
 ̇ Heat flux Wm-2 
w Fluid velocity ms-1 
L Inductance H 
   Output voltage V 
     Time period the switch is off s 

    Current ripple A 
   Switching period s 
  Capacitance  F 
    Critical cable length m 
     Cable inductance H 
     Cable capacitance C 
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Abbreviation 
Parameter Description 
  
SiC Silicon Carbide 
Si Silicon 
EMC Electromagnetic Compatibility 
PCB Printed circuit board 
ESR Equivalent series resistor  
HT High Temperature (defined here as above  150°C)  
DM Differential mode noise  
CM Common mode noise  
SRF Self-resonance frequency 
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1  Introduction 

 Background 1.1

High temperature power devices such as converters and inverters are becoming more and more 

important in applications like petroleum exploration, aviation and electrical vehicles. The trend is to 

push the devices into even harsher environments. Electrification of down-hole drilling equipment is a 

promising area which requires electrical components that are able to withstand the high ambient 

temperatures, and pressure several kilometers subsurface. SmartMotor and Badger Explorer are 

developing a motor drive for a down-hole drilling tool with the concept as following: 

“The Badger Explorer is a revolutionary method to obtain subsurface data for oil gas exploration, 

mapping of hydrocarbon resources and long-term surveillance. The Badger Explorer drills and buries 

underground, carrying a unique package of logging and monitoring sensors, at a substantially lower 

risk, cost and complexity of utilizing an expensive drilling rig.”  

Figure 1-1 shows a possible overview of this concept. 

The conventional switching technology is based on silicon (Si) devices which is limited in a range of 

properties compared to silicon carbide (SiC). SiC offers better thermal conductivity, band gap, 

breakdown field and are capable of being operated at high junction temperatures.  However the 

main deceleration factors in developing new applications are the packing technology, control 

electronics and passive components. 

 

Figure 1-1 Down-hole system 
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 Problem description 1.2

This master thesis will focus on the design of fast magnetic components for high temperature power 

devices, the task description is as follows:  

 The aim is to develop an analytical design tool in Python for fast 
magnetic/electrical/ thermal calculation of typical magnetic components used 
in high temperature power electronics. Due to wide operating temperature 
ranges exact temperature dependent loss models are required. Also, 
compactness requires more accurate thermal models and effective cooling.  

 
Comparison of SiC and conventional switches in terms of influence on the 
magnetic components should be carried out. The analytical results should be 
compared with experimental results. 
 

 

The materials required to design magnetic components for temperatures up to 200°C will be 

surveyed. A comparison between SiC and Si will be performed. Loss models for magnetic materials 

will be compared to lab measurements performed at 20°C and 200°C in the frequency range from 3 

kHz to 100 kHz. A thermal model for inductors will be developed and compared to measurements, 

and the information gathered will be used to create an analytical design tool for high temperature 

and frequency up to 100 kHz. 

The tool will be used to design sinus and dv/dt filters for the electrical specification in Table 1-1, and 

the cores recommended by the tool will be tested and evaluated.  

Table 1-1 Drive Specification 

Drive Specification 

Vdc 600 V 
S 3000 VA 
fsw Up  to 100 kHz 
Tamb 150 °C 
  

  
     1 kV/µs 

Where Vdc is the Dc-link voltage 
S is the apparent power delivered 
fsw is the switching frequency 
Tamb is the downhole ambient temperature 
dv/dt is the maximum voltage change over given time 

  

  



Introduction  2013

 

 
 3 
 

 Report outline 1.3

Chapter 2 

This chapter presents silicon carbide and compares the theoretical properties to silicon. Theory on 

semiconductor devices is used to perform a comparison on the influence of using SiC over Si on the 

magnetic components. 

Chapter 3 

Different magnetic components will be introduced and filter theory for dv / dt and sinus will be 

explained. Simulation of the different filters will performed to some extent with a focus on reducing 

the component physical size. 

Chapter 4 

Magnetic materials for inductor design are presented, and the most common materials are 

explained. Thereafter suitable ferrites and powder materials for 200°C power electronics is 

investigated. Theory and some recommendations for reducing the core size in powder materials is 

then explained, and finally core losses measured in the materials is presented, and compared to the 

analytical data  up to 100 kHz.  

Chapter 5  
Core losses and flux waveforms are explained in more detail, and analytical models on how to 

calculate core loss is presented. The most recent models are listed and different parameters that 

affect the core losses are mentioned. 

Chapter 6  
The possible winding options for inductors are explained with a focus on Litz, round and foil 

windings. Thereafter experience and problems with using round enamel windings and Litz wire at 

180°C is briefly covered. The last section covers theory and ways to reduce parasitic capacitance. 

Chapter 7 
Basic thermal modelling in inductors is explained and the thermal conductivity of Litz wire and 

multilayer windings is investigated with COMSOL Multiphysics. A tthermal model of round cores is 

developed for forced and natural convection, and simulated in COMSOL Multiphysics. Lab 

measurements of a high frequency Litz wire windings is performed and compared to the analytical 

results at 22°C and 100°C.   

Chapter 8  
Chapter 8 presents the analytical design tool. Input and output parameters are explained and ways 

to input data for different applications is explained. Some analytical designs are compared to 

experimental measurements.  

Chapter 9 
The design tool and information from chapter 3 is used to design sinus, buck and dv/dt filters.  
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Chapter 10 
This chapter covers the different lab setups which was performed, and explains relevant theory and 
error sources. There were four different lab setups:  

 Core characterization 3 kHz -10 kHz 

 Core characterization 5 kHz -100 kHz 

 Inductor measurements in a buck converter 

 Leakage capacitance in windings 
 

Chapter 11 
Chapter 11 presents the measurement results in more details than the other chapters and the results 
are evaluated and discussed.  
 
Chapter 12  
Chapter 12 presents the conclusion. 

Chapter 13 

Chapter 13 covers further work.  

 



Silicon Carbide  2013

 

 
 5 
 

2 Silicon Carbide 
Silicon (Si) is the conventional material used in the production of power devices, while Silicon carbide 

(SiC) is a material which has proven to have superior properties and has recently become 

commercially available, but still lags behind Si in some aspects by as much as 20 years. However 

some applications can have tremendous benefits from SiC due to higher temperature limit and very 

low losses.  

 Silicon Carbide in power electronics 2.1

The main advantages SiC provide over silicon is thinner drift region, and higher doping, which lower 

the theoretical on-resistance  by up to 1000 times see Table 2-2 for the material properties. A high 

intrinsic temperature limit allow for high temperature operation [8], which enables the production of 

higher temperature equipment. Some of the possible applications for this are down-hole 

applications, hybrid vehicles, and space ships. The high temperature rating means that the 

components like the heat sink can be reduced if it is operated at a higher temperature, and higher 

switching frequency can reduce the filter components.  

The SiC market is still at an early stage and the commercially available switches are the Schottky, 

GTO, JFET, BJT and Mosfet see Table 2-1.  These switches are made for voltage levels at around 1200 

volts and current of 10-20 ampere. There is development on a SiC IGBT but due to issues with high 

resistivity and low performance of the oxide layer it is not believed they will be commercialized 

within the next decade [7]. Table 2-2 summarizes standard properties of some commonly used SiC 

polytypes and Si. 

Table 2-1 SiC Commercial products with largest breakdown voltage in the market 2012 [6] 

Manufacturer  Schottky MOSFET JFET BJT/SJT GTO Ref 

CREE [V] 1700  1200     [1] 
Rohm [V] 1200  1200     [2] 
Infineon [V] 2400   1200    [3] 
GeneSiC [V]    1200  6500  [4] 
TranSiC/Fairchild [V]    1200   [5] 

      

Table 2-2 SiC material properties compared to Si [8] 

  Si 4H-SiC 6H-SiC 3C-SiC 

Band-gap Eg [eV] 1.12 3.2 3.0 2.4 
Intrinsic conc. ni [cm-3] 2.5 1010 8.2 10-9 TBD TBD 
Critical field Ec [MVcm-1] 0.25 2.2 2.5 2 
Electron mobility µn [cm2V-1s-1] 1350 950 500 1000 
Permittivity εr [-] 11 10 10 9.7 
Thermal conductivity λ [Wcm-1K-1] 1.5 5 5 5 

 
One of the advantages of SiC is that it enables for higher operation temperatures which affect the 

parameters listed in Table 2-3.  
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Table 2-3 Temperature problems in semiconductors [10] 

Physics problems in semiconductors operating at elevated temperatures  

1. Increasing intrinsic carrier density. 
2. Increasing junction leakage current. 
3. Variations in device parameters. 
4. Availability of adequate wide-temperature-range device models for circuit simulators 

 
The intrinsic carrier density   in a semiconductor device depends on the temperature and the band 

gap of the material described by Equation 2-1 [9]. 

   
        

   

  
  

 
 Equation 2-1 

  Temperature 
  Constant 
  Boltzmann’s constant 
q Electron charge 
 
The current density can be explained by Equation 2-2.       

 
 

     
 [

  

    
 

  

    
] [ 

  
    ] 

 

 Equation 2-2 

  ,    The minority/ majority carrier diffusion length 

  ,   ionized acceptor/donor densities 
  ,    Electron charge 

 
Assuming a one dimensional non-punch trough unipolar junction, the on resistance can be expressed 

as [11]:   

 
 

    
   

 

      
  

 

 Equation 2-3 

   Represents breakdown voltage over the junction 
   Electron mobility 
   Critical electrical field 
   Permittivity 
 
SiC have higher critical electrical field compared to Si which results in a reduced    . 
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 Comparison of SiC to conventional switches 2.2

The theoretical effects of introducing Sic switches on the magnetic components are as follows: 

1. According to Equation 2-1 it can be seen that the intrinsic carrier density is exponentially 
decreasing with increased band gap, which coupled with Equation 2-2 means that a Sic 
switch will have several magnitudes lower leakage current than a Si switch. The effects of this 
on the magnetic components are a smaller dc leakage current, but on the other hand the 
leakage current in a Si switch is so low that this should have low practical impact, other than 
in high temperature operation where leakage current is increasing with temperature. 

2. Breakdown voltage in a minority carrier device depends on the intrinsic carrier density that 
according to Equation 2-1 is exponentially decreasing with increased band gap. Therefore a 
Sic device can be operated at higher temperature than a Si device which could be used to 
minimize designs however this requires passive components to be designed for higher 
temperatures. 

3. The on resistance of a SiC switch can as previously mentioned be up to 1000 times smaller 
than the comparable Si switch. This low resistance results in lower internal dampening for 
the component resulting in larger ringing effects.  

4. The high critical field strength in SiC allows for a shorter drift region in minority carrier 
devices, and shorter carrier lifetime’s results in faster switching, which increase dv/dt effects 
that have to be controlled by the appropriate filter see more in section 3.1. 

5. SiC allows for higher switching frequencies than the Si counterpart, and with lower losses. 
This can be used to lower the harmonic distortion or reduce the size of filter components.  
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3 Components in sinus filters and dv/dt filters 
Magnetic materials in power electronic applications are a large subject and therefore only the main 

points have been listed in Table 3-1, including the optimal properties in different applications. The 

focus of this chapter will be on sinus filters and dv/dt filters for switch mode power supplies. And in 

later chapters these components will be designed, and tested see chapter 9. The two filter 

configurations will be compared both on losses and filter volume, and the main goal is to minimize 

the size of the total filter configuration while keeping the losses reasonable low. 

Table 3-1 Magnetic components in power electronic applications 

Application  Purpose Magnetic Material 
properties 

Filter Suppresses signals above the cutoff frequency. Low losses 
Known temperature factor. 
Stable. 

Interference 
suppression 
 

Suppresses unwanted high frequency signals.  High impedance over the 
frequency range. 

Pulse delaying 
 
 

Leading edge on a signal is delayed until the 
inductor is saturated. 

High permeability. 

Storage of 
energy  

Necessary in switch mode power supply 
applications. Stores energy in the on periods and 
delivers it to the load in the off periods.   

High saturation. 

General purpose 
transformer 

Isolation between output and input, and can 
change the voltage level. 

High permeability. 
Low hysteresis factor. 
Low dc-bias sensitivity. 

Power 
transformer 

Transmits energy while providing isolation. Low power losses. 
High saturation. 
 

 

 Introduction 3.1

 In many normal applications it might not be necessary to filter the output from a switch mode power 

supply, but the advances in semiconductor technology have enabled high frequency switching 

operation with rise time bellow 0.1 µs. In 480 V applications, the differential and common mode 

voltage can in uncontrolled circuits reach 7000 V/µs at the motor terminals [7]. 

SiC semiconductors can have rise time of the voltage pulses is in the range of nanoseconds for 

example the SiC mosfet CMF20120 from CREE have a rise time of 38 ns which equals 25.44kV/µs 

(according to NEMA). The purpose of filters is to control these rapid voltages and currents changes, 

and decrease the total harmonic distortion, or mitigate other forms of undesired noise.    

Differential mode noise (DM): Undesired current or voltage line to line. See IDM in Figure 3-1, this 

noise is transferred by stray capacitance or inductance.  

Common mode noise (CM):  Undesired current or voltage measured between a line and ground. See 

ICM in Figure 3-1. The noise is transferred to the ground due to stray capacitance of the lines.   
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Figure 3-1 Differential and Common mode noise [2] 

The filter for CM noise is wound with two windings of the same number of turns and connected 

between the lines in such a way that the line currents cancel out the fluxes induced, leaving the core 

unbiased which reduces the component size. While in a DM filter the core only have a single winding 

which requires the core to support the whole line current without saturating see optimal design 

properties for CM and DM inductors in Table 3-2. 

Table 3-2 Desired properties for CM and DM inductors 

Application  Purpose Magnetic Material 
properties 

CM Inductor Suppresses noise between lines High permeability 
DM Inductor 
 

Suppresses noise between lines and earth Low permeability  
High saturation flux density 
Low leakage capacitance 

 

 Filter theory 3.2

A common filter topology in switch mode power supplies is a low pass filter which consists of an 

inductor and capacitor as shown in Figure 3-2. The filter acts in such a way that all amplitudes above 

the cutoff frequency f0 are suppressed.  

 

Figure 3-2 Low pass filter [1] 

A dv/dt filters purpose is to controls the rise time of an inverters output voltage. This is can be done 

with a simple circuit such as Figure 3-2 but with this configuration, the circuit is undampened and a 

sinusoidal voltage overshoot with a possible peak of twice the output voltage is possible [1]. Adding 

an additional dampening resistance will solve this, see Figure 3-3 [2] however this increases the 

losses. 
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Figure 3-3 RLC Filter 

The transfer function for a standard RLC filter such as in Figure 3-3 is given by Equation 3-1. 

 
      

       

              
 

 

 Equation 3-1 

Equation 3-2 is Equation 3-1 written on standard form. 

       

  
  

  

  

  
  

   
  

  
  Equation 3-2 

 
The relative dampening frequency ζ is defined as Equation 3-3 and a good choice for this factor is 

somewhere between 1 and 2, this recommendation come from [2]. 

   
 

 
  √

  

  
  Equation 3-3 

The resonance or cutoff frequency    can be calculated with Equation 3-4. This is the frequency 

where the output signal have been reduced with a minimum √  of the fundamental component 

meaning the power output has been reduced by 50 percent or more.  

    
 

  √      
  Equation 3-4 

 

 Critical cable length 3.3

A critical cable length can be defined, representing the maximum length a cable can have before a 

voltage pulse travels to the motor terminals and returns to the inverter doubling the voltage at the 

motor see Equation 3-5. 

     
  

 √          
  Equation 3-5 

 
In the case of a silicon carbide inverter with    of 38 ns the critical cable length for a 2 mm2 cable with 

L = 0.698 µH/m and C = 137.79 pF/m (parameters from [2]) would be 1.98 m. Therefore in nearly any 

silicon carbide drives using this semiconductor it would be necessary to have a filter to reduce the 
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voltage overshoot at the motor.  High dv/dt leads to an overvoltage at the motor and the two main 

options are matching the load impedance to the cable characteristics or increase the voltage pulse 

rise time. The solutions that will be covered in the next sections are filters at the inverter terminals 

which changes the pulse rise time.   

 Dv/dt Filter 3.4

Dv/dt filters are known as an effective solution for differential and common mode noise attenuation. 

They can have passive, and active components the passive filter have high reliability and low costs 

and is the most common. However the active filter can have improved performance [10].  

A good criterion for LC filters is that the filter inductance and capacitance should be equal or higher 

than the total inductance and capacitance of the cable, this way the filter dominates the system [10]. 

Dv/dt filters can be used for both common mode and differential mode voltage system or in a 

combination with sine wave filter which will be covered in the next section.  

Output choke 

An output choke is operating as a small dv/dt filter with only an inductor near the inverters output 

however this is not a real filter due to not containing a filter capacitor. They are cheap and simple 

suited for smaller drives.  

RC filter is a dv/dt filter which consists of a resistor and capacitor, this reduces the ringing effects.  

RLC Filter 

A RLC dv/dt filter are used to limit the rise time of the inverters output and consists of inductances, 

resistances and capacitors.  According to [2] RLC filters can be designed based on the parameters in 

Table 3-3. This will be performed and simulated in chapter 9. The biggest disadvantage with a RLC 

filters is that the resistive element leads to losses.  

 

Figure 3-4 RLC filter at the inverters output 

The derivation of the filter values can be found in [2] Rf is the filter resistance,     the cut off 

frequency, Cf the capacitor value and Lf the filter inductance. 

Table 3-3 Filter parameters for RLC filters [2] 

    
  

 
 

 

 
√

  

  
 [Ω]     

 

    √    
  [Hz] Cf = 

 √  

      
 [F]      (
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 Sinus output filter 3.5

A sinus output filter is inserted into an inverter to obtain a sinusoidal output waveform and therefore 

suppresses all amplitudes in the switching frequency range and above. The filter consists of 

capacitors and inductors with the difference from a dv/dt RLC filter being the choice of the resonance 

frequency which in a sinus filter is chosen between the fundamental and the switching frequency. 

The optimal is often  
   

 
    with a filter inductor in the range of 1-10% Pu [2]. If the resonance 

frequency is chosen to be to low it could be excited by the fundamental frequency while if it is to 

high the suppression of the pulse frequency might be insufficient. It is recommended by some other 

sources that there should at least factor of ten between the fundamental and the resonance 

frequency and another factor of ten to the switching frequency [7] which mean operation bellow 5 

kHz is not recommended with a  50 Hz fundamental.  

 There exist different kinds of sinus filters see Figure 3-5 which is presented in [7]. 

 

Figure 3-5 Different sinus filter configurations [7] 

Due to the low resonance frequency in a sinus filter the filter inductor causes a large voltage drop at 

the fundamental frequency which in general applications can be up to 6 % [1]. The sinus filters do not 

include a filter resistance which mean that the overall power losses will be reduced and the 

difference between a sinus filter and a dv/dt filters inductance is low. This could mean that in some 

application it would be better to just use a sinus filter however leakage capacitance might create 

difficulties. 
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 Simulation model 3.6

A three phase inverter and a buck converter model were created to study dv/dt and sinus filters see 

Figure 3-6 and Figure 3-7. The model was created based on a free PSCAD model which provided the 

control system and overhead topology however it did not take into account any cable effects. PSCAD 

modeling of common mode can be viewed in [12]. 

 The cable system was modeled with lumped parameters with adequate number of segments. In 

systems with wires longer than the critical length several lumped elements have to be used and 

according to [11] the critical length of each segment for a 14 AWG wire with rise time of 50 ns is 40 

mm with reasonable high accuracy. However this would be to computational expensive and only 

useful to show the unfiltered waveform, therefore the critical rise time was set 1000 ns which is the 

specified rise time the motor can handle see Table 1-1. This means only one lumped element is 

necessary for each meter after the filter. The rise time before the filter is still given by the rise time of 

the semiconductor however comparison to experiments showed good correlation with only using pi 

sections of 1 meter in the buck converter, and therefore the effects of incorrectly modeling this 

section of the cable do not seem to influence the results.  

Table 3-4 Cable parameters 

Parameter Value 

Resistivity  8.267 mΩ/m 
Inductivity 0.698 µH/m 
Capacitance 137.79 pF/m 

 

 

Figure 3-6 The PSCAD model of a Buck converter  

The model seen in Figure 3-6 represents the buck converter which will be used in section 11.2 to 

measure relevant inductor parameters, and simulations of the filters in chapter 9. The model output 

was compared to measured values for some filter configurations with good correlation. However 

some smaller transients did not match completely, this is likely due to the leakage capacitance of the 

dc-link was not measured and only assumed to be 300 pF as described in [12]. 
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Figure 3-7 The PSCAD model of the converter with a sinus filter 

The three phase model consists of a split dc source of 300 V, connected to an inverter. A 300 pF 

leakage capacitance was assumed to be between the dc link and ground. The cable section from the 

inverter to the filter was assumed to be 1 meter however only one pi section was used to model this 

due to software constraints. It was shown with the measurements in the buck inverter that this 

section should have small influence on the model results after the filter. The cable to the motor was 

modelled as 1 meter long pi, and the load a 2Ω 1.396 µH however these parameters was changed 

depending on the load necessary. The simulation time step was set to 1 ns which was necessary to 

have stable system which accurately simulated most transients, at least in the buck converter case. 
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4 Magnetic Materials 
Soft magnetic materials can be divided up into five main groups depending on their magnetic 

properties. Ferrites is a ceramic material consisting of an oxide mixture of iron and Mn, Zn, Ni or Co, 

which have a low saturation flux compare to the other groups. However on the other hand have high 

electric resistivity making them ideal in high frequency applications. The last four groups have low 

electric resistivity with high saturation flux density. Laminated cores are electrically isolated steel 

sheets which are limited to lower frequency applications (a few kHz), powder iron cores consist of 

iron particles isolated from each other, Amorphous alloys are liquid magnetic materials similar to 

glass with magnetic properties. Nanocrystalline materials are FeSi grains embedded in an amorphous 

phase [2]. Figure 4-1 show the B-H loops for some common materials used in magnetic designs. 

Along the horizontal axis the magnetic field intensity or H-field is displayed while the flux density up 

to saturation is on the vertical axis. 

 

Figure 4-1 Typical B-H Loops for some magnetic materials [3] 
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The magnetic field intensity H is also proportional to the flux density by µH and can in magnetic 

components be calculated by equation Equation 4-1. So for example a core of Orthonol with a mean 

magnetic path length of 10 cm and 10 turns will go into saturation at 0.1 A. This value is so low that 

in inductors the material cannot be used without having an air gap in series with the material.    

   
  

  
 Equation 4-1 

  Number of turns in the winding 
  Current 
   Mean magnetic path length  
 
The further discussion in this thesis is limited to magnetic powder cores and ferrites, which according 

to the initial study [1] are the commercially available possibilities in a high temperature and 

frequency designs and also possible options in CM and DM filters.  

 Powder cores 4.1

Powder cores consist of high permeability alloys like Orthonol and Permalloy (see Figure 4-1) which 

have been grinded down into particles, and is treated with an insulating medium. This reduces the 

eddy losses to a point, where this loss can be ignored as long as the penetration depth is much larger 

than the particles. According to [3] the eddy losses can be ignored for most powder materials today 

up to frequencies of around 200 kHz. There are four standard materials for powder cores; this 

includes Molypermalloy powder (MPP) which is made from Permalloy metal; High flux powder cores 

is made from Orthonol which result in high saturation flux and therefore large energy storage; 

Sendust is made from a ferrous alloy resulting in large energy storage for a cheap price at the cost of 

higher core losses. Xflux have the highest saturation flux of the categories [1].  

The powder metallurgy process applied to produce a powder core traditionally used organic 

materials to electrically insulate each particle in the powder, however recent development have led 

to powder cores without organic materials significantly increasing the saturation flux density, 

permeability and reduced the hysteresis losses. Thermal ageing is also removed by removing the 

organic binder. The new development has made powder cores a viable alternative to electrical steel 

and ferrites in some applications [5].   

 

 
 
 
 

Figure 4-2 Some powder core shapes 

 
 

Figure 4-3 High magnification of a powder material 
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The magnetic properties of the materials are reported somewhat different depending on the 

producers this can be found in Table 4-1. The variation is likely due to small differences in the 

production process.  

