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Background and objective 

The dispersion of microbubbles in turbulent flow has relevance in a number of engineering and 

environmental applications ranging from bubble columns, gas–liquid reactors, fluidized beds 

to the transfer mechanisms which couple ocean and atmosphere. In all these applications, the 

presence of microbubbles, which reportedly are non-uniformly distributed, may significantly 

change transfer rates. The overall liquid–bubble interface controls gas–liquid transfer, but 

complex bubble motions also have an influence on overall heat, momentum and mass transfer, 

playing a crucial role in many industrial and environmental processes. 

 

In this work the dynamic of microbubbles in a vertical turbulent channel flow will be studied 

numerically by means of Direct Numerical Simulations (DNS’s). The microbubbles tracked 

using point-force lagrangian interpolation scheme with inclusion of the following forces: 

buoyancy, drag, lift and flow acceleration force. 

 

The following tasks are to be considered: 

 

1- Literature review on the simulation of particle dispersion flow, with focus on 

a) Forces acting on a single microbubble, Maxey & Riley 1983 

b) The effect of Reynolds number and the contamination level in the liquid phase 

on drag force modification of a single microbubble.   

c) Review of available experiments, models, and simulations. 

2- Discus the major numerical approaches to simulate bubble flows. 

3- Simulate dispersion microbubble flow under different response times using Euler-Lagrange 

approach.  

4- The findings of the simulations are to be analysed and recommendations given for further 

advancement in the field. 
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Abstract 
 

Examining the interaction between microbubbles and turbulence in vertical channel flow is 

done in this thesis. An Eulerian–Lagrangian approach based on pseudo-spectral direct 

numerical simulation is used. Babbles, due to their small size, are treated as solid spheres 

subject to gravity, added mass, pressure gradient, Basset, drag and lift forces, and they are 

momentum coupled with the fluid. A downward channel flow configuration of water at shear 

Reynolds number 𝑅𝑒𝜏 = 360 and three different bubble diameters are considered and tested 

(𝑑 = 110𝜇𝑚, 220𝜇𝑚 𝑎𝑛𝑑 330𝜇𝑚) where the bubbles are considered to be non-deformable 

since they are of small Eotvos 𝐸𝑜 number and with no-slip condition applies at bubble surface. 

As some previous studies, this examination confirms different bubbles distribution in the 

downflow configuration such as preventing bubbles from reaching the near-wall region. 

Because of the local momentum exchange with the carrier fluid as well as to the bubble 

distribution differences, significant decrease of both liquid flow rate and wall shear are 

observed. We discuss and analyze all the observed trends in this simulation. 

The Direct Numerical Simulation (DNS) is the mean used to study such a case. The results are 

compared with Kim et al. (1987) [30], which is considered as a reference to the turbulent 

simulation. Statistics related to velocity profile, particles profile and turbulence profile are 

simulated and discussed closely. This will make us try to understand the physics behind the 

behavior of the effect of microbubbles in a turbulent flow. 
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Nomenclature 

 

𝜌 Density (𝐾𝑔 𝑚3⁄ ) 

𝑖 subscript: axis direction, velocity component 

+ superscript: wall scaled variable 

𝛼 scaling parameter 

t time (s) 

𝑢⃗  velocity vector (m/s) 

𝑢 velocity in x-direction (m/s) 

v velocity in y-direction (m/s) 

𝑤 velocity in z-direction (m/s) 

∅̃ instantaneous variable 

 upper case, time averaged variable 

∅ lower case, fluctuating variable 

𝑝 pressure (𝑁 𝑚2⁄ ) 

𝜇 molecular viscosity (𝐾𝑔 (𝑚. 𝑠)⁄ ) 

𝜇𝑡 “molecular" turbulent/eddy viscosity (𝐾𝑔 (𝑚. 𝑠)⁄ ) 

𝑣 kinematic viscosity (𝑚2 𝑠⁄ ) 

𝑣𝑡 turbulent/eddy viscosity (𝑚2 𝑠⁄ ) 

𝑓  body force vector (𝑁𝑚3 𝐾𝑔⁄ ) 

𝑘 turbulence kinetic energy (𝑚2 𝑠2⁄ ) 

𝜖 dissipation rate (𝑚2 𝑠3⁄ ) 

𝐿 characteristic length (m) 

 Kolmogorov length scale (m) 

𝛿𝑖𝑗 Kronecker delta function 

𝜏𝑖𝑗
𝑡  Reynolds stress tensor (𝑚2 𝑠2⁄ ) 

𝐸𝑜 Eotvos number 

𝑅𝑒 Reynolds number 

M Morton number 

g Gravity force (𝑚 𝑠2⁄ ) 

d Diameter (m) 

𝜎 interfacial tension 
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Chapter 1 
 

The dispersion of microbubbles in turbulent flow has relevance in a number of engineering and 

environmental applications ranging from bubble columns, gas–liquid reactors, fluidized beds 

to the transfer mechanisms which couple ocean and atmosphere. In all these applications, the 

presence of microbubbles, which reportedly are non-uniformly distributed, may significantly 

change transfer rates. The overall liquid–bubble interface controls gas–liquid transfer, but 

complex bubble motions also have an influence on overall heat, momentum and mass transfer, 

playing a crucial role in many industrial and environmental processes. 

 

This thesis presents the study of the dispersion of microbubbles in a turbulent downflow channel 

with different bubbles’ diameter (d=110µm, 220µm and 330µm).   

1.1 Introduction 
The simultaneous flow of more than one phase is known as the Multiphase flow. This kind of 

flow occurs in many industrial processes such as: Riser reactors, bubble column reactors, 

fluidized bed reactors, scrubbers, dryers, oil and gas transport, etc.  

Initially, simple assumptions were taken into account by Lockhart and Martinelli [1] to create 

simple modeling of the multiphase mixtures.  

1. The fluids/materials are flowing in well homogeneous mixes. 

2. The fluids/materials are flowing separately. 

They claimed that there is a relationship between the pressure loss of one phase and the combine 

phase’s pressure loss as a function of pressure loss of the other phase. Nowadays, a map 

suggested by Taitle and Duckler that is based on five non-dimensional groups is considered 

useful. This map is not universal and it can be only applied to certain liquid-gas conditions. 

Classification of such flow can be categorized according to the state of the different phases or 

components as shown in Figure 1. 1:  

 Gas-solid flows (like powder particles in air as ash plume) 

 Liquid-solids flows (like polymers in oil) 

 Gas-liquid flows (like bubbles in water) 

 Solid-solid flows (like sand and grain) 

 Liquid-liquid flows (like oil and water) 
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Figure 1. 1 

Fields of multiphase flows. 

1.2 Classifications of Flow Regimes 
 

The liquid-liquid and the gas-liquid flows will be given special attention here due to the wide 

use of such categories. There are mainly two possibilities for the two different materials to flow. 

They can flow in the same direction or in the opposite one, and these two ways are usually 

referred to as co-current and counter-current respectively. The co-current is more common 

while the counter-current flow has a limited length window of possibility in the vertical flow. 

There is a main difference between the liquid-liquid flow and the gas-liquid one, which is that 

gas density is much lighter than the liquid density. For example, there is a variation in the gas 

flow density while the liquid flow density is considered to be constant. This is why the gas-

liquid flow would have several flow regimes in one situation while the liquid-liquid flow would 

have mainly one flow regime. 

Regarding the co-current flow, the two liquids can flow either vertically or horizontally and this 

is defined by the axis the mixture flows with.  

 

1.2.1 Flow regimes in horizontal pipes. 
 

 The fact that multi-phase flow can take many different forms makes it difficult and challenging 

to deal with. These forms are being illustrated in Figure 1. 2 below where 6 different forms can 

be shown. 
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Figure 1. 2 

Gas-liquid flow regimes in horizontal pipes. 

i) Dispersed Bubble Flow: When both the liquid superficial velocity and the gas 

superficial velocity are of high values as shown in Figure 1. 3, the regime of the flow 

would be called dispersed bubble flow. 

ii) Annular Flow: When the superficial liquid velocity is intermediate while the gas 

velocity is high. This indicates that the continuous phase is mainly on the wall and the 

other phase is positioned in the center of the pipe. It can be defined as “ring-like”. 

iii) Elongated Bubble Flow: When both the superficial liquid and gas velocities are in an 

average range, the elongated bubble flow can be formed. This happens when liquid flow 

rate is high enough to break up the gas into bubbles but not high enough to cause them 

to be dispersed. 

iv) Slug Flow: This is characterized by the presence of liquid rich slugs that span the pipe 

diameter. Slugs cause high pressure and liquid flow rate fluctuations. 

v) Stratified Flow: When both the liquid and gas (or other liquid) flows are laminar and 

separated by a clear interface.  

vi) Stratified Wavy Flow: This flow is mainly as the Stratified but with increasing the 

superficial gas velocity which makes the balance between the two phases unequal and 

causes the disturbance of the interface causing waves. 

 

 

i)   Dispersed bubble flow   ii)   Annular flow with  

droplets   

iii)  Elongated bubble flow      iv) Slug   Flow   

v)   Stratified   Flow     vi)Stratified wavy flow   
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Figure 1. 3 

Flow regime map for a horizontal pipe.[2] 

1.2.2 Flow Regimes in Vertical Pipes. 
 

The vertical flow gets its definition depending on the flow direction compared to Gravity, Either 

downflow that means that the flow is moving in the same direction as the gravity or upflow 

where the flow moves against gravity as shown in Figure 1. 4. The difference between these 

two kinds of vertical flows is mainly the buoyancy force, which is acting in two different 

directions. The gas, which is lighter than the liquid, has a buoyancy that acts as an extra force 

making the flow moves faster in the case of Upflow. In the case of downflow, this buoyancy 

acts on the opposite direction making the flow slower.  

Intermittent: Elongated bubble, slug, and churn flow   

Stratified - Smooth flow   

          

          

Dispersed - Bubble or bubble flow   

Stratified - 
Wavy   Flow 

Annular   Flow 

S
u

p
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u
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Superficial gas velocity 
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Figure 1. 4 

Illustration of the Upflow and Downflow. 

The vertical flow regimes are mainly similar to those in horizontal pipes but without the 

possibility of having stratified flow, since there will not be a lower side of the pipe nor an upper 

one that the density of the fluid would prefer. Determining what kind of regime flow is crucial 

for the dynamics of the simulation that is needed. Figure 1. 5 shows the vertical regimes where 

the Upflow is the case. 

