
A Column Generation Heuristic for the
Dynamic Rebalancing Problem in Bike
Sharing Systems

Marte Dybendal Gleditsch
Kristine Hagen

Industrial Economics and Technology Management

Supervisor: Kjetil Fagerholt, IØT
Co-supervisor: Henrik Andersson, IØT

Department of Industrial Economics and Technology Management

Submission date: June 2018

Norwegian University of Science and Technology

Problem Description

The purpose of this thesis is to model and implement a solution method capable of solving

realistic problem sizes of the Dynamic Bicycle Rebalancing Problem (DBRP) for Bike

Sharing Systems (BSS). A BSS consists of self-service rental stations distributed around

the city. Users can rent a bicycle at a station, ride it, and lock it at a station nearby their

destination. Bike sharing is offered to the customers as long as there are available bicycles

and locks. However, due to customer interactions and unpredictable demand, stations get

empty or full regularly, and some customers are left unsatisfied. A set of service vehicles

are utilized to re-distribute the bicycles and to maintain a balanced system. The DBRP

involves determining optimal routes and loading quantities for the service vehicles.

i

ii

Preface

This master thesis is part of our Master in Science at the Norwegian University of Science

and Technology, Department of Industrial Economics and Technology Management. The

thesis is written in the spring of 2018 as a part of the master project in TIØ4905 Applied

Economics and Operations Research.

We would like to thank our supervisors Kjetil Fagerholt and Henrik Andersson for valu-

able guidance. Further, we would like to thank Urban Infrastructure Partners for a good

partnership, inspiring thoughts and for providing us with necessary data.

Trondheim, 01.06.2018

Kristine Hagen & Marte Dybendal Gleditsch

iii

iv

Abstract

This thesis examines the dynamic rebalancing of a bike sharing system (BSS). A BSS is

a service where bicycles are made available to users on a short-term basis. However, im-

balanced systems are a significant challenge and often results in unmet customer demand.

A set of service vehicles are utilized to re-distribute the bicycles and to maintain a bal-

anced system. The primary objective of this thesis is to implement a model that generates

optimal rebalancing strategies for the service vehicles with the aim of reducing violated

demand. The BSS in Oslo, operated by Urban Infrastructure Partners (UIP), is used as a

sample case in this thesis. As the customer demand is unknown, the real-world problem is

both dynamic and stochastic. In our solution method, the problem is simplified by approx-

imating it into a set of smaller deterministic subproblems where the customer demand is

assumed known. These smaller subproblems are defined as Dynamic Deterministic Bicy-

cle Rebalancing Subproblems (DDBRS).

Through a comprehensive literature survey, it becomes evident that it is insufficient to use

exact solution methods to solve the DDBRS of realistic sizes, and heuristic approaches are

necessary. However, there is a lack of efficient heuristic solution algorithms for solving

the DDBRS. Column generation heuristics applied to BSSs are not discovered in literature,

despite its success on vehicle routing problems (VRPs). Because of the enormous amount

of variables in the DDBRS, a column generation heuristic may be appropriate.

An arc-flow model is formulated and differs from others in the literature as we allow the

service vehicles to initiate a trip that exceeds the time horizon. By doing this, the idle time

of the service vehicle at the end of the period reduces, and a rebalancing strategy beneficial

in the long run can be initiated instead of a shorter disadvantageous strategy. Additionally,

the service vehicles strive to fulfill an optimal station bicycle level. This inventory level

accounts for future demand. Altogether, these aspects incorporate a long-term focus.

v

vi

A column generation heuristic is developed and consists of an initialization procedure, a

master problem, and a pricing problem. We propose three different variations of the master

problem. The amount of information predetermined differs for the three master problems.

In version 1, the loading quantities are determined in the master problem; in version 2,

the loading quantities are predetermined in the initialization and re-evaluated in the master

problem; and in version 3, the loading quantities are entirely predetermined. The initial-

ization process consists of a branching algorithm that generates many initial columns, i.e.,

routes, for each service vehicle, while the master problem determines the optimal combi-

nation of columns by allocating one column to each service vehicle. A heuristic pricing

problem is developed with the goal of generating new and better columns. For diversifica-

tion of routes, a model for clustering of stations is implemented.

Parameter tuning for the subproblem is conducted, and the parameters are set to their best-

performing values. We observe that the computational time of the subproblem is highly

dependent on the branching constant in the initialization, the number of possible visits to

a station within the time horizon, and the number of service vehicles. Multiple visits to a

station lead to drastic increases in computational time and only a marginal improvement in

solution, hence, multiple visits are concluded to be unnecessary. Additionally, the differ-

ent versions of the master problem are compared. The results shows that version 3, with

predetermined loading quantities, outperforms the other versions.

As the subproblem does not account for real-world uncertainties, the results are simulated

using an implemented discrete-event simulator. A system configuration is evaluated by ob-

serving the average total violations from ten randomly drawn demand scenarios generated

based on historical data. Some parameters are re-tested in a dynamic setting, and the final

configurations for the column generation heuristic are set. Further, operational insights

are gathered, and are intended as a basis for strategic decision-making. Our heuristic is

compared to UIP’s current rebalancing method, and a reduction in the total violations of

31% is observed. The effect of various strategic decisions regarding the BSS are analyzed,

e.g. the number of service vehicles and bicycles, the size of the service vehicles, different

prioritization of starvations and congestions, and the effect of enabling geo-fencing. By

implementing our column generation heuristic, allowing geo-fencing and increasing the

number of bicycles in the system, the total violations can decrease with as much as 81%

compared to today’s current rebalancing strategies.

Sammendrag

Denne oppgaven tar for seg det dynamiske sykkelflyttingsproblemet til et bysykkelsys-

tem (BSS). Et bysykkelsystem tilbyr en tjeneste hvor sykler er gjort tilgjengelig for kort-

varig utlån. En sentral utfordring med BSS er at stasjonene hvor syklene står parkert fort

blir fulle eller tomme, noe som fører til at brukeretterspørsel ikke blir møtt. Servicebiler

brukes i dag til å redistribuere syklene slik at balansen i systemet forbedres. Formålet med

denne oppgaven er å utvikle og implementere en model som genererer optimale rebal-

anseringsstrategier for servicebilene slik at udekket etterspørsel blir redusert. Oppgaven

tar utgangspunkt i bysykkelsystemet i Oslo som er driftet av Urban Infrastructure Part-

ners (UIP). Siden etterspørsel er uforutsigbart, er det faktiske problemet både dynamisk

og stokastisk. I vår modell er problemet forenklet ved at det er delt inn i et sett av mindre

deterministiske subproblemer hvor en antar kjent etterspørsel. Dette defineres som det dy-

namisk deterministiske sykkelflyttingssubproblemet (DDBRS).

Gjennom et omfattende litteraturstudie, viste det seg at eksakte løsningsmetoder er util-

strekkelige når problemer av realistisk størrelse skal løses, og at heuristiske algoritmer

derfor bør utvikles. Det er derimot mangel på effektive heuristisker for det DDBRS. Hy-

potesen vår er at en kolonnegenereringsheuristikk kan være passende på grunn av den

store mengden variabler i et DDBRS. Kolonnegenereringsheuristikker anvendt på et BSS

er ikke oppdaget i litteraturen.

Den matematiske modellen skiller seg fra andre ved at det siste stasjonsbesøket for hver

servicebil kan forekomme etter tidshorisonten. Dette gjør at inaktivitet blant servicebilene

reduseres, og rebalanseringsstrategier som er bedre på lang sikt genereres til fordel for

kortsiktige strategier. Servicebilene prøver i tillegg å opprettholde et optimalt lagernivå av

sykler på hver stasjon. Dette lagernivået tar hensyn til fremtidig etterspørsel.

vii

viii

En kolonnegenereringsheuristikk er utviklet og består av en initialiseringsprosess, et mas-

terproblem og et prisproblem. Tre ulike versjoner av masterproblemet er presentert hvor

forskjellen er mengden av informasjon som blir forhåndsbestemt og brukt som input i

masterproblemet. I versjon 1 bestemmes lastemengder i masterproblemet, i versjon 2

bestemmes de i initialiseringen, men masterproblemet har til en viss grad mulighet tli å

endre det, og i versjon 3 er lastemengdene satt i initialiseringen. Initialiseringen omfatter

en forgreningsalgoritme som genererer initielle kolonner, dvs. ruter, for hver servicebil.

Masterproblemet bestemmer deretter den optimale kombinasjonen av kolonner, og tildeler

hver servicebil én rute. Et heuristisk prisproblem er utviklet med mål om å generere nye

og bedre kolonner. I tillegg, er en klyngealgoritme for soneinndeling av stasjoner utviklet

for å oppnå diversifisering av ruter.

Parameterkalibrering for subproblemet er gjennomført, og parameterene er satt til de ver-

diene som resulterer i de beste løsningene. Vi observerer at kjøretiden til subproblemet

er svært avhengig av antall forgreninger i initialiseringen, antall mulige besøk en stasjon

kan få innenfor tidshorisonten, og antall servicebiler. Videre er de forskjellige versjonene

av masterproblemet testet opp mot hverandre, og det vises at versjon 3, med forhånds-

bestemte lastemengder, er overlegen i forhold til de andre.

Siden subproblemet ikke tar høyde for usikkerheter i den virkelige verden, så er resul-

tatene simulert ved bruk av en diskret hendelsessimulator. En systemkonfigurasjon blir

evaluert ved å observere det gjennomsnittlige antallet brukeretterspørsler som ikke er til-

fredsstilt ved ti tilfeldig trekte etterspørselscenarier generert basert på historisk data. Noen

parametere er re-kalibrert i en dynamisk setting og den endelige konfigurasjonen for kolon-

negenereringsheuristikken er satt. Videre samles en mengde operasjonell innsikt. Denne

innsikten er ment som et beslutningsgrunnlag for UIP når de skal ta strategiske valg. Vår

kolonnegenereringsheuristikk er sammenliknet med rebalanseringsmetodene som brukes

av UIP i dag, og en 31% reduskjon av mengden umøtt etterspørsel er observert. Effekten

av å variere strategiske valg er analysert, som for eksempel antall sykler og service biler,

størrelsen på servicebilene, forskjellig vektlegging av umøtt etterspørsel for sykler og låser,

og et konsept kalt geo-fencing som tillater overvekt av sykler på stasjoner. Dersom UIP

implementerer vår kolonnegenereringsheuristikk, tillater geo-fencing og øker antall sykler

i systemet kan de redusere forventningsverdien av mengden umøtt etterspørsel med opp til

81%.

Contents

Problem Description . i

Preface . ii

Abstract . iv

Sammendrag . vii

1 Introduction 1

2 Background 5
2.1 Bike Sharing Concept . 5

2.2 History . 6

2.3 New Variations of the Bike Sharing System 7

2.4 Bike Sharing in Norway . 9

2.5 Bike Sharing in Other Countries . 11

2.6 Challenges Encountered . 12

3 Literature Survey 15
3.1 Exact Solution Methods . 16

3.2 Heuristic Solution Methods . 17

3.3 Heuristic Column Generation . 20

3.4 Conclusion and Motivation of the Thesis 22

4 Problem Description 25
4.1 Dynamic Stochastic Bicycle Rebalancing Problem 25

4.1.1 Example Problem . 26

4.1.2 Complexity of the Dynamic Stochastic Problem 27

4.2 Dynamic Deterministic Bicycle Rebalancing Subproblem 29

4.2.1 Example Problem . 31

ix

x CONTENTS

5 Mathematical Model 33
5.1 Limit Shortsigthedness . 33

5.2 Assumptions . 34

5.3 Notation . 35

5.4 Constraints . 39

5.4.1 Ensure Feasible Routes . 39

5.4.2 Violations and Deviations . 42

5.5 Objective Function . 46

6 Column Generation Heuristic for the DDBRS 51
6.1 Overview of Algorithm . 52

6.2 Master Problem . 53

6.2.1 Version 1: Loading Quantity and Arrival Time Determined in MP 54

6.2.2 Version 2: Loading Quantity and Arrival Time Predetermined . . 55

6.2.3 Version 3: Violations and Deviations Predetermined 57

6.3 Initialization of Columns . 59

6.3.1 Overview of Branching Algorithm 60

6.3.2 Determine Subset SR: Clustering 61

6.3.3 Determine Subset SR: Filtering 64

6.3.4 Calculate Criticality Score for each Station 66

6.3.5 Estimation of Loading Quantity and Arrival Time 67

6.4 Pricing Problem . 69

7 Implementation 73
7.1 Key Input Data . 74

7.1.1 Service Vehicles and Bicycles 74

7.1.2 Parking, Handling and Driving Time 74

7.1.3 Customer Demand . 74

7.1.4 Initial State . 75

7.1.5 Optimal State . 75

7.1.6 Weights in the Objective Function 76

7.2 Test Instances . 76

7.3 UIP’s Current Rebalancing Strategy . 78

8 Simulation Framework 81
8.1 General Overview . 81

CONTENTS xi

8.2 Generation of Customer Arrivals Scenarios 83

8.3 Simulation of Real-World Performance 86

8.4 Example of a Simulation Process . 89

9 Computational study: Parameter Tuning 93
9.1 Elaboration of Parameter Tuning . 93

9.1.1 Weights in the Criticality Score 94

9.1.2 Branching Constant and Number of Possible Visits 94

9.1.3 Parameter Tuning for Clustering Problem 95

9.1.4 Effect of Introducing Clustering 95

9.1.5 Parameter Tuning for Pricing Problem 95

9.1.6 Effect of Introducing Pricing Problem 96

9.1.7 Number of Service Vehicles . 96

9.2 Parameter Tuning for MP Version 1 . 97

9.3 Parameter Tuning for MP Version 2 . 98

9.4 Parameter Tuning for MP Version 3 . 99

9.5 Comparison of CG heuristics and Exact Solution Method 101

10 Computational Study: Simulation 105
10.1 Evaluation Setup . 105

10.1.1 Evaluation Metric . 105

10.1.2 Statistical T-test . 107

10.2 Parameter Tuning with Simulation . 108

10.2.1 Comparison of Heuristics . 108

10.2.2 Clustering and Pricing Problem 109

10.2.3 Examination of Adjustments in Service Vehicle Routes 111

10.2.4 Route Re-generation Point and Time Horizon 113

10.2.5 Summary of Parameter Tuning conducted with Simulation 115

10.3 Operational Insights . 116

10.3.1 Comparison with Current Rebalancing Method 116

10.3.2 The Value of Service Vehicles 117

10.3.3 Different Prioritization of Starvations and Congestions 121

10.3.4 The Value of Bicycles . 122

10.3.5 The Value of Geo-fencing . 123

10.3.6 Summary of Operational Insights 126

xii CONTENTS

11 Concluding Remarks 129
11.1 Conclusion . 129

11.2 Further Research Opportunities . 131

11.2.1 Improving Realism of Customer Interactions 131

11.2.2 Further Development of the Pricing Problem 132

11.2.3 User Incentivizing . 132

11.2.4 Demand Forecasting . 132

A Linearization 133
A.1 Ensure Feasible Routes . 133

A.2 Violations and deviations . 137

A.3 Objective Function . 142

B Parameter Tuning 143
B.1 Parameter Tuning for MP Version 1 . 143

B.2 Parameter Tuning for MP Version 2 . 156

B.3 Parameter Tuning for MP Version 3 . 164

C Final Configurations for Column Generation Heuristic 171

Bibliography 172

List of Figures

2.1 Picture of bicycles parked at a station in Oslo 10

2.2 The Bysykkel mobile application . 10

2.3 Spatial distribution of bicycle stations in Oslo. 10

2.4 Illustration of imbalance during morning rush hour. 12

4.1 Example view of a Markov Decision Process 27

4.2 Illustration of how a Markov Decision Process is approximated by multi-

ple subproblems. 28

4.3 Conceptual overview of the input and output of the subproblem. 31

4.4 Example view of the Dynamic Deterministic Bicycle Rebalancing Sub-

problem . 31

5.1 The last station visit is allowed to exceed the time horizon 34

5.2 Illustration of transferred trips to the consecutive time horizon 36

5.3 Inventory level at station . 37

5.4 Capture violations only until time horizon 42

5.5 Situation 1: Station i does not get any visits 43

5.6 Situation 2: Station i gets its last visit within the time horizon 43

5.7 Situation 3: Station i gets its last visit after the time horizon 43

6.1 The steps in our column generation heuristic 52

6.2 The three different versions of the master problem. 53

6.3 A branching tree . 59

6.4 Example of clusters for two service vehicles 62

6.5 Filtering rules applied on second station visit 65

6.6 Filtering rules applied on station visit m 65

xiii

xiv LIST OF FIGURES

6.7 Regret function . 69

6.8 Example of how the greedy heuristic estimates loading quantities. 69

7.1 Division of zones with UIP’s current rebalancing method 78

7.2 The algorithm used for creating routes according to UIP’s current rebal-

ancing strategy . 80

8.1 Iterative process between simulation framework and the DDBRS 82

8.2 Illustration of how the subproblems are re-solved 83

8.3 The log-normal distribution of the total number of customers requesting a

bicycle . 85

8.4 The uniform distribution of customer arrival times 85

8.5 Flow chart of the Simulation framework 87

8.6 A customer arrivals scenario, and rebalancing strategies generated from

the subproblem . 90

9.1 Comparison of the different column generation heuristics 104

10.1 Routes generated though the simulation framework 111

10.2 Station visits completed from 7:00 to 8:00 113

B.1 Objective value as a function of the branching constant 147

B.2 Objective value as a function on clustering weights 149

List of Tables

3.1 Taxonomy . 16

3.2 Comparison of Column generation-based heuristic studies 24

5.1 Notation used for modelling the SBRP 37

5.2 Notation used for modelling the reward function 48

6.1 Additional notation used for modelling the MP version 1 54

6.2 Additional notation used for modelling the MP version 2 55

6.3 Additional notation used for modelling the MP version 3 58

6.4 Notation for clustering model . 63

6.5 Notation for pricing problem . 70

7.1 Details of computer, solver and programming environment used in the

computational study . 73

7.2 Optimal states for two stations with different net demand pattern 75

7.3 Weights in the objective function . 76

7.4 Test instances . 76

7.5 Criticality score weights in current rebalancing method 80

8.1 Customer arrival list containing the three first customer arrivals drawn by

the simulator . 84

8.2 Customer arrivals scenario, containing arrival times for station 1 and 2

between 8:00-9:00, drawn by the simulator 86

8.3 Example of simulation process from 8:00 to 9:00 with two stations and

one service vehicle . 91

9.1 Configurations for MP version 1 . 97

xv

xvi LIST OF TABLES

9.2 Configurations for Clustering and Pricing Problem common for all versions 97

9.3 Configurations for MP version 2 . 99

9.4 Configurations for MP version 3 . 100

9.5 Comparison of column generation heuristics and exact solution method,

V = 2 . 102

9.6 Comparison of column generation heuristics and exact solution method,

V = 5 . 103

10.1 Results obtained with no rebalancing . 106

10.2 Example t-test calculation . 107

10.3 Comparison of heuristics . 108

10.4 Effect of introducing clustering and pricing problem 110

10.5 Route re-generation point and Time horizon 113

10.6 Summary of Simulation . 115

10.7 UIP’s current strategic decisions . 116

10.8 Column generation heuristic compared to current rebalancing method . . 117

10.9 Value of Service Vehicles . 118

10.10A varying number of service vehicles for different times of the day 120

10.11Value of one large service vehicle . 120

10.12Different weighting of starvations and congestions 122

10.13Geo-fencing and Large Service Vehicles 126

B.1 Testing of criticality score weights, V1 144

B.2 Testing of branching constant when M = 1, V1 145

B.3 Testing of branching constant when M = 2, V1 145

B.4 Testing of weights in clustering problem 147

B.5 Testing of high and low demand parameters, CH and CL, in clustering

problem . 148

B.6 Testing of clustering, V1 . 150

B.7 Testing of pricing problem score weight 151

B.8 Testing of probability of including pricing problem score 152

B.9 Testing of pricing problem parameters, V1 153

B.10 Effect of introducing pricing problem, V1 154

B.11 Highest possible branching constant B for different numbers of vehicles

V , V1 . 155

B.12 Testing of criticality score weights, V2 156

0 LIST OF TABLES

B.13 Testing of branching constant when M = 1, V2 157

B.14 Testing of branching constant when M = 2, V2 158

B.15 Testing of flexibility parameter, V2 . 159

B.16 Testing of clustering, V2 . 160

B.17 Testing of pricing problem parameters, V2 161

B.18 Effect of introducing pricing problem, V2 162

B.19 Highest possible branching constant B for different numbers of vehicles

V , V2 . 163

B.20 Testing of criticality score weights, V3 164

B.21 Testing of branching constant when M = 1, V3 166

B.22 Testing of clustering, V3 . 167

B.23 Testing of pricing problem parameters, V3 167

B.24 Effect of introducing pricing problem, V3 169

C.1 Final configurations for CG heuristic . 171

Chapter 1

Introduction

Due to urbanization, the amount of private motorized traffic increases in cities all over

the world, resulting in traffic congestion and environmental pollution. In response to the

growing concerns, the interest for green transportation methods, such as bike sharing, has

emerged (Brinkmann et al., 2015). The concept of a BSS is simple: a user picks up an

available bicycle at a docking station, rides it to their destination, and locks the bicycle

at a nearby station. Bike Sharing Systems (BSSs) are widely adopted, and today, as of

June 2018, there are 1,608 active systems, and 391 systems under construction (Meddin,

2018). The BSSs have grown considerably in size in the recent years, and are becoming

an essential part of their cities public transport systems (Pfrommer et al., 2014).

The primary operation issue for most BSS, is that stations regularly get empty or full due

to customer interactions, leading to imbalanced systems and violated demand. To increase

the balance in the system, bicycles are re-distributed with service vehicles specially de-

signed to transport bicycles. This task is called the bicycle rebalancing problem.

The rebalancing problem has become a popular topic in operational research. The rebal-

ancing problem consists of two main objectives; finding optimal routes for the service

vehicles, and determining optimal loading quantities at the stations they visit. These deci-

sions form what we call a rebalancing strategy. Finding the optimal rebalancing strategies

is a fundamental challenge for all BSSs, as the number of possible solutions is vast and the

customer demand is uncertain. There is a lack of efficient solution algorithms for BSSs

in literature, especially when instances of realistic size are considered. The BSS in Oslo,

1

2 CHAPTER 1. INTRODUCTION

operated by Urban Infrastructure Partners (UIP), is used as a sample case in this paper.

Based on data acquired from UIP, we observe that each station in Oslo is, on average,

empty 22% of the time and full 6% of the time. In the morning hours, between 7-9am,

these numbers are as high as 26% and 7.4%, respectively. This emphasizes the need for

better rebalancing strategies.

The purpose of this master thesis is to develop a solution algorithm that is capable of solv-

ing the dynamic bicycle rebalancing problem with large instances. Due to the complexity

and large solution space in bicycle rebalancing problems, it is inefficient to use exact solu-

tion methods. Hence, the need for a heuristic solution approach is indisputable. The main

contributions of this thesis are thus:

• A literature survey on heuristic solution methods applied to BSSs and column gen-

eration heuristics applied to VRPs.

• A mathematical model of the dynamic deterministic subproblem.

• A column generation heuristic capable of solving problems of realistic size.

• A simulation framework used to evaluate rebalancing strategies.

• Operational insight of strategic decisions relevant for decision-making at UIP.