Table 4-1 Magnetic Properties of some powder Cores [1][9] 
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Powder Core Magnetics® MPP Fe-Ni-Mo 0.75 14-550 460 200 8 8.2 45 590 

Powder Core Magnetics® High Flux Fe-Ni 1.5 14-160 500 200 8 7.7 116 1300 

Powder Core Magnetics® KoolMu Fe-A1-Si 1.05 26-125 500 200 8 6.8 83 700 

Powder Core Magnetics® Xflux Fe-si 1.6 26-60 700 200 8 7.5 200 2000 

Powder Core Magnetics® AmoFlux Fe-Si-B-C 1.0 60 400 155 8 6.22 80 700 

Powder Core Chang Sung Corp. MPP Fe-Ni-Mo 0.7 26-200 450 200 81  65  

Powder Core Chang Sung Corp. High Flux Fe-Ni 1.5 26-160 500 200 81  100  

Powder Core Chang Sung Corp. Sendust Fe-A1-Si 1 26-125 500 200 81  76  

Powder Core Chang Sung Corp. Mega Flux Fe-si 1.6 26-90 725 200 81 6.8 186  

Powder Core Arnold Magnetics Fe-si 6% Fe-si 1.5 14-147 500 200 81  240  

Powder Core Ferroxcube MPP Fe-Ni-Mo 0.75 14-300 460 200 81 8.7   

Powder Core Ferroxcube High-Flux Fe-Ni 1.5 14-160 500 200 81 8.2   

Powder Core Ferroxcube Sendust Fe-Al-Si 1.05 26-125 500 200 81 7 83  

1Similar materials assumed to be 8 or close to it. 2 values range from 6.2 to 6.7 [9] 

Molypermalloy Powder (MPP) is the name for Fe-Ni-Mo cores which is made from Permalloy metal. 

The untreated metal have relative permeability in the range of 10,000 – 200,000. Low permeability is 

gained by grinding the metal into dust and insulating the particles from each other. Depending on 

the manufacturing process the losses and saturation flux varies, and from the data in Table 4-1 [10]. 

Magnetics® provide the lowest losses in this category [10].  

Primary use: chokes and power inductors 

High flux is the common name for Fe-Ni cores made from Orthonol. They have higher possible 

saturation flux than MPP and therefore have a higher energy storage capacity. This also allow for a 

large dc-bias. Generally High flux has larger losses than MPP and Chang Sung Corp. promises the 

lowest losses [10]. 

Sendust/KoolMµ is the common name for Fe-A1-Si cores made from ferrous alloy. They provide 

large energy storage at a cheap price, but the losses are higher than with MPP. Chang Sung Corp. 

reports the lowest losses [10]. 

Xflux is the common name for Fe-Si cores and have a larger saturation flux density than high flux, and 

Chang Sung Corp. promises the lowest losses.  
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AmoFlux was introduced by Magnetics® late 2012 and is made from Fe-Si-C, a low loss amorphous 

metal which is grinded into powder and pressed into a toroid. The resulting properties give low 

losses and a high dc bias rating ideal for power factor correction and output chokes. The downside 

with AmoFlux is that it have relatively low continues operation temperature of 155 °C, and only 

available with a permeability rating of 60, but since this a recently introduced product these 

properties might change making it in the future a possible material [9].  

Powder Core comparison: The core loss up to the saturation limit is shown in Figure 4-5 for 

Magnetics® 125µ MPP, High Flux, and KoolMµ at 5 kHz. According to [4] magnetic materials are 

either saturation limited if the core losses are lower than 100 mWcm-3, otherwise the cores are 

thermally limited. The maximum flux density that leads to saturation limited designs can be found in 

Figure 4-4 for 5 kHz and Figure 4-6 shows the same limit at 100 kHz. This might seem low but it is 

very important to remember that this is the peak of the ripple current, which should not be very 

high. In the rest of the thesis when core losses is discussed it is primary the ripple flux which is 

considered.  In Figure 4-5 the losses up to saturation have been plotted for 5 kHz and in Figure 4-7 

the same for 100 kHz. It is not normal to operate powder cores up to saturation due to large losses 

and reduction in permeability. Figure 4-8 summarizes the core losses with a 100 kHz ripple of 50 mT 

and compares it to the rated saturation flux density. 

 
Figure 4-4 Core loss limited at 100 mWcm

-3
 for 15.6 cm

3
 

cores at 5 kHz 

 
Figure 4-5 Core losses for 15.6 cm

3 
cores up to saturation at 

5 kHz 

 
Figure 4-6 Core loss limited at 100 mWcm

-3
 for 15.6 cm

3
 

cores at 100 kHz 

 
Figure 4-7 Core losses for 15.6 cm

3 
cores up to saturation at 

100 kHz 
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Figure 4-8 Core loss with sinus 50 mT peak at 100 kHz compared to rated saturation flux density 

Powder core have a permeability which is heavily dependent on the direct current, and therefore 

large permeability changes will happened over the fundamental period seen by the high frequency 

ripple. Assuming 10 % of the current is in the high frequency component, a filter designed for 

removing the high frequency will experience a dc bias peak of 90% of the current. This bias is time 

dependent and therefore will vary from zero to the peak resulting in a filter inductance which 

depends on time, and therefore a varying ripple current. Figure 4-9 shows this effect when an 

inductor has a fundamental and high frequency ripple. At the time the fundamental current is zero 

the ripple is around three times as lower than at the peak. Permeability will be covered in more 

detail in section 4.4.   

 
Figure 4-9 Current measurement in an inductor experiencing a  

1.5 kHz ripple superimposed on a 50 Hz voltage.  
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 Soft Ferrites 4.2

Ferrites are ceramic materials composed of iron oxide that can be used at frequencies from kilo hertz 

to several hundred megahertz. The oxide structure reduces the eddy losses and therefore these 

losses can be ignored up to several hundred kilo hertz. This makes ferrites optimal in design which 

requires high permeability, and low energy storage over a large frequency specter. On the other 

hand soft ferrites have a low saturation flux. Soft ferrites are usually a good choice in general 

purpose transformers, EMI filters, pulse delaying and other application requiring high permeability. 

In applications where low permeability is wanted an air gap can be added however this can lead to 

large fringing fields and losses in the windings. 

The curie temperature for most ferrites are rather low which means that the saturation flux density 

is likely to change noticeable from the initial given values when the temperature increases. The 

magnetic properties of ferrites change depending on the materials and manufacturing process used. 

Different application needs can be satisfied like stable permeability over a wide temperature range, 

low losses, high temperature stability and other properties depending on the material chosen. The 

initial survey of higher temperature ferrites yielded the materials shown in Table 4-2 [1]. 

Table 4-2 Magnetic Properties of some powder HT Ferrites 
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Ferrite Magnetics® L  0.42 900 300 3.5-51 Na 4.8   

Ferrite Magnetics® R  0.47 2300 210 3.5-51 Na 4.8 5 70 

Ferrite Magnetics® P  0.47 2500 210 3.5-51 Na 4.8 8 96 

Ferrite Magnetics® F  0.47 3000 210 3.5-51 Na 4.8 12.39 119 

Ferrite Magnetics® T  0.53 3000 220 3.5-51 Na 4.8  65 

Ferrite Ferroxcube 3F4
5 

MnZn 0.42 900 300 3.5-5 Na 4.8   

Ferrite Ferroxcube 3F5 MnZn 0.38 650 300 3.5-5 Na 4.75   

Ferrite Siemens N27 MnZn 0.5 2000* 220 3.5-5 Na 4.8 24 200 

1Assumed 

Ferrites are brittle and therefore strong forced cooling can lead to high temperature gradient inside 

the material causing thermal stress, which can break the ferrite and reduce the lifetime of insulation 

[7]. The initial permeability of ferrites usually affects the design less than in the case of a powder core 

inductor, because it is necessary to gap the ferrite to obtain the required relative permeability while 

in a transformer only high saturation and low losses is important.   
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 Shape 4.3

Optimal shape of a magnetic core depends on what kind of application it is intended for, the most 

common shapes is according to [11] are as follows: 

Pot Core The pot core consists of a bobbin which the winding is wound around and 
shielded by an outer layer lowering the EMI. Disadvantages are low thermal 
dissipation, high costs, and only available for low power ratings. 
 

E I Core E cores and similar consist of a simple bobbin with wide windows leading to good 
thermal dissipation and are simple to wind which reduces costs.   
 

PQ Core PQ cores have large windows and are quite similar to E cores. The PQ cores are 
mainly for higher power applications. 
 

Toroid The toroid shape leads to low leakage flux but high winding costs. Heat 
dissipation is poor due to the winding filling the middle hole however this 
depends somewhat on the filling factor. 

 

In magnetic components with the toroid shape it is according to [6] simple to vary the cores height 

due to no necessity of changing tooling option leading to possible custom shapes that could lead to 

better utilization of space, Micrometals report that they do this at no extra charge while a custom 

diameter have some costs. 

 Permeability 4.4

The permeability in ferrites is not often an important parameter in inductors since it is necessary to 

insert an air gap, to control the effective permeability. However in powder cores the permeability is 

given by the material properties and depending on the turns and current this permeability change, 

and this happens long before the material go into saturation.  

In a filter which purpose is to remove a high frequency ripple, and output a fundamental waveform 

or a constant this permeability dependence is hard to avoid. In the case of a fundamental waveform 

the permeability seen by the high frequency will depend on where on the fundamental waveform it 

is, at that time. When the fundamental is at the peak value the high frequency ripple will experience 

a large dc-bias. The results is that if you design the high frequency filter assuming there is no 

permeability change you can get a much larger ripple than anticipated.   

The H-field is used by some core manufactures to analytical express how much the permeability has 

changed by a given field. This means that at one point increasing the number of turns will actually 

decrease the inductance, and any turns above this should be avoided, since it decreases inductance 

and increases the losses. From the analytical data given by magnetics® this usually happened when 

the permeability has reached around 20 to 30 % of the initial value. The H field depends on the 

product of turns and current divided by the magnetic path length which means that for a given core 

the maximum NI that should be applied can be calculated. In Table 4-3 there are three examples of 

this limit for some different cores from Magnetics®, if you have 77 turns on the MPP and 10 A peak 

you would reach this limit. However the analytical data is not reliable at very high permeability 
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change like this, but it provides some insight into the limits of the materials. This data can be viewed 

in Figure 4-12 to Figure 4-15. 

Table 4-3 Examples of absolute maximum NI that should be applied to magnetics® powder cores 

Core Number Maximum NI [A T] H [A T/cm]  

C055089A2 (MPP) 771 86.14  
0077715A7 (KoolMµ) 862 67.8  
C058583A2 (HighFlux) 774 86.48  
C058548A2 (HighFlux) 1104 135.6  

This means in a powder core design you have to decide at what point on the fundamental waveform 

you want your high frequency filter to be designed at for example halfway to saturation or when the 

permeability have decreased to 75 %. That means that in cases where you have large NI the magnetic 

path length need to be long, which with toroid components increase the area taken up by the 

magnetic material by a large factor. However a core which can support large NI could be built by I 

blocks thereby taking up less space and having better cooling.  

A toroid shape has some benefits, and therefore an idea to increase the maximum NI would be to 

parallel two cores and wind them separately. This decreases the NI in each but also decreases the 

total inductance by a factor of two, however since inductance increases by the power of two in some 

applications this could be a very viable option instead of increasing the core size. Dividing the core 

into two separate also provides better cooling of the component, but care need to be used to make 

sure the current is divided evenly.  

Paralleling benefits of inductors have been verified by measurements, and can be viewed in section 

11.2.2 where a KoolMµ and a High Flux core was tested for increasing dc-bias and compared to a 

parallel connection of cores with twice the inductance. This has been plotted in Figure 4-10 and 

Figure 4-11. In the case of high flux with only 40 turns the inductance of a parallel connection of two 

50 turns’ cores gave an increased total inductance at 12 A dc bias. This might not seem like a lot but 

the product of NI is 600 so at 100 turns this positive shift would already happen at 6 A dc-bias which 

is not so large for the peak of a fundamental waveform. One drawback is a large increase in leakage 

capacitance, but these results depend on material and core size and should be further investigated.  

 
Figure 4-10 Comparison of the inductance in koolMµ with 

increasing Idc 

 
Figure 4-11 Comparison of the inductance in HighFlux with 

increasing Idc 

  

http://www.mag-inc.com/File%20Library/Product%20Datasheets/Powder%20Core/New%20Powder%20Cores/Toroids/715%20Size/0077715A7.pdf
http://www.mag-inc.com/File%20Library/Product%20Datasheets/Powder%20Core/New%20Powder%20Cores/Toroids/585%20Size/C058583A2.pdf
http://www.mag-inc.com/File%20Library/Product%20Datasheets/Powder%20Core/New%20Powder%20Cores/Toroids/548%20Size/C058548A2.pdf
http://www.mag-inc.com/File%20Library/Product%20Datasheets/Powder%20Core/New%20Powder%20Cores/Toroids/585%20Size/C058583A2.pdf
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Figure 4-12 Permeability versus dc bias in KoolMµ 

 
Figure 4-13 Permeability versus dc bias for XFlux 

 
Figure 4-14 Permeability versus dc bias for High Flux 

 
Figure 4-15 Permeability versus dc bias for MPP 
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Some cases where paralleling might be benefit able (mainly only when a smaller design is wanted): 

 Minimum size design: The permeability reduction is primary given by         therefore 

by splitting the current between two cores    can also be divided by two. This increases the 

losses and the leakage capacitance and therefore only applicable in designs where the core 

temperature is lower than the thermal limit.  

 When the optimal core size for the design falls between two standard cores, however some 

manufactures can provide custom sizes at higher costs.  

 When there are space issues and there is a maximum radius the core can have. Splitting a 

large core into several smaller could fit into tighter spaces. 

 When the core temperature is high.  

 The core losses increase by around the square of the peak flux density which means that 

splitting the ripple over two cores might reduce the total core losses, but this need to be 

further investigated.  

 Core loss 4.5

Core loss in general is covered in chapter 5, however this section will briefly explain the actual 

measured losses in powder cores and ferrites see section 10.2 for the measurement setup, and the 

more in depth results and discussion see section 11.1. Figure 4-16 and Figure 4-17 show the core 

losses in N27 and R ferrite for three different temperatures. It can be observed that the losses have a 

minimum at around 108°C which is common to avoid thermal runaway. The analytical data is 

accurate however it most likely predicts the losses for some other temperature point than what’s 

been plotted. In Figure 4-18 - Figure 4-17 the measured core losses have been plotted for different 

temperatures and flux density. It can be seen that KoolMµ have a large temperature dependency up 

to 180°C while the losses in High Flux and MPP do not significantly change with temperature. The 

analytical data provided by the manufacturer [12] underestimates the losses by a large factor for 

both koolMµ and MPP however some of this could be due to the inaccuracy in measuring core loss 

when the loss is very low. The analytical data is based on the Steinmetz equation and do not take 

temperature into consideration and can in some cases be inaccurate due to allot of interpolation this 

will be further explained in the next chapter. In Chapter 11 new Steinmetz parameters for the 

analytical data will be calculated.   

 
Figure 4-16 Measured loss in N27 at 5 kHz 

 
Figure 4-17 Measured loss in R ferrite at 5 kHz 
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Figure 4-18 Measured loss in KoolMµ at 20 kHz 

 
Figure 4-19 Measured loss in KoolMµ at 50 kHz 

 
Figure 4-20 Measured loss in HighFlux at 20 kHz 

 
Figure 4-21 Measured loss in HighFlux at 100 kHz 

 
Figure 4-22 Measured loss in MPP at 20 kHz 

 
Figure 4-23 Measured loss in MPP at 50 kHz 
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5 Core Loss 
Core loss is primary generated by two components dominating at different frequencies. Hysteresis 

losses dominate at lower frequency and are caused by the change in alignment of magnetic materials 

when a voltage is applied. Eddy current losses dominate at high frequency and in cores with high 

conductivity. Dc current does not directly contribute to losses in the core.  

Hysteresis loss 

Magnetic materials can be considered to be built up by large number of smaller regions with a north 

and south pole which follows the magnetic field, when the field changes according to faradays law. 

The particles rotate into alignment which takes time and due to friction energy is lost. In an ideal 

magnetic core this process starts with saturating the shortest flux pathways and moving outward 

creating a sharp boundary where the magnetic fields are opposite. The speed of this boundary 

depends on the flux density and frequency [1]. The increase in the magnetic field from the poles is 

termed relative permeability and is constant as long the average path of the flux density is constant 

this means that in a non-ideal core the relative permeability will be changing especially just before 

complete magnetization.  

Eddy loss 

Eddy losses are created in materials which are exposed to a time varying magnetic field. Following 

faradays law of induction a voltage will be induced and circulating currents will occur. The magnitude 

of the currents depends on the resistance of the material which makes it important to maximize the 

resistivity, especially in high frequency applications. Without laminations even at low frequencies 

such as 50 Hz the losses will be excessive in low resistive materials. One important point which is 

often overlooked is that eddy current losses actually are depending on flux density change. In a 

material operating at constant frequency the loss can be explained with Equation 5-1 where     is 

the induced voltage    the period, D the duty cycle and R the resistance of the material [1]. 

       
    

   

  
 Equation 5-1 

Excess loss 

The losses which are not explained by hysteresis and eddy losses is often summed into a term called 

excess loss and the exact mechanisms leading to them is not very well understood [2]. 

 Flux waveforms 5.1

Magnetic components are usually designed assuming sinusoidal flux waveforms to simply the design 

procedure, according to [4] this has been shown underestimate losses especially in ferrites. The 

waveform will depend allot upon the actual design, and have to be calculated on a case to case basis 

to obtain an improved analytical model of the system. 

In the case of an output inductor the flux change will depend on the voltage over the component 
which can be described by Equation 5-2  
                 Equation 5-2 
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The component will experience the fundamental output waveform and the ripple which can be non-

sinusoidal. The resulting flux waveform will have a major loop and a large number of minor  dc biased 

loops [5]. The main possible waveforms formations can be seen in Figure 5-1. 

 

Figure 5-1 Flux waveforms [5] 

 Loss models 5.2

There are three main approaches to core loss determination: hysteresis models, loss separation, and 

empirical models. The problem with the two first approaches is that they are based on parameters 

which are not usually available. The most common model is the empirical original Steinmetz equation 

(OSE) see Equation 5-3 which is based on curve fitting of measured loss data. 

        ̂  Equation 5-3 

Where    is the time average loss per unit volume,  ̂ is the peak flux f is the frequency of the 

sinusoidal excitation, k, β and α is material constants, normally available from manufactures which is 

only valid over a limited frequency and flux density change. Equation 5-3 can be solved for three 

operating points to determine k,   and   keeping frequency and temperature constant [3][11]. 

The drawback with the Steinmetz equation is that it assumes sinusoidal waveforms which are 

normally not the case in power electronics see section 5.1 and in some cases it has been shown that 

at the same frequency and amplitude the losses with non-sinusoidal ripple waveforms can be twice 

as much as the OSE predicts [4]. To determine loss for a wider spectrum of waveforms several 

models have been developed to overcome the limitations in the Steinmetz equation. The models 
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have been verified on ferrites, however in powder cores the non-sinusoidal losses have little effect 

[16].  

I. Modified Steinmetz Equation (MSE) 

The MSE is based on a hypothesis that core losses is related to the change in magnetic 

induction and replaces the frequency in Equation 5-3 with an equivalent frequency    . To 

determine     the induction change is averaged over a remagnetization cycle Bmax to Bmin and 

back, if the remagnetization is repeated with a frequency equal    the power loss will be 

Equation 5-5 [5]. 

     
 

     
∫  

     

  
    

 

 

 Equation 5-4 

 

    (    
    ̂ )   Equation 5-5 

Main limitations 

 The     averaging is arbitrary and limits accuracy. 

 The equation breaks down for sinusoidal waveforms. 

 

II. Generalized Steinmetz Equation (GSE) 

The MSE breaks down for sinusoidal waveforms and the GSE was introduced considering 

both the instantaneous value and the rate of change of magnetic induction. The proposed 

equation can be seen in Equation 5-7. The GSE has been experimentally verified as more 

accurate than the MSE method especially for waveforms with small fundamental amplitudes 

and at duty cycle near 0.5 [2].  

    
 

 
∫   |

     

  
|

 

 

 

|    |      Equation 5-6 

 

If we choose   as Equation 5-7 the result will equal the Steinmetz equation for sinusoidal 

waveforms.  

    
 

       ∫ |      | |      |     
  

 

 Equation 5-7 

 

The angle Θ is the phase angle of the sinusoidal waveform. 

Main limitations 

 Not accurate for all waveforms and sometimes worse than MSE. 

 

III. Improved Generalized Steinmetz Equation (IGSE) 

The IGSE is a continuation of the GSE which start to deviate from measured data at the point 

where the flux waveform start to have minor hysteresis loops therefore the IGSE calculates 

the loss separately for each minor loop and major loop taking into account the history of the 
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material. The IGSE modifies Equation 5-6 with    which is the peak to peak flux density at 

that point for that minor/ mayor loop [6]. 

    
 

 
∫   |

     

  
|

 

 

 

|  |      Equation 5-8 

 

    
 

       ∫ |      |       
  

 

 Equation 5-9 

 

The IGSE requires summation of loops and this has been implanted in a Matlab program [7] 

dc bias has been shown to vary the loss in ferrite cores and this has only by accident been 

taken into account into the IGSE model [6]. 

Main limitations 

 Dc bias is not accounted for. 

 Relaxation effects. 

 

IV. Improved-Improved Generalized Steinmetz Equation (I2GSE) 

The I2GSE was published February 2012 and the newest loss model published this is a 

continuation of the IGSE. In most of the previous models it has been assumed that there 

aren’t losses during periods of constant flux. Measurements have shown that this is not true. 

It is hypothesized that this is due to relaxation mechanisms which readjust the magnetic 

poles in the material to  

The I2GSE need 5 new parameters to explain the relaxation mechanisms and the parameters 

are only valid for limited ranges of flux density and frequency, this make it unsuitable for a 

modeling approach based on Steinmetz parameters.  

 

V. The Waveform Coefficient Steinmetz Equation (WcSE) 

The WcSE [9] correlate the losses for non-sinusoidal waveform to a sinusoidal by using a 

coefficient which describes the difference of area between the waveforms. See Equation 

5-10 where a triangular waveform has been used.  

 
    

    

    
 

 
 
 
 

 
 

 
 

 

Equation 5-10 

The correction factor is applied to the original Steinmetz equation. 

Main limitations 

 Less accurate than IGSE in some situations[14] 
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 Parameters influencing core loss 5.3

The loss models previously mentioned can be affected by a large number of outside parameters and 

this section presents the main parameters and if there have been observed any influence on the loss. 

I. Duty Cycle 

The duty cycle affects the error in the analytical approaches to modeling core losses as 

mentioned earlier. The loss of accuracy at higher duty cycle can be explained that the 

Steinmetz parameters being only valid for a limited range of frequency’s and at 0.95 duty 

cycle the slope of excitation would act as the slope of a 0.5 duty cycle at 10 times the real 

frequency, this was verified by some experimental data [2]. 

II. Dc Bias and low frequency 

Power electronic components is often exposed to dc or a low frequency magnetization which 

according to [11] have a large effect on ferrites and nanocrystalline materials while the effect 

in molypermalloy powder cores and silicon steel is small. The Steinmetz parameters β and k 

need to be adjusted with the dc-bias present, but do not affect frequency parameter α. This 

has been verified for several materials in [11]. 

III. Modulation Technique 

Influence of modulation technique on losses has have been investigated in [10] which 

mentions that in three phase inverters this phenomena is absent and is only found in single 

phase.   

IV. Power Factor 

The power factor influences on losses have been measured for an ac inductor ferrite in [12] 

which showed that the iron losses were not influenced much by the power factor.  

V. Geometric Factors 

[15] Investigates the effect of geometric factors on power loss and concludes that the radial 

flux change in toroid have little influence. However in laminated cores the losses increase in 

small toroid’s. 

VI. Temperature 

The temperature affects the core losses substantially and need to be considered in any 

analytical approach [11] but little documentation on how this influence the models have 

been found.  
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6 Winding Configuration 
Significant reduction in the cobber losses, leakage inductance and temperature can be achieved by 

optimal winding configuration. This chapter will cover high frequency losses in the windings by 

dowels equation, present Litz wire, Round wire and foil wire and some considerations that should be 

taken at high temperature design. The last section will cover parasitic inductance.  

 Introduction 6.1

The most basic relationship to configure the windings for high frequency components is the 

penetration depth Equation 6-1. As the frequency increases eddy currents are induced in the middle 

of the wire leads to an opposing current flowing. This reduces the current in the middle of the wire 

and more of the current flows on the surface. The simplest way to counteract this is to use Litz wires 

where a large number of smaller insulated wires is bundled together to form a single wire, see 

chapter 0.  

Equation 6-1 assumes that by the depth      the current density have decreased to e-1 of the surface 

current density. In this area it is assumed that the current is constant and deeper it is zero. As it can 

be seen in the equation the penetration depth increases with higher resistivity in the wire so in a high 

temperature design, larger Litz wires can be used compared to a normal temperature. Larger wires 

increases the thermal conductivity and fill factor however some problems might happened as the 

component is heated up to the operation temperature. The penetration depth from 0 to 100 kHz at 

50°C, 200°C and 400°C is plotted in Figure 6-1. 

