
YAPS.life
A Group Recommendation System for Real

Estate

Kristian Elset Bø

Master of Science in Computer Science

Supervisor: Anders Kofod-Petersen, IDI

Department of Computer Science

Submission date: June 2018

Norwegian University of Science and Technology

i

Abstract
Can you afford to buy a place of your own? If you could, how would you go about
finding it? Due to rising real estate prices in cities all over the world, more people
than ever choose to rent in shared accommodations to save on costs. With whom
and where we live has a significant impact on our lives, yet despite its impor-
tance, it is still one of the most manual and laborious processes in our digital age.

In this thesis, a prototype of a group recommendation system for real estate
is presented to solve this issue. The prototype uses the context of where the
users are looking to move, their habits and personality, as well as what they are
looking for in a property, to cluster them into match groups. Then it provides
housing recommendations for the group from various data sources based on the
group’s preferences. The research has been conducted within the Design Science
Paradigm.

Presented in this thesis, is the design and implementation of the prototype in
addition to the state of the art of both group and real estate recommendation. It
provides a quantitative analysis of the different clustering algorithms, and qual-
itative evaluations of the user interface and real estate recommendations. The
analyses of the matching algorithms show that a cascading hybrid model doing
an initial clustering with k-Means, followed by a final grouping with a modified
version of k Nearest Neighbour performs best for this problem. Further, the re-
sults show that users have a positive experience with the prototype, both with the
interface and the real estate recommendations. Several topics for future research
have also been identified.

ii

Sammendrag
Har du råd til å kjøpe et sted å bo? Hvis du kunne, hvordan ville du gå fram for
å finne det? På grunn av stigende eiendomspriser i byer over hele verden velger
flere enn noensinne å leie i bofelleskap for å senke kostnader. Med hvem og hvor
vi bor har en stor innvirkning på våre liv, men til tross for det er det å finne et
bra kollektiv fortsatt en av de mest manuelle og arbeidskrevende prosessene vi
gjør.

I denne oppgaven presenteres en prototype av et gruppe-anbefalingssystem for
bolig for å løse dette problemet. Prototypen bruker konteksten av hvor brukerne
ønsker å flytte, deres vaner og personlighet, så vel som det de leter etter i en
leilighet, for å sette dem sammen i grupper. Deretter gir systemet anbfalinger
for hvor gruppen burde bosette seg utifra ulike datakilder basert på gruppens
preferanser. Forskningen er utført i samsvar med Design Science Paradigmet.

Presentert i denne oppgaven, er utformingen og implementeringen av prototypen
i tillegg til State-of-the-Art for både anbefaling for grupper og for bolig. En kvan-
titativ analyse av forskjellige gruppesammensetnings-algoritmer, samt kvalitative
vurderinger av brukergrensesnittet og bolig-anbefalingene er også med. Analy-
senen av gruppesammensetnings-algoritmene viser at en hybridmodell, som gjør
en innledende gruppering med k-Means, etterfulgt av en endelig gruppering med
en modifisert versjon av k Nearest Neighbour virker best for dette problemet.
Videre viser de kvalitative resultatene at brukerne har en positiv opplevelse med
prototypen, både med grensesnittet og boliganbefalinger. Flere nye avenyer for
videre forskning er også avdekket.

iii

Preface

This thesis is the basis for the master degree in computer science for Kristian
Elset Bø. The research has been conducted at the Norwegian University for Sci-
ence and Technology and supervised by Anders Kofod-Pedersen.

I would like to thank my supervisor for his support for the research topic and
the continual guidance he has given me throughout the project. Further, I would
like to extend gratitude to my roommates, friends, and family for their support.
I could not have done this without you.

Kristian Elset Bø
Trondheim, June 11th, 2018

iv

Contents

1 Introduction 1
1.1 Background and Motivation . 2
1.2 Previous Work . 2
1.3 Goals and Research Questions . 3
1.4 Contributions . 4
1.5 Thesis Structure . 4

2 Background Theory 7
2.1 YAPS.life . 7

2.1.1 The scenarios . 7
2.1.2 History of the service . 8

2.2 Recommender Systems . 9
2.2.1 Content-based filtering . 9
2.2.2 Collaborative filtering . 10
2.2.3 Knowledge-based systems 10
2.2.4 Hybrid systems . 11
2.2.5 The role of Context . 12
2.2.6 Preference gathering with Feedback 12
2.2.7 Evaluating recommendation systems 14

2.3 Challenges in Recommendation Systems 15
2.3.1 The cold start problem . 15
2.3.2 Sparse data . 15
2.3.3 Serendipity and Novelty . 16
2.3.4 Bias from popularity . 16

2.4 Group Recommendation . 17
2.4.1 Group formation . 17
2.4.2 Group model strategies . 18
2.4.3 Candidate set . 19
2.4.4 Group persona . 19

v

vi CONTENTS

2.4.5 Aggregation of individual preferences 19
2.4.6 Aggregation strategies . 20

2.5 Clustering . 21
2.5.1 Similarity metrics . 22
2.5.2 Curse of dimensionality . 23
2.5.3 K-Means . 24
2.5.4 k Nearest Neighbours . 24

2.6 Real Estate Recommendation Systems 25
2.6.1 Traditional web-based housing search 26
2.6.2 Multi-Criteria Journey Aware Housing Recommender Sys-

tem . 26
2.6.3 Toward a User-oriented Recommendation System for Real

Estate Websites . 28
2.6.4 House Selection via the Internet by Considering Homebuy-

ers’ Risk Attitudes with S-shaped Utility Functions 29
2.6.5 Web-Scale Personalized Real-Time Recommender System

on Suumo . 30
2.6.6 Summary . 30

3 Research Methodology 33
3.1 Design Science Research . 33
3.2 Evaluation Tools . 36

3.2.1 Group Cohesion Measure 36
3.2.2 System Usability Scale . 37
3.2.3 Real Estate Recommendation Quality Survey 38

3.3 Evaluation Setup & Plan . 38
3.3.1 Quantitative analysis of clustering methods 38
3.3.2 Usability evaluation . 40
3.3.3 Quality of recommendation evaluation 40

4 Prototype 43
4.1 App Header . 43
4.2 Landing Page . 45
4.3 User Creation . 48
4.4 Profile Page . 49

4.4.1 About me . 49
4.4.2 Defining your habits in a shared accommodation 50

4.5 Match List . 53
4.6 Match View . 55

4.6.1 Flatmates . 55
4.6.2 Real estate recommendation 56

CONTENTS vii

4.6.3 Chat room . 58

5 Design of Recommendation Algorithm 59
5.1 Requirements . 59
5.2 Definitions & Overview . 60
5.3 Profile Generation . 62
5.4 Context Filtering . 62
5.5 Group Formation . 62

5.5.1 Initial clustering with k-Means 63
5.5.2 Final match groups determined by k Nearest Neighbours . 63

5.6 Feature Reduction and Similarity Calculation 65
5.7 Creating a Match . 66
5.8 Real Estate Recommendation . 67

5.8.1 Get best origin for match 68
5.8.2 Get combined travel time and determine the best origin . . 68
5.8.3 Construct query strings & get properties 69
5.8.4 Evaluating a listing . 70
5.8.5 Matching groups with properties in the system 70
5.8.6 Adding properties manually 70
5.8.7 Adding properties uploaded by landlords 70

6 Architecture 71
6.1 Development Environment . 71
6.2 Architecture . 71
6.3 Front-end . 72

6.3.1 React.js . 73
6.3.2 Create React App . 74

6.4 Back-end . 75
6.4.1 Cloud FireStore . 75
6.4.2 Typescript . 76
6.4.3 Firebase cloud functions . 76

6.5 Dataset . 77
6.6 Recommendation Algorithm Implementation 78

6.6.1 Context filtering on match location for users 78
6.6.2 Clustering and match creation 78
6.6.3 Matching users with external listings 80
6.6.4 Match with internal listings 82
6.6.5 Handling new users, matches, and listings 82

viii CONTENTS

7 Evaluation 85
7.1 Matching Evaluation Results . 86

7.1.1 Brute-force search . 87
7.1.2 Match distribution . 88

7.2 Usability Evaluation Results . 93
7.2.1 Number of test subjects . 93
7.2.2 Demographic and background information results 93
7.2.3 System Usability Scale results 96
7.2.4 Application Specific survey 98
7.2.5 Usability problems & Feature suggestions 99

7.3 Quality of Real Estate Recommendations Results 100
7.4 Discussion . 103

7.4.1 Quantitative analysis of clustering methods 103
7.4.2 Usability evaluation . 103
7.4.3 Quality of recommendation evaluation 104
7.4.4 Threat to validity . 104

8 Future work and conclusion 107
8.1 Contributions . 107
8.2 Future Work . 108
8.3 Conclusion . 109

Bibliography 110

A Personality questions 117
A.1 Social habits questions . 117
A.2 Cleanliness questions . 117
A.3 Social openness questions . 118
A.4 Social flexibility questions . 118

B Brute-force test with 64 Test Users 119

C Surveys 121
C.1 Questionnaires . 121
C.2 Feedback . 127

D Code 129
D.1 User generation . 129

List of Figures

2.1 A search of listings in New York with metro stations and schools
added as an overlay from www.trulia.com 27

2.2 Yuan et al. ’s housing search model 28

3.1 SUS adjective rating scale from Bangor et al. [2009] 37

4.1 Landing page . 44
4.2 App header, logged in . 44
4.3 App header, logged out . 44
4.4 Process section . 46
4.5 Landlord section . 46
4.6 FAQ section . 47
4.7 About section . 47
4.8 The Sign-up and Login forms for the application 48
4.9 About me . 49
4.10 Where you define what you are looking for in a potential home . . 50
4.11 A card representing how the user will look to other users of the

service . 51
4.12 Habit questions . 52
4.13 Match list . 54
4.14 Match view . 55
4.15 Match view . 56
4.16 Listing card . 58
4.17 Chat room . 58

5.1 Real Estate as a Graph . 61
5.2 An example of averaging the individuals vectors into a joint group

property vector. 67

6.1 The prototype architecture in components 72

ix

x LIST OF FIGURES

6.2 Recommendation algorithm, activity diagram 79
6.3 Weights on the property vector distance calculation. CT: Com-

mute Time, B: Budget, S: Size, Std: Standard, Sty: Style. 82
6.4 Recommendation algorithm, sequence diagram 83

7.1 Brute-force Real Users . 87
7.2 Brute-force Test Users . 88
7.3 Clustering 38 real users . 89
7.4 Clustering 40 Test Users . 90
7.5 Clustering 100 Test Users . 91
7.6 Clustering 1 000 Test Users . 92
7.7 Clustering 10 000 Test Users . 92
7.8 Solo Recommendation quality rating for listings 100
7.9 Group Recommendation quality rating for listings 101
7.10 The YAPS.life search method for searching alone 102
7.11 The YAPS.life search method for for searching as a group 102

B.1 Brute-force test on 64 Test Users 119

List of Tables

2.1 Examples of explicit and implicit feedback 13
2.2 Average aggregation . 20
2.3 Least misery . 20
2.4 Average without misery . 21
2.5 Table showing different housing services 26

3.1 Design Science research guidelines as presented in Von Alan et al.
[2004] . 34

5.1 Requirements for the prototype . 60
5.2 URL parameters for finn.no . 69

7.1 Demographic information from the Background Information(BI)
survey . 94

7.2 Other results from the Background Information(BI) survey 95
7.3 SUS results . 96
7.4 SUS Average scores . 97
7.5 Application Specific survey results 98

C.1 Application Specific survey, feedback for question 5 127
C.2 Application Specific survey, feedback for question 6 127
C.3 Application Specific survey, feedback for question 7 128

xi

xii LIST OF TABLES

Abbreviations

AS Application Specific survey
API Application Programming Interface
BI Background Information survey
GRS Group Recommendation System
REGRS Real Estate Group Recommendation System
HTML Hyper Text Markup Language
IDE Integrated Development Environment
JSON JavaScript Object Notation
kNN k-Nearest Neighbor
NTNU Norwegian University of Science and Technology
RERS Real Estate Recommendation System
RS Recommendation System
SUS System Usability Scale
QE Quality Evaluation
UE Usability Evaluation
URL Uniform Resource Locator

xiii

xiv LIST OF TABLES

Chapter 1

Introduction

All of us will sooner or later be in a position where we need to find a new place
to live. Whether it is your first time moving out from your parents’ house, your
first place after college, or a new house for your expanding family, you need a
way to search for and organize your housing options.

When moving, one often has a considerable amount of options to choose from.
Luckily, recommendation systems have been developed to help us filter through
such large amounts of options very successfully. Services like Netflix1 for movies,
Spotify2 for music and Amazon3 for consumer goods have developed increasingly
sophisticated systems to help us sift through the endless options. In Real Estate,
companies like Zillow(USA)4, Finn.no(Norway)5, and AirBnB6 help us filter and
sort housing options on criteria such as price, size, and neighborhood.

These platforms help thousands of people find a place to live every day, but
none of them address this one fundamental fact. Fewer and fewer people live
alone, and who we live with shape as much or more of our daily life as where we
live. No platform helps us find new homes that are tailored toward groups.

The purpose of this thesis is to construct a platform that can group together
users with similar living habits and real estate goals and help them find a place
to live together. To do this, traditional recommendation system techniques, and

1www.netflix.com
2www.spotify.com
3www.amazon.com
4www.zillow.com
5www.finn.no
6www.airbnb.com

1

www.netflix.com
www.spotify.com
www.amazon.com
www.zillow.com
www.finn.no
www.airbnb.com

2 CHAPTER 1. INTRODUCTION

their group variants, have been implemented and applied to the real estate do-
main.

1.1 Background and Motivation
Where you live and who you live with has a huge impact on your day to day life.
Despite this impact, most recommendation systems in real estate are little more
than digital newspaper ads with some filters, and the renting process is often
quite manual. All the exciting research being done in recommendation systems
today, and seeing how these systems have such a great impact on user experience
and end results in services like Netflix, Spotify, and Amazon, inspired the author
to apply these techniques to the real estate domain.

Another aspect is group recommendation. This topic has been explored in the
literature in regards to movies, music, and other classic recommendation do-
mains, but to the author’s knowledge, never in real estate. Real estate services
like Finn.no and Hybel.no acts as open marketplaces where users can list their
profiles as looking for roommates and initiate contact with other users, but there
is no matching based on profile attributes.

1.2 Previous Work
This thesis is also inspired by the author’s previous work during the course ”Com-
puter Science, Specialization Project (TDT4501)” at NTNU. During that course,
the author produced a literature review of recommendation systems in real es-
tate as well as a state of the art review of group recommendation. The literature
review uncovered several different approaches to recommendation in real estate.
Daly et al. [2014a] focused solely on commuter distance and price, and the tradeoff
between these, to provide recommendations while Yuan et al. [2013] constructed
a semantic network and used case-based reasoning. Ho et al. [2015a] tried using
S-shaped utility functions to balance trade-offs and focused on making sure the
acquired real estate would increase in value. Last, but not least, Li et al. [2017a]
used a collaborative filtering approach based on machine learning on implicit data
gathered from the real estate website Suumo.jp with the goal of increasing re-
quests for viewings. While each approach optimized one part of consumer search
process, none had a group aspect.

To summarize, the work done in the specialization project was:

• An extensive state of the art review of recommendation systems and group
recommendation systems.

1.3. GOALS AND RESEARCH QUESTIONS 3

• An in-depth evaluation of the four different real estate recommendation
systems presented in Daly et al. [2014a], Yuan et al. [2013], Ho et al. [2015a],
and Li et al. [2017a].

• A discussion on future work for a prototype of a platform for group recom-
mendation in Real Estate.

1.3 Goals and Research Questions

Goal Develop and evaluate a platform for group recommendation of real estate.

The primary goal of this master thesis is to develop, test and evaluate a group rec-
ommendation system for real estate. The system is called YAPS.life and can be
found at www.yaps.life. The name is derived from Young Aspiring Profession-
als, the main target group for the application. Its purpose is to help individuals
find the perfect roommates and then give them the tools to find the perfect place
together. To achieve this, the system needs a powerful and robust matching
mechanism, a beautiful and elegant user interface, and a way to recommend real
estate that factors in the preferences of the entire group.

Based on this goal the following research questions were constructed:

Research Question 1 What is the best way to match users looking for shared
accommodation into groups?

Many group recommendation systems work with arbitrary groups of people with
different interests. The YAPS.life system can work with these as well, but its
intended use is to help individuals find compatible roommates. To find these
roommates there needs to be a way to find similar users and evaluate the quality
of the created group.

Research Question 2 How to present a group recommendation system for real
estate?

No matter how successfully the system matches users, or how relevant the real
estate recommendations are, no one will use the system if it has a poor user
interface. Through a usability evaluation the proposed user interface of YAPS.life
will be investigated and through feedback the system can evolve into something
users will want to use.

Research Question 3 How do we provide accurate group recommendation of
real estate?

www.yaps.life

4 CHAPTER 1. INTRODUCTION

When a group is matched, and a good user interface is ready to present recom-
mendations to the group, the recommendations themselves have to be of good
quality. Listings from external data sources and from the YAPS.life system itself,
will be matched with the groups using vector space techniques. The results will
be evaluated through a qualitative survey.

1.4 Contributions

Even though several recommendation systems for real estate exist, and some
research has examined group recommendation, no one has yet combined these
two problems. The primary outcome of this research is a new computer-based
platform that combines the field of group recommendation with new advances in
the recommendation of real estate. The platform can be a strong foundation for
future research into the area, to build on with new combinations of algorithms.
In addition to presenting the design and code, an evaluation of the prototype is
performed.

The contributions can be enumerated as follows:

1. A prototype of a platform for group recommendation of real estate, includ-
ing the design of the algorithm and how they were implemented.

2. A quantitative analysis of different clustering algorithms for matching users
into groups.

3. A qualitative usability- and recommendation quality evaluation of the pro-
totype.

1.5 Thesis Structure

This thesis consists of 8 chapters and an appendix. The first, which is now con-
cluded, gives an introduction to the background and motivation for solving the
problem as well as a summary of the previous work done. It ends with the re-
search questions posed, and contributions made by the thesis.

Next comes chapter 2 which takes a deep dive into the background theory of
the subject matter. Different recommendation methods are presented, as well
as group recommendation, and the challenges that come with the domain. In
addition, specific clustering algorithms used for creating groups are investigated.
The chapter finishes with a more in-depth review of different Real Estate recom-
mendation systems investigated in the literature.

1.5. THESIS STRUCTURE 5

Chapter 3 details the research method followed in the writing of this thesis, and
Chapter 4 gives a thorough description of the prototype that has been produced
during the research. Chapter 5 and 6 gives the reader a better understanding of
how the system has been implemented both algorithmically and technically by
detailing the design of the real estate group recommendation algorithm and the
architecture of the application.

Finally, chapter 7 and 8 will present the results from the evaluations and list
the contributions of this thesis. In the end, plans for future work are detailed,
and conclusions are made.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Background Theory

To give a foundation for understanding the rest of the thesis, this chapter will give
thorough introductions into the idea behind the prototype and recommendation
systems in general. Furthermore, it will detail different approaches to group
recommendation and how to use clustering techniques to put users into groups.
Lastly, there will also be a review of current recommendation systems in real
estate.

2.1 YAPS.life

2.1.1 The scenarios
YAPS.life is a website for group recommendation of real estate, specifically tar-
geted towards young professionals, but essentially applicable to all real estate
hunting use cases. Based on the location of a group of users’ workplaces the
service calculates the commute time to different areas of the city where the group
is moving. Then it indicates which area they should start looking for apartments
in. It also generates pre-filled search queries to different real estate providers to
help them start their search. Now the group can rank new listings based on av-
erage commute time to workplace and price per person. The following are three
scenarios where YAPS.life could be essential:

The perfect match

A young professional, e.g. a recent graduate, is planning to move to a new city
where he has little or no network. Real estate prices are high for renting single
rooms, let alone buying apartments, so flat-sharing is the only viable option.
The user goes to yaps.life, creates a profile and fills out their preferences for their

7

8 CHAPTER 2. BACKGROUND THEORY

new apartment as well as their habits when living in shared accommodation. The
user will then be matched into a group of users with similar preferences regarding
living habits and what they are looking for in a new apartment. Being matched
on YAPS.life is a great way to kick-start their network in the new city and helps
them find apartments with a location that works for everyone.

The friends

A group of friends are starting university together in the fall. They all create a
profile and fill out their preferences on yaps.life. Then one of the friends creates
a custom match and invites the others to it. The friend group can now use
the service to rank different apartments they are looking at based on individual
budget requirements and commute distance.

The landlord

As a landlord administering multiple properties, or just a person looking for
someone to take over their lease, you do not necessarily want to expose your
listing to as many people as possible. Instead, you want to show it to the people
who would actually consider living there. Broadcasting your listing on public
forums like finn.no or hybel.no in Norway, or Zillow.com or craigslist.com in the
US often leads to lots of phone calls and viewings who do not end up in a signed
lease agreement. By uploading your listing on yaps.life instead, your listing will
be matched with groups of people actively looking for apartments in your area,
and a direct chat link between the group and you as the landlord is created.