The rest of the paper is organized as follows. First, Chapter 2 presents a study on how the

bike sharing concept has developed through the years. The largest BSS in Norway is pre-

sented, together with BSSs in selected cities around the world. At the end of the chapter,

some key challenges are discussed. In Chapter 3, a literature survey on heuristic solution

methods applied to BSSs and column generation heuristic applied to VRPs are presented.

Chapter 4 contains a detailed description of the real-world stochastic problem. A dis-

cussion regarding the challenges with this problem is presented, and an approximation is

suggested. Different aspects and terminology are elaborated, and the main restrictions,

decisions and problem assumptions are conferred. In Chapter 5, the mathematical model

is presented with a description of all necessary constraints.

Chapter 6 presents a detailed description of our proposed heuristic solution algorithm.

Chapter 7 presents the test instances and the key input data used in our implementation.

In addition, our interpretation and implementation of UIP’s current rebalancing strategies

3

are presented. Chapter 8 includes a detailed description of the simulation framework.

In Chapter 9, parameter tuning is conducted, and the different versions of the heuristic

are compared. Chapter 10 presents the results obtained from simulating how the column

generation heuristic performs with real-world uncertainty. In addition, the effect of various

strategic decisions regarding the BSS are analyzed. At the end of the thesis, concluding

remarks and future research opportunities are presented in Chapter 11.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Background

Extensive usage of private vehicles in urban areas has led to increased traffic congestion,

carbon emissions, and usage of non-renewable resources. These concerns have led to

emerging attention towards BSSs as an answer to lessening the environmental impacts of

transportation, and the public’s desire to increase bicycle usage as a mean for everyday

transport (Ghosh et al., 2015). Additionally, bicycles contribute to public health; they can

reach underserved destinations; they help tourist explore new cities, and they are relatively

inexpensive and affordable to maintain (DeMaio, 2008). In Section 2.1, the bike sharing

concept is introduced. The system’s history and a presentation of newer variations of the

system are elaborated in Section 2.2 and 2.3, respectively. Descriptions regarding how

bike sharing is operated in Norway and other countries are presented in Section 2.4 and

2.5. Challenges with a BSS are discussed and presented in Section 2.6.

2.1 Bike Sharing Concept

A BSS is a service where bicycles are made available to users on a short-term basis. Bike

sharing is a quick and comfortable mode of transportation used to fill the gaps in public

transit, making the whole intracity mobility offer better. A modern BSS has self-service

rental stations distributed within the city center, where each station has a finite number of

locks. Some make use of mobile applications that provide the users with an overview of

available bicycles and locks. For a customer to be able to rent a bicycle or return a rented

bicycle, there must be an available bicycle or lock, respectively, at the station. Due to un-

predictable demand, there is often either congestion, i.e. no available locks at the station,

5

6 CHAPTER 2. BACKGROUND

or starvation, i.e. no available bicycles. In this paper, both of these scenarios are referred

to as violations. To avoid violations, the bike sharing companies use service vehicles to

redistribute the bicycles.

Payment schemes vary between the systems; some may be free of charge, have periodic

subscription fees, deposit payment or a fee where the amount is dependent on the length

of the rental. Short journeys are often encouraged by charging the customers an amount

proportional to the length of the lease. The common feature is that it is an affordable op-

tion, compared to public transport or driving a private car. Most BSSs are still unable to

adequately cover their investment and operational costs entirely from customer fees. Thus,

the BSSs are usually administrated by advertising companies, such as Clear Channel and

JCDecaux, or relying on government subsidies, in addition to user payments (DeMaio,

2008).

For most BSSs, the rebalancing operation is the most significant operating expense. How-

ever, the capital cost, such as installment of stations and bicycle investments, is also sub-

stantial. There are also costs related to maintenance of bicycles, stations, and IT infras-

tructure. (Andersen, 2016).

2.2 History

The concept of bike sharing is said to have started in Amsterdam in 1965. A group of

Dutch activists introduced the so-called “Witte Fietsen,” i.e. the White Bikes, as a mean to

revolutionize public transport and counter the rise of air pollution and cars. They gathered

together a dozen bicycles, painted them white and left them unlocked around the city for

anyone to use free of charge. Sadly, the project was unsuccessful. Not only did most of the

bicycles get stolen or broken, but the city council rejected the plan as they meant bicycles

belonged to the past, whereas cars were the future. In spite of considerable adversity, Luud

Schimmelpennink, the man behind the "White bikes," did not let the idea slip by. He rein-

troduced the concept in 1975, ten years later, with a few electric cars, one station, and with

user memberships. Unfortunately, this project also failed due to financial circumstances

(Van der Zee, 2016).

Schimmelpennink never stopped believing in the power of a BSS, so when a couple of

Danes asked for his help to build a BSS in Copenhagen thirty years later, he was easy to

2.3. NEW VARIATIONS OF THE BIKE SHARING SYSTEM 7

persuade. The result was the world’s first large-scale BSS with designated docking stations

and a coin-deposit system (Goodyear, 2015). The users would drop a coin on the bicycle,

and when returned, they got their coin back. Similar to the White Bikes in Amsterdam, a

lot of bicycles got stolen since the user could remain anonymous (Van der Zee, 2016).

The first system attempting to overcome the bicycle theft problem was a small BSS at

Portsmouth University in 1996. They utilized the technological improvements by intro-

ducing the use of an individual, magnetic swipe card. This way the students with an

unreturned bicycle were identified (Clemitson, 2017). Similarly, a BSS in Rennes, France,

called Vélo à la Carte, adapted this idea two years later. In addition to tracking the users,

Vélo à la Carte used the individual cards and Radio Frequency Identification Technology

(RFID) to gather information about the users’ cycling patterns. Hence, they were able to

distribute the bicycles to suit the users’ needs better. The system was also characterized

by electronic docking stations and mobile phone access (Clemitson, 2017).

The BSSs underwent significant development from 1965 to 1998 but were still in relatively

small scale. When Vélo’v, the smart bike sharing system in Lyon, France, was launched

in 2005, it was with a whole new scale with 1,500 bicycles. Therefore, Vélo’v is said to

be the catalyst of the urban BSS. Despite this, it is the Parisian BSS, Vélib’, introduced

two years later and inspired by Vélo’v, which has become the benchmark for all successful

BSSs, with a total of 18,000 bicycles and 1,230 stations (Clemitson, 2017).

After 2007, an increasing number of cities around the world have adopted the concept of

bike sharing. The system first settled in Europe, but today China has become the world

leader when it comes to the total number of bicycles (Gray, 2017). The BSSs have em-

braced the technology developed through the years, and especially mobile applications,

smart card systems, Global Position System (GPS), electric bicycles and machine learn-

ing.

2.3 New Variations of the Bike Sharing System

Today, the most usual and traditional type of a BSS is where the bicycles are locked to

strategically placed docking stations throughout the city. Users can collect and drop bicy-

cles by using a credit card, a personal smart card, or a mobile application. With a mobile

application, the users can also locate available bicycles or locks at their preferred station.

8 CHAPTER 2. BACKGROUND

In recent years, we see other concepts and variations of the BSS begin to flourish. An

exciting trend is bicycles with technology and software integrated directly, so-called smart

bicycles. These bicycles can communicate through a GPS, wireless connection, and elec-

trical locks mounted directly in the bicycle (Antoniades and Chrysanthou, 2009). This

enables new concepts like geo-fenced stations and free-floating systems.

In a geo-fenced system, the stations are defined as geographical areas rather than physical

racks. The users are allowed to park their bicycle anywhere within this area. Accordingly,

the congestion issue is reduced as it no longer is a problem if there are no locks available.

These geo-fences are at fixed locations or moved as needed. An extended version of this is

the free-floating BSS where the users can pick up or leave the bicycle wherever they like

within a large area. These systems can act as standalone concepts or in combination with

the traditional station-based BSS. Geo-fenced or free floating BSS introduce new possibil-

ities for the rebalancing problem as the number of locks no longer is a restriction when it

comes to unloading or parking bicycles. However, the situation where there are no avail-

able bicycles at a station is still a problem, and the company running the BSS is still faced

with the challenge of rebalancing the system. Hamilton in Ontario and VeloGo in Ottawa

are examples of BSSs that have adopted the geo-fence system (Social Bicycles).

Another concept enabled through technology is the electric bicycle. Electric bicycles are

especially relevant to cities with steep topography, or of considerable size, as the users can

ride longer distances. The bicycles are usually charged at the docking station. Tokyo is an

example of a city with electric bicycles.

Another case, addressed by Fricker and Gast, is incentivizing the users to contribute to-

wards solving the rebalancing problem. In exchange for monetary advantages, users can

return their bicycle to the least loaded station among neighboring stations. This mecha-

nism can equalize the one-directional flows of travels, for example from residential areas

to work areas in morning rush hours, or the travel flow in steep regions (Fricker and Gast).

Lastly, we see that the trend is to have a system that responds and adapts to the individ-

ual’s behavior using machine learning and other modern technologies. Johan Høgåsen-

Hallesby, the CTO of UIP, believes that "combining that focus with the development to-

wards station-less bike sharing, reveals new opportunities and changes the role bike shar-

ing can play for public transport and urban mobility" (Høgåsen-Hallesby, 2017).

2.4. BIKE SHARING IN NORWAY 9

2.4 Bike Sharing in Norway

As one of the fastest growing cities in Europe, and with one of the most tech-savvy pop-

ulation in the world, Oslo has become a hub for urban innovation. The Digital Economy

and Society index (DESI) of 2017 shows that the Norwegian population is more willing

to adapt to digitalization than average and that the people put a great trust in mobile pay-

ment (European Commission, 2017). Norwegians also tend to like activities and solutions

that are healthier for themselves, their city and their environments. These factors are what

make Norway, and especially Oslo, an ideal place for developing shared, intelligent infras-

tructure (European Commission, 2017).

UIP is a Norwegian company that finances, delivers, and manages shared urban infras-

tructure, including BSSs (Urban Infrastructure Partners, 2017a). UIP is currently running

three BSSs in Norway with stations in Oslo and Trondheim, and with ambitions of expand-

ing to Bergen and other cities. The bicycles are illustrated in Figure 2.1. As illustrated in

Figure 2.2 the users can get a real-time overview of available bicycles and locks through

the mobile application Bysykkel. Figure 2.3 shows the map of all active stations in Oslo.

In Oslo in 2017, UIP’s 50,000 subscribers completed over 2.6 million bicycle trips. As of

June 2018, over 700,000 trips are made in Oslo, and the bicycles are more popular than

ever (Oslo Bysykkel, 2017).

While many BSSs focus on the number of bicycles they have in operation, UIP focuses

on utilizing their resources by maximizing the number of trips each bicycle in the system

has on average in a day. This focus on mobility, rather than just the novelty factor, is

making them one of the most efficient BSS in the world (Urban Infrastructure Partners,

2017b). UIP’s BSS is currently financed by customer subscription, advertisements on the

racks, and sponsorship (Oslo Bysykkel, 2017). Service vehicles are used to rebalance

the system, but the rebalancing strategies are solely based on the experience and gut-

feeling of the drivers (Oslo Bysykkel, 2017). UIP is experimenting with different ways to

encounter the imbalance issue. In 2017, they initiated a test project called morning birds.

By analyzing historical data, they identified which stations that are first congested in the

morning rush hours. The solution was to place UIP employees, the morning birds, at these

stations for a few hours in the morning. Their task was to remove bicycles, and stack them

up next to the racks as the station was filling up (Urban Infrastructure Partners, 2017b).

10 CHAPTER 2. BACKGROUND

Figure 2.1: Picture of bicycles parked at a station in Oslo. Source: (Oslo Bysykkel, 2017)

Figure 2.2: The Bysykkel mobile application. Source: (Oslo Bysykkel, 2017)

Figure 2.3: Spatial distribution of bicycle stations in Oslo. Source: (Urban Infrastructure
Partners, 2017a)

2.5. BIKE SHARING IN OTHER COUNTRIES 11

2.5 Bike Sharing in Other Countries

As mentioned in Section 2.2, the simple concept of BSS has swept across the globe in a

matter of few years (Goodyear, 2015). As of June 2018, 1,608 cities worldwide have a

BSS (Meddin, 2018). In the next paragraphs, some of the world’s most interesting BSSs

are introduced.

The Chinese system, Hangzhou Public Bicycle, has, since its launch in 2008, expanded to

3,572 stations and 84,100 bicycles as of May 2016 (ESCI, 2016). The system is the second

biggest by size, but probably the most extensively used. As long as the bicycle is returned

within an hour, the user is not charged. One of the reasons this system has become so

successful is because of its integration with public transit; a single card grants access to

subways, bus, ferry, taxi, and bicycles. By 2020, it is projected to have 175,000 bicycles

(ESCI, 2016). The system is owned and maintained by the government with intentions of

decreasing traffic.

Mexico City launched a BSS, called EcoBici, in February 2010. Since the launch in 2010,

the system has grown by 400 %, and, as of 2016, the system consists of 452 stations and

more than 6,500 bicycles (EcoBici, 2016). Many refer to this as one of the most impactful

BSSs, as it has made a dramatic change to the chronic congestion problem in the city with

its nine million inhabitants. EcoBici’s long-term goal is to convert five percentage of city

journeys to cycling (Popova, 2016). The users are required to purchase a card that gives

them access to the system for one year to use the bicycles.

In 2015, Hamilton, Ontario, introduced the first large-scale, city-wide smart bicycle sys-

tem in the world. Their service area is defined by a large geo-fence, holding 100 smaller

geo-fenced stations. The users can decide whether to park the bicycle in a geo-fence sta-

tion, or, for a small fee, anywhere within the larger geo-fence. Likewise, if a user picks

up a bicycle from outside a geo-fenced station, they receive extra credit on their account if

they return the bicycle to a geo-fenced station. More perks include the ability to reserve a

bicycle (Hughes, 2017).

12 CHAPTER 2. BACKGROUND

2.6 Challenges Encountered

Companies running BSSs have to make a lot of decisions when it comes to station density,

bicycles per capita, the system area, etc. Many companies have encountered difficulties

in determining how big of a system to develop. To limit the risk of failure, a lot of cities

have budgeted for undersized systems. However, this has been shown only to increase the

chance of failure (Hughes, 2017).

The biggest problem bike sharing companies face, is to ensure bicycle and lock availabil-

ity. Avoiding starving and congested stations have been a major challenge. Transportation

researcher, Colin K. Hughes, conveys “Sometimes, I’d ride to my office to find no avail-

able locks, forcing me to ride halfway back home to leave the bicycle at nearest open lock,

and then walk many blocks.” Hughes also states that “Reliability is a key factor in any

user’s modal choice,” and emphasizes the importance of a balanced bicycle system. Users

of the system also communicate that “We want the system to be reliable, not only for

weekend trips but as a standard commuting option anywhere in a city at peak hours when

it’s needed the most” (Hughes, 2017). Figure 2.4 illustrates the imbalance in the system in

the morning rush hours. Blue circles indicate empty stations, whereas red circles indicate

full stations.

Figure 2.4: Illustration of imbalance during morning rush hour. The blue circles indicate
empty stations, and the red circles indicate full stations. Source: (Oslo Bysykkel, 2017)

2.6. CHALLENGES ENCOUNTERED 13

In November 2017, we visited UIP in Oslo to observe the daily operation. As mentioned

earlier in this chapter, they do not utilize any mathematical program to determine routes

for the service vehicles. What they expressed as the biggest challenge is that the inner

city center experiences massive demand for locks in the morning hours as people ride their

bicycle to work. They conveyed that a lot of the bicycles end up at the same stations every

day, resulting in people leaving their bicycle unlocked alongside. Hence, their primary

focus is on collecting the overflow of bicycles to avoid theft, as each bicycle is worth ap-

proximately 7,000 NOK.

A challenge regarding the balancing is predicting the demand for bicycles and locks at

each station at a particular time. The bike sharing companies have no way of knowing the

real historical demand since lost demand is not recorded. Demand prediction is also prob-

lematic, as the bicycle usage pattern varies with several factors as time of day, weather,

social events, and traffic, and users usually choose a station near their origins or destina-

tions on an ad-hoc basis (Chen et al., 2016).

14 CHAPTER 2. BACKGROUND

Chapter 3

Literature Survey

There is an emerging interest in BSSs worldwide, especially within the field of opera-

tional research. The decisions related to BSSs are divided into multiple levels: a strategic

level, a tactical level, and an operational level. Relevant decisions at the strategic level

include location and sizing of the stations. At the tactical level, decisions regarding op-

timal inventory level and detection of broken bicycles are made, and at the operational

level, rebalancing strategies are decided. Our main focus in this literature survey is the

operational level of the BSS, and how the bicycles are rebalanced by service vehicles to

satisfy the customers. The rebalancing task is two-folded and consists of finding the op-

timal geographical routes for the service vehicles, as well as determining the loading and

unloading quantities at each station visit in the routes.

First, a previously conducted literature survey regarding exact solution methods is summa-

rized in Section 3.1. In Section 3.2, a literature survey regarding heuristic solution methods

applied to the BSS is presented. In Section 3.3, column generation heuristics applied to the

vehicle routing problem are elaborated. The motive of this literature survey is to show the

broad specter of solution approaches, and further pinpoint our motivation and purpose for

this thesis. The main source for literature is www.sciencedirect.com. Keywords like bike

sharing systems heuristic and column generation heuristic VRP are used and gave a total

of 276 and 247 search results, respectively. Relevant, distinctive articles are selected and

reduced to seven papers on heuristic methods and six papers on heuristic column genera-

tion. In Section 3.4, a summary of the literature survey and our motivation for this thesis

is presented.

15

16 CHAPTER 3. LITERATURE SURVEY

3.1 Exact Solution Methods

In general, the bicycle rebalancing problem is either static or dynamic, as illustrated in Ta-

ble 3.1. The static rebalancing neglects customer interactions. The system is often static if

rebalancing by the service vehicles is performed at night when closed for customer usage,

or if the demand is considered so low that it can be neglected. In contrary, the dynamic

problem aims to manage rebalancing operations during the day, hence the user demand

is not negligible, and the system is changing over time. The customer demand is either

deterministic or stochastic, i.e. known beforehand or random with a known probability

distribution, respectively.

Table 3.1: Taxonomy

Information quality
Deterministic input Stochastic input

System
evolution

System is
constant

Static and

deterministic
n/a

System changes
over time

Dynamic and

deterministic

Dynamic and

stochastic

A comprehensive study on the static rebalancing problem is found in Espegren and

Kristianslund (2015). The static solutions are useful if the demand pattern is stable

and predictable. However, if the demand varies considerably with time, the stations get

imbalanced during the day and static rebalancing is insufficient (Ghosh et al., 2016).

Hence, dynamic bicycle rebalancing is required. In the dynamic bicycle rebalancing

problem, user demand is changing the system constantly and the complexity is increased.

An extensive literature survey on dynamic rebalancing studies is found in our project thesis

(Gleditsch and Hagen, 2017). One of the main findings from this literature survey is that

most of the models previously developed are shortsighted when rebalancing strategies

are decided. When solving problems with a rolling horizon, it is common to divide the

problem into multiple subproblems with a shorter time horizon. We observed that most

of the models in previous studies prioritize decisions leading to instant good results at the

expense of long-term performance. For this reason, the main contribution in our project

thesis was a model that emphasizes long-term performance. Additionally, many of the

studies utilize clustering of stations to reduce the size of the problem.

3.2. HEURISTIC SOLUTION METHODS 17

Solving a bicycle rebalancing problem is challenging as inventory management of bicy-

cles at the stations and at the service vehicles also must be determined in addition to the

geographical routing strategies. As concluded in many of the studies, it is inefficient to

use exact solution methods to solve large, realistic rebalancing problems in general as the

solution space becomes too large, and thus unsolvable for commercial software.

3.2 Heuristic Solution Methods

Heuristics are commonly used to obtain a good solution in reasonable time when the opti-

mization problem at hand is intractable. Several heuristics may be suitable for the dynamic

rebalancing problem. A list of the heuristic solution methods applied to the dynamic bicy-

cle rebalancing problem found in the literature is as follows.

• Artificial bee colony algorithm with a rolling horizon framework

• Large neighbourhood search

• Destroy and repair algorithm

• Chemical reaction optimization

• GRASP with path re-linking

• Iterated Tabu search

• Variable neighbourhood search

The heuristic literature survey examines both static and dynamic rebalancing problems,

and focuses on solution procedure, generation of initial solution(s), determination of

loading quantities and evaluation of performance.

Shui and Szeto (2017) propose an enhanced artificial bee colony (EABC) algorithm that

solves the static problem in a rolling horizon framework. The algorithm is inspired by the

intelligent behavior of honeybees’ foraging process. Initial food sources, i.e. routes, are

randomly generated. The algorithm involves three types of bees with different roles in the

exploration and exploitation of food sources. In each iteration of the algorithm, each food

source is assigned to a bee, while the bee searches in the neighbourhood for better options.

The best food source is determined, and a greedy loading heuristic is applied. The service

vehicles are assumed to load or unload as many bicycles as possible. Additionally, a route

18 CHAPTER 3. LITERATURE SURVEY

truncation heuristic is executed to handle infeasible routes exceeding the time horizon.

The EABC algorithm works well for instances with 180 stations, and they conclude that

shorter stage lengths yield better solutions.

Ho and Szeto (2017) propose a hybrid large neighbourhood search (LNS) with multiple

service vehicles. First, initial routes are created using a construction heuristic. This

heuristic alternates between assigning pickup and delivery stations to a route until a time

constraint is violated. Then, the hybrid large neighbourhood search improves the initial

routes by destroying part of the routes by a removal operator to further repair them with

a insertion operator. They present five removal and five insertion operators, which rely

on simple mechanisms, to diversify and intensify the search. A tabu search is further

applied to the most promising routes. Further, the loading quantities are determined with

respect to spare capacity, remaining time, initial inventory and optimal state. All the

elements of the algorithm are highly reliant on station characteristics. The algorithm is

tested on instances up to 518 stations and five service vehicles. The computational results

confirm that their heuristic performs better when tabu search is incorporated, and that

each insertion and removal operator contributes to solution accuracy.

Dell et al. (2016) destroy and repair the solutions iteratively, while they also improve

the solutions by local search until a stopping criteria is reached. The initial solutions

are generated from the well-known savings algorithm by Clarke and Wright (Clarke and

Wright, 1964), where first n routes are created consisting of one station each. Further,

two routes are selected in each iteration and merged into a single route. This procedure

is repeated until no more merging is possible. They define load windows as the feasible

interval for load on the service vehicle before and after a station visit. Additionally,

they introduce the concept of loss of flexibility in a merged route. This is the difference

between the amount of feasibility in the merged route, and in the two original routes. A

negative loss of flexibility reduces the load window for the merged route. Local search

procedures are implemented to improve solutions, and include moving a station inter or

intra-route, swapping two stations, swapping pairs of stations, or merging sequences of

routes. The algorithm is able to solve all the small-size instances to optimality within an

average time of three seconds.

Szeto et al. (2016) present a chemical reaction optimization (CRO) method to solve

the static problem, and a subroutine method to determine the loading quantities. The

3.2. HEURISTIC SOLUTION METHODS 19

major components of CRO are molecules and elementary reactions. Molecules consist

of molecular structure, i.e. a solution, potential energy, i.e. objective value, and kinetic

energy, i.e. the ability to escape local optimum. Two sets are introduced and used in

the initialization to reduce the solution space, and contain pickup stations and delivery

stations, respectively. The station randomly picked from the best three in the first set

is chosen as the first station visit. Then a random station from set two is chosen as the

second station visit. This is repeated until the time horizon is reached. Further, the CRO

is applied and the elementary reactions include modifying, splitting and merging different

molecules. Local search is implemented to improve the solution. Station visits are added

if the time horizon is not fully utilized, infeasible solutions are repaired, and visiting

order is re-arranged. The CRO algorithm is able to quickly obtain a good solution with

instances up to 300 stations.