 
     √

 

   
 Equation 6-1 

     Penetration depth 

  Resistivity at the operating temperature 
  Permeability 
  

 

Figure 6-1 100 k Hz skin depth at different temperatures 
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In a high frequency design the magnetic field configures itself to have the lowest losses which mean 

it is no longer the resistive effects deciding how the current will flow but the inductive. In a 

multilayer winding where most of the current is flowing along the surface of each wire, the lowest 

magnetic potential is obtained when current in one layer negates the current in the next. This effect 

leads to current on one side of the wire (    to flow in the opposite direction of the current on the 

other side (    even if this leads to large resistive losses. The total current still needs to equal the 

generated current and therefore a larger current flow in    this effect is called the proximity effect. 

See Figure 6-2 and can be modelled by dowels equations Equation 6-2 - Equation 6-6 in the case of 

sinusoidal current. Dowels equations are accurate in round conductor designs while in Litz wire they 

are only accurate up to when the penetration depth is twice as large as the wire size.  

 

 

Figure 6-2 Proximity effect in multilayer windings 
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 Equation 6-2 

  Factor 
      Radius of the wire 
 

 
    (

                

                
) Equation 6-3 

  Factor 
 

  
                  

              
 Equation 6-4 

  Factor 
                 

 
Equation 6-5 

   Factor 
m Number of layers 
           Equation 6-6 
    Ac resistance 
    Dc resistance 

 

    equals     at lower frequencies but as frequency and the number of layers increase     can 

become very large, see Figure 6-3 and Figure 6-4 where    /    have been plotted for 25°C and 

200°C. The temperature dependency in the skin effect decreases the relative resistance by 35% when 

the temperature increases to 200°C however the     base will also increase, and the overall 

resistance will be quite similar at different temperatures. In toroid cores the outer diameter is larger 

than the inner therefore you will end up with more layers on the inner radius than on the outer 

which should be taken into account by for example approximating that half the winding have twice 

as many layers as the other part. However this should be further investigated.   

 
Figure 6-3 Rac/Rdc for Od = 1.25 mm at 25 °C 

 
Figure 6-4 Rac/Rdc for Od = 1.25 mm at 200 °C 

  



Winding Configuration  2013

 

 
 38 
 

 Litz wire 6.2

In high frequency designs multi stranded wires helps avoid the large increase in     but it is not as 

simple as having some number of parallel wires, they have to be twisted and insulated from each 

other to gain the high frequency benefits. The increase in area due to insulation will for a for a fixed 

outer diameter lead to less space for cobber as the number of wires increases and therefore lower fill 

factor, and thermal conductivity is reduced.  

According to [4] the basic Dowel 1-D equation described in Equation 6-2 - Equation 6-6 can seriously 

underestimate the winding losses in Litz wire and [5] reports an error of 60 % with Dowel. However 

[5] have developed a simplified equation with an error less than 4% based on 2-D simulations. The 

large error with Dowel equations is primary in cases where the wire diameter is larger than the 

penetration depth and therefore only in such cases a modified approach should be considered.  

Litz wire for temperatures above 155°C do not seem to exist commercially at least in any 

manufacturers investigated by me, or by SmartMotor, however [3] reported during a conference that 

they had Litz wire for 180°C. The temperatures classes normally reported is at 130°C and 155°C which 

make them the B and F thermal class, more on this in the next chapter. 

Litz wire for 200C was necessary to perform the high temperature measurements described in later 

sections, and therefore a small test with differential scanning calorimetry was performed in 

cooperation with Assoc. Prof. Frank Maurseth showing that no melting effects appeared in an 

insulation of a sample of BLOCK CLI 30 x 0.1 Φ Litz wire in the range from 25°C-200°C. This means 

that for short term tests this type of Litz wire can be used without much degradation of the 

insulation however thermal ageing is likely very present.  

At operation temperatures outside of the rated, there are high possibilities of turn to turn damage 

and short circuits due to thermal ageing, therefore the resistance before and after the 

measurements should be checked. And if these parameters do not change the windings should not 

have been damaged during the tests. In two experiments carried out the windings was damaged 

after prolonged exposure to high temperature, and had to be repeated.  

Table 6-1 summarizes the advantages and disadvantages for Litz wires, the easy bending of wires is 

especially advantageous in toroid cores due to the geometry.   

Table 6-1 Advantages and disadvantages with Litz wires [2]. 

Advantages Disadvantages 

Low eddy losses Low fill factor 
Easy to bend Low thermal conductivity 

 High costs 
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 Round wire 6.3

Round wires are the most common wires and can be fitted on a magnetic component with either 

square fitting Figure 6-5 which under ideal conditions reach a fill factor of 0.7854. Or hexagonal 

fitting see Figure 6-6 which under ideal conditions have a fill factor of 0.9069, under normal 

conditions you will get a mix between the two [2]. Large round wires have better thermal 

conductivity than Litz wire due to a lower insulation to cobber ratio. See Table 6-2 for the advantages 

and disadvantages with round windings [2]. 

 

 
 
 

 
 

Figure 6-5 Square fitting 

 
Figure 6-6 Hexagonal fitting 

Table 6-2 Advantages and disadvantages with round wires 

Advantages Disadvantages 

Low cost High fill factor 

High eddy losses High thermal conductivity 
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The insulation which is often used for round wires in magnetic components is enamel however 

during experimentation at higher temperatures it was discovered that the insulation in all samples 

(3) using enamel became damaged along the borders, where the wires had been bent. This 

happened at temperatures below the rated insulation temperature and far below the maximum peak 

temperature.  

Figure 6-7 and Figure 6-8 shows the damaged insulation in two of the samples. In the second picture 

most of the turns have been removed revealing that there is damage in all layers. This was not 

investigated in detail and might be solved by having a larger bending diameter putting less stress on 

the insulation but this will again lead to a looser winding which take more space and have other 

negative sides The damaged insulation lead to a short circuit in the winding which in one case 

resulted in a meltdown of most wires behind the component since the high frequency ripple was 

able to pass through. In the two other cases it was found by measuring the resistance of the coils 

before and after the damage happened.  

 
Figure 6-7 Damage to enamel insulation operated at 170 °C  

 
Figure 6-8 Damage to enamel insulation operated at 

180.5 °C 

 Foil winding 6.4

Foil windings have very low eddy losses for fields parallel to the foil, and is most commonly used 

when you need a high cobber cross section. Large insulated foils of cobber or aluminum is wound 

around the core providing a very large surface area which leads to the low eddy losses.  Leakage flux 

especially in gapped core can induce large eddy currents and losses in the foils if they are located to 

close to the gap. To avoid this, the common solution is to move the foil further out from the core. 

See Table 6-3 for the advantages and disadvantages with foil windings [2]. 

Table 6-3 Advantages and disadvantages with foil windings 

Advantages Disadvantages 

Low costs Hard to fit 
Low eddy losses  
High filling factor  
High thermal conductivity  
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 Parasitic capacitances 6.5

The parasitic capacitances in high frequency magnetic components can have a large effect on the 

performance of the components and the full system. Leakage capacitance distorts the output 

waveform, decreases the efficiency of the system and stray capacitance between the turns leads to 

increased EMI, and ringing. At increasing switching frequency the leakage capacitance have a larger 

and larger effect. The parasitic capacitance is heavily geometry dependent and can be split into three 

main factors.  

 Capacitances between windings 

 Self-capacitance of the winding 

 Capacitance between the winding and the core 

Capacitances between windings (        

In a transformer there will be leakage capacitance between the windings, which is often the cause of 

common mode current and therefore EMI. The effect of the capacitances between the windings is 

that when steps in the common mode voltage happen, a charge equal to          is injected. The 

current injected resonates with the leakage inductance causing ringing effects.         can be 

calculated with Equation 6-7 [2].  

 
       

        

    
 Equation 6-7 

   Permittivity of air 
   Relative permittivity 
     Area between the windings 
     Distance between the different windings 
 

Reducing        can be done by increasing the distance between windings, reducing the turns in each 

winding and reducing   . 

 

Self-capacitance of the winding 

Self-capacitance results in parallel resonances with leakage or magnetizing inductance, and leads to 

ringing effects. The self-capacitance can be split into two main components.  

1. Layer to layer 

In a multilayer winding there will be a parasitic capacitance between the layers, providing 

shortcuts for high frequency noise.  

2. Turn to turn 

The parasitic capacitance between turns this results in a network of capacitances, connecting 

all the turns in a winding.  

Capacitance between the windings and the core 

There will be a parasitic capacitance between the core and the windings, which especially in ferrite 

designs can increase the apparent equivalent intra capacitance [2]. 
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 Equivalent model 

The distributed parasitic captaincies can be lumped together to form an equivalent model as seen in 

Figure 6-9 [6]. Here C describes the leakage capacitance, R the resistivity in the component and L the 

inductance. The equivalent C is can be measured se section 10.5. 

 

 

Figure 6-9 Inductor equivalent circuit 

Single layer inductors have been shown to have the minimum inductance however this might be 

impossible to obtain in cases where high inductance or small core size is necessary. Therefore some 

techniques can be used to decrease the leakage inductance: 

1. Bank winding minimizes the voltage difference between layers this is performed by winding 

both layers at once. First a turn is added to the first layer, and then the next turn is added to 

the second layer and then a turn on the first layer again. Larger wire diameters complicates 

this process so for Litz wire it might be a viable option however as the wire diameter 

increases the process get complicated and expensive.  

2. Litz wire should be avoided due to much larger leakage capacitance compared to single 

strand wires, and in some cases it might be better to have larger winding losses and switch to 

enamel or similar windings, this also increases the thermal conductivity in the winding. 

3. Another possibility is to wind the core with less tension on the wires making a louse winding 

which will decrease the leakage capacitance, and also increase the thermal conductivity. 

4. [8] report that by inserting a air gap between the winding layers the self-capacitance was 

decreased 8 times this is a quite simple method to decrease the capacitance compared to the 

method in 1. 

5. A newer and more complicated method of decreasing leakage capacitance is to create 

negative capacitances which are connected to the core which will deliver a negative charge 

cancelling the injected charge [7] but this depends allot on the circuit topology.   

6. Ring cores indirectly leads to larger leakage capacitances due to the inner radius being 

smaller than the outer, so in a multilayer design if there is two layers on the outer radius it 

might be 4 on the inner increasing the layer to layer leakage capacitance.  
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Leakage capacitance Measurements 

Three C058583A2 cores were wound with different winding methods and measured see section 10.5 

and 11.3 for more details and other measurements on leakage capacitance. Strategy one (Figure 

6-11) and four (Figure 6-12) was tested and compared to a baseline (Figure 6-10). 

Normal winding 
A core with 50 turns of 120 0.1mm Litz wire was 
wound on a C058583A2 core to get a basic idea 
about the leakage capacitance in inductor 
cores. The impedance plot can be seen in Figure 
6-10 and the measured values in Table 6-4. The 
secondary peak is likely caused by the inductor 
to earth capacitance.  
 
Table 6-4 Measured values for a normal winding 

L [µH] C [pF]   [kHz] 

247.6 261.2 624.9 
 

 
Figure 6-10 Impedance versus frequency for a normally 

wound core 

Bank winding 
A bank winding was wound on a C058583A2 
core this decreased the leakage capacitance by 
43 % as can be seen in Table 6-5 and Figure 
6-11. The secondary peak has also disappeared 
or been moved outside the scope of the 
measurement which was up to 30 MHz.  
 
Table 6-5 Measured values for a Bank winding 

L [µH] C [pF]   [kHz] 

304.4 150  742.6 
 

 
Figure 6-11 Impedance versus frequency for a bank winding 

Air gap between the layers 
A winding with an air gap of 3.4 mm between 
the layers was wound using a Scotch 
transparent tape. This resulted in a 38.3 % 
reduction in leakage capacitance. However due 
to the 3 mm of tape the inner radius became 
smaller leading to the windings in the outer 
layer being packed more together which likely 
raised the leakage inductance.  
 

Table 6-6 Measured values an inductor with air gap 
between layers 

L [µH] C [pF]   [kHz] 

254.2 161 785.7 
 

 
Figure 6-12 Impedance versus frequency for a winding with 

air gap between the layers 

 

 

http://www.mag-inc.com/File%20Library/Product%20Datasheets/Powder%20Core/New%20Powder%20Cores/Toroids/585%20Size/C058583A2.pdf
http://www.mag-inc.com/File%20Library/Product%20Datasheets/Powder%20Core/New%20Powder%20Cores/Toroids/585%20Size/C058583A2.pdf
http://www.mag-inc.com/File%20Library/Product%20Datasheets/Powder%20Core/New%20Powder%20Cores/Toroids/585%20Size/C058583A2.pdf
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7 Thermal Aspects & Models 
The losses generated by windings and core losses lead to a temperature increase, and the heat 

generated are transported to the surroundings by different heat transfer mechanisms: conduction, 

convection and radiation. Inside the component primary conduction and radiation transports the 

heat outward, while on the surface radiation and convection cools the core down. The convection 

can be forced or natural depending on the external cooling system.  

The heat generation is according to [3] the main limitation in magnetic components experiencing a 

heating higher than 100 mWcm-3. A high temperature leads to rapid deformation of the winding 

insulation, and can destroy the lamination in powder cores, or if the temperature is above the curie 

temperature melt the magnetic material. An accurate analytical model of the temperature rise leads 

to better optimization of the component. This chapter will cover the basics heat transfer models for 

magnetic components and create thermal model of toroid’s. 

 Introduction 7.1

The theoretical thermal upper limit for magnetic components can be split into several factors: 

 The internal temperature limit for the core is governed by hotspots in the magnetic material, 

which temperature needs to be limited to well below the curie temperature. Powder cores 

have a high curie temperature compared to ferrites, and in the latter case more attention 

need to be paid to this limit. 

 Core coating and binding agents have a relatively low maximum operation temperature and 

in powder cores the epoxy coating is limited to 200°C  

 Adjacent components thermal limit.  

The standard thermal class according to the IEC 317 for inductive modules is listed in Table 7-1 and 

represents the maximum temperature under rated load [7]. 

Table 7-1 Thermal classes for inductive modules 

Thermal class Maximum allowed temperature °C 

Y 90 
A 105 
E 120 
B 130 
F 155 
H 180 

200 200 
220 220 
250 250 
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 Thermal modeling 7.2

Thermal modeling is important to improve core loss calculations and avoid overheating of the 

component under operation. The two heat sources are core and winding losses, depending on the 

design the core losses might be more critical than winding losses. In a large winding design with 

several winding layers, the core losses are insulated far better from the surroundings than in a single 

layer design. Therefore a rule of thumb is that as the winding layers increase, the core losses have to 

decrease to stay below the temperature limit.  

 COMSOL model 7.3

A simple COMSOL model to simulate the heat transfer was created using the conjugate heat transfer 

module. The purpose of the model is to have a fast way to determine how accurate the results by the 

analytical program was in terms of heat transfer, and since COMSOL is widely recognized in the 

industry as an accurate tool for modeling different physic systems, with a finite element models. This 

should give a good comparison to the developed models.    

Basic model 

The first model created was to determine how accurate the convective cooling and radiation 

equations that will be sown in the next chapters. The model consists of a toroid assumed to be lying 

flat with the properties of Table 7-2. Meshing and was done by the automatic physics controlled 

mesh see Figure 7-1, and a finer mesh did not improve the results meaning the model is mesh 

independent.  

The conjugate heat transfer conditions applied was:  

 External natural convection with vertical wall on the outer and inner surface.  

 External natural convection with horizontal plate, Upside on the upper part. 

 External natural convection with horizontal plate, downside on the lower part. 

 Surface to ambient radiation on all surfaces. 

 

Table 7-2 COMSOL Model inputs 

         Value 

Outer Diameter 51.7 mm 
Inner Diameter 30.9 mm 
Height 14.4 mm 
Power generated 10    W 
Material Cobber 
Mesh Normal 
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Figure 7-1 Toroid mesh 

 
Figure 7-2 Simulation results. 

 

 Heat transfer by conduction 7.4

Conduction is the transfer of energy by interactions between atoms, and electrons which transfer 

kinetic energy among each other to obtain a steady state. This kind of heat transfer can be modeled 

by a temperature gradient ΔT and the material property, thermal conductivity   [1] see Equation 7-1. 

 
 ̇        

  

  
  Equation 7-1 

  
 ̇ Heat flux 
    Thermal conductivity 
 

According to [5] conduction is independent of temperature for most materials. It is difficult to 

determine the thermal conductivity on interfaces between surfaces, which means experiments are 

necessary to find these values. The thermal conductivity of some materials likely to be found in 

magnetic components is listed in Table 7-3.  

Table 7-3 Thermal conductivity for some materials [7] 

Material Temperature Conductivity   [Wm-1°C] 

Aluminum (T = 100°C)  206 
Ferrites (MnZn,NiZn) (T = 100°C)  3.8 
Copper (T = 100°C)  379 
Epoxy resin(unfilled) (T = 100°C)  0.78 
Epoxy resin(filled) (T = 100°C)  0.25 
Transformer oil (T = 100°C)  0.12 
Cardboard (T = 100°C)  0.04 
Water (T = 20°C) (T = 20°C)  0.6 
Air (T = 30°C) (T = 30°C)  0.026 
Air(T = 70°c) (T = 70°C)  0.030 
MPP, KoolMµ, High Flux, Xflux -  8 
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 Heat transfer by convection 7.5

Heat transport by convection refers to the superposition of conductive heat transport and energy 

transport due to macroscopic movements of the fluid [1]. The temperature profile out from a solid 

object and into a liquid will follow an exponential decreasing curve called the boundary layer see 

Figure 7-3 and Figure 7-4. The thickness of the boundary layer is approximately λ/  where   is the 

heat transfer coefficient which depends on the fluid, process and geometrical configuration. The heat 

flux can be calculated by Equation 7-2 [1]. In order to achieve high power density in the component 

active or forced cooling is preferred see the next section.  

  ̇                    Equation 7-2 
  
    Mean convection heat transfer coefficient. 
      Surface temperature 

      Flow temperature 
 

  

Figure 7-3 Boundary layer fluid velocity profile 
perpendicular to a wall 

Figure 7-4 Boundary layer Temperature profile 
perpendicular to a wall 

 

 Natural convection and forced convection 7.6

A convection process which is not influenced by any outside factors are called natural convection, 

and only density gradients near the surfaces  exchange heat, if an external factor like a fan or similar 

leads to a fluid flow it is called forced convection.  

Forced convection reduces the surface to ambient resistance but do not affect the internal resistance 

on the other hand, increasing the forced convection to high values will create a high temperature 

gradient inside the component. This will lead to high thermal stress which could break ferrites and 

reduce the lifetime of insulation [7]. 
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According to [9] the complicated flow separation process which happened along the boundary layer, 

it is impossible to analytically express the heat transfer coefficients for forced convection, but based 

on experimental data the flow across cylinders can be calculated by Equation 7-3. 

 
    

  

 
(
   

 
)
 

 
  

 
  Equation 7-3 

 
    Mean convection heat transfer coefficient. 
  Height of the magnetic component 
  Thermal conductivity 
n,C Constants which depends on geometry found in [7] 
   Velocity of the flow 
  Kinematic viscosity 
    The prandtl number at the film temperature 

 
Main limitations 

 The constants n and C is only available for limited number of configurations 

 Do not consider all temperature dependent effects 

For forced convection in atmospheric pressure in air Equation 7-3 can be simplified to Equation 7-4 

which is valid up to   = 12 m/s [7] and it combines both forced and natural convection. 

                
      

       Equation 7-4 
 
   Total distance of the boundary layer 
 
The total distance of the boundary layer (  ) can be found by approximating the distance of the 
boundary layer see Figure 7-5. 

 

Figure 7-5 The total distance of the boundary layer Lt= a+b+2(d
2
+e

2
)

0.5
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Natural convection can be expressed by Equation 7-5 [7]. 

 
     (

 

    
)

     

(
  

      
 )

      
       

      
  Equation 7-5 

 

Main limitations 

 The constants n and C is only available for limited number of configurations 

The previous recommended models are not valid for temperatures above 400 K therefore a high 

temperature model needs to be developed from scratch. The basic equations will is described in the 

following equations see [1] for a more details.  

The heat transfer models for natural convection that have been developed for circular toroid’s are 

based on the general expression of convective heat transfer from isothermal three dimensional 

bodies see Equation 7-11. 

   
   

   
 Equation 7-6 

  Kinematic viscosity 
    Density of the cooling fluid 
    Dynamic viscosity 
 
The prandtl number describes the ratio of momentum diffusivity to thermal diffusivity see Equation 

7-7.   

 
   

      

 
  Equation 7-7 

 
Pr Prandtl number 
  Kinematic viscosity 
   The constant pressure specific heat capacity 

  Thermal conductivity of the fluid 
 
 

  
 

     
 Equation 7-8 

   The thermal diffusivity 
 
Natural Convection 

Convection by natural sources can be described by the Grashof number Equation 7-9 which describes 

the ratio of internal driving force to a viscous force acting on the flow, this relationship is valid up to 

Gr = 109
 and the flow is turbulent for larger values. 

 
   

        

  
 Equation 7-9 

Gr Grashof number 
  The characteristic length 
  Gravity constant 
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    The thermal volume expansion coefficient 
   Difference between wall and bulk fluid temperature 
 

The Rayleigh number Equation 7-10 is a dimensionless number associated with the heat transfer 

within the fluid in natural convection. 

         Equation 7-10 
Ra Rayleigh number 
 
Natural Convection on Vertical Surfaces 

The Nusselt number describes the improvement of heat transfer compared to a hypothetical static 

fluid. The Nusselt number can be found by Equation 7-11 and Equation 7-12. 

Vertical cylinders natural convection: 

 
   (                     

 
  )

 

 Equation 7-11 

   function 
   Nusselt number 
 
 

        [  (
     

  
)

 
  

]

  
  
 

 Equation 7-12 

 
Horizontal cylinders natural convection: 

 
   (                   

 
  )

 

 Equation 7-13 

 

 

        [  (
     

  
)

 
  

]

  
  
 

 Equation 7-14 

 

 
    

   

 
 Equation 7-15 

Examples of he expected thermal conductivity in smaller toroid’s can be seen in Table 7-4 it can be 

seen that the ambient temperature only have a minimal influence on the thermal conductivity, 

however it is a small negative influence. This is possible due to the density of the air is decreasing.   
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Table 7-4 Thermal conductivity examples  

Core                          

C058583A2   = 13.62    = 12.42 ΔT = 86    = 13          = 11.72  ΔT = 88 
C055089A2   = 10.98    = 10.31 ΔT = 91   = 10.23    = 9.54    ΔT = 93 
0077715A7   = 11.23    = 10.02 ΔT = 86.92   = 10.47    = 9.2      ΔT = 88 
Core                        
C058583A2   = 11.38   = 10.3 ΔT = 51    = 10.84    = 9.73  ΔT = 52 
C055089A2   = 9.0       = 8.44 ΔT = 33   = 8.45      = 7.85  ΔT = 34 
0077715A7   = 9.24     = 8.2 ΔT = 31   = 8.69      = 7.57  ΔT = 32.6 

 

Forced Convection 

Forced convection happen when there is an external source of fluid flow that can be described by 

Equation 7-17.  This equation relates forced convection to Rayleigh number which is used instead of 

the Nusselt number in Equation 7-15. The characteristic length L is different than in natural 

convection since, this is the boundary the fluid move along on its path around the component, and 

has to be calculated based on the actual fluid movement.  

 
   

  

 
 Equation 7-16 

   Reynolds  number 
w Fluid velocity 
 
         Equation 7-17 
   Rayleigh  number 
 

The previous equations require experimental data which have been found and are located in Table 

7-5 for air and oil, T is evaluated at the point halfway between ambient and surface temperature. 

Table 7-5 Thermal properties of Air and Oil [8] T in Celcius 

Air     1.225 273/(T+258)  [Kg m-3] 

β   1/(T+273) [K-1] 
    16.8 10-6+52 10-9 T [Kg m-1 s-1] 
λ 0.0242+6.2 10-5 T [W m-1  -1] 
   1000 [J kg-1 K-1] 

Oil     887-0.659 T [Kg m-3] 
β   8.6 10-4 [K-1] 
    0.13573 10-5exp(2797.3/(T)+273) [Kg m-1 s-1 ] 
λ 0.124-1.525 10-4 T [W m-1  -1] 
   1960+4.005 T [J kg-1 K-1] 

 

  

http://www.mag-inc.com/File%20Library/Product%20Datasheets/Powder%20Core/New%20Powder%20Cores/Toroids/585%20Size/C058583A2.pdf
http://www.mag-inc.com/File%20Library/Product%20Datasheets/Powder%20Core/New%20Powder%20Cores/Toroids/715%20Size/0077715A7.pdf
http://www.mag-inc.com/File%20Library/Product%20Datasheets/Powder%20Core/New%20Powder%20Cores/Toroids/585%20Size/C058583A2.pdf
http://www.mag-inc.com/File%20Library/Product%20Datasheets/Powder%20Core/New%20Powder%20Cores/Toroids/715%20Size/0077715A7.pdf
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 Heat transfer by radiation 7.7

The energy transmitted to the surroundings by electromagnetic waves is called radiation, and is both 

small compared to other mechanisms and demanding to model [5]. The heat transfer by radiation 

can be estimated by Stefan-Boltzmans law see Equation 7-18 [4].      is the radiated power, E is 

emissivity of the surface    is the surface temperature ,    the ambient temperature and A is the 

effective surface area. 