2.1.2 History of the service

The service was conceptualized during the spring of 2017 as a way to match stu-
dents with summer internships in Oslo into shared apartments for June, July, and
August. During that summer, five different flats were matched with students and
the idea for the service started to grow into something bigger. The target was
now young professionals, people who had just finished college or university, and
looking to move to new unknown cities. The yaps (young aspiring professionals)
would be matched into groups of like-minded people and be given the tools they
needed to find an apartment together. After moving into an apartment found
through their service, the group could start subscribing to services like house-
cleaning, laundry, food delivery, ride sharing and more, all at a discounted rate
thanks to their shared living arrangement and YAPS.life as the broker. The
technology behind the real estate group recommendation lies at the heart of this
thesis.

2.2. RECOMMENDER SYSTEMS 9

2.2 Recommender Systems
Recommendation systems are designed to sift through large amounts of informa-
tion and help users make decisions. Since their appearance in the mid-1990s they
have become ubiquitous across the web.[Hill et al., 1995; Resnick et al., 1994;
Shardanand and Maes, 1995]

The most popular areas for these systems are recommending consumer goods
on services like Amazon [Linden et al., 2003], movies on Netflix and music on
Spotify. However, other applications have also received attention. Everything
from helping users find new restaurants [McCarthy, 2002] or recipes to try, to
selecting the ultimate destinations for tourists [Ardissono et al., 2003], to finding
new friends on social media. The recommendation of real estate is also a topic in
the literature, but compared to the other domains the research is quite scarce. In
general, we most often call on recommendation systems if we have an abundance
of items to choose from or if we need to do complex computations to decide if we
are making the right choice.

Also we also often divide the recommendation problem further into two sub-
problems, namely the prediction problem and the n-rank problem. Prediction is
often related to media services like Netflix where we want to predict how a user
will like several items side by side, while n-rank is all about giving an absolute
ordering of options from best to worst. The latter is quite typical in the real
estate domain as we will see in section 2.6.[Bø, 2017]

2.2.1 Content-based filtering
A content-based filtering recommender system uses the user’s preferences to rec-
ommend items based on the user profile correlation with the item[Lops et al.,
2011]. Both explicit and implicit feedback can be used to update the user’s pro-
file to give better recommendations in the future. Explicit feedback would usually
be collected as a user’s rating for an item on a set scale, while implicit feedback is
inferred from events like how long the user views the item or the number of times
the users visit the same item. Implicit feedback can improve the user experience
seamlessly, but it can be hard to implement and also prone to errors because all
updates are inferred, and no "negative" feedback can be collected.

Amazon presented its content-based recommendation approach back in 2001 with
Linden et al. [2003] and has since been used many places since. An item is usu-
ally represented as a vector of n different values Xn = (x1, x2, ..., xn) where each
index is either binary, a value on a set scale, or something else that represents an
attribute for an item.

10 CHAPTER 2. BACKGROUND THEORY

2.2.2 Collaborative filtering

Collaborative filtering, or CF, is a popular approach to recommendation systems
where the following criteria are met:

1. A large user base with diverse tastes.

2. A system that makes it easy for users to indicate what they like.

3. A way to represent users so the system can figure out which users are
similar.

As opposed to content-based filtering where the recommendations are based on
user-item similarity, collaborative filtering looks at how similar users are and rec-
ommend similar items to similar users. Collaborative filtering is usually divided
into two approaches, memory- and model-based. For memory-based solutions,
recommendations are based on the entire data set of users, items and ratings.
Whereas in a model-based approach a statistical model of the ratings is created
to predict future ratings of other users[Sarwar et al., 2001]. This model can be
created through machine learning algorithms such as Bayesian classification and
clustering algorithms.

Companies such as Netflix and Spotify have had huge success with their col-
laborative filtering recommendation systems based on the matrix factorization
approach. [Bennett et al., 2007; Johnson, 2014]

2.2.3 Knowledge-based systems

These systems rely on domain knowledge specific to the items they recommend.
Knowledge-based systems usually come in one of two formats, case-based [Trewin,
2000] and constraint-based. The former uses a similarity function that estimates
how a user’s problem relates to solutions already archived in the system. The
latter matches problems to predefined knowledge bases with explicit rules on how
to relate problems to solutions.

Knowledge-based systems are more useful in scenarios where items are not pur-
chased very often, such as a car, a house or a holiday package. For these items,
there are rarely enough ratings on the individual items to give good recommen-
dations based on content or collaborative filtering. Because purchases of some of
these items happen so rarely, there is a good chance the user’s preferences will
have changed since their last purchase thus making recommendations on past
purchases obsolete.

2.2. RECOMMENDER SYSTEMS 11

The cold start problem, described more closely in section 2.3.1, is a notorious
challenge for most content-based and collaborative filtering recommender sys-
tems. Knowledge-based systems, however, sidestep this problem by looking for
direct correlations between the user’s preferences and the item’s attributes with-
out relying on previous ratings. Even though renting a property is a more frequent
occurrence than buying one the feedback is still too scarce for content-based or
collaborative filtering. That is why the YAPS.life system uses a constraint-based,
knowledge approach as described in chapter 5, Design of Recommendation algo-
rithm.

2.2.4 Hybrid systems

Sometimes a single approach is not enough to provide relevant recommenda-
tions. Combining different recommendation systems or algorithms using either
weighted ensemble methods or voting, often provides higher accuracy recommen-
dations than any algorithm can do on its own. This is because the weaknesses of
each can be potentially eliminated by the others.[Adomavicius and Tuzhilin, 2005]

Burke [2007] breaks hybrid systems down further into the seven subtypes seen
below.

Weighted Use weights on the output of the different recommendation compo-
nents to combine their results.

Mixed A mixed hybrid system presents the different rankings from different rec-
ommendation systems side by side.

Switching Similar to the mixed system, a switching system will get individual
recommendations from the different sub-systems, but in the end, only present
the item with the highest confidence.

Cascading The cascade method runs one recommendation algorithm. The sec-
ond algorithm uses the output of the first algorithm as its input. The produced
output of the second algorithm is recommended to the user.

Meta-level Meta-level methods use a training phase to try to learn a model to
give recommendations.

Feature combination This method sets up a pipeline where the first recommen-
dation systems pass its output as input to the next one thus biasing it.

12 CHAPTER 2. BACKGROUND THEORY

Feature augmentation The final method sees the first system produce an aug-
mented set of features the next model can then use to make predictions.

2.2.5 The role of Context

Context is a vital part many recommendation systems. It is defined as “Any
information that can be used to characterize the situation of an entity, where the
entity is a person, place, or object that is considered relevant to the interaction
between a user and its application, including the user and the application them-
selves” [Bazire and Brézillon, 2005]. Two popular contexts that are easy to apply
to most systems is time and location. In Smaaberg [2014] the system developed
is a context-based group recommender for concerts. Here it makes little sense to
recommend concerts in the past or distant future, or in a location too far away
to reach, to the user. Smaaberg uses this context to filter the potential recom-
mendations to users while using all the collected data to train his recommender
system. This filtering limits the dataset which makes it easier to do real-time
computations.

Another way context is often applied is how preferences change depending on
where the user is and what tools he has available. Movie recommendation, for
instance, could change quite a lot depending on whether the user is nestled in
the comfort of their own couch in their house instead of in a cramped airplane
seat on a transatlantic flight.

Context plays a key role in the YAPS.life system as well. By filtering users
on which city they are moving to, and in which time frame, the system avoids
creating groups that can not move in together because of practical constraints,
even though they are a good match. It also uses the location of the group mem-
bers’ workplaces to evaluate a property based on the average commuter time for
the group.

2.2.6 Preference gathering with Feedback

A crucial component of any recommendation system is how it gathers initial
preferences and updates them through feedback. There is no one correct way to
do this as every recommender system application needs different information to
provide useful recommendations.

Explicit feedback

This type of feedback happens when a user takes an explicit action against an
item, e.g., leaving a rating or hitting a like/dislike button. This information can

2.2. RECOMMENDER SYSTEMS 13

be very compelling to the system because it reveals exactly how well the system
in predicted whether the user liked the item or not. A further elaboration on
evaluation follows in subsection 2.2.7. However, explicit feedback is far from
perfect. Amatriain et al. [2009] found that ratings that are not extreme, i.e., 1
or 5 on a rating from 1 to 5, are incredibly inconsistent and Cosley et al. [2003]
discovered that users put much less effort into rating a movie than a significant
investment like a holiday. This fact means it is very tough to generalize models
based on explicit ratings. Then, of course, there is the problem of getting users
to leave explicit feedback at all.

Table 2.1: Examples of explicit and implicit feedback

Explicit feedback Implicit feedback

Ratings Clicks

Reviews Time tracking eg. how much time a user
spends on viewing an item

Like or dislike Repeated viewings

Surveys GPS coordinates when an action is made

In a lab you can also track eye and facial
movements as well as sound.

Implicit feedback

That is where implicit feedback comes in. Collecting implicit feedback is pri-
marily analyzing usage data. In their 2008, paper Hu et al. [2008] discuss how
implicit feedback has four different characteristics.

First, there can be no negative feedback. This is because it is hard to judge
an item if the user has not seen or interacted with it. One could say that only
viewing an item for a short amount of time is the same as leaving a bad rating,
but the system cannot be certain. This is the main asymmetrical aspect between
explicit and implicit feedback.

The next characteristic is that implicit feedback by definition contains a vast
sum of noise. That means one can at best guess at whether an action implies
that the user likes or dislikes an item. Take online shopping for instance. Viewing

14 CHAPTER 2. BACKGROUND THEORY

an item does not necessarily indicate anything, maybe the user made an error,
and view time can be affected by many things like stepping away from the com-
puter or if the user is quickly browsing through many clothing items. One metric
which says more, however, is visiting the same item multiple times because the
user is less likely to click on the same item more than one time erroneously.

The third shows how numerical values between explicit and implicit feedback
can be entirely different. If a user rates a TV series, it says more about how a
user relates to it versus doing a view count which can be impacted by the length
of the episode or the general number of episodes in the series.

The final characteristic is the evaluation of implicit feedback. There is a challenge
with whether there are diminishing returns on feedback when a user buys an item
multiple times, likewise for viewing or rating it several times.

Another essential aspect to keep in mind with implicit feedback is that as Kelly
and Teevan [2003] point out; some feedback is only useful when spliced together
with other information and useless on its own. Even though implicit feedback is
noisy and it is impossible to determine something explicitly with it, it can still
be extremely beneficial when the system has enough of it.

2.2.7 Evaluating recommendation systems

To evaluate if a recommendation system produces useful results, there are several
different options available depending on what the system produces. If it is a
typical content recommendation system like Netflix, where the system uses users’
ratings to provide recommendations, the Root Mean Squared Error (RMSE) seen
in equation 2.1 [Bennett et al., 2007] is a great tool. It estimates the rating of
a given item for a given user and subtracts it with the rating the user actually
gave the item. √√√√ 1

n

n∑
j=1

(yj − ŷj)2 (2.1)

However, if a system produces a ranked list one would instead use the Normalized
Discounted Cumulative Gain (nDCG) from equation 2.3. Here ruci is the actual
rating of a user u for the content i at position c in the ranked list. [De Pessemier
et al., 2014]

DCGu
n = ruc1 +

n∑
i=2

ruci
log2(i)

(2.2)

2.3. CHALLENGES IN RECOMMENDATION SYSTEMS 15

nDCGu
n =

DCGu
n

maxDCGu
n

(2.3)

These are methods that are often used for academic purposes on well-established
datasets like MovieLens [Mov, 2017] in what is called an "Offline" manner, as the
datasets are not updated during computation. They are great for quantitatively
testing the performance of different algorithms, but as to how useful a recom-
mendation system feels, qualitative studies on users are often used. Multiple
examples of this will be presented in the review of recommendation systems in
real estate in section 2.6.

2.3 Challenges in Recommendation Systems

The many different approaches to developing recommendation systems often come
with their own known challenges. In this section, the most widespread of them
will be illuminated and related to recommendation in real estate.

2.3.1 The cold start problem

The cold start problem is a well known and documented problem for many rec-
ommendation algorithms, but especially collaborative filtering. When any new
user joins the system, there is no information about his habits, usage or ratings
that can be used to find similar users. This makes providing relevant recommen-
dations very hard. The same problem arises when a new item is entered into the
system. Because no users have rated it yet, the system will have no reason to
present it to any users.

In order to combat this problem, many collaborative filtering systems make new
users rate a random subset of items upon entering the system. These ratings
let the system establish a slim profile for the user on which it can base further
recommendations. For the item, it is possible to use a content-based approach
and find similar items to it. Users who have a high rating for similar items can
be predicted to have a high rating for the new item as well.

2.3.2 Sparse data

The user-item matrix of most recommendation systems is usually extremely
sparse as users usually only interact with a small subset of the items in the
system. Imagine all the products on Amazon, or all the movies on Netflix for
instance, a user cannot possibly buy or view all of them. Because of this sparse-
ness, providing accurate recommendations can be challenging. On the flip side,

16 CHAPTER 2. BACKGROUND THEORY

the fact that the matrix is so sparse allows us to do mathematical operations that
would otherwise be computationally intractable such as matrix factorization.

2.3.3 Serendipity and Novelty

For a long time, the main objective of recommendation systems research has been
to provide accurate recommendations based on metrics like RMSE, not based on
what is proven to be actually useful for the user. McNee et al. [2006] says that
"not only has this narrow focus been misguided, but it has even been detrimental
to the field." As an example, we can use a book recommendation service. If a user
enters that he has read the first Harry Potter book and all he gets recommended
are the remaining six books this is a good recommendation statistically because
they are very similar. However, there is a good chance the user was already aware
of the remaining books and would have more benefit of having another similar
book series recommended.

The degree of serendipity wanted by users is often related to the cost of the
choice of choosing a recommendation. If a user watches a movie the recom-
mender system recommended serendipitously, and ends up not liking it, it costs
him only a couple of hours. The same in a real estate recommendation system
could cost him a lot more time, or even worse, a lot more money.

2.3.4 Bias from popularity

In many recommendation domains, there is a popularity bias problem also known
as "The rich get richer." This is what happens when, in a music recommendation
system, for instance, a song gets very popular and receives exponentially higher
listen counts than other similar songs. Because of its popularity, it gets recom-
mended to more users, which in turn only boosts its popularity even more. This
can make it difficult for new items to be recommended and can lead to the system
only recommending a tiny subset of its items. To avoid this problem, many rec-
ommendations scale down their popular items with normalization. Collaborative
filtering is, again, especially prone to this.

In real estate this is not a very large problem as most listings are not on the
market for very long. A popular listing will only dominate newer ones until it is
sold or rented, and then subsequently removed from the system.

2.4. GROUP RECOMMENDATION 17

2.4 Group Recommendation
A group recommendation system, GRS, applies traditional recommendation al-
gorithms to groups of people. The two main approaches to this are:

1. Calculating recommendations to the individuals, then merge them into a
set of recommendations or rank them for the group.

2. Construct a group persona based on the individual’s preferences and rec-
ommend items directly to that group persona.

For both approaches, a myriad of different aggregation techniques can be used,
the full list which can be viewed in Masthoff [2004]. There is no universal best
strategy, so one will have to choose based on the problem at hand. The most
popular are average aggregation, least misery aggregation and average without
misery aggregation.

So far group recommendation has been mostly used in domains like movie recom-
mendation for a group of friends[O’connor et al., 2001], music recommendations
for bars and gyms [McCarthy and Anagnost, 1998] and travel itineraries suited
for whole families[Jameson, 2004].

2.4.1 Group formation
An essential part of any group recommendation system is how the groups are
formed. Borrowing from the authors specialization project we have that "All
groups share the properties of being either persistent or ephemeral, public or
private, and actvily or passivly joined.[O’connor et al., 2001]

A Priori Groups

An a priori group is an established group consisting of members who joined the
group actively and often plan to stay in the group for a long time, i.e., the group
is persistent. The group can be public, but is most often private like a group
of friends. An example of an a priori group could be a group of friends who
join together once a week to watch movies, play board games or discuss books.
Since the group largely stays the same a system could use their preferences and
feedback to recommend new activities continually. The friends from scenario 2
in section 2.1.1 are also an example of an a priori group.

Occasional Groups

An occasional group is a group that forms together once or several times to
accomplish a specific goal. The main difference from the a priori groups is that

18 CHAPTER 2. BACKGROUND THEORY

where previous relations was the basis of the former group, the goal is the basis for
the latter. The most common occurrence of this kind of group is found in tourism,
food and media recommendation. The aforementioned Polylens system from
O’connor et al. [2001] is a good example of a system that works with occasional
groups. Another is the famous pocket restaurant finder from McCarthy [2002].

Groups Determined by a Shared Environment

These kinds of groups are ephemeral by nature because people can at anytime
leave and join the group space. Therefore recommendations must be recalculated
quite often thus limiting how computationally intensive the recommendation can
be. Recommendation applications for these kinds of groups usually regard public
information displays and music or other media in shared spaces [De Carolis and
Pizzutilo, 2009; McCarthy and Anagnost, 1998].

Automatically Detected Groups

When the group is not established beforehand by prior relations, activity or
shared environment, it needs to be automatically detected. Cantador et al. [2008]
describes how to detect Communities of Interest(CoI), users who share interests,
by using K-Means clustering [MacQueen et al., 1967a] to cluster their profiles
defined by a semantic ontology.

For a user to be clustered, it should be modeled as a vector where each in-
dex represents how much the user relates to a concept. Multiple schemes can be
used, everything from simple present(1)/absent(0) to weighted models and even
negative numbers to symbolize dislike. When we have the vector we can use sim-
ilarity measures, described below in section 2.5.1, to calculate the distance from
one user vector to another. Users with a smaller distance will be more similar
and can thus be grouped together if the goal is a homogeneous group." [Bø, 2017]

2.4.2 Group model strategies

After a group is created the next problem to solve is how to represent this group in
the system and how to give it recommendations. There are two main approaches
to this in the literature. One is giving individual recommendations and then
averaging results. The other is to create a group persona based on the aggregated
preferences of the individual users. Both these approaches will be explored below,
but first, a baseline model will be presented.

2.4. GROUP RECOMMENDATION 19

2.4.3 Candidate set

If the purpose of the group recommender is to supply a set of candidate solu-
tions, one simple way of accomplishing it is simply finding a candidate solution
set for each user and then presenting the union of these sets to the group. This
presupposes the group will have an important role in the final decision as it does
not explicitly say which option is best for the group [Masthoff, 2004]. While
simplistic, this algorithm is often a good baseline to compare other group rec-
ommendation algorithms to as it is the easiest to implement when there already
exists a recommendation system for individuals.

2.4.4 Group persona

The second popular approach is to create a new model out of the original user
models, also called a superuser. This model encompasses all the preferences of
the different users and can be run through a recommendation algorithm meant
for an individual to calculate ratings. See Yu et al. [2006] for a detailed strategy
on how to merge users through linear combinations, but know that it can simply
be stated as:

1. Create a model G for the preferences of a group

2. Go through each item i and use G to predict the rating Ri for the group

3. Recommend the candidate set of solutions to the group with the highest
Ri’s

Notable examples of this approach are Ardissono et al. [2003] and Jameson [2004]
recommenders of sequenced travel activities and Yu et al. [2006] own TV program
recommender.

2.4.5 Aggregation of individual preferences

The second of the two more common ways of creating group recommendations
is aggregating individual preferences. How to aggregate them has received much
interest in the literature, yet most refer back to Masthoff [2004]. In her paper,
she presents ten different ways of aggregating preferences, three of which are
listed below. Each method is coupled with an example of three users u1, u2,
u3, 5 items A, B, C, D, E, and a rating scale of 1-5. Notable papers who used
these methods are O’connor et al. [2001] who employed the least misery strategy
in their Polylens system and Baltrunas et al. [2010] who tested several of the
strategies on the Movielens dataset.

20 CHAPTER 2. BACKGROUND THEORY

2.4.6 Aggregation strategies
Average aggregation

With this strategy, table 2.2, one simply averages users individual ratings/pre-
dictions for an item into a group score. This often works very well, but can lead
to problems when users have very different ratings. If two uses rate an item 5
and another two rates it 1 the group score becomes 2.5, a decent score in most
respects. If this were for a movie, then one would end up with two people being
very excited and two people utterly miserable. That is where the least misery
strategy comes in.

Table 2.2: Average aggregation

A B C D E
u1 4 2 5 5 1
u2 1 2 5 3 3
u3 4 1 4 4 3
Group rating 3 1.6 4.6 4 2.3

Least misery

This strategy, table 2.3, looks at all the individual ratings and sets the lowest
one as the group’s rating. The argument is that the group is only as happy is
the groups least happy member [Masthoff, 2004]. An excellent strategy when
dealing with allergies in a restaurant recommendation system where recommend-
ing a place where one of the group members are allergic to the food could be
catastrophic. However, this means that in cases where everyone else in the group
are really keen to go, one person’s preference overrules the rest.