Ho and Szeto (2016) propose a method where GRASP is used to produce diverse solutions.

There are two phases in each iteration. In the first phase, a new solution is constructed

based on greediness and randomness, and the second phase improves the solution by local

search. The disadvantage with GRASP is that the iterations are independent of each other.

Hence, Ho and Szeto (2016) propose the concept of path-relinking, which generates new

solutions in iteration i by combining elements from elite solutions found by GRASP in

iteration i−1.

Ho and Szeto (2014) use tabu search, which is known for being efficient when solving

routing problems. However, rebalancing requires loading quantities in addition to

geographical routing decisions, hence new tabu search operators are added to handle

the extra variables. The initial solution is generated by sorting stations in groups of

pickup and delivery stations, and alternating between assigning pickup and delivery

stations to a route until a time constraint is violated. To improve solution quality, the tabu

search is embedded into an iterative framework where intensification and diversification

mechanisms are applied.

Rainer-Harbach et al. (2013) address the rebalancing problem by using a variable

neighbourhood search (VNS), and an embedded variable neighbourhood descent (VND)

that exploits various neighbourhood structures. An initial solution for each vehicle is

built by choosing among imbalanced stations that is reached without exceeding the time

horizon. For diversification, neighbourhood operators, like move, swap, and remove, are

20 CHAPTER 3. LITERATURE SURVEY

applied randomly to solutions from the VNS neighbourhood. The VND neighbourhood

engages problem specific operators, e.g. removal of unnecessary visits, insertion of

imbalanced stations etc. Corresponding loading quantities are derived either by a greedy

approach, a maximum flow network, or by a linear program. The greedy method is shown

to be fastest, and delivers solutions of good quality. The LP method has the advantage of

finding optimal quantities, but Rainer-Harbach et al. (2013) argue that the added flexibility

cannot compensate for larger computational time.

To summarize this section, different heuristics may be suitable for the bicycle rebalancing

problem. However, many of these methods do not consider the same problem properties

and station characteristics as we do in our thesis. Most consider the static problem with

one service vehicle, while we aim to solve the dynamic multi-vehicle problem. A heuristic

not implemented on the bicycle rebalancing problem in literature is column generation

heuristic. Column generation heuristics are shown to perform well on vehicle routing

problems (VRPs), and we want to examine how it performs when applied to the BSSs.

Our hypothesis is that a less random and a more controlled problem-specific approach may

give good results. In the next section, a literature survey on heuristic column generations

applied to VRPs are presented.

3.3 Heuristic Column Generation

The column generation (CG) algorithm decomposes the problem into a master problem

and a pricing problem. Initially, a set of columns, i.e. possible solutions, are passed to

the master problem. The method iterates between solving a reduced master problem with

only a subset of all possible columns, and a pricing problem that finds new columns that

can improve the objective function in the master problem. For CG to be considered an

exact solution algorithm, both the master problem and the pricing problem must be solved

to optimality in order to ensure that there are no non-included columns that can improve

the best-found solution. However, the development of an exact solution procedure for

the pricing problem is challenging for complex problems. Hence, it is appropriate to

incorporate heuristic algorithms into the CG framework. This literature survey examines

how a selection of papers regarding heuristic CG approaches the master problem, the

pricing problem, and the initialization of columns. As literature regarding heuristic CG

applied to BSSs was not discovered, literature regarding CG applied to VRPs are surveyed.

3.3. HEURISTIC COLUMN GENERATION 21

Pinto et al. (2018) solve the capacitated VRP, and propose four different heuristic

approaches for creating initial columns. The basic idea is to make the solution obtained

from LP relaxation of the reduces master problem feasisbile by fixing some variables.

The first approach forces all variables from the LP solution to take an integer value.

The second approach begins similarly as the first approach, but in addition, the column

corresponding to the route with the highest usage is added to the final solution and the

size of the master problem is reduced. The third approach suggests adding the customer

to a route that is assigned to most routes first. The fourth approach is similar to the third

approach, but suggests adding the customer that is assigned to less routes first. The master

problem is solved with an exact solution algorithm as a set partitioning problem. The

pricing problem is solved with variable neighbourhood search techniques.

Victoria et al. (2016) solve the capacitated VRP with time-dependent demand. The CG

algorithm starts by solving the pricing problem in each iteration. The pricing problem

constructs promising columns, and is solved as a longest-path problem using dynamic

programming with heuristic dominance rules to speed up the algorithm. When no

improving columns are found by the heuristic dominance rules, a full dominance check is

performed. The problem is reformulated using Dantzig-Wolfe decomposition to obtain a

master problem which is solved to its exact value. The pricing problem was tested with

and without heuristic dominance rules. CG without heuristic dominance rules found three

out of 15 optimal solutions, while CG with heuristic dominance rules found nine out of

15 optimal solutions.

Mahvash et al. (2015) propose two different approaches to the pricing problem with the

aim of speeding up the CG algorithm. In the first approach, the pricing problem is solved

as an elementary shortest path problem to find the routes that have a negative reduced cost.

A heuristic is enforced on the identified routes to verify feasibility in terms of loading

constraints. The second approach is developed to speed up the algorithm further. The

approach involves a heuristic that attains feasible routes in terms of loading constraints

with negative, but not necessarily minimal, reduced cost.

Guedes and Borenstein (2015) propose a state space reduction procedure combined with

CG for solving large instances on the multi-depot vehicle scheduling problem. With

many variables, most of them have small chances of being considered as good candidates

for the final solution and are, thus, extracted through a state space reduction. The goal

22 CHAPTER 3. LITERATURE SURVEY

of this procedure is to identify relevant variables that are selected by any solution in

the single-depot problem. If a variable is not chosen in the single-depot problem, then

it would have small chance of beinge chosen as a candidate solution when considering

the multi-depot problem. The reduced state space is used to generate initial columns.

Guedes and Borenstein (2015) emphasize the importance of good initialization as this

improves the convergence process. The master problem is solved right after a new column

is created to accelerate convergence and to avoid generation of duplicate columns. Good

initialization and state space reduction significantly increased the convergence process of

the model.

Beheshti and Hejazi (2015) propose a hybrid method of Dantzig-Wolfe decomposed CG

and an electromagnetism algorithm (EMA) that takes advantage of the attraction-repulsion

mechanism of electromagnetic theory. The algorithm starts with a random population of

particles, i.e. solutions, with individual charges, i.e. objective values. A better solution

with lower charge attracts other particles, while bad solutions repel them. The procedure

is split into an integration phase where the pricing problem of the CG is solved, and a

collaboration phase where the CG and EMA are parallelized and information is exchanged

to find better solutions. Initial columns are randomly generated, but Beheshti and Hejazi

(2015) conclude that heuristic approaches should be used for initialization.

Venkateshan and Mathur (2011) develop a specialized CG routine that reduces the com-

binatorial explosion in the number of routes generated and the number of nodes explored.

Venkateshan and Mathur (2011) prevent regeneration of sub-optimal routes with identical

route vectors by having restricted routes. Additionally, techniques that helped the BB-three

fathom quicker and a hierarchy of branching were presented. The minimization problem

is solved with branch-and-bound, where the lower bounds are obtained with CG. The ini-

tial solutions are so-called infeasible or feasible dummy solutions. Each of these solutions

satisfies the full demand of one node, but at the expense of a high cost.

3.4 Conclusion and Motivation of the Thesis

The most important characteristics of column generation heuristics surveyed in this

section are summarized in Table 3.2. First, it is evident that BSSs have received increased

attention from the academic community the last decade. We believe this is due to the

attractiveness of these systems for the users and the society, and the significant operational

3.4. CONCLUSION AND MOTIVATION OF THE THESIS 23

complexities for the operators.

As discussed, it is inefficient to use exact solution methods to solve large, realistic

rebalancing problems, and heuristic methods should be implemented. Column generation

heuristics applied to BSSs are not discovered in literature, despite its success on VRPs.

Our hypothesis is that a method with a low degree of randomness, and a higher degree of

controlled problem-specific approach may give good results. As reviewed in Section 3.3,

complex VRPs are solved quickly with column generation heuristic, and should be tested

on a BSSs. As observed in literature, it is common to solve the master problem with

an exact solution algorithm, while the initialization or/and pricing problem are solved

heuristically. Some studies generate initial columns randomly. However, as Beheshti

and Hejazi (2015) conclude, the initialization of columns should be based on a smart

algorithm that creates sensible routes, as smart initialization makes the algorithm converge

faster. In addition, our hypothesis is that good initialization diminishes the importance

of an advanced pricing problem heuristic since good solutions are more likely to exist

among the initial columns.

A general challenge with the bicycle rebalancing problem, compared to traditional VRP,

is that, in addition to the routes, determination of loading and unloading quantities are

required at each station visit. This complicates the problem significantly. Many of the

models surveyed solve this by implementing a separate loading instruction heuristic with

a greedy approach. Although an exact solution algorithm has the advantage of finding

optimal loading quantities, it cannot compensate for the considerably larger computational

time. Our hypothesis is that by having in-depth knowledge about the problem, we are able

to generate a loading quantity heuristic that determines loading quantities that are as good,

or even better in the long run, as the loading quantities determined with an exact algorithm.

Lastly, as briefly mentioned in the literature survey, clustering of stations into zones are

often used to reduce the solution space.

24 CHAPTER 3. LITERATURE SURVEY

Table 3.2: Comparison of Column generation-based heuristic studies

A
ut

ho
r

Pr
ob

le
m

In
iti

al
iz

at
io

n
M

as
te

r
pr

ob
le

m
Pr

ic
in

g
pr

ob
le

m
M

ul
tip

le
vi

si
ts

to
sa

m
e

st
at

io
n

Pi
nt

o
et

al
.

(2
01

8)
C

ap
ac

ita
te

d
V

R
P

L
P

R
el

ax
at

io
n

of
se

t

pa
rt

iti
on

in
g

pr
ob

le
m

w
ith

ro
un

di
ng

he
ur

is
tic

s.

Se
tp

ar
tit

io
ni

ng
pr

ob
le

m
E

le
m

en
ta

ry
Sh

or
te

st
Pa

th

Pr
ob

le
m

so
lv

ed
w

ith
V

N
S

N
o

V
ic

to
ri

a
et

al
.

(2
01

6)

C
ap

ac
ita

te
d

V
R

P
w

ith

tim
e-

de
pe

nd
an

t

de
m

an
d

n/
a

D
an

tz
ig

-W
ol

fe

de
co

m
po

si
tio

n
so

lv
ed

to
op

tim
al

ity

E
SP

PR
C

so
lv

ed
w

ith
D

P

an
d

he
ur

is
tic

do
m

in
an

ce
ru

le
s

N
o

M
ah

va
sh

et
al

.
(2

01
5)

C
ap

ac
ita

te
d

V
R

P
w

ith

3D
lo

ad
in

g

co
ns

tr
ai

nt
s

A
ss

ig
ni

ng
on

e
cu

st
om

er

to
ju

st
on

e
ve

hi
cl

e

D
an

tz
ig

-W
ol

fe
de

co
m

p.

+
se

t-
pa

rt
iti

on
in

g
pr

ob
le

m

D
P

+
H

eu
ri

st
ic

pr
ic

in
g

to
en

su
re

fe
as

ib
ili

ty
N

o

G
ue

de
sa

nd
B

or
en

st
ei

n
(2

01
5)

M
ul

ti-
de

po
tv

eh
ic

le

sc
he

du
lin

g
pr

ob
le

m

Pa
th

s
ob

ta
in

ed
by

th
e

st
at

e
sp

ac
e

re
du

ct
io

n

he
ur

is
tic

D
an

tz
ig

-W
ol

fe
de

co
m

p.

+
se

t-
pa

rt
iti

on
in

g
pr

ob
le

m

Sh
or

te
st

pa
th

pr
ob

le
m

us
in

g
th

e

Sm
al

l-
la

be
l-

fir
st

al
go

ri
th

m
N

o

B
eh

es
th

ia
nd

H
ej

az
i(

20
14

)
V

R
P

w
ith

so
ft

tim
e

w
in

do
w

s
R

an
do

m
ly

ge
ne

ra
te

d
D

an
tz

ig
-W

ol
fe

de
co

m
p.

so
lv

ed
to

op
tim

al
ly

.

E
SP

PR
C

so
lv

ed
w

ith
a

qu
an

tu
m

-i
ns

pi
re

d
ev

ol
ut

io
na

ry
al

go
ri

th
m

+
an

E
le

ct
ro

m
ag

ne
tis

m
al

go
ri

th
m

Y
es

Ve
nk

at
es

ha
n

an
d

M
at

hu
r

(2
01

1)
Fl

ee
ts

iz
e

an
d

m
ix

V
R

P

In
fe

as
ib

le
du

m
m

y

so
lu

tio
ns

th
at

sa
tis

fy

al
ld

em
an

d

B
&

B
w

ith
C

G

Ti
m

e-
ho

ri
zo

n-
co

ns
tr

ai
ne

d
SP

P

so
lv

ed
w

ith
ne

ga
tiv

e-
co

st
cy

cl
e

in
a

ne
tw

or
k

w
ith

tim
e

w
in

do
w

s

Y
es

Chapter 4

Problem Description

The problem we aim to solve in this thesis is the dynamic stochastic bicycle rebalancing

problem. This problem is described formally in Section 4.1. As the dynamic and stochastic

routing problem is incredibly complex, we approach this problem by solving a series of

smaller deterministic subproblems. This way the deterministic version of the problem is

solved iteratively as new relevant information gets revealed. This subproblem is presented

in Section 4.2. Central assumptions, constraints, and decisions are specified.

4.1 Dynamic Stochastic Bicycle Rebalancing Problem

In this Section, the real-world dynamic stochastic problem is elaborated together with an

example problem. The real-world problem is dynamic as information concerning changes

in the distribution of bicycles and service vehicles is not known beforehand, but becomes

available during operation. Furthermore, the problem is stochastic as new arrivals of

customers requesting locks or bicycles are assumed to be random variables with known

probability distributions.

As the future distribution of the bicycles are partly dependent on a stochastic demand

variable and partly by a controlled rebalancing decision, the problem is formulated as a

Markov Decision Process (MDP). A MDP is a discrete-time stochastic control process and

a framework for modeling decision making in situations where outcomes are both random

and controlled by a decision maker (Mes and Rivera, 2017). A MDP, based on Bellman

(1957), is formulated as shown in Formula (4.1).

25

26 CHAPTER 4. PROBLEM DESCRIPTION

st
xt−→ sx

t
ωt−→ st+1 (4.1)

An MDP consists of a set of possible states S for the environment, together with a set of

decisions X . A probability distribution for the outcome of the stochastic variable is also

known. This probability distribution may depend on the current state and the decision

that is made. This problem is solved over a given set of decision points t in the horizon

T . The transition process starts in state st ∈ St . Based on the information that is known

in this state, a decision xt ∈ XSt is made. This decision leads to a post-decision state

sx
t . The exogenous information is now revealed, represented by the stochastic variable

ωt ∈ Ωt . This information is memoryless, meaning it is only dependent on the present

state, not on any previous information, and thus, satisfies the Markov Property. The

process is now transitioned into the next state st+1, which gives the decision maker a cor-

responding reward or penalty depending on the expected future value of being in state st+1.

In the bike sharing problem, it is natural to have a decision point when a service vehicle

arrives at a station. The state st contains information about the distributions of service

vehicles and bicycles, while the decision xt , determines the service vehicles’ rebalancing

strategy. The deterministic post-decision state sx
t contains information about how the

system is after the decision xt is made. The transition to the next decision state st+1

happens when a service vehicle arrives at a station, and the exogenous information ωt

is realized. ωt contains information about accumulated customer demand since the last

station visit st . The penalty considers the number of unsatisfied customers, i.e. violations,

between the decision points st and st+1. In addition to this, the penalty evaluates the new

state and its expected future violations.

As customer demand is uncertain, violations cannot be minimized directly. Instead, the

expected number of violations is minimized. The goal is hence to find an optimal policy

π ∈ ∏, that maps a decision xt to every state st over the horizon T , where ∏ is the set

of potential policies. The overall goal is to map the decisions that minimize the expected

number of violations.

4.1.1 Example Problem

Figure 4.1 illustrates an example of a transition from state st to the next state st+1. In

this example, there are three stations and one service vehicle. The small circles indicate

4.1. DYNAMIC STOCHASTIC BICYCLE REBALANCING PROBLEM 27

the capacity. A filled circle means that there is a bicycle in the slot, and an open circle

indicates an available slot. The stations have six slots each, whereas the service vehicle

has five slots. In state st , depicted on the left side of Figure 4.1, station 1 contains three

bicycles, station 2 contains zero bicycles, and station 3 contains four bicycles. The service

vehicle is positioned at station 1 and is loaded with one bicycle. The time is 3:00 pm. The

decision xt is now decided based on the information presented in state st . This decision

contains information about how many bicycles to pick up or deliver at the current station,

and where to drive next. The resulting post-decision state sx
t is shown in the center of

Figure 4.1, where the decision xt is to pick up two bicycles and drive to station 2.

While driving from station 1 to station 2 the stochastic demand variable ωt is revealed.

This variable contains information about the accumulated demand from time 3:00 to 3:15

pm. As shown on the right side of Figure 4.1, one bicycle has been picked up at station 3 at

3:05, and one bicycle has been delivered to station 1 at 3:11 pm. In addition to this, there

has been one customer arriving at station 2 at 3:10 with intentions of getting a bicycle.

As there were no available bicycles at this point, one violation has occurred. The next

state st+1 contains information about the system after customer demand has been revealed.

Figure 4.1: Example problem with initial state st , decision xt , post-decision state sx
t , ex-

ogenous information ωt , and transition to next state st+1

4.1.2 Complexity of the Dynamic Stochastic Problem

Although formulating an MDP is relatively easy, the world is often so complicated that

it is problematic or impossible to determine an optimal policy π ∈ ∏ as the number

of potential policies are countless. Papadimitriou and Tsitsiklis (1987) analyze the

computational complexity of MDPs and show that the problem is NP-complete and that it

is no known algorithm that can solve general MDPs in a number of arithmetic operations

in polynomial time. Both the state space St , the decision space Xt and the outcome space

28 CHAPTER 4. PROBLEM DESCRIPTION

Ωt are victims of the curses of dimensionality. There exists a state for every possible

distribution of bicycles, a decision for every possible rebalancing strategy, and a stochastic

variable for every possible realization of customer demand. As of today, the BSS in Oslo

has 1,790 bicycles and 158 stations. As the number of slots in the system is the double of

the total number of bikes, each station has on average 1790·2
158 = 22 slots. This gives a total

of (1790+22−1
22) = 2.3x1050 possible states. Additionally, the time horizon (t, ...,T) can be

very long, making the policy even harder to identify. Hence, we usually must settle for an

approximation that is easier to solve.

A common technique for solving large-scale discrete-time multistage stochastic processes

is to break the problem into smaller subproblems. The optimal policy for the MDP is then

the one that provides an optimal solution to all the subproblems (Mes and Rivera, 2017).

The generation of subproblems are done by shortening the time horizon from T to T ,

where T is a suitable short horizon that is chosen to capture important behaviors (Powell,

2014). The daily time horizon for the rebalancing problem is 24 hours, but a time horizon

shortened to 30 or 20 minutes might be enough to produce high-quality decisions.

Figure 4.2, shows how the dynamic stochastic problem, formulated as an MDP, is

approximated through a series of smaller subproblems. The blue circles indicate decision

points. Whereas a decision in the MDP consists of only one instruction about how

many bicycles to load to a station and where to drive next, the subproblem provides a

strategy for the entire shortened time horizon. Mark, however, even though a rebalancing

strategy is made for the entire shortened time period T in the subproblem, the subproblem

can be re-solved more frequently, and that this figure illustrates an example where the

subproblem is re-solved with constant time intervals of T .

Figure 4.2: Illustration of how a Markov Decision Process is approximated by multiple
subproblems.

4.2. DYNAMIC DETERMINISTIC BICYCLE REBALANCING SUBPROBLEM 29

When the time horizon is shortened, one can assume a known constant rate of customers

within that short time period. Hence, the problem shifts from being stochastic to

deterministic. Even though we now know the demand beforehand, we still consider it

a dynamic problem since customer interactions change the station loads within the time

horizon. This approach is closer to the real dynamic stochastic problem compared to a

static approach where customer interactions are negligible.

An advantage of the dynamic problem formulated as an MDP is that each decision is made

while considering the consequences for the entire horizon T , i.e. the total expected penalty

is minimized. If the subproblem is modeled to find the solutions that are optimal for the

shortened time period T , consequences that occur after this period are ignored. In a real-

world setting, it is not preferable to carry out rebalancing strategies that are optimal in the

current period if they trigger unnecessary imbalance in the following period. While mod-

eling a dynamic stochastic problem as a set of smaller subproblems, it is important to be

aware of this potential weakness, and thus, try to incorporate elements in the subproblem

that also consider future consequences.

4.2 Dynamic Deterministic Bicycle Rebalancing
Subproblem

The dynamic problem is approximated by solving a series of smaller deterministic sub-

problems over a shorter time horizon. We call this subproblem the Dynamic Deterministic

Bicycle Rebalancing Subproblem (DDBRS). In this section, the main assumptions,

definitions, and restrictions are elaborated.

When a customer arrives at an empty station with intentions of getting a bicycle, the

station is starving. Likewise, when a customer arrives at a full station with intentions

of delivering a bicycle, the station is congested. Recall that both of these situations are

referred to as a violation. We want to minimize these events.

The initial state describes the situation at the time the subproblem is solved and includes

information about the number of bicycles positioned at each station, the current position

of each service vehicle, and the number of bicycles at each service vehicle.

30 CHAPTER 4. PROBLEM DESCRIPTION

Future demand is uncertain; thus, an estimate is made based on historical data. In the

subproblem, the stochastic information regarding demand at each station is assumed

known and is assumed to follow a constant rate. The net demand is defined as the amount

of customers that request a lock minus the amount of customers that request a bicycle

every time unit. We define each station as either a pickup station or a delivery station,

depending on whether it has a positive or negative net demand, respectively. We assume

that it is always reasonable to pick up bicycles from pickup stations and deliver bicycles

to delivery stations. The rates of deliveries and arrivals of bicycles depend on the time of

the day and the station.

The driving times between the stations are also assumed known and are input parameters

to the subproblem. There is a fixed parking time associated with a station visit. This time

includes the time it takes to park the service vehicle and get started again. In addition to

this, there is a unit handling time. This time is proportional to the number of bicycles

that are handled, and is constant regardless of whether the bicycle is being loaded to or

unloaded from the station.

Each service vehicle has a constant number of slots, and the number of bicycles that

is loaded to or unloaded from a station is therefore restricted to the service vehicle’s

capacity. The fleet of service vehicles is homogeneous, i.e. each service vehicle has the

same, constant number of slots.

The stations have a given number of locks. This number varies for each station. This

means that one cannot bring more bicycles to a station than there are locks available. Nor

can one pick up more bicycles from a station than there are bicycles currently parked

there. Each station has a predefined optimal number of bicycles calculated for each

hour. This is defined as the station’s optimal state. The goal is to fulfill the optimal

level of bicycles at each station at the end the time horizon. We want to minimize the

difference between the station load at the end of the time horizon and its optimal state.