                           
       

   Equation 7-18 

 
ε Emissivity 
     Effective core area 

 
The emissivity of some surfaces have been investigated and listed in Table 7-6 these values can be 

used to calculate the thermal dissipation from radiation. Using the value for ferrites the radiated 

power for some temperatures are given in Table 7-7., it can be seen that at the extreme case with 

the ambient temperature of 250°C and ΔT of 100°C the power dissipation ability has increase nearly 

fivefold. 

Table 7-6 Emissivity of some surfaces [7] 

Material Temperature  Emissivity [-] 

Aluminium polished (T = 100°C)  0.04 
Ferrites  (T = 100°C)  0.95 
Copper polished (T = 100°C)  0.052 
Isolation paper (T = 100°C)  0.9 
Enamel (T = 100°C)  0.9 
Enamel Copper (T = 100°C)  0.9 
Typical Transformer  Na  0.58 [9] 

 

Table 7-7 Radiation at different temperatures 

Case E             Rθ 

Close to normal temperature             0.9 293 393 845.6 A 0.118/     

Elevated temperature             0.9 418 518 2245.5 A 0.045/     

Extreme temperature                           0.9 518 618 4000 A 0.025/     

 
The heat transfer from radiation depends on the surface area which is able to radiate energy away 

from the component. This means that the effective surface (enveloped surface) is smaller than the 

real surface area, the enveloped surface includes all vertical parts but in areas where the radiation 

from two surfaces will interact with each other the radiation will be lower than the sum of the 

surfaces and this can be approximated by the Pythagorean theorem. 

The effective surface area for toroid’s can be calculated with Equation 7-19 and Equation 7-20 [10]  

 
  

  

   
  √

  
 

   
     

  

   
  Equation 7-19 

F View factor 
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    Core outer diameter including wire 
    Core inner diameter including wire 
   Core height including wire 
 

          (   
     

 )                 Equation 7-20 

 

The equations describing the heat transfer from radiation is not easy to experimentally verify due to 

convective heat transfer, but a COMSOL model was created based on the KoolMμ sample described 

in Table 10-1 with 10 W of internal power generated and an emissive coefficient of 0.5 to compare 

the different ways to calculate the effective surface area. COMSOL do not use the effective surface 

area Equation 7-20. The deviation in surface area between the two formulas for the mentioned 

model is only 6.71 %. 

 

Figure 7-6 COMSOL model of a core including only radiation 

 Mounting 7.8

There are primarily 6 different ways a toroid core can be mounted to a PCB and located in space and 

this can have allot to say for the cooling efficiency, however the cooling options might be limited due 

to space issues. The different options are: 

 Vertical mounted core on a vertical PCB this option lets air pass through the component 

increasing cooling and more space  
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 Horizontal mounted core on a vertical PCB this do not let air pass through the core reducing 

the cooling efficiency, however a small air gap can be created between the PCB and core to 

increase the cooling. 

 The two previous options under the PCB. 

 The two first options just on a vertical PCB. It is likely that this have the overall best cooling 

efficiency.  

Depending on previous described cases the characteristic length changes and have to be calculated 

for each case, and which surfaces that a vertical and horizontal changes which have to be taken into 

account in any model. In Figure 7-7 vertical and horizontal mounted cores are shown. 

 

Figure 7-7 Horizontal and vertical mounted cores 

  Empirical thermal model 7.9

The temperature rise of an inductor core can be estimated by a best fit curve based on empirical data 

[6] which has been shown to have an error of less than five percent [2]. This approach is 

recommended from several magnetic core manufactures but do not take into account other cooling 

options than natural convection with air. 

 
          (

 

   
)
     

 Equation 7-21 

 

  Power loss W 
  Surface area including the windings m2 
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Main limitations 

 Do not consider ambient temperature 

 Do not consider forced convection or heat sinks 

 Do not consider geometry or how the core is mounted 

 Only available for air 

 

 Model comparison 7.10

The different thermal models have been compared to a COMSOL model of the same core in  

Table 7-9. The model includes that all surface areas radiates energy, and natural convection is in 

effect. The model data can be seen in Table 7-8. The measured values were performed by driving a 

large 50 Hz current through a core with 16 turns of Litz wire. The COMSOL model do not take into 

account the increase of surface area due to the windings, while empirical model assumes that the 

whole surface area is covered which means that it would overestimate the temperature by a small 

bit, if the core was fully covered in turns. It can be observed that analytical model overestimates the 

temperature by a large factor and therefore the empirical model should be used. This problem was 

not discovered due to some parameters which was wrong leading to very good results in the tested 

cases. The problem is most likely related to the calculation of surface area since both the COMSOL 

model and analytical model have problems. 

Table 7-8 COMSOL model data for C058583A2  

Variable Value Unit Description 

Od 51.7 [mm] Outer diameter 
Id 30.9 [mm] Inner diameter 
Ht 14.4 [mm] Height 
ε 0.58 [-] Emissivity 
 

Table 7-9 Comparison of temperature increase in C058583A2 for natural convection 

Power [W]  COMSOL 
[°C] 

 Analytical 
[°C] 

 Empirical 
[°C] 

 Measured Values    
[°C] 

10  95.65  98  42.83  56.7 
3  36.10  22  15.71  21.3 
1  14.41  17.3  6.29  9.6 

 
A second sample was prepared with 106 turns of Litz wire on a C058583A2 to see how the models 

perform on a core with windings, it can be seen that the COMSOL model is do not manage to predict 

the losses accurate in the way it is designed. However as the temperature increases the analytical 

model outperforms the empirical model.   

 

 

http://www.mag-inc.com/File%20Library/Product%20Datasheets/Powder%20Core/New%20Powder%20Cores/Toroids/585%20Size/C058583A2.pdf
http://www.mag-inc.com/File%20Library/Product%20Datasheets/Powder%20Core/New%20Powder%20Cores/Toroids/585%20Size/C058583A2.pdf
http://www.mag-inc.com/File%20Library/Product%20Datasheets/Powder%20Core/New%20Powder%20Cores/Toroids/585%20Size/C058583A2.pdf
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Table 7-10 C058583A2 including windings  

Variable Value Unit Description 

Od 39 [mm] Outer diameter 
Id 11 [mm] Inner diameter 
Ht 16 [mm] Height 
ε 0.58 [-] Emissivity 
 

Table 7-11 Temperature comparison in C058548A2 with 106 turns of 120 x 0.1 Litz wires with natural convection cooling 

Power [W]  COMSOL 
[°C] 

 Analytical 
[°C] 

 Empirical 
[°C] 

 Measured Values    
[°C] 

10  121  117  83.71  91 
3  46.7  48  30.7  30 
1  18  12.57  12.29  17.35 

 
The 106 turns C058583A2 test was repeated at 100 °C ambient temperature, and the results can be 

seen in Table 7-12. However to keep a stable ambient temperature at 100 °C is complicated 

especially since forced convention is necessary to increase the temperature in the heating chamber, 

and very low accuracy in the measured values is to be expected. It can be seen that the core 

increases in temperature in comparison to the ambient for the COMSOL model this could be due to 

convective cooling is reduced at higher temperature, due to lower air density or other factors.   

Table 7-12 Temperature comparison in C058548A2 with 106 turns of 120 x 0.1 Litz wires with natural convection cooling 
at 100 °C ambient temperature 

Power [W]  COMSOL 
[°C] 

 Analytical 
[°C] 

 Empirical 
[°C] 

 Measured Values    
[°C] 

10  197.04  164  183.71  157.87 
10  197.04  164  183.71  148.5 
3  156.18  139  130.7  112.5 
3  156.18  139  130.7  117 

 

 Winding thermal resistance 7.11

The thermal resistance of a single layer winding is according to [11] in the range from 0.6 to 1.5 Wm-

1K-1 at a fill factor of 0.5.  In a multilayer design like a Litz wire COMSOL modeling of the problem 

shows that the thermal conductivity for multilayer design is close to that of a single layer. By varying 

the copper area and insulation the thermal conductivity at different fill factors was obtained [11] see 

Figure 7-12. 

This model do not consider the heat generation within the windings therefore the model in [11] was 

replicated in COMSOL with 50% of the heat loss in the windings and 50% in the core see Table 7-13. 

Rearranging Equation 7-1 yields Equation 7-22 to calculate the thermal conductivity. 

 

 

http://www.mag-inc.com/File%20Library/Product%20Datasheets/Powder%20Core/New%20Powder%20Cores/Toroids/585%20Size/C058583A2.pdf
http://www.mag-inc.com/File%20Library/Product%20Datasheets/Powder%20Core/New%20Powder%20Cores/Toroids/548%20Size/C058548A2.pdf
http://www.mag-inc.com/File%20Library/Product%20Datasheets/Powder%20Core/New%20Powder%20Cores/Toroids/585%20Size/C058583A2.pdf
http://www.mag-inc.com/File%20Library/Product%20Datasheets/Powder%20Core/New%20Powder%20Cores/Toroids/548%20Size/C058548A2.pdf
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 Equation 7-22 

  
  Length from the heat source to the boundary 
  Width of material 
d Depth of material  
 

Table 7-13 COMSOL model data for the windings 

Variable Value Unit Description 

    401 [Wm-1K-1] Thermal conduction in copper 
            0.5 [Wm-1K-1] Thermal conduction in insulation 
     0.03 [Wm-1K-1] Thermal conduction in air 
      5 [W] Heat source in the core 
    5 [W] Heat source distributed evenly in the layers 
     2 10-4 [m] Insulation thickness  
    2 10-6 [m2] Copper wire cross section in each layer 
Fill factor 0.5 [-]  

 
The Thermal conductivity in the cases where the losses in the windings equals those in the core 

increases   to 0.76 Wm-1K-1. However with two layers   decreases to 0.727, three layers 0.6816 and 

10 layers 0.699 see Figure 7-8 - Figure 7-11. In practice it is nearly impossible especially in toroid’s to 

have a perfect winding pattern so these values should be used as a maximum for the thermal 

coefficient.  A simulation with-non ideal winding configuration can be seen in Figure 7-13 decreasing 

  from 0.6816 to 0.273, somewhere between these values is the likely true heat conductivity for a 

three layer design.  

 
Figure 7-8 Heat conduction 

in a single layer 

 
Figure 7-9 Heat Conduction 

in two layers 

 
Figure 7-10 Heat 

conduction in three layers 

 
Figure 7-11 Heat 

conduction in ten layers 

 
The fill factor in the winding section also affects the thermal conductivity and lower fill factor means 

that more of the winding area is isolation and air, this have been plotted in Figure 7-12 for a single 

layer. 
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Figure 7-12 Thermal conductivity for different fill factors [11] 

 
Figure 7-13 Heat conduction for non-ideal 

windings 

In Table 7-15 values for the thermal conductivity in 9 different cases have been listed depending on 

where the loss is located and layers. These values will in the next chapter be used as a part of a 

thermal model of magnetic components.   

Table 7-14 Thermal conductivity for different configurations with 50 % fill factor 

Layers Core loss 25% Core loss 50% Core loss 75% 

1 0.91 0.76 0.65 
2 0.9 0.75 0.64 
3 0.82 0.681 0.58 

10 0.84 0.7 0.6 

 Core thermal resistance 7.12

The thermal conductivity of different magnetic materials is listed in Table 4-1 - Table 4-2 and can be 

used to calculate the thermal resistance of the core. For an uncoated core this resistance is close to 

zero and can be neglected, however in the case of powder cores, the epoxy coating have a much 

lower thermal conductivity. An approximate value for this can be found in Table 7-3 where epoxy 

resins have a thermal conductivity of 0.25 K W-1. A simple Comsol model reveals that the core 

thermal resistance can still be neglected see Figure 7-14 and Figure 7-15.  

The model was created by a 2D equivalent of the core with 293.15°C boundary condition on the 

outer surfaces, and a heat source covering the inner area see Table 7-15 for the other constraints. 

Table 7-15 COMSOL model data for core thermal resistance 

Variable Value Unit Description 

Od 51.7 [mm] Outer diameter 
Id 30.9 [mm] Inner diameter 
Ht 14.4 [mm] Height 
      8 [Wm-1K-1] Thermal conduction in the core 
            0.25 [Wm-1K-1] Thermal conduction in epoxy 
      5 [W] Heat source in the core 
     0.5 [mm] Insulation thickness  
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Figure 7-14 Heat conduction in the core with dins= 0.5 mm 

 

 
Figure 7-15 Heat conduction in the core with dins= 2 mm 

 Thermal model for toroid magnetic components 7.13

The temperature increase of an inductor can be modeled by an analytical model which depends on 

the actual configuration of the magnetic material. The designs which implanted into the magnetic 

design software are toroid cores and other cores with the windings fully exposed to the environment, 

in cores with very high fill factor this is not correct however the model will be developed for the 

general case. This lays the foundations for the model, and an equivalent circuit based analogy can be 

made further explained in literature [4]. 

The thermal resistance between the maximum core temperature and the ambient can in an inductor 

is split into these components:  

Core thermal resistance (     ) is the thermal resistance between the core and windings, it is hard to 

quantify due to that the thermal sources are evenly distributed through the magnetic material and 

therefore depends greatly on geometry [3] however as shown in section 7.12 this resistance is so low 

that it can be ignored for powder cores and ferrites due to the semi high thermal conductivity of the 

material.  

Winding thermal resistance (     ) is the thermal resistance from the core and to the surface of the 

windings. The heat generated by the windings is distributed from the core and to the surface inside 

each turn. Copper have a very low thermal resistance but due to the insulation      is much higher 

[3] see section 7.11. 

External forced convection resistance            this resistance describes the cooling from forced 

convection on the surfaces facing the cooling stream, see section 7.6 for further details.  

External natural convection for vertical surfaces resistance            describes the cooling by 

natural sources on vertical surfaces (section7.6).  

External natural convection for horizontal surfaces resistance             describes the cooling by 

natural sources on horizontal surfaces. 
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Sink or PCB resistance           describes the heat transfer to the board the core is mounted on or to 

other sources like a heat sink (section7.6). 

Radiation resistance          describes the cooling done by radiation (section 7.7). 

The complete equivalent circuit for a toroid can be seen in Figure 7-16    describes core losses and 

   the winding losses however since       is very low the winding and core losses can be put as a 

single source simplifying the model. 

 

 

Figure 7-16 Equivalent thermal circuit 

Assumptions for the model 

 Toroid or similar shape 

 The core is fully covered with windings 

 The emissivity for the whole component is assumed to be 0.58 from Table 7-6 

 The windings thickness increases twice as much on the inner diameter compared to the 

outer. 

 Pressure is not taken into account 
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 External thermal resistance 7.14

The external thermal resistance describes how easily the windings are cooled down.  

Natural Convection 

The external thermal resistance for natural convection is described by Equation 7-23 and Equation 

7-24 see Appendix G for the derivation. 
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  Equation 7-25 

 

Inserting Equation 7-19, Equation 7-20 into Equation 7-18 gives the total heat loss from radiation 

based on the dimensions of the core including the windings. However this results in a nonlinear 

equation and is best to be solved by a computer. See Appendix G for example of the basic calculation 

with some simplifications. 
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8 Inductor Software 

 Short introduction 8.1

Designing inductors for 200°C applications requires design software, deep knowledge in the subject 

or it can be done with a tedious iterative process. No such software which can be customized for 

higher temperatures, new loss models or several cooling options was found. Therefore new software 

was developed from scratch with a modified approach magnetic approach aimed at powder cores [3] 

which is also close to the method described in [1] and was later extended to soft ferrite materials.  

The main initial parameters are dc-bias, temperature, inductance, current, frequency, limits and how 

much of the current that are harmonics. The current up to the fundamental frequency is treated as 

dc and only the components at the switching frequency and upwards will be treated as ac. General 

guidelines says this is usually up to 10% [3]. The software optimizes the volume of the inductors with 

an iterative algorithm adjusting for temperature and permeability until an acceptable solution is 

obtained. 

 Limitations  8.2

The main goal of the program is to decrease the initial pool of core configurations and materials to a 

smaller amount that is possible to model more accurately with more advance software like COMSOL.   

The software uses the analytical approach to magnetic design which means it is impossible to get 

completely accurate results however the aim of the software is to be in the close proximity of the 

real values in the range of 80 – 90 percent. The materials shipped from the manufactures have a 

permeability which is only within   +- 8 % of the real value meaning the software has some lower 

accuracy due to this. 

Main Simplifications 

 The program have a simplified air gap model which assumes that the leakage flux do not 

interact with the windings creating additionally losses. It also assumes perfect windings  

 The temperature models are only checked up to 200°C for powder cores and 130°C for 

ferrites. 

 The software does not consider real wire sizes, but uses optimal wire cross section.  

See more in appendix B. 

 Input parameters 8.3

The graphical interface (GUI) shown in Figure 8-1 was made so that it is simple to design inductors 

and customize the input parameters. The software was primary created for ac inductors however at 

a later time modified to also be able to predict inductors for dc designs. 
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Figure 8-1 GUI of the Inductor designer 

Input parameters:  

1. Dc Bias 

Permeability has to be adjusted according to the magnetizing forces which mean value is 

raised by the product of dc current and windings. 

2. Ambient Temperature 

This parameter is to adjust for the temperature of the surroundings which is used in 

permeability calculations, thermal calculations and as a part of the temperature limit.    

3. Temperature limit 

Maximum temperature is the limiting value for core and winding losses and the inductor 

have to stay below this limit. This value depends on what materials that is used and the 

temperature limit of surrounding components. The included database has a temperature 

limit of 200 degrees, but due to the simplifications in the analytical models the maximum 

temperature should be used a guideline and not an absolute limit. 

4. Peak Inductance 

The inductance wanted at peak fundamental current adjusted for frequency, temperature, 

current peak and dc bias. 

5. Ripple peak value 

         The ripple peak current value which is used in the loss calculations. 
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6. Current Peak Value 

The output current peak value which is used in the peak permeability calculations for a high 

frequency filter with a fundamental current this would be the peak of the fundamental not 

including dc bias. 

7. Average output current 

The average output current which is used to determine the losses.   

8. Ripple Current 

The percent ripple experienced at the switching frequency, a good approximation is at 

around 10%, this is calculated from the current peak value. 

9. Fundamental Frequency 

This value should be set to the fundamental frequency of the load.  

10. Switching Frequency 

The high frequency losses are assumed to be around the switching frequency so this value 
should be set to the switching frequency of converter / inverter.  

11. Current Density 

The current density in the windings can be set with this option for a high frequency design 
this is often in the order of 200 Acm-2.  

12. Maximum Fill Factor 

The maximum copper fill factor is the product of windings and cross section of each 

conductor divided by the window area. The recommended value is around 0.4 but in Litz wire 

designs or for other reasons the fill factor can be raised.  

13. Number Of Results 

The results are sorted based on minimum volume and this option makes it possible to obtain 

several different cores which satisfy the input parameters starting with the smallest core. 

14. Minimum Number of Iterations 

The minimum number of iterations is used to make sure that the design has actually reached 

convergence and not just found a minor stable area. This value should be kept above 20. 

15. Number Of Stacked Cores 

In some cases it would be beneficial to stack several cores on top of each other resulting in a 

smaller design this option give that possibility. All the relevant input core data is simply 

multiplied with this factor.   

16. Maximum Temperature Deviation 

The large number of temperature dependent variables can lead to long computing time 

however this option set how small the temperature deviation between iterations have to be 

before the result is considered correct, however putting a very low value can lead to the 

program getting stuck. To counter act this, a hard limit of 500 iterations was hardcoded 

which will result in the core being ignored. 

 

 

 



Inductor Software  2013

 

 
 67 
 

 

 

17. Maximum Number Of Winding Layers 

Depending on how many turns the core needs to obtain the necessary inductance the 

software approximates how many turns can fit into each winding layer this option put a limit 

to how many layers there can be. The number of winding layers greatly affects the ac 

resistance see section 6.1 and parasitic capacitances see section 6.5.   

18. Maximum core height 

In many designs the space is limited and this option will lead to all cores with a height larger 
than the input is ignored, however this only for the core material and with windings the 
inductor can become larger.  

19. Maximum core diameter 

In many designs the space is limited and this option will lead to all cores with a diameter 
larger than the input is ignored, however this only for the core material and with windings 
the inductor can become larger.  

20. Maximum air gap 

Ferrite materials needs an air gap store energy and to limit the flux however an increasing air 
gap leads to larger fringing flux which can induce currents in the windings or generate other 
problems. This option will set a limit to the length of the air gap.    

21. Forced Convection 

Natural convection is assumed for the thermal calculations if this option is not checked, if a 
value is entered this will describe the mean flow over the component.   

22. Heat Sink 

The unknown nature of the heat sink, pcb board or similar is impossible to predict generally 
therefore it is assumed that the thermal resistance to these elements are infinite however 
this option can be used to enter this resistance.  

23. Thermal conductivity of the winding  

The winding configuration can be too complicated to calculate the conductivity accurate 
especially in the case of Litz wire. The software approximate this value based on the number 
of layers and fill factor if no value is given see section 7.11 for more information and values. 

24. Litz wire 

In a high frequency design Litz wire may be necessary to reduce the winding losses see 
section 6.1 and 0. The initial program setup assumes normal windings so choosing this option 
leads the thermal calculations to use approximations to the heat transfer in Litz wire 
however the maximum fill factor has to be adjusted by the user. This option could also be 
used in cases where the wire size is known by setting strands to 1 and having strand 
diameter and bundle diameter equal to the wire size. 

25. Number of strands in the bundle 

Litz wire is built up by smaller wires here called strands this number is used to determine 
wire losses by increasing the layer variable by the number of layers there would be in a 
bundle. 
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26. Strand diameter 

The diameter of the strand is used to determine the x coefficient in section 6.1 which 
describes the radius to skin depth. 

27. Bundle diameter 

The diameter of the bundle is used to calculate different parameters which are affected by 
the size of the windings. 

28. Fast Thermal 

The thermal calculations use a nonlinear solver which in some cases can increase the 
computing time. Choosing this option leads to a faster thermal calculations based on section 
7.9 and will not consider forced convection, temperature or any other thermal related 
inputs. 

29. Ferrite or Powder Cores 

The program and its databases are built up around ferrites and powder cores. This check box 

is used to either choose ferrite materials or powder cores. The option to run both in same 

run was not implanted.  

30. Core 

In the cases where it would be beneficial to do calculations on a specific core, the part 
number can be entered here.  

31. Run 

This runs the program based on the input and outputs possible core sizes and configurations 

in a excel file called Log.csv this file is located in the same folder as the software. 
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 Output parameters 8.4

The results from running the program can be found in the files named Results_Powder.txt or 

Results_Ferrite.txt in the programs folder. The output information provided can be viewed in Table 

8-1. 

Table 8-1 Output Parameters 

Parameter Value 

Core Data [-] All information provided by the manufacturer is provided here.  
H [ATcm-1] Magnetizing field used to calculate permeability and inductance. 
Bpeak Ripple [T] Peak value of the magnetic flux density. 
Al  [nH N-2] Core nominal inductance adjusted for temperature, dc-bias, and 

frequency. 
Turns [-] Number of turns necessary to obtain required inductance. 
Wire D [m] The diameter required of the wire. 
Copper loss [W] Losses in the wire. 
Core Loss [W] Losses in the magnetic material. 
Total Loss [W] The losses including core and copper loss 
Loss per volume [mWcm-3] The loss per volume in cases where this is above 100 mW cm-3 

the design is likely loss limited. 
Core Temperature [°C] The surface temperature of the core due to losses. 
Temperature [°C] The total temperature of the core in Celsius. 
Wire-Area [m2] Cobber area in each wire. 
Current Density [Acm-2] Current density provided by the input parameters. 
Core [-] The power loss per unit volume. 
My Correction [-] The roll off in permeability. 
Fill factor [-] How much of the cross section of the core is filled with wires. 
Peak L [H] The calculated inductance on the peak value of the fundamental 

waveform. 
Average L [H] The calculated inductance at zero crossing for the fundamental 

waveform. 
Volume [mm-3] The volume of the core. 
Inverter Frequency [kHz] The switching frequency. 
Surface [m2] The surface area of the component used to calculate the 

temperature gain. 
Winding Layers [-] The calculated number of layers in the design 
Al from leakage [nHN-2] Primary the added nominal inductance from leakage fields. 
Gap length [cm] In ferrite designs this describes the length of the gap. 
Fr ripple [-] This is the dowel factor Rac/Rdc 
Winding length [m] The analytical length of the wire 

 

 Experimental results 8.5

The software described in the previous sections was used to create 4 different samples where the 

Temperature, permeability, turns, fill factor, and loss was compared to the analytical values see 

chapter 10 for the lab setup and 11.2.1 for the results. Generally it was a good correlation between 

the analytical values and the measured except for temperature.   
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9 Filter Dimensions 
The most common way to control a switch mode power supply is with pulse width modulation where 

constant switching frequency is used, output voltage is controlled by adjusting the duty cycle. The 

resulting output waveform need to be filtered so that components are put under lower stress. 