Table 2.3: Least misery

A B C D E
u1 4 2 5 5 1
u2 1 2 5 3 3
u3 4 1 4 4 3
Group rating 1 1 4 3 1

Average without misery

A mix of the two above, this strategy, table 2.4, uses a misery threshold to remove
items from consideration when a group member rates an item below the threshold.

2.5. CLUSTERING 21

For the remaining items, the average strategy is used. Assuming an appropriate
threshold is chosen, this strategy reflects the wishes of the group quite well in
addition to removing items that would make some group members miserable.

Table 2.4: Average without misery

A B C D E
u1 4 2 5 5 1
u2 1 2 5 3 3
u3 4 1 4 4 3
Group rating - - 4.6 4 -

2.5 Clustering

Clustering is a term for mapping an n-dimensional feature space into a set of
smaller groupings, also known as clusters. The goal is to find the maximum
amount of similarity in a cluster and to minimize the similarity between the clus-
tered groups [Kim and Ahn, 2008]. Cluster analysis is defined as “a statistical
classification technique for discovering whether the individuals of a population fall
into different groups by making quantitative comparisons of multiple characteris-
tics.” There are two main families of clustering methods as defined by Jain [2010].

The first approach is called hierarchical clustering and it too has two sub-approaches,
bottom-up and top-down. Bottom-up is an agglomerative method where each
data point starts with being its own cluster before merging them with other sim-
ilar clusters to create a hierarchy. The top-down approach does the opposite by
starting out with all data points in one big cluster before dividing it into smaller
clusters recursively. The second family of clustering is called Partitional cluster-
ing, and it works by partitioning the data and finding the clusters in parallel.

In chapter 5, Design of Recommendation Algorithm, different clustering algo-
rithms are investigated for matching user profiles into groups in accordance with
RQ1. The dataset is then the users of the application and the data points are
the user’s personal information with a focus on their habits and real estate goals.
More background theory on the clustering techniques investigated later can be
found below.

22 CHAPTER 2. BACKGROUND THEORY

2.5.1 Similarity metrics

In order to find similar data points the clustering techniques needs techniques to
measure distances between different points. These techniques are called Similarity
Metrics and there are many to choose from. Some of the most popular ones
like Manhattan, Euclidean, and Cosine distances, are described here. Similarity
between two vectors is higher when the score is closer to 0, and worse the further
away from 0 it is.

Manhattan distance (
n∑

i=1

|xi − yi|p
)1/p

(2.4)

The Manhattan distance (sometimes also called Taxicab distance) metric is re-
lated to the Euclidean distance, but instead of calculating the shortest diagonal
path ("beeline") between two points, it calculates the distance based on gridlines.
The Manhattan distance was named after the block-like layout of the streets in
Manhattan.

Euclidean distance

The Euclidean distance is a distance measure between two points or vectors in
a two- or multidimensional (Euclidean) space based on Pythagoras’ theorem.
The distance is calculated by taking the square root of the sum of the squared
pair-wise distances of every dimension.√√√√ n∑

i=1

(xi − yi)2 (2.5)

Euclidean distance squared

The same as regular Euclidean distance, but without the square root of the sum.

n∑
i=1

(xi − yi)
2 (2.6)

Cosine Distance

To get the Cosine Distance, the Cosine similarity has to be calculated first. Cosine
similarity measures the orientation of two n-dimensional vectors irrespective of
their magnitude. It is calculated by the dot product of two numeric vectors, and

2.5. CLUSTERING 23

it is normalized by the product of the vector lengths. This outputs a similarity
score between -1 and 1, where 1 constitutes prefect similarity. To shift this into
the positive space of the other similarity metrics we subtract the Cosine similarity
score from 1 as seen in equation 2.8. Now the range is between 0 and 2.

cos(xxx,yyy) =
xxx · yyy

||xxx|| · ||yyy||
(2.7)

1− cos(xxx,yyy) (2.8)

Using weights

For distance metrics, it is sometimes appropriate to use weights to indicate that
distances between some indexes should have more effect than others. This concept
will be explored further in 5.6.

2.5.2 Curse of dimensionality

As the number of dimensions increases however, all these similarity metrics run
into problems. This is sometimes called "The curse of dimensionality" and is
often used as an umbrella phrase to describe the various phenomena that arise
when doing cluster analysis or regression on data in high-dimensional spaces. A
high dimensional space can span from a dozen dimensions, to hundreds or thou-
sands. These phenomena do not occur in low-dimensional settings such as the
three-dimensional physical space of everyday experience. The expression origi-
nates back to Richard E. Bellman in his 1957 paper on dynamic programming
which has since been republished in Bellman [2013].

The common theme of these problems is that when the dimensionality increases,
the volume of the space increases so fast that the available data becomes sparse.
This sparsity makes it hard to find model coefficients that best explain the data,
and you need exponentially more data as you increase dimensions to get the
same level of model accuracy. Also, organizing and searching data often relies
on detecting areas where objects form groups with similar properties; in high di-
mensional data, however, all objects appear to be sparse and dissimilar in many
ways, which prevents common data organization strategies from being efficient.
[Donoho et al., 2000]

To combat this, several algorithms can be used to reduce the number of di-
mensions before clustering.

24 CHAPTER 2. BACKGROUND THEORY

2.5.3 K-Means

K-Means is one of the most well known and widely used clustering algorithms.
Since its inception in the late 50ies and official coining by MacQueen et al. [1967b]
in 1967, k-means has been a staple in fields like signal processing, market seg-
mentation and, more recently, feature learning for machine learning applications.
The reason for its popularity is because of the low threshold for implementation
and relative ease of use. The algorithm works by plotting the n-dimensional
dataset into vector space and then inserting k new data points, called centroids,
at random locations. Then it systematically measures the distance between the
centroids and all other points in the dataset and before moving the centroids in
the direction of the center of the closest data points. When the centroids stop
moving the algorithm is terminated, and the closest points to each centroid are
outputted as a cluster. Formally we define a dataset of n elements, each element
described by m attributes or features. We use Xi = [x1, x2, ..., xm] to define the m
attributes for user i. Last, but not least, the clusters themselves are represented
with K.

However, due to this simplicity it has its share of drawbacks. It deals poorly
with overlapping clusters, and outliers can pull centroids out of the real clusters.
In addition, there is a chance for the algorithm to get trapped in a local minimum
during early iterations because of unfortunate initialization. While the algorithm
works well on larger datasets, it can have trouble with smaller ones. k < n is also
a requirement. The choice of k is a dilemma in itself. Choose it to large, and the
system ends up with many empty clusters, choose it too small, and the actual
granularity of the dataset will not be represented.

In order to measure distances between data points k-means uses the Euclidean
distance, described in section 2.5.1. The idea is to minimize the sum of squared
roots for the distances between the clusters in the data set. K-means is often
confused with k-Nearest Neighbour because of the shared k, but as we will see in
the next section, the algorithms are quite different.

2.5.4 k Nearest Neighbours

Park et al. [2016] defines k Nearest Neighbor (kNN) as "an operation that selects
k objects that are most similar to a given object among all the candidate objects
in a dataset." In pattern recognition, the algorithm is a non-parametric method
used for classification and regression. In both cases, the input consists of the k
closest training examples in the feature space. The output depends on whether
kNN is used for classification or regression:

2.6. REAL ESTATE RECOMMENDATION SYSTEMS 25

• In kNN classification, the output is a class membership. An object is clas-
sified by a majority vote of its neighbors, with the object being assigned
to the class most common among its k nearest neighbors (k is a positive
integer, typically small). If k = 1, then the object is simply assigned to the
class of that single nearest neighbor.

• In kNN regression, the output is the property value of the object. This
value is the average of the values of its k nearest neighbors.

This means all work is deferred until classification, thus making kNN a lazy
learner. An active learner would have preprocessed the data so that less work
would be needed at classification. It can often be useful to decrease the weight
of the neighbors further out from the center, like giving a weight = 1/d where d
is the distance.

In this thesis, the algorithm is adapted somewhat differently. The goal is to
construct clusters of a predefined size, in this case four. To do this, the algorithm
starts with the first user, represented as a vector, in the dataset. Then it finds the
three (k=3) most similar users to him and extracts all four into a cluster. Now
the original data set has been reduced by four users and the algorithm proceeds
to evaluate the next user in line. This continues until there are no users left.

2.6 Real Estate Recommendation Systems

From the author’s specialization project [Bø, 2017] we have that the definition of
real estate is a property consisting of the land, natural resources and the build-
ings on it, but for most of us, it is simply what we call home. Choosing real
estate, either for buying or renting, are some of the most important and expen-
sive decisions we make, and few have to make more than a handful during their
lifetime. Real estate is one of the oldest industries we have and is traditionally
old fashioned, but over the last decade, we have seen a wave of disruption. First,
web technology allowed real estate properties to be represented and presented by
structured data and new technologies like drones and virtual reality(VR) allows
us to view listings from the comfort of our own home thus eliminating part of the
time requirement going on multiple viewings of listings require.

Despite all this data about housing [Bond et al., 2000], research on real estate rec-
ommendation systems has been quite scarce [Konstan and Riedl, 2012; Li et al.,
2017b], though it has picked up a bit in recent years. The following is an intro-
duction to how traditional real estate web search is today and summaries of new
recommendation models observed in chapter three in Bø [2017].

26 CHAPTER 2. BACKGROUND THEORY

2.6.1 Traditional web-based housing search
Real estate search on the web has existed for years, yet consumers have enjoyed
few of the recommendation system advances other industries have seen despite
the competition and large amounts of data available [Grant and Cherif, 2016;
Zheng et al., 2006]. There are far too many real estate search providers to list
them all exhaustively, but a small sample can be found in table 2.5. These services

Table 2.5: Table showing different housing services

Engines Location reach URL
Finn.no Norway www.finn.no
Rightmove United Kingdom www.rightmove.co.uk
Zillow USA www.zillow.com
Trulia USA www.trulia.com

all share a search and filter approach where the user:

1. Enters an address or zip code to begin a search of an area.

2. Enters filters on price, housing type, number of bed and bathrooms, and
size range, etc.

3. Receives some simple recommendations for similar houses to the ones the
user is browsing.

4. Iterate until the user finds one or more listings he would like to view in
person, or until he quits.

5. Some American search engines like Zillow and Trula let the user apply filters
for government buildings like hospitals, public transport stops and schools
as an overlay over a map of the listings.

Surprisingly, no large real estate broker incorporates important locations to the
user as part of the search process as suggested in Yuan et al. [2013], Daly et al.
[2014b] and Grant and Cherif [2016]. Neither does any system, either in literature
or the real world, perform recommendation of housing for groups of people.

2.6.2 Multi-Criteria Journey Aware Housing Recommender
System

The paper from Daly et al. [2014b] focuses on extending conventional metadata
for housing, like price, number of bedrooms, etc. with the journey time to mul-
tiple locations. To make the journey time rating of a house even more accurate,

2.6. REAL ESTATE RECOMMENDATION SYSTEMS 27

Figure 2.1: A search of listings in New York with metro stations and schools
added as an overlay from www.trulia.com

they even check for traffic at multiple times a day. The end result was a web
system with a map interface.

To evaluate their system, Daly conducted a user study of 20 participants where
the houses up for review were a subset of 500 homes from the current housing
market in Dublin. All homes were two bedroom apartments. After selecting
three important locations, the participants followed a search process where they
eliminated more and more homes in each step. Upon completion of the process,
they usually had around 50 listings still fulfilling their criteria, i.e., a 10-fold re-
duction from the original set.

It is worth pointing out that 90% of users chose a house from the recommended
subset, however maybe even more interestingly 45% already picked the house
they ended up with in step one, before the consequent eliminations, i.e. they did
not change their choice after more information was gathered.

28 CHAPTER 2. BACKGROUND THEORY

2.6.3 Toward a User-oriented Recommendation System for
Real Estate Websites

Yuan et al. [2013]’s "Toward a user-oriented recommendation system for real
estate websites" is one of the most cited papers in the real estate recommendation
literature. After reviewing the available real estate search engines in Korea to
see what was working and what was lacking, they used questionnaires and direct
observation to extrapolate user behavior in real estate search. Based on Choo
et al. [2000] and their own process they generated the model seen in figure 2.2
for housing search online as well as these three personas:

• A working couple with two children, one of the children is school-age.

• A working couple without children, enjoying urban “high-life”: fashion, en-
tertainment, and convenience.

• Single, needs a small but well-constructed home, prefers a community with
amenities.

Figure 2.2: Yuan et al. ’s housing search model

When they had the model in place they used the Corcho et al. [2005] method to
define the ontology’s needed to set up the semantic case base focusing on location,
housing type, and price. Finally, they implemented a web-based system with a
map centered interface on top of the semantic model.

As mentioned above Yuan conducted a user study to extrapolate user behav-
ior on traditional online housing search so to test his new system he invited the
same 30 people back. The user study focuses only on the user interface quality
compared to mainstream online housing search and not on whether the system

2.6. REAL ESTATE RECOMMENDATION SYSTEMS 29

actually found better apartments. Still, more than 70% of the participants found
the Yuan’s system very satisfying to use, and many pointed out that this approach
was superior to other services they had tried before.

2.6.4 House Selection via the Internet by Considering Home-
buyers’ Risk Attitudes with S-shaped Utility Func-
tions

Ho et al. [2015b] turns the housing recommendation problem into an n-rank
problem based on risk attitudes and fuzzy goal setting. As discussed in section
2.6.1, the writers point out the weaknesses of modern real estate search engines
in being very constraint-based. They define five important concerns for online-
agents and home buyers:

1. There is much fuzzy information on real estate listings like "great quiet
neighborhood with excellent schools" or "close to world-class shopping, din-
ing and entertainment", yet it is not structured well enough to query.

2. Real estate websites should allow their users to prioritize constraints.

3. In theory the more houses one evaluates, the larger the chance of finding a
better match.

4. Users should be able to view the predicted future value of the house, so
they know they are making a good investment.

Compared to the other two articles reviewed so far Ho et al. uses a significantly
larger sample size in the evaluation of his research at the cost of no in-depth in-
terviews. They perform a Laboratory-quasi test with 250 middle-aged Taiwanese
people, all with home-buying experience. The group is split into one test group to
use the decision support system and one control group. Both users groups input
their desired zip code and price range, but only the test group use the system
to rank the results. Using a single factored ANOVA test(Analysis of variance)
show a considerable gain in satisfaction for the users who employed the system
compared those who did not.

When they looked at time spent directly on other real estate sites like Yahoo
Real Estate1 against their own, they found time spent reduced from 20-30 min-
utes to 8-10 minutes.

1http://realestate.yahoo.com

http://realestate.yahoo.com

30 CHAPTER 2. BACKGROUND THEORY

2.6.5 Web-Scale Personalized Real-Time Recommender Sys-
tem on Suumo

Li et al. [2017b] created a machine learning based recommendation system based
on real-time log outputs from the most popular online real estate site in Japan
called Suumo. They argue that inputting all user preferences beforehand is too
time consuming and prone to error and that a much greater value would be had
if the site learned the preferences solely by observing the user’s usage pattern.

The paper also focuses on how to build a scalable architecture that runs well
with massive amounts of data, and that is highly decoupled so that scientists can
focus on improving core algorithms and deploy in quick iterative cycles without
having to worry about breaking deployments.

They describe two methods. First an early attempt at content-based and col-
laborative filtering and then later a gradient boosting method.

Li et al. chose their main evaluation metric to be the conversion rate(eq 2.9)
of their users. That means the rate at which users send a request for more infor-
mation on a listing compared to how many listings they view. After tuning some
parameters of the model with offline training, they set up a full A/B test pitting
their machine learning system against their earlier content-based model. In the
beginning, the content-based approach actually gave better results, but after a
couple of days, the machine learning system outpaced it by miles. In the end,
the machine learning system outperformed it by roughly 250%.

CV R =
info requests on recommendation

recommendation clicks
(2.9)

2.6.6 Summary

In this section, we have reviewed four different papers, each representing a dif-
ferent approach to recommendation in real estate. The first uses content-based
filtering to recommend properties based solely on the user’s location and rent
preferences. Yuan uses case-based reasoning, a form of knowledge-based recom-
mendation, to incorporate the semantics of real estate search into his model. Ho
goes for a more mathematical approach using fuzzy reasoning, and lastly, Li uses
a form of machine learning.

The approaches are varied, and it is hard to compare them on an even level
since they all measure different aspects of their systems in their evaluations, and
none use the traditional methods described in section 2.2.7. All studies report

2.6. REAL ESTATE RECOMMENDATION SYSTEMS 31

great satisfaction from the test users.

Both Yuan et al. [2013] and Ho et al. [2015b] refer to earlier research like Zumpano
et al. [2003] from 2003 on how having more information and choices available in
the housing search process has not reduced the time it takes to find a home. With
the real estate economy and industry evolving as fast as it has in the last decade
show more updated research is needed.

32 CHAPTER 2. BACKGROUND THEORY

Chapter 3

Research Methodology

This chapter details the research methodology and strategy used for this thesis.
It covers an introduction to design science research and how it is applied to the
project before going through the experimental tools, and the experimental plan
and setup.

3.1 Design Science Research

For this project, a Design Science approach was deemed appropriate. Design Sci-
ence “seeks to create innovations that define the ideas, practices, technical capabil-
ities, and products through which the analysis, design, implementation, and use
of information systems can be effectively and efficiently accomplished."[Hevner
and Chatterjee, 2010] In his 2004 work, Von Alan et al. [2004] details a frame-
work with seven guidelines on how to do rigorous design science research. This
framewokr can be found in table 3.1

Application to this thesis

Design as an Artifact

The objective of this project is to create an artifact of the type instantiation.
The artifact will be a web-based recommender system for people looking to live
together, and the thesis will describe both the creation of the product as well as
the algorithms used. The artifact can be found at www.yaps.life.

33

www.yaps.life

34 CHAPTER 3. RESEARCH METHODOLOGY

Table 3.1: Design Science research guidelines as presented in Von Alan et al.
[2004]

Guidelines Description

Design as an Artifact

The result of the Design Science must be an
artifact of the type: Construct, model, method
or instantiation.

Problem Relevance

The objective of design-science research is
to develop technology-based solutions to
important and relevant business problems.

Design Evaluation

The utility, quality, and efficacy of a design
artifact must be rigorously demonstrated via
well executed evaluation methods.

Research Contributions

Effective design-science research must
provide clear and verifiable contributions
in the areas of the design artifact, design
foundations, and/or design methodologies.

Research Rigor

Design science research relies upon the
application of rigorous methods in both
the construction and evaluation of the
design artifact.

Design as a Search Process

The search for an effective artifact requires
utilizing available means to reach desired
ends while satisfying laws in the
problem environment.

Communication of Research

Design-science research must be presented
effectively both to technology-oriented as
well as management-oriented audiences.

3.1. DESIGN SCIENCE RESEARCH 35

Problem Relevance

Shared accommodations are more popular than ever because of the ever increasing
cost of real estate in cities, and according to Roberts [2013] and Heath [2016] the
trend will not end anytime soon. Despite the huge impact where and with who we
live has on our lives, most real estate systems today do not take a programmatic
approach to recommendation for users, instead relying mostly on filters. An easy
to use recommendation system to help people find housemates they get along
with could improve the living situation for many.

Design Evaluation

A quantitative analysis of different clustering techniques will be performed to de-
termine which is better for matching users into groups for the purpose of apart-
ment hunting. The evaluation metric is presented in 3.2.1. To evaluate the
usability of the artifact, there will be conducted a System Usability Scale(SUS)
test, outlined in subsection 3.2.2. After further development, another user-centric
test will evaluate the quality of the real estate recommendations as described in
3.2.3.

Research Contributions

The different algorithms used in the recommendation process will be explained,
both in design and technical detail. The source code will also be made available
on GitHub1, at https://github.com/kristianeboe/yaps.life, so that others
can verify the results.

Research Rigor

In order to maintain reproducibility of the results of this research, the algorithms,
technologies, and frameworks will be described in detail. The open source code-
base on GitHub will also make any attempted reproductions easier. As for the
evaluations they are approached with tried and tested scientific tools like the
System Usability Scale, described in subsection 3.2.2.

Design as a Search Process

To illustrate how this Design Science artifact is the result of a search process
we can look at the iteration of the development process. From the early stages
of the prototype to the finished product the visual design changed dramatically
resulting in a more intuitive end result. The recommendation and clustering
algorithms implemented were also increasingly complex.

1www.github.com

https://github.com/kristianeboe/yaps.life
www.github.com

36 CHAPTER 3. RESEARCH METHODOLOGY

Communication of Research

Chapter 5 and 6 describes the technical implementations of the prototype and a
more holistic description is given in chapter 4. The thesis will be available to the
public through the Norwegian University of Science and Technology (NTNU),
and all source code will be available on GitHub under a GNU (General Public
License), GPLv2) for further testing and extension . The SUS test and other
questionnaires can be found in the Appendix section of this thesis.