This difference is defined as deviation.

To summarize, the objective is to find effective rebalancing strategies for the service ve-

hicles. These decisions are made based on fixed and time-dependent input parameters. A

conceptual overview of the model is shown in Figure 4.3.

4.2. DYNAMIC DETERMINISTIC BICYCLE REBALANCING SUBPROBLEM 31

Figure 4.3: Conceptual overview of the input and output of the subproblem.

4.2.1 Example Problem

Figure 4.4 illustrates an example of the DDBRS. The system consists of three stations

and one service vehicle. The time horizon T is 15 minutes. The initial state, depicted

on the left side of the figure, indicates that the time is 3:00, the service vehicle is empty,

and stations 1, 2 and 3 contain five, zero and two bicycles, respectively. The red numbers

indicate the known demand within the time horizon. A negative net demand indicates

more request for bicycles, and a positive net demand indicates more requests for locks.

Figure 4.4: The Dynamic Deterministic Bicycle Rebalancing Subproblem. The three fig-
ures illustrate the initial state, the service vehicle route, and the final state, respectively.

In this example, one customer wants to rent a bicycle from station 1, one customer

wants to return a bicycle to station 2, and two customers want to return their bicycles to

32 CHAPTER 4. PROBLEM DESCRIPTION

station 3. Based on the current state and the known demand, a decision concerning the

service vehicle route and load is planned. This plan, as illustrated by the blue symbols

in the middle of the figure, consists of picking up two bicycles from station 1, driving

to station 2 where one bicycle is delivered, and then drive to station 3 where another

bicycle is delivered. The arrival times for the service vehicle are derived based on known

transportation and handling time. The right side of the figure shows the resulting situation

at 3:15.

Chapter 5

Mathematical Model

In this chapter, a mathematical model for the dynamic deterministic bicycle rebalancing

subproblem (DDBRS) is presented. This model is equivalent to the model presented in

our project thesis (Gleditsch and Hagen, 2017). As mentioned, a common approach to the

dynamic stochastic real-world problem is to approximate it by solving a series of smaller

deterministic subproblems. How our model intend to limit shortsightedness, is presented

in Section 5.1. The main assumptions for this subproblem are presented in Section 5.2.

The notation and constraints used to model the DDBRS are described in detail in Section

5.3 and 5.4, respectively. Lastly, the objective function is formulated in Section 5.5.

5.1 Limit Shortsigthedness

As mentioned in the literature study in Section 3.1, many of the models presented in the

studies surveyed do not account for future planning periods, and we, therefore, perceive

them as slightly shortsighted. To avoid shortsightedness, two innovative aspects are in-

corporated in our model. Firstly, we observed in previous studies that the service vehicles

would stop before the time horizon if they did not have time to complete an additional trip.

To avoid this, we allow the last trip for each service vehicle to exceed the time horizon.

This is illustrated in Figure 5.1. By doing this, the idle time of the service vehicle at the

end of the period is reduced, and a rebalancing strategy benefiting the future is initiated

instead of a shorter disadvantageous trip. The second aspect that may contribute to a long-

term focus is the use of optimal state. The optimal state indicates how many bicycles that

should be loaded at a station at a particular time to minimize the chance of violations in

33

34 CHAPTER 5. MATHEMATICAL MODEL

Figure 5.1: a) Illustration of how service vehicles may be idle at the end of each time
horizon if every station visit must be completed before the end of the time horizon. b)
Illustration of how the last station visit are allowed to happen after the time horizon.

the next planning period. We want to incorporate the optimal state by minimizing the dif-

ference between the optimal state and the station load at the end of the planning period,

i.e. the deviation. By implementing these new aspects into the rebalancing problem, we

hope that the rebalancing strategies avoid a myopic focus, and that this can contribute to

better solutions in a real-world implementation.

5.2 Assumptions

The assumptions for the DDBRS aim to reduce the complexity of the model, without

compromising the realism of the problem. Recall that the subproblem is solved with a

shorter time horizon. Whereas a decision in the MDP consists of only one instruction

about how many bicycles to load and where to drive next, the DDBRS provides a

rebalancing strategy for the entire time horizon. Depending on the length of this time

horizon, the service vehicles may be routed for multiple station visits.

As the time horizon is relatively short, the customer demand is assumed known and to

follow a constant rate. This means that the net demand is either positive or negative, and

indicates how many bicycles that on average either arrive or depart every time unit. This

arrival rate does, however, vary with the time of day. Hence, each subproblem is solved

with different time-dependent input parameters. The demand increases or decreases the

inventory level until the station gets empty or full unless the station is rebalanced by a

service vehicle.

We assume that the first station visit for each service vehicle is pre-determined. Also,

the driving times from the service vehicles’ current positions to their predetermined

5.3. NOTATION 35

first station visit are given. This means that we do not know the service vehicles’

exact geographical positions, rather, we know where they are headed and their arrival

times. The loading quantity at the first station visit is not pre-determined. The service

vehicles must finish their ongoing trips before being routed to a new station. To avoid

shortsightedness, we allow the last trip for each service vehicle to exceed the time horizon.

The service vehicles can visit multiple stations within the time horizon. However, each

station can only be visited a certain number of times. This assumption is included

to reduce the dimensionality of the problem. Service vehicles are assumed to drive

directly between stations. The parking time at a station is fixed and the handling time

is proportional to the number of bicycles being loaded or unloaded. A station cannot be

visited by more than one service vehicle at a time. The first service vehicle must finish

handling the bicycles before a new service vehicle may arrive.

In this model, all violations are weighted equally. However, violations at different stations

and times could be weighted differently, as well as different weighting of congestions and

starvations. Additionally, the costs of utilizing the service vehicles, e.g. fuel and labour

costs, are neglected. This is because we assume that the service vehicles are working

constantly, and not only upon request. We assume that the focus is on rebalancing the

system and meeting customer demand, rather than minimizing costs.

5.3 Notation

In this section the sets, indices, parameters, and variables used to model the DDBRS are

described. A summary of all notation used is presented in Table 5.1.

The problem consists of a set of stations S, indexed by i and j, and a set of service vehicles

V , indexed by v. The problem is solved with a time horizon T . The service vehicles must

finish their ongoing station visits before being routed to a new station. As illustrated in

Figure 5.2, o(v) denotes the first station visit for service vehicle v, and T o(v)
v the remaining

driving time to this station. All service vehicles must end their routes at an artificial

destination d. This destination is common for all the service vehicles, and is included

for modeling purposes only. This station is not a real station, hence the driving time

to the artificial destination from other stations is zero. The station capacity at d is also zero.

36 CHAPTER 5. MATHEMATICAL MODEL

Figure 5.2: If a service vehicle has not completed a station visit, this station visit is trans-
ferred to the consecutive time horizon.

Every station has a set of possible visits M, indexed by m and n. A station visit is

referred to as (i,m) where i indicates the station id, and m indicates the visit number

for that particular station. The maximum number of times a station can be visited

by a service vehicle is limited to M. The first time a station is visited by a service

vehicle is labeled by m = 1, and the second visit by m = 2 and so on. Each sta-

tion i has a limited capacity, denoted by QS
i . Similar to a station, each service vehicle

v has a limited number of bicycles that can be transported at the same time, denoted by QV
v .

LS,o
i and LV,o

v define the initial load of bicycles at each station i and on each service vehicle

v, respectively. The optimal state at station i is denoted Oi. The deviation at a station i is

denoted as di. This describes how far away the bicycle load at a station is from its optimal

state Oi at the time horizon T . The driving time between station i and station j is denoted

by T D
i j . T P is a fixed time used for parking, and T H is the unit handling time used for

loading and unloading one bicycles.

The model uses the arc-flow variable, xim jnv, which is a binary variable that indicates

whether service vehicle v drives directly from station visit (i,m) to station visit (j,n).

This formulation makes multiple visits to a station possible, and keeps track of the

timing of events. The continuous time variable tim represents the time for which

station visit (i,m) starts. The variables qL
imv and qU

imv keep track of how many bicycles

that are loaded and unloaded, respectively, to/from station i by service vehicle v. Note

that the loading variables are indexed by visit number m, which ties them to a specific visit.

lS
im and lVimv are the inventory variables. lS

im denotes the number of bicycles at station i just

before station visit (i,m). The variable is independent of which service vehicle that serves

the station. lVimv denotes the bicycle load at service vehicle v just after the service vehicle

has completed station visit (i,m). The customer demand Di represents the net demand

per time unit at station i. A positive demand indicates demand for locks, and a negative

5.3. NOTATION 37

demand indicates demand for bicycles. Stations with positive demand are denoted as

pickup stations, and stations with negative demand are denoted as delivery stations. The

inventory level at a station and how it is affected by rebalancing operations and customer

demand, is illustrated in Figure 5.3. The initial bicycle load at this station is LS,o
i . The

station faces demand Di for bicycles, i.e. a negative demand. The demand decreases the

inventory level to zero. At time ti1 a service vehicle arrives and delivers a loading quantity

qL
ivm to the station. Customers continue to demand bicycles, but a service vehicle arrives

at the station before any violations occur again.

Figure 5.3: The changes in the inventory level at a station due to customer demand and
rebalancing conducted by service vehicles.

To begin with, two variables for violations are introduced. vC
im and vS

im represent the accu-

mulated congestions and starvations between station visit (i,m) and the station’s previous

visit (i,m−1), respectively. In case of no previous trips, these variables represent the vi-

olations from the beginning of the time horizon until the station visit (i,m). In Subsection

5.4.2, additional variables and constraints that capture violations in different situations, are

presented.

Table 5.1: Notation used for modelling the SBRP

38 CHAPTER 5. MATHEMATICAL MODEL

Sets
S Set of stations

V Set of service vehicles

M Set of visits at a station

Indices
i, j Station i, j ∈ S

v Service vehicle v ∈V

m,n Visit number m ∈M

o(v) Pre-determined station visit for service vehicle v

d Artificial destination

Parameters
T Time horizon

QV
v Storage capacity at service vehicle v

QS
i Docking capacity at station i

LV,o
v Initial load of bicycles at service vehicle v

LS,o
i Initial load of bicycles at station i

Oi Optimal state at station i at time T

M Maximum number of visits at a station

T D
i j Driving time between station i and j

T o(v)
v Driving time for service vehicle v to the starting station o(v)

T P Service vehicle parking time

T H Unit handling time used for picking up or delivering bicycles

Di Net customer demand at station i

Variables
xim jnv 1 if service vehicle v drives directly from station visit (i,m) to station visit (j,n),

0 otherwise

tim Time station visit (i,m) begins

qL
imv Number of bicycles loaded to station i at visit m by service vehicle v

qU
imv Number of bicycles unloaded from a station i at visit m by service vehicle v

lS
im Bicycle load at station i when visit m starts

lVimv Bicycle load at service vehicle v right after station visit (i,m)

si Inventory level at station i at time T

sv Inventory level at vehicle v at time T

vC
im Congestion at station i between station visit m and its previous visit

vS
im Starvation at station i between station visit m and its previous visit

di Deviation at station i

5.4. CONSTRAINTS 39

5.4 Constraints

In this Section, the constraints that ensure feasible routes, i.e. the routing constraints,

vehicle and station loading constraints, time constraints, and the non-negative, binary and

integer constraints, are presented. Further, the constraints that ensure the right counting of

violations and deviations are presented.

5.4.1 Ensure Feasible Routes

Routing Constraints

The routing constraints (5.1)-(5.5) force the service vehicles to have continuous routes.

Each service vehicle has to start in o(v) and end in d. In addition to this, each station visit

can only be completed once.

∑
j∈S

∑
n∈M

xo(v)1 jnv = 1 v ∈V (5.1)

∑
i∈S

∑
m∈M

ximd1v = 1 v ∈V (5.2)

∑
i∈S

∑
m∈M

xim jnv−∑
i∈S

∑
m∈M

x jnimv = 0 v ∈V, j ∈ {o(v),d},n ∈M\{1} (5.3)

∑
i∈S

∑
m∈M

xim jnv−∑
i∈S

∑
m∈M

x jnimv = 0 v ∈V, j ∈ S\{o(v),d},n ∈M (5.4)

∑
j∈S

∑
n∈M

∑
v∈V

xim jnv ≤ 1 i ∈ S\{d},m ∈M (5.5)

Vehicle Loading Constraints

Service vehicle load constraints (5.6) make sure that the service vehicle load after visiting

the first station o(v) is updated. Constraints (5.7) ensure service vehicle load balance

between two station visits. Constraints (5.8) and (5.9) make sure no more bicycles are

loaded from the service vehicle than available bicycles, and no more bicycles are loaded

to the service vehicle than available locks at the service vehicle, respectively. This ensures

that the load at the service vehicle never exceeds the service vehicle’s capacity.

40 CHAPTER 5. MATHEMATICAL MODEL

lVo(v)1v−qU
o(v)1v +qL

o(v)1v = LV,o
v v ∈V (5.6)

(lVimv +qU
jnv−qL

jnv− lVjnv)xim jnv = 0 v ∈V, i, j ∈ S\{d},m,n ∈M (5.7)

qU
imv ≤ lVimv ≤ ∑

j∈S
∑

n∈M
QV

v · xim jnv v ∈V, i ∈ S\{d},m ∈M (5.8)

lVimv ≤ ∑
j∈S

∑
n∈M

QV
v · xim jnv−qL

imv v ∈V, i ∈ S\{d},m ∈M (5.9)

Station Loading Constraints

Constraints (5.10) restrict service vehicles from loading more bicycles to a station than the

station’s capacity. Constraints (5.11) and (5.12) handle the loading balance and violations

at each station. Constraints (5.11) capture violations between the beginning of the time

horizon and the first station visit. Constraints (5.12) capture violations between any two

station visits.

lS
im + ∑

v∈V
(qL

imv−qU
imv)≤ QS

i i ∈ S\{d},m ∈M (5.10)

lS
i1−Diti1− vS

i1 + vC
i1 = LS,o

i i ∈ S\{d} (5.11)

(lS
i,m−1 + ∑

v∈V
(qL

i,m−1,v−qU
i,m−1,v)+Di(tim− ti,m−1)

+ vS
im− vC

im− lS
im)∑

j∈S
∑

n∈M
∑
v∈V

xim jnv = 0 i ∈ S,m ∈ m\{1}
(5.12)

Time Constraints

The time constraints (5.13) force the time of arrival at station visit (i,m) to be before the

time of arrival at station visit (j,n) if the service vehicle drives directly between these two

station visits. It also includes the parking, handling and driving time it takes to complete

the loading and driving. Constraints (5.14) say that two service vehicles cannot visit the

same station at the same time. Constraints (5.15) restrict the time of arrival at the first

station o(v) to be after the time it takes to actually get there. Constraints (5.16) ensure

that the time of arrival is within the time horizon for all station visits with exception of the

5.4. CONSTRAINTS 41

last station visit. Constraints (5.17) force the visit time for station visit (i,m) to be zero if

no visit is made. These constraints would normally be unnecessary, but as we allow one

additional trip after the time horizon, it complicates how the violations are counted, and

we need these constraints to capture which station visit that is the last for each station.

This is further discussed in Subsection 5.4.2. Lastly, constraints (5.18) say that visit

(m− 1) has to be done before visit m. These constraints work as symmetry breaking

constraints, and help reduce the computational time.

(tim +T H
∑
v∈V

(qL
imv +qU

imv)+T P +T D
i j − t jn) ∑

v∈V
xim jnv ≤ 0

i, j ∈ S\{d},m,n ∈M (5.13)

tim− (ti(m−1)+T H
∑
v∈V

(qL
i(m−1)v +qU

i(m−1)v)+T P)∑
j∈S

∑
n∈M

∑
v∈V

xim jnv ≥ 0

i ∈ S,m ∈M\{1} (5.14)

to(v)1 ≥ T o(v)
v v ∈V (5.15)

(1−∑
v∈V

ximd1v) · tim ≤ T i ∈ S\{d},m ∈M (5.16)

tim(1−∑
j∈S

∑
n∈M

∑
v∈V

xim jnv)≤ 0 i ∈ S\{d},m ∈M (5.17)

tim(1−∑
j∈S

∑
n∈M

∑
v∈V

xi(m−1) jnv)≤ 0 i ∈ S,m ∈M|{1} (5.18)

Non-negativity, Integer and Binary Constraints

Binary, integer and non-negativity constraints are given by (5.19)-(5.28). The flow vari-

ables must be binary, while the loading and unloading variables must be integers. As the

expected demand follows a continuous rate, the violation and station load variables are

continuous. All variables are non-negative. Constraints (5.7), (5.12) - (5.14), and (5.16)

- (5.18) are nonlinear and need to be linearized before implementation. The linearization

can be seen in Section A.1 in Appendix A.

42 CHAPTER 5. MATHEMATICAL MODEL

xim jnv ∈ {0,1} i, j ∈ S,m,n ∈M,v ∈V (5.19)

qL
imv,q

U
imv ≥ 0, integer i ∈ S,m ∈M,v ∈V (5.20)

tim ≥ 0 i ∈ S,m ∈M (5.21)

vC
im,v

S
im ≥ 0 i ∈ S,m ∈M (5.22)

lS
im ≥ 0 i ∈ S,m ∈M (5.23)

lVimv ≥ 0 i ∈ S,m ∈M,v ∈V (5.24)

si ≥ 0 i ∈ S (5.25)

sv ≥ 0 v ∈V (5.26)

vC
im,v

S
im ≥ 0 i ∈ S,m ∈M (5.27)

di ≥ 0 i ∈ S (5.28)

5.4.2 Violations and Deviations

For each station, we want to capture violations only until the time horizon T , as illustrated

by the solid line in Figure 5.4. If we count violations until the very last station visit for

each station, the period where we count violations would vary for each station as they all

have different arrival times for their last visit. We want to incentivize the service vehicles

to start a new trip even though they will not get there within the time horizon. As the

objective includes minimizing violations, the service vehicles would not be motivated to

initiate trips that exceed the time horizon if we were to count violations until the very last

visit. Thus, we cannot count violations after the time horizon. Instead, we reward these

initiated trips. This is discussed further in Section 5.5.

Figure 5.4: The violations are only counted until the time horizon, indicated by the solid
line.

For each station we have three different situations: 1) a station does not get any visits,

2) a station gets its last visit within the time horizon, and 3) a station gets its last visit

after the time horizon. To separate the violations in these different situations, some

5.4. CONSTRAINTS 43

additional violation variables are presented. Figures 5.5, 5.6 and 5.7 illustrate these

situations and the different violation variables, respectively. As mentioned in Section 5.3,

vC
im and vS

im are the congestion and starvation between station visit (i,m) and its previous

station visit (i,m− 1), respectively. If there are no previous station visits, these vari-

ables capture the violations from the beginning of the time horizon until station visit (i,m).

vC, f
i Congestion from last visit (i,m) to T if last visit is before T ,

or total congestion if no visits

vS, f
i Starvation from last visit (i,m) to T if last visit is before T ,

or total starvation if no visits

vS,F
i Starvation from T to last visit (i,m) if last visit is after T

vC,F
i Congestion from T to last visit (i,m) if last visit is after T

Figure 5.5: Situation 1: Station i does not get any visits

Figure 5.6: Situation 2: Station i gets its last visit within the time horizon

Figure 5.7: Situation 3: Station i gets its last visit after the time horizon

44 CHAPTER 5. MATHEMATICAL MODEL

To avoid counting violations after the time horizon, the violations from the time horizon

until the last visit (vC,F
i + vS,F

i) have to be subtracted from the total violations. The total

violations are now calculated as expressed in (5.29).

∑
i∈S,m∈M

(vC
im + vS

im)+∑
i∈S

(vC, f
i + vS, f

i)−∑
i∈S

(vS,F
i + vC,F

i) (5.29)

In the rest of this section, the constraints that capture these different violation variables

are introduced. First, to distinguish between the different situations, the following binary

variables are applied. These variables are determined by constraints (5.30)-(5.36).

δ T
im 1 if station visit (i,m) is after the time horizon T , 0 otherwise

θ
f

im 1 if station visit (i,m) is the last visit for station i, 0 otherwise

γi 1 if station i gets at least one visit, 0 otherwise

tim(1−δ
T
im)≤ T i ∈ S,m ∈M (5.30)

tim ≥ T ·δ T
im i ∈ S,m ∈M (5.31)

tim · (1−θim)≤ ti(m+1) i ∈ S,m ∈M\{|M|} (5.32)

tim ≥ ti(m+1)θim i ∈ S,m ∈M\{|M|} (5.33)

ti|M| ≥ θi|M| i ∈ S (5.34)

ti|M|(1−θi|M|)≤ 0 i ∈ S (5.35)

γi = ∑
j∈S

∑
n∈M

∑
v∈V

xi1 jnv i ∈ S (5.36)

Situation 1: A station does not get any visits within the time horizon. The total violations

are vC, f
i + vS, f

i , and are shown in Figure 5.5. The station load at T is si. Constraints (5.37)

capture the violations when the station does not get any visits within the time horizon, i.e.

γi = 0.

(−si +LS,o
i +DiT − vC, f

i + vS, f
i)(1− γi) = 0 i ∈ S\{d} (5.37)

Situation 2: A station gets its last visit within the time horizon. The total violations are

∑m∈M(vC
im + vS

im)+ (vC, f
i + vS, f

i), and are shown in Figure 5.6. Constraints (5.38) capture

the violations from the last visit until the time horizon. Note that these restrictions are

5.4. CONSTRAINTS 45

realized when the station visit (i,m) is both before the time horizon, i.e. δim = 0, and the

last visit for this station, i.e. θim = 1.

(−sI + lS
im + ∑

v∈V
(qL

imv−qU
imv)+Di(T − tim)+ vS, f

i − vC, f
i)(1−δim) ·θim = 0

i ∈ S,m ∈M (5.38)

Situation 3: A station gets its last visit after the time horizon. Constraints (5.39) capture

the violations from the time horizon T until the last visit. Note that these constraints are

only realized when station visit (i,m) is both after the time horizon, i.e. δim = 1, and is the

last visit for station i, i.e. θim = 1. Also, note that both of these binary variables are needed

as a station can have multiple visits after the time horizon. The service vehicles, however,

are restricted to only complete one station visit after the time horizon.

(−si +(vS
im− vS,F

i)− (vC
im− vC,F

i)+ lS
im−Di(tim−T)+ vC

im− vS
im)δim ·θim = 0

i ∈ S,m ∈M (5.39)

As these violations are subtracted from the total violations, the model tries to maximize

these violations. Thus, we need constraints that ensure that the violations can be greater

than zero only if the station is actually full or empty at the time of the visit. Constraints

(5.40) and (5.41) ensure this. vim−vC,F
i and vim−vS,F

i are the violations at the time horizon.