 Filter for a Buck converter 9.1

The output voltage straight out from a buck  converter Figure 9-1 have large dv/dt effects and at 

times the instantaneous voltage will either be zero or as much as the input side, by using elements 

which stores energy like inductors and capacitors the waveform will smoothen out. In the periods 

where the switch is on the inductive elements charges due to a positive voltage, while in the off 

periods the inductive element releases its energy while they discharges see Figure 9-2[1]. 

 
  

Figure 9-1 Buck converter [1] Figure 9-2 Buck converter in continues mode [1] 

 
The buck converter can operate in continues mode which means that over a period not all the energy 

from the inductive element is released leading to a waveform as show in Figure 9-2 or discontinues 

mode which means that all the energy is discharged in the off period, and there will be some time 

where the voltage in the circuit will be zero. The ripple in continues mode is reduced by larger 

inductive elements or by using higher frequency, the voltage ripple is not improved directly by the 

inductive elements but by capacitive.  

The most basic equation for an inductor Equation 9-1 can be rearranged into Equation 9-2, which can 

be used inductance for a maximum ripple current.   

 
    

   
  

 Equation 9-1 

L Inductance 
   Output voltage 
    Current ripple 
 

 
  

      

   
 Equation 9-2 

     Time period the switch is off 
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Assuming that the ripple component of    flows in to the capacitor C. The capacitor delivers charge 

when the ripple current is below average and the necessary capacitance can be calculated by 

Equation 9-3 [2].  

 
  

  
        
     

  Equation 9-3 

   Switching period 
  Capacitance  
 

The filter capacitor will also lead to a voltage drop across the equivalent series resistor (ESR) and 

therefore the ESR should be kept low [2]. The buck converter will be used to determine the accuracy 

of the inductor software and in Table 9-1 filter specifications for some cases can be viewed see more 

information in Appendix D section V where the filters are calculated, designed with the inductor 

software and tested.  

Table 9-1 Buck filter specifications 

Buck filter specification 

   [V] F [kHz] D     [A]     [V] L [mH] C [µF] 
30  10  0.5 1.2  0.4545 1.25  33  

100  10  0.5 4  1.5152 1.25 33  
       

30  10  0.5 0.6  0.2273 2.5  33  
100  10  0.5 2  0.7576 2.5  33  

       
30  10  0.5 0.4286  0.1623 3.5  33  

100  10  0.5 1.428  0.54 3.5  33  
       

30  5  0.5 0.66  0.5 4.5  33  
100  5  0.5 2.22  1.68 4.5  33  
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 Sinus and dv/dt Filter 9.2

A sinus and dv/dt filter will be calculated for a SiC inverter based on the case information given in the 

introduction repeated in Table 9-2. It is assumed the inverter uses PWM switching technique with 

maximum modulation index of one. 

Table 9-2 Drive specification 

Drive Specification 

Vdc 600 V 
S 3000 Va 
fsw Up  to 100 kHz 
Tamb 150 °C 
  

  
     1 kV/µs 

Where Vdc is the Dc-link voltage 
S is the apparant power delivered 
fsw is the switching frequency 
Tamb is the downhole ambient temperature 

 

The maximum line to line voltage can be found using Equation 9-4,    is the modulation index which 

in this case will be set to 1, the worst case scenario before going into over modulation. 

                    Equation 9-4 

9.2.1 RLC Dv/dt Filter 

A dv/dt filter for silicon carbide drives need to limit the dv/dt to minimum 1 kV/µs, how this is done is 

closer explained in chapter 3. A simulation model of the circuit was developed in section 3.6 and the 

filter values was calculated based on the equations in Table 3-3.  

Table 9-3 Dv/dt filter values 

 Parameter Value 

Phase Voltage                 

Phase Current             
Resonance frequency    377 658 
Filter inductance    15.9 µH 

Filter capacitance    201 nF 

Filter resistance    35.58 Ω 

 

The filter parameters was simulated with the RLC PSCAD model due to limitations with software only 

a single 1 meter section of the cable could be simulated. see Figure 9-3 to Figure 9-7 for the circuit 

topology and the waveforms recorded before and after the filter. From the simulation results the 

three phase sinus filter improves the voltage and current waveform and keep the rise time in the 

order of around 2 µs. The effect of leakage capatiance have not been included however this will lead 

to more oscilations in the ciruit.  
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Figure 9-3 Circuit topology of the RLC filter model 

 
Figure 9-4 The voltage waveform before and after the filter 

 
Figure 9-5 The voltage and current waveform  before the 

load 

 
Figure 9-6 Zoomed in view of the voltage before and after 

the filter 

 
Figure 9-7 Zoomed in view of the voltage and current at 

the load 
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9.2.2 Sinus Filter 

The purpose of a sinus filter is to create a nearly sinusoidal output waveform from the filter. The 

calculations are performed in the appendix D sections VII, and the results for the sinus filter are 

summarized in Table 9-4. The design process follows the  equations in chapter 2 and using the 

recommended starting value for Lf at 1% Pu with a switching frequency at 100 k[Hz]. The dampening 

factor was set at 2.  

Table 9-4 Sinus filter values 

 Parameter Value 

Phase Voltage                 

Phase Current             
Base impedance               
Base inductance               
Resonance frequency           
Filter inductance            

Filter capacitance            

The filter parameters was simulated using the pscad model, however due to limitations with 

software only a single 1 meter section of the cable could be simulated. From the simulation resutls 

the three phase sinus filter improves the voltage and current waveform to nearly a sinusoidal. 

 

Figure 9-8 Circuit topology of the Sinus filter model 

 
Figure 9-9 The voltage at the load and current 

 
Figure 9-10 Filtered and unfiltered line to line voltage 
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 Filter comparison 9.3

The RLC and Sinus filter, both improves the waveforms so this section will compare the size of the 

two filters. The inductors were designed by the software in chapter 8 with the input parameters that 

can be viewed in Table 9-5. The smallest volume inductor which can be used are shown in Table 9-6 

however this do not include any volume increase due to the windings. 

The temperature factor was disregarded due to the cores being so small that it is likely the 

temperature models do not model them correctly and the software have not been verified on so 

small cores. However if the component do keep this high temperature it can be solved by using a 

heat sink or removing heat by the pcb board. 

It can be seen that the RLC filter inductor can be made very small compared to the sinus filter, this is 

both due to a much smaller inductance and smaller reduction in permeability due the few turns 

which is necessary. The Sinus filter inductor will also have a much larger volume due to the windings. 

Parallel connection and stacking several cores on top of each other were considered but did not lead 

to a smaller design. 

Table 9-5 Input parameters 

 Inductor 1 Inductor 2 

Dc Bias 0 A 0 A 
Ambient temp. 25°C   25°C   
Peak inductance  1.43 mH 15.9 µH 
Current Peak 6.66 A 6.66A 
Average output Current 4.71 A 4.71 A 

Ripple current 10 % 10 % 
Fundamental frequency 1 1 
Switching frequency 100 000 Hz 100 000 Hz 
Current Density 200 200 
Number of strands in 
bundle 

120 120 

Strand diameter 0.1 mm 0.1 mm 

Bundle diameter 1.55 mm 1.55 mm 

 

Table 9-6 Software recommendations 

Inductor 1 Analytical 
prediction 

  Inductor 2 Analytical 
prediction 

  

Core Data C055306A2   Core Data  C058128A2   
Linital 7.21  mH Linital 2.37  µH 
Lpeak 1.44  mH Lpeak 1.62  µH 
Turns 133  - Turns 17  - 

Copper loss 0.07  W Copperloss 0.0027  W 
CoreLoss 11.28  W CoreLoss 0.103  W 
Total Loss 11.35  W Total Loss 0.106  W 

Temperature 152  °C Temperature 33.94  °C 
MyCorrection 0.205  - MyCorrection 0.68  - 

Fill factor 0.82  - Fill factor 0.54  - 
Volume 1800  mm3 Volume 244  mm3 
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10 Laboratory Setup 
This chapter describes how the laboratory setups were done, what equipment that has been used 

and some initial measurements and comparisons.  

There were four different setups: 

 Core characterization with a BROCHAUS MPG 100D steel tester. The measurements which 

was performed was core loss in powder and ferrite cores, in the frequency range from 5 kHz 

to 10 kHz at 20°C, 108°C, and 180.5°C.  

 Core loss with a waveform generator and an amplifier at 5 kHz, 20 kHz 50 kHz and 100 kHz, at 

20°C and 180°C. 

 Inductor characterization with a buck converter.  

 Impedance measurements with a network analyzer. 

 Samples 10.1

The magnetic material which was possible to acquire for the tests, and that can be used in high 

temperature designs are listed in Table 10-1. These include four different powder cores and two 

ferrites, everything is from Magnetics® except the N27 which is produced by Siemens.    

Table 10-1 Core materials 

 µ B [T] Al [nH/N2] Ve [mm3] Ae [mm2] le [mm] H [mm] Material 

C058583A2 160 1.5 101 4150 46.4 89.5 9.78 High Flux 
C058548A2 125 1.5 127 5340 65.6 81.4 11.5 High Flux 
C055089A2 125 0.75 178 15600 134 116 16.1 MPP 
0077715A7 125 1.05 152 15900 125 127 14.4 KoolMμ 
ZR44916TC 2300 0.47 2710 15010 118 127 15.9 R 
N27 2000 0.5 5100 166250 625 308 25 N27 

 Core loss characterization 10.2

The analytical data on core parameters are usually only available for a limited temperature ranges, 

and is also not necessary accurate, therefore core loss characterization was performed, at three 

different temperatures 20°C, 108°C and 180.5°C. 

10.2.1 Measurement setup BROCHAUS MPG 

The core characterization was performed with a BROCHAUS MPG 100D which is used to define the 

magnetic qualities of electric sheets, and other magnetic materials. The rated measurement range is 

from 3 Hz to 10 kHz [2] for toroid geometries with an inner diameter larger than 26 mm [2]. U core 

geometries are not directly supported but can be transformed into an equivalent toroid core [3].   

The measurements are performed electrically by a primary winding which creates a magnetic field 

based on the input parameters. Voltage is measured over a precision resistor (shunt) in the 

secondary winding which is unaffected by temperature and induced fields. Two separate systems 

measure the values of B and H simultaneous avoiding errors due to phase differences [2], however 

during the characterization of powder cores it was discovered that phase problems still might apply 

http://www.mag-inc.com/File%20Library/Product%20Datasheets/Powder%20Core/New%20Powder%20Cores/Toroids/585%20Size/C058583A2.pdf
http://www.mag-inc.com/File%20Library/Product%20Datasheets/Powder%20Core/New%20Powder%20Cores/Toroids/548%20Size/C058548A2.pdf
http://www.mag-inc.com/File%20Library/Product%20Datasheets/Powder%20Core/New%20Powder%20Cores/Toroids/715%20Size/0077715A7.pdf
http://www.mag-inc.com/File%20Library/Product%20Datasheets/Ferrite/New%20Ferrite%20data%20sheets/ZR44916TC.pdf
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for long wires or different lengths of the primary and secondary winding. A flow chart over the 

system can be seen in Figure 10-1. 

 

Figure 10-1 Control principle for electric sheet measuring instrument [2] 

The high temperature measurements were performed by increasing the ambient temperature to the 

desired value with a heating chamber see Figure 10-2. It was assumed that the low losses induced in 

the materials from the measurements would not significantly alter the core temperature, and the 

heating chamber was set at forced convection meaning that if the core should increase in 

temperature, it would be rapidly cooled down. The samples were heated up to the required 

temperature for a minimum of four hours before the measurements began, which for materials with 

thermal conductivity of 8  (see Table 4-2) is more than enough to get a uniform temperature in the 

material. The secondary and primary winding was connected to BROCHAUS MPG by having 30 cm 

long wires going out of the heating chamber and into, the plugin system see Figure 10-3. The 

equipment that was used can be viewed in Table 10-2.  

Table 10-2 Lab equipment 

Application Equipment Product number 

Temperature measurements Temp. measurer  FLUKE 51:2 
Adjusting the ambient temperature Heating chamber TERMAKS TS 8056 
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Figure 10-2 The heating chamber rated for 0°C to 200°C 

 
Figure 10-3 The plugin system for ring cores in BROCHAUS 

MPG 100D  

Samples 

Details on the samples prepared for the core characterization can be found in Table 10-3. A primary 

winding with 8 turns is used to magnetize the core in the range from 4 mT to 106 mT for powder 

cores. This low range was chosen due to constraints in the Brochause measurement setup, however 

the ripple flux which will be inducing the core losses in real applications are not likely to be much 

larger. The secondary winding is set to be 8 turns with the same length as the primary to avoid phase 

problems. [2] recommends five turns on both primary and secondary this was disregarded due to the 

small increase in windings raised the induced flux to a more appropriate level and [2] is most likely a 

recommendation for high permeability materials. The heating chambers maximum temperature was 

measured to 180.5 °C when the settings was set to 200 °C and 108 °C with settings at 120 °C. 

Table 10-3 Core loss samples 

Picture 

P
ri

m
ar

y 
w

in
d

in
gs

 

Se
co

n
d

ar
y 

w
in

d
in

gs
 Description 

 

8 8 A single 0077715A7 core wound with 8 turns of 120 
x 0.1 mm Litz wire with a theoretical peak flux of 98 
mT at 10 A. 
The purpose: of this sample is to test the core losses 
in koolMμ materials 

 

8 8 A single C058583A2 core wound with 8 turns of 120 
x 0.1 mm Litz wire with a theoretical peak flux of 179 
mT at 10 A. 
The purpose: of this sample is to test the core losses 
in HighFlux materials 

http://www.mag-inc.com/File%20Library/Product%20Datasheets/Powder%20Core/New%20Powder%20Cores/Toroids/715%20Size/0077715A7.pdf
http://www.mag-inc.com/File%20Library/Product%20Datasheets/Powder%20Core/New%20Powder%20Cores/Toroids/585%20Size/C058583A2.pdf
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8 8 A single C058548A2 core wound with 8 turns of 120 
x 0.1 mm Litz wire with a theoretical peak flux of 154 
mT at 10 A. 
The purpose: of this sample is to test the core losses 
in HighFlux materials 

 

8 8 A single C055089A2 core wound with 8 turns of 120 
x 0.1 mm Litz wire with a theoretical peak flux of  
108 mT at 10 A. 
The purpose: of this sample is to test the core losses 
in MPP materials 

 

6 6 A single ZR44916TC core wound with 6 turns of 30 x 
0.1 mm Litz wire with a theoretical peak flux of 1360 
mT at 10 A.  
The purpose: of this sample is to test the core losses 
for an R material ferrite with no air gap.  

 

8 4 A double N27 U core core wound with 8 turns of 30 
x 0.1 mm Litz wire with a theoretical peak flux of 650 
mT at 10 [A]. 
The purpose: of this sample is to test the core losses 
for a N27 material ferrite with no air gap. 

10.2.2 Core characterisation at 180.5°C  

The Litz wire used in the measurements are rated for 130°C but as shown in section 0 deterioration is 

not expected at 200°C for short term exposure, however in the case of short circuit in the winding, a 

change in resistivity is to be expected. Therefore the resistance in both the primary and the 

secondary winding was measured before and after the high temperature tests. This can be viewed in 

Table 10-4. There were no large deviations in the measured results meaning it is highly unlikely that 

any damage happened. However two samples not shown here had to be redone due to winding 

failure.  

Table 10-4 Winding resistance before and after the high temperature tests 

Sample 
number 

Material Rel. Perm. Primary 
winding 
20°C 

Secondar
y winding 
20°C 

Primary 
winding 
after 180.5°C 

Secondary 
winding 
after 180.5°C 

1 High Flux 
High Flux 

160 16.74 mΩ 16.68 mΩ 16.75 mΩ 16.70 mΩ 
2 125 18.01 mΩ 18.10 mΩ 18.02 mΩ 18.16 mΩ 
3 KoolMµ 125 18.10 mΩ 18.21 mΩ 18.16 mΩ 18.29 mΩ 
4 MPP 125 21.36 mΩ 19.80 mΩ 20.28 mΩ 19.94 mΩ 
5 N27 2000 27.60 mΩ   27.87 mΩ 27.82 mΩ 27.14 mΩ  
6 R 2300 09.60 mΩ 18.90 mΩ 09.56 mΩ 18.76 mΩ 

http://www.mag-inc.com/File%20Library/Product%20Datasheets/Powder%20Core/New%20Powder%20Cores/Toroids/585%20Size/C058583A2.pdf
http://www.mag-inc.com/File%20Library/Product%20Datasheets/Ferrite/New%20Ferrite%20data%20sheets/ZR44916TC.pdf
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 100 kHz measurements 10.3

The BROCHAUSE steel tester had a secondary system for measurements above 10 kHz however it 

was not possible to get this operational within the time frame of this master thesis. Therefore 

another setup was made by using a signal generator which could create high frequency, non-

sinusoidal and fundamental. The problem with using a function generator is that it can only supply 

low current, and therefore a 100 kHz amplifier was connected in series amplifying the signal to a 

maximum of 7.5 Arms with maximum voltage output of 40 Vpp. An Oscilloscope was connected over 

the test object measuring voltage and current while a power analyzer module automatically 

calculated the power using all available data points (2500). At measurements lower than 20 kHz a 

high accuracy power meter was connected to the system see Table 10-5 for the complete equipment 

list. This setup is consistent with the setup used in [5]. 

Table 10-5 Lab equipment for 100 kHz 

Application Equipment Product number 

Signal generation Signal generator   WAVETEK 187 
Signal amplification up to 7.5 A 100 kHz 4-quadrant amplifier Toellner  TOE 7610-20 
Current measurement Current probe TEKTRONIX P6021 
Voltage measurement Voltage probe TEKTRONIX P5200A 
Power measurements < 20 kHz Power meter  YOKOGAWA 2533E43 
Power  measurements  Oscilloscope  TEKTRONIX TPS 2014 
Oscilloscope power application Power application TEKTRONIX TPS2OWR1 
Signal summation Custom made  - 
50 Hz signal 12 VRms Custom made - 
Temperature measurements Data logger AGILENT 34972A 

10.3.1 Core Loss measurements  

The core losses was measured up to 100 kHz with the amplifier setup, however it is not likely these 

results is as accurate as the loss measurements from the Brochause. The current probe was 

calibrated until the error was less than 0.5 % at 5 kHz and the voltage probe to 1 %, however due to 

the large inductive load, the error in the measurements can be significantly higher and it was not 

possible to calibrate the probes for higher frequencies. 

The flux density in the core material was found by measuring the voltage in a secondary winding and 

using Equation 10-1 see Table 10-6 for the relevant waveforms.  

 
  

 

   
∫       

 

 

 Equation 10-1 

 
Table 10-6 Equations to calculate the flux density in the core 

Waveform  Equation 

Sinus wave  
      

    

        
 

Square wave  
      

    

     
 

Triangular wave  
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The secondary winding has a small voltage drop, but very low current flow in these wires. To avoid 

phase angle problems the winding length was set to the same length as the primary. The wire losses 

was minimized by using Litz wire of 240 x Φ 0.1 which is several times smaller than the penetration 

depth at 100 kHz which means that the winding losses should be very close to the dc value. 

Therefore the dc losses in the windings was measured and subtracted from the measured values at 

higher frequencies, this is a small source of error but should not influence the overall results.    

The amplifiers low output voltage for 100 kHz tests was counteracted by maximizing the flux density 

in the core by lowering the number of turns, and keeping the output current at around 7.5 Arms, with 

the voltage at 20 Vpeak see below for an example with 0077715A7 (KoolMµ) at 100 kHz. This shows 

that the maximum flux density that can be tested at 100 kHz is 52 mT with 4 turns. This might seem 

like a small number but in a real application the ripple wave should normally not very large. 

                 

 

  
  

√              
        [H] 

             

   √
 

        = 4.44 turns 

      
       

  
  √                    

To validate the setup, values from the Brochause were compared to the measurements with the 

amplifier see Figure 10-4 and Figure 10-5. It can be seen that the accuracy of the amplifier 

measurements is not very compared to the Brochause however at 5 kHz the winding losses equals 

around 90 - 95 % of the measured loss meaning a very small measurement error would yield results 

that deviate strongly from the expected result. At higher frequency this error decreases since most of 

the losses is located in the core. The test frequency was set to 5 kHz due to large deviations in the 

measurements in the Brochause for frequencies near 10 kHz. 

 
Figure 10-4 Measured loss in High Flux at 5 kHz 

 
Figure 10-5 Measured loss in KoolMµ at 5 kHz 

 
For the measurements between 5 kHz and 20 kHz a high accuracy power meter was also used 
however due to the very inductive load it is likely these measurements is not as accurate as the 
scope measurements. The accuracy of oscilloscope measurements at 100 kHz need to be very exact 
due to in for example a 90 VA coil operating at 100 kHz with 4 W of losses and a necessary accuracy 
of 0.4W would require an angle accuracy of 0.00444 rad. This translates to a time accuracy of 7.06 ns. 

http://www.mag-inc.com/File%20Library/Product%20Datasheets/Powder%20Core/New%20Powder%20Cores/Toroids/715%20Size/0077715A7.pdf
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The TEKTRONIX TPS 2014 have a time accuracy of 5 ns and therefore the error is 0.00629 rad at 100 
kHz which translates into 0.62 W at 100 VA. This is the maximum error that can happen since 
measured cores had smaller VA than this at 100 kHz. 
 
At high frequencies the Brochause or the accurate power meter could not be used to compare the 
measured values, due to this as extra security a temperature sensor was connected to the core. The 
temperature gain of the core is primary dependent on geometry, therefore by measuring the 
temperature and loss at 100 kHz and comparing it to a core with the same dc loss, it is possible to 
verify the results within a reasonable frame if the values are correct, however as seen in chapter 7.11 
a bit lower temperature is to be expected in the dc measurements due to all loss is located in the 
windings which is better cooled than the core.  Calometric measurements would have been better 
but due to the limited time it was not possible to set up. 

10.3.2 Fundamental waveform with a high frequency ripple 

The current waveform experienced by filters is normally a fundamental with a high frequency ripple 

see chapter 3 and 5. The losses, temperature and inductance in a inductor experiencing  such a 

waveform was investigated by summing the signals from a signal generator and a secondary 

waveform, taken directly from the grid due to voltage limitations with the signal generator which 

could only generator 20Vpp while the amplifier which was connected in series needed 35 Vpp to 

operate at maximum.   

10.3.3 Non-sinusoidal losses 

Chapter 5 describes non-sinusoidal losses and by using the signal generator and amplifier this 

problem was planned to be investigated, however the error in the measurements was too large to 

draw any concrete conclusions.  

 Measurements with a Buck Converter 10.4

The inductors designed in the previous chapters should be tested in real applications to determine 

the leakage inductance, saturation and performance. A buck converter operating in continues mode 

was set up in the lab see Figure 9-1 Buck converter [1] for the circuit topology and Table 10-7 for the 

equipment that was used. 

Table 10-7 Lab equipment Buck converter 

Application Equipment Product number 

Signal generation Signal generator   WAVETEK 187 
Adjustable input voltage 3-phase variac LUBECKE 3R54-22-H 
Dc voltage generation Dc-Link GOSSEN 
Buck converter switch Converter Custom by NTNU 
Adjustable resistance Resistance RUSHTRAT 
Filter Capacitor 33µ B25832-A4336-K009 
Filter Inductor Custom 
Power measurements Power meter  YOKOGAWA 2533E43 
Power  measurements  Oscilloscope  TEKTRONIX TPS 2014 
Oscilloscope power application Power application TEKTRONIX TPS2OWR1 
Voltage measurement Voltage probe TEKTRONIX P5200A 
Current measurement  Current probe  FLUKE 80i-110s 
Temperature measurements Data logger AGILENT 34972A 
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A Variac was connected to the main supply to give a variable voltage to the dc-link which feed the 

converter. The core under testing was mounted horizontal thereby reducing the heat loss in one 

direction. A capacitor of 33µ was connected from the inductor to the negative voltage of the 

converter, and the resistive load connected from the inductor to the negative side. 