 

Figure 1. 5 

Vertical flow of Upflow regimes of gas and liquid. 
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The vertical flow starts as bubbly where the lighter liquid flow rate increases. As this flow rate 

increases, the number of bubbles increases as well until the bubbles start to collide where they 

create a large bubble in the flow known as slug flow or plug flow. As the lighter liquid flow 

rate continues to increase, the slug size will increase as more bubbles collide to create a super 

slug also known as elongated bubble flow as shown in the figure above, Figure 1. 5. The more 

turbulent the flow is and as several super slug or churn flow appears, the less stable the flow 

becomes as it is the case with the annular flow. Further increase of super slug will end by 

transforming the outer liquid layer into bubbles in the inner liquid. 

 

1.3 Dispersed multiphase flow 
 

In this study, the dispersed flow case will be the main case since the study of micro-bubbles in 

a turbulent flow is to be determined.  

Bubbly flows are important in a wide variety of areas such as environmental phenomena, 

biomedical field, chemical processes to industrial applications. The presence of micro-bubbles 

that are non-uniformly distributed in all these applications may change the transfer rate 

significantly. Because of the their influence, bubbly flows have been analyzed and many studies 

are available, but the complete understanding of the dynamics of the bubbly flows remains to 

be a challenging task because of the various factors affecting the bubbles and the surrounding 

fluid. 

In addition to bubbly flow, particles suspended in gas or liquid flow and the dispersion of 

droplets in a stream of gas are examples of dispersed multiphase flows. These kinds of flows 

are characterized by a dispersed phase distributed within a carrier phase in the form of droplets, 

particles, or bubbles.  

 

It is very well known that turbulence and multiphase flow are the two most challenging topics 

in fluid mechanics especially when they are combined. The nature of the carrier phase 

turbulence is complicated by the random distribution of the dispersed phase. The numerical 

simulations of turbulent multiphase flows is much more difficult than those of the single-phase 

ones due to the presence of the dispersed phase. The insight provided by the computational 

investigations using Eulerial-Eulerian and Eulerian-Lagrangian techniques were very valuable.  

An important aspect of the two-phase flow research is the turbulent modulation that has a 

contribution by several mechanisms such as: 

a. Enhanced dissipation due to the presence of particles 

b. Transfer of kinetic energy from the particle to the fluid 

c. Formation of wakes and vortex shedding behind the particles. 

The relative importance of these mechanisms depends on parameters such as the particle-to- 

turbulence length-scale ratio, particle Reynolds number, and particle-to-fluid density ratio. 

Fortunately, the study of bubbly flow has been given a good deal of academic attention in the 

last three decades. It is of great importance to understand the turbulence modulation of bubbles 

since it directly controls the heat transfer and the mixing efficiency of bubbly flows and the 

drag reduction rate by bubbles. 

Researchers have already obtained important conclusions by performing studies on turbulent 

modulation by bubbles. In 1990, Akimi Serizawa and Isao Kataoka summarized three kinds of 

turbulence suppression mechanisms [3]. Kato et al. reached that the influence of bubble to the 

liquid turbulence is the same as the solid particle influencing the gas turbulence, where large 

bubbles increase the liquid phase turbulence and small bubbles reduce the liquid turbulence [4]. 

http://www.sciencedirect.com/science/article/pii/0029549390901932
http://www.sciencedirect.com/science/article/pii/0029549390901932
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Molin et al. [5] and So et al. [6] presented that the bubble size is responsible to the lift force 

magnitude and direction. Kawamura and Kodama [7] presented that the velocity fluctuations 

can be influenced by the bubble in two ways where one is called “pseudo-turbulence” and the 

other is “liquid-phase turbulence modulated by bubbles”. Mazzitelli et al. [8] pointed out that 

microbubbles accumulating in Downflows locally transfer momentum upwards which is the 

reason why the increase in microbubbles reduces the vertical velocity fluctuation intensity and 

the turbulent kinetic energy as well. Ferrante and Elghobashi [9] argued that microbubbles in a 

spatially developing turbulent boundary layer push the developing streamwise vortices away 

from the wall, leading to less dissipation in the boundary layer. Tryggvason and Lu [10] pointed 

out that the bubble deformation is of an important influence on the liquid turbulence. 

 

With all these researches on the turbulence modulation by bubbles, still the turbulence 

modulation mechanism is not clear yet. This leads to the reason why and how this study was 

made. 
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Chapter 2 

 

2.1 Particulate turbulent flow 
 

It is very important to explain the physics behind the particles so it is possible to simulate 

numerically in order to reach the goal aimed for. However, the physics of bubbles observed in 

bubbly flows is very complex in addition to the surface deformation and breakup, coalescence 

and collisions with other bubbles and bubble growth and collapse. First, it is important to 

mention that bubbles flowing in a liquid are not spherical by default, the shape of the drops or 

bubbles vary due to buoyancy for different physical parameters. Clift et al. [11] classified freely 

moving bubbles and drops under the influence of gravity as: 

 

1) Spherical: The drops and bubbles are considered to be spherical if interfacial and 

viscous forces are dominating over inertial forces. 

2) Ellipsoidal: The drops and bubbles are considered ellipsoidal if they are oblate with a 

convex surface. 

3) Spherical cap or ellipsoidal cap: The larger drops or bubbles that tend to be flat, dimpled 

or skirted at the rear end fall under the category of spherical or ellipsoidal cap. 

As illustrated by Clift et al, the different shapes of bubbles and drops can be characterized by 

three dimensionless numbers: Eotvos number, Morton number and Reynolds number and are 

defined as: 

 

  

𝐸𝑜 = 𝑔∆𝜌𝑑𝑒
2 𝜎⁄    (1) 

 

𝑀 = 𝑔𝜇𝑐
4∆𝜌 𝜌𝑐

2𝜎3⁄    (2) 

 

𝑅𝑒 = 𝜌𝑐𝑑𝑒𝑈 𝜇𝑐⁄    (3) 

 

Where 𝑔 is acceleration due gravity, ∆𝜌 is the density difference between the continuous phase 

and the dispersed phase, 𝜌𝑐 is density of the continuous phase, 𝜇𝑐 is viscosity of the continuous 

phase, 𝜎 is interfacial tension between the two phases and 𝑑𝑒 is diameter of the volume-

equivalent sphere. 

 

These dimensionless numbers have an effect of the shape of bubbles moving through the liquid 

because of the gravity, and this effect is very well represented in Figure 2. 1 where the Reynolds 

number is plotted against the Eotvos number for different values of Morton number.  
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Figure 2. 1 

A plot of Reynolds number against Eotvos number for different Morton number is represented 

along with corresponding shapes of the droplet. Clift et al. 

As illustrated above, the bubbles are spherical only if the Eotvos number is of a high value 

while the Reynolds number is of a low one, or if the Reynolds number is of a high value while 

the Eotvos number value is low or both Reynolds and Eotvos values are low. Otherwise, the 

bubbles will have other shapes like ellipsoidal-Cab or wobbling.  

Basset [12], Boussinesq [13] and Oseen [14] did the examination of the motion of a rigid sphere 

settling out under gravity in a fluid at rest earlier in the last century. The motion of the sphere 

would produce a disturbed flow, which is assumed to be at low Reynolds number that the fluid 

force on the sphere could be calculated from the results of unsteady Stokes flow. Later, Tchen 

[15] further examined this work and extended it to a sphere settling under gravity in an unsteady 

uniform flow at first then in an unsteady non-uniform flow, with a view to application to 

turbulent flow. Never the less, several errors were detected in Tchen’s work and were pointed 

out by Corrsin and Lumley [16], and they emphasized the role of the pressure gradient of the 

basic flow to the net fluid force on the particle.  

The equation presented by Corrsin and Lumley was still not consistent in that the effects of 

pressure gradient of the undisturbed flow have been singled out over the effects of viscous shear 

stress when both effects may well be comparable. This was noted by Buevich [17], who changed 

the mass of fluid displaced by the sphere term 𝑚𝐹. The same did Riley [18], but instead of using 

the time derivative following the moving sphere, Riley used the time derivative following the 

fluid element. 

Later, M. R. Maxey [19] gave a rational derivation for the equation of motion of a small sphere 

with relative motion of low Reynolds number. His final form of the equation of particle motion 
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after inversion of the transforms presented that it is most likely to neglect the Basset term in the 

equation. This conclusion is considered to be of great importance due to the numerical 

complexity of this term. 

In general, the forces acting on a particle in a continuous flow (Lagrangian Point Particle 

Method of Two Phase Flow) are presented as: 

𝑚𝑝
𝑑𝑣⃗ 

𝑑𝑡
= ∑𝐹 = 𝐹 𝐵 + 𝐹 𝐷 + 𝐹 𝐿 + 𝐹 𝐹 + 𝐹 𝐴𝑀 + 𝐹 𝐷𝑒 + 𝐹 𝐵𝐴  

 

(4) 

Where: 

 𝐹 𝐵 is the Buoyancy Force. 

 𝐹 𝐷 is the Drag Force. 

 𝐹 𝐹 is the Pressure Gradient Force. 

 𝐹 𝐿 is the Lift Force. 

 𝐹 𝐴𝑀 is the Added Mass Force. 

 𝐹 𝐵𝐴 is the time history Besset Force. 

 𝐹 𝐷𝑒 is the particle Deformation Force. 

 

𝐹 𝐵 = (𝑚𝑝 −𝑚𝑓)𝑔   
 

(5) 

𝐹 𝐷 =
1

2
𝜌𝑓𝐴𝑝𝐶𝐷│𝑢⃗ − 𝑣 │(𝑢⃗ − 𝑣 )  (6) 

𝐹 𝐹 = 𝑚𝑓
𝐷𝑢⃗⃗ 

𝐷𝑡
  (7) 

𝐹 𝐿 = 𝑚𝑓𝐶𝐿(𝑢⃗ − 𝑣 ) × 𝑤⃗⃗   (8) 

𝐹 𝐴𝑀 =
𝑑

𝑑𝑡
(𝜌𝑓𝐶𝜇𝑉𝑝(𝑢⃗ − 𝑣 )) = 𝑚𝑓𝐶𝜇 (

𝐷𝑢⃗⃗ 

𝐷𝑡
−
𝑑𝑢⃗⃗ 

𝑑𝑡
) +

3𝑚𝑓𝐶𝜇

𝑅𝑝
(𝑢⃗ − 𝑣 )

𝑑𝑅𝑝

𝑑𝑡
  

(9) 

𝐹 𝐵𝐴 = 6𝜋𝜇𝑅𝑝
2 ∫

1

[𝜋𝑣(𝑡−𝜏)]
1
2

𝑡

0

𝑑

𝑑𝜏
(𝑢⃗ − 𝑣 )𝑑𝜏  (10) 

𝐹 𝐷𝑒 = 4𝜋𝜌𝑓𝑅𝑝
2𝐶𝜇(𝑢⃗ − 𝑣 )

𝑑𝑅𝑝

𝑑𝑡
  (11) 

 