(QS
i − si)(vC

im− vC,F
i) = 0 i ∈ S,m ∈M (5.40)

si(vS
im− vS,F

i) = 0 i ∈ S,m ∈M (5.41)

If the last visit is before the time horizon, we want to ensure that the violations after the

time horizon vC,F
i and vS,F

i equals zero. Constraints (5.42) and (5.43) ensure this.

vC,F
i (1− ∑

m∈M
δ

T
im) = 0 i ∈ S\{d} (5.42)

vS,F
i (1− ∑

m∈M
δ

T
im) = 0 i ∈ S\{d} (5.43)

Constraints (5.44) and (5.45) specify the relationship between the violations after the time

horizon and the violations between this station visit and the previous station visit. These

46 CHAPTER 5. MATHEMATICAL MODEL

constraints must be included to ensure that the violations after horizon does not take a

value higher than the actual violations.

vC,F
i ·θim ·δim ≤ vC

im i ∈ S\{d},m ∈M (5.44)

vS,F
i ·θim ·δim ≤ vS

im i ∈ S\{d},m ∈M (5.45)

Deviations
We also want to capture the deviation at time T . The deviation is defined as the difference

between the optimal state Oi at time T and the actual load si at time T . Constraints (5.46)

and (5.47) capture this.

di ≥ Oi− si i ∈ S (5.46)

di ≥ si−Oi i ∈ S (5.47)

The total deviation is

∑
i∈S

di

Constraints (5.30), (5.32), (5.33), (5.35), and (5.37) - (5.45) are nonlinear and need to be

linearized before implementation. The linearization can be seen in Section A.2 in Ap-

pendix A.

5.5 Objective Function

In the objective function (5.48), we want to minimize the total violations within the time

horizon T , at the same time as we want to minimize the total deviation at time T . In

addition to this, we want to maximize the reward given for initiating trips where the

arrival times exceed the time horizon. As this objective function consists of three different

objectives, this problem is categorized as a multi-objective optimization problem. To

solve this, we have chosen to use the weighted-sum method where each objective is

assigned a weight. wv, wd and wr are weights for the total violations, deviations and

reward, respectively.

In this section, the objective function is presented, together with the reward function and

its associated constraints.

5.5. OBJECTIVE FUNCTION 47

min wv (∑
i∈S,m∈M

(vC
im + vS

im)+∑
i∈S

(vC, f
i + vS, f

i)−∑
i∈S

(vS,F
i + vC,F

i))+wd (∑
i∈S

di)−wrReward

(5.48)

The effect of visiting a station, in terms of reduction in violations, is first visible after the

stations are visited. Hence, a vehicle is not motivated to initiate a trip to a station after the

time horizon if violations are only minimized within the time horizon. Consequently, we

need to introduce rewards for these initiated trips. As we do not impose a time constraint

on this last visit, a challenge arises when the most optimal station to visit after T is

undesirably far away. Therefore, we impose a reward for starting a station visit that takes

place after T , and a penalty associated with the driving time to that particular station.

There are different ways to approach the reward function, but in this thesis we have

chosen to incentivize the service vehicles to choose a station that has high deviation as we

believe this incorporates the rolling horizon aspect in a good way. As mentioned earlier,

deviation is derived using the optimal state, and hence accounts for future demand. The

service vehicles receive a reward that equals the deviation at the station they choose to

visit. This reward is denoted rD
i and is weighted by wD. In addition, a penalty t f

v , equal to

the driving time to the chosen station, is subtracted from the reward with weight wT . The

reward function then becomes:

wD
∑
i∈S

rD
i −wT

∑
v∈V

t f
v

Even though a particular station has high deviation at the time horizon, it does not make

sense to drive to a station that has too many bicycles if we already have a full service

vehicle. Also, it does not make sense to drive to an empty station if the service vehicle also

is empty. Therefore, we want to impose some restrictions on which stations the different

service vehicles are allowed to visit as their last visit. Table 5.2 lists the notation used.

48 CHAPTER 5. MATHEMATICAL MODEL

Table 5.2: Notation used for modelling the reward function

Sets
S− Delivery stations with negative net demand

S+ Pickup stations with positive net demand

Parameter
I Loading constant implying when the service vehicle is restricted to take

certain trips

wD Weight for deviation

wT Weight for driving time

Variables
sV

v Vehicle load at time T for vehicle v

rD
i Reward, derived from deviation, for driving to station i after the time

horizon

t f
v Driving and handling time left for service vehicle v to the last planned

station visit at the time horizon T

σL
v 1 if service vehicle load sV

v is below I, 0 otherwise

σH
v 1 if service vehicle load sV

v is above QV
v − I

The service vehicle load sV
v at time T is determined by restrictions (5.49) and (5.50).

Restrictions (5.51) state that the reward rD
i for visiting station i must be less than the

deviation di at station i, whereas restrictions (5.52) states that there can only be a reward

if the station actually is visited after the time horizon. If the service vehicle load sV
v at

time T is less or equal to the loading constant I, service vehicle v can only visit pickup

stations. These stations are determined by the set S+. Likewise, if the service vehicle load

sV
v at time T is greater or equal to the vehicle capacity QV

v minus the loading constant I,

service vehicle v can only visit delivery stations. These stations are determined by the set

S−. The binary variables σL
v and σH

v capture this along with restrictions (5.53) - (5.56). If

the service vehicle load is in the interval [I,QV
v − I], there are no restrictions on where the

service vehicle can drive. Restrictions (5.57) determines the remaining driving time from

T until the final station for service vehicle v.

5.5. OBJECTIVE FUNCTION 49

sv ≥ lVimv− (2−δ jn +δim− xim jnv)OV
v i, j ∈ S,m,n ∈M,v ∈V (5.49)

sv ≤ lVimv +(2−δ jn +δim− xim jnv)OV
v i, j ∈ S,m,n ∈M,v ∈V (5.50)

rD
i ≤ di +QS

i (1− ∑
m∈M

δim) i ∈ S (5.51)

rD
i ≤ ∑

m∈M
δimQS

i i ∈ S (5.52)

sV
v ≥ I− Iσ

L
v v ∈V (5.53)

sV
v ≤ QV

v − I + Iσ
H
v v ∈V (5.54)

ximd(v)1v ≤ (1−σ
L
v)+(1−δim) i ∈ S− (5.55)

ximd(v)1v ≤ (1−σ
H
v)+(1−δim) i ∈ S+ (5.56)

t f
v = ∑

i∈S
∑

m∈M
ximd(v)1v · tim−T v ∈V (5.57)

Constraints (5.57) are nonlinear, and therefore need to be linearized before implementa-

tion. A linear version is presented in Section A.3 in Appendix A.

The complete objective function is formulated in (5.58).

min wv[∑
i∈S,m∈M

(vC
im+vS

im)+∑
i∈S

(vC, f
i +vS, f

i)−∑
i∈S

(vS,F
i +vC,F

i)]+wd
∑
i∈S

di−wr[wD
∑
i∈S

rD
i −wT

∑
v∈V

t f
v]

(5.58)

50 CHAPTER 5. MATHEMATICAL MODEL

Chapter 6

Column Generation Heuristic for
the DDBRS

As concluded in the literature survey in Chapter 3, it is inefficient to use exact solution

methods to solve bicycle rebalancing problems due to the complexity and large solution

space. With commercial optimization software, and within reasonable computational

time, we are only able to solve the mathematical model presented in Chapter 5 to

optimality if there are maximum eight stations and two service vehicles in the system.

BSSs today have hundreds of stations. Hence, a heuristic solution method is implemented.

In this thesis, a column generation heuristic is applied to the subproblem with the aim of

solving realistic problem sizes within a reasonable computational time. By using a heuris-

tic instead of a commercial optimization solver, we are no longer guaranteed that the so-

lutions found are optimal. However, we believe that adequate solutions can be found, and

that the gain of reducing the computational time is more valuable than the loss caused by a

reduced solution quality. As mentioned, column generation heuristic applied to BSSs has

not been discovered in literature despite its success on vehicle routing problems. As good

solutions to the subproblems can be generated by empirical analyses, and as most of the

flow variables in the exact solution method will take a value of zero, column generation is

assumed to perform well. A general overview of our column generation heuristic is given

in Section 6.1. Second, three different variations of the master problem are elaborated in

Section 6.2. Further, the initialization algorithm for generating initial columns is described

in Section 6.3. Last, the pricing problem is discussed in Section 6.4.

51

52 CHAPTER 6. COLUMN GENERATION HEURISTIC FOR THE DDBRS

6.1 Overview of Algorithm

Column generation algorithms have been specially designed for solving mathematical pro-

grams with a huge number of variables. Unfortunately, this method suffers from slow con-

vergence, something that limits its efficiency and usability (Moungla et al., 2010). Hence,

a method that combines exact optimization and heuristics is proposed. Initial columns are

generated with a heuristic branching algorithm, whereas the optimal combination of these

columns is determined by Xpress in the master problem. Moreover, the pricing problem

is solved with a simple heuristic with the aim of finding new and better columns to add to

the master problem. Figure 6.1 illustrates the steps in our column generation heuristic.

Figure 6.1: The steps in our column generation heuristic

In the initialization, a set of columns is generated for each service vehicle through a heuris-

tic. Each column corresponds to one possible route. The master problem selects the opti-

mal combination of columns by allocating one route to each service vehicle. As the master

problem only considers a subset of all possible columns, it is, in fact, a restricted master

problem. However, we will refer to it as the master problem (MP) further in this thesis.

The pricing problem heuristic creates a given number of new routes that include critical

non-visited stations, and adds these to the master problem. The algorithm iterates between

the master problem and the pricing problem for a given number of times. With a pricing

problem heuristic, there is no way of knowing how far away the local optimum found in

the master problem is from the global optimum. Hence, smart initialization of columns is

a crucial step in our column generation heuristic. Better initial columns provide a better

first iteration solution, and will accelerate the convergence process. Besides, solving the

master problem is the most time-consuming part, especially with large test instances and

many columns. Consequently, a considerable amount of effort is put on the initialization

of columns.

6.2. MASTER PROBLEM 53

6.2 Master Problem

The master problem (MP) determines the optimal combination of columns by allocating

one route to each service vehicle. Recall that the rebalancing problem has several variables

determining, among other things, flow, loading quantity, arrival time, inventory level at ser-

vice vehicle and station, violations and deviations. Instead of determining these variables

within the MP, some of these variables may be predetermined as part of the initialization

and rather be input parameters to the MP. A reduction in computational time in the MP is

expected, along with a reduction in the solution quality, i.e. a higher objective value. Thus,

we expect a trade-off between the computational time and the quality of the solution. To

examine how the computational time and the solution quality are influenced by the amount

of predetermined information, we present three different versions of the MP.

Figure 6.2: The three different versions of the master problem.

54 CHAPTER 6. COLUMN GENERATION HEURISTIC FOR THE DDBRS

The three versions have an increasing amount of predetermined information and are illus-

trated in Figure 6.2. In version 1, geographical routes for the service vehicles are created

in the initialization process, whereas the loading quantities and the arrival times are de-

termined in the MP. In version 2, also the loading quantities and the arrival times are

predetermined in the initialization. However, the master problem has some flexibility to

change the given loading quantities. In version 3, the loading quantities and the arrival

times are entirely pre-determined by the initialization algorithm. In version 3, there is

also added a restriction stating that no more than one visit to each station is allowed, i.e.

M = 1. Both version 1 and 2 inherit all the constraints from the mathematical model pre-

sented in Chapter 5. As version 3 restricts each station to have at most one visit, violations

and deviations can be predetermined, and the mathematical model of the MP is simplified

significantly.

6.2.1 Version 1: Loading Quantity and Arrival Time Determined in
MP

In version 1 of the MP, the columns only contain information about the geographical

routes. The loading quantities and the arrival times are determined in the MP. Each service

vehicle v has a set of columns Rv. The integer parameter Ai jvr counts how many times

service vehicle v drives directly from station i to station j in route r. The binary variable

λvr takes a value of 1 if route r is allocated to service vehicle v, and zero otherwise. In

addition to the notation presented in Section 5.3, the notation in Table 6.1 is used.

Table 6.1: Additional notation used for modelling the MP version 1

Sets
Rv Set of possible routes for v

Indices
r Route r ∈ Rv

Parameters
Ai jvr No. of times service vehicle v drives directly from station i to station j

if allocated route r

Variables
λvr 1 if service vehicle v is allocated route r, 0 otherwise

6.2. MASTER PROBLEM 55

In this version of the MP, it is possible to have multiple visits to a station, i.e. M ≥ 1,

which means that the Ai jvr parameters can take a value greater than one. Recall that the

mathematical model in Chapter 5 uses the indices m and n to keep track of the station

visit number. m = 1 refers to the first visit at a station. Since the Ai jvr parameters do

not track the station visit number, the flow variables xim jnv are still needed to ensure

feasible routes. Consequently, the number of variables increases, but the outcome space

of the flow variables decreases compared to the original formulation presented in Chapter

5. This complicates the model compared to a situation where flow variables xim jnv are

completely replaced by the interior representation ∑r∈Rv Ai jvr ·λvr.

Version 1 of the MP inherits Constraints (5.1)-(5.47) presented in Chapter 5. In addition,

Constraints (6.1)-(6.3) are needed. Constraints (6.1) connect the flow variables xim jnv to

the interior representation of the flow variables. Constraints (6.2) ensure that each service

vehicle is allocated at most one route, and Constraints (6.3) are binary restrictions. The

objective function is the same as presented in Section 5.5.

∑
m∈M

∑
n∈M

xim jnv = ∑
r∈Rv

Ai jvrλvr i, j ∈ S,v ∈V (6.1)

∑
r∈Rv

λvr ≤ 1 v ∈V (6.2)

λvr ∈ {0,1} v ∈V,r ∈ Rv (6.3)

6.2.2 Version 2: Loading Quantity and Arrival Time Predetermined

In version 2 of the MP, loading quantities and arrival times are also included as input

parameters along with the geographical routes. In addition to the notation presented in

Section 5.3, and in MP version 1, the notation in Table 6.2 is used.

Table 6.2: Additional notation used for modelling the MP version 2

Parameters
QL

ivr Sum of loading quantities at station i for service vehicle v if allocated

route r

QU
ivr Sum of unloading quantities at station i for service vehicle v if

allocated route r

Tivr Sum of arrival times at station i for service vehicle v if allocated route r

F Flexibility parameter on predetermined loading quantity at each station

56 CHAPTER 6. COLUMN GENERATION HEURISTIC FOR THE DDBRS

QL
ivr and QU

ivr are the interior representation of the loading and unloading quantities,

respectively. As multiple visits to a station is allowed, the loading parameter is the sum of

all loading quantities at station i for service vehicle v if allocated route r. Tivr is the arrival

times for service vehicle v at station i if allocated route r. Likewise, the parameter is the

sum of all individual arrival times at station i for service vehicle v if allocated route r. To

demonstrate, if route 1 for service vehicle 1 contains three station visits noted as (station

id, loading quantity, arrival time) = (35, 4, 0), (40, -3, 3), (35, 5, 6), the total loading

quantity at station 35, vehicle 1, route 1 is QL
35,1,1 = 4+5 = 9, and the total arrival time at

station 35, vehicle 1, route 1 is T35,1,1 = 0+6 = 6.

To add flexibility to the model, an additional parameter F is included. This parameter is

referred to as the flexibility parameter. This allows the MP to choose a loading quantity

in the interval [Qivr−F,Qivr +F]. A higher value of F is expected to improve the quality

of the solution while increasing the computational time. The time variable is allowed to

change correspondingly. When the flexibility parameter F equals the service vehicle’s

capacity, the MP has full flexibility of the load, meaning it will equal MP version 1. If

F is set to zero, the MP has no flexibility, and, given that M = 1, this version of the MP

equals MP version 3.

As in version 1, the interior representation cannot replace the loading and arrival time

variables due to possible multiple visits to a station. Hence, the variables qL
imv, qU

imv

and timv presented in Chapter 5 are still needed. If discarded, infeasible routes could

be created in situations where a service vehicle visits the same station multiple times.

Constraints (5.1)-(5.47) presented in Chapter 5 and Constraints (6.1)-(6.3) from version 1

are inherited in addition to Constraints (6.4)-(6.9). Constraints (6.4) - (6.7) are the interior

representation of the loading and unloading variables, respectively, whereas Constraints

(6.8) and (6.9) are the interior representation of the arrival time variable. Recall that T H

is the handling time for one bicycle.

The objective function is the same as presented in Section 5.5. As this is a minimization

problem, the solution from version 2 is an upper bound to the solution from version 1,

meaning that the objective value from version 2 is equal or worse than the objective value

of version 1.

6.2. MASTER PROBLEM 57

∑
m∈M

qL
imv ≤ ∑

r∈Rv

(QL
ivr +F)λvr i ∈ S,v ∈V (6.4)

∑
m∈M

qL
imv ≥ ∑

r∈Rv

(QL
ivr−F)λvr i ∈ S,v ∈V (6.5)

∑
m∈M

qU
imv ≤ ∑

r∈Rv

(QU
ivr +F)λvr i ∈ S,v ∈V (6.6)

∑
m∈M

qU
imv ≥ ∑

r∈Rv

(QU
ivr−F)λvr i ∈ S,v ∈V (6.7)

∑
m∈M

tim ≤ ∑
v∈V

∑
r∈Rv

(Tivr +F ·T H)λvr i ∈ S (6.8)

∑
m∈M

tim ≥ ∑
v∈V

∑
r∈Rv

(Tivr−F ·T H)λvr i ∈ S (6.9)

6.2.3 Version 3: Violations and Deviations Predetermined

In contrast to the prior versions, version 3 of the MP restricts each station to have no more

than one visit, i.e. M = 1. Thus, the m index in the formulation is no longer necessary, and

the flow, loading, and arrival time variables are replaced by the interior representation.

Even though this replacement makes the model a lot simpler, version 3 is reformulated

and simplified considerably further by exploiting the fact that each station is visited no

more than once.

When M = 1, the MP determines a combination of routes such that each route consists of

unique station visits. Hence, we are now able to predetermine violations and deviations at

the visited stations. This was not achievable in the previous versions, as the combination

of routes, and where the routes intersected, were unknown. By predetermining violations,

deviations, and the rewards, the number of binary variables in the MP decreases consider-

ably, and a reduction in computation time is expected. Unlike the two first versions of the

MP where the mathematical model in Chapter 5 was extended, the third version introduces

entirely new notation and constraints. New notation is summarized in Table 6.3.

58 CHAPTER 6. COLUMN GENERATION HEURISTIC FOR THE DDBRS

Table 6.3: Additional notation used for modelling the MP version 3

Parameters
Aivr 1 if service vehicle v visits station i in route r

Vvr Violations prevented if service vehicle v is allocated route r

Dvr Deviation improvement if service vehicle v is allocated route r

Rvr Reward if service vehicle v is allocated route r

V Total violations in the system if no service vehicles are in operation

D Total deviation in the system if no service vehicles are in operation

Variables
λvr 1 if service vehicle v is allocated route r

Aivr indicates whether a visit to station i is included in route r for service vehicle v.

Violations prevented Vvr indicates how many violations that are prevented if service

vehicle v drives route r. Deviation improvement Dvr is the deviations that occur with

no operating service vehicles, minus the deviations that occur when service vehicle v

is allocated route r. Rvr is the reward that service vehicle v acquire if allocated route r.

Recall that the reward is associated with the last station visit in a route. V and D are the

total violations and the deviations, respectively, in the system if no service vehicles are

in operation. The binary variable λvr is 1 if service vehicle v is allocated route r, and 0

otherwise.

Due to the new formulation, the objective function in version 3 is slightly changed. How-

ever, the objective value is equal for all versions if the chosen geographical routes, loads

and arrival times are identical. The objective function is formulated in (6.10).

min wv(V −∑
v∈V

∑
r∈Rv

Vvrλvr)+wd(D−∑
v∈V

∑
r∈Rv

Dvrλvr)−wr(∑
v∈V

∑
r∈Rv

Rvrλvr) (6.10)

As we no longer need to determine violations, deviations and rewards in the MP, all the

constraints presented earlier are completely replaced by Constraints (6.11) - (6.13). Con-

straints (6.11) state that each service vehicle can drive at most one route, Constraints (6.12)

restrict the stations from having more than one station visit, and Constraints (6.13) are bi-

nary restrictions.

6.3. INITIALIZATION OF COLUMNS 59

∑
r∈Rv

λvr ≤ 1 v ∈V (6.11)

∑
v∈V

∑
r∈Rv

Aivrλvr ≤ 1 i ∈ S (6.12)

λvr ∈ {0,1} v ∈V, i ∈ S (6.13)

Although the new model is considerably simpler and will reduce the computational time,

the solution quality may also reduce. The objective value obtained from master problem

version 3 OV 3 is equal or worse than the solution from version 1 and 2, i.e. OV 1 ≤ OV 2 ≤
OV 3.

6.3 Initialization of Columns

In this section, the process of generating initial columns, i.e. routes for each service

vehicle, is described in detail. As discussed, good initialization is vital for the convergence

process and for the quality of the solution. Therefore, empirical analyses and proper

problem characteristics are taken into account when initializing columns.

The initial columns are created with a branching algorithm. Each path in the tree

represents one geographical route, and each node represents one station visit. Figure 6.3

illustrates an example of a branching tree with four different routes, each of the routes

containing three station visits. The first route contains the stations 1, 10 and 2.

Figure 6.3: A branching tree

60 CHAPTER 6. COLUMN GENERATION HEURISTIC FOR THE DDBRS

6.3.1 Overview of Branching Algorithm

The branching algorithm is summarized by Algorithm 1. This algorithm is run for all the

service vehicles. As described in Section 5.2, we assume that the first station visit is given.

In Line 1 in the algorithm, a list R is created, containing all routes under construction.

Initially, this list contains a single route with only the first predetermined station visit. As

long as there are routes in list R, each route is either extended, moved to a list F containing

all finished routes, or both. This process is illustrated in Lines 3-15. If the duration of a

route is shorter than T , the route is extended by the branching algorithm. If the duration

of a route is longer than T minus a constant C, the route is moved to the list F containing

all finished routes. This means that if the duration of a route is in the interval [T −C,T],

the route is both extended and moved to the list F . We include routes that are shorter than

the time horizon T in F to stimulate exploration of the search space.

Data: S := First station visit; T := time horizon;

Result: F: Set of finished routes

1 R: List with routes under construction← S

2 while size of R > 0 do
3 for each route r in R do
4 Estimate loading quantities and arrival times

5 if duration of r < T then
6 Determine subset SR of stations that can be added to route r

7 Calculate criticality score for each station in subset SR

8 R← create new routes by extending r and insert into R

9 end
10 if duration of r > T −C then
11 insert r into F

12 end
13 remove r from R

14 end

15 end
Algorithm 1: Branching algorithm

Line 6-8 in Algorithm 1 describe the process where route r is extended. Certain problem

specific restrictions are enforced on the branching to ensure good initial columns. When

the branching algorithm picks the next station visit in a route, it can only choose between

6.3. INITIALIZATION OF COLUMNS 61

a subset SR of all stations. The process of determining which stations that can be added

to route r corresponds to Line 6 in the algorithm. The subset SR is determined both

by clustering and problem specific filtering. These procedures are described further in

Sections 6.3.2 and 6.3.3, respectively.

When the subset SR is determined, each of the stations in the subset is given a criticality

score indicating the importance of visiting the station when total violations are minimized.

This process corresponds to Line 7 in algorithm 1. How the criticality score is calculated

is elaborated in detail in Section 6.3.4.

In Line 8 in Algorithm 1, the extension of a route is performed. A branching constant

B is defined, expressing the number of branches created from each node. If subset SR

consists of both pickup and delivery stations, the branching algorithm creates up to B new

branches with pickup stations, and B new branches with delivery stations. If subset SR

only contains either pickup or delivery station, only up to B new branches are created.

Consequently, twice as many branches are created when the service vehicle can visit both

pickup and delivery stations. The branching algorithm selects the B stations with the

highest criticality score.