The power losses voltage and current waveform was measured by an oscilloscope and a power 

meter. Surface temperature was measured by a nonmagnetic thermocouple of T-type. The sensor 

was attached by covering it with a bit of the winding, so this could lead to a small error however the 

sensor itself had a tolerance of around 0.5°C up to 125°C.  

Inductors was designed based on the four cases described in the buck filter section see section 9.1 

and Table 9-1. See section 11.2 for the results and more details can be found in appendix D section V. 

Table 10-8 Inductance and resistivity measurements in some inductors 
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Turns 
Primary Secondary 

Resistance mΩ 
Primary  Secondary 

Inductance mH 
Primary  Secondary 

 KoolMµ 125 50 50 50.44  57.16 0.421 0.45 
 HighFlux  160 85 85 56  77.35 0.804 0.8 
 HighFlux 160 110 110 138.25  138.7 1.47 1.38 
 HighFlux  125 106 - 97.54  - 1.909  
 HighFlux 160 50 - 37.78  - 0.355  
 HighFlux 160 50 - 39.49  - 0.387  

 Leakage capacitance 10.5

The leakage capacitance of the magnetic cores was measured in cooperation with Amir Hayati Soloot 

and the equipment in Table 10-9 which measures the impedance from 4 Hz to 30 MHz. This was then 

used to calculate the leakage capacitance.  

Table 10-9 Lab equipment for Leakage capacitance 

Application Equipment Product number 

Impedance measurement Network analyzer    AGILENT E5061B 

 
The leakage capacitance can be calculated by Equation 10-2 when the self-resonance frequency and 

inductance is known.  

 
   

 

  
 Equation 10-2 

 
The inductance in powder cores is not constant above a few hundred kilohertz therefore the 

inductance at the resonance frequency is different from values measured at low frequency. This is a 

problem since it was hard to measure the inductance at higher frequency with the available 

equipment. Therefore the inductance measured at 10 kHz was adjusted by the analytical data 

provided by the manufacturer, however this lowers the accuracy of the results. No better solution 

was found in time and most of the larger cores have a low self-resonance frequency. The analytical 
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data that was used can be viewed in [6], and some initial measurements can be viewed in Table 

10-10 and Figure 10-6 - Figure 10-9, while the main results will be covered in the next chapter. 

  Table 10-10 Leakage capacitance and SRF in some different inductors 

Turns Type 
Inductance 
at 10 kHz 

Self-resonance 
frequency 

Adjusted 
Inductance 

Leakage 
capacitance 

165 
KoolMµ 

Litz 120 strand 
5.5 mH 97.14 kHz 5.5 mH 488 pF 

136 
High Flux 160µ 

Enamel 
3.0 mH 280 kHz 2.94 mH 107.6 pF 

41 
KoolMµ 

Litz  120  strand 
0.242 mH 670 kHz 0.235 mH 240 pF 

16 
KoolMµ 

Litz 240 strand 
35 µH 2.29 MHz 31.5 µH 153 pF 

 
Figure 10-6 Impedance plot for 16 Turns Litz wire 240 

strands 

 
Figure 10-7 Impedance plot for KoolMµ 41 Turns Litz wire 

120 strands 

 
Figure 10-8 Impedance plot for 136 Turns enamel 

 
Figure 10-9 Impedance plot for 165 Turns Litz 120 strands 
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11 Measurements and Discussion 
In the previous chapter the main points of the measurement setup and error sources was discussed, 

in this chapter the focus will be on the results. The raw data from the measurements is located in 

appendix D however the Brochause data was too large to be included and can be found in the DAIM 

database.  

 Core loss 11.1

The core loss in N27, R-ferrite, High Flux, MPP, and KoolMµ was measured at different temperature 

levels 20°C 108°C and 180.5°C for the frequencies 3 kHz, 5 kHz, 7 kHz and 9 kHz with a Brochause 

steel tester. An amplifier was used to measure core losses at 5 kHz, 20 kHz, 50 kHz, and 100 kHz for 

the temperatures 22°C and 180°C. From core loss theory the losses is not expected to abruptly 

change several magnitudes however this is the case in some of the Brochause measurements, the 

cause is likely an automatic system in the measurement equipment which changed the control 

method between controlling H and B.  

The analytical loss data was provided by the manufacturer [1] for the powder cores see Equation 

11-1- Equation 11-4. Based on this the lowest losses is expected in MPP and the largest in High Flux 

160, it can also be seen that the losses nearly double by using High Flux 160 over High Flux 125. Note 

that the losses increase with higher permeability should not be used as a rule since in other materials 

the losses can decrease by increasing the permeability. 

MPP 125µ               ̂     Equation 11-1 
 

HighFlux 125             ̂      Equation 11-2 
 

High Flux 160              ̂     Equation 11-3 
 

KoolMµ 125              ̂     Equation 11-4 
 

11.1.1 Core loss in KoolMµ 5 kHz – 9 kHz 

 
The core loss measured in KoolMµ with the 
Brochause setup can be viewed in Figure 11-1 - 
Figure 11-4. 
 
The analytical data underestimates the core 
losses severely at all frequencies. One 
explanation for this could be the large variation 
between the samples since the manufacturer 
only promises that each core is within 8% of 
the promised permeability value.  
A sample with 8% lower permeability than the 
rated should consist of 8% more air/binder and  

Figure 11-1 Measured loss in KoolMµ at 3 kHz 
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therefore might have different losses. To test 
this idea the permeability was measured which 
resulted in a relative permeability of 143, this 
could explain a bit of the large difference.  
 
No analytical data for higher permeability 
KoolMµ cores were available, however lower 
permeability cores have nearly twice as high 
losses as the 125µ core at 5 kHz and 100mT. 

 
Figure 11-2 Measured loss in KoolMµ at 5 kHz 

Another possibility would be that the loss 
measurements are wrong or performed in a 
different manner than the background data for 
the analytical data, and the analytical data is 
based on the Steinmetz equation which in 
some cases can underestimate or overestimate 
the losses. 
 
However as it can be seen in Figure 11-5 where 
the losses have been measured with the 
amplifier setup there is not a large deviation 
between the two setups.  
 
The losses measured at 7 kHz is most likely only 
valid up to 70 mT and the 10 kHz 
measurements do not seem to have become 
stable even if the data is the mean of several 
measurements. 
 
The temperature do not affect the losses in any 
great extent up to 180°C however a 5 -10 % 
increase in loss is indicated which primarily 
happens in the temperature range from 108°C 
to 180°C. For temperatures below 108°C there 
is no significant deviation due to temperature.  

 
Figure 11-3 Measured loss in KoolMµ at 7 kHz 

 
Figure 11-4 Measured loss in KoolMµ at 10 kHz 
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11.1.2 Core loss in KoolMµ 5 kHz – 100 kHz 

The losses in KoolMµ between 5 kHz and 100 kHz were found using the amplifier setup described in 

the previous chapter see Figure 11-5 to Figure 11-8 for the graphical representation of loss versus 

flux density. The correlation between the Brochause and the amplifier at 5 kHz is good bellow 50 mT 

but the amplifier measurers somewhat lower losses at 75 mT. This is to be expected since it can be 

seen in Figure 11-2 that there have been a discontinues jump in losses at 60 mT. The measurements 

was performed twice, however in the cases where there was a large variation between the two 

measurements more measurements was performed. Initially 5 measurements at each point were 

planned but due to the very low variation between the samples this did not seem necessary 

especially due to long time each measurement took.   

The analytical data underestimates the losses for all frequencies measured with a factor of 200 – 300 

%. The temperature has a similar influence at 100 kHz as at 5 kHz. 

The measurements at 50 and 100 kHz was not possible to perform in the full flux density range due 

to constraints in the equipment, and the losses at 100 kHz is so low that the error from measuring 

the angle between real losses and   reactive losses might seriously influence the values, therefore the 

100 kHz losses should not be trusted.  

 
Figure 11-5 Measured loss in KoolMµ at 5 kHz 

 
Figure 11-6 Measured loss in KoolMµ at 20 kHz 

 
Figure 11-7 Measured loss in KoolMµ at 50 kHz 

 
Figure 11-8 Measured loss in KoolMµ at 100 kHz 
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The measured values can be used to calculate new values for the Steinmetz equation which 

determines the analytical data see Table 11-2. The new parameters have been plotted in Figure 11-9 

and Figure 11-10. It can be seen that the accuracy of the Steinmetz equation can be increased by 

measuring some points in the area of interest, however the values should not be extrapolated. In a 

high temperature design this should be done close to the operation temperature.  

Table 11-1 KoolMµ new Steinmetz parameters  

Range k α β 

5 kHz – 20 kHz 
0.025 mT – 0.075 mT 

31.73 1.8822 1.6731 

20 kHz – 50 kHz 
0.025 mT – 0.05mT 

1135 1.17 2.2001 

 

 
Figure 11-9 Comparison of new Steinmetz parameters for  

5 - 20 kHz at 20 kHz  

 
Figure 11-10 Comparison of new Steinmetz parameters for 

20 - 50 kHz at 20 kHz 
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11.1.3 Core loss in High Flux 160 5 kHz – 9.9 kHz 

 
The core loss measured with the Brochause setup 
can be seen in Figure 11-11 to Figure 11-14. There 
is less discontinues data with the Brochause 
measurement equipment in testing the High Flux 
materials compared to the KoolMµ, this could be 
due to the material properties which make 
measurements easier to perform. However there 
is still some control problems which leads to 
discontinues data in some case especially at 9.9 
kHz but this is very close to the maximum rating of 
the equipment.  
The relative permeability of the materials was 
measured to 150 which mean some loss 
differences are to be expected, however as in the 
previous section the losses are very much larger 
than what should be expected in the magnitude of 
up to 600 %.  
 
 

 
Figure 11-11 Measured loss in HighFlux 160 at 3 kHz 

 
 
The temperature does not affect the losses in any 
significant way up to 180°C except a loss reduction 
of some percent.   
 

The measurement sample was quite small 
physically which means there is a larger expected 
error than in the other samples.   

 
Figure 11-12 Measured loss in HighFlux 160 at 5 kHz 

 
Figure 11-13 Measured loss in HighFlux 160 at 7 kHz 

 
Figure 11-14 Measured loss in HighFlux 160 at 9.9 kHz 
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11.1.4 Core loss in High Flux 160 5 kHz – 100 kHz 

The high frequency measurements can be viewed in Figure 11-15 - Figure 11-18 it can be seen that 

the analytical data match the measured values in a large extent up to 100 kHz. However there is a 

large deviation between the values measured with the Brochause setup compared to the amplifier 

this might indicate that the Brochause steel tester is not suited for measuring low permeability cores 

with high accuracy, since the amplifier results is built upon 48 separate measurements making it 

highly unlikely that so many point would fit the analytical data if measurement setup was not 

somewhat accurate. The high flux material could be measured up to a larger flux density than the 

previous and the losses are higher which increases the accuracy.   

 
Figure 11-15 Measured loss in High Flux at 5 kHz 

 
Figure 11-16 Measured loss in High Flux at 20 kHz 

 
Figure 11-17 Measured loss in High Flux at 50 kHz 

 
Figure 11-18 Measured loss in High Flux at 100 kHz 
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11.1.5 Core loss in High Flux 125 5 kHz- 9.9 kHz 

The losses in High Flux 125µ material can be viewed in Figure 11-19 to Figure 11-22 however the 

losses above 80 mT should not be trusted since it can be seen that there is a discontinuity in the data, 

as previously explained this is likely due to a change in the control system. The same relationships 

between the temperature and losses as with High Flux 160 is present which results in a small 

negative temperature coefficient in the losses with increasing temperature, at least up to 180°C. 

 
Figure 11-19 Measured loss in HighFlux 125 at 3 kHz 

 
Figure 11-20 Measured loss in HighFlux 125 at 5 kHz 

 
Figure 11-21 Measured loss in HighFlux 125 at 7 kHz 

 
Figure 11-22 Measured loss in HighFlux 125 at 9.9 kHz 
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11.1.6 Core loss in MPP 5 kHz- 9 kHz 

The MPP losses where complicated to measure and the Brochause were not able to get results above 

5 kHz at 180°C see figure Figure 11-23 - Figure 11-26 for the measured values. It can been seen that 

in MPP the losses are several magnitudes higher than the analytical data even if the relative 

permeability is very close to the rated value of 125. The previous measurements and this one 

indicated there are large differences among the cores in the magnitude of core loss in the same way 

that the manufacturer does only guarantee that the permeability is within +- 8 %. In the 

measurements there is no relevant increase in core loss by temperature from 3 kHz to 5 kHz however 

there seem to be some problem in measuring loss at high temperature for higher frequencies but 

this is likely to be related to the measurement equipment.   

 
Figure 11-23 Measured loss in MPP 125 at 3 kHz 

 
Figure 11-24 Measured loss in MPP 125 at 5 kHz 

 
Figure 11-25 Measured loss in MPP 125 160 at 7 kHz 

 
Figure 11-26 Measured loss in MPP 125 at 9.9 kHz 

 

11.1.7 Core loss in MPP 5 kHz- 100 kHz 

The loss in MPP was measured up to 100 kHz using the amplifier setup. However the loss which was 

measured is not very large giving possibility of a large error. The low core loss means that the angle 

between real loss and reactive loss become very important which was shown in section 10.3.1. This 

should primarily be the case at 100 kHz but at 50 kHz the losses are allot lower meaning the error is 

large in this case also. Some small relationships can however be found, that there is some close to no 

increase in core losses with temperature.    
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Figure 11-27 Measured loss in MPP at 5 kHz 

 
Figure 11-28 Measured loss in MPP at 20 kHz 

 
Figure 11-29 Measured loss in MPP at 50 kHz 

 
Figure 11-30 Measured loss in MPP at 100 kHz 

 

The measured values can be used to calculate new values for the Steinmetz equation which 

determines the analytical data see Table 11-2. The new parameters have been plotted in Figure 

11-31 and Figure 11-32. The MPP loss should be further investigated with a more accurate loss setup, 

possible involving calometric measurements.  

Table 11-2 MPP new Steinmetz parameters  

Range k α β 

5 kHz – 20 kHz 
0.025 mT – 0.075 mT 

33.24 1.74 1.66 

20 kHz – 50 kHz 
0.025 mT – 0.05mT 

861.76 1.24 2.3 
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Figure 11-31 Comparison of new Steinmetz parameters for  

5 - 20 kHz at 20 kHz  

 
Figure 11-32 Comparison of new Steinmetz parameters for 

20 - 50 kHz at 20 kHz 

11.1.8 Core loss in N27 Ferrite 

A N27 ferrite core from EPCOS was measured with the Brochause steel tester, and the sample was 

quite large compared to all other measured cores with a weight that was around 6 – 7 times higher 

than any other samples. This reduces the measurement error, however it was a double U core which 

was transferred to the equivalent toroid shape.  

The measurement fit the analytical data very well, but the measured loss is lower than the 

producer’s analytical data. This could be because the analytical data is for another temperature point 

than the measurement values. The temperature decreases the losses up to a minimum in the vicinity 

of 130°C while at 180°C it has increased back to the initial value. This is an expected relationship due 

to normally ferrites are created with a minimum around the operation temperature which decreases 

the chances of thermal runaway. The curie temperature of N27 is < 220°C so larger loss was expected 

at 180°C than the measured values. The 7 kHz and 9 kHz measurements had so large deviations and 

errors that they were not included, this was caused by instability in the Brochause control system.  

 
Figure 11-33 Measured loss in N27 at 3 kHz 

 
Figure 11-34 Measured loss in N27 at 5 kHz 
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11.1.9 Core loss in R Ferrite 

The core loss measured in magnetics® R ferrite (ZR44916TC) can be viewed in Figure 11-35 - Figure 

11-38. According to the measurements the analytical data provided from the manufacturer fits close 

to the measured data. However it is likely the analytical data is for another temperature point than 

what have been tested. It can be seen that the material have a loss minimum at around 130 °C which 

is expected, since its normal to create such a minimum to avoid thermal runaway.  

The measurements was performed from 10 mT until the core went into saturation, this explains the 

large increase in loss close to the maximum flux density which is decreasing with temperature. The 

data around the border of saturation should not be trusted.  

 
Figure 11-35 Measured loss in R ferrite at 3 kHz 

 
Figure 11-36 Measured loss in R ferrite at 5 kHz 

 

 
Figure 11-37 Measured loss in R ferrite  at 7 kHz 

 
Figure 11-38 Measured loss in R ferrite at 9 kHz 

 

 

 

http://www.mag-inc.com/File%20Library/Product%20Datasheets/Ferrite/New%20Ferrite%20data%20sheets/ZR44916TC.pdf
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 Buck converter 11.2

11.2.1 Inductor measurements and comparison 

Three different buck filters was created, based on the theory in section 9.1 and designed with the 

inductor software that has been developed. The purpose of the measurements is to determine how 

close to the real values the analytical approach is. The basic properties of the filter can be seen in 

Table 11-3 however see appendix D section V for more details. 

Table 11-3 Buck filter properties 

Nr    
[V] 

F 
[kHz] 

D     
[A] 

    
[V] 

L 
[mH] 

Idc 

[A] 
C [µF] 

1 30  10  0.5 1.2  0.4545 1.25  3 33  
2 30  10  0.5 0.6  0.2273 2.5  2 33  
3 30  5 0.5 3 2.27 1 5 33  

 
The results from the testing can be viewed in Table 11-4 and Table 11-5. It can be seen that there is a 

close correlation between the measurements and the analytical data, however it is clearly shown 

that the 8 % variation in permeability given by the manufacturer need to be taken into account. The 

losses correlate closely in inductor 2 however lower accuracy is present in the KoolMµ sample this 

could be explained by the data in the section 11.1.1 and 11.1.2 which showed that the analytical data 

underestimates the core losses by a big factor. The temperature is overestimated in all samples 

however the temperature of the cores is so low that low accuracy was to be expected. The thermal 

model was evaluated against measurements with large losses in section 7.10 which indicated that it 

is accurate. The analytical software estimates the fill factor with high accuracy in the samples.  

Table 11-4 Comparison of analytical design and measured values for inductors 

Inductor 1 Analytical 
prediction 

Measured 
values 

 Inductor 2 Analytical 
prediction 

Measured 
values 

 

Core Data 125Mµ 
0077715A7 

 
 

Core Data  160 High Flux 
C058583A2 

  

Linital 1.52 1.646 mH Linital 2.91 mH 2.57 mH 
Lpeak 1.31 1.035 mH Lpeak 2.53 mH 1.68 mH 
I peak 0.6 0.72 A I peak 0.3 0.444 A 
Turns 98 100 - Turns 169 170 - 

Copper loss 0.52810 - W Copperloss 0.276112 - W 
CoreLoss 0.13924 -- W CoreLoss 0.233555 - W 
Total Loss 0.66734 1.2 W Total Loss 0.509667 0.494 W 

Temperature 4.1312 12 °C Temperature 4.834313 10 °C 
MyCorrection 0.85940 0.628 - MyCorrection 0.868757 0.653 - 

Fill factor 0.24658 0.25 - Fill factor 0.80201 0.83 - 
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Table 11-5 Comparison of analytical design and measured values for inductors 

 

 

 

 

 

 

 

 

 

11.2.2 Paralleling of inductors 

Parallel connection of inductors might be a viable option to reduce toroid powder core components 

when a component experiences a dc-bias which reduces the effective permeability see more 

information in section 4.4. The laboratory setup was the buck converter with volt meters connected 

in series with each core. A high flux 160 was compared to two high flux 160 connected in parallel 

with a higher number of turns the values was 40 turns 151.7 µH and the parallel connection had 2 x 

50 turns on separate cores and a parallel inductance of 151.4 µH. The second test was a KoolMµ with 

70 turns and 691 µH while the parallel connected cores had 2 x 100 turns on separate cores and a 

parallel inductance of 718 µH. The results can be viewed in Figure 11-39 and Figure 11-40. See 

appendix D section VIII for the data. Analytical the permeability provided by the manufacturer [1] 

show a close correlation to the measured values however in the high flux sample there is some 

deviation and the analytical data underestimates the permeability change. Overall the same 

conclusion can be taken, that in some cases parallel connection might be beneficial especially in 

limited space designs. It might be easier to locate several inductors instead of a larger piece and since 

magnetic cores comes in standard sizes in the area between one size and the next parallel confection 

might be good.  

Inductor 3 Analytical 
prediction 

Measured 
values 

  

Core Data 125 HighFlux 
C058548A2 

  
 

Linital 1.77 mH 2.01 mH  
Lpeak 1.0 mH 0.993 mH  
I peak 1.5 1.46 A  
Turns 118 120 -  

Copper loss 2.83  W  
CoreLoss 0.076  W  
Total Loss 3.19 4.2 W  

Temperature 38 24 °C  
MyCorrection 0.56 0.49 -  

Fill factor 0.34  -  

 
Figure 11-39 Measured permeability with increasing dc 

current in 0077715A7 (KoolMµ) 

 
Figure 11-40 Measured permeability with increasing dc 

current C058583A2 (High Flux 160) 
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  Leakage capacitance 11.3

11.3.1 Reducing the leakage capacitance 

Three C058583A2 cores were wound with different winding methods and measured see section 10.5 

and 11.3 for more details. Strategy one (Figure 6-11) and four (Figure 6-12) was tested and compared 

to a baseline (Figure 6-10). 

Normal winding 
A core with 50 turns of 120 x 0.1mm Litz wire 
was wound on a C058583A2 core to get a basic 
idea about the leakage capacitance in inductor 
cores. The impedance plot can be seen in Figure 
6-10, and the measured values in Table 6-4. The 
secondary peak is likely caused by the inductor 
to earth capacitance.  
 
Table 11-6 Measured values for a normal winding 

L [µH] C [pF]   [kHz] 

247.6 261.2 624.9 
 

 
Figure 11-43 Impedance versus frequency for a normally 

wound core 

Bank winding 
A bank winding was wound on a C058583A2 
core, this decreased the leakage capacitance by 
43 % as can be seen in Table 6-5 and Figure 
6-11. The secondary peak has also disappeared 
or been moved outside the scope of the 
measurement which was up to 30 MHz.  
 
Table 11-7 Measured values for a Bank winding 

L [µH] C [pF]   [kHz] 

304.4 150  742.6 
 

 
Figure 11-44 Impedance versus frequency for a bank 

 
Figure 11-41 Analytical permeability with increasing dc 

current in 0077715A7 (KoolMµ) 

 
Figure 11-42 Analytical permeability with increasing dc 

current in C058583A2 (High Flux 160) 

http://www.mag-inc.com/File%20Library/Product%20Datasheets/Powder%20Core/New%20Powder%20Cores/Toroids/585%20Size/C058583A2.pdf
http://www.mag-inc.com/File%20Library/Product%20Datasheets/Powder%20Core/New%20Powder%20Cores/Toroids/585%20Size/C058583A2.pdf
http://www.mag-inc.com/File%20Library/Product%20Datasheets/Powder%20Core/New%20Powder%20Cores/Toroids/585%20Size/C058583A2.pdf
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winding 

Air gap between the layers 
A winding with an air gap of 3.4 mm between 
the layers was wound using tape. This resulted 
in a 38.3 % reduction in leakage capacitance. 
However due to the 3 mm of tape the inner 
radius became smaller leading to the windings 
in the outer layer being packed more together 
which likely raised the leakage inductance a bit.   
 

Table 11-8 Measured values an inductor with air gap 
between layers 

L [µH] C [pF]   [kHz] 

254.2 161 785.7 
 

 
Figure 11-45 Impedance versus frequency for a winding with 

air gap between the layers 

The results indicate that instead of winding the core with a complicated bank winding an air gap 

could be inserted with nearly the same effect on leakage capacitance however this would also 

increase the winding size and the size of the component but lead to better cooling with a 

cheaper/simpler winding technique.  

11.3.2 Parallel connection between two inductors 

 
Two KoolMµ 0077715A7 was paralleled to see if 
the effect on the leakage capacitance would 
agree with general capacitance theory (which 
might not be the case). In a parallel it is 
expected that the capacitance add up and 
inductance decreases. Therefore the 
capacitance of two 675 pF inductors in parallel 
(see Figure 11-46 and Table 13-4) is expected to 
be 1350 pF as it can be seen of Figure 11-47 and 
Table 11-10 this agrees with the basic theory 
however the values are higher.  
 