𝑚𝑝 is the particle mass, 𝑚𝑓 is the mass of fluid displaced by the sphere and the density of the 

carrier-phase is 𝜌𝑓. 𝑔  is the Gravity, 𝑢⃗  is the carrier-phase velocity, 𝑣  is the particle velocity 

and 𝐴𝑝 is the area of a particle with  radius 𝑅𝑝. 𝐶𝐷 is the coefficient of the bubble drag, 𝐶𝐿and 

𝐶𝜇 are the lift coefficient and the added mass coefficient  respectively. 𝜇 𝑎𝑛𝑑 𝑣 are the dynamic 

viscosity and the kinematic viscosity respectively. 
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For more clarity, the definition of each term is: 

 

 𝐴𝑝 = 𝜋𝑅𝑝
2,    𝑉𝑝 =

3

4
𝜋𝑅𝑝

3 

 𝑚𝑝 = 𝜌𝑝𝑉𝑝, 𝑚𝑓 = 𝜌𝑓𝑉𝑝 

 𝑤⃗⃗ = ∇ × 𝑢⃗  

 
𝐷

𝐷𝑡
=

𝜕

𝜕𝑡
+ 𝑢⃗ . ∇=

𝜕

𝜕𝑡
+ 𝑢𝑗

𝜕

𝜕𝑥𝑗
     The material derivative 

 
𝑑

𝑑𝑡
=

𝜕

𝜕𝑡
+ 𝑣 . ∇=

𝜕

𝜕𝑡
+ 𝑣𝑗

𝜕

𝜕𝑥𝑗
      The Lagrangian derivative 

So dividing (4) by the mass of the particle, the acceleration equation including the Basset term 

becomes: 

𝑑𝑣 

𝑑𝑡
= (1 −

𝜌𝑓

𝜌𝑝
)𝑔 +

1

𝜏𝑝
(𝑢⃗ − 𝑣 )𝐶𝑠 +

𝑉𝑓

𝑉𝑝
𝐶𝐿(𝑢⃗ − 𝑣 ) × 𝑤⃗⃗ +

𝜌𝑓

𝜌𝑝

𝐷𝑢⃗ 

𝐷𝑡
+
𝜌𝑓

𝜌𝑝
𝐶𝜇 (

𝐷𝑢⃗ 

𝐷𝑡
−
𝑑𝑣 

𝑑𝑡
)

+
𝜌𝑓

𝜌𝑝

3𝐶𝜇

𝑅𝑝
(𝑢⃗ − 𝑣 )

𝑑𝑅𝑝

𝑑𝑡

+
9𝜇

2𝜌𝑝𝑅𝑝
∫

1

[𝜋𝑣(𝑡 − 𝜏)]1 2⁄

𝑑

𝑑𝜏
(𝑢⃗ − 𝑣 )𝑑𝜏                     (12)

𝑡

0

 

 

To modify the Stokesian drag force for larger bubble Reynolds number (𝑅𝑒𝑝), the non-linear 

correction coefficient was included as Schiller and Naumann presented [20]. 

 

𝑅𝑒𝑝 =
2𝑅𝑝|𝑢⃗ − 𝑣 |

𝑣
 

  (13) 

The focus in this work is the bubbles that are considered to behave as small rigid spheres, this 

hypothesis is valid if the bubble diameter is small enough to satisfy the condition where 𝐸𝑜 <
0.2 as suggested by Michaelides [21] related to Figure 2. 1. The bubble internal circulation 

effects are neglected due to the low ratio of bubble density to fluid density. These assumptions 

justify the coefficients in Eq. (12). In the drag force term, 𝜏𝑝 is the characteristic time of the 

bubble, defined as:  

 

𝜏𝑝 = (4𝑅𝑝
2𝜌𝑝) 18𝑣𝜌𝑓⁄   (14) 

 

In the lift term, the lift coefficient 𝐶𝐿 is a function of bubble Reynolds number and the 

dimensionless parameter 𝑆𝑟𝑝 defined as: 

 

𝑆𝑟𝑝 =
|(𝑢⃗ − 𝑣 ) × 𝑤⃗⃗ |2𝑅𝑝

|𝑢⃗ − 𝑣 |2
 

(15) 

𝐶𝐿 is calculated according to Legendre and Magnaudet [22] where it is expressed as:  

𝐶𝐿 = [(
6𝐽

𝜋2(𝑅𝑒𝑝𝑆𝑟𝑝)
1
2⁄
)

2

+ (
1

2

𝑅𝑒𝑝 + 16

𝑅𝑒𝑝 + 29
)

2

]

1
2⁄

 

 

 

(16) 
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Where 

  

𝐽 =
2.225

(1 + 0.2 ∈−2)
3
2⁄
 

(17) 

  

∈= (
𝑆𝑟𝑝

𝑅𝑒𝑝
)

1
2⁄

 

 

(18) 

 

 

 

By using the Schiller and Naumann [23] drag model, the drag coefficient is defined as: 

 

 

𝐶𝐷 = {
(
24

𝑅𝑒𝑝
) (1 + 0.15𝑅𝑒𝑝

0.687)

0.44
  

𝑅𝑒𝑝 < 1000 

 

𝑅𝑒𝑝 > 1000 

 

(19) 

   

𝐶𝑠 = (1 + 0.15𝑅𝑒𝑝
0.687)   (20) 

By neglecting the Basset Force term and simplifying Eq. (12) by introducing some assumptions 

as: 

𝐷 =
𝜌𝑝

𝜌𝑓
 

(21) 

𝛽 =
(1 + 𝐶𝜇)𝜌𝑓

𝜌𝑝 + 𝜌𝑓𝐶𝜇
=
(1 + 𝐶𝜇)

𝐷 + 𝐶𝜇
 

(22) 

 

Then the acceleration equation becomes: 
𝑑𝑣⃗ 

𝑑𝑡
= (1 − 𝛽)𝑔 + (1 −

𝛽𝐶𝜇

1+𝐶𝜇
)
𝐶𝑠

𝜏𝑝
(𝑢⃗ − 𝑣 ) +

   
𝛽

(1+𝐶𝜇)
𝐶𝐿(𝑢⃗ − 𝑣 ) × 𝑤⃗⃗ + 𝛽

𝐷𝑢⃗⃗ 

𝐷𝑡
+

𝛽𝐶𝜇

(1+𝐶𝜇)

3

𝑅𝑝

𝑑𝑅𝑝

𝑑𝑡
  

 

(23) 

 

With some more assumptions as: 

1

𝜏𝑠
=

(1 −
𝛽𝐶𝜇

(1 + 𝐶𝜇)
)

𝜏𝑝
=

9𝑣𝛽

2(1 + 𝐶𝜇)𝑅𝑝2
 

𝜏𝑠 =
2(1 + 𝐶𝜇)𝑅𝑝

2

9𝑣𝛽
=
𝜏𝑝(1 + 𝐶𝜇)

𝛽𝐷
 

𝜏𝑝 =
2𝐷𝑅𝑝

2

9𝑣
,   
𝐶𝑠
𝜏𝑝
=
3𝑣𝐶𝐷𝑅𝑒𝑝

16𝐷𝑅𝑝2
 

 

 

 

(24) 

 

By using the Rayleigh-Plesset equation [24], where 𝑆 is the surface tension of the bubble: 

 

𝜌𝑓 [𝑅𝑝
𝑑2𝑅𝑝

𝑑𝑡2
+
3

2
(
𝑑𝑅𝑝

𝑑𝑡
)

2

] = 𝑃𝐵 − 𝑃∞ +
2𝑆

𝑅𝑝
+
4𝜇

𝑅𝑝

𝑑𝑅𝑝

𝑑𝑡
 

(25) 

 

http://en.wikipedia.org/wiki/Surface_tension
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The acceleration equation gets to be as such: 

 

𝑑𝑣 

𝑑𝑡
= (1 − 𝛽)𝑔 +

𝐶𝑠
𝜏𝑠
(𝑢⃗ − 𝑣 ) +   

𝛽

(1 + 𝐶𝜇)
𝐶𝐿(𝑢⃗ − 𝑣 )

× 𝑤⃗⃗ + 𝛽
𝐷𝑢⃗ 

𝐷𝑡
+

𝛽𝐶𝜇

(1 + 𝐶𝜇)

3

𝑅𝑝

𝑑𝑅𝑝

𝑑𝑡
 

 

 

(26) 

 

Finally, by having a constant value for the added mass coefficient (Batchelor [25]): 

 

𝐶𝜇 =
1

2
              Then: 

𝛽 =
3

1 + 2𝐷
,   
1

𝜏𝑠
=
3𝑣𝛽

𝑅𝑝2
=
3 − 𝛽

3𝜏𝑝
 

 

(27) 

The acceleration equation gets its final shape as: 

𝑑𝑣 

𝑑𝑡
= (1 − 𝛽)𝑔 +

𝐶𝑠
𝜏𝑠
(𝑢⃗ − 𝑣 ) +

2

3
𝛽𝐶𝐿(𝑢⃗ − 𝑣 ) × 𝑤⃗⃗ 

+ 𝛽
𝐷𝑢⃗ 

𝐷𝑡
+
𝛽

𝑅𝑝

𝑑𝑅𝑝

𝑑𝑡
 

 

 

(28) 

Eq. 28 is a general form of the acceleration equation for particles regardless of what type these 

particles are. By dividing these types of particles into three categories which are; Solid Particles, 

Microbubbles, and Buoyant Particles. Then Eq. 28 gets to be as such: 

 

 For Solid Particles: (𝐷 ≫ 1) ∶  𝛽 = 0 

 

𝑑𝑣 

𝑑𝑡
= 𝑔 +

𝐶𝑠
𝜏𝑠
(𝑢⃗ − 𝑣 ) 

(29) 

 

 For Microbubbles: (𝐷 ≪ 1)  ∶   𝛽 = 3 

 

𝑑𝑣 

𝑑𝑡
= −2𝑔 +

𝐶𝑠
𝜏𝑠
(𝑢⃗ − 𝑣 ) + 2𝐶𝐿(𝑢⃗ − 𝑣 ) × 𝑤⃗⃗ + 3

𝐷𝑢⃗ 

𝐷𝑡
+
3

𝑅𝑝

𝑑𝑅𝑝

𝑑𝑡
 

 

(30) 

 

 For Buoyant Particles: (𝐷 = 1)  ∶  𝛽 = 1 

 

𝑑𝑣 

𝑑𝑡
=
𝐶𝑠
𝜏𝑠
(𝑢⃗ − 𝑣 ) +

2

3
𝐶𝐿(𝑢⃗ − 𝑣 ) × 𝑤⃗⃗ +

𝐷𝑢⃗ 

𝐷𝑡
+
1

𝑅𝑝

𝑑𝑅𝑝

𝑑𝑡
 

(31) 

As mentioned before, the case for microbubbles is the focus in this thesis, so Eq. 30 will be 

adopted. 
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2.2 Turbulent Flow 
 

Most of fluid flows found in nature and in engineering problems are turbulent. It is extremely 

difficult to predict the turbulent flow, yet the equations describing the turbulent motions have 

been known for over a century but still too complex to solve analytically. For many years, only 

physical experiments were applied on these flows but with the possibility of computational 

resources that increased recently, it became possible to solve the equations of fluid flow 

numerically. It became very popular to use computational fluid dynamics (CFD) in industries 

during the last few decades, mainly through the simplifying approach of turbulence modelling. 