Since the decision regarding whether a route should be extended or not is dependent on

the duration of the route, the arrival times and the loading quantities must be estimated.

This process corresponds to Line 4 in Algorithm 1, and is further described in Section

6.3.5.

6.3.2 Determine Subset SR: Clustering

Line 6 in Algorithm 1 corresponds to the process of determining a subset SR of stations that

can be added to a route. When columns are created for one service vehicle, the branching

algorithm does not consider the columns already created for other service vehicles. This

may result in many similar routes for the different service vehicles, and poor exploration

of the search space. To increase diversification of columns, clustering is implemented.

A service vehicle is only allowed to visit stations that are in the service vehicle’s

cluster. Thus, all stations in SR must be in the service vehicle’s cluster. Clusters are ei-

ther static and generated once, or dynamic and created each time new routes are generated.

62 CHAPTER 6. COLUMN GENERATION HEURISTIC FOR THE DDBRS

We propose a clustering model, and several assumptions are made. One cluster is created

for each service vehicle. Thus, service vehicle v’s cluster is referred to as cluster v. A

service vehicle is only allowed to visit stations in its cluster. However, the same station

can belong to multiple clusters. When generating clusters, the stations are divided into

three sets; stations with low net demand, medium net demand and high net demand. The

absolute value of the net demand is considered when dividing the stations into sets. We

assume that stations with low net demand do not need to be visited, and are therefore not

part of any clusters. The stations with medium net demand are required to belong to one

cluster, and the stations with high net demand are required to belong to two clusters. The

stations with net demand at the CH th percentile belong to the set with high net demand,

and the stations with net demand in the CLth percentile are labeled as stations with low

net demand. The remaining stations are considered to have medium demand.

Further, we assume that it is reasonable to minimize the driving time within a cluster. The

driving time within cluster v is defined as the sum of the driving times from service vehicle

v’s initial station to all the stations in the cluster. Moreover, to ensure an approximately

constant number of bicycles within a cluster, the sum of all stations’ net demand within

each cluster is preferred to be close to zero. Lastly, we want the clusters to contain an

approximately equal number of stations.

Figure 6.4 illustrates a BSS that contains 18 stations. CH is set to 75, and CL is set to 25.

The red nodes indicate stations with high net demand, black nodes medium net demand,

and grey nodes low net demand. Station 75 and 88 are the initial stations for service

vehicle 1 and 2, respectively. The arrows from the initial stations illustrate the two clusters.

Figure 6.4: a) cluster for service vehicle 1, b) cluster for service vehicle 2

6.3. INITIALIZATION OF COLUMNS 63

Notation used for modelling the clustering problem is summarized in Table 6.4. The

mathematical formulation is presented by the objective function (6.14), and by Constraints

(6.15)-(6.20). The model is solved with Xpress.

Table 6.4: Notation for clustering model

Sets
S Stations

V Vehicles

Parameters
Di Net customer demand at station i

Ci Number of clusters station i should belong to

Ti j Driving time from station i to station j

o(v) Initial station visit for service vehicle v

wK Weight total driving time

wN Weight total net demand

wZ Weight size difference

Variables
xiv 1 if station i is in cluster v, 0 otherwise

dv Absolute value of total net demand in cluster v

nmax Number of stations in largest cluster

nmin Number of stations in smallest cluster

min wK
∑
v∈V

∑
i∈S

To(v)ixiv +4wN
∑
v∈V

dv +6wZ(nmax−nmin) (6.14)

∑
v∈V

xiv =Ci i ∈ S (6.15)

dv ≥−∑
i∈S

Dixiv v ∈V (6.16)

dv ≥∑
i∈S

Dixiv v ∈V (6.17)

nmax ≥∑
i∈S

xiv v ∈V (6.18)

nmin ≤∑
i∈S

xiv v ∈V (6.19)

xiv ∈ {0,1} i ∈ S,v ∈V (6.20)

64 CHAPTER 6. COLUMN GENERATION HEURISTIC FOR THE DDBRS

The first term in the objective function (6.14) minimizes the total driving time from the

initial station within each cluster, the second term minimizes the absolute value of the

total net demand within each cluster, and the third term minimizes the difference between

the size of the largest cluster and the size of the smallest cluster. The weights wK ,wN

and wZ are used to weight the three terms. If there are |S| stations in the system, and |V |
service vehicles, we assume that the value of the first term is approximately |S|

|V | · 6, the

second term |S|
|V | ·1.5, and the last term |S|

|V | . We want equal weighting of these terms when

the weights have the same value. Thus, the second and third term are scaled by the factors

4 and 6, respectively.

Constraints (6.15) ensure that each station belongs to as many clusters as required.

Constraints (6.16) and (6.17) capture the absolute value of the total net demand within a

cluster. Constraints (6.18) and (6.19) capture the size of the largest and smallest clusters

within the system. Binary restrictions of the xiv variables are given by Constraints (6.20).

6.3.3 Determine Subset SR: Filtering

In addition to clustering, filtering is applied on the subset SR of stations that can be

added to a route. Depending on the existing station visits in a route, we can sometimes

predetermine that it is unreasonable to visit either a pick up station or a delivery station

next. Thus, these stations can be filtered out of the subset SR, and better initial columns

can be created. The filtering rules applied are established based on empirical analyses

from the BSS in Oslo.

If a route so far only consists of one station visit, i.e. the next station added is the

second station visit in the route, the filtering rule depends on the service vehicle’s initial

load, and the station type of the first station visit. If the service vehicle’s initial load

is lower than a fixed value Lmin, and the first station visit is to a delivery station, we

assume that the service vehicle’s load is approximately zero after the first visit. It is

meaningless to visit a delivery station if the service vehicle is empty. Hence, the service

vehicle is forced to visit a pickup station as its second station visit, and all delivery

stations are filtered out of subset SR. On the contrary, if the initial service vehicle load

is higher than Lhigh, and if the first visit is to a pickup station, the service vehicle is

forced to visit a delivery station as its second visit, and all pickup stations are filtered

6.3. INITIALIZATION OF COLUMNS 65

out of SR. Otherwise, both station types can be visited, and none of the stations are

filtered out of SR. Figure 6.5 illustrates the filtering rules applied to the second station visit.

Figure 6.5: Filtering rules applied on second station visit

If the route so far contains more than two station visits, the filtering rule applied depends

on the station type of the last two stations in the route. As the service vehicles have a

limited docking capacity, we assume that it is inefficient to visit more than two pickup or

two delivery stations consecutively. Observation of operational activity in Oslo supports

this assumption. Thus, if the two last station visits are to pickup stations, all pickup

stations are filtered out of SR, and if the two last station visits are to delivery stations, all

delivery stations are filtered out of SR. Figure 6.6 illustrates these restrictions.

Figure 6.6: Filtering rules applied on station visit m

66 CHAPTER 6. COLUMN GENERATION HEURISTIC FOR THE DDBRS

6.3.4 Calculate Criticality Score for each Station

Before the branching algorithm picks a new station to add to an existing route, each station

in subset SR is given a criticality score that expresses the importance of visiting the station.

The arrival time at the last station visit in the existing route is referred to as the current

time, CT. The criticality score for station i is based on four elements.

1. ti: Time to violation

2. Di: Net demand

3. T D
Ci : Driving time

4. di: Deviation at T

Element 1 captures the time until violations start occurring at station i if the station is not

visited. If the station is already congested or starved, the time to violation is 0. Lower

time to violation makes the station visit more critical. Time to violation ti is calculated as

expressed by Equations (6.21) and (6.22). QS
i is the station’s capacity, lCT

i is the station’s

load at CT , and Di is the station’s net demand.

Pick up station: ti =
QS

i − lCT
i

Di
(6.21)

Delivery station: ti =
−lCT

i
Di

(6.22)

Element 2 is net customer demand. A higher net demand makes the station visit more

critical. Element 3 is the driving time from the current position C to station i. Geograph-

ically closer stations are prioritized. Element 4 is the deviation, i.e. the absolute value of

the difference between the station’s load at T if the station is not visited, and the station’s

optimal state at T . The load lT
i at station i at T if the station is not visited is calculated as

expressed by Equations (6.23) and (6.24). lCT
i is station i’s load at CT . The deviation di

is then calculated as expressed by Equation (6.25). Recall that oi is the optimal state for

station i.

Pick up station: lT
i = max{QS

i , l
CT
i +Di(T −CT)} (6.23)

Delivery station: lT
i = max{0, lCT

i +Di(T −CT)} (6.24)

di = |oi− lT
i | (6.25)

6.3. INITIALIZATION OF COLUMNS 67

The elements are given the weight coefficients wt ,wn,wk and wo, respectively. The total

criticality score ci for station i is expressed in Equation (6.32).

ci =−wtti +wnDi−wkT D
Ci +wodi (6.26)

6.3.5 Estimation of Loading Quantity and Arrival Time

Whether a route is extended or not in the branching algorithm depends on the duration

of the route. Hence, the route duration is estimated. In addition, the loading quantities

and arrival times are included as input to the master problem in version 2 and 3 and must

therefore be predetermined.

The arrival time at station j is determined based on the arrival time ti at station i, a fixed

parking time T P, a handling time T H proportional to the loading quantity qi at the previous

station i, and the driving time T D
i j between the previous and the current station. All of these

parameters are given except the loading quantities. The arrival time t j at station j is as

expressed in Equation (6.27).

t j = ti +T P +T Hqi +T D
i j (6.27)

A greedy heuristic is used to estimate the loading quantities at each station visit in a route.

If a node in the branching tree is part of several routes, different loading quantities are

set for each route. All loading quantities are updated each time a route is extended. The

loading quantities are set chronologically for a route, meaning that the load at the first

station visit is first determined, then the load at the second station visit, and so on.

As discussed earlier, we assume that it is reasonable to visit one or maximum two pickup or

two delivery stations consecutively. Moreover, we assume that the service vehicles strive

to utilize their docking capacity. In general, it is not sensible to load the service vehicle

full at a pickup station if the next station visit also is to a pickup station. However, this

makes sense if the next station visit is to a delivery station. To control these assumptions,

a maximum loading quantity Qmax is introduced. This parameter restricts the loading

quantity at station i from being higher than its value. If the station in question and the

succeeding station are both pickup or delivery stations, Qmax is set to half the service

vehicle’s capacity QV . Otherwise, Qmax is set to the full vehicle capacity. This is expressed

in Equations (6.28) and (6.29). Furthermore, the service vehicle load lVv right before the

68 CHAPTER 6. COLUMN GENERATION HEURISTIC FOR THE DDBRS

visit and the station load lS
i right before the visit are taken into account. The capacity at

station i is noted QS
i . The loading algorithm estimates the loading and unloading quantities

at each station in a route as expressed in Equations (6.30) and (6.31).

Next station same pickup/delivery type: Qmax =
QV

2
(6.28)

Next station opposite pickup/delivery type: Qmax = QV (6.29)

Pickup stations: qL
i = min{Qmax,QV − lVv , l

S
i } (6.30)

Delivery stations: qU
i = min{Qmax, lVv ,Q

S
i − lS

i } (6.31)

Occasionally, if two delivery stations are visited consecutively, the service vehicle might

not be able to unload the remaining bicycles to the second station. Similarly, if the service

vehicle visits two pickup stations consecutively, it might have available slots after visiting

the second station. The remaining bicycle load/available slots at the service vehicle af-

ter the two station visits are noted e. In these situations, the algorithm will perform a regret.

The regret function takes the loading algorithm two steps back, and the loading quantities

at the two last stations are re-estimated. This time, the Qmax parameter is set to half

the service vehicle’s capacity plus the remaining service vehicle load/slots e. If the

loading/unloading quantity at the first station increases as a consequence of this, the

arrival time at the second station is delayed. Thus, the station load at this point is different

as more customers have picked up/delivered bicycles before the arrival. Therefore, the

loading/unloading quantity at the second station is also re-estimated. After regret is

executed, none of the stations can receive more bicycles even though e > 0. Hence, the

regret function is only performed once. Figure 6.7 illustrates the regret function algorithm.

The illustration shows the procedure when two delivery stations are visited consecutively.

The r parameter limits the regret function to one iteration.

An example is given in Figure 6.8. The service vehicle’s capacity is 23. The first station

is a pickup station, and the second station is a delivery station. Thus, the maximum

loading quantity Qmax at the first station is set to the service vehicle’s capacity. There

are 23 available spots in the service vehicle, and there are 40 bicycles at the station. The

loading quantity is set to min{Qmax,sv,Qi− si} = min{23,23,40} = 23. Next, there are

two consecutive visits to delivery stations, hence Qmax = 12 at the first of these. The

6.4. PRICING PROBLEM 69

Figure 6.7: If the service vehicle’s load is greater than zero after visiting two delivery
stations consecutively, the regret function rewinds the loading algorithm two steps, and
the loading quantities are re-estimated.

unloading quantity is set to min{12,23,16} = 12, and at the third station the unloading

quantity is set to min{23,11,9} = 9 bicycles. As the service vehicle still has a remaining

bicycle load e = 2, the regret function is executed, and the unloading quantities for the

last two stations are re-estimated. Qmax at the first delivery station is now set to 12+e and

the unloading quantities become min{14,23,16}= 14 and min{23,11,9}= 9.

Figure 6.8: Example of how the greedy heuristic estimates loading quantities.

6.4 Pricing Problem

As mentioned, we hypothesize that smart initialization of good columns diminishes the

importance of having a complex pricing problem (PP). However, discarding the pricing

problem may be unwise as it can help stimulate exploration of the search space and create

columns that were omitted in the initialization. Developing a heuristic pricing problem

70 CHAPTER 6. COLUMN GENERATION HEURISTIC FOR THE DDBRS

is challenging, as the reduced cost of non-included columns is unavailable. We propose

a approach to the pricing problem based on simple mechanisms and assumptions. By

considering the output of the master problem, the pricing problem identifies stations that

1) are not part of any of the columns chosen by the master problem, and 2) contribute

the most to violations and deviations. The pricing problem will then create new columns

where these stations have a greater chance of being visited. The pricing problem algorithm

is summarized in Algorithm 2. The notation used is listed in Table 6.5.

Table 6.5: Notation for pricing problem

Parameters
npp Number of PP iterations

Bpp Branching constant in the PP

ppp Probability constant

wpp Weight pricing problem score

1 F := list with new columns

2 Number of iterations = 0

3 while number of iterations < npp do
4 Read results from MP

5 Spp := Set of stations not included in MP solution

6 for each station i ∈ Spp do
7 spp

i := violations + deviation at station i

8 Add wppspp
i to criticality score for station i

9 end
10 for each service vehicle do
11 F← Generate new columns through Algorithm 1 with branching constant

Bpp, include wppspp
i with probability ppp

12 end
13 Number of iterations ++

14 Execute MP

15 end
Algorithm 2: Pricing Problem algorithm

In Line 7, a pricing problem score SPP
i is assigned to each station that is omitted in the

optimal combination of columns determined by the MP. The score corresponds to the sum

6.4. PRICING PROBLEM 71

of violations and deviation at the station. In Line 8 the pricing problem score with its

corresponding weight wpp is added to the station’s criticality score.

In Line 11, the generation of new columns is performed in the same manner as in the

initialization, using branching algorithm 1. A separate branching constant Bpp < B is de-

fined, expressing how many branches to create. As before, the algorithm will pick the Bpp

stations with the highest criticality score. The difference is that the criticality score now

has a fifth element corresponding to the pricing problem score spp
i . The updated criticality

score is now as expressed in Equation (6.32). However, each time the branching algorithm

is calculating the criticality score for a station, the fifth term is only included ppp ·100 %

of the times. This is to prevent the new columns from having routes containing only sta-

tions that were not visited before. We want the pricing problem to act as a neighbourhood

search where a few substitutions of an already generated route are tested.

ci =−wtti +wnni−wddi +wooi +wppsPP
i (6.32)

After new columns have been generated for all service vehicles, the MP is re-solved. To

summarize, the aim is to generate new columns that include some of the stations that were

precluded by the previous MP.

72 CHAPTER 6. COLUMN GENERATION HEURISTIC FOR THE DDBRS

Chapter 7

Implementation

The three master problems presented in Chapter 6 are implemented in Mosel and solved

with Xpress. The initialization heuristic and pricing problem have been programmed with

Java in the IntelliJ programming development environment. The key input data and test

instances used for solving the model are elaborated in Section 7.1 and 7.2, respectively.

Our implementation is based on the BSS in Oslo, operated by UIP. UIP has provided us

with all data necessary for implementation. Our interpretation and implementation of

UIP’s current rebalancing method is described in detailed in Section 7.3. Specifications of

the computer and software used to solve the rebalancing problem are listed in Table 7.1.

Table 7.1: Details of computer, solver and programming environment used in the compu-
tational study

Processor Intel Core i7-6700 CPU @ 3.40GHz

RAM 32 GB

Operating System Windows 10 Education 64-bit

Xpress IVE Version 1.24.18 64-bit

Xpress Optimizer Version 31.01.09

Mosel Version 4.6.0

IntelliJ IDEA Version 2017.3

73

74 CHAPTER 7. IMPLEMENTATION

7.1 Key Input Data

There are several fixed input parameters used in our model. The values for each of these

parameters are discussed in this section. Parameters not discussed in this chapter, e.g.

the time horizon and the maximum number of possible visits to a station, are calibrated

through testing in Chapter 9.

7.1.1 Service Vehicles and Bicycles

The number of service vehicles available is considered an input parameter. The mathemat-

ical formulation can handle any number of service vehicles and both a homogeneous and

heterogeneous fleets. The BSS in Oslo utilizes up to five service vehicles today. Multiple

service vehicles make the model more realistic, but also increases the problem complexity.

The service vehicles used by UIP are homogeneous and have 23 slots available. Today,

UIP has approximately 1,790 bicycles in the system, which correspond to half the number

of locks.

7.1.2 Parking, Handling and Driving Time

We were able to observe UIP’s daily rebalancing operations late November 2017. The

motive was to gather insight on how they make rebalancing decisions today, and to esti-

mate the parking and handling time used for loading bicycles to and from the stations. The

main observations were: 1) the handling speed varies between the individual workers, 2)

the total handling time depends on how the station is positioned relative to the road and

how close you are able to park, and 3) the handling time is not necessarily proportional

to the number of bicycles handled. To simplify the model, we assume a linear relation-

ship between the handling time and the number of bicycles handled. Our analysis resulted

in a unit handling time of 0.25 minutes per bicycle. The parking time is assumed to be

fixed, with a duration of two minutes. As the stations are located all over Oslo city, it is

important to consider the driving time between each pair of stations. These driving times

are collected by Google Maps’ open API using the station coordinates, and requesting the

average driving time.

7.1.3 Customer Demand

The customer demand data for each station is provided by UIP. The data set is a compila-

tion of the historical hourly demand for bicycles and locks on weekdays for each station

7.1. KEY INPUT DATA 75

between July 13th 2017 and September 13th 2017. As the historical data only contains

information about the customers that actually picked up or delivered a bicycle, the number

of violations is unknown. To reflect true demand, the historical data is extrapolated over

these periods. For each station, we look at the mean net demand.

7.1.4 Initial State

The initial bicycle loads at the stations and service vehicles are determined randomly. In

addition to this, each service vehicle’s initial station and remaining time to this particular

station is set. In practice, these values would be set to the actual values. When testing,

these values are chosen randomly. If the results are simulated, the initial states are updated

for each iteration according to the situation in the simulated system.

7.1.5 Optimal State

As mentioned earlier, each station has a defined optimal state for each time period. The

optimal value for each station for each hour is provided to us by UIP. The optimal state

at a station is defined to be the point where the probability of congestion equals the

probability of starvation, and is expressed in Equation (7.1). A detailed elaboration can be

found in Espegren and Kristianslund (2016). The equation uses the expected demand and

its standard deviation for the next three hours. LS,0
i denotes the initial load at station i for

a particular hour, µDi denotes the expected net demand for the next three hours at station

i, σDi denotes the standard deviation at station i for the next three hours, and Qs
i denotes

the capacity at station i. The equation thus sets the optimal state at a station with positive

net demand closer to its capacity, and stations with negative net demand closer to zero.

However, because of uncertainty, a high standard deviation will shift the optimal state

away from the capacity or zero, respectively. As an example, Table 7.2 shows the optimal

states, expected net demand, and station capacities for two arbitrary stations with positive

and negative net demand, respectively.

1− 1√
2π

∫ LS,0
i −µDi

σDi

−∞

e
−t2

2 dt =
1√
2π

∫ LS,0
i −Qs

i−µDi
σDi

−∞

e
−t2

2 dt (7.1)

Table 7.2: Optimal states for two stations with different net demand pattern

76 CHAPTER 7. IMPLEMENTATION

Station ID and
name

Net demand
7 - 8 am

Violations
type

Station
capacity

Optimal state
at 7am

103 Spikersuppa Vest 58.3 Congestion 42 9

44 St. Hanshaugen -39 Starvation 12 12

7.1.6 Weights in the Objective Function

In the objective function, there are three main weights: 1) the violation weight wv, 2) the

deviation weight wd , and 3) the reward weight wr. In addition, there are two weights

within the reward function: 1) the weight wD rewarding initiated trips to stations with

high deviation, and 2) the weight wT penalizing the driving time to the last station visit.

In our project thesis (Gleditsch and Hagen, 2017), the optimal values for the weights were

determined by simulating different combinations where all weights varied from 0.0 to

1.0, incremented by 0.1. We observed that the model performed best when the weights

were set to the values summarized in Table 7.3. These values are used further in this thesis.

Table 7.3: Weights in the objective function

Weight Symbol Value
Violations wv 0.6

Deviations wd 0.3

Reward function wr 0.1

Deviation in reward function wD 0.6

Driving time in reward function wT 0.4

7.2 Test Instances

While calibrating parameters, four different test instances are used. Test instance 1, 2,

3 and 4 consists of eight, 50, 100, and 158 stations, respectively. To observe different

demand patterns, each test is conducted with demand data from two different hours, at

07:00 and at 17:00. A combination of a test instance and an hour is referred to as a in-

stance/hour combination. With four test instances and two different hours, there are eight

instance/hour combinations. These test instances are used to calibrate the parameters to

their best-performing values, and to compare the different versions of the master problem.

The test instances are summarized in table 7.4.

7.2. TEST INSTANCES 77

Table 7.4: Test instances

Test instance Nr. of stations Notation
Test instance 1 8 stations 1_8

Test instance 2 50 stations 2_50

Test instance 3 100 stations 3_100

Test instance 4 158 stations 4_158

The time horizon T , the number of service vehicles V , and the maximum number of

visits M are presented as shown in (7.2). An x indicates that the parameter is the one

currently tested. Test instance 2_50(T = 20,V = 2M = 1) indicates that test instance 2

is used, with two service vehicles and with a 20 minute time horizon, where each station

can have a maximum of one visit within the time horizon. Further, the solution method

used is specified as in (7.3), as either V1, V2, V3, Exact method, current strategy, or No

rebalancing. (7.3) also specifies the value of the branching constant B and the flexibility

parameter F in version 2.

Whether clustering is used or not is specified as true/false as shown in (7.4). If cluster-

ing is used, the values indicating the high and low net demand limits, CH and CL, are

also specified. Pricing problem parameters, if not false, are specified as in (??). Num-

ber of runs, the branching constant and the probability of adding a non-visited station in

the pricing problem are specified. Each combination of parameter values is defined as a

configuration.