Table 11-9 Parameters of a single 100 turn KoolMµ core 

L [µH] C [pF]   [kHz] 

1385 675 164.6 

 
Table 11-10 Parameters of a parallel connection of two 
100 turn KoolMµ core 

L [µH] C [pF]   [kHz] 

718 1540 151.3 
 

 
Figure 11-46 A single 100 turn KoolMµ core 

 
Figure 11-47 Parallel connection of two 100 turn KoolMµ 

core 

http://www.mag-inc.com/File%20Library/Product%20Datasheets/Powder%20Core/New%20Powder%20Cores/Toroids/715%20Size/0077715A7.pdf
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11.3.3 Minimum leakage capacitance 
In a winding each turn could be modelled as a single inductor on the same core which means as long 
as the mutual capacitances do not increase. General capacitor theory should be valid, since the 
leakage capacitance is in series adding more turns to the inductor will actually reduce the leakage 
capacitance up to some point where the mutual capacitances start having a large effect.  
 
Single Turn 
The first core tested was a 0077715A7 with 1 
turn. Table 11-11 show the leakage capacitance, 
SRF and inductance. It can be seen that with Litz 
wire and KoolMµ SRF have a maximum of 16.3 
MHZ. However the inductance was measured at 
low frequency and the inductance is allot lower 
which means the leakage capacitance is higher 
than the estimate number. 
Table 11-11 Parameters for a 1 turn KoolMµ core 

L [µH] C [pF]   [kHz] 

1.82 53 16 330 

 
 
 
5 Turns 
The second measurement with a 0077715A7 
core with 5 turns of Litz wire can be seen in 
Table 11-2 however the inductance is likely 
smaller which increases C.  
Table 11-12 Parameters for a 5 turn KoolMµ core 

L [µH] C [pF]   [kHz] 

5.13 41 10970 

 
 
 
 
 
 
 
8 Turns 
The third measurement with a 0077715A7 core 
with 8 turns of Litz wire can be seen in Table 
11-13 however the inductance is likely smaller 
which increases C, however there was no data 
available to adjust the inductance, but this do 
not change SRF 
  
Table 11-13 Parameters for a 5 turn KoolMµ core 

L [µH] C [pF]   [kHz] 

11.6 36.6 7721 

 
 
 

 
Figure 11-48 A 1 turn Litz wire on a KoolMµ core NB add 20 

db to the amplitude 

 
Figure 11-49 A 5 turn KoolMµ core NB add 20 db to the 

amplitude 

 
Figure 11-50 A 8 turn KoolMµ core NB add 20 db to the 

amplitude 

http://www.mag-inc.com/File%20Library/Product%20Datasheets/Powder%20Core/New%20Powder%20Cores/Toroids/715%20Size/0077715A7.pdf
http://www.mag-inc.com/File%20Library/Product%20Datasheets/Powder%20Core/New%20Powder%20Cores/Toroids/715%20Size/0077715A7.pdf
http://www.mag-inc.com/File%20Library/Product%20Datasheets/Powder%20Core/New%20Powder%20Cores/Toroids/715%20Size/0077715A7.pdf
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11 Turns 
The forth measurement was done with a 
0077715A7 core with 11 turns of Litz wire. The 
data can be seen in Table 11-14. 
  
Table 11-14 Parameters for a 5 turn KoolMµ core 

L [µH] C [pF]   [kHz] 

14.9041 572 5462 
1Adjusted from 20.7 mH 241 pF before 
adjustment 
 

 
Figure 11-51 A 11 turn KoolMµ core NB add 20 db to the 

amplitude 

The measurement has large sources of error but based on the data there is a trend pointing towards 

a minimum of inductance at x turns, which means that if you want minimum leakage capacitance you 

might want to have a higher inductance than necessary.   

11.3.4 Enamel windings 

The previous tests were performed with Litz wire windings which due to the large insulation to 

cobber factor is expected to have quite high leakage capacitance. To get an idea about how large the 

difference between enamel windings and Litz wire a 100 turn Litz wire was compared to a 136 turn 

high flux core with enamel winding see Figure 11-52 and Figure 11-53. The measurements show a 

very large reduction leakage capacitance for enamel windings see Table 11-15. The Litz wire has 

fewer turns on a larger core than the enamel, and still has 3 x more leakage capacitance. Therefore 

by using enamel windings the leakage capacitance is severely reduced by a factor of around 4.8.  

Table 11-15 Litz wire and enamel comparison 

Core L [µH] C [pF]   [kHz] 

100 turn Litz wire 1693 552 188 
136 turn enamel 2158 159 267 

 

 
Figure 11-52 A 100 turn koolMµ core with 100 turns of Litz 

wire 120 x 0.1mm 

 
Figure 11-53 A 136 turns high flux 160 core with 136 turns 

of enamel wire 1 x 1.15 mm 

 

http://www.mag-inc.com/File%20Library/Product%20Datasheets/Powder%20Core/New%20Powder%20Cores/Toroids/715%20Size/0077715A7.pdf
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11.3.5 Leakage capacitance in a hybrid winding of enamel and Litz wire 

It was shown in previous sections that when windings is put in series the leakage capacitance is 

reduced, therefore by winding a part of a winding with enamel the leakage capacitance should be 

decreased. A 0077715A7 core was wound with 100 turns of Litz wire and 10 turns of enamel the 

result reduced the leakage capacitance by 25 % and increased the inductance by 16 %. This 

configuration could be used in cases where the leakage capacitance is higher than the limit and only 

a small increase in loss can be tolerated. However it is likely the winding configuration can be 

improved by further investigation.    

Table 11-16 100 Litz wire versus hybrid winding of 100 turn Litz with 10 turns enamel  

Core L [µH] C [pF]   [kHz] 

100 turn Litz wire 1693 552 188 
100 turn Litz         
10 enamel 

1967 411 177 

 
Figure 11-54 A 100 turn KoolMµ core with 100 turns of Litz 

wire 120 x 0.1mm 

 

 
Figure 11-55 A 100 turn KoolMµ core with 100 turns of Litz 
wire 120 x 0.1mm and 10 turns of enamel 1 x 1.15 mm 20 

db need to be added to the vertical axis 

11.3.6 Temperature and Leakage capacitance 

The leakage capacitance was measured at 22°C and at 118°C for two different windings, to determine 

if there is any temperature effect on leakage capacitance. It can be seen in Table 11-17 that there is a 

large reduction in leakage capacitance compared to the initial values. The leakage capacitance at 

22°C was measured after the high temperature exposure showing that this was a permanent 

reduction. A possible explanation could be that the insulation should be easy to bend and fit onto the 

component, and therefore not fully hardened coming from the manufacturer. Under operation the 

temperature of the component will rise and finish the hardening process and thereby changing the 

leakage capacitance. This means that in any leakage capacitance tests of the component should be 

performed after the component have been heated and the initial values might overestimate the 

leakage capacitance, but this should be further investigated.  

 

 

http://www.mag-inc.com/File%20Library/Product%20Datasheets/Powder%20Core/New%20Powder%20Cores/Toroids/715%20Size/0077715A7.pdf
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Table 11-17 Leakage capacitance comparison at elevated temperatures 

Core L [µH] C [pF]   [kHz] 

100 turn Litz 22°C 1693 552.23 164 
100 turn Litz 118°C     1693 425.58 187 
    
136 turn enamel 22°C 2158 159.12 269 
136 turn enamel 118°C 2158 103.29 337 

 
Figure 11-56 A 100 turn KoolMµ core with 100 turns of Litz 

wire 120 x 0.1mm at 20°C 

 
Figure 11-57 A 100 turn High Flux core with 136 turns of 

Litz wire 1 x 1.15 at 20°C 

 
Figure 11-58 A 100 turn KoolMµ core with 100 turns of Litz 

wire 120 x 0.1mm at 118°C 

 
Figure 11-59 A 100 turn High Flux core with 136 turns of 

Litz wire 1 x 1.15 at 118°C 

 

Comparing all the values of leakage capacitance in this section it can be seen that leakage 

capacitance is around 5.5 pF per turn in Litz wire this relationship is present in 50 turn, 100 and 11 

turns. There was only one core with enamel which means it is not possible to draw any conclusions 

however in the one sample the leakage capacitance was 1.17 per turn. This could be used for a crude 

estimate of leakage capacitance in the case of Litz wire from Block-Trafo in small toroid cores 

however winding technique can change this allot.  

 References 11.4

[1] Magnetics® Technical Bulleting “Powder Core Catalog” 2011  
 



Conclusions  2013

 

 
 107 
 

12 Conclusions  
This report presents design of magnetic components intended for applications with temperature up 

to 200°C with a focus on SiC power electronics. The effect of using SiC over conventional Si switches 

has been investigated theoretically, and the results are that the leakage current is reduced, the on 

resistance so low that it can lead to larger ringing effects, since the system is close to being 

undamped. High breakdown voltage leads to higher possible operation temperatures, and the drift 

region can be made shorter increasing dv/dt. Silicon carbide switches have lower losses, and 

switching time which give the possibility to increase the switching frequency. This can be used to 

create smaller and more compact filters which would be benefit able in down-hole applications.  

Magnetic materials for high temperatures have been investigated, and powder cores and ferrites for 

higher temperatures are listed in chapter 4. The conclusion is that there are a large number of 

materials with high curie temperature, but the lamination and isolation, limits this temperature at a 

maximum 200°C for coated cores. This could be related to low incentives to develop magnetic 

materials for high temperatures due to little demand.  

The losses in the magnetic cores have been investigated and several different loss models based on 

the Steinmetz parameters have been presented. The original Steinmetz equation do not take into 

account non-sinusoidal loss and it has been shown that this can underestimate the loss significantly 

and in some cases over half the loss is unaccounted for. The analytical data provided by the 

manufactures in this case Magnetics® is only accurate for High Flux while there is large deviations in 

MPP and KoolMµ. However some of this deviation could be related to the measurement setup and 

small sample sizes. New Steinmetz parameters were calculated for the KoolMµ and MPP for 5 kHz 

and 20 kHz. The temperature primarily affects KoolMµ by a factor of up to 20 % at 180°C while in 

MPP and High flux no significant effect was observed.  

Windings tested in this report have indicated that at elevated temperatures enamel windings have a 

tendency to be damaged before the maximum operation temperature is reached, along the areas 

where the wires have been bent. This effect makes Litz wires or other wires with insulation that can 

handle bending a better option at higher temperatures. However Litz wire for 200°C do not seem to 

exist commercially, but Litz wire for 130°C was successfully used at 180°C and above for several days 

of discontinues use.  

It was found that paralleling of inductors might result in smaller design, when the magnetic material 

is a powder cores due to the large influence of the magnetic field strength on inductance. This will 

also result in a better thermal design. A configuration of this have been built and tested. However 

more turns is necessary on the cores which would result in higher leakage capacitance and in parallel 

the leakage capacitance add together which means the capacitance might nearly double.   

The leakage capacitance in multilayer Litz wire is quite high, but can be reduced by at least 50 % by 

inserting an air gap between the layers or by using bank windings. Enamel round wires have much 

lower leakage capacitance than a similar Litz wire bunt, and due to the properties of leakage 

capacitance in series the minimum leakage capacitance is not obtained at 1 turn but at x turns. The 

temperature does not affect leakage capacitance much after the windings have been heated up 
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once. Powder cores have high frequency dependence, and the inductance is drastically reduced as 

the frequency increases above 1-2 MHz. 

An analytical design tool for optimized design of high temperature inductors have been developed 

and used to design prototypes. The software has quite high correlation with the measured values but 

due to the materials permeability deviation of 8%, the accuracy depends allot on the real 

permeability of the materials. The primary use for the software is output inductors with sinusoidal AC 

waveform but by changing the input parameters both AC and DC designs can be obtained.  
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13 Further Work 
The software should be improved with a better iterative solver to speed up some iterating loops, and 

dowels equations should be updated so they take non sinusoidal waveforms into account.  Core 

losses should also take into account non sinusoidal waveforms. The ferrite part of the analytical tool 

was not complete and tested by the end of the thesis due to time constraints, this part should be 

completed. The thermal models should be fully implemented and the analytical approaches to 

effects of using SiC over Si should be verified by experiments and if any significant effects are 

discovered should be included into the analytical tool. In a toroid configuration the number of layers 

on the inner surface is larger than on the outer, this effect should be further investigated to see how 

it affects the losses.   

It was discovered that enamel windings with a diameter of 1.15 mm have a tendency to be damaged 

bellow the rated temperature where the winding have been bent, this is likely caused by stresses in 

the insulation during the bending which at higher temperature results in insulation failure, this 

should be investigated further. 

An investigation into larger filters could be performed and the design further extended to 100 kW it 

might be possible to use several smaller inductors to build the large filter.  

Further investigation of paralleling inductors should be conducted and rules to when it would be 

better to parallel found. The loss up to 100 kHz should be investigated further with a larger sample 

sizes and higher temperature with a more accurate tool than in this thesis. It was only possible to 

test one sample of each core material in the core loss characterization due to time constraints, and 

therefore it was not possible to rule out that there might be large deviations among the samples, this 

should be further investigated 

The next step after the analytical tool is completed is to design a SiC circuit. This requires building the 

gate driver and passive components and test the full system. Finally a three phase SiC circuit should 

be built and tested. 
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A Appendixes 
Definitions: 

Al Nominal inductance nH N-2 
le Mean magnetic path cm 
Ae Core cross section cm2 

  Permeability Wb m3A-1 

I Current A 

    Direct current A 

    Alternating fundamental current A 

           High frequency ripple current A 

   Core volume m3 

      Maximum flux density T 

  Resistivity Ω m 
   Resistivity at 20 degrees Ω m 
   Temperature coefficient  1 
      Cross section of the wire m2 

   Area of the core window m2 

  𝑢 Winding factor 1 

MLT Mean length per turn m 

 𝑦 Core outer radius m 

   Core inner radius m 

 𝑦 Core outer diameter m 

   Core inner diameter m 

  Core height m 

       The number of cores stacked 1 

S Surface m2 
P Power loss W 

          Temperature increase K 

N Number of turns 1 
Al Nominal Inductance nH/N2 
                Permeability correction for temperature 1 

               Permeability correction for magnetizing field 1 
               Permeability correction for frequency 1 

              Total permeability correction 1 

𝐾  Number of layers  1 

   Wire radius m 

   Wire Diameter m 
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B Appendix  Software for design of Powder cores Inductors 
Optimizing the volume in magnetic components requires a case to case design with appropriate 

choice of materials, cooling, and winding configuration. This is usually done by selection from a chart 

based on the energy storage, which is provided by manufacturers. This is a simple and fast selection 

process but is not optimized and focuses on the saturation and thermal limit. In cases with a wide 

range of switching frequencies, temperature changes, and saturation flux where little information is 

given and with the permeability changing due to different factors a computerized selection process is 

preferred.  

Several magnetic optimizing programs are available but all they are based on normal operation 

temperatures which are below 130 C and therefore a new program was created. In the following 

sections the main equations and principles found in the program will be given. 

I. Turns 

The number of turns: 

 

  √
 

       
 Equation 14-1 

 

II. Fill factor 

 
  𝑢  

      

  
 Equation 13-2 

 

III. Mean length per turn  

Mean length per turn (MLT) can be calculated from the core dimensions assuming the area of a 

single winding can be modeled as a square. 

         𝑦               Equation 13-3 

 

The windings themselves increase the MLT. This was approximated by assuming that the MLT 

increases by one 4th of a circle in each corner multiplied with the wire radius. This was approximated 

by Equation 13-4 which resulted in an improvement of 8% compared to using square corners see 

appendix F where the initial approximation gave an error of 43 %. 

             𝐾           Equation 13-4 

 

The resulting 35 % deviation from the real value is likely due to that more windings per layer fit into 

the outer diameter of a toroid compare to the inner. This approximation is not enough in a toroid 

due to the difference in circumference from the outer to the inner part of the core you can fit allot 

more turns at the outside leading to this part of the winding growing slower than the inner. See 

Figure 13-1 Toroid winding configuration. 
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This effect was approximated by using partly equation 10 and assuming that the corner diameter in 

the outer diameter only is increasing by  
  

  
 compared to the inner. 

 

         
 ( 𝐾    𝐷 +𝐷 )

 
+

 ((
𝐾 𝑅 
𝑅 

  )𝐷 +𝐷 )

 
 

Equation 13-5 

 

 

Figure 13-1 Toroid winding configuration 

Equation 13-5 assumes square fitting of the wires but this might not be the case therefore it was 

assumed that hexagonal fitting is most likely see Figure 13-2 for square and hexagonal fitting.  

The large number of factors affecting MLT means that a simple approximation is necessary and 

according to [5] Equation 13-6 is a good approximation which according to the real wound core in 

appendix F only have a 12.4 % deviation. 

         𝑂      Equation 13-6 

 

 

Figure 13-2 (a) Square fitting (b) hexagonal fitting [4]. 
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IV. Hdc 

The magnetic field strength have a large influence on the permeability.  

 
  

    

  
 Equation 13-7 

 

V. Flux density 

The maximum flux which is used to calculate the losses is found by using amperes law Equation 13-8. 

This is done for the ripple frequency and the fundamental frequency. According to [3] for 

transformers this is set with a 10 – 20 % safety margin between the saturation flux and Bpeak. 

 
  

            

  
 Equation 13-8 

 

VI. Permeability correction 

The powder cores permeability need to be adjusted especially for dc bias and frequency and in 

higher temperature operation.  

                 =                  Equation 13-9 

                =                    Equation 13-10 

                =                      Equation 13-11 

               =                                               Equation 13-12 

 

The parameter which is the largest contributor to permeability change in powder cores is the dc-bias 

experienced at peak fundamental current. The roll off in permeability follows the initial permeability 

leading to that high permeability cores have a larger change with dc bias. These equations are only 

accurate at permeability changes above 40 %. 

VII. The power handling capability of the core 

The energy storage capability of the core is related to the equation bellow and the program starts by 

checking that the chosen core can handle the energy requirement. µ depends on allot of factors 

therefore a maximum roll off in permeability was hardcoded to be 1% meaning all cores which will 

have a roll off larger than 50% is not checked. The maximum peak flux cannot be above the 

saturation flux density therefore       is given. 

             
  Equation 13-13 
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VIII. Resistance 

Resistance of copper is a function of temperature and the dc resistance is taken into account by the 

following formulas: 

                   

    
 

 
 

 

     
 

 

 

                               , l length of wire 

The Ac resistance is a function of frequency, temperature, layers and is described in [2]. The 

factor m is the number of layers. 

 

          (
 

   
) Equation 13-14 

   
     

    
 Equation 13-15 

     (
                

                
) Equation 13-16 

   
                  

              
 Equation 13-17 

 
                

 
Equation 13-18 

 

The ac resistance is finally found by Equation 13-19. 

            Equation 13-19 
 

The ac resistance can be calculated for each frequency and this is done for the fundamental and 

the switching frequency. 

IX. Power Loss 

The power losses leads to heating of the design and depending on the shape of the core a couple of 

guidelines should be noted. In the case of a toroid shape it is easy to dissipate great copper loss since 

the windings are exposed to the outside air or liquid flow. In a core loss dominated design the losses 

are trapped inside of the windings leading to increased temperature and this should be avoided if 

possible by changing the configuration. 

Copper loss 

The magnetic field in inductors and transformers are produced by windings normally consisting of 

cobber conductors, cobber has high conductivity but the winding losses are still large and have to be 

included in an accurate model. The copper losses is calculated based on the length of the wire 
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multiplied with the resistance, there are 3 components calculated dc, ac and ac ripple and the losses 

are finally summed. 

Core losses 

The core losses are calculated based on Steinmetz equation and the fundamental losses and high 

frequency losses are summed. This is due to the fundamental flux density being a magnitude larger 

than the high frequency ripple. 

 

X. Surface area 

The surface area of the core is increased due to the windings which are added and this surface 

increase is estimated by the following formulas. 

        𝑢
       Equation 13-20 

  𝑦   𝑦         Equation 13-21 

                 Equation 13-22 
              Equation 13-23 
     ( 𝑦

    
 )      𝑦      Equation 13-24 

 

 

XI. Thermal 

The temperature increase is estimated by a best fit curve based on empirical data 

 
          (

 

 
)
     

 Equation 13-25 

 

XII. Layers 

The windings need to be configured into. This factor is important to estimate the winding losses due 

to proximity effects. This is done by an iterative process which take the inner diameter of the core 

removes the diameter of the wire and calculates how many turns which goes into that layer, then the 

process is repeated until all turns are located. Due to that it is not possible to perfectly model the 

reality where turns is not fitted perfectly and you have toroid where windings will not perfectly 

follow a loop as mentioned above a factor of 1.1^𝐾 was added based on data from appendix F. 

XIII. Leakage inductance 

The leakage inductance is created due to stray flux which is not enclosed in the magnetic material 

this inductance adds to the total inductance of the core and an estimated formula with up to 50 % 

deviation is provided by the manufacturer [1] see Equation 13-26 however the leakage inductance in 

toroid power cores are very small.  

    = Leakage inductance µH  
N = Turns  
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Ae = Core cross section mm2  
le = Core magnetic path mm  
 

 
    

             

  
 Equation 13-26 

 

The way this inductance is used by the program is that the leakage inductance is transferred into Al 

and added to the core Al. 

XIV. Stacking cores 

The magnetic cores can be stacked and by that overall gaining a smaller volume at a lower radius or 

similar this is implanted as simple scaling up the input data from the cores so Ae, Ve, H is multiplied 

with the number of cores wanted, and saved back into the data changing the data for all equations in 

the program.  

XV.  Iterative process 

The core optimizing process takes in tables containing the characteristics of commercial cores and 

redesigns the inductors magnetic arrangement to fulfill the input parameters. This is performed until 

the temperature stabilizes so that the temperature change from on step to the next is lower than the 

input constraint. The final magnetic arrangement is checked against the input parameters and only if 

these are fulfilled the core will be saved.  
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Figure 13-3 Simple flow chart of the Iterative process 
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C Appendix Software to design Ferrite Inductors 
The magnetic materials chosen for high temperature operation is the R, P and T materials from 

magnetics®. The manufacturer has provided data about the operation up to 125 degrees Celsius and 

above this the information should not be used, due to this measurements of the permeability and 

losses with varying temperature should be performed. According [2] the change in permeability is 

not critical due to the air gap limiting this property and the temperature shift is low. Temperature 

does affect the losses extensively. Most of the equations in the previous appendix is used for ferrite 

inductors also and will not be repeated.  

I. Energy storage capability 

The analytical design for soft ferrites is performed in the python program following Equation 13-27 

which is based on the energy storage capability of the core.       was equaled to the maximum 

saturation flux density. Note that the saturation flux density depends on the temperature but this 

has not been included.   

 
 

 
    

     
 

 
 
   

   Equation 13-27 

II. Permeability 

The effective permeability is used to calculate the necessary air gap with Equation 13-28 
  

  

   
 

  
 

  

  
   Equation 13-28 

 

The stability of the initial core permeability has less importance in ferrites compared to powder cores 

due to the air gap which stabilizes the permeability.  

Inserting values for a R material with    2300   = 0.26mm and   =138mm into Equation 13-28 

yields the results in Table 13-1. For permeability which have changed to 25% 50% 150% and 175% of 

its original value. It can be seen that the effective permeability change much less than the core 

permeability. 

Table 13-1 The permeability stability in a ferrite air gap 0.26mm le 138mm and µ 2300 

Permeability deviation    Value µe  

              = 2300 431.25  
             = 575 276  
             = 1150 363.15  
            = 3450 460  
            = 4025 468.93  

 

The turns can then be calculated and rounded up or down to nearest integer note that this can cause 

large change of the inductance in the case of few windings and if it is rounded up unnecessary 

windings results in larger losses. 
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Turns 

 

        √
    

      
   

 

The flux density depends on N so the rounding changes the flux density and this is recalculated with 

the change in windings this could result in going above the saturation flux density but the resulting 

output information should clear up if this would pose a problem.  

 

The losses and other properties are calculated in the same manner as in powder cores. 

 

III. References 

[1] C. McLyman Transformer And Inductor Design Handbook 3e 2004 

[2] Magnetics® Technical Bulleting “Using Magnetic Cores at High Temperatures” 
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D Appendix Measurements & Calculations 

I. Measurements  Up to 100 kHz 20°C 

The 100 kHz measurements were performed with an oscilloscope with a power module that 

calculates the power based on the 2500 measurement point taken in by the oscilloscope. The signal 

was generated by a function generator and the voltage and frequency adjusted until there was less 

than 1% error between the wanted numbers and the real values. An Amplifier increased the current 

up to a usable level and the magnetic cores which is described in Table 10-3 was connected between 

the outputs. The winding losses was estimated based on the dc resistance and the cycl rms current 

this could be done since the windings are Litz wire and therefore would have a close resistance to the 

dc resistance. In the measurements the temperature effect on resistance was not taken into account 

but the measurements was performed with low ΔT in the material due to the low power loss in most 

samples.  