Even though the CFD is of great importance due to the advantages provided compared with the 

experiments, still CFD is not a substitute but rather an additional solving tool. CFD results are 

at best as good as the underlying physics embedded in the code written, and at worst as good 

as its operator. In order to be validated they need to be compared with experimental data from 

a similar setup. A skilled operator who can make the correct modelling choices and evaluate 

the results is therefore essential. 

 

The conservation laws are divided into conservation of mass, conservation of linear momentum 

(Newton’s Second Law of motion) and conservation of energy (First Law of Thermodynamics), 

where these conservation laws are applied to an infinitesimally small control volume that is 

small enough to encapsulate a fluid element, but not so small that intermolecular actions are of 

importance. This is explained by having a small Knudsen number(𝐾𝑛 =


𝐿
), which is the ratio 

of the molecular mean free path () and a representative physical length scale (L). Out of these 

conservation laws and the control volume, the continuity equation, momentum equation and 

the energy equation are derived. These equations are presented as the following: 

 

 
𝜕𝜌

𝜕𝑡
+
𝜕𝜌𝑢𝑖
𝜕𝑥𝑖

= 0 
(32) 

𝜕𝜌𝑢𝑖
𝜕𝑡

+
𝜕𝜌𝑢𝑖𝑢𝑗

𝜕𝑥𝑗
= −

𝜕𝑝

𝜕𝑥𝑖
+
𝜕𝜏𝑖𝑗

𝜕𝑥𝑗
+ 𝜌𝑓𝑖 

(33) 

𝜕𝜌𝑒

𝜕𝑡
+
𝜕𝜌𝑒𝑢𝑖
𝜕𝑥𝑖

= 𝑘
𝜕2𝑇

𝜕𝑥𝑖
2 −

𝜕𝑝𝑢𝑖
𝜕𝑥𝑖

+
𝜕𝜏𝑖𝑗𝑢𝑖

𝜕𝑥𝑖
+ 𝜌𝑓𝑖𝑢𝑖 + 𝜌𝑞̇ 

(34) 

 

These equations are the general equations of fluid dynamics, but we will be dealing with 

incompressible Newtonian fluid that means zero volumetric deformation and the viscous 

stresses are proportional to the rate of deformation.  
𝜕𝑢𝑖
𝜕𝑥𝑖

= 0 
(35) 

𝜏𝑗𝑖 = 𝜏𝑖𝑗 = 𝜇 (
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖
) 

(36) 

So the final equation is: 

 

𝜌 (
𝜕𝑢𝑖
𝜕𝑡
+ 𝑢𝑗

𝜕𝑢𝑖
𝜕𝑥𝑗
) = −

𝜕𝑝

𝜕𝑥𝑖
+ 2𝜇

𝜕

𝜕𝑥𝑗
𝑠𝑖𝑗 

(37) 

𝑠𝑖𝑗 =
1

2
(
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖
) 

(38) 

𝑠𝑖𝑗 is the strain rate tensor, 𝜏𝑗𝑖 is the Reynolds stress tensor. 
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2.2.1 Fluctuating turbulent kinetic energy 
 

An equation is needed to represent the turbulent kinetic energy when investigating the 

dissipation of the turbulent energy. Reynolds decomposition is used to get this equation where 

the instantaneous flow is presented as a time averaged variable and a fluctuating variable. 

∅̃ =  + ∅  (39) 

Where  is defined by: 

 ≡
1

𝑇
∫ ∅̃𝑑𝑡
𝑡0+𝑇

𝑡0

 
(40) 

We decompose Eq. (37) by applying (39),  then we get: 

𝜌 (
𝜕

𝜕𝑡
(𝑈𝑖 + 𝑢𝑖) + (𝑈𝑗 + 𝑢𝑗)

𝜕

𝜕𝑥𝑗
(𝑈𝑖 + 𝑢𝑖))

= −
𝜕

𝜕𝑥𝑖
(𝑃 + 𝑝) + 2𝜇

𝜕

𝜕𝑥𝑗
(𝑆𝑖𝑗 + 𝑠𝑖𝑗) 

 

(41) 

 

 By expanding, we get: 

𝜕𝑈𝑖
𝜕𝑡

+
𝜕𝑢𝑖
𝜕𝑡
+ 𝑈𝑗

𝜕𝑈𝑖
𝜕𝑥𝑗

+ 𝑈𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗

+ 𝑢𝑗
𝜕𝑈𝑖
𝜕𝑥𝑗

+ 𝑢𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗

= −
1

𝜌

𝜕

𝜕𝑥𝑖
(𝑃 + 𝑝) + 2𝑣

𝜕

𝜕𝑥𝑗
(𝑆𝑖𝑗 + 𝑠𝑖𝑗) 

 

 

               (42) 

Multiplying the whole equation by 𝑢𝑖 and time average will result in a Reynolds Averaged 

equation: 

𝑢𝑖
𝜕𝑈𝑖
𝜕𝑡

̅̅ ̅̅ ̅̅ ̅̅
+ 𝑢𝑖

𝜕𝑢𝑖
𝜕𝑡

̅̅ ̅̅ ̅̅ ̅̅
+ 𝑢𝑖𝑈𝑗

𝜕𝑈𝑖
𝜕𝑥𝑗

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
+ 𝑢𝑖𝑈𝑗

𝜕𝑢𝑖
𝜕𝑥𝑗

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
+ 𝑢𝑖𝑢𝑗

𝜕𝑈𝑖
𝜕𝑥𝑗

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
+ 𝑢𝑖𝑢𝑗

𝜕𝑢𝑖
𝜕𝑥𝑗

̅̅ ̅̅ ̅̅ ̅̅ ̅̅

= −
𝑢𝑖
𝜌

𝜕

𝜕𝑥𝑗
(𝑃 + 𝑝)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
+ 2𝑣𝑢𝑖

𝜕

𝜕𝑥𝑗
(𝑆𝑖𝑗 + 𝑠𝑖𝑗)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 

 

 

               (43) 

Where 𝑈̅ = 𝑈, 𝑢̅ = 0, 𝑈𝑢̅̅ ̅̅ = 𝑈̅𝑢̅ = 0 𝑎𝑛𝑑 𝑢𝑢̅̅̅̅ ≠ 0. By using these terms in Eq. (43), we get the 

following terms. 

𝑢𝑖
𝜕𝑈𝑖
𝜕𝑡

̅̅ ̅̅ ̅̅ ̅̅
= 𝑢𝑖̅

𝜕𝑈𝑖̅
𝜕𝑡

= 0.
𝜕𝑈𝑖
𝜕𝑡

= 0 
(44.1) 

𝑢𝑖
𝜕𝑢𝑖
𝜕𝑡

̅̅ ̅̅ ̅̅ ̅̅
=
𝜕
1
2𝑢𝑖𝑢𝑖

̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝜕𝑡
=
𝜕𝑘

𝜕𝑡
, 𝑤ℎ𝑒𝑟𝑒 𝑘 =

1

2
𝑢𝑖𝑢𝑖̅̅ ̅̅ ̅ 

(44.2) 

𝑢𝑖𝑈𝑗
𝜕𝑈𝑖
𝜕𝑥𝑗

= 0
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

 
(44.3) 

𝑢𝑖𝑈𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
= 𝑈𝑗

𝜕𝑘

𝜕𝑥𝑗
 

(44.4) 
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𝑢𝑖𝑢𝑗
𝜕𝑈𝑖
𝜕𝑥𝑗

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
= 𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅

1

2
(
𝜕𝑈𝑖
𝜕𝑥𝑗

+
𝜕𝑈𝑗

𝜕𝑥𝑖
) = 𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅𝑆𝑖𝑗 

(44.5) 

𝑢𝑖𝑢𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
=
𝜕

𝜕𝑥𝑗
(
1

2
𝑢𝑖𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅̅ ̅̅ ) 

(44.6) 

−
𝑢𝑖
𝜌

𝜕

𝜕𝑥𝑖
(𝑃 + 𝑝)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
= −

𝜕

𝜕𝑥𝑖
(𝑢𝑖𝑝̅̅ ̅̅ ) 

(44.7) 

2𝑣𝑢𝑖
𝜕

𝜕𝑥𝑗
(𝑆𝑖𝑗 + 𝑠𝑖𝑗)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
= 2𝑣

𝜕

𝜕𝑥𝑗
(𝑢𝑖𝑠𝑖𝑗̅̅ ̅̅ ̅̅ ) − 2𝑣𝑠𝑖𝑗𝑠𝑖𝑗̅̅ ̅̅ ̅̅  

(44.8) 

 

By using (44) into Eq. (43), we get the kinetic energy equation for turbulence fluctuations: 

𝜕𝑘

𝜕𝑡
+ 𝑈𝑗

𝜕𝑘

𝜕𝑡
= −

𝜕

𝜕𝑥𝑗
[
1

𝜌
𝑢𝑗𝑝̅̅ ̅̅ +

1

2
𝑢𝑖𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅̅ ̅̅ − 2𝑣𝑢𝑖𝑠𝑖𝑗̅̅ ̅̅ ̅̅ ] − 𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅𝑆𝑖𝑗

− 2𝑣𝑠𝑖𝑗𝑠𝑖𝑗̅̅ ̅̅ ̅̅  

 

             (45) 

This form of equation is not convenient for studying the viscous term, so we introduce some 

changes into Eq. (44.8) as such: 

2𝑣𝑢𝑖
𝜕

𝜕𝑥𝑗
(𝑆𝑖𝑗 + 𝑠𝑖𝑗)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
= 2𝑣𝑢𝑖

𝜕

𝜕𝑥𝑗
𝑠𝑖𝑗

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
= 𝑣𝑢𝑖

𝜕2𝑢𝑖
𝜕𝑥𝑗2

̅̅ ̅̅ ̅̅ ̅̅ ̅
 

             (46) 

𝜕𝑘

𝜕𝑡
+ 𝑈𝑗

𝜕𝑘

𝜕𝑡
= −

𝜕

𝜕𝑥𝑗
[
1

𝜌
𝑢𝑗𝑝̅̅ ̅̅ +

1

2
𝑢𝑖𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅̅ ̅̅ ] − 𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅𝑆𝑖𝑗 + 𝑣𝑢𝑖