Test instance # (T = Time horizon,V = No. of vehicles, M = Possible visits) (7.2)

Solution method # (B = Branching constant,F = Flexibility parameter) (7.3)

Clustering = True/False(CH = high net demand, CL = low net demand) (7.4)

Pricing Problem = True/False(npp = No. of runs,Bpp = Branching constant (7.5)

ppp = probability constant)

When simulating, a simulation setup has to be set. This includes the start and stop time t

for the simulator, the number of scenarios nS, and the route re-generation point troute. The

route re-generation point is denoted First if the subproblem is re-solved at the first vehicle

arrival, Second for second vehicle arrival and Third for third vehicle arrival. If the point is

a number N, it means that troute is at constant time intervals of N minutes. This is denoted

as shown in (7.6). Simulation(t = 7 : 00− 11 : 00,nS = 10, troute = First) indicates that

78 CHAPTER 7. IMPLEMENTATION

we simulate over a four hour time period from 6:00 to 10:00, with ten different customer

arrivals scenarios, and the subproblem is re-solved when the first service vehicle arrives at

a station.

Simulation (t = Start and stop time, nS = No. of scenarios, troute = Route re-generation point)

(7.6)

7.3 UIP’s Current Rebalancing Strategy

To be able to quantify how much our model improves the imbalance in the system

compared to today’s situation, an algorithm for the current rebalancing strategy used by

UIP today is modeled. Note, however, that this is our interpretation and implementation

of the current strategy, and it is not necessarily entirely accurate. In November 2017, we

visited UIP in Oslo to observe their daily operation, and the model implemented is based

on the experiences obtained from this trip.

Today, UIP has divided the city centre into 14 zones. Each service vehicle operator is

responsible for two zones, one zone with mostly delivery stations and one zone with mostly

pickup stations. The allocation of zones changes during the day as the demand pattern

throughout the city evolves. An illustration of the zones in the time period between 08:00

and 11:00 is given in Figure 7.1. Pairs of zones are indicated by equal color coding.

Figure 7.1: Illustration of the division of zones used by UIP in Oslo in the time period 8:00-
11:00 when there are five service vehicles in operation. Zones with equal color coding are
grouped together.

7.3. UIP’S CURRENT REBALANCING STRATEGY 79

At the time of our visit, the service vehicle operators did not utilize any analytic program

to determine where to drive or how much to load. Instead, they looked at an iPad that

showed a live station map with updated information on how the bicycles were distributed

around the city. The decisions regarding where to drive and how many bicycles to load

were merely based on human experience and gut feeling. They conveyed that their biggest

challenge is the massive demand for locks in the inner city center in the morning rush

hours.

In our implementation of the current method, we assume that a service vehicle is already

positioned at a station when routes are created. This station is referred to as the current

station. We experienced that the loading quantities corresponded to either half the service

vehicle’s capacity or the entire vehicle’s capacity. First, in our implementation of the

current rebalancing method, the load at the current station is determined by the loading

algorithm described in Section 6.3.5. The regret function in the loading algorithm is no

longer used as we did not experience that they calculated how many bicycles to load at

the next station when deciding load at the current station.

Further, the operators explained that they strive to balance several stations slightly, rather

than balancing a few stations entirely. We observed that the operators visited at most

two delivery stations or two pick up stations consecutively. We experienced that in half

of the times, they visited two stations with the same demand type sequentially, and half

of the times only one station of a certain demand type was visited before a station with

the opposite demand type was visited. We got the feeling that this decision was made

randomly and solely based on experience. However, whether a pickup station or de-

livery station was visited next depended on the service vehicle’s load after the current visit.

In our implementation of the current rebalancing method, the rest of the geographical

route is determined as illustrated in Figure 7.2. The service vehicle load after the current

station visit is referred to as the vehicle load. First, if the service vehicle is almost empty,

i.e. vehicle load < 5, the service vehicle visits pick up stations. Whether one or two pickup

stations are added to the route, is drawn with a 50/50 probability. If the vehicle load is in

the interval 5-18, either one pickup station or one delivery station is visited, drawn with a

50/50 probability. Last, if the service vehicle is almost full, i.e. vehicle load > 18, one or

two delivery stations are added to the route, drawn with a 50/50 probability.

80 CHAPTER 7. IMPLEMENTATION

Figure 7.2: The algorithm used for creating routes according to UIP’s current rebalancing
strategy

The next step of the algorithm is to decide exactly which stations to visit. A criticality

score, as described in Section 6.3.4, is calculated for each station. The service vehicle

operators did not have access to information regarding expected future demand, nor

the optimal distribution of bicycles. Further, we experienced that the operators did

not consider the driving time when deciding where to drive. However, they had a

hypothesis of which stations that were to become full or empty in the near future, and

which stations that were the most popular. Thus, the weights within the criticality

score are set as shown in Table 7.5. In real-life, operators do not calculate these

scores, and we, therefore, assume that they do not always pick the most critical station.

Thus, when the next station visit is to be determined, our implementation of the cur-

rent rebalancing method chooses a station randomly among the five stations with the

highest criticality score. Mark that the chosen station must be in the service vehicle’s zone.

Table 7.5: Criticality score weights in current rebalancing method

Weight Value
Time to violation, wv 0.7

Net demand, wn 0.3

Driving time, wk 0

Deviation, wo 0

Chapter 8

Simulation Framework

As the DDBRS, hereby referred to as the subproblem, assumes known demand, real-world

uncertainties are not taken into account. Hence, a discrete-event simulation framework is

developed to test how the subproblem performs in a realistic setting. In this chapter, we

describe in detail how the simulator works. First, a general overview, describing the main

idea behind the simulator, is presented in Section 8.1. Second, in Section 8.2, the part of

the simulator that generates different scenarios are outlined. In Section 8.3, the iterative

process between the simulator and the subproblem is described. This is the process where

actual violations are counted. A flow diagram, illustrating the simulation algorithm, is

presented. Lastly, in Section 8.4, an example is presented.

8.1 General Overview

Based on probability distributions derived from historical customer demand data, the

simulator draws different customer arrivals scenarios. A customer arrival is defined

as one customer arriving at a station at a specific time with a request for a bicycle or

a lock. A customer arrivals scenario is defined as one possible outcome of customer

arrivals within a certain time period. This means that a customer arrivals scenario contains

information about all the customer arrivals within a certain time period. The reason we

consider individual customer arrivals and not the aggregated customer demand, is because

we need to know the arrival time of each customer. The rebalancing strategies from the

subproblem are evaluated by checking how many customer arrivals, in a given scenario,

that are violated.

81

82 CHAPTER 8. SIMULATION FRAMEWORK

The simulator is programmed in Java. Figure 8.1 illustrates the iterative process between

the simulator and the subproblem. The dashed border boxes indicate the information that

is passed between the subproblem and the simulator. Recall that each combination of fixed

input parameters in the subproblem is defined as one configuration. The main purpose of

the simulator is to estimate how well the rebalancing strategies obtained from one config-

uration performs in a real-world situation, by simulation it over different customer arrivals

scenarios.

Figure 8.1: Iterative process between simulation framework and the DDBRS

When the simulation first starts at tstart , the subproblem is run with predefined inputs

describing the initial state of the system. The output from the subproblem contains infor-

mation about the service vehicles’ rebalancing strategies, i.e. their routes, arrival times

and the loading quantities. As mentioned, the subproblem is solved for a series of shorter

time periods. From the output, the simulator determines the next route re-generation

point troute. This is defined as the time when new routes are generated, i.e. the time the

subproblem is re-solved. Until this point, the service vehicles follow the rebalancing

strategy suggested by the current subproblem.

The route re-generation point troute is often shorter than the time horizon T , meaning that

the subproblem is re-solved before the end of the time horizon, e.g. every time a service

vehicle arrives at a station or after a given time interval. The reason for this is that new

8.2. GENERATION OF CUSTOMER ARRIVALS SCENARIOS 83

exogenous information is revealed, and the subproblem can take better decisions with new

updated input parameters. Before routes are re-generated in the subproblem, the simulator

goes through the generated customer arrivals in this period, and determines whether each

customer experience a violation or not. When the route re-generation point is reached,

updated loads, customer demand, and positions are passed from the simulator to the

subproblem, and the problem is solved again. A new rebalancing strategy is now provided.

The simulator keeps track of time by having a time variable called current time, CT . The

current time is initially set to the chosen simulation start time tstart This time variable

is event-based, meaning that it is updated every time an event occurs, i.e., every time a

customer or a service vehicle arrives at a station, or every time routes are re-generated in

the subproblem. When the current time equals the predefined simulation stop time tstop,

the simulation is complete. Figure 8.2, illustrates how the subproblem is re-solved through

the simulation period.

Figure 8.2: Illustration of how the subproblems are re-solved

When the simulation is completed, statistical performance measures are collected. When

different configurations are tested over the same scenario, their performances are com-

pared. Note that one scenario only is one possible outcome of customer arrivals. To make

a reasonable conclusion when comparing different configurations, it is therefore essential

that the configurations are tested over several different scenarios.

8.2 Generation of Customer Arrivals Scenarios

Based on historical customer demand data, the mean and standard deviation for the

demand for both locks and bicycles are derived for each station and for each hour. The

historical demand is assumed to follow a log-normal distribution, i.e., the customer

demand for either locks or bicycles cannot be below zero. At times when stations have

84 CHAPTER 8. SIMULATION FRAMEWORK

been empty or full, extrapolation is used to estimate the true demand. Based on this

demand data, the simulator is able to draw random customer arrivals for each of the

stations in the system. These customer arrivals together form a customer arrivals scenario.

To begin with, the total number of customers that demand a bicycle at each station within

the first hour is drawn. This number is drawn from the log-normal distribution for the

corresponding hour and station. Further, the arrival times for each of these customers

are drawn individually from a uniform distribution, i.e., any time within that hour is

equally likely. Similarly, the total number of customers demanding a lock and their arrival

times are drawn, but with the probability distribution describing the demand for locks.

This procedure is repeated for every hour within the simulation period. To illustrate the

random scenario generation, an example is given. In the example, we simulate a customer

arrivals scenario from 8:00 to 10:00 for a system with two stations. First, the total number

of customers requesting a bicycle in the first hour is drawn. For this time period, the

log-normal distribution for station 1 is shown in Figure 8.3. The mean is 5, and the

standard deviation is 1. A random number from the distribution is drawn, 3.10 in this

example, and is indicated by the red dashed line in the figure. This number is rounded

to the closest integer, and the total number of customers requesting a bicycle at station 1

between 8:00-9:00 is set to 3.

Further, the arrival times are drawn individually and independently from a uniform

distribution where the earliest possible time is 8:00, and the latest possible time is

9:00. In this example, the arrival times [8:48, 8:03, 8:23] are drawn. Figure 8.4

illustrates the uniform distribution, and the red dashed lines indicate the arrival times

drawn by the simulator. The arrival times are saved in a list, illustrated in Table 8.1.

Each row in the table represents one customer arrival, including the time, station id,

and whether it is a request for bicycle or lock. When the customer requests a bicycle,

the quantity is set to - 1, and when the customer requests a bicycle, the quantity is set to + 1.

Table 8.1: Customer arrival list containing the three first customer arrivals drawn by the
simulator

Arrival time station id Quantity requested
8:23 1 - 1

8:03 1 - 1

8:48 1 - 1

8.2. GENERATION OF CUSTOMER ARRIVALS SCENARIOS 85

Figure 8.3: Log-normal distribution of the total number of customers requesting a bicycle
in the time period 8:00-9:00 for station 1. The red dashed line indicates the random draw.

Figure 8.4: Uniform distribution of arrival times from 8:00 to 9:00 for station 1. The red
dashed lines indicate the arrival times drawn.

86 CHAPTER 8. SIMULATION FRAMEWORK

Further, the arrival times for customers requesting a bicycle are simulated. The process

is then repeated for the time period 9:00-10:00, with the corresponding probability

distribution. All the arrival times are added to the list. The same procedure is carried out

for station 2. Table 8.2 illustrates the entire list of customer arrivals between 8:00-10:00.

This list is now one possible outcome of the customer arrivals in this time period for these

stations, and is denoted a scenario.

Table 8.2: Customer arrivals scenario, containing arrival times for station 1 and 2 between
8:00-9:00, drawn by the simulator

Arrival time Station ID Quantity requested
8:03 1 -1

8:19 2 +1

8:23 1 -1

8:48 1 -1

9:11 2 +1

9:20 1 +1

9:31 1 +1

8.3 Simulation of Real-World Performance

To estimate how well a configuration performs, the results from the subproblems are sim-

ulated over different scenarios. The flow diagram in Figure 8.5 illustrates the simulation

framework. The start and stop time for a scenario is denoted tstart and tstop, respectively.

Each box represents an action, whereas the arrows represent the order of the execution. In

the rest of this section, each of the action boxes is described.

After reading the demand data for each station, the simulator generates a customer arrivals

scenario. The current time CT is set to the simulation start time tstart . All parameters

describing the system at CT is passed from the simulator to the subproblem. Next, the

subproblem is solved, and the service vehicles’ routes, loading quantities and arrival times

are passed to the simulator. The first vehicle arrival is denoted tv, and the first customer

arrival is denoted tc. The simulator has to determine the next route re-generation point,

denoted troute, This can for example be the next time a service vehicle arrives at a station.

Further, the next upcoming event after CT is determined. The next event is the event with

8.3. SIMULATION OF REAL-WORLD PERFORMANCE 87

the time min{tstop, troute, tc, tv }. There are four possible first events; 1) the simulation

is complete, 2) re-generation of routes in the subproblem, 3) a customer arrival or 4) a

service vehicle arrival. Each of these possible first events is listed below with a description

of how they are handled. If some of the t values have identical values, they are prioritized

in the listed order. The simulator collects important statistics about the performance, e.g.

the total number of starvations and congestions, and the number of customers.

Figure 8.5: Flow chart of the Simulation framework

88 CHAPTER 8. SIMULATION FRAMEWORK

1. tstop is the first event: The simulator has reached its stop time. The total number of

violations, and other statistic measures, are collected.

2. troute is the first event: routes are re-generated in the subproblem. The current time

is updated to CT = troute, and the process loops back to where information about

current state is passed to the subproblem.

3. tc is the first event: A customer arrives at a station either requesting (a) a bicycle, or

(b) a lock.

(a) The customer requests a bicycle: If there are one or more bicycles at the sta-

tion, the station load is updated to the current load minus one. If the station is

empty, the count for number of starvations is incremented by one. The total

number of customers is incremented by one either way.

(b) The customer requests a lock: If there are one or more locks available, the

station load is updated to the current load plus one. If the station is full, the

count for number of congestions is incremented by one. The total number of

customers is incremented by one either way.

The current time CT is updated to be tc, and the next customer arrival after CT is

now denoted tc. The process loops back to where the next event is determined.

4. tv is the first event: A service vehicle arrivals at a station, wanting to either (a) load

or (b) unload a certain quantity q of bicycles to or from the station. The current load

at the station is denoted ls, and the current load at the service vehicle is denoted

lv. The capacities at the station and on the service vehicle are denoted Qs and Qv,

respectively.

(a) The service vehicle wants to load bicycles to the station: If there are at least

q available locks at the station, i.e., Qs− ls ≥ q, and at least q bicycles on the

service vehicle, the full amount of bicycles is loaded to the station. If there are

not enough available locks, and/or not enough bicycles on the service vehicle,

the load equals min {Qs− ls, lv}. Station and service vehicle loads are updated

accordingly.

(b) The service vehicle wants to unload bicycles from the station. If there are at

least q available spots on the service vehicle, i.e., Qv− lv ≥ q, and there are

at least q bicycles at the station, the full amount of bicycles are loaded from

the station to the service vehicle. If there are not enough spots available on the

8.4. EXAMPLE OF A SIMULATION PROCESS 89

service vehicles and/or not enough bicycles at the station, the load equals min

{ls,Qv, lv}. Station and service vehicle loads are updated accordingly.

The current time CT is updated to tv, and the next service vehicle arrival after CT is

now denoted tv. The process loops back to where the next event is determined.

8.4 Example of a Simulation Process

This section illustrates the simulation process by an example. The simulation endures

for two hours, and includes two stations. The simulation starts at time tstart = 8:00,

and stops at time tstop = 10:00. The stations’ and the service vehicle’s capacity is five

bicycles. Routes are re-generated in the subproblem every time a service vehicle arrives

at a station. Some events are highlighted and explained, while the entire collection of

events are listed in Table 8.2. The rows in Table 8.2 show how the station and vehicle

loads, the number of starvations and congestions, the total number of customers, and

the number of times routes are re-generated in the subproblem, develop throughout the

simulation. The columns show initial load and the times of the events. The vertical lines

in the table, indicate route re-generation. The scenario generated is shown in Figure 8.6

a), and corresponds to Table 8.2 in Section 8.3.

Figure 8.6 illustrates the customer and vehicle arrivals on a timeline. The first row,

marked as a), shows customer arrivals. Customer arrivals are denoted (Station ID,

quantity requested). Row a), b) and c) illustrate the rebalancing strategies obtained the

first, second and third time the subproblem is solved, respectively. Vehicle arrivals are

denoted (Station ID, quantity loaded to station). The first route re-generation point is set

to troute = 8:45. The first customer arrival takes place at tc = 8:03, and the first vehicle

arrival takes place at tv = 8:00.

The next event after the current time CT = 8:00, is the event happening at time min

{tstop, troute, tc, tv}= {10:00, 8:45, 8:03, 8:00}= 8:00, and is the vehicle arrival. The ser-

vice vehicle wants to unload four bicycles from station 2. There are currently four bicycles

at the station, and there are four available spots on the service vehicle, so all four bicycles

are loaded from the station to the service vehicle. The loads are updated accordingly.

The current time is updated to CT = 8:00, and the next vehicle arrival time tv is set to 8:45.

The next event is determined as min {tstop, troute, tc, tv} = {10:00, 8:45, 8:03, 8:45} =

90 CHAPTER 8. SIMULATION FRAMEWORK

8:03, and is a customer arrival. The customer is requesting one bicycle from station 1.

As there are no bicycles available, one starvation violation is counted. The station load

remains zero. One customer is counted.

The two next events are customer arrivals. The first event, at time 8:19, is a customer

returning a bicycle to station 2, and the second event, at time 8:23, is a customer requesting

a bicycle at station 1. Two more customer and one more starvation are counted.

When the simulator now determines the next event, troute = 8:45 is the lowest value

greater than CT , meaning that routes are re-generated in the subproblem. Information

about current station and vehicle loads, as well as updated driving times, vehicle position,

and demand information is passed to the subproblem. Routes are re-generated, and the

count for subproblem runs is incremented by one. Figure 8.6 c) illustrates the rebalancing

strategy from the subproblem after the route re-generation point. troute is updated to 9:22.

The simulation keeps running until tstop = 10:00. The remaining events are listed in Table

8.2. When the simulation is terminated, the total number of violations is summed, i.e.

1+2 = 3.

Figure 8.6: a) Customer arrivals in the time period 8:00-10:00, b), c) and d) rebalancing
strategies from the first generation of routes, and the first and second route re-generation
point.

8.4. EXAMPLE OF A SIMULATION PROCESS 91

Table 8.3: Example of simulation process from 8:00 to 9:00 with two stations and one
service vehicle

Ti
m

e
fo

r
ne

xt
ev

en
t

In
iti

al
lo

ad
8:

00
8:

03
8:

19
8:

23
8:

45
8:

48
9:

11
9:

20
9:

22
9:

31
Fi

na
lr

es
ul

t
at

10
:0

0
St

at
io

n
1,

l s1
0

0
0

4
3

4
4

4

St
at

io
n

2,
l s2

4
0

1
2

0
0

Se
rv

ic
e

ve
hi

cl
e,

l v
0

4
0

2
2

St
ar

va
tio

n
co

un
t

0
1

2
2

C
on

ge
st

io
n

co
un

t
0

1
1

C
us

to
m

er
co

un
t

0
1

2
3

4
5

6
7

7

N
um

be
r

of
su

bp
ro

bl
em

ru
ns

0
1

2
3

3

92 CHAPTER 8. SIMULATION FRAMEWORK

Chapter 9

Computational study:
Parameter Tuning

In this chapter, parameter tuning is conducted for each of the three versions of the master

problem. As the same parameters are determined for all three version, a description

regarding how the different parameters are tested is presented in Section 9.1. The final

configurations for version 1, 2 and 3 of the master problem are summarized in Section

9.2, 9.3, and 9.4, respectively. A detailed description of the parameter tuning is found in

Appendix B. Lastly, in Section 9.5, a comparison between all three column generation

versions and the exact solution method is conducted.

As the goal is to develop a model applicable for real-world operation, a fast computational

time is important. Thus, we define reasonable computational time as ten seconds. The

computational time is defined as the time it takes from the model starts generating initial

columns until the master problem has allocated a route to each service vehicle. The rea-

sonable time is set relatively low since the computational time varies due to randomness

in the optimization solver and due to a varying number of station visits to determine.

9.1 Elaboration of Parameter Tuning

As the same parameters are tested for all three versions, a general description of how

the parameters are tested is presented in this section. Version specific configurations are

presented in their respective subsections.

93

94 CHAPTER 9. COMPUTATIONAL STUDY: PARAMETER TUNING

9.1.1 Weights in the Criticality Score

First, the weights in the criticality score are determined. The importance of visiting a

station i is expressed by the time before violations start occurring ti, net demand per minute

Di, driving time T D
Ci , and the deviation di. These terms are weighted with the coefficients

wt ,wn,wk and wo, respectively, and the total criticality score is given by Equation (9.1).

ci =−wtti +wnDi−wkT D
Ci +wodi (9.1)

To find the optimal values for the weights in the criticality score, different combinations

of weight values are tested on each test instances. All the weights are varied from 0.0 to

1.0, incremented by 0.1. Also, the four weights must sum up to 1.0. This gives a total

of 286 weight combinations. The goal is to make the branching algorithm pick the best

stations first when adding new station visits to a route. This is to ensure that good routes

are created despite a low branching constant. Thus, the branching constant is set relatively

low in this test. As new branches in the initialization are created independently for each

service vehicle, only two service vehicles are used in this test, i.e. V = 2.

Both the lowest and the highest objective values are presented for each instance. This is

to observe the size of the gap, and thus, how much the results are affected by the values

of the weights. Also, the percentage of the weight combinations that gives the lowest

objective value is stated. If many different combinations result in the same objective value,

it suggests that good routes are created regardless of the values of the weights. Moreover,

trends within each test instance are observed, and a weight combination is set for each

version. As real-world instances contain a lot of stations, results obtained from larger test

instances are prioritized.

9.1.2 Branching Constant and Number of Possible Visits

The branching constant B indicates how many new branches the branching algorithm cre-

ates. Thus, a higher B means that more initial columns are generated. The number of

possible visits M states the maximum number of visits each station is allowed to have.

An increase in either B or M increases the solution space in the master problem, and an

improved objective value is expected. However, the computational time is expected to

increase drastically. Different combinations of these parameters are tested to evaluate the

trade-off between computational time and the quality of the solution. While testing B and

9.1. ELABORATION OF PARAMETER TUNING 95

M, all other parameters are kept constant. As the number of service vehicles is one of the

main drivers of the computational time, only two service vehicles are used in this test. M

is only tested with the values 1 and 2, as a higher number is inappropriate with a short

time horizon. The testing interval for B varies for each version. A conclusion is made,

stating whether it is necessary with two possible visits, and the best-performing branching

constant.