3.2 Evaluation Tools

In order to evaluate different aspects of the prototype, different tools are needed.
For the qualitative evaluation, a version of the Silhouettes coefficient, introduced
by Rousseeuw [1987] was used as it gives a good indication of how well clustered
the dataset has become. In order to answer RQ2, "How to present a group
recommendation system for real estate?", it was decided to use the well known
SUS test in conjunction with an Application Specific survey to evaluate whether
the user interface development was headed in the right direction. As for the
evaluation of the real estate recommendations, a qualitative survey was used to
capture whether the results were actually relevant to users, not just giving a good
numerical score like in RMSE from section 2.2.7.

3.2.1 Group Cohesion Measure

As a way to test how well aligned the groups created by the different clustering
algorithms were, a score called the Group Cohesion Measure was developed. It
is found by iterating over the users in a group and taking the Cosine distance
between all other users in the group. After finding all distances, they are added
together and the sum is divided by the size of the group. This produces the aver-
age distance between users in the group. This is a simplified version of Rousseeuw
[1987]’s Silhouette algorithm which is a measure of how similar an object is to its
own cluster (cohesion) compared to other clusters (separation).

The reason for this simplification can be illustrated with an example. If eight
users were lying on top of each other in the dimensional space, they should still
be split into different matches. The matches should evaluate as good because
the users are similar, but with a Silhouette score the overall algorithm would be
evaluated as bad because the clusters would appear to have low separation.

3.2. EVALUATION TOOLS 37

3.2.2 System Usability Scale

The System Usability Scale was created by Brooke et al. [1996] in 1996 and has
been a staple on user testing ever since. The test consists of ten questions using
a Likert scale[Likert, 1932], i.e. all question’s answers range between 1-5, and
it gives a global subjective view of the usability of the application. As of ISO
9241, the test can only be considered valid if it is used on actual end users of the
system, and it is preferable if the test is taken in environments mimicking the
context where the application will be used.

The SUS test is a "reliable, low-cost usability scale that can be used for global
assessments of systems usability."[Brooke et al., 1996] It produces a score on the
scale of 0-100 which in theory makes it easy to compare multiple systems on their
usability. However, due to the wide range of systems the SUS test can be applied
to, the questions are by necessity quite general and it is once again important to
take the context of which the systems will be used in before making comparisons.
For example, the SUS score for an industrial application is probably not very
correlated with that of a text editor.

To calculate the score, the following steps must be taken:

1. For each of the odd-numbered questions, subtract 1 from the score.

2. For each of the even numbered questions, subtract their value from 5.

3. Take these new values which you have found, and add up the total score.
Then multiply this by 2.5.

Figure 3.1: SUS adjective rating scale from Bangor et al. [2009]

Bangor et al. [2009] adds to the research with a proposition of adding an adjec-
tive scale to the SUS score to give a better indication of what the results actually

38 CHAPTER 3. RESEARCH METHODOLOGY

mean. The rating scale, which can be found in Figure 3.1, indicates that "prod-
ucts with scores above 70 are at least passable, better products have a score in the
high 70s to upper 80s, and truly superior products score better than 90. Products
with a score below 70 should be considered candidates for increased scrutiny and
continued improvement”.

3.2.3 Real Estate Recommendation Quality Survey

To evaluate the quality of the real estate recommendations, another survey was
developed in Google Forms. It consists of two parts, one for Solo recommendation
and one for Group recommendation. The test subject is tasked with creating a
solo match and wait for real estate recommendations to be loaded. By manually
inspecting the different listings the user will then decide on a rating for how well
the system ranks the listings based on the user’s own preferences. Then, the user
is matched with a group of other real test subjects. New listings will be loaded
and ranked by the system, and the users will now rate how the system ranks the
listings in regards to the group’s preferences. For both the solo and group part,
the test subject is asked to rate how this way of searching for housing compares
to traditional methods they have used before.

These questions will indicate whether the YAPS.life system provides accurate
recommendations and whether this approach to housing search is worth pursuing
further.

3.3 Evaluation Setup & Plan

When the matching algorithms have been implemented, a data set of user pro-
files will be created based on real users collected through the prototype. Then,
with this data set, the different matching algorithms will be evaluated using the
group cohesion measure from 3.2.1. After the second period of development, a
user-centered usability test will be conducted using the System Usability Scale
developed by Brooke et al. [1996]. Then, after another period of development,
the quality of the recommendations will be assessed with a Quality Evaluation
Survey.

3.3.1 Quantitative analysis of clustering methods

To find the answer to RQ1, "What is the best way to match users looking for
shared accommodation into groups?", a series of tests on the performance of dif-
ferent clustering algorithms will be conducted. Two datasets will be used to test
the algorithms on. The first is a collection of 38 real users that created their

3.3. EVALUATION SETUP & PLAN 39

profiles in the prototype. The other is 10 000 test users with personality and
property vectors initialized randomly.

To get an idea of the theoretical minimum and maximum bounds that can be
achieved in terms of Group Cohesion for a match from the dataset, the first step
is to do a brute force search through the solution space. Setting group size to
four, the amount of matches generated for these 38 users will be the same as the
combinatorial of

(
38
4

)
which is 73815.

Then, the different clustering algorithms will cluster the users into a list of
matches. After sorting this list from best to worst, the matches are plotted
on a graph with the match number on the x axis and the group cohesion of the
match on the y axis. This chart will present the distribution of the group cohesion
measures and it will give a good framework to compare the different algorithms
side by side.

The similarity metric chosen is the Cosine distance because it bounds the co-
hesion between 0 and 2. The algorithms to be evaluated are the following:

• Baseline, simply divide users into groups of four without any clustering.

• kNN with Euclidean distance, go through the available users linearly,
and for each user extract his top matches. Users are sorted with the Eu-
clidean distance.

• kNN with Cosine Distance, same as above, but users are sorted with
the Cosine distance.

• k-Means, divide the users into k clusters, where k is the log2 of the number
of users to be matched. Divide these clusters into four without further
clustering.

• Hybrid of k-Means and kNN with Euclidean distance, after running
the k-Means algorithm, clusters the users further with kNN with Euclidean
distance.

• Hybrid of k-Means and kNN with Cosine distance, same as above,
but with the Cosine distance.

After the evaluation of how the algorithms cluster the real users, the same test
will be run again on the test users to see if the performance is the same and to
see how the distributions change as more users are added.

40 CHAPTER 3. RESEARCH METHODOLOGY

3.3.2 Usability evaluation
For the usability evaluation of the prototype, 16 people will be asked to complete
a series of steps using the prototype. There are three questionnaires involved.
First, there is the Background Information (BI) questionnaire to gather demo-
graphic information, as well as familiarity with the apartment searching process
and living in shared accommodations. Then the users are asked to perform a
series of tasks on the platform, summarized below.

After completing these tasks, the test subjects will be asked to complete the Sys-
tem Usability Scale(SUS) survey and an Application Specific(AS) survey. The
reason for this additional AS survey is that SUS is overly general in some areas,
and even though it gives a good indication of general usability, the AS will give
more direct feedback to influence further application development. These sur-
veys were all developed using Google Forms2 and can be found in the appendix,
section C.

Here is a summary of the tasks users performed during the evaluation:

1. Answer the Background Information survey (BI), Appendix C.1.

2. Go to yaps.life and create a profile.

3. Complete their profile with preferences, see section 4.4 in chapter 4, Proto-
type.

4. Create a demo match with AI.

5. Try ranking a few apartments found from Finn.no.

6. Create a new custom match and add a friend.

7. Try ranking a few other apartments found from Finn.no.

8. Answer the SUS survey, Appendix C.1.

9. Answer the AS survey, Appendix C.1.

3.3.3 Quality of recommendation evaluation
Usability is not all that matters in a recommender system. Without actual qual-
ity in the recommendations, the system does not provide value to its users. If the
system uses content-based or collaborative filtering, one popular method for eval-
uation is to use a mathematical approach like Root Mean Square Error (RMSE)

2forms.google.com

yaps.life
forms.google.com

3.3. EVALUATION SETUP & PLAN 41

and n-Fold Cross-Validation as described in 2.2.7.

For YAPS.life however, a knowledge-based system, Gu and Aamodt [2006] indi-
cate that the best way to evaluate the recommendations is through user testing.
Four groups of students will be put together and asked to complete the following
tasks:

1. Create a user and fill out your profile

2. Create a Solo match

3. Rate the ordering of the recommended listings.

4. Rate this way of searching for real estate compared to ways you have tried
before.

5. Add flatmates to your match and do another apartment search.

6. Rate the ordering of recommended listings again.

7. Rate this way of searching for real estate as a group compared to ways you
have tried before.

The first group consists of four people, the second of three people and the last
two groups of two people. All ratings will be on a scale from 1 to 5, where 1 is
very dissatisfied, and 5 is very satisfied. The form used for this evaluation can
be found with the other surveys in the Appendix.

42 CHAPTER 3. RESEARCH METHODOLOGY

Chapter 4

Prototype

In this chapter, the application developed for this project will be presented. The
application is called YAPS.life, as in young aspiring professionals due to that
being the main target group for the application. Its purpose is to help individ-
uals find compatible roommates and then give them the tools to find a home
together based on their shared preferences. Each view of the application will be
shown and related to the user journey. Seeing how the prototype looks will give
the reader a more intuitive understanding of how the algorithm works when it is
presented in the next chapter. Due to many users visiting the service from mobile
devices, the design can be scaled down to accommodate those screen sizes as well.

An overview with links to different sections in the chapter is presented here:

• App Header, 4.1

• Landing Page, 4.2

• User Creation, 4.3

• Profile Page, 4.4

• Match List, 4.5

• Match View, 4.6

4.1 App Header
Present in all parts of the application is the App header. As can be seen in figure
4.2 and 4.3 it looks different depending on whether the user is logged in or not.

43

44 CHAPTER 4. PROTOTYPE

Figure 4.1: Landing page

If the user clicks on "My profile", "Matches" or "Upload listing" without being
logged in, they will be redirected to the Login/Sign up page detailed in section
4.3. When the user is logged in the previously mentioned buttons will link to
their corresponding pages as described in sections 4.4, 4.5 and 4.6. In addition,
when logged in the "Log in" and "Sign up" buttons disappear in favor of a section
with the user’s name and profile picture. Clicking this will give the user options
to log out of the application or go to account settings where he can delete his
profile.

Figure 4.2: App header, logged in

Figure 4.3: App header, logged out

4.2. LANDING PAGE 45

4.2 Landing Page
The landing page for YAPS.life is the main entry point for users of the service.
The first section, seen in figure 4.1, introduces the user to the service and gives
him the following three options:

1. I already have roommates

2. Find new roommates with AI

3. Match my apartment with tenants

Assuming the user is logged in the first button takes him to a profile page where
he can adjust the information and preferences he has previously entered. The
second takes him to a match list where he can view all previous matches and
create new ones. The last button takes the user to the upload listing page.

Further down there are sections for Process, figure 4.4, Landlords, figure 4.5,
Frequently Asked Questions and Answers, 4.6. Finally, there is a short About
section with contact information and the bio of the creator in 4.6. In the Process
section, the process of signing up, getting matched and moving in are described,
and the Landlord section details how the service works for people looking to find
tenants.

www.yaps.life

46 CHAPTER 4. PROTOTYPE

Figure 4.4: Process section

Figure 4.5: Landlord section

4.2. LANDING PAGE 47

Figure 4.6: FAQ section

Figure 4.7: About section

48 CHAPTER 4. PROTOTYPE

4.3 User Creation
Here the user can log in to the application, or sign up if it is a first-time visit.
As of now, there are three ways to create a user:

• The user’s Facebook account

• The user’s Google account

• Email and password

Signing up with either Facebook or Google is desired as the information from
those profiles can be used to help fill out the rest of the users profile automatically.
Any of the above will result in the creation of a user in the database, but the user
can not fully use the service before he has filled out his profile in the profile page,
see 4.4. In the future, a way to sign in with LinkedIn should also be implemented
as that social network will have valuable information about the job history of a
user.

(a) The Sign Up view. It has an ex-
tra field for making sure the pass-
word is entered correctly.

(b) The Login view.

Figure 4.8: The Sign-up and Login forms for the application

4.4. PROFILE PAGE 49

4.4 Profile Page

The profile page has the role of setting the users information and preferences so
that he can be matched with other users of the group recommendation system.
By setting these precise preferences, it helps the knowledge-based recommenda-
tion system avoid the cold start problem as described in section 2.3.1. How the
algorithm uses the information collected here is described in section 5.3

Figure 4.9: About me

4.4.1 About me

The following attributes describe the user:

• Name, age, and gender

• Field of study and university

• The city the user is looking to move to

• The name and address of the user’s workplace

50 CHAPTER 4. PROTOTYPE

Furthermore, the user describes what they are looking for in a future property
by defining the following concepts

• Budget

• Size

• Standard

• Style

These four attributes, as well as the address of the user’s workplace, will be used
in ranking the listings on the Match page, section 4.6.

(a) The input fields of the profile
section

(b) Property goals questions

Figure 4.10: Where you define what you are looking for in a potential home

The above information also defines how the user will be presented to other users
of the service as can be seen in figure 4.11. Property preferences are presented as
a free text while name, age, workplace and education are presented in an itemized
fashion.

4.4.2 Defining your habits in a shared accommodation
The other half of the profile section is where the user tells the system about his
habits in a shared living environment. All questions are posed as a Likert style
statement [Likert, 1932] where the answers are defined by how much one agrees
with the statement on a scale from 1 to 5, where 1 means disagreeing completely,
and 5 means agreeing completely. Furthermore, the questions are divided into
four categories

4.4. PROFILE PAGE 51

Figure 4.11: A card representing how the user will look to other users of the
service

• Social habits, revolving around habits like partying, having friends over and
when one comes in and out of the house.

• Cleanliness, a section about the attitude towards keeping the home clean
and organized.

• Social openness, concerning how much time is spent alone in one’s room
versus out in the shared areas.

• Social flexibility, regarding flexibility towards flatmates sexual and religious
orientations and openness to helping them out or letting them have friends
over.

These 20 questions will be used to match the user’s personality and habits to
new roommates. How it is done is described in the next chapter in section 5.5.
The full list of questions can be found in the appendix, section A.

52 CHAPTER 4. PROTOTYPE

Figure 4.12: Habit questions

4.5. MATCH LIST 53

4.5 Match List
When the profile is set up, it is time to go to the match list page. In this view,
the user can see a list of all current matches with metadata. He can also create
new matches from here. By clicking the "create a demo match" button the sys-
tem will set you up in a match with the best possible flatmates chosen from a
1000 test users. This allows the user to see how the interface will look when he
is matched in the future. If the user chooses to create a new solo match he will
be redirected to the Match page, 4.6, and get matched with single room listings.
The match list is shown in figure 4.13.

The current matches are presented as a list with meta information about the
match like:

• An automatically generated name based on the group size.

• The date of the match creation.

• The ideal starting position for the match to start their housing search.

• The alignment of the personalities in the match and their housing goals.

• Name and picture of the match participants as well as where they Work.

54 CHAPTER 4. PROTOTYPE

Figure 4.13: Match list

4.6. MATCH VIEW 55

4.6 Match View
The match view is the main view for the actual recommendation system of real
estate listings. Here, a user can see information about his new potential flat-
mates, add new flatmates, and evaluate listings either manually or through a
link. Present is also a chat room where he can talk to new flatmates and discuss
relevant listings.

4.6.1 Flatmates
The first section is a presentation of the participants in the match and the align-
ment of their personalities from the habit questions and their property goals from
the property questions. If there are less than four flatmates in the match, either
because someone leaves the match or a new custom match is created, the users
can add other users to the match.

Upon adding another user to the match, the personality and property align-
ments are recalculated. As a privacy measure, one can only add new users by
email.

Figure 4.14: Match view

56 CHAPTER 4. PROTOTYPE

4.6.2 Real estate recommendation
The real estate recommendation section consists of the following three panels:

1. Inspiration

2. Evaluation

3. Presentation

Ideally, there would be no need for the Inspiration and Evaluation part, and
instead present the user with options directly. However, since this is a general
recommendation framework, not tied to a specific service or data set, the service
has no access to relevant listings and needs the users help to import them from
somewhere else.

Figure 4.15: Match view

Inspiration

The inspiration panel contains three components. The first is the district of the
city the user is moving to, marked in bold, that has been determined to be the

4.6. MATCH VIEW 57

best origin for the match. How this is determined is presented in section 5.8.1.
Then, there are two URL links to the services finn.no and airbnb.com. Both
services use URLs to determine queries to their site and based on the group’s
preferences the yaps.life system constructs such queries. When the user clicks,
they are redirected to the respective sites with queries pre-filled into the system.
Query construction is described in section 5.8.3.

Evaluation

In this panel, the user is presented with tools to upload a listing of their own
choosing. It can be a listing from the sites mentioned above, or ones like them.
However, they can also upload listings they have heard of through family or
friends that are not listed on the internet. As long as the listing has an address
and a price, and can be given a rating for size, standard, and style it can be
uploaded and ranked.

Presentation

Arguably the most important panel is the listings panel. Here the different listings
found by the system, or uploaded by the user, are presented in a unified list ranked
by commuter time, price per tenant, size, standard, and style. Each property has
its own card with details about the property as seen in figure 4.16. The properties
listed on each card are:

• Address

• Price per tenant

• Average commute time

• Number of bedrooms

• Rent from date, and to date if available

• Size

At the bottom of each card is a rating given to the card by the system based on
the listings match for the group. If the listing was uploaded on the YAPS.life
system there will also be chat box directly to the proprietor of the listing. Upon
matching a message is injected into the conversation urging the group and land
lord to get in touch. How the listings are ranked are described in 5.8.4. Based
on price and commute time, two cards also get a label for being the cheapest or
the fastest option.

58 CHAPTER 4. PROTOTYPE

Figure 4.16: Listing card

4.6.3 Chat room
The addition of a chat room was deemed necessary to the service so potential
flatmates could talk to each other and make sure the recommendation of the
system was actually good. Activity in the chat could also be used to automatically
remove inactive users from the match to allow new participants to join. The chat
room is shown if figure 4.17.

Figure 4.17: Chat room

Chapter 5

Design of Recommendation
Algorithm

The recommendation algorithm is at the heart of this application. In this chapter,
the algorithm itself is formalized through a definition before it is walked through
step by step.

5.1 Requirements

As described at the beginning of the background theory section, 2.1, one of the
scenarios envisioned for this application is the following:

Oslo, the capital of Norway, receives thousands of hopeful young professionals
each year. Renting a studio apartment for yourself can easily escalate into 1500

- 2500 USD, not to mention actually buying a place, so flat sharing is the
sensible option. There are several real estate marketplaces where you can view
listings or contact potential roommates. However, there is no guarantee that it
will be a good match and for people who have not lived in Oslo before it can be
hard to know which areas of the city are good to live in. What they all need is a
service where they can enter information about themselves, where they work and
what they are looking for in an apartment, and then be recommended not just

where to live, but also whom to live with.

Using this scenario, several requirements for the service have been extracted into
table 5.1. The prototype aims to address these requirements.

59

60 CHAPTER 5. DESIGN OF RECOMMENDATION ALGORITHM

Table 5.1: Requirements for the prototype

ID Requirement

R1 Groups should consist of user with similar co living habits.

R2 Groups should consist of user with similar goals for an apartment.

R3 Groups should consist of users who want to live in the same
location, in the same timeframe.

R3 Groups should be of size 3, 4 or 5 to provide meaningful savings on rent

R4 A user who has already been matched should not be matched
again unless indicated by the user.

5.2 Definitions & Overview

To formalize the design of the recommendation algorithm a definition of a Real
Estate Group Recommendation System, REGRS, is found below.

In a Real Estate Group Recommendation System, a set of users U; matches,
M; homes, H; and landlords, L; are used to provide real estate recommendations
to users and tenant recommendations to landlords. A match, U ∩ H, consists
of a group of users and the listings they are matched with. A user can be part
of multiple matches, and a landlord can administer multiple homes. Each user
u has completed a profile with preferences regarding personality and what they
are looking for in a new home. This information is used to cluster users into
matches and then create a group profile for property preferences. The goal of the
recommendation system is to match the most relevant matches, M ′ ⊆ M and
homes, H ′ ⊆ H together. The relationship between the sets can be viewed as a
graph in figure 5.1.

The recommendation system works with multiple phases. The first being profile
generation where the user first fills out personal information like age, gender,
where they work, etc., and then four questions about property. Finally, they
answer twenty questions about their habits in a co-living environment. When
the algorithm is called to do its work, it extracts all users from the database
and filters them on match location, i.e., which city they will be matched into.
Then, the available users are clustered based on the dates they are looking for
accommodation, the property options they are looking for and last, but not least

5.2. DEFINITIONS & OVERVIEW 61

Figure 5.1: Real Estate as a Graph

their habits and interests.