𝜕2𝑢𝑖
𝜕𝑥𝑗

2

̅̅ ̅̅ ̅̅ ̅̅ ̅
 

             (47) 

 

Eq. (47) is a transport equation, which means that the viscous term consists of two different 

effects, a sink/source effect and a transport one (Corrsin [25]). It behaves as a sink as it describes 

the rate of dissipation of turbulent energy to heat as well as it describes the rate of transport of 

turbulent energy by viscous forces, hence:  

𝑣𝑢𝑖
𝜕2𝑢𝑖
𝜕𝑥𝑗2

̅̅ ̅̅ ̅̅ ̅̅ ̅
= 𝑇 − ∅ 

(48) 

∅ is the fluctuations of the decomposed and time averaged general dissipation function: 

𝜖 =  + ∅ = 𝑣
𝜕𝑈𝑖
𝜕𝑥𝑗

(
𝜕𝑈𝑖
𝜕𝑥𝑗

+
𝜕𝑈𝑗

𝜕𝑥𝑖
)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
+ 𝑣

𝜕𝑢𝑖
𝜕𝑥𝑗

(
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖
)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
 

            (49) 

So by introducing ∅ to Eq. (48), we get: 

𝑣𝑢𝑖
𝜕2𝑢𝑖
𝜕𝑥𝑗2

̅̅ ̅̅ ̅̅ ̅̅ ̅
= 𝑇 − 𝑣

𝜕𝑢𝑖
𝜕𝑥𝑗

(
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖
)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
 

(50) 

By arranging the left hand side, we get: 

𝑣
𝜕2
1
2𝑢𝑖

2̅̅ ̅

𝜕𝑥𝑗
2 = 𝑣

𝜕

𝜕𝑥𝑗
(𝑢𝑖

𝜕𝑢𝑖
𝜕𝑥𝑗
)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
= 𝑣

𝜕𝑢𝑖
𝜕𝑥𝑗

𝜕𝑢𝑖
𝜕𝑥𝑗

̅̅ ̅̅ ̅̅ ̅̅ ̅
+ 𝑣𝑢𝑖

𝜕2𝑢𝑖
𝜕𝑥𝑗2

̅̅ ̅̅ ̅̅ ̅̅ ̅
 

(51) 
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𝑣𝑢𝑖
𝜕2𝑢𝑖
𝜕𝑥𝑗2

̅̅ ̅̅ ̅̅ ̅̅ ̅
= 𝑣 

𝜕2
1
2𝑢𝑖

2̅̅ ̅

𝜕𝑥𝑗
2     

⏟      
−    𝑣 

𝜕𝑢𝑖
𝜕𝑥𝑗

𝜕𝑢𝑖
𝜕𝑥𝑗

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
    

⏟      
 

               Incomplete transport     Homogeneous dissipation 

 

(52) 

 

The viscous term ends up with two different equations, (Eq. (50 & 52)). T can be solved: 

𝑣
𝜕2
1
2𝑢𝑖

2̅̅ ̅

𝜕𝑥𝑗
2 − 𝑣

𝜕𝑢𝑖
𝜕𝑥𝑗

𝜕𝑢𝑖
𝜕𝑥𝑗

̅̅ ̅̅ ̅̅ ̅̅ ̅
= 𝑇 − 𝑣

𝜕𝑢𝑖
𝜕𝑥𝑗

(
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖
)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
 

(53) 

𝑇 = 𝑣
𝜕2
1
2𝑢𝑖

2̅̅ ̅

𝜕𝑥𝑗
2 + 𝑣

𝜕2𝑢𝑖𝑢𝑗

𝜕𝑥𝑖𝜕𝑥𝑗

̅̅ ̅̅ ̅̅ ̅̅ ̅
 

(54) 

We finally get this viscous term: 

𝑣𝑢𝑖
𝜕2𝑢𝑖
𝜕𝑥𝑗2

̅̅ ̅̅ ̅̅ ̅̅ ̅
= 𝑣 (

𝜕2𝑘

𝜕𝑥𝑗
2 +

𝜕2𝑢𝑖𝑢𝑗

𝜕𝑥𝑗𝜕𝑥𝑗

̅̅ ̅̅ ̅̅ ̅̅ ̅
)

⏟          
− 𝑣

𝜕𝑢𝑖
𝜕𝑥𝑗

(
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖
)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

⏟          
 

                                     Full transport                    correct transport 

(55) 

 

Eq. (55) describes the correct physical behavior of the viscous term in the equation for 

fluctuating turbulent kinetic energy while Eq. (52) is not correct when discussing 

inhomogeneous dissipation. Homogeneous turbulence means that the spatial derivatives of all 

mean turbulence quantities are zero. This can be presented by reducing Eq. (45) to: 

 
𝜕𝑘

𝜕𝑡
= −𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅𝑆𝑖𝑗 + 𝑣𝑠𝑖𝑗𝑠𝑖𝑗̅̅ ̅̅ ̅̅  

(56) 

 

 

In addition, Eq. (57) is reduced to: 

 

𝜕𝑘

𝜕𝑡
= −𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅𝑆𝑖𝑗 + 𝑣𝑢𝑖

𝜕2𝑢𝑖
𝜕𝑥𝑗2

̅̅ ̅̅ ̅̅ ̅̅ ̅
  

(57) 

The last term in Eq. (57) is reduced due to homogeneous turbulence and becomes as: 

 

𝑣𝑢𝑖
𝜕2𝑢𝑖
𝜕𝑥𝑗2

̅̅ ̅̅ ̅̅ ̅̅ ̅
= −𝑣

𝜕𝑢𝑖
𝜕𝑥𝑗

𝜕𝑢𝑖
𝜕𝑥𝑗

̅̅ ̅̅ ̅̅ ̅̅ ̅
 

(58) 

By simplification, we get: 

 

𝜖 = 2  𝑣𝑠𝑖𝑗𝑠𝑖𝑗̅̅ ̅̅ ̅̅ = 𝑣
𝜕𝑢𝑖
𝜕𝑥𝑗

(
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖
)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
= 𝑣

𝜕𝑢𝑖
𝜕𝑥𝑗

𝜕𝑢𝑖
𝜕𝑥𝑗

̅̅ ̅̅ ̅̅ ̅̅ ̅
 

(59) 

 

The utilization of this simplification is mainly used in the turbulence models where its transport 

equation is less complicated than for the full term. 
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2.2.2 Reynolds stresses  
 

Reynolds stresses’ derivation is similar to the derivation of Eq. (45), where the exact transport 

equations for the transport of the Reynolds stresses, 𝜌𝜏𝑖𝑗, may be written as follows [31]: 

 

 
𝜕

𝜕𝑡
(𝜌𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅) +

𝜕

𝜕𝑥𝑘
(𝜌𝑈̅𝑘𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅)

⏟        
 = 

                    𝐶𝑖𝑗 ≡ 𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛   

−
𝜕

𝜕𝑥𝑘
[𝜌𝑢𝑖𝑢𝑗𝑢𝑘̅̅ ̅̅ ̅̅ ̅̅ ̅ + 𝑝(𝛿𝑘𝑗𝑢𝑖 + 𝛿𝑖𝑘𝑢𝑗)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅]
⏟                      

 

            𝐷𝑖𝑗 ≡ 𝑇𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑡 𝐷𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 

+
𝜕

𝜕𝑥𝑘
[𝜇

𝜕

𝜕𝑥𝑘
(𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅)]

⏟            
      −𝜌 (𝑢𝑖𝑢𝑘̅̅ ̅̅ ̅̅

𝜕𝑈̅𝑖
𝜕𝑥𝑘

+ 𝑢𝑗𝑢𝑘̅̅ ̅̅ ̅̅
𝜕𝑈̅𝑗

𝜕𝑥𝑘
)

⏟                
 

𝐷𝐿,𝑖𝑗 ≡ 𝑀𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟 𝐷𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛      𝑃𝑖𝑗 ≡ 𝑆𝑡𝑟𝑒𝑠𝑠 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 

+𝑝(
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖
)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

⏟        
− 2𝜇

𝜕𝑢𝑖
𝜕𝑥𝑘

𝜕𝑢𝑗

𝜕𝑥𝑘

̅̅ ̅̅ ̅̅ ̅̅ ̅̅

⏟      
+ 𝜌 (𝑢𝑖𝑓𝑗 + 𝑢𝑗𝑓𝑖⏟      ) + 𝜌 (𝑢𝑖𝑔𝑗 + 𝑢𝑗𝑔𝑖⏟      ) 

∅𝑖𝑗 ≡ 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑆𝑡𝑟𝑎𝑖𝑛  𝜖𝑖𝑗 ≡ 𝐷𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑖𝑜𝑛     𝐹𝑖𝑗 ≡force-coupling       𝐺𝑖𝑗 ≡ torque-coupling 

 

 

 

 

 

  

(60) 

 

 Where 𝜏𝑖𝑗 = 𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅ is the symetric Reynolds stress tensor. Dividing this tensor by two, we get 

the equation for the fluctuation kinetic energy, which is: 𝑘 =
1

2
𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅𝛿𝑖𝑗 where 𝛿𝑖𝑗 is the 

Kronecker delta. Applying this to the dissipation term, we get: 

 

2𝜇
𝜕𝑢𝑖
𝜕𝑥𝑘

𝜕𝑢𝑗

𝜕𝑥𝑘

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
𝛿𝑖𝑗 = 2𝜇

𝜕𝑢𝑖
𝜕𝑥𝑘

𝜕𝑢𝑖
𝜕𝑥𝑘

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 

(61) 

 

 

The trace of the dissipation term in the Reynolds stress tensor is twice the homogeneous 

dissipation, and hence: 

 

𝜖 = 0.5(𝜖11 + 𝜖22 + 𝜖33) (62) 

 

2.3 Transfer of Kinetic Energy 
 

The distribution of the turbulent kinetic energy is divided into production, diffusion and 

dissipation, i.e. energy absorbed, redistributed and energy lost through heat due to viscous 

forces. The kinetic energy is produced in the mean flow and transferred from the fluctuating 

flow and is lost by a heat increase through the energy cascade. The interaction of motion of 

different scales, known as eddies, describe this energy transfer. When a fluid flows past an 

obstacle, the swirling and the reserve current created is known as an eddy. This term collects 

identifiable turbulent patterns such as velocity and pressure. We can observe the kinetic energy 

transfer by identifying terms in the equations of mean and fluctuating kinetic energy. 
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𝜕𝑘

𝜕𝑡
+ 𝑈𝑗

𝜕𝑘

𝜕𝑥𝑗
= −

𝜕

𝜕𝑥𝑗
[
1

𝜌
𝑢𝑗𝑝̅̅ ̅̅ +

1

2
𝑢𝑖𝑢𝑗𝑢𝑘̅̅ ̅̅ ̅̅ ̅̅ ̅ − 2𝑣𝑢𝑖𝑠𝑖𝑗̅̅ ̅̅ ̅̅ ] −

𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅𝑆𝑖𝑗⏟  − 2𝑣𝑠𝑖𝑗𝑠𝑖𝑗̅̅ ̅̅ ̅̅   

  Source 

 

(63) 

𝜕𝐾

𝜕𝑡
+ 𝑈𝑗

𝜕𝐾

𝜕𝑥𝑗
= −

𝜕

𝜕𝑥𝑗
[
1

𝜌
𝑈𝑗𝑝̅̅ ̅̅̅ +

1

2
𝑈𝑖𝑢𝑗𝑢𝑘̅̅ ̅̅ ̅̅ ̅̅ ̅ − 2𝑣𝑈𝑖𝑠𝑖𝑗̅̅ ̅̅ ̅̅ ] +

𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅𝑆𝑖𝑗⏟  − 2𝑣𝑆𝑖𝑗𝑆𝑖𝑗̅̅ ̅̅ ̅̅ ̅  

   Sink 

 

 

(64) 

 

This term, 𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅𝑆𝑖𝑗 is repeated in both equations but with different signs. This is because this 

term is usually negative, so the energy is transferred from the mean flow to the fluctuations. 