Table 13-2 measurements from 5 – 100 kHz at 20°C 
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MPP  25 5 - 1.66 - - 0.55    
MPP 50 5 0.24 6 10.3 10.4 1.719    
MPP 75 5 0.51 21.6 22.16 31.41 4.3    
MPP 100 5 0.88 89 35.2 46.15 8 26.0 22 35 
           
MPP  25 20 0.0593  6.58 9 3.61    
MPP 50 20 0.237  29.67 50.19 16.58    
MPP 75 20 0.521  72.37 114 40.47    
MPP 100 20 0.966  132.3 200.9 76.22 35.7 22 47 
           
MPP  25 50 0.0586  18.29  16    
MPP 50 50 0.2333  155.55  73.87    
MPP 75 50 0.517  346.8  180 43.4 22 57 
MPP 100 50 -  -  -    
           
MPP  25 100 0.063  81.21  49.46    
MPP 48 100 0.617*  354.67  228 48.1 22  
MPP 75 100 -  -      
MPP 100 100 -  -      
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KoolMµ 25 5 0.0669 2 3.71 3.33 0.37    
KoolMµ 50 5 0.25 8 16.28 15.72 1.73    
KoolMµ 75 5 0.615 28 32.38 36.79 4.22 28.7 22  
           
KoolMµ 25 20 0.0628  9.44 14.28 3.6    
KoolMµ 50 20 0.2446  43.8 65.12 16.58    
KoolMµ 75 20 0.539  109.47 148.46 40.47 33.4 22  
           
KoolMµ 25 50 0.0608  28.12  16    
KoolMµ 50 50 0.2433  124.32  73    
KoolMµ 75 50 0.5574  310.8  180 50 22  
           
KoolMµ 25 100 0.0642  62  49    
KoolMµ 44 100 0.5942*  145.95*

* 
 228 48.6 22  
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HighFlux 25 5 0.0190  0.4858 5.06     
HighFlux 50 5 0.0687  3.34 7.53     
HighFlux 75 5 0.152  9.82 16.32     
HighFlux 100 5 0.2717  18.38 23.68     
HighFlux 125 5 0.4176  29.24 39.12     
HighFlux 150 5 0.6209 109 44.59 52.79  29.7 22 35 
           
HighFlux 25 20 0.0191  7.8 5     
HighFlux 50 20 0.0702  39.71 36.1     
HighFlux 75 20 0.158  100.13 123.27     
HighFlux 100 20 0.279  183.28 245.9     
HighFlux 125 20 0.4259  290.14 398     
HighFlux 150 20 0.6133  447.4 575.11  43.4 22  
           
HighFlux 25 50 0.0184  23.5      
HighFlux 50 50 0.0736  124.9      
HighFlux 75 50 0.1626  320      
HighFlux 100 50 0.2794  574      
HighFlux 125 50 0.4276  906.6      
HighFlux 150 50 0.6133  1418   80.5 22  
           
HighFlux 25 100 0.0292  65.99  61.11    
HighFlux 50 100 0.0765  309  300    
HighFlux 75 100 0.1721   768.1  764    
HighFlux 100 100 0.2753  1949  1482 65.3 22  

*Winding number was decreased **Most likely measurement error ***Damage to the windings 

when they were adjusted. 
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MPP  25 5 - 1.66 - - 0.55    
MPP 50 5 0.24 6 10.3 10.4 1.719    
MPP 75 5 0.51 21.6 22.16 31.41 4.3    
MPP 100 5 0.88 89 35.2 46.15 8 26.0 22 35 
           
MPP  25 20 0.0593  6.58 9 3.61    
MPP 50 20 0.237  29.67 50.19 16.58    
MPP 75 20 0.521  72.37 114 40.47    
MPP 100 20 0.966  132.3 200.9 76.22 35.7 22 47 
           
MPP  25 50 0.0586  18.29  16    
MPP 50 50 0.2333  155.55  73.87    
MPP 75 50 0.517  346.8  180 43.4 22 57 
MPP 100 50 -  -  -    
           
MPP  25 100 0.063  81.21  49.46    
MPP 48 100 0.617*  354.67  228 48.1 22  
MPP 75 100 -  -      
MPP 100 100 -  -      
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KoolMµ 25 5 0.0669 2 3.71 3.33 0.37    
KoolMµ 50 5 0.25 8 16.28 15.72 1.73    
KoolMµ 75 5 0.615 28 32.38 36.79 4.22 28.7 22  
           
KoolMµ 25 20 0.0628  9.44 14.28 3.6    
KoolMµ 50 20 0.2446  43.8 65.12 16.58    
KoolMµ 75 20 0.539  109.47 148.46 40.47 33.4 22  
           
KoolMµ 25 50 0.0608  28.12  16    
KoolMµ 50 50 0.2433  124.32  73    
KoolMµ 75 50 0.5574  310.8  180 50 22  
           
KoolMµ 25 100 0.0642  62  49    
KoolMµ 44 100 0.5942*  145.95*

* 
 228 48.6 22  
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The last high flux measurements overestimates the losses somewhat due to an increase in the 

resistance due to temperature however this had no significant impact on the results. 
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HighFlux 25 5 0.649 0.564  0.68 0.7 0.89   
HighFlux 50 5 4.95 4.44  4.86 4.88 4.4   
HighFlux 75 5 13.5 13.08  13.76 13.72 11.19   
HighFlux 100 5 25.11 25.5  26.55 26.51 21.69   
HighFlux 125 5 39.24 42.5  45.49 46.11 36.25   
HighFlux 150 5 61.71 57.37  66.17 66.05 55.13   
           
HighFlux 25 20 5.57 5.63  5.16 4.94 6.31   
HighFlux 50 20 32.71 34.18  30.34 30.76 31.11   
HighFlux 75 20 83.53 79  71.55 74.8 79.06   
HighFlux 100 20 148.7 145.9  138.8 140 153.2   
HighFlux 125 20 238 243  230 226 255   
HighFlux 150 20 394 395  390.5 398 389   
           
HighFlux 25 50 18.76 21.84  18.31 16.67 22.99   
HighFlux 50 50 115.8 113.1  93.25 93.47 113.3   
HighFlux 75 50 293.2 295.6  255.12 250.3 287.8   
HighFlux 100 50 546 548.8  467 467.2 557.7   
HighFlux 125 50 858.1 858.2  744 740 931.8   
HighFlux 150 50 1414 1322  1222 1227 1417   
           
HighFlux 25 100 69 68.83  65.28 65.04 61.11   
HighFlux 50 100 326 316  301.7 303.85 300   
HighFlux 75 100 803 796  706.58 706 764   
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KoolMµ 25 5 1.33 1.41  2.40 2.44 0.37   
KoolMµ 50 5 5.04 5.14  10.26 10.2 1.73   
KoolMµ 75 5 8.44 8.78  20.44 20.74 4.22   
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KoolMµ 25 20 11.15 11.59  14.3 13.92 3.6   
KoolMµ 50 20 53.69 50.8  66.13 65.15 16.58   
KoolMµ 75 20 115 119  151.9 152.92 40.47   
           
KoolMµ 25 50 36.61 36.47  43.67 43.2 16   
KoolMµ 50 50 153 152.9  190 184 73   
           
KoolMµ 10 100 7.34 7.9  11.85 12.58    
KoolMµ 25 100 66.3 65.5  97.95 97.32 49   
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MPP 25 5 1.2 1.15  1.13 1.15 0.55   
MPP 50 5 4.54 4.4  4.41 4.37 1.719   
MPP 75 5 6.8 7.88  7.58 7.46 4.3   
           
MPP 25 20 7.36 7.35  7.54 7.31 3.61   
MPP 50 20 36.23 36.19  34.58 35.05 16.58   
MPP 75 20 82.3 82.7  84.76 85.53 40.47   
           
MPP 25 50 26.5 26.74  24.3 24.27 16   
MPP 50 50 111.2 114.7  99.75 99.11 73.87   
           
MPP 10 100 5.82 5.73  6.76 6.8 14.4   
MPP 25 100 48.23 45.81  51.64 53.73 90   

MPP 100 khz 25 mT 25 var 900mW 
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II. Measurements Up to 100 kHz 180°C 

The measurements at 100 kHz and 180°C was performed with the previous setup and a heating 

chamber due to the high temperature, thermal measurements would have destroyed the windings 

and would not be reliable with the comparisons due to the large temperature difference, the forced 

convection in the chamber and it was no time to get a baseline at high temperature. 

Table 13-3 measurements from 5 – 100 kHz at 180°C 
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MPP  25 5 0.0992  1.0 1.33 0.55  178  
MPP 50 5 0.4211  3.58 4.41 1.719  178  
MPP 75 5 0.758  7.58 11.42 4.3  178  
MPP 100 5 1.620  12.12 17.89 8  178  
           
MPP  25 20 0.1016  5.34 8.23 3.61  178  
MPP 50 20 0.4235  67.76 83.1 16.58  178  
MPP 75 20 0.95  164.03 201.2 40.47  178  
MPP 100 20 1.68  296.2 359.6 76.22  178  
           
MPP  25 50 0.107  95.65  16  178  
MPP 50 50 0.438  339.45  73.87  178  
MPP 63 50 -  -  180  178  
MPP 100 50 -  -  -  178  
           
MPP  25 100 0.2961  396.4  49.46  178  
MPP 33 100 0.47  841  228  178  
MPP 75 100 -  -  -  178  
MPP 100 100 -  -  -  178  
           

C
o

re
 

Fl
u

x 
D

en
si

ty
 [

m
T]

 

Fr
eq

u
en

cy
 [

kH
z]

 

W
in

d
in

g 
lo

ss
es

  
[W

] 

B
ro

ch
au

se
 

[m
W

/c
m

3
] 

O
sc

ill
o

sc
o

p
e 

[m
W

/c
m

3
] 

P
o

w
e

r 
m

et
er

   
   

  

[m
W

/c
m

3
] 

A
n

al
yt

ic
al

 [
m

W
/c

m
3 ] 

Tc
 +

/-
1

C
 

Ta
 +

/-
1

C
 

 

KoolMµ 25 5 0.113  2.95 2.26 0.37  177  
KoolMµ 50 5 0.39  10.77 4.98 1.73  177  
KoolMµ 75 5 1.03  26.61 10.24 4.22  177  
           
KoolMµ 25 20 0.1152  26.71 3.44 3.6  177  
KoolMµ 50 20 0.465  46.17 16.61 16.58  177  
KoolMµ 75 20 1.11  109 30.58 40.47  177  
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KoolMµ 25 50 0.1242  29.54  16  177  
KoolMµ 50 50 0.4838  134.35  73  177  
KoolMµ 75 50 1.074  354.14  180  177  
           
KoolMµ 25 100 0.0713  326.9  49  177  
KoolMµ 44 100 -  -  228  177  
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HighFlux 25 5 0.0458  1.28 0.36 0.89  175  
HighFlux 50 5 0.183  6.34 8 4.4  175  
HighFlux 75 5 0.4253  18.22 20.39 11.19  175  
HighFlux 100 5 0.799  32.23 24.34 21.69  175  
HighFlux 125 5 1.193  47.33 49.74 36.25  175  
HighFlux 150 5 0.905*  87.73 70.86 55.13  175  
           
HighFlux 25 20 0.028  15.38 10.13 6.31  175  
HighFlux 50 20 0.1074  67.6 39.17 31.11  175  
HighFlux 75 20 0.2368  162.44 121.24 79.06  175  
HighFlux 100 20 0.4125  271 237 153.2  175  
HighFlux 125 20 0.6419  421 399 255  175  
HighFlux 150 20 0.9345  642 594 389  175  
           
HighFlux 25 50 0.0306  72.62  22.99  175  
HighFlux 50 50 0.1212  317  113.3  175  
HighFlux 75 50 0.2646  765  287.8  175  
HighFlux 100 50 0.4681  1374  557.7  175  
HighFlux 125 50 0.7028  2124  931.8  175  
HighFlux 150 50 1.0549  3312  1417  175  
           
HighFlux 25 100 0.0318  279  61.11  175  
HighFlux 50 100 0.1298  1180  300  175  
HighFlux 75 100 0.4969  2314  764  175  
HighFlux 100 100 -  -  1482  175  

*Winding was changed 
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III. Non-sinusoidal losses 

The non-sinusoidal losses were investigated using the waveform generator and amplifier approach 
however the error in the setup caused large deviations and the testing was stopped. The initial values 
measured can be seen below but no conclusion can be taken since the highest loss is obtained 
differently at each measurement point.  
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High Flux 100 Sinus 9675 0.338 58.065      
High Flux 100 Square 9675 0.331 71.31      
High Flux 100 Triang. 9675 0.4015 57.22      
           
High Flux 100 Sinus 20 000 0.3785 143.24      
High Flux 100 Square 20 000 0.2595 131.21      
High Flux 100 Triang. 20 000 0.417 166.93      
           
High Flux 100 Sinus 50 000 0.3188 480      
High Flux 100 Square 50 000 0.283 512      
High Flux 100 Triang. 50 000 0.421 635      
           
High Flux 75 Sinus 100 000 0.2233 796      
High Flux 75 Square 100 000 0.178 677      
High Flux 75 Triang. 100 000 0.181 611      
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V.  Filter for Buck Converter 

In the filter section four different inductors was designed for filter purposes see below for a repeat of 

the main values. In this section the software will be used to calculate the physical size and 

configuration of the inductor and measured values will be included. 

Buck filter specification 

   [V] F [kHz] D     [A]     [V] L [mH] C [µF] 
30  5 0.5 3 2.27 1 33  
30  10  0.5 1.2  0.4545 1.25  33  

100  10  0.5 4  1.5152 1.25 33  
30  10  0.5 0.6  0.2273 2.5  33  

100  10  0.5 2  0.7576 2.5  33  
30  10  0.5 0.4286  0.1623 3.5  33  

100  10  0.5 1.428  0.54 3.5  33  
30  5  0.5 0.66  0.5 4.5  33  

100  5  0.5 2.22  1.68 4.5  33  

 

The resistive load is set to 10Ω and the input parameters to the inductor software are recalculated to 

being the dc equivalent. The temperature is set to 25°C and only the cases which fit with available 

core materials will be used.   

 Inductor 1 Inductor 2 Inductor 3 

Dc Bias 3 A 2 A 5A 
Ambient temp. 25°C   25°C   25°C   
Peak inductance  1.25 mH 2.5 mH 1 mH 
Current Peak 0.6 A 0.3 A 1.5 A 
Average output Current 3 A 2 A 5 A 

Ripple current 100 100 100 
Fundamental frequency 1 1 1 
Switching frequency 10 000 Hz 10 000 Hz 5 000 Hz 
Current Density 200 200 200 
Number of strands in 
bundle 

120 120 120 

Strand diameter 0.1 mm 0.1 mm 0.1 mm 

Bundle diameter 1.55 mm 1.55 mm 1.55 mm 
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Table 13-4 Inductor analytical data and measured values 

Inductor 1 Analytical 
prediction 

Measured 
values 

 Inductor 2 Analytical 
prediction 

Measured 
values 

 

Core Data 125Mµ 
0077715A7 

 
 

Core Data  160 High Flux 
C058583A2 

  

Linital 1.52 1.646 mH Linital 2.91 mH 2.57 mH 
Lpeak 1.31 1.035 mH Lpeak 2.53 mH 1.68 mH 
I peak 0.6 0.72 A I peak 0.3 0.444 A 
Turns 98 100 - Turns 169 170 - 

Copper loss 0.52810 - W Copperloss 0.276112 - W 
CoreLoss 0.13924 -- W CoreLoss 0.233555 - W 
Total Loss 0.66734 1.2 W Total Loss 0.509667 0.494 W 

Temperature 4.1312 12 °C Temperature 4.834313 10 °C 
MyCorrection 0.85940 0.628 - MyCorrection 0.868757 0.653 - 

Fill factor 0.24658 0.25 - Fill factor 0.80201 0.83 - 

 

 

Table 13-5 Inductor analytical data and measured values 

 

VI. Dv/dt output inductor for differential noise 

-The drive specification can be viewed in the table below and dv/dt and sinus filter is calculated in 

the following sections. 

Drive Specification 

Vdc 600 V 
S 3k VA 
fsw 100 KHz 
ffund 50 Hz 
tr max 1 Kv/µs 
I1  4.71 A         PWM ma = 1 @ 367.2VLL rms 

Tamb 150 °C 

Inductor 3 Analytical 
prediction 

Measured 
values 

     

Core Data 125 HighFlux 
C058548A2 

  
    

Linital 1.77 mH 2.01 mH     
Lpeak 1.0 mH 0.993 mH     
I peak 1.5 1.46 A     
Turns 118 120 -     

Copper loss 2.83  W     
CoreLoss 0.076  W     
Total Loss 3.19 4.2 W     

Temperature 38 24 °C     
MyCorrection 0.56 0.49 -     

Fill factor 0.34  -     
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VII. Sinus output filter  

Sinus output filter same as above just with lower   and inductance in the 1-10% range 

              

             

For a sinus output filter the resonance frequency is chosen bellow the switching frequency. 

Recommended at    
   

 
  

               

   
 

     
  

   
 

                     
 

 

                 

See Table 13-6 with recommended L from 0.25%, 1%, 2%, 3% ,6%, 10% for dv/dt filter and 1%, 2%, 

3%, 6%, 10% for sinus filter. 

Table 13-6 some values for LC in different filters 

 L C R Ploss ωo 

dv/dt filter 0.25% 0,000358 7,77E-09 858,3916 150,98 600000 

Sin filter 1% 0,001431 1,97E-08 0 0 188495,6 

1 %      

dv/dt filter 0,001431 1,94E-09 3433,566 37,74501 600000 

Sin filter 0,001431 1,97E-08 0 0 188495,6 

2 %      

dv/dt filter 0,002861 9,71E-10 6867,133 18,8725 600000 

Sin filter 0,002861 9,84E-09 0 0 188495,6 

3 %      

dv/dt filter 0,004292 6,47E-10 10300,7 12,58167 600000 

Sin filter 0,004292 6,56E-09 0 0 188495,6 

6 %      

dv/dt filter 0,008584 3,24E-10 20601,4 6,290835 600000 

Sin filter 0,008584 3,28E-09 0 0 188495,6 

10 %      

dv/dt filter 0,014307 1,94E-10 34335,66 3,774501 600000 

Sin filter 0,014307 1,97E-09 0 0 188495,6 

 

Assuming 10% Ac 0% Dc at inverter frequency 
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Dc-Bias at peak 5.99 A 

Ac-Current 10% 0.471A 
Fundamental freq 50 Hz 
fsw 100 KHz 
L 0,001431 
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VIII. Parallel connection of inductors in a buck converter 

Table 13-7 KoolMµ 70 turns inductance at dc bias from 0-16 A 

Dc Bias [A] ΔI [A] Vpp [V] F [Hz] L [µH] % of initial value  

0    691 100  
2 2.56 67 10 078 649 93.9  
4 3.16 67 10 078 525 76  
6 4.33 67 10 078 383 55.5  
8 5.72 67 10 078 290 42  

10 8.08 67 10 078 205 29.75  
12 10 67 10 078 166 24  
14 12.2 67 10 078 136 19.7  
16 14.4 67 10 078 115 16.6  

Table 13-8 KoolMµ two 100 turns inductors parallel connected 

Dc Bias [A] ΔI [A] Vpp [V] F [Hz] L [µH] Dc current L1 Dc current L2 % of initial value 

0 3.6 20.4 1972 718   100 
2 2.08 68 10 078 810 0.937 0.990 112 
4 2.42 68 10 078 697 1.906 2.016 97 
6 3 68 10 078 562 2.9 3.06 78.3 
8 3.86 68 10 078 437 3.876 4.1 60.8 

10 4.76 68 10 078 354 4.85 5.125 49.3 
12 5.8 68 10 078 290 5.836 6.165 40 
14 7.04 68 10 078 239 6,81 7.17 33.2 
16 8.56 68 10 078 197 7.85 8.26 27.4 

 
Table 13-9 HighFlux 40 turns inductance at dc bias from 0-16 A 

Dc Bias [A] ΔI [A] Vpp [V] F [Hz] L [µH] % of initial value  

0 2.68 3.2 1972 151.7 100  
2 10.6 69 10075 160.1 105.5  
4 11.2 68.3 10075 151.3 99.7  
6 13.4 67.5 10075 125 82.4  
8 16.6 67 10075 100 65.91  

10 20.6 66.5 10075 80 52.7  
12 27.2 66 10075 60.2 39.68  

 
Table 13-10 HighFlux two 50 turns inductors parallel connected 

Dc Bias [A] ΔI [A] Vpp [V] F [Hz] L [µH] Dc current L1 Dc current L2 % of initial value 

0 2.64 3.2 1972 151.7   100 
2 10 69 10075 171.2 0.965 1.022 112.8 
4 9.8 68 10075 172 1.94 2.06 113.4 
6 10 67.3 10075 167 2.92 3.1 110 
8 10.6 66.6 10075 155.9 3.84 4.08 102.7 

10 11.4 66 10075 143.6 4.87 5.16 94.6 
12 12.2 66 10075 134 5.86 6.18 88.3 
14 13 65.5 10075 125 6.74 7.11 82.4 
16 14.8 65 10075 108 7.78 8.2 71.1 
18 16.2 64.5 10075 98.8 8.88 9.26 65.1 

19.5 17.8 64 10075 89.2 9.5 10 58.8 
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IX. N27 

The N27 is a magnetic core produced by Siemens exact core data was not found and was instead 

measured with outer dimensions to be 102mm x 102mm (a double c core) and a cross section of 

25mm x 25mm with two air gaps. The clamping pressure was not known and therefore this was 

ignored. The BROCHAUS MPG100 do not have a built in function to calculate C cores therefore the 

data have to be transformed into a toroid equivalent see chapter 10.2.1, and Table 13-11. 

Table 13-11 N27 Geometric Data 

Type                 H Density 

        
N27 C 625 mm2 308 mm  166 250 mm3 - - - 4800 kgm-3 
N27 O Eq 625 mm2 308 mm 166 250 mm3 73mm 123mm 25 mm 4800 kgm-3 
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E Appendix Python 
Python was chosen as the script language over Matlab partly to test out the scientific packages found 

in python(x,y) which is scientific-oriented python packages. This was a test project initiated by 

SmartMotor during the summer internship 2012 to see if it was possible to write a larger script 

without dependence on Matlab which is an expensive investment.   

The conclusion is that I did not miss any part from Matlab and learned python quite fast. The main 

problem encountered with using python was that other software often supports Matlab and not 

python which in a more complex script might be beneficial.  

All functions I normally use in Matlab is found in python(x,y) from for loops to graphs. Gui creation 

was also simplified by the tool qt designer which is made for rapid prototyping of gui’s where just by 

dragging and dropping elements into a window a new gui can be made, and by using a several scripts 

the gui creation and other functions can be separated meaning new gui’s can be made without 

changing any code in other scripts. You have to make connections for new functions but this is not 

complicated.  
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F Mechanical measurements MLT 
A magnetic Core C055251A was wound with wire size 1.12mm and 246 turns this resulted in the 

layer configuration 71 66 52 44 and a layer with 13. The total length equaled 14.03 meters which 

means the MLT = 0.0568 meters.  

The initial analytical calculations resulted in an error of 22.9% and a more advanced formula 

decreased this error to 12.5 % which was then implanted into the software. 

 Turns Wire size Layers Total length MLT 

C055251A real 246 1.12 mm 71 66 52 44 14.03 0.0568 

C055251A calc 246 1.12 mm 75 71 68 32 17.24 0.06982 m 

match % calc/real    22.9% 22.9% 

C055251A improved calc    15.76 0.06384 

match % i. calc/real    12.4% 12.4% 
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G Thermal Resistances 

I. Natural Convection 

 

                  
Equation 13-29 
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Equation 13-38 
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Equation 

13-46 

II. Forced Convection 

III. Radiation 

                        
    

   Equation 13-47 

   

       
     

                  
    

  
  Equation 13-48 

Example: 

0077715A7 with 99 turns 

       78 Core winding resistance ignored 

   25  
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             Values found in Table 7-5 Evaluated at 
     

 
 

E  0.58 emissivity 
     0.0058 Surface emissivity area 

   0.0062 Vertical area 
   0.0153 Vertical area 
  3.26 10-5  
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                      = 0.0062 12.54(51.5) = 4.004 [W] 

  

       178 Core winding resistance ignored 

   25  
    0.00267 Values found in Table 7-5 Evaluated at 
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 𝑢 

 
 =

          

      
 = 14.25 

                      = 12.54(51.5) = 8.96 [W] 
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H Pictures from the laboratory 
 

 
Figure 13-4 The loss measurement setup with a Brochause steel tester 

 

 
Figure 13-5 The heating chamber 
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Test object 
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Figure 13-6 Buck converter 

 

Dc-Link 
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Figure 13-7 The 100 kHz amplifier setup 

I Python Source code 
The python source code was uploaded to DAIM and should be found in the NTNU database.   

Signal generator 

Signal summer 

100 kHz amplifier 