When a match is created from the clustering process, several data sources will
be consulted in order to find homes, including finn.no, Airbnb, and the services’
own registered listings. If the home matches with what the group is looking for
the listing will be injected into the search list of the match as displayed in 4.6.2.

62 CHAPTER 5. DESIGN OF RECOMMENDATION ALGORITHM

5.3 Profile Generation
The full list of collected information during this stage can be found in the profile
section, 4.4 of chapter 4. The information used for matching purposes are:

• Where the user works.

• The budget, size, standard and style of apartment the user desires.

• Twenty questions on a scale from 1-5 regarding different statements about
co-living habits.

Other information like field of study, university, name, and age are needed in
order to present the user to other users upon being matched. As opposed to Li
et al. [2017a], described in the background theory in section 2.6.5, who indicated
that asking the user to fill in too much information would be too cumbersome,
the YAPS.life prototype asks for quite a lot. However, having an intuitive user
interface, which makes it easy to input this information, is hoped to mitigate the
user’s encumberment. The reason for this extensive collection of user information
and preferences is to let the system avoid the cold start problem described in 2.3.1,
and thus be able to provide good recommendations with only a few users in the
system.

5.4 Context Filtering
When a matching happens, the system gathers all available users and filters them
based on match location, i.e., which city they are moving to. Another important
context aspect is the date the user needs the apartment from. Filtering users
based on this attribute at this stage was considered, however, it was decided
that this context parameter did not need to be absolute, like the match loca-
tion. Therefore the context filtering for date was moved to the user-user distance
function described in section 5.6.

5.5 Group Formation
As described in section 2.4.1, group formation is an essential part of a group rec-
ommender system. In this prototype, two ways of creating a group are supported.
The most straightforward method is to have users add each other’s profiles into
an A Priori Group. This is for the group of friends scenario described in 2.1.1.
More interesting is when the system does Automatic Group Detection as per
section 2.4.1 and in the scenario described at the start of this chapter.

5.5. GROUP FORMATION 63

Three clustering algorithms were implemented to do the group matching. The
first was k-Means, an old and reliable clustering algorithm that clusters the users
into k potentially large clusters that then have to be split into smaller matches.
The second was kNN, or k Nearest Neighbour, which was adapted to find the best
match per user and then remove those users from further matching. The third,
was a hybrid of the two which first used k-Means to create initial broad clusters,
and then kNN to split these into smaller matches. That way of combining two
techniques is called a Cascading Hybrid system, as described in section 2.2.4.

After a careful evaluation of all three algorithms, which will be presented in
chapter 7, the Hybrid approach was chosen as the main algorithm for the proto-
type.

5.5.1 Initial clustering with k-Means

The first step is to take the available users for each match location and group
them into k clusters. At first, it was theorized that if there were a 100 users, k
would be based on the number of users wanted in a group, see equation 5.1.

k =
number of users

flat size
(5.1)

However, due to the random initialization of the centroids, the algorithm ended
up with some clusters with many users and some clusters without any users at
all. Lowering k to 5 for any amount of users ensures a higher probability of all
clusters containing several users and in theory makes the clusters mimic different
personality types.

In the end, it was decided to go with a k that scales as the user size increases,
but only logarithmically to continuously make sure no cluster ends up empty.
Because k needs to be an integer the result of the logarithm was rounded up to
the nearest one. For a more thorough explanation of k means consult section
2.5.3 in the Background Theory chapter.

k = log2(nr of users) (5.2)

5.5.2 Final match groups determined by k Nearest Neigh-
bours

The initial broad clusters often have many more users than can fit into a single
house, and that is where kNN comes in. By applying the kNN algorithm to each
of the clusters produced with k-Means, the clusters are then divided into smaller

64 CHAPTER 5. DESIGN OF RECOMMENDATION ALGORITHM

groups of an appropriate size corresponding to the k chosen. Note that this is a
different k than the one used for k-Means. In the production system today, four
is chosen as the k for kNN. This means that even if a user were to leave a match,
the group would still have enough members to make the group recommendations
meaningful. Setting the k to five could lead to groups who would have a hard
time finding a place together because of the lack of homes that can accommodate
that many people.

The algorithm works by first selecting a user from the initial cluster, then cal-
culating the distances between the user and all other users in the same cluster.
Then it sorts them from shortest to longest and extracts the top three. These,
now four, users are then locked into a group and removed from further match-
ing within the cluster. The algorithm repeats this procedure until all users from
the large initial cluster are sorted into matches. Because the implementation is
slightly different than the standard kNN algorithm, it is included here in Algo-
rithm 5.1. The programming language used is JavaScript.

Listing 5.1 kNN algorithm one match per person

1 function knnClusteringOneMatchPerUser(vectors, K) {
2 // vectors are the combined personality and property vectors to

be clustered.
3 //K is the group size the algorithm is supposed to produce.
4 const clusters = []
5 // Map vectors into an object that remembers initial index of

vector.
6 // This is used to map the clustered vectors back into users.
7 const vectorsWithIndex = vectors.map((v, i) => ({ v, i }))
8 // While there are users to cluster , do:
9 while (vectorsWithIndex.length > 0) {

10 const scores = []
11 // Remove the first user from the user pool.
12 const u = vectorsWithIndex.pop()
13 // Iterate through remaining users and score them compared to

the current user.
14 vectorsWithIndex.forEach((v, j) => {
15 const score = cosineDistance(u.v, v.v)
16 scores.push({ i: v.i, j, score })
17 })
18 // Sort the socred users from best to worst.
19 scores.sort((a, b) => a.score - b.score)
20 // Extract the top K.
21 const topK = scores.slice(0, K-1).sort((a, b) => b.j - a.j)
22 // Remove the top k from the user pool.
23 topK.forEach(el => {

5.6. FEATURE REDUCTION AND SIMILARITY CALCULATION 65

24 vectorsWithIndex.splice(el.j, 1)
25 })
26 // Concat the original user with the topK and push them into

the returned cluster vector.
27 clusters.push([u.i].concat(topK.map(el => el.i)))
28 }

30 return clusters
31 }

A note on using kNN alone

It is possible to forgo k-Means and simply use kNN to cluster all users into groups
directly. The inherent strengths of this clustering method would be that all groups
would consist of exactly four people, except possibly the last one. Further, the
first person the algorithm picked would be guaranteed a good match. However,
that is where the downside lies as well. While the first user gets the perfect match,
the available user pool shrinks with every iteration. Thus the four last people in
the pool will have no options but themselves when ranked for a match. Another
scenario is when the first user the algorithm evaluates is an outlier. It could then
potentially grab three other users who would have a much better correlation with
someone else. This algorithm produced the best and worst matches of the ones
investigated for user matching as will be presented in section 7.1 in the Evaluation
chapter. The difference in running time on the datasets used for evaluation were
negligible.

5.6 Feature Reduction and Similarity Calculation

The users are represented by both the answer to their 20 personality questions
as well as their 4 real estate goals conjoined into one vector of 24 indices. Each
index is on a scale from -2 to 2 to represent how much a user agrees with a state-
ment. All clustering algorithms need a similarity metric to compare the user-user
similarity of these vectors in order to produce good matches. From section 2.5.1,
both the Euclidean distance and Cosine distance were considered as similarity
metrics for this prototype.

Euclidean distance would compare the two users question by question and give
them the similarity score of the combined distance between all answers. Cosine
on the other hand, looks at the directions of the different vectors. This in benefi-
cial because, as we have from Amatriain et al. [2009] back in section 2.2.6, users
opinion on what constitutes agreeing strongly with a statement can differ vastly.

66 CHAPTER 5. DESIGN OF RECOMMENDATION ALGORITHM

Cosine similarity is less concerned with the extremity of the users answers, but
gives a better indication of the general direction the users answers indicate.

Comparing two vectors of length 24 is no computational challenge for either
of these similarity metrics, however they are both quickly hit with the curse of
dimensionality. As described in section 2.5.2, the curse of dimensionality is the
fact that vectors in high dimentional spaces lose much of the intuitive distance
between them. Beyer et al. [1999] reasons that because the volume of the space
increases so quickly with the dimentionality resulting in that In this sense, nearly
all of the high-dimensional space is "far away" from the centre.

To combat this, we use the fact that the 20 personality questions are divided
into four categories to create an overall score for each category. This is done my
summing over the individual questions. Now, the user vector consists of eight
instead of 24 indices. However, the scale has been shifted drastically with the
first part of the vector now ranging from values of -10 to 10. By weighting the
property vector by 5 we increase its range to the same amount to ensure the
personality questions won’t dominate the distance score.

Deciding which similarity metric is better is often determined by the data you
have as the intuition. As chapter 7 shows, the best combination for this prototype
turned out to be first clustering the dataset using k-Means with the Euclidean
distance, and then dividing the clusters into more granular matches using the
cosine similarity.

5.7 Creating a Match
After the users are divided into groups, a match object is created. Upon cre-
ation, several alignment calculations are performed regarding the users’ person-
ality alignment, property alignment and a combination of the two. The way the
alignments are calculated can be found in section 3.2.1.

When the group is settled it is time to decide on a group model strategy to
perform recommendations on. As detailed in section 2.4.2, there are two main
approaches to this. Either giving individual recommendations to all members
in the group and then aggregating them, or merging the group members into a
group persona and recommend items directly to it. For the YAPS.life prototype
it was decided to go with the latter. To combine the individuals preferences, their
property vectors are averaged into a group property vector, as can be seen with
the example in figure 5.2. Using a group persona helps limit expensive API calls
to external services like Google’s Distance Matrix API and since the group has

5.8. REAL ESTATE RECOMMENDATION 67

Figure 5.2: An example of averaging the individuals vectors into a joint group
property vector.

u1 =
u2 =
u3 =
u4 =

.
groupvector =

−2 0 2 0
−2 0 2 2
−2 −2 0 0
−2 0 2 −2
.
−2 −0.5 1.5 0

already been clustered for similarity a simple average yields a good representation
of the group persona. If the group had been more diverse, a strategy like least
misery could be considered instead.

Creating a chat room

An additional step at this point is to create a chatroom for the users of the match
to interact. While the algorithm technically guarantees the matches to be good
on paper, real-world users will probably want to make sure their new flatmates
can be reached online before actually deciding to move in together. The chatroom
has no further bearing on the apartment recommendation.

5.8 Real Estate Recommendation

As the match is created in the database, either from the clustering algorithm or
by a user on the website, a series of events are set in motion serverside. By using
the new flatmates’ work locations, the algorithm consults the Google Distance
Matrix Service1 on which district in the match city suits the group best according
to average commuter time. Then, based on the group’s composition, a search
query for Finn.no and Airbnb.com are created. The one for finn.no is used to
scrape the website for the ten first apartments in the area deemed most suitable
for the group by the earlier stage of the algorithm as well as 20 more listings
from a general search of housing in the match city. After combining the two lists
and filtering them for duplicates the individual listing details are matched with
the group’s property vector. The listings with a sufficient score are then inserted
into the Distance Matrix function with regards to the users’ workplaces again
and ranked on the combined Euclidean distance to the group property vector.

1https://developers.google.com/maps/documentation/distance-matrix/intro

https://developers.google.com/maps/documentation/distance-matrix/intro

68 CHAPTER 5. DESIGN OF RECOMMENDATION ALGORITHM

5.8.1 Get best origin for match

While excellent, the distance matrix service from Google does suffer some limita-
tions. First and foremost is the API limit constricting free use to 2500 elements
per day. For each query, there is an average of four workplaces, and then even
at only four city districts, that turns into a 4x4 matrix of 16 elements. This
means that for the service to stay free the maximum amount of calls are roughly
2500/16 = 156 per day. Therefore, any initial evaluation of an apartment that
can lead to its disqualification for the group is welcome, as it saves the system
from making more API calls than necessary. If the service was monetized, this
limit could be increased.

The locations in Oslo chosen are:

• Frogner

• Majorstua

• Grunerløkka

• Gamle Oslo

Together these four districts comprise the outskirts of Oslo’s central business
district and are thus well positioned as candidates for housing people with work-
places scattered all over the city.

An alternative to the Google Distance Matrix API was Mapbox. Their Dis-
tance Matrix API2 has a more generous limit of 50 000 per day; however, they
only provide travel durations for driving, walking, and cycling. As far as the
author knows, Google is the only service with close to global coverage on public
transport time calculation. In the future, a combination of the two APIs could
be used to give users more choice in how they prefer to transport themselves to
their workplace.

5.8.2 Get combined travel time and determine the best
origin

The response from the Google Distance Matrix API is the travel time and length
in kilometers from the four origins, preselected based on city, to the destinations,
I.E., the workplaces of the users in the match. As travel time is more relevant
than actual distance when it comes to getting to work on time, it is selected as the
metric to average. The averaging is done by simply iterating through the matrix,

2https://www.mapbox.com/help/define-matrix-api/

https://www.mapbox.com/help/define-matrix-api/

5.8. REAL ESTATE RECOMMENDATION 69

adding the travel time results together before dividing on the number of flatmates.

When the scores are calculated, we simply pick the origin district with the lowest
average time. Future work here could include implementing a Least misery solu-
tion as described in section 2.4.6 on aggregation strategies in group recommender
systems.

5.8.3 Construct query strings & get properties

With the best origin now determined, the system constructs search queries for
the sites finn.no and airbnb.com. Both services use a URL based querying system
so adding and removing URL parameters affects the search. For this prototype,
most of the focus lies on Finn.no as Norway will be the first place of use for
prototype. The query parameters constructed and how they are determined can
be found in table 5.2.

Table 5.2: URL parameters for finn.no

URL Parameter How it is determined

City The city constraint is determined by the groups match
city. In the prototype it defaults to Oslo.

District District is determined by the best origin algorithm
described in section 5.8.1.

Number of bedrooms

Based on the number of people in the group.
In Finn’s system this parameter does not ensure
the exact number of bedrooms needed, instead it
returns all listings with the same number or higher.

Property types

Finn.no offers listings for many property types.
For this group recommendation system the listings
are pre-filtered on: Single house, Apartment,
Town house, and Semi detached

The queries are then sent to the match object and then used by the server to
do an actual search on the service finn.no. By scraping the 10 topmost results
from the fine tuned query described above, and another 20 from a less granular

70 CHAPTER 5. DESIGN OF RECOMMENDATION ALGORITHM

search, to get more breadth in the results, the results are combined and filtered
for duplicates.

5.8.4 Evaluating a listing
Ideally, all properties would be rated equally. However, because of the above-
mentioned API limits, it is unfeasible to get the commute time score for all these
apartments. Instead, the algorithm takes a two-step approach.

Step one is a basic filtering on the collected apartments based on whether they
have the exact number of bedrooms needed and an initial group score for the
property based the Euclidean distance from the group’s joint property vector to
the derived property vector for the apartment. The apartments that make it
through this filtering are then submitted to the Distance Matrix API to get their
commute time score. Now the algorithm has all it needs to set a final score for
the listing based on another weighted Euclidean distance.

5.8.5 Matching groups with properties in the system
After adding the external listings, a similar process is followed for matching the
group with existing listings on the yaps.life platform.

5.8.6 Adding properties manually
To provide value to users who are not in a serviced match location one can
also manually add apartments to the service through the user interface. These
apartments are evaluated and connected to the match in the same method as the
external listings found on match creation.

5.8.7 Adding properties uploaded by landlords
The last way an apartment can be injected into a match is if a landlord uploads
it to the platform after the creation of the match. The apartment will be injected
into all matches who have not indicated that they have decided on a place yet,
and where the features of the apartment are a good match for the group.

Chapter 6

Architecture

Now that the recommendation algorithm has been presented conceptually it is
time to elaborate on the actual technical implementation. In this chapter the
development environment and tools used to develop the prototype are presented.

6.1 Development Environment
Modern web development requires a host of tools in order for developers to work
effectively and this section presents the most relevant for developing this proto-
type. All code was written in Microsoft Visual Studio Code1 which is a light
weight text editor with support for linting, code completion and version control.

For package management it was decided to use YARN2, which is an extension of
the Node Package Manager3. Package management in web development is a way
to manage external code integrations into the project. For continuous integration
the service Travis CI4, which is free for open source software, was used.

6.2 Architecture
The architecture of a web application is often presented as a view layer, a busi-
ness logic layer and a data storage layer[Fowler, 2002]. Typically the view layer
is a combination of HTML, CSS and JavaScript that talks to a server, the busi-
ness layer, that then communicates with a database in the data storage layer.

1https://code.visualstudio.com/
2https://yarnpkg.com/en/
3https://www.npmjs.com/
4https://travis-ci.org/

71

https://code.visualstudio.com/
https://yarnpkg.com/en/
https://www.npmjs.com/
https://travis-ci.org/

72 CHAPTER 6. ARCHITECTURE

Figure 6.1: The prototype architecture in components

However, this is not the only way to structure a web application. A new trend
called server-less computing has been made more accessible thanks to services
like Amazon Web Services Lambda5 and Cloud Functions from Google Cloud
Engine6. Instead of deploying a server the developer simply writes the code to
be executed on the server-side. Then, the service provider creates a HTTPS end-
point the function can be activated from. Another possibility is to attach the
cloud function to a database event like a new document being created, or an old
one edited, this is called a cloud function trigger.

On the front-end, the prototype uses the well known React.js library created
by Facebook.

6.3 Front-end

The frontend of the application is where users interact with the system. Since
this is a web based system, all interaction happens in a web browser on either
a desktop or a mobile device. Web browsers can only display combinations of
HTML and CSS with interactivity through JavaScript. In order to build this
application it was decided to use the framework React.js by Facebook.

5AWS Lambda
6https://cloud.google.com/functions/

https://aws.amazon.com/lambda/?sc_channel=PS&sc_campaign=acquisition_ND&sc_publisher=google&sc_medium=lambda_b&sc_content=lambda_e&sc_detail=aws
https://cloud.google.com/functions/

6.3. FRONT-END 73

6.3.1 React.js

React is a declarative, component based JavaScript framework for frontend web
applications. It was developed by Facebook and released in 2013. Now it is
maintained by facebook, instagram, and a community of individual developers
and corporations. The fact that it is component based means the application is
composed of a hierarchy of components which are written individually and can
be reused.

In order to load data from other sources, like the Firestore database, we use
one of React’s lifecycle methods called componentDidMount to make the request.
An example of how the data for the Match List page from section 4.5 is collected
can be found in listing 6.1

Listing 6.1 Loading external data in ComponentDidMount

1 componentDidMount() {
2 auth.onAuthStateChanged((user) => { // Check if user is logged

in
3 this.setState({ user })
4 if (user) { // If logged in
5 this.unsubscribe = firestore.collection(users).doc(

user.uid).onSnapshot((doc) => { // Subscribe to
datastream for user object from firestore

6 const userData = doc.data()
7 const { currentMatches, gettingCloudMatched } =

userData
8 const matches = currentMatches || {}

10 this.setState({ gettingCloudMatched }) // Signal the
user that something is happening

12 Promise.all(Object.keys(matches).map(matchId =>
firestore.collection(matches).doc(matchId).get())
) // Get match documents

13 .then(results => this.setState({ // Update state with
the matches

14 matchesLoading: false,
15 userData,
16 matches: results.map(res => res.data())
17 }))
18 })
19 } else { // If not signed in , redirect to log in page
20 this.setState({
21 redirectToSignIn: true
22 })

74 CHAPTER 6. ARCHITECTURE

23 }
24 })
25 }

Routing

React produces single page apps, however separating the content into different
URLs is still necessary for usability purposes. To do this the prototype uses react
router7 which dynamically displays app content based on the URL. This lets us
split the prototype into pages, as seen in listing 6.2

Listing 6.2 Routing with React Router

1 render() {
2 const { user, userData } = this.state
3 return (
4 <div className="app">
5 <AppHeader user={user} newMatches={userData ?

userData.newMatches : false} />
6 <Switch>
7 <Route exact path="/" component={Home} />
8 <Route exact path="/create" component={Create} />
9 <Route path="/matches /: matchId" component={Match} />

10 <Route path="/matches" component={MatchList} />
11 <Route path="/profile" component={Profile} />
12 {/* <Route path ="/ landlord -view" component ={

LandlordProfie} /> */}
13 <Route path="/apartment -finder /: matchId" component={

ApartmentFinder} />
14 <Route path="/TOS" component={TOS} />
15 <Route path="/account -settings" component={

AccountSettings} />
16 </Switch>
17 </div>
18)
19 }

6.3.2 Create React App

Create React App [cre, 2018] sets up a development environment that has ev-
erything needed to build a modern React app with only one build configuration.

7https://reacttraining.com/react-router/

https://reacttraining.com/react-router/

6.4. BACK-END 75

Create React App comes packaged with tools like Babel, ESLint, Jest and Web-
pack. Babel is a compiler, which allows transpilation of ES6/ES7 code to standard
JavaScript that runs in the browser. In the project, Jest was used for writing
unit tests. Facebook defines Jest as a ”JavaScript testing solution. Works out of
the box for any React project.” [jes, 2018]. These are tools that were used all the
time when developing YAPS.life, thus bundling them into one dependency was a
great advantage.