 

2.3.1 Turbulence Scales and the Energy Cascade 
 

In 1941 [26], Kolmogorov introduced a turbulent scale, this scale is explained by having energy 

from larger energy containing turbulent structures that feeds smaller turbulent structures. 

Kolmogorov suggested that the unstable large eddies continues to break until the forces of 

viscosity stabilizes the eddies and energy leave the flow through molecular viscosity causing 

an entropy increase. This was done with the assumption of homogeneous, isotropic turbulence 

and high Reynolds number. 

 

The scales of length, time and velocity are presented by 𝑙, 𝑡 & 𝑢 respectively where 𝑡 = 𝑙 𝑢⁄ . 

Kolmogorov micro-scales are the smallest scales in turbulent flow. At the Kolmogorov scale, 

viscosity dominates and the turbulent kinetic energy is dissipated into heat. They are defined 

by: 

 

 = (
𝑣3

𝜖
)
1 4⁄

Kolmogorov Length Scale 
(65) 

𝜏 = (
𝑣

𝜖
)
1 2⁄

        Kolmogorov Time Scale 
(66) 

𝜐 = (𝑣𝜖)1 4⁄  Kolmogorov Velocity Scale (67) 

 

By introducing these variables into the Reynolds number, we get: 

  

𝑅𝑒 =
1

𝑣
(𝑣𝜖)1 4⁄ (

𝑣3

𝜖
)

1 4⁄

=
1

𝑣
(
𝑣𝜖𝑣3

𝜖
)

1 4⁄

= 1 
(68) 

 

This shows that the viscous effects are always important at these scales. 

 

 

  

http://en.wikipedia.org/wiki/Scale_(ratio)
http://en.wikipedia.org/wiki/Turbulence
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Chapter 3 

 

Direct Numerical Simulation 

 
There are three Computational Fluid Dynamics (CFD) methods available to solve the turbulent 

flow numerically. Reynolds-Average Navier-Stokes (RANS) simulation is the most 

conventional numerical technique where the turbulent Reynolds stress has to be modelled. This 

method is widely used in solving industry problems with its fast and economic characteristics 

but it has a non-guaranteed accuracy regarding to the results. The Large Eddy Simulation (LES) 

can directly compute the large scales of turbulent flow while the small scales are modelled with 

subgrid models. The LES can achieve a higher accuracy than the RANS. The last method is 

solving the Navier-Stokes equations from the first principles without any kind of modelling, 

this is called Direct Numerical Simulation (DNS). DNS resolves all relevant scales from the 

smallest dissipative Kolmogorove scale to the integral one, these results in having great details 

regarding the physics of turbulence. High resolution computational mesh and time step are 

needed to capture the smallest eddy DNS, this leads to huge consumption of memory and CPU 

hours. 

 

3.1 Flow Domain and Equations 
 

 

Figure 3. 1 

The flow domain 

 

Figure 3. 1 illustrates the domain solved by means of Direct Numerical Simulation in this thesis, 

where 𝐿𝑥 = 2𝜋, 𝐿𝑦 = 𝜋 𝑎𝑛𝑑 𝐿𝑧 = 𝐻 = 1 represent the streamwise, spanwise and wall normal 

direction respectively. Solving the Navier-Stokes equations happens in their non-dimensional 

form indicating that the variables are scaled by their characteristic counter part. The star 

indicates a non-dimensional variable: 

𝑥∗ = 𝑥 𝐻⁄ ,    𝑢∗⃗⃗⃗⃗ = 𝑢⃗ 𝑢𝜏⁄ ,    𝑡∗ = 𝑡𝑢𝜏 𝐿⁄ ,    𝑝∗ = 𝑝 (𝜌𝑢𝜏
2)⁄  (69) 

 

By inserting these into Eq. (33): 
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𝜕𝜌𝑢𝑖
∗𝑢𝜏

𝜕𝑡∗𝐻 𝑢𝜏⁄
+
𝜕𝜌𝑢𝑖

∗𝑢𝜏𝑢𝑗
∗𝑢𝜏

𝜕𝑥𝑗
∗𝐻

= −
𝜕𝑝∗𝜌𝑢𝜏

2

𝜕𝑥𝑖
∗𝐻

+ 𝜇
𝜕2𝑢𝑖

∗𝑢𝜏
𝜕𝑥𝑗

∗𝐻𝜕𝑥𝑗
∗𝐻
+ 𝑓  

(70) 

 

Where 𝑓 = −
1

∆
∑ 𝐹 
𝑛𝑝
𝑖=1

 is the force per unit volume from the particles and 𝑓 ∗ = 𝑓 𝐿 𝜌𝑈2⁄  

 

The point-force from an individual particle on the fluid is equal to −𝐹  based on Newton’s third 

law as illustrated in Figure 3. 2 

 

Figure 3. 2 

Point particle-forces 𝐹  transferred into volume force 𝑓   

Multiplying Eq. (70) by 𝐻 𝑢𝜏⁄ , we get: 

 

𝜕𝑢𝑖
∗

𝜕𝑡∗
+
𝜕𝑢𝑖

∗𝑢𝑗
∗

𝜕𝑥𝑗
∗ = −

𝜕𝑝∗

𝜕𝑥𝑖
∗ +

𝐻

𝜌𝑢𝜏2
𝜇𝑢𝜏
𝐻2

𝜕2𝑢𝑖
∗

𝜕𝑥𝑗
∗𝜕𝑥𝑗

∗ +
𝐻

𝑢𝜏
𝑓  

(71) 

 

Having 
𝐻

𝜌𝑢𝜏
2

𝜇𝑢𝜏

𝐻2
=

1

𝑅𝑒𝜏
, then Eq. (71) would look like this [29]: 

 

𝜕𝑢𝑖
∗

𝜕𝑡∗
+
𝜕𝑢𝑖

∗𝑢𝑗
∗

𝜕𝑥𝑗
∗ = −

𝜕𝑝∗

𝜕𝑥𝑖
∗ +

1

𝑅𝑒𝜏

𝜕2𝑢𝑖
∗

𝜕𝑥𝑗
∗𝜕𝑥𝑗

∗ + 𝑓
 ∗ 

(72) 

 

 

Figure 3. 3 

Discretization domain in z-direction. 

𝑢𝜏 = √𝜏𝑤 𝜌⁄  is called the friction velocity where it relates the wall shear stress to a velocity. 

Eq. (72) presents the non-dimensional form of Navier-Stokes solved in the DNS code where 

𝑅𝑒𝜏 = 360, the constant pressure gradient −𝑑𝑝∗ 𝑑𝑥∗ = 2⁄ , no-slip condition at the wall and 

periodic boundary conditions at the remaining directions. 

3.2 Discretization 
In this thesis, pseudospectral method is applied because of the homogeneous turbulent flow in 

the stream-wise and span-wise directions. The Navier-Stokes equations are solved using Fourier 
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transforms in the homogeneous directions; while a second order staggered finite difference 

method is applied in wall normal direction. 

We discretize the domain by a uniform grid in stream-wise and span-wise directions by having 

the cell sizes as such: 

∆𝑥 = 2𝜋 𝑁𝑥⁄ 𝑎𝑛𝑑 ∆𝑦 = 𝜋 𝑁𝑦⁄ , where 𝑁𝑥 and 𝑁𝑦  are the number of grid points. As shown in 

Figure 3. 3, the cell size is stretched by a harmonic continuous function yielding finer grid 

resolution near the walls in the wall normal direction.  

𝑧 (𝑘⃗ , 𝑠) =
1

2

𝑎𝑟𝑐𝑡𝑎𝑛(𝑠(𝑘⃗ −
1

2
))

𝑎𝑟𝑐𝑡𝑎𝑛(𝑠
1

2
)
+
1

2
  

 

(73) 

Where s is a stretching factor and 𝑘⃗⃗⃗  = [0,1,2, … . . , 𝑁𝑧]/𝑁𝑧, meaning that the cell size in the wall 

normal direction is given by: 

∆𝑧𝑖 = 𝑧(𝑘𝑖) − 𝑧(𝑘𝑖 − 1) for  𝑖 = 1,2,3, … . , 𝑁𝑧 
 

(74) 

Stream-wise and span-wise velocities together with the pressure field are calculated at the cell 

center, which we define as: 

𝑧𝑖
𝐶 =

1

2
(𝑧𝑖 + 𝑧𝑖−1)   for  𝑖 = 1,2,3, … . , 𝑁𝑧 (75) 

 

The wall normal velocities are calculated at the face of the cell. 

Spatial derivatives 

In the wall normal direction, we choose a second-order difference scheme while giving a first-

order accuracy on a non-uniform grid. All derivatives of cell centered properties are defined at 

the cell faces and opposite. This means: 

𝑑

𝑑𝑧
𝑢𝑖
𝐹 =

𝑢𝑖+1
𝐶 − 𝑢𝑖

𝐶

𝑧𝑖+1
𝐶 − 𝑧𝑖

𝐶                       
𝑑

𝑑𝑧
𝑢𝑖
𝐶 =

𝑢𝑖
𝐹 − 𝑢𝑖−1

𝐹

𝑧𝑖
𝐹 − 𝑧𝑖−1

𝐹  
(76) 

 

The derivation of second-derivatives is successive use of the above equations. If a property 

saved at a cell face is needed at the cell center, the interpolation scheme is simply the arithmetic 

mean of averaging. 