6.4 Back-end

The back-end of this application consists of the database and the serverless cloud
functions. Both are products made by Google in a service called Firebase, which
is a BaaS (Backend as a Service).

6.4.1 Cloud FireStore

Cloud Firestore is a flexible, scalable database for mobile, web, and server de-
velopment from Firebase and Google Cloud Platform. Like Firebase Realtime
Database, it keeps data in sync across client apps through realtime listeners and
offers offline support for mobile and web so that responsive apps work regardless
of network latency or Internet connectivity. Cloud Firestore also offers seamless
integration with other Firebase and Google Cloud Platform products, including
Cloud Functions. 8

Cloud Firestore is a cloud-hosted, NoSQL database that iOS, Android, and web
apps can access directly via native SDKs. Cloud Firestore is also available in na-
tive Node.js, Java, Python, and Go SDKs, in addition to REST and RPC APIs.

Following Cloud Firestore’s NoSQL data model, data is stored in documents
that contain fields mapping to values. These documents are stored in collections,
which are containers for documents that one can use to organize data and build
queries. Documents support many different data types, from simple strings and
numbers, to complex, nested objects. Subcollections can also be created within
documents and build hierarchical data structures that scale as the database grows.
The Cloud Firestore data model supports whatever data structure works best for
the app in question.

Additionally, querying in Cloud Firestore is expressive, efficient, and flexible.
Shallow queries can be created to retrieve data at the document level without

8https://firebase.google.com/docs/firestore/

https://firebase.google.com/docs/firestore/

76 CHAPTER 6. ARCHITECTURE

needing to retrieve the entire collection, or any nested subcollections. Add sort-
ing, filtering, and limits to queries or cursors to paginate the results. Realtime
listeners can be added to keep data in apps current, without retrieving the entire
database each time an update happens. Adding realtime listeners notifies the
application with a new data snapshot whenever the data the client applications
are listening to changes, retrieving only the new changes.

Access to the data in Cloud Firestore is protected with Firebase Authentica-
tion and Cloud Firestore Security Rules for Android, iOS, and JavaScript, or
Identity and Access Management (IAM) for server-side languages.

6.4.2 Typescript

TypeScript9 starts from the same syntax and semantics that millions of JavaScript
developers know today. It compiles to clean, simple JavaScript code which runs on
any browser, in Node.js, or in any JavaScript engine that supports ECMAScript
3 (or newer). Types enable JavaScript developers to use highly-productive de-
velopment tools and practices like static checking and code refactoring when
developing JavaScript applications.

Types are optional, and type inference allows a few type annotations to make
a big difference to the static verification of the code. Types let the developer
define interfaces between software components and gain insights into the behav-
ior of existing JavaScript libraries. TypeScript offers support for the latest and
evolving JavaScript features, including those from ECMAScript 2015 and future
proposals, like async functions and decorators, to help build robust components.
These features are available at development time for high-confidence app devel-
opment, but are compiled into simple JavaScript that targets ECMAScript 3 (or
newer) environments. [Typ, 2018]

Typescript was crucial for the backend service of YAPS.life because it allowed the
use of the async/await pattern which would not have been available otherwise,
due to Google’s servers only running Node 6.11.

6.4.3 Firebase cloud functions

Cloud Functions for Firebase10 is a service that automatically runs backend code
in response to events triggered by Firebase features and HTTPS requests. The
code is stored in Google’s cloud and runs in a managed environment. There’s no

9https://www.typescriptlang.org/
10https://firebase.google.com/docs/functions/

https://www.typescriptlang.org/
https://firebase.google.com/docs/functions/

6.5. DATASET 77

need to manage and scale other servers for the application. [Fir, 2018]

After deploying a function, Google’s servers begin to manage the function im-
mediately. The function can then be fired directly with an HTTP request, or,
in the case of background functions, Google’s servers will listen for events and
run the function when it is triggered. As the load increases or decreases, Google
responds by rapidly scaling the number of virtual server instances needed to run
the function. Each function runs in isolation, in its own environment with its
own configuration.

Using Cloud Functions sped up the development time for the prototype dras-
tically because no server setup or configuration was needed. However, cloud
functions are not always suitable for user tasks that require a low response time
from the servers because the function might need to do a cold start if it has not
been used for a while.

6.5 Dataset
A dataset is a collection of data. Most commonly a dataset contains the contents
of a single table from a database, or a statistical matrix of data. Each column of
the table represents a particular variable, and each row corresponds to a given
member of the dataset in question. Each value in the table is known as a datum.
For YAPS.life, four different types of datasets were considered.

1. A dataset consisting of user profiles of real users.

2. A set of randomly generated user profiles.

3. A collection of listing data based on real addresses and properties.

4. A collection of listing data based on generated addresses and data.

Ideally, there would only be datasets based on real data, however in the infancy
of an application like YAPS.life that kind of usage data does not exist. Since the
user profiles consists mostly of strict, structured data it was decided to generate a
set of 10 000 test users with their attributes randomly initialized. The generation
code can be found in the appendix listing D.1. A dataset of real user profiles was
also constructed when the development of the application had reached the point
where users could enter their own information into the system.

As for the listing datasets, mocking the data proved more difficult. Using datasets
from AirBnB was considered, but because no dataset provided listings relevant
to test users of the application they were not used.

78 CHAPTER 6. ARCHITECTURE

6.6 Recommendation Algorithm Implementation
In this section the implementation of the recommendation algorithm described
in chapter 5 will be presented. Each section will be related to an activity from
figure 6.2, which depicts the entire activity flow of the recommendation algorithm.
Because of the resource intensive parts like the clustering and many connections
to external services, the entire algorithm is performed through Cloud Functions,
described in 6.4.3.

6.6.1 Context filtering on match location for users
At initiation, the entire user database is searched for users who have indicated
that they are ready to be matched using the Query filters provided by Cloud
FireStore. Then, iterating over the users, they are filtered into several location
buckets like ’Oslo’, ’New York’, etc. With these buckets of users in place, several
asynchronous calls are made starting a separate Cloud Function to cluster each
bucket. The clustering then happens in parallel on Google’s servers.

6.6.2 Clustering and match creation
Before any clustering happens, the amount of users to be matched are checked
to be larger than 16 as that is the minimum amount of users needed to provide
several matches with strong cohesion. Then, the users’ personality vectors, from
the habit questions, and their property vectors, from the property goals, are ex-
tracted and combined into a a list of single vectors.

This list, where each index in the list corresponds to the user in the user list, is
sent into the clustering function. This function can be swapped easily as long
as it accepts the list of vectors and returns a list of clusters, where a cluster is
a list of indexes that link back to the original user list. If the clusters contain
more than four users they are split into smaller fragments either using a simple
modulo function or a more advanced k Nearest Neighbour(kNN) approach.

In the production system today, the hybrid approach described in chapter 5
is used. First, the users from the match location are piped into the k-Means
clustering function where k is determined by the log2 of the number of users to
be matched. This produces a set of initial clusters which are then split up further
by the kNN algorithm. The result is a nested list structure that is flattend into a
single list of groups. Then, this list is mapped asynchronously to create a match
object in the database from each group.

The match object consists of several different properties. Upon creation, the

6.6. RECOMMENDATION ALGORITHM IMPLEMENTATION 79

Figure 6.2: Recommendation algorithm, activity diagram

80 CHAPTER 6. ARCHITECTURE

individual property vectors of the group members are combined into a single
group property vector by averaging the columns. A personality alignment and
property alignment is also calculated for the group based on the average distance
between all personality and property vectors in the group. An initial "Best ori-
gin" is set to the match location and a nested object that will contain properties
linked to the match is constructed. Finally, the object is initialized with a times-
tamp of when it is created.

To facilitate communication between the group members a chat room is also ini-
tialized. The messages are stored within the match document as a sub-collection
in the FireStore database. The last step is iterating over the group members and
updating their documents with the matchId they are now linked to.

6.6.3 Matching users with external listings

When a match is created in the database, another Cloud Function called "on-
MatchCreate" is triggered. The task of this function is twofold. The first is to
update the match with the optimal area to start apartment hunting in the match
city. The second is to consult several data sources like Finn.no, AirBnB, and the
service’s own listings, and match the group with listings that suit the group as a
whole.

Get best origin

To get the best origin the function constructs a search query to the Google Dis-
tance Matrix API based on the users’ workplaces and pre-selected districts in the
match city. The result from this query is aNr_of_workpaces ∗Nr_of_districts
matrix that details the distance and travel time between the different origins and
destinations. This matrix is then passed to another function which returns the
optimal origin for the group. The next step is to use this best origin, together
with how many people are in the match, to create one search URL query for
Finn.no and another for AirBnB.

Another point worth mentioning is the input to the Distance Matrix API. Upon
profile creation, the users input the address of their workplace. While the ad-
dress itself could technically be used the as input, it is prone to error because of
formatting issues. A more stable way was discovered by Geolocating the address
into longitude and latitude points, using another Google API 11, and then using
that as input instead.

11https://developers.google.com/maps/documentation/geolocation/intro

https://developers.google.com/maps/documentation/geolocation/intro

6.6. RECOMMENDATION ALGORITHM IMPLEMENTATION 81

Match with external listings

The two URLs and the best origin are then returned in the updated match object
and used to gather two sets of listings from Finn.no. The first set is a maximum
of ten listings from the specialized query. The other is a maximum of twenty
listings gathered from a broad search of the match location. After merging these
sets of URLs to filter for duplicates the detail of each listing is collected. In these
details the algorithm parses the apartment into a property vector similar as the
one possessed by the group.

• The Budget for the apartment is determined from the price per moth di-
vided by the number of people in the group.

• The Size is determined by the size of the apartment.

• The Standard is not possible to parse as Finn has no attribute describing
it, therefore it defaults to 0.

• The Style is set to a default 0 , unless the listing has an attribute describing
it as modern in which case it is set to 2.

The next step is to give these listings an initial group score for how well they fit
the group’s preferences. This is done by taking the Euclidean distance from the
group’s property vector to the property vector of the listing. Because budget and
size are easier to define and based on the data in the listing, and has more impact
on whether the apartment is interesting to the group or not, these attributes are
weighted higher. The reasoning is that a group would rather consider an apart-
ment that fits with the budget and size constraint, and a different standard and
style, than the other way around. The listings are then sorted based on this
initial score, and the top six progress further.

These six apartments are then evaluated for average commuter time to the group
member’s workplaces. The reason for the initial screening is the API limits im-
posed by the Google Distance Matrix API. If all listings were to be evaluated
for commuter time, it would not be possible to keep the service free. The com-
muter time, which is given in seconds, is then projected to the scale between -2
and 2 like the other attributes and concatenated into the listing’s property vector.

The last step is to get a final group score for the listing, which is produced
with another Euclidean distance from the group’s property vector to the now
enhanced property vector of the listing. The weights are adjusted slightly to
give more influence to the commute time. The weights used in the production
prototype can be found in figure 6.3.

82 CHAPTER 6. ARCHITECTURE

Figure 6.3: Weights on the property vector distance calculation. CT: Commute
Time, B: Budget, S: Size, Std: Standard, Sty: Style.

attribute =
initial group score weights =
final group score weights =

CT B S Std Sty
2 2 0.5 0.5

2 2 1 0.5 0.5

If the group score for the listing is still within a reasonable distance of the group’s
property vector the final step is to add the listing to the match object so the group
can view it in the flat list as seen in section 4.6.2. External listings are saved
directly to the match object.

6.6.4 Match with internal listings
After external listings have been evaluated and injected into the match a similar
process happens for internal listings. The Cloud FireStore database is queried for
listings where the location of the listing matches the match location. All relevant
listings are then evaluated for average commuter time and go through the same
distance check to the group’s property vector. If it is a good match, the listing is
injected into the match, instead of saving all the listing data in the match, only
the Id of the listing is injected. This way, if the listing is updated it will show in
all matches the listing has been injected to. Another key difference is that a chat
dialog between the group and the listing administrator is initialized. The listing
document stores all chat information with all matches in its own document as
sub-collections. The entire process can be viewed as a sequence in the sequence
diagram in figure 6.4.

6.6.5 Handling new users, matches, and listings
When enough new users register for the YAPS.life service and finish their profiles,
a new matching of users and listings will be triggered. Listings that are uploaded
by landlords after a matching has already happened will be added to all relevant
matches retroactively. While not implemented in this prototype, the planned
functionality is to either run a matching every third day, or do periodic analysis
of the available users and listings to see if good matches can be made. New
iterations of the matching algorithm could potentially also be used to inject new
users into old matches where some group members left the match or remained
inactive.

6.6. RECOMMENDATION ALGORITHM IMPLEMENTATION 83

Figure 6.4: Recommendation algorithm, sequence diagram

84 CHAPTER 6. ARCHITECTURE

Chapter 7

Evaluation

In this chapter, the results of this project will be evaluated against the research
goals. There will also be a discussion of the strengths and limitations of the
results.

Goal Develop and evaluate a platform for group recommendation of real estate.

After several months of development, a prototype service for group recommenda-
tion of real estate was finalized. It was given a soft release to the public through
several social media channels, and at the time of writing has registered 73 user
accounts. The development did take more time than anticipated and not all of
the features planned were implemented. Still, the end product is a fully func-
tioning platform that provides value to real users, today. It can be found at
www.yaps.life.

The evaluation of the platform is presented in a review of the research questions.

1. First, a quantitative analysis of the performance of the different clustering
techniques.

2. Then, a usability evaluation using the System Usability Scale test to see
what users thought of the prototype.

3. Finally, a qualitative test measuring how well the system was able to per-
form actual real estate recommendations to groups.

85

https://yaps.life

86 CHAPTER 7. EVALUATION

7.1 Matching Evaluation Results

Research Question 1 What is the best way to match users looking for shared
accommodation into groups?

The literature on group recommendation shows that using clustering techniques
is the state of the art in order to detect groups. Boratto and Carta [2010] indi-
cated that k-Means was used widely; however, there is no technique that always
outperforms any other, so several had to be investigated. In this thesis the fol-
lowing six different algorithms were evaluated:

• Baseline, simply divide users into groups of four without any clustering.

• kNN with Euclidean distance, go through the available users linearly,
and for each user extract his top matches. Users are sorted with the Eu-
clidean distance.

• kNN with Cosine Distance, same as above, but users are sorted with
the Cosine distance.

• k-Means, divide the users into k clusters, where k is the log2 of the number
of users to be matched. Divide these clusters into four without further
clustering.

• Hybrid of k-Means and kNN with Euclidean distance, after creating
initial clusters with the k-Means algorithm, the clusters will be split using
kNN with Euclidean distance.

• Hybrid of k-Means and kNN with Cosine distance, same as above,
but using kNN with Cosine distance.

The algorithms have been evaluated on two different datasets. The first is a set
of 38 user profiles collected from users of the prototype with their consent. While
not very large, this size of users to cluster is quite probable for the early stage of
the YAPS.life system when few users in each match location have registered. In
order to see how the system scales, a second data set of randomly generated test
users was constructed. The test users mimic real users by randomly setting their
attributes from the same selection of attributes that real users have available. A
full test set of 10 000 test users was constructed, and then smaller sets of 40, 100,
and 1000 were created from that base.

7.1. MATCHING EVALUATION RESULTS 87

7.1.1 Brute-force search

Before comparing the algorithms, a lower and upper bound for how good a match
could be was established using a brute-force search through the solution space.
Setting the group size to four, the amount of matches generated for the 38 real
users is the same as the combinatorial of

(
38
4

)
, which is 73 815. As can be seen

in figure 7.1 the worst possible matches had a score that hovered around 1.2 and
the best managed to reach 0. This score is called the Combined Alignment of the
match and is the average Cosine distance between all user vectors in the match.
See 3.2.1 for further details. The fact that a Combined Alignment of 0 is possible
indicates that a perfect match can be found. The median match is also tracked
for reference.

The same brute-force search on the test data can be found in figure 7.2. All
series perform worse here, i.e., have a higher combined alignment, thus indicat-
ing the test data does not reflect the real data perfectly. Still, it is similar enough
that further testing on the data was considered worthwhile. The largest brute
force search possible on the available hardware was with 64 users, resulting in
a total of 635 376 matches. Since it revealed no new trends in the graph it is
included in the Appendix B.1, instead of here.

Figure 7.1: Brute-force Real Users

88 CHAPTER 7. EVALUATION

Figure 7.2: Brute-force Test Users

7.1.2 Match distribution

With the theoretical boundaries established we can better evaluate the different
clustering algorithms. Instead of showing how the algorithms do as the user size
increases we instead use snapshots of different user sizes and chart how the dis-
tribution of the matches produced by the different algorithms compare. Some
algorithms produce more matches than others because of how they divide their
users.

Figure 7.3 shows the clustering of the 38 real users. The baseline algorithm does
surprisingly well with three relatively good matches; however, overall it performs
worse than the other algorithms as expected. Both kNN Euclidean, just kNN in
the figure, and kNN Cosine performs well with the first 7 matches, but actually
worse than the baseline in the last ones. This is due to the effect described in
5.5.2 where the last users the algorithm evaluates have very few alternatives to
be matched with. The kMeans and the two hybrid algorithms produce more
matches than the others and achieve a lower distribution score with the Hybrid
Cosine algorithm providing the best overall score.

7.1. MATCHING EVALUATION RESULTS 89

Figure 7.3: Clustering 38 real users

Moving on to roughly the same amount of test users we see all algorithms per-
forming quite a lot worse. This is to be expected as the theoretical max and min
were both shifted upwards in the test data set as described in the section above.
It is still a tight race between the different algorithms, but once again the Hybrid
Cosine methods wins out.

90 CHAPTER 7. EVALUATION

Figure 7.4: Clustering 40 Test Users

7.1. MATCHING EVALUATION RESULTS 91

Figure 7.5: Clustering 100 Test Users

In the next figure, 7.5, the amount of test users has been increased to 100, and
we see the number of matches has increased to around 25. There is a little more
space between the different series now with Baseline and k-Means performing
noticeably worse than the others.

When the number of test users is increased tenfold, up to 1000, in figure 7.6, a
more explicit pattern emerges. Baseline and k-Means are left behind with the
other algorithms performing much better. This trend is further exacerbated in
the last figure, 7.7 where 10 000 test users are compared.

92 CHAPTER 7. EVALUATION

Figure 7.6: Clustering 1 000 Test Users

Figure 7.7: Clustering 10 000 Test Users

7.2. USABILITY EVALUATION RESULTS 93

7.2 Usability Evaluation Results

Research question 2 How to present a group recommendation system for real
estate?

In order to evaluate the usability of the prototype, 16 users submitted to follow
the steps outlined in section 3.3.2. Briefly summarized they were to:

1. Fill out the Background Information(BI) survey.

2. Perform several tasks with the application outlined in User Tasks(UT).

3. Answer the System Usability Scale(SUS) survey.

4. Complete an Application Specific(AS) survey.

7.2.1 Number of test subjects

Nielsen [1994] indicates that only 5 users are enough to find most usability prob-
lems in a system, up to about 80%. In order to achieve this high number though
the tests should be small, targeted and based on multiple iterations. Faulkner
[2003] suggests that the percentage of errors found are highly dependent on the
types of users participating in the user test. The range of errors found go all the
way from 99% to only 55% depending on the test case. As Faulkner expanded
the number of test subjects to 10, the minimum percentage of problems found
were 82%, and at 15 it was 90%. This indicates that in general one should have
as many test subjects as possible to uncover even more problems, but that having
around 15 is usually enough.

7.2.2 Demographic and background information results

In table 7.1 a brief summary of the demographics of the test subjects are pre-
sented. All test subjects were students, with most of them in their final year
as they are the target users for this application. The gender balance is biased
towards male with 87.5%, and only 12.5% females. This is regrettable as the end
application targets both sexes equally. However, due to the applications nature
it will probably have more early adopters who are men. As for the age of the test
subjects, it ranged from 19 to 27, perfect for the target group.

After the demographic questions came several others detailing users’ past expe-
rience with searching for new apartments, and how many times they had lived
in a shared accommodation. Further questions regarded how many people lived

94 CHAPTER 7. EVALUATION

Table 7.1: Demographic information from the Background Information(BI) sur-
vey

Question Alternatives Responses %

Gender Male
Female

14
2

87.5
12.5

Age

18
19
20
21
22
23
24
25
26
27

0
1
1
0
4
1
6
1
0
1

0
6.25
6.25
0
25
6.25
37.5
6.25
0
6.25

Occupation Student
Young Professional

8
0

100
0

Nationality Norwegian 16 100

in those apartments and what number of housemates the user considered ideal.
These results can be found in table 7.2 and the full survey can be found in ap-
pendix.

In summary, we see that all of the test subjects have searched for a new apartment
more than once, and all subjects have lived in a shared accommodation at one
point. Roughly 50% having lived in shared accommodation multiple times. The
test users had between them lived in shared accommodations ranging in size from
just 2 to more than 8, with most of them around 3,4, and 5. 3 emerged as the
clear winner for optimal shared accommodation size with 57% favoring it.

7.2. USABILITY EVALUATION RESULTS 95

Table 7.2: Other results from the Background Information(BI) survey

Question Alternatives Responses as %

How many times have you
searched for a new place
to live, i.e switched apart-
ment?

0
1
2
3
4
5

0
0
1
5
6
4

0
0
6.25
31.25
37.5
25

How many times have you
lived in a shared accom-
modation?

0
1
2
3
4

0
4
5
3
4

0
25
31.25
18.75
25

How many people lived in
these share houses?

2
3
4
5
6
7
8
More

2
9
7
3
3
2
3
3

12.5
56.25
43.75
18.75
18.75
6.25
18.75
18.75

What size of share house
were you the most happy
with?

2
3
4
5

4
6
4
2

25
37.5
25
12.5

96 CHAPTER 7. EVALUATION

7.2.3 System Usability Scale results
Two tables regarding the SUS score has been produced. Table 7.3 shows the
distribution of the answers for the different questions while table 7.4 shows the
average score per question as well as the calculated final SUS score for the pro-
totype.

Table 7.3: SUS results

Strongly
disagree

Disagree Undecided Agree Strongly
agree

Question N % N % N % N % N %
SUS 1 1 6.25 1 6.25 7 43.75 5 31.25 2 12.5
SUS 2 4 25 9 56.25 3 18.75 0 0 0 0
SUS 3 0 0 0 0 3 18.75 9 56.25 4 25
SUS 4 14 87.5 2 12.5 0 0 0 0 0 0
SUS 5 0 0 0 0 6 37.5 8 50 2 12.5
SUS 6 6 37.5 9 56.25 1 6.25 0 0 0 0
SUS 7 0 0 0 0 2 12.5 10 62.5 4 25
SUS 8 5 32.25 6 37.5 3 18.75 2 12.5 0 0
SUS 9 0 0 0 0 4 25 7 43.75 5 31.25
SUS 10 12 75 4 25 0 0 0 0 0 0

By following the guidelines from section 3.2.2 the final SUS score for the prototype
was 78.57. On the adjective scale outlined in the same section that equates to
somewhere between Good and Excellent. Of course, there are no absolutes when
it comes to usability testing, but this rating indicates that the prototype is on
the right track when it comes to design and interactivity.

7.2. USABILITY EVALUATION RESULTS 97

Table 7.4: SUS Average scores

Question Average SUS score

SUS1: I think that I would like to
use this system frequently 3.375

SUS2: I found the system
unnecessarily complex 1.9375

SUS3: I thought the system was
easy to use 4.0625

SUS4: I think that I would need
the support of a technical person
to be able to use this system

1.125

SUS5: I found the various
functions in this system were
well integrated

3.75

SUS6: I thought there was too
much inconsistency in this system 1.6875

SUS7: I would imagine that
most people would learn to use
this system very quickly

4.125

SUS8: I found the system very
cumbersome to use 2.125

SUS9: I felt very confident
using the system 4.0625

SUS10: I need to learn a lot of
things before I could get going with this system 1.25

Final SUS score 78.125

98 CHAPTER 7. EVALUATION

7.2.4 Application Specific survey
After filling out the SUS survey, the test subjects were asked to complete one
final form, the Application Specific survey. In this questionnaire, five specific
questions about the prototype were asked, as opposed to the SUS which is more
general. Four questions had an answer range between 1 and 5, where 1 is strongly
disagree, and 5 is strongly agree, and the last question was a simple yes or no.
The questions and answers can be found in table 7.5.

Table 7.5: Application Specific survey results

Question Alternatives Responses as %

I believe I could get use of
this application in the fu-
ture.

1
2
3
4
5

1
0
5
6
4

6.25
0
31.25
37.5
25

The application provided
recommendations relevant
for me.

1
2
3
4
5

1
0
2
6
7

6.25
0
12.5
37.5
43.75

I found it helpful to use
distance to my workplace
to find relevant apart-
ments.

1
2
3
4
5

1
0
1
9
5

6.25
0
6.25
56.25
31.25

Would you like to have a
large amount of matches
to choose from?

Yes
No

10
6

62.5
37.5

From the results we see that over 60% of the respondents indicated strongly that
they could have use of such an application in the future. Further, 80% said the
recommendations of roommates were relevant for them. The other two questions
were geared more towards the future work for the application. 87% found using

7.2. USABILITY EVALUATION RESULTS 99

the commute time to their workplace very relevant to rank apartments, and 62.5%
wanted more than one match to choose from when it came to selecting groups.

7.2.5 Usability problems & Feature suggestions
Through the Usability test and Application Specific(AS) survey, several free text
answers were collected regarding usability problems and potential new features
for the prototype. The usability problems were fixed during the second period
of development, but the feature suggestions were left for future work. The most
relevant feedback is listed below.

Usability problems

• "Question text too close to the slider"

• "Full text on the user cards on the match page should be a bulleted list
instead."

Feature suggestions

• "A search function"

• "Maps showing travel from potential apartments to work"

• "View what internships people have. See mutual friends on Facebook and
LinkedIn."(Paraphrased from Norwegian)

• "Feedback from earlier roommates (rating system?)"

• "Other cities"

• "Would be nice to see a map of Oslo with the workplaces of the group
members along with apartment locations."

• "Heat map overlay for Google Maps showing the potential for flatmates in
one color and the potential available apartments in one color"

• "A video meeting function"

100 CHAPTER 7. EVALUATION

7.3 Quality of Real Estate Recommendations Re-
sults

Research question 3 How do we provide accurate group recommendation of
real estate?

The last research question pertains to how well the system managed to recom-
mend real estate to groups of users. To determine the quality of the recommenda-
tion another user test was performed, but instead of gauging the general usability
of the application this one focused solely on the quality of the recommendations
provided. One group of four, another of three, and two groups of two were asked
to perform the survey.

They were asked to create a profile and answer all property and personality
questions, and then create a new solo match. When the matching procedure
was finished, the test subjects were asked to review the ranking of the proposed
listings according to the preferences they had indicated. Then, one of the group
members would invite the rest to their match so that they could rate the new
recommendations for the group. As usual, 1 indicates very dissatisfied, and 5
indicates very satisfied. Figure 7.8 and 7.9 show the results of the test.

Figure 7.8: Solo Recommendation quality rating for listings

7.3. QUALITY OF REAL ESTATE RECOMMENDATIONS RESULTS 101

Figure 7.9: Group Recommendation quality rating for listings

The YAPS.life method of searching for housing compared to traditional
methods

The test subjects were also asked to rate how they viewed this method of search-
ing for housing compared other traditional methods they had used before, like
Finn.no. The results indicate the YAPS.life way to be preferable to traditional
methods. However, due to the low sample size of only ten people, no conclusions
can be made. The results can be viewed in figures 7.10 and 7.11.

102 CHAPTER 7. EVALUATION

Figure 7.10: The YAPS.life search method for searching alone

Figure 7.11: The YAPS.life search method for for searching as a group

7.4. DISCUSSION 103

7.4 Discussion
The results from these three evaluations indicate that the prototype for YAPS.life
provides value to users already today. The clustering algorithms manage to pro-
vide better matches than simply splitting the users into random groups, the us-
ability of the system is adequate, and the quality of the recommendations appear
to be satisfactory.

7.4.1 Quantitative analysis of clustering methods
For the quantitative tests on the clustering algorithms for test users, a few ob-
servations can be made. Overall we can see that the scores are still quite high,
both in the median and the best case. This is due to the test users in the dataset
all have their personality and property vector initialized to random values be-
tween -2 and 2. With 24 indices in total, finding users with perfect alignment is
very improbable unless millions of test users are created, which is an unrealistic
amount for this service. This random initialization is also likely to undermine
k-Means. Real users will probably not have such wildly different, and sometimes
contradictory, preferences. This should lead to more distinct clusters which will
likely improve k-Means a lot.

In the end, the Hybrid Cosine algorithm was chosen to be the main cluster-
ing algorithm for the prototype based on the results it produced. The fact that
it created more matches than the rest is not at all a bad thing. Rather, it means
that there will be a more even distribution in match sizes, ranging from 2 to 5,
which means fewer of the groups will compete for the same apartments.

7.4.2 Usability evaluation
From the results of the Background Information survey, we see that all partic-
ipants had a high degree of familiarity with the problem this prototype tries
to solve, thus making them excellent test subjects. One of the more interesting
findings from the Application Specific survey was that many users wanted several
matches to choose from. This could give users the feeling of choosing their flat-
mates more autonomously. However, it could also lead to many matches being
filled with users who had already decided to go with a different group. Tech-
nically, it could be implemented using a kNN All-to-All approach, where every
single user got their top K flatmates picked for them. This would lead to some
users being matched into many groups, and some, if they answered with many
extreme values, only be matched into a few. Another round of usability evalua-
tions would have to be conducted with the feature implemented in order to see
whether this would be the right way to go forward.

104 CHAPTER 7. EVALUATION

7.4.3 Quality of recommendation evaluation

As for the quality of the real estate recommendations, the results are quite good,
at least quantitatively. The ratings given relate to the overall ranking of the dis-
played listings according to the user’s preferences. However, these preferences do
not impact the amount of listings available from different data sources. Relying
on external data sources is inherently difficult for any service as there is little
control over the information at the data source. More accurate listing matches
can be created from properties uploaded through the YAPS.life platform because
more structured information about the property will be available.

Because YAPS.life is a knowledge-based recommendation system, the cold start
problem is avoided to a large degree. This means the system does not need to
have many users before it can provide useful recommendations. However, this
also means that the system loses out on a lot of the potential learning content-
based and collaborative filtering systems get, and will not improve over time.

The main reason for going with the knowledge-based approach at the beginning
of the project was because of the perceived difficulty of getting relevant feedback
on whether a listing was relevant or not. The most relevant listing is the one
that leads you to the property you ultimately rent or buy, but integrating the
whole real estate renting process to capture this information would be too big
for the scope of this masters project. It is however, slated for future work for the
platform. A more relaxed way of getting feedback could be to rely on the implicit
data gathered through observing which listings users interacted with. The prob-
lem with that approach is that you would need the user activity of hundreds, if
not thousands of users to achieve good results. Li et al. [2017a] after all had the
most popular real estate in Japan with thousands of daily visitors to mine data
from.

7.4.4 Threat to validity

Even though the results seem promising, it is important to keep in mind how
they can have been skewed by the circumstances around the experiments. Start-
ing with the quantitative evaluation we see that the sample size for the experiment
with real users were 38. While this is certainly better than having 0 real users, it
is still not a very large number. For the system to be able to generate truly good
matches, a higher number of participants are likely needed, unless everyone sign-
ing up are very like-minded. Speaking of like-mindedness, it is also quite possible
that the early adopters who did sign up have quite similar personalities. This
could indicate that other ways of defining one’s personality and habits should be
investigated in order to more clearly separate users. Either way, 38 users does

7.4. DISCUSSION 105

probably not represent the wide specter of personalities that exist in the potential
user base for the application.

The usability test ended up with 16 participants. According to Nielsen [1994],
this is supposedly enough to find all major and most minor flaws with the system.
However, it is hardly enough to build up any statistical significance that the user
interface is understandable and easily navigable by everyone. The test subjects
were uniformly students and the vast majority were men. To some degree this
represents the intended target group for the application quite well, but it is not
a desirable distribution of test users for an unbiased experiment. Another way
to heighten the validity of the usability test results would have been to perform
it at multiple iterations as the prototype was being developed.

The Quality of Real Estate Recommendation survey had fewer users than the
usability test, down from 16 to 10. A higher number of test participants could
potentially change the distributions of the answers from very positive to some-
thing more like a normal distribution. Having a more diverse user base here would
also have given a stronger indication that the system is actually providing good,
general real estate recommendations that are not skewed towards the young pro-
fessional target group. Another aspect of the real estate recommendation that
will have a large impact on the system in the future is the available data sources
for listings for each city. For the user tests in this master thesis the focus was
on moving to Oslo, so therefore Finn.no, which is the largest real estate broker
in Norway, was chosen to be the main data source. Integrating with other real
estate brokers around the world will have a large impact on the user’s perceptions
of the real estate recommendations.

Still, the results so far are promising and they do give an indication of the perfor-
mance and usability of the prototype. In the end, the best way to further collect
and analyze data related to the application is not from usability tests and quality
evaluations, but from usage data of the website. How users engage with recom-
mendations and how they navigate the user interface will reveal more accurate
and unbiased results than any user test could hope to emulate.

106 CHAPTER 7. EVALUATION

Chapter 8

Future work and conclusion

In this final chapter, the contributions of the thesis will be presented along with
the plans for future work. Finally, there will be a conclusion.

8.1 Contributions

Presented in this thesis is the first ever group recommendation system for real
estate. The system is a computer-based product which combines state of the art
algorithms from group recommendations and recommendation in real estate in a
new way. It is a strong foundation for future research into the area to build on
with new combinations of algorithms.

Within this contribution, lies the user interface of the prototype, the design of
the recommendation algorithm as well as the technical architecture. The system
has also been evaluated for usability and quality of recommendations in a rigor-
ous manner, which can serve as guidelines on how to evaluate similar systems in
the future. The way it ranks listings is novel compared to traditional real estate
search engines. As opposed to just using price, publication date or another tan-
gible asset of the property, the prototype instead uses a mix of the user’s, or the
users’, preferences for budget, size, standard and style. In addition, the average
commuter time to the users’ workplaces from the apartment is calculated and
mixed into the overall score.

107

108 CHAPTER 8. FUTURE WORK AND CONCLUSION

8.2 Future Work

While much has already been accomplished with this prototype, many more av-
enues of research have presented themselves during development. The hardest
problem with recommendations in real estate is the lack of feedback the system
receives on whether a house has been rented or not. However, as end to end sys-
tems such as this prototype become more commonplace, we can see tenants and
landlords sign digital leases on the platform. This gives a much stronger feed-
back than what is available on platforms today, with much of the renting process
happening off platform. With this new feedback, avenues into content-based and
collaborative filtering can be made. By looking at the demographic and socio-
economic status of people renting and buying a very strong collaborative filtering
system could be constructed.

A more short-term goal could be to implement user ratings on the recommen-
dations provided by the system to help it train. Multiple ways of implementing
such a rating system should be explored. One way would be to have the user
use a traditional star-rating scale on each individual recommendation, but newer
approaches like a swiping model, as seen the app Tinder1, could also be used to
train the system.

One unsolved problem with how the prototype determines the property vector
values of external listings is that it is rule-based and absolute. By introducing
fuzzy logic membership functions, a more continuous approach to determining
the property vectors of listings could be established.

Regarding group recommendations, a more advanced strategy than pure aver-
aging could be tried. Least misery could potentially hold some promise by elim-
inating houses that are below an acceptance threshold for some people in the
group. Another strategy could be to do recommendations based on multiple ap-
proaches and showing all of them to the user in a hybrid mixed (section 2.2.4)
approach.

Besides the lack of feedback, the second largest challenge of real estate recom-
mendation today is the amount of information about a listing that is stored in
an unstructured format, e.g. a listing text. By constructing a Natural Language
Processing(NLP) pipeline to process these texts and add them as features for the
listing could be a valuable asset for the recommendation system, as these texts
often have a high impact on the prospective renter.

1tinder.com

tinder.com

8.3. CONCLUSION 109

8.3 Conclusion
In this thesis, a prototype for a Group Recommendation System of Real Estate
has been presented. The overall goal of this research was to:

Goal Develop and evaluate a platform for group recommendation of real estate.

This goal led to three research questions being investigated and evaluated.

Research question 1 What is the best way to match users looking for shared
accommodation into groups?

To find the best way to match users, six clustering algorithms were implemented
and evaluated. From the rigorous quantitative analysis, where the match distri-
butions of the algorithms were compared side by side, the best algorithm for the
job turned out to be the Hybrid Cosine algorithm. This is a Hybrid approach that
makes an initial clustering with k-Means, and then splitting these into smaller
matches using a modified kNN algorithm.

Research question 2 How to present a group recommendation system for real
estate?

Instead of trying to determine the unequivocally best user interface for a real
estate recommendation system for groups, this thesis presents a proposed design
that is then evaluated by the System Usability Scale test. Achieving a SUS
score of 78, the prototype is still in need of further development and refinement.
However, this score in the high seventies indicates that the development of the
interface is headed in the right direction. Comments gathered from user testing
also revealed new potential features.

Research question 3 How do we provide accurate group recommendation of
real estate?

Because of the systems knowledge-based nature, a user-centric way of evaluating
the recommendations was chosen. Although the number of test participants could
have been higher, the results show a clear positive trend towards satisfaction with
the recommendations and this way of doing housing search over traditional meth-
ods.

Based on the results of these three evaluations it would seem the YAPS.life plat-
form could be a great starting point for further research in the area of group
recommendation of real estate. After all, the problem is not going away any time
soon, and further research into this area could provide immense value to people
all over the world.

110 CHAPTER 8. FUTURE WORK AND CONCLUSION

Bibliography

(2017). MovieLens datasets of movies and ratings. https://grouplens.org/
datasets/movielens/. Accessed: 2017-12-07.

(2018). Cloud functions for firebase. https://firebase.google.com/docs/
functions/. Accessed: 2018-05-27.

(2018). Create react app. https://github.com/facebook/create-react-app. Ac-
cessed: 2018-05-27.

(2018). Jest, testing framework. https://facebook.github.io/jest/. Accessed:
2018-05-27.

(2018). Typescript. https://www.typescriptlang.org/. Accessed: 2018-05-27.

Adomavicius, G. and Tuzhilin, A. (2005). Toward the next generation of rec-
ommender systems: A survey of the state-of-the-art and possible extensions.
IEEE transactions on knowledge and data engineering, 17(6):734–749.

Amatriain, X., Pujol, J. M., and Oliver, N. (2009). I like it... i like it not: Evalu-
ating user ratings noise in recommender systems. In International Conference
on User Modeling, Adaptation, and Personalization, pages 247–258. Springer.

Ardissono, L., Goy, A., Petrone, G., Segnan, M., and Torasso, P. (2003). Intrigue:
personalized recommendation of tourist attractions for desktop and hand held
devices. Applied Artificial Intelligence, 17(8-9):687–714.

Baltrunas, L., Makcinskas, T., and Ricci, F. (2010). Group recommendations
with rank aggregation and collaborative filtering. In Proceedings of the fourth
ACM conference on Recommender systems, pages 119–126. ACM.

Bangor, A., Kortum, P., and Miller, J. (2009). Determining what individual sus
scores mean: Adding an adjective rating scale. Journal of usability studies,
4(3):114–123.

111

https://grouplens.org/datasets/movielens/
https://grouplens.org/datasets/movielens/
https://firebase.google.com/docs/functions/
https://firebase.google.com/docs/functions/
https://www.typescriptlang.org/

112 BIBLIOGRAPHY

Bazire, M. and Brézillon, P. (2005). Understanding context before using it. In
International and Interdisciplinary Conference on Modeling and Using Context,
pages 29–40. Springer.

Bellman, R. (2013). Dynamic programming. Courier Corporation.

Bennett, J., Lanning, S., et al. (2007). The netflix prize. In Proceedings of KDD
cup and workshop, volume 2007, page 35. New York, NY, USA.

Beyer, K., Goldstein, J., Ramakrishnan, R., and Shaft, U. (1999). When is
“nearest neighbor” meaningful? In International conference on database theory,
pages 217–235. Springer.

Bond, M., Seiler, M., Seiler, V., and Blake, B. (2000). Uses of websites for
effective real estate marketing. Journal of Real Estate Portfolio Management,
6(2):203–211.

Boratto, L. and Carta, S. (2010). State-of-the-art in group recommendation and
new approaches for automatic identification of groups. Studies in Computa-
tional Intelligence, 324:1–20. cited By 62.

Brooke, J. et al. (1996). Sus-a quick and dirty usability scale. Usability evaluation
in industry, 189(194):4–7.

Burke, R. (2007). The adaptive web. chapter hybrid web recommender systems.

Bø, K. E. (2017). A state of the art review of group and real estate recommen-
dation.

Cantador, I., Bellogín, A., and Castells, P. (2008). A multilayer ontology-based
hybrid recommendation model. Ai Communications, 21(2-3):203–210.

Choo, C. W., Detlor, B., and Turnbull, D. (2000). Information seeking on the
web: An integrated model of browsing and searching. first monday, 5(2).

Corcho, O., Fernández-López, M., Gómez-Pérez, A., and López-Cima, A. (2005).
Building legal ontologies with methontology and webode. In Law and the
semantic web, pages 142–157. Springer.

Cosley, D., Lam, S. K., Albert, I., Konstan, J. A., and Riedl, J. (2003). Is
seeing believing?: how recommender system interfaces affect users’ opinions. In
Proceedings of the SIGCHI conference on Human factors in computing systems,
pages 585–592. ACM.