𝑢𝑖
𝐹 =

1

2
(𝑢𝑖+1

𝐶 + 𝑢𝑖
𝐶)                𝑢𝑖

𝐶 =
1

2
(𝑢𝑖
𝐹 + 𝑢𝑖−1

𝐹 ) 
(77) 

 

The derivatives in the homogeneous directions are calculated by the means of Fourier 

transformations. The variables are transformed from physical space and into the spectral space 

where the calculations of derivatives are easier and much more accurate. Consider the velocity 

vector 𝑢⃗  

𝑢⃗ (𝑥 , 𝑡) =∑𝑢⃗̂ (𝑡)𝑒𝑖𝑘⃗ 𝑥 

𝑘

 
(78) 

Where 𝑥 = [𝑥, 𝑦, 𝑧] is the position vector in physical space and 𝑘⃗ = [𝑘𝑥, 𝑘𝑦 , 𝑧, 𝑡] is the wave 

number vector in spectral space. By having 𝑖 as the imaginary number, the derivation of the 
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transformed variable is done by multiplying with 𝑖𝑘⃗ . Therefore, we get the first and second 

derivative of 𝑢⃗  in the stream-wise direction as such: 

𝑑

𝑑𝑥
𝑢⃗ (𝑥 , 𝑡) =∑ 𝑢⃗̂ 𝑘(𝑡)𝑖𝑘⃗ 𝑥𝑒

𝑖𝑘⃗ 𝑥 

𝑘

                
𝑑2

𝑑𝑥2
𝑢⃗ (𝑥 , 𝑡) = −∑𝑢⃗̂ 𝑘(𝑡)𝑘⃗ 𝑥

2𝑒𝑖𝑘⃗ 𝑥 

𝑘

 
(79) 

 

By solving the system of equations and calculating the derivatives, the terms are back to the 

physical space. 

For time integration, an explicit second-order accurate Adams-Bashforth scheme is used [27]. 

𝑦𝑛+2 = 𝑦𝑛+1 + ℎ (
3

2
𝑓(𝑡𝑛+1, 𝑦𝑛+1) −

1

2
𝑓(𝑡𝑛, 𝑦𝑛)) 

(80) 

 

Applying Eq. (78) to Navier-Stokes [28]: 

 

𝑢⃗ 𝑛+1 − 𝑢⃗ 𝑛

∆𝑡
=
3

2
𝑇(𝑢⃗ 𝑛) −

1

2
𝑇(𝑢⃗ 𝑛−1) − ∆𝑝𝑛+1 

(81) 

 

Where 𝑇(𝑢⃗ 𝑛) = −(𝑢⃗ 𝑛. ∇)𝑢⃗ 𝑛 + 𝑅𝑒∗
−1∇2𝑢⃗ 𝑛. The only unknowns are  𝑢⃗ 𝑛+1 𝑎𝑛𝑑 𝑝𝑛+1.  

Therefore, we solve Eq. (81) without the pressure term, yielding a temporary value for the 

velocity  𝑢⃗ ∗. 

𝑢⃗ ∗ − 𝑢⃗ 
𝑛

∆𝑡
=
3

2
𝑇(𝑢⃗ 𝑛) −

1

2
𝑇(𝑢⃗ 𝑛−1) 

(82) 

 

As explained before, the upper star index represents a non-dimensional value where the lower 

index star indicates an intermediate value. By subtracting Eq. (82) from Eq. (81), we get: 

 

𝑢⃗ 𝑛+1 − 𝑢⃗ ∗ = −∆𝑡∇𝑝
𝑛+1 (83) 

 

By considering the divergence of Eq. (81): 

∇. 𝑢⃗ 𝑛+1 − ∇. 𝑢⃗ ∗ = ∆𝑡∇
2𝑝𝑛+1 (84) 

 

To satisfy the continuity Eq., ∇. 𝑢⃗ 𝑛+1 must be equal to zero and this reaches to a Poisson 

equation for the pressure presented as: 

∇2𝑝𝑛+1 =
∇. 𝑢⃗ ∗
∆𝑡

 
(85) 

 

This equation is solved by using fast Fourier transforms, and then used to find the velocity at 

the new time step by using Eq. (84). 
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Chapter 4 

 

Results 
 

The Downlflow statistics of the velocity field for both fluid and bubbles are presented here. In 

1987, [30] Kim et al. performed a DNS of the turbulent channel flow and is still regarded as a 

standard reference for wall-bounded turbulent flow until now. The results in this thesis will be 

subject to comparison with Kim et al. as well. Three different cases are studied related to three 

different bubbles’ diameter, 𝑑 = 110, 220 𝑎𝑛𝑑 330 𝜇𝑚. 

 

Figure 4. 1 

Mean velocity profile for three different bubbles diameter (d=330𝜇𝑚, d=220𝜇𝑚  while 

d=110). ((∗) Denotes DNS data from Kim et al.) Compared with data from Kim et al. 

4.1 Mean flow properties 
 

Figure 4. 1 illustrates the differences in the mean velocity profile as the diameter of the bubble 

differs. The mean velocity profile moves towards a greater maximum and “flatter" curvature 

near the channel center, i.e. 𝑑𝑈 𝑑𝑧 ⁄ moves closer to zero in this region. As proven by D. Molin 

[6], the velocity is reduced in a downflow stream due to the effect of the lift force presented by 

the bubbles. This is confirmed in our results where the velocity decreases gradually as the 

bubbles’ diameter increase. This is due to the increase in the lift force (buoyancy) as the bubble 

diameter increase.  
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(a) ___𝑢𝑟𝑚𝑠, ____𝑣𝑟𝑚𝑠 and ____𝑤𝑟𝑚𝑠 for a 

bubble diameter of 110 𝜇𝑚 
(b)   𝑢𝑟𝑚𝑠,   𝑣𝑟𝑚𝑠 and   𝑤𝑟𝑚𝑠 for a 

bubble diameter of 220 𝜇𝑚 

  
(c) ...... 𝑢𝑟𝑚𝑠, ......𝑣𝑟𝑚𝑠 and ......𝑤𝑟𝑚𝑠 for a 

bubble diameter of 330 𝜇𝑚 

(d) The three cases all together 

Figure 4. 2 

Root mean squared of velocity components for the different bubbles diameter compared 

with data from Kim et al [30], normalized with 𝑢𝜏. 
 

4.1.1 Turbulent Intensities  
 

Figure 4. 2 illustrates the velocity fluctuations, or the turbulent intensities in the 

streamwise 𝑢𝑟𝑚𝑠 , spanwise 𝑣𝑟𝑚𝑠 and the wall normal direction 𝑤𝑟𝑚𝑠 , which are symmetric 

about the centerline of all grids. Figures 4.2 (a, b and c) presents the velocity fluctuations for 

the three different bubble diameter of 110, 220 and 330 𝜇𝑚 respectively. Here, we can see that 

for all the cases, 𝑢, 𝑣 and  𝑤 fluctuations are reduced as the bubble diameter increases compared 

with Kim et al. This is clear by a slight increase with the under prediction at the center as the 

bubble diameter increases in the streamwise component. Case (d) combines all the diameters 

and provides us with a clear view how the fluctuation decreases as the diameter increases. Yet 

we can see that the fluctuation for both cases (a and b) are almost the same, the main difference 

is compared with case (c) where (d=330µm). This will have an impact on the Reynolds stress 

budget, which will be presented in 4.2.    
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Figure 4. 3 

Root-mean-square pressure fluctuations normalized by the wall shear velocity 𝑝𝑟𝑚𝑠 𝜌𝑢𝜏
2⁄ . 

 Figure 4. 3 shows the profile of root-mean-square (r.m.s.) pressure normalized by the wall 

shear velocity, 𝑝𝑟𝑚𝑠 𝜌𝑢𝜏
2⁄ . We can see that in both cases for 𝑑 = 110 𝑎𝑛𝑑 220𝜇𝑚, the results 

under predicts the values near the wall while for 𝑑 = 330𝜇𝑚,while they over predicts the value 

at the center. This can be explained due to the lack of accumulation build-up near the wall and 

the increase in the lift effect presented by the bubbles to the fluid that increases as the bubble 

diameter increases. In addition, the Kolmogorov length and time scales are 5 to 10 times larger 

at the center than at the wall, which has a larger effect on the pressure especially as the particle 

diameter increases. 

 

  
(a)  Shear forces for (𝑑 = 110𝜇𝑚) (b) Shear forces for (𝑑 = 220𝜇𝑚)  
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Figure 4. 4 

(c) Shear forces for (𝑑 = 330𝜇𝑚) where blue line is 𝑢𝑤 𝜏𝑤⁄ , red line is 
(𝑣𝑑𝑢 𝑑𝑧⁄ − 𝑢𝑤) 𝜏𝑤⁄  and green line is(𝑣𝑑𝑢 𝑑𝑧⁄ ) 𝜏𝑤⁄ . 

 

4.1.2 Reynolds Shear stress 
 

Figure 4. 4 shows the Reynolds shear stress in the flow. In all the cases of the three different 

bubbles’ diameter of 110, 220 and 330𝜇𝑚, we get the exact value compared with the data 

provided by Kim et al. as denoted by the star (). 

 

Figure 4. 5−𝜖11, − − 𝜖22, −. 𝜖33, … 𝜖13 𝑎𝑛𝑑 − 𝜖 for bubbles’ diameter of 110µm 
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4.1.3 Dissipation 
 

Figure 4. 5 shows the turbulent dissipation for case (d=110µm), other cases (d=220 and 330 

µm) shows to be the same. As expected, due to largest derivatives of the velocity fluctuation, 

𝜖11 shows to be the dominating term then followed by 𝜖22, and then 𝜖33. 

 𝜖 = 0.5(𝜖11 + 𝜖22 + 𝜖33 ) (Presented by the red line). 

There are no data presented by Kim to be compared to but as explained, the results are suitable 

compared with the physics of dissipation. 