Daly, E. M., Botea, A., Kishimoto, A., and Marinescu, R. (2014a). Multi-criteria
journey aware housing recommender system. In Proceedings of the 8th ACM
Conference on Recommender systems, pages 325–328. ACM.

BIBLIOGRAPHY 113

Daly, E. M., Botea, A., Kishimoto, A., and Marinescu, R. (2014b). Multi-criteria
journey aware housing recommender system. In Proceedings of the 8th ACM
Conference on Recommender systems, pages 325–328. ACM.

De Carolis, B. and Pizzutilo, S. (2009). Providing relevant background informa-
tion in smart environments. In EC-Web, pages 360–371. Springer.

De Pessemier, T., Dooms, S., and Martens, L. (2014). Comparison of group
recommendation algorithms. Multimedia Tools and Applications, 72(3):2497–
2541.

Donoho, D. L. et al. (2000). High-dimensional data analysis: The curses and
blessings of dimensionality. AMS Math Challenges Lecture, 1:32.

Faulkner, L. (2003). Beyond the five-user assumption: Benefits of increased
sample sizes in usability testing. Behavior Research Methods, Instruments, &
Computers, 35(3):379–383.

Fowler, M. (2002). Patterns of enterprise application architecture. Addison-
Wesley Longman Publishing Co., Inc.

Grant, D. and Cherif, E. (2016). Using design science to improve web search
innovation in real estate. Journal of Organizational Computing and Electronic
Commerce, 26(3):267–284.

Gu, M. and Aamodt, A. (2006). Evaluating cbr systems using different data
sources: a case study. In European Conference on Case-Based Reasoning,
pages 121–135. Springer.

Heath, S. (2016). Young, free and single? Routledge Handbook of Youth and
Young Adulthood, page 199.

Hevner, A. and Chatterjee, S. (2010). Design research in information systems:
theory and practice, volume 22. Springer Science & Business Media.

Hill, W., Stead, L., Rosenstein, M., and Furnas, G. (1995). Recommending and
evaluating choices in a virtual community of use. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, CHI ’95, pages 194–201,
New York, NY, USA. ACM Press/Addison-Wesley Publishing Co.

Ho, H.-P., Chang, C.-T., and Ku, C.-Y. (2015a). House selection via the inter-
net by considering homebuyers’ risk attitudes with s-shaped utility functions.
European Journal of Operational Research, 241(1):188–201.

114 BIBLIOGRAPHY

Ho, H.-P., Chang, C.-T., and Ku, C.-Y. (2015b). House selection via the inter-
net by considering homebuyers’ risk attitudes with s-shaped utility functions.
European Journal of Operational Research, 241(1):188–201.

Hu, Y., Koren, Y., and Volinsky, C. (2008). Collaborative filtering for implicit
feedback datasets. In Data Mining, 2008. ICDM’08. Eighth IEEE International
Conference on, pages 263–272. Ieee.

Jain, A. K. (2010). Data clustering: 50 years beyond k-means. Pattern recognition
letters, 31(8):651–666.

Jameson, A. (2004). More than the sum of its members: challenges for group
recommender systems. In Proceedings of the working conference on Advanced
visual interfaces, pages 48–54. ACM.

Johnson, C. C. (2014). Logistic matrix factorization for implicit feedback data.
Advances in Neural Information Processing Systems, 27.

Kelly, D. and Teevan, J. (2003). Implicit feedback for inferring user preference:
a bibliography. In ACM SIGIR Forum, volume 37, pages 18–28. ACM.

Kim, K.-j. and Ahn, H. (2008). A recommender system using ga k-means cluster-
ing in an online shopping market. Expert systems with applications, 34(2):1200–
1209.

Konstan, J. A. and Riedl, J. (2012). Recommender systems: from algorithms to
user experience. User Modeling and User-Adapted Interaction, 22(1):101–123.

Li, S., Nomura, S., Kikuta, Y., and Arino, K. (2017a). Web-scale personalized
real-time recommender system on suumo. Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), 10235 LNAI:521–538. cited By 0.

Li, S., Nomura, S., Kikuta, Y., and Arino, K. (2017b). Web-scale personalized
real-time recommender system on suumo. Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), 10235 LNAI:521–538. cited By 0.

Likert, R. (1932). A technique for the measurement of attitudes. Archives of
psychology.

Linden, G., Smith, B., and York, J. (2003). Amazon.com recommendations:
item-to-item collaborative filtering. IEEE Internet Computing, 7(1):76–80.

BIBLIOGRAPHY 115

Lops, P., Gemmis, M. D., Semeraro, G., Lops, P., Gemmis, M. D., and Semeraro,
G. (2011). Chapter 3 content-based recommender systems: State of the art
and trends.

MacQueen, J. et al. (1967a). Some methods for classification and analysis of
multivariate observations. In Proceedings of the fifth Berkeley symposium on
mathematical statistics and probability, volume 1, pages 281–297. Oakland, CA,
USA.

MacQueen, J. et al. (1967b). Some methods for classification and analysis of
multivariate observations. In Proceedings of the fifth Berkeley symposium on
mathematical statistics and probability, volume 1, pages 281–297. Oakland, CA,
USA.

Masthoff, J. (2004). Group modeling: Selecting a sequence of television items
to suit a group of viewers. In Personalized digital television, pages 93–141.
Springer.

McCarthy, J. F. (2002). Pocket restaurantfinder: A situated recommender system
for groups. In Workshop on Mobile Ad-Hoc Communication at the 2002 ACM
Conference on Human Factors in Computer Systems.

McCarthy, J. F. and Anagnost, T. D. (1998). Musicfx: an arbiter of group
preferences for computer supported collaborative workouts. In Proceedings of
the 1998 ACM conference on Computer supported cooperative work, pages 363–
372. ACM.

McNee, S. M., Riedl, J., and Konstan, J. A. (2006). Being accurate is not enough:
how accuracy metrics have hurt recommender systems. In CHI’06 extended
abstracts on Human factors in computing systems, pages 1097–1101. ACM.

Nielsen, J. (1994). Usability engineering. Elsevier.

O’connor, M., Cosley, D., Konstan, J. A., and Riedl, J. (2001). Polylens: a
recommender system for groups of users. In ECSCW 2001, pages 199–218.
Springer.

Park, Y., Hwang, H., and goo Lee, S. (2016). A novel algorithm for scal-
able k-nearest neighbour graph construction. Journal of Information Science,
42(2):274–288.

Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., and Riedl, J. (1994). Grou-
plens: An open architecture for collaborative filtering of netnews. In Proceed-
ings of the 1994 ACM Conference on Computer Supported Cooperative Work,
CSCW ’94, pages 175–186, New York, NY, USA. ACM.

116 BIBLIOGRAPHY

Roberts, S. (2013). Youth studies, housing transitions and the’missing middle’:
Time for a rethink? Sociological Research Online, 18(3):11.

Rousseeuw, P. J. (1987). Silhouettes: a graphical aid to the interpretation and
validation of cluster analysis. Journal of computational and applied mathemat-
ics, 20:53–65.

Sarwar, B., Karypis, G., Konstan, J., and Riedl, J. (2001). Item-based collabora-
tive filtering recommendation algorithms. In Proceedings of the 10th Interna-
tional Conference on World Wide Web, WWW ’01, pages 285–295, New York,
NY, USA. ACM.

Shardanand, U. and Maes, P. (1995). Social information filtering: Algorithms
for automating “word of mouth”. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, CHI ’95, pages 210–217,
New York, NY, USA. ACM Press/Addison-Wesley Publishing Co.

Smaaberg, S. F. (2014). Context-aware group recommendation systems. Master’s
thesis, Institutt for datateknikk og informasjonsvitenskap.

Trewin, S. (2000). Knowledge-based recommender systems. Encyclopedia of
library and information science, 69(Supplement 32):180.

Von Alan, R. H., March, S. T., Park, J., and Ram, S. (2004). Design science in
information systems research. MIS quarterly, 28(1):75–105.

Yu, Z., Zhou, X., Hao, Y., and Gu, J. (2006). Tv program recommendation for
multiple viewers based on user profile merging. User modeling and user-adapted
interaction, 16(1):63–82.

Yuan, X., Lee, J.-H., Kim, S.-J., and Kim, Y.-H. (2013). Toward a user-
oriented recommendation system for real estate websites. Information Systems,
38(2):231–243. cited By 19.

Zheng, S., Liu, H., and Lee, R. (2006). Buyer search and the role of broker in
an emerging housing market: a case study of guangzhou. Tsinghua Science &
Technology, 11(6):675–685.

Zumpano, L. V., Johnson, K. H., and Anderson, R. I. (2003). Internet use and
real estate brokerage market intermediation. Journal of Housing Economics,
12(2):134–150.

Appendix A

Personality questions

A.1 Social habits questions

1. I tend to go out to meet friends, socialize or network most evenings

2. I like to have people over for drinks on a regular basis

3. I like having friends staying over for a few days

4. I would like my shared house to known as a place to party

5. I sometimes go out and come home in the early hours

6. Occasionally I bring people I have just met to my house

A.2 Cleanliness questions

1. There should be a rota for putting the bins out

2. I like to sort my spices and herbs clearly

3. I like the fridge clean and organized

4. There should be a rota for allocating household chores

5. I am usually the person nagging others to tidy up

117

118 APPENDIX A. PERSONALITY QUESTIONS

A.3 Social openness questions
1. I see flatmates as people I live with rather than friends

2. If I could choose, I would prefer to live alone

3. I prefer to eat in my room rather than in the communal areas

4. I spend most of my time in my room

A.4 Social flexibility questions
1. I don’t mind if my flatmates invite friends to our house, as long as they

give me notice

2. I am relaxed about the sexual choice of my flatmates

3. It is sometimes OK to break the rules

4. I am relaxed about the religious choices of my flatmates

5. I am happy to help a flatmate with a personal task, for example ironing
his/her shirt or driving him/her to the train station

Appendix B

Brute-force test with 64 Test
Users

Figure B.1: Brute-force test on 64 Test Users

119

120 APPENDIX B. BRUTE-FORCE TEST WITH 64 TEST USERS

Appendix C

Surveys

The following pages are screenshots of the questionnaires that were used in the
qualitative evaluations of the user interface and real estate recommendations.
Feedback from the Application Specific survey are also presented.

C.1 Questionnaires
They are listed in the following order:

1. Background Information(BI) survey

2. System usability Scale(SUS) survey

3. Application Specific(AS) survey

4. Quality Evaluation(QE) survey

121

Background information (BI)

Male

Female

Other:

Student

Young professional

Age

Your answer

Nationality

Your answer

Gender

Occupation

How many times have you searched for a new place to live i.e switched
apartment

Your answer

How many times have you lived in a shared accommodation

Your answer

1

2

3

4

5

6

7

8

More

Other:

1

2

3

4

5

6

7

8

More

Other:

How many people lived in these share houses?

What size of share house where you most happy with?

In how many of those did you know the people you were moving in with

Your answer

I was frustrated

1 2 3 4 5

It was easy

Yes

No

Yes

No

Probably

Never submit passwords through Google Forms.

This content is neither created nor endorsed by Google. Report Abuse - Terms of Service - Additional Terms

In general, how satis�ed were you with the apartment hunting process?

Have you heard of a service for group based recommendation of
apartments?

Would you use it?

SUBMIT

 Forms

YAPS.life SUS survey
System Usability Scale, @DIgital Equipment Corporation, 1986

* Required

Strongly
disagree

1 2 3 4 5

Strongly agree

Strongly
disagree

1 2 3 4 5

Strongly agree

Strongly
disagree

1 2 3 4 5

Strongly agree

Strongly
disagree

1 2 3 4 5

Strongly agree

I think that I would like to use this system frequently *

I found the system unnecessarily complex *

I thought the system was easy to use *

I think that I would need the support of a technical person to be
able to use this system *

Strongly
disagree

1 2 3 4 5

Strongly agree

Strongly
disagree

1 2 3 4 5

Strongly agree

Strongly
disagree

1 2 3 4 5

Strongly agree

Strongly
disagree

1 2 3 4 5

Strongly agree

Strongly
disagree

1 2 3 4 5

Strongly agree

Strongly
disagree

1 2 3 4 5

Strongly agree

I found the various functions in this system were well integrated *

I thought there was too much inconsistency in this system *

I would imagine that most people would learn to use this system
very quickly *

I found the system very cumbersome to use *

I felt very con�dent using the system *

I need to learn a lot of things before I could get going with this
system *

Application Speci�c Survey (AS)
Application Speci�c Survey (AS)

* Required

Strongly
disagree

1 2 3 4 5

Strongly agree

Strongly
disagree

1 2 3 4 5

Strongly agree

Strongly
disagree

1 2 3 4 5

Strongly agree

Yes

No

Other:

I believe I could get use of this application in the future *

The application provided recommendations relevant for me *

I found it helpful to use distance to my workplace to �nd relevant
apartments *

Would you like to have a large amount of matches to choose from?

What additional functionality would you like to see in this application?

Your answer

Never submit passwords through Google Forms.

This content is neither created nor endorsed by Google. Report Abuse - Terms of Service - Additional Terms

How do you think the features in this application could be improved to
better help �nd apartments that are relevant for your group of users?

Your answer

Do you have any other suggestions, comments or feedback?

Your answer

SUBMIT

 Forms

Quality Evaluation
The quality evaluation for yaps.life

Solo Recommendation

1. Go to yaps.life
2. Register/log in
3. Fill out your pro�le
4. Create a Solo match

Very
dissatis�ed

1 2 3 4 5

Very satis�ed

Much worse

1 2 3 4 5

Much better

Group Recommendation

- Invite one or two other users to your match
- The listings will update to re�ect your new group

Very
dissatis�ed

1 2 3 4 5

Very satis�ed

Rate the ordering of the recommended listings

Rate this way of searching for real estate compared to ways you
have tried before

Rate the ordering of the recommended listings again

Much worse

1 2 3 4 5

Much better

Never submit passwords through Google Forms.

This content is neither created nor endorsed by Google. Report Abuse - Terms of Service - Additional Terms

Rate this way of searching for real estate as a group compared to
ways you have tried before

Comments

Your answer

SUBMIT

 Forms

C.2. FEEDBACK 127

C.2 Feedback

Table C.1: Application Specific survey, feedback for question 5

What additional functionality would you like to see in this application?

A search function
Maps showing travel from potential apartments to work
Se hvilke sommerjobber de har fått. Connect’e med facebook for å se felles
venner, hvor de har gått, hvor de er fra, etc.
Feedback from earlier roommates (rating system?)
Other cities
Would be nice to see a map of Oslo with the workplaces of the group members
along with apartment locations.
Heatmap overlay for google maps showing the potential for flatmates in one
color and the potential available apartments in one color

Table C.2: Application Specific survey, feedback for question 6

How do you think the features in this application could be improved to better
help find apartments that are relevant for your group of users?

A video meeting function
Maybe add other things than work that are important for apartment location,
such as sports facilities, shops
Connect med facebook.
So many possibilities. I would love to see a well made matching algorithm for
personalities and maybe an ai that could recognize things in the pictures of the
apartment
Live collaboration on filtering and exploring appartment alternatives, an inter-
face using google maps could be cool.

128 APPENDIX C. SURVEYS

Table C.3: Application Specific survey, feedback for question 7

Do you have any other suggestions, comments or feedback?

Very cool idea!
Finjusteringen her og der som skrevet om tidligere, men ellers veldig bra Kris-
tian <3 <3
Great site, and i really see the use for people looking for an appartment in Oslo
during the summer! Great way to rent out the appartment as well!
Awsome idea. Could be really usefull for many applications
Google maps dude, google it!

Appendix D

Code

The code for the user generation is included here for convenience. All other code is
can be found and reviewed at https://github.com/kristianeboe/yaps.life.

D.1 User generation

Listing D.1 Create test users

1 export function createTestUsers(n) {
2 const users = []

4 for (let index = 0; index < n; index += 1) {
5 const personalityVector = []
6 for (let j = 0; j < 20; j += 1) {
7 personalityVector.push(getRandomInt(5))
8 }
9 const university =

10 UNIVERSITIES[Math.floor(Math.random() * UNIVERSITIES.length
)]

11 const fieldOfStudy =
12 STUDY_PROGRAMMES[university][
13 Math.floor(Math.random() * Math.floor(STUDY_PROGRAMMES[

university].length))
14]
15 const workplaceKey = Math.floor(Math.random() * Math.floor(

Object.keys(WORKPLACES).length))
16 const workplace = Object.keys(WORKPLACES)[workplaceKey]
17 const workplaceLatLng = WORKPLACES[workplace]

129

https://github.com/kristianeboe/yaps.life

130 APPENDIX D. CODE

19 const budget = BUDGETS[Math.floor(Math.random() *
BUDGETS.length)]

20 const propertySize = PROPERTY_SIZES[Math.floor(Math.random()
* PROPERTY_SIZES.length)]

21 const standard = STANDARD[Math.floor(Math.random() *
STANDARD.length)]

22 const style = STYLE[Math.floor(Math.random() * STYLE.length)]
23 const propertyVector = [budget, propertySize, standard, style

]

26 const rentFrom = new Date(2018, 5, getRandomInt(14))
27 const user = {
28 uid: uuid.v4(),
29 displayName: testUser${index} ,
30 matchLocation: Oslo ,
31 seeNewUsers: false,
32 workplace,
33 propertyVector,
34 workplaceLatLng,
35 photoURL: https :// placem.at/people?w=290&h=290& random=${

getRandomInt (100)} ,
36 university,
37 age: Math.floor(Math.random() * 10) + 20,
38 rentFrom,
39 tos: true,
40 readyToMatch: true,
41 gender: GENDERS[Math.floor(Math.random() * GENDERS.length)]

,
42 fieldOfStudy,
43 personalityVector
44 }
45 users.push(user)
46 }
47 return users
48 }

	Introduction
	Background and Motivation
	Previous Work
	Goals and Research Questions
	Contributions
	Thesis Structure

	Background Theory
	YAPS.life
	The scenarios
	History of the service

	Recommender Systems
	Content-based filtering
	Collaborative filtering
	Knowledge-based systems
	Hybrid systems
	The role of Context
	Preference gathering with Feedback
	Evaluating recommendation systems

	Challenges in Recommendation Systems
	The cold start problem
	Sparse data
	Serendipity and Novelty
	Bias from popularity

	Group Recommendation
	Group formation
	Group model strategies
	Candidate set
	Group persona
	Aggregation of individual preferences
	Aggregation strategies

	Clustering
	Similarity metrics
	Curse of dimensionality
	K-Means
	k Nearest Neighbours

	Real Estate Recommendation Systems
	Traditional web-based housing search
	Multi-Criteria Journey Aware Housing Recommender System
	Toward a User-oriented Recommendation System for Real Estate Websites
	 House Selection via the Internet by Considering Homebuyers’ Risk Attitudes with S-shaped Utility Functions
	Web-Scale Personalized Real-Time Recommender System on Suumo
	Summary

	Research Methodology
	Design Science Research
	Evaluation Tools
	Group Cohesion Measure
	System Usability Scale
	Real Estate Recommendation Quality Survey

	Evaluation Setup & Plan
	Quantitative analysis of clustering methods
	Usability evaluation
	Quality of recommendation evaluation

	Prototype
	App Header
	Landing Page
	User Creation
	Profile Page
	About me
	Defining your habits in a shared accommodation

	Match List
	Match View
	Flatmates
	Real estate recommendation
	Chat room

	Design of Recommendation Algorithm
	Requirements
	Definitions & Overview
	Profile Generation
	Context Filtering
	Group Formation
	Initial clustering with k-Means
	Final match groups determined by k Nearest Neighbours

	Feature Reduction and Similarity Calculation
	Creating a Match
	Real Estate Recommendation
	Get best origin for match
	Get combined travel time and determine the best origin
	Construct query strings & get properties
	Evaluating a listing
	Matching groups with properties in the system
	Adding properties manually
	Adding properties uploaded by landlords

	Architecture
	Development Environment
	Architecture
	Front-end
	React.js
	Create React App

	Back-end
	Cloud FireStore
	Typescript
	Firebase cloud functions

	Dataset
	Recommendation Algorithm Implementation
	Context filtering on match location for users
	Clustering and match creation
	Matching users with external listings
	Match with internal listings
	Handling new users, matches, and listings

	Evaluation
	Matching Evaluation Results
	Brute-force search
	Match distribution

	Usability Evaluation Results
	Number of test subjects
	Demographic and background information results
	System Usability Scale results
	Application Specific survey
	Usability problems & Feature suggestions

	Quality of Real Estate Recommendations Results
	Discussion
	Quantitative analysis of clustering methods
	Usability evaluation
	Quality of recommendation evaluation
	Threat to validity

	Future work and conclusion
	Contributions
	Future Work
	Conclusion

	Bibliography
	Personality questions
	Social habits questions
	Cleanliness questions
	Social openness questions
	Social flexibility questions

	Brute-force test with 64 Test Users
	Surveys
	Questionnaires
	Feedback

	Code
	User generation