 

Figure 4. 6 (Kolmogorov length scale) 

 

4.1.4 Kolmogorov Length Scale 
 

In Figure 4. 6, the Kolmogorov length scale 𝐻⁄  is presented for the three cases. Since the 

length scale is presented as a function of the dissipation as shown in Eq. (65), we expect an 

opposite behavior since  = (
𝑣3

𝜖
)
1 4⁄

.  
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Figure 4. 7 Root-mean-square vorticity fluctuations normalized by the mean shear in global 

coordinates. (For the three cases) 

4.1.5 Vorticity 
 

In Figure 4. 7, we can see the stream wise vorticity fluctuations normalized by the mean shear 

at the wall (𝑤𝑖𝑣 𝑢𝜏
2⁄ ). For all the three cases, the results agree with data from Kim et al. It is 

worthy explaining the vorticity presented as: 

𝑤𝑖 = 𝜖𝑖𝑗𝑘
𝜕𝑢𝑘
𝜕𝑥𝑗

 

𝑤𝑥 =
𝜕𝑤

𝜕𝑦
−
𝜕𝑣

𝜕𝑧
 

𝑤𝑦 =
𝜕𝑢

𝜕𝑧
−
𝜕𝑤

𝜕𝑥
 

𝑤𝑧 =
𝜕𝑣

𝜕𝑥
−
𝜕𝑢

𝜕𝑦
 

 

 

 

 

(86) 

 4.1.6 Skewness and Flatness 
 

Figure 4. 8 illustrates the Skewness that is defined as a measure of asymmetry of a function 

with respect to the origin. Skewness can take on both positive and negative values, and that 

observed in turbulence experiments is usually negative. Just as will be the case for flatness that 

will be explained in the next paragraph. The S(𝑢𝑖)is presented as 𝑢𝑖,  𝑣𝑖 and  𝑤𝑖 and 

compared with Kim at al. it is clear that results agree with Kim et al. It is worthy presenting the 

equation presenting the Skewness as: 

𝑆𝑖 =
𝑢𝑖𝑢𝑖𝑢𝑖

(𝑢𝑖𝑢𝑖)
3
2⁄
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Figure 4. 8 

 
Figure 4. 9 

Higher-order component of the velocity 

fluctuation 𝑢𝑖.  Skewness S(𝑢𝑖) where  𝑢𝑖 ,   
 𝑣𝑖 and  𝑤𝑖. 

Flatness F(𝑢𝑖) where 𝑢𝑖,  𝑣𝑖 and 𝑤𝑖. 

 

Figure 4. 9 presents Flatness that requires an equation for formal definition. Here we simply 

note that it represents the deviation from Gaussian in the sense that functions having large 

flatness values are more sharply peaked than are Gaussian distributions, and conversely. 

Flatness (sometimes called “kurtosis”) is always greater than zero unlike Skewness that can be 

less than zero. The results presented agree Kim et al. and the equation for the Flatness is as: 

𝐹𝑖 =
𝑢𝑖𝑢𝑖𝑢𝑖𝑢𝑖
(𝑢𝑖𝑢𝑖)2

 

4.2 Reynolds-stress budgets 
 

The budgets of the individual components of the Reynolds stress tensor provide insight into the 

interaction between the large-scale turbulence and the mean flow. The budgets of the three 

diagonal components and the only off-diagonal Reynolds stress component are shown in Figure 

4. 10 (d=110µm). This has been compared to Barri [32] and showed perfect match.  

  
(a)𝑢𝑢 (b) 𝑣𝑣 

0 0.2 0.4 0.6 0.8 1.0
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

z=H

S
(u

i)

0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

14

0

z=H

F
(u

i
)

0 0.1 0.2 0.3 0.4 0.5
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

z=H

u
u

0 0.1 0.2 0.3 0.4 0.5
-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

z=H

v
v



31 
 

  
(c) 𝑤𝑤 (d)𝑢𝑤 

Figure 4. 10 budgets of the individual components of the Reynolds stress tensor. 

 

Where −(𝑖𝑗)  is the Pressure strain distribution. −(ϵ𝑖𝑗) is the viscous energy dissipation. 

− (𝑃𝑖𝑗) is the Production due to mean shear. −− (𝐷𝑖𝑗
𝑉  ) is the viscous diffusion. − ∙ − (𝐷𝑖𝑗

𝑇) is 

the turbulent diffusion due to velocity fluctuation. ⋯(𝐷𝑖𝑗
𝑃) is the turbulent diffusion due to 

pressure fluctuation. See Appendix. 

 

  
(a) comparison between uu (for d=330µm and 

for d=110µm) 

(b) comparison between vv (for d=110µm and 

d=330µm) 

  
Figure 4. 11 

(c) comparison between ww (for d=110µm and 
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(d)  comparison between uw (for d=110µm and 
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Figure 4. 11 illustrates the difference in results we get when comparing the Raynolds-stress 

budgets for both d=110µm and d=330µm. Analyzing (a), no major differences are observed 

between the two cases other than a slight decrease in the production term for d=330µm. For 

both (b and c), a decrease in both the pressure distribution and viscous dissipation is observed 

as the diameter increases. As for part (d), the pressure distribution and the production term tend 

to decrease as the diameter of the bubble increases. This is very convenient since both the 

production and the diffusion terms are dependent on the Reynolds stress term as shown in Eq. 

(60). 

 

4.2 Particle statistics 
 

  
(a) Bubbles concentration along the 

channel for all three cases 

(b) Particle average velocity profile for the 

three cases 

 
(𝑐) 𝑢𝑟𝑚𝑠 for the three cases 

Figure 4. 12  𝑢𝑟𝑚𝑠 for the Particles. 
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can see that the bubble phase moves slower than the liquid phase due to the buoyancy pulling 

0 0.2 0.4 0.6 0.8 1.0
0

2000

4000

6000

8000

10000

12000

14000

z=H

c

 

 

d=110µm

d=220µm

d=330 µm

0 0.2 0.4 0.6 0.8 1.0
-10

-5

0

5

10

15

z=H

U

 

 

d=110µm

d=220µm

d=330µm

0 0.2 0.4 0.6 0.8 1.0
0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

z=H

u
r
m

s

 

 

d=110µm

d=220µm

d=330µm



33 
 

and the liquid without bubbles flows slightly faster than the liquid laden with bubbles in the 

downflow. It is clear that the bigger the bubble diameter, the more effect it has on the fluid 

phase. And this agrees with Mazzitelli et al as he considered that microbubbles accumulating 

in down-flow regions locally transfer momentum upwards, and therefore, the microbubble 

addition reduces the vertical velocity fluctuation intensity and the turbulent kinetic energy. 

Part c shows the 𝑢𝑟𝑚𝑠 for the three cases and as we can see, as the bubble diameter increases, 

𝑢𝑟𝑚𝑠 decreases.  

 

4.3 Instantaneous particles distribution 
 

In Figure 4. 13, we can see the instantaneous distribution of bubbles when the bubble motions 

reach a statistically steady state. We can also see how the bubbles (d=110µm) do not accumulate 

near the walls and the concentration is mainly constant through the channel apart from the wall. 

As for Figure 4. 14, the particle turbulence is presented. 

 

Figure 4. 13 instantaneous distribution of bubbles in Channel.(d=110µm) 

 

Figure 4. 14 Particle turbulence (d=110µm)  

Figure 4. 15, presents as well the instantaneous distribution of bubbles of diameter d=220µm 

and it is obvious when compared with Figure 4. 13, how the bubbles’ concentration increases 

at the center. This is a reflection for the concentration plot that was presented in Figure 4. 12 (a). 

In Figure 4. 16, we see how the turbulence increases as the particle diameter increases. 
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Figure 4. 15 instantaneous distribution of bubbles in Channel.(d=220µm) 

 

Figure 4. 16 Particle turbulence (d=220µm) 

 

Finally, Figure 4. 17 presents as well the instantaneous distribution of bubbles of diameter 

d=330µm where the concentration of the particles increases obviously at the center of the 

channel. At the same time, Figure 4. 18 shows how the turbulence increases as well as the 

diameter of the particle increases which is obvious since the Reynolds number depends on the 

particle diameter which influence the turbulence as well. 

 

Figure 4. 17 instantaneous distribution of bubbles in channel (d=330µm) 
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Figure 4. 18 Particle turbulence (d=330µm) 
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Chapter 5 
 

5.1 Conclusions 
 

In this Thesis, we have presented results from direct numerical simulations (DNS) of turbulent 

microbubble dispersion in vertical channel flow for downflow conditions. Bubbles interact with 

the surrounding fluid by exchanging momentum. Several important conclusions can be 

summarized as follows. 

 

(1) Bubbles move rapidly away from the wall under the aid of the shear lift force and the 

turbulence, which leads to the present distribution pattern. 

(2) The bubble injection leads to the liquid velocity decrease by the bubble pulling, slightly 

intensifies the liquid turbulence as the particles increase in diameter. In the channel 

central region, the particles concentration increases as well as the diameter increases.  

(3) The bubbles’ increase in diameter reduces the liquid-phase Reynolds stress  

 

 

5.2 Future recommendation 
 

It is very well recommended to study the same case but in the upflow direction where the 

buoyancy would play an opposite effect on the fluid velocity and compare it to this case. This 

would give us a better understanding regarding the lift force and its influence on the overall 

fluid.  

 

It is worthy to mention that this work was discussed, planned and executed in a period of two 

months only, and proudly completed. 
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Appendix 
 

 

𝑃𝑖𝑗 = −𝑢𝑖𝑢𝑘
𝜕𝑈𝑗

𝜕𝑥𝑘
− 𝑢𝑗𝑢𝑘

𝜕𝑈𝑖
𝜕𝑥𝑘

 
(A1) 

𝐷𝑖𝑗 = 𝐷𝑖𝑗
𝑇 + 𝐷𝑖𝑗

𝑃 + 𝐷𝑖𝑗
𝑉  (A2) 

∅𝑖𝑗 =
𝑝

𝜌
(
𝜕𝑢𝑖
𝜕𝑥𝑗

−
𝜕𝑢𝑗

𝜕𝑥𝑖
) 

(A3) 

𝜖𝑖𝑗 = 2𝑣
𝜕𝑢𝑖
𝜕𝑥𝑘

𝜕𝑢𝑗

𝜕𝑥𝑘

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 

(A4) 

 

The different part of diffusion are given by: 

 

𝐷𝑖𝑗
𝑇 =

𝜕

𝜕𝑥𝑘
(𝑢𝑖𝑢𝑗𝑢𝑘) 

(A5) 

𝐷𝑖𝑗
𝑃 = −

1

𝜌

𝜕

𝜕𝑥𝑘
(𝑝𝑢𝑖𝛿𝑗𝑘 + 𝑝𝑢𝑗𝛿𝑖𝑘) 

(A6) 

𝐷𝑖𝑗
𝑉 = 𝑣 (

𝜕2𝑢𝑖𝑢𝑗

𝜕𝑥𝑘𝜕𝑥𝑘
) 

(A7) 

Where 𝑖, 𝑗 𝑎𝑛𝑑 𝑘 = 1,2,3. 
 

𝜖𝑖𝑗 is the permutation or Levi-Civita tensor. 

𝐷𝑖𝑗
𝑇  is the turbulent diffusion due to velocity fluctuation. 

𝐷𝑖𝑗
𝑃  is the turbulent diffusion due to pressure fluctuation. 

𝐷𝑖𝑗
𝑉  is the viscous diffusion. 