9.1.3 Parameter Tuning for Clustering Problem

By applying clusters, service vehicles are restricted to only visit stations that are in their

respective clusters. As a result, the sets of columns have less overlap. Less overlapping

columns might result in more feasible route combinations in the master problem, as each

station can only have a maximum of M visits. Thus, better solutions are potentially found

without having to increase the branching constant B. However, clustering can also prevent

some good columns from being created as the service vehicles are restricted from visiting

certain stations. Hence, the objective value can either increase or decrease when clustering

is applied. Test instance 1 is not included in the clustering tests as we believe clustering on

such small instances is unnecessary. The clusters are created in a separate model referred

to as the clustering model. A set of parameters in the clustering model has to be set,

and include the weights within the objective function, and the parameters that separate

the stations’ net demand into low, medium and high. We assume that the performance

of these parameters is independent of which version of the master problem that is used

as the computational time is unaffected by these parameters. As version 2 and 3 of the

master problem are modifications of version 1, only version 1 is used in the testing of the

clustering parameters. The results from these tests are used for all three versions.

9.1.4 Effect of Introducing Clustering

How clustering affects the objective function is observed for all three versions. Each in-

stance is solved with and without clustering, and a conclusion regarding whether clustering

should be applied or not is conducted by comparing the objective values.

9.1.5 Parameter Tuning for Pricing Problem

The impact of iterative adding of new columns, i.e. including the pricing problem, is

tested. As the pricing problem adds new columns to the already initialized columns, the

solution space increases, and the objective value can either remain unchanged or improve.

96 CHAPTER 9. COMPUTATIONAL STUDY: PARAMETER TUNING

However, re-solving the master problem repeatedly increases the computational time, and

we are again faced with a trade-off between the quality of the solution and the computa-

tional time. The parameters affecting the quality of the pricing problem are first tested.

These parameters are the pricing problem weight within the criticality score wpp, and the

probability ppp of including the pricing problem weight. We assume that the performance

of these parameters is independent of which version of the master problem that is used

as the computational time is not affected by these parameters. As version 2 and 3 are

modifications of version 1, only version 1 is used in the testing of these parameters. The

results from these tests are used for all three versions. As there is randomness involved in

the pricing problem, all tests are run five times each. The results presented are the average

values of the respective five runs.

9.1.6 Effect of Introducing Pricing Problem

How the pricing problem affects the objective value and the computational time is observed

for all three versions of the master problem. The number of times the pricing problem is

run npp and the branching constant Bpp in the pricing problem are first tested for each

version. Including the pricing problem might result in an unreasonable computational

time if the highest possible branching constant B within reasonable time, is used. Thus,

the pricing problem is also tested with a lower B. By doing this, we can observe whether

it is best to have a lower B value and include the pricing problem, or a higher B value and

exclude the pricing problem. Different combinations of B, npp and Bpp are tested, and the

values are determined based on the best result obtained within a reasonable time.

9.1.7 Number of Service Vehicles

Along with the branching constant and the number of possible visits, the computational

time is expected to be extremely dependent on the number of service vehicles in the sys-

tem. Thus, the changes in computational time are observed when the number of service

vehicles increases. If the computational time increases considerably with an increasing

number of service vehicles, it is desirable to see the impact of a dynamic branching con-

stant, i.e. a branching constant that changes as a function of the number of service vehicles.

The number of service vehicles V is varied from two to five. For each value of V , the high-

est possible B is observed, i.e. the highest B that keep the computational time reasonable.

9.2. PARAMETER TUNING FOR MP VERSION 1 97

9.2 Parameter Tuning for MP Version 1

In version 1 of the master problem, the loading quantities and the arrival times are

determined in the master problem, along with the best combination of geographical

routes. Detailed description of parameter tuning for version 1 is presented in Section B.1

in Appendix B. The final configuration used for version 1 is summarized in Table 9.1, and

the configuration used for clustering and the pricing problem common for all versions is

presented in Table 9.2.

Table 9.1: Configurations for MP version 1

Input parameter Symbol Value
Crit. score weight, time to violation wt 0.1

Crit. score weight, net demand wn 0.7

Crit. score weight, driving time wk 0.0

Crit. score weight, deviation wo 0.2

Number of possible visits M 1

Clustering True

Pricing problem False

Branching constant B when V = 2 7

B when V = 3 4

B when V = 4 3

B when V = 5 2

Table 9.2: Configurations for Clustering and Pricing Problem common for all versions

Weight Symbol Value
Clustering parameters
Total driving time wK 0.5

Net demand wN 0.1

Size difference wZ 0.4

High net demand CH 70

Low net demand CL 30

Pricing problem parameters
Pricing problem score weight wpp 4

Probability of including pricing problem score ppp 0.4

98 CHAPTER 9. COMPUTATIONAL STUDY: PARAMETER TUNING

When tuning the parameters for version 1, several discoveries were made. For the

criticality score, the model performs best when the time to violation weight wt is low,

the net demand weight wn and the deviation weight wo are high, and the driving time

weight wk is zero. The objective value improves when the branching constant and the

number of possible visits increases as the search space in the master problem widens.

Although a better solution is found when M = 2 compared to when M = 1 when the same

branching constant is used, we can increase the branching constant when M = 1 and find

even better solutions. Hence, allowing multiple visits is concluded to reduce the quality

of the solution.

Clustering is concluded to enhance the performance of version 1 as the objective value

improves or remain unchanged. The pricing problem, on the other hand, is concluded

to be counterproductive as the branching constant has to be decreased. The fact that a

higher branching constant during the initialization of columns is better than including the

pricing problem and using a lower branching constant demonstrates that the initialization

algorithm performs well. The primary drivers of the computational time are the branching

constant, number of possible visits and number of service vehicles. When introducing

more service vehicles, the branching constant must be decreased.

9.3 Parameter Tuning for MP Version 2

In version 2, the loading quantities and arrival times are predetermined in the initial-

ization, but the master problem has a given flexibility to adjust these values. To begin

with, the flexibility parameter is set to its median value of 12 before it is tested and its

best-performing value is obtained. Detailed description of parameter tuning for version

2 is presented in Section B.2 in Appendix B. Final configurations used for version 2 are

summarized in Table 9.3.

When tuning the parameters for version 2, several discoveries were made. For the

criticality score, the best solutions are found when the time to violation and driving time

are weighted between 0.0 or 0.1. The distribution between net demand and deviation does

not seem to be significant. Allowing multiple visits to a station results in a drastic increase

in computational time and only a marginal improvement in solution. Hence, multiple

visits is concluded to be unnecessary. A higher branching constant yields better solutions

but increases computational time. The constant is set to its best-performing value obtained

9.4. PARAMETER TUNING FOR MP VERSION 3 99

within a reasonable time. When more service vehicles are added, the branching constant

must be further reduced.

Table 9.3: Configurations for MP version 2

Input parameter Symbol Value
Crit. score weight, time to violation wt 0.1

Crit. score weight, net demand wn 0.8

Crit. score weight, driving time wk 0.0

Crit. score weight, deviation wo 0.1

Number of possible visits M 1

Flexibility parameter F 18

Clustering True

Pricing problem False

Branching constant B when V = 2 7

B when V = 3 5

B when V = 4 3

B when V = 5 2

The flexibility parameter F in version 2 allows for some degree of slack in the predeter-

mined loading quantities and arrival times. However, there is a marginal difference be-

tween the results obtained with various flexibility parameters. All results produced when

F = 18 are obtained within a reasonable time. Based on this, F = 18 is concluded as the

best value. Clustering is concluded as enhancing for version 2, as the objective value is

either improved or unchanged. The pricing problem, on the other hand, is concluded as

counterproductive as the branching constant has to be decreased.

9.4 Parameter Tuning for MP Version 3

In version 3, the loading quantities and arrival times are entirely predetermined in the

initialization. Oppose to the other versions, the stations are restricted to no more than one

visit, i.e. M = 1, and the optimal route combination chosen by the master problem consists

of unique station visits. Hence, violations and deviations are also predetermined, and the

mathematical model is significantly simplified. The computational time is expected to

reduce considerably. Detailed description of parameter tuning for version 3 is presented

100 CHAPTER 9. COMPUTATIONAL STUDY: PARAMETER TUNING

in Section B.3 in Appendix B. Final configurations used for version 3 are summarized in

Table 9.4.

Table 9.4: Configurations for MP version 3

Input parameter Symbol Value
Crit. score weight, time to violation wt 0.1

Crit. score weight, net demand wn 0.5

Crit. score weight, driving time wk 0.0

Crit. score weight, deviation wo 0.4

Number of possible visits M 1

Clustering False

Pricing problem True

Number of pricing problem iterations npp 2

Branching constant in pricing problem Bpp 15

Branching constant B 20

When tuning the parameters for version 3, several discoveries are made. For the criticality

score, the lowest objective value is found when the time to violation and driving time are

weighted less, and the net demand and deviation are weighted highest. This strengthens

the hypothesis stating that accounting for future demand is necessary. An increasing

branching constant has minor effects on the objective value. This may indicate that the

optimal solution is found. In version 3, the branching constant is set relatively high

compared to the other versions as the computational time is drastically decreased. With

B = 20, the branching algorithm branches to 20 pickup stations and 20 delivery stations

from each node, which we assume are sufficient on these test instances. The branching

constant does not need to be reduced when more service vehicles are added to the system.

Clustering is concluded as counterproductive as the objective value is worse in 33% of

the instance/hour combinations. The reason for this may be that the branching constant

is so high in version 3 that the master problem has no problem finding non-overlapping

geographical routes, and applying clusters only prevents good columns from being created.

As opposed to the other versions, including the pricing problem is not at the expense of

the branching constant B, as the computational time is reasonable. The objective value is

slightly improved, hence, including the pricing problem in version 3 is concluded to be

appropriate.

9.5. COMPARISON OF CG HEURISTICS AND EXACT SOLUTION METHOD 101

9.5 Comparison of Column Generation Heuristics
and Exact Solution Method

In this section, the different versions of the column generation heuristics are compared

against each other. The heuristics are also compared to the results obtained when the

model is solved with an exact solution method through a commercial solver. This is

conducted to see how close the heuristic results are to the optimal values, and whether the

heuristics are able to outperform the exact solution method when larger test instances are

used. The comparison aims to establish a hypothesis of the best-performing version of the

master problem.

The versions of the master problem and the exact solution method are compared for

all eight instance/hour combination, and the objective values are presented. The exact

solution method is only able to solve the smallest test instance 1_8 within a reasonable

time. For the other test instances, we test whether a solution is found within 200 seconds,

and list this as (objective value found / gap between best solution found and upper bound).

If no solution found within 200 seconds, it is listed as No solution. Note that this is not

within our definition of reasonable time, but the values are listed for comparison purposes.

The comparison is conducted for two and five service vehicles to observe whether

different versions should be used for different number of vehicles. Table 9.5 compares the

objective values when there are two service vehicles in the system. The lowest objective

value for each test instance is marked with green.

Version 1 and 2 are able to find the optimal solution obtained by the exact solution method

for instance 1_8. As for version 3, the loading quantities are entirely determined by the

heuristic, and the route chosen by the exact method is no longer optimal as the loading

quantities are different. Hence, the objective value is slightly changed for version 3. For

test instance 2_50, the exact solution method is only able to obtain a solution with an ap-

proximate 90% gap. The solutions found with the column generation heuristics are better,

and the exact solution method is concluded as insufficient on the larger test instances.

102 CHAPTER 9. COMPUTATIONAL STUDY: PARAMETER TUNING

Table 9.5: Comparison of column generation heuristics and exact solution method, V = 2

Test instance x (T = 20, V = 2, M = 1)

Exact V1 V2 V3
Instance Hour Obj. value Obj. value Obj. value Obj. value

1_8

07:00 55.67 55.67 55.67 56.34

17:00 18.01 18.01 18.01 27.15

2_50

07:00 (220.76 / 86.14%) 213.31 213.31 214.74

17:00 (169.95 / 89.09%) 158.81 158.81 167.83

3_100

07:00 No solution 389.36 389.36 391.03

17:00 No solution 239.25 239.25 240.11

4_158

07:00 No solution 536.90 536.90 535.56

17:00 No solution 362.77 362.77 369.39

As shown, version 1 and 2 performs best in all instance/hour combinations. Our hypoth-

esis is that version 1 and 2 perform better for a smaller number of service vehicles, and

that version 3 outperforms version 1 and 2 when more service vehicles are used. As the

computational time is equal for version 1 and 2, and as version 1 produce at least as good

solutions as version 2, version 1 is concluded as the best column generation heuristic

when two service vehicles are in operation. Table 9.6 compares the objective values when

five service vehicles are in operation.

With five service vehicles, the column generation heuristics are not able to find the

optimal solution obtained by the exact solution method on instance 1_8. With five service

vehicles, the branching constants in version 1 and 2 must be set relatively low to ensure

that the problem can be solved within a reasonable time. However, a low branching

constant is shown not to be sufficient as the optimal routes no longer are found. With

the smallest test instance there are few non-overlapping columns, and we observe that

most of the service vehicles only visit their predetermined initial station. For instance 3,

9.5. COMPARISON OF CG HEURISTICS AND EXACT SOLUTION METHOD 103

the optimal route might be among the initial columns, but the master problem chooses

differently due to other loading quantities. For the larger test instances, the exact solution

method is not able to obtain a solution, and the column generation heuristics outperform

the exact solution method.

Table 9.6: Comparison of column generation heuristics and exact solution method, V = 5

Test instance x (T = 20, V = 5, M = 1)

Exact V1 V2 V3
Instance Hour Obj. value Obj. value Obj. value Obj. value

1_8

07:00 39.01 44.75 44.52 50.93

17:00 11.68 12.35 12.35 20.66

2_50

07:00 No solution 195.97 196.50 193.38

17:00 (153.13 / 85.48%) 141.98 142.0 144.41

3_100

07:00 No solution 372.14 372.14 370.97

17:00 No solution 224.95 224.95 224.08

4_158

07:00 No solution 521.47 521.50 515.48

17:00 No solution 341.61 342.22 345.45

Among the versions, version 3 yields the best results most frequently when more service

vehicles are in operation. Note that the branching constants are different for each version

of the master problem. If the branching constants were equal for all three version, version

1 would yield the best results. However, for version 3, we can use a higher branching

constant, and thus generate more and better columns than in version 1 and 2. All things

considered, version 3 is concluded to perform best when there are five service vehicles in

operation.

Figure 9.1 illustrates the objective values obtained with the different versions of the master

problem for a varying number of service vehicles for test instance 3_100 at 07:00. The

104 CHAPTER 9. COMPUTATIONAL STUDY: PARAMETER TUNING

figure illustrates that version 1 and 2 perform best when there are fewer service vehicles

in the system, and that version 3 outperforms the other versions when there are more than

three service vehicles in the system.

Figure 9.1: Comparison of the different column generation heuristics

Chapter 10

Computational Study:
Simulation

In this chapter, the rebalancing strategies from the column generation heuristics are simu-

lated with the framework described in Chapter 8. By simulating the results with different

customer arrivals scenarios, we can observe a more realistic image of the performance.

First, in Section 10.1, we discuss how the simulation results are evaluated. Second, in Sec-

tion 10.2, simulations with the different column generation heuristics are conducted and

the results are compared. One of the versions is selected to be the best-performing ver-

sion, and final parameter tuning is conducted. At last, operational insights are presented

in Section 10.3.

10.1 Evaluation Setup

In this section, we discuss how the results from simulation are evaluated. First, we describe

which evaluation metric that is used. Second, we discuss how two different configurations

are compared through a statistical t-test.

10.1.1 Evaluation Metric

As described in Chapter 8, the simulation framework generates random customer arrivals

scenarios, where each customer arrivals scenario is defined as one possible outcome of

customer arrivals within a certain time period. We will refer to this as a scenario further in

105

106 CHAPTER 10. COMPUTATIONAL STUDY: SIMULATION

the thesis. To evaluate the results, we look at the expected total violations, i.e. the average

number of violations that occur in all scenarios. We refer to this as total violations. Recall

that a violation is defined as an unsatisfied customer request. A request is defined as a

customer wanting either a lock or a bicycle. Violations are further divided into starvations

and congestions. A starvation occurs when a customer arrives at an empty station with

intentions of getting a bicycle, and a congestion violation occurs when a customer arrives

at a full station with intentions of delivering a bicycle. In the model developed in Chapter

5, these events are equally weighted. As it is desired to satisfy all customer requests, less

total violations are preferred. The total violations is given in Equation (10.1).

Total violations =
1

No. of scenarios
· ∑

s∈scenario
Total violationss (10.1)

Different configurations of the heuristics are simulated from 7 am to 11 am over ten

different scenarios. As mentioned earlier, we look at each station separately when

customer arrivals are drawn. This will make the total number of bicycles in the system

vary throughout the day. This variation is more prominent when the simulation is run

over a longer period. To keep the number of bicycles in the system to an approximately

constant level, a limited time period of four hours is chosen.

To increase the precision and reduce the variance of the estimate, each configuration is

tested with ten different scenarios. Additionally, the variance is reduced by using common

random numbers, i.e. the same random ten scenarios are used for each test. This results

in a positive covariance between each observation, hence reducing the variance of the

simulation results. As a point of reference, Table 10.1 presents the results obtained when

no rebalancing takes place, i.e. the number of service vehicles in operation is zero.

Table 10.1: Results obtained with no rebalancing

Test instance 4_158, 07:00

Solution method No rebalancing

Simulation (t = 7 : 00−11 : 00, S = 10)
Number of customer requests 8475.5

Number of violations 1916.5

Number of congestions 570.2

Number of starvations 1346.3

10.1. EVALUATION SETUP 107

10.1.2 Statistical T-test

The simulation results only provide an estimate as only ten different scenarios are

simulated. To compare two different model configurations, a statistical t-test is conducted.

Given a sample from a population, a t-test tests if the mean of the population could

reasonably be a particular value (Walpole et al., 2007). We will use the t-test to check how

likely it is that two configurations perform equally well. Our null hypothesis states that

the two configurations tested perform equally well, whereas the alternative hypothesis

states that one of the two configurations performs better than the other.

As we want to compare two different configurations, X and Y , we do a pairwise compar-

ison of the results obtained from each of the ten scenarios. This means that for each of

the ten scenarios, we set Zs = Xs−Ys, where Xs and Ys are the total violations from the

two different configurations with customer scenario s. Zs is then the difference between

the two results. We will now have ten Z-values. By conducting a t-test, we can express

how likely it is, through a p-value, that the true difference Z is zero, meaning that the two

configurations perform equally good. More precisely, if the null hypothesis is true, the

p-value tells us the probability of observing a more extreme test statistic in the direction of

the alternative hypothesis (The Pennsylvania State University, 2018). Conventionally, if

p < 0.05 then the mean is unlikely to be zero whereas p > 0.05 provides no such evidence

(Teetor, 2011).

The p-value is derived as shown in Equation (10.2). z is the mean of the sample, sD is

the standard deviation of the sample, and n is the number of elements in the sample. To

calculate the p-value, we have used the statistical program R with the Zs values as input.

p = P(|Z|> z−0
sD/
√

n
) (10.2)

Table 10.2 illustrates an example where configuration X and Y are tested over five

different scenarios. We want to check whether there are reasons to believe that one of the

configurations performs better than the other. The Zs values in the right column are passed

to the statistical program R where the p-value is calculated. p = P(|Z|> z−0
sD/
√

n) = 0.011,

meaning that it is only 1.1% probability that the two configurations perform equally good.

As this value is lower than 0.05, we conclude that X performs better than Y .

108 CHAPTER 10. COMPUTATIONAL STUDY: SIMULATION

Table 10.2: Example t-test calculation

Total violations

Scenario s Xs Ys Zs = Xs−Ys

1 15 17 -2

2 13 16 -3

3 16 19 -3

4 15 16 -1

5 14 15 -1

10.2 Parameter Tuning with Simulation

In this section, the rebalancing strategies obtained from the deterministic subproblems are

simulated in a rolling horizon framework. The rebalancing strategies from version 1 and

3 are compared, and whether clustering and the pricing problem should be included is re-

tested. Additionally, varying route re-generation points and time horizons are examined,

and their best-performing values are obtained.

10.2.1 Comparison of Heuristics

Our hypothesis from the parameter tuning in Chapter 9 states that version 1 performs best

when there are three or fewer service vehicles in the system, whereas version 3 performs

best when there are more than three service vehicles in the system. To confirm or disprove

this hypothesis, the results from both version 1 and version 3 are simulated with two and

five service vehicles. The best results are marked with green.

Table 10.3: Comparison of heuristics

Test instance 4_158 (T = 20, V = x)

Solution method x

Simulation (t = 7 : 00−11 : 00, S = 10, troute = F)
Version 1 Version 3

Solution method Total violations Total violations

V = 2 1562.4 1547.3

V = 5 1316.5 1129

10.2. PARAMETER TUNING WITH SIMULATION 109

As shown in Table 10.3, version 3 yield fewer total violations when two service vehicles

are used. This invalidates the hypothesis that version 1 performs best when there are few

service vehicles in operation. As for five service vehicles, version 3 performs the best, and

the hypothesis is confirmed. By conducting a t-test where the results obtained with two

service vehicles, and then the results obtained with five service vehicles are compared, we

get p-values of 0.035 and 2 · 10−6, respectively. Thus, we can statistically confirm that

version 3 performs better regardless of the number of service vehicles.

As shown in Section 9.5, the objective value obtained from solving a subproblem with

version 1 is lower than when it is solved with version 3 when two service vehicles

are in operation. However, the simulated results state that version 3 performs best.

This highlights the fact that the subproblem is just a proxy of the stochastic problem,

and that the optimal solution in one subproblem might not be optimal in a dynamic setting.

By examining the rebalancing strategies generated with version 1 and version 3, we ob-

serve that within the four hour time period each service vehicles visits 22.1 and 25.5 sta-

tions, respectively, whereas the average loading quantities are 11.9 and 11.4, respectively.

The average loading quantity is approximately the same regardless of which version that

is used. However, it looks like version 1 generates better geographical routes as more

station visits are completed within the time period. Thus, our hypothesis is that version

3 performs better because it the higher branching constant results in better geographical

routes.

10.2.2 Clustering and Pricing Problem

In Chapter 9, clustering was concluded to be counterproductive, whereas the pricing

problem was concluded to be enhancing for version 3. In this section, the effect of

clustering and of including the pricing problem is re-tested by simulating the results in

a dynamic setting. In addition, dynamic clustering is tested. Dynamic clustering means

that new clusters are created each time new routes are generated, as opposed to regular

clustering where the clusters are static and only created once. Table 10.4 compares the

results when clustering, dynamic clustering, and the pricing problem are included and

excluded. The best and worst result is marked with a green and red color, respectively.

We observe that regular clustering performs better when the pricing problem is excluded,

while dynamic clustering performs better when the pricing problem is included. However,

110 CHAPTER 10. COMPUTATIONAL STUDY: SIMULATION

the changes are marginal, and presumably only affected by randomness in the pricing

problem. Based on these results we are not able to conclude whether dynamic clustering is

better than regular clustering. However, the difference between the results obtained with

and without clustering is substantial, revealing that clustering is counterproductive. By

conducting a t-test where the results obtained with and without clustering are compared,

we confirm, with 99.9% confidence, that the model performs better without clustering.

Our hypothesis is that if the branching constant in the initialization process was lower,

clustering would improve the results. However, with a high branching constant, the

model generates so many routes that clustering actually decreases the search space in the

initialization process.

Table 10.4: Effect of introducing clustering and pricing problem

Test instance 4_158 (T = 20, V = 5)

Solution method V3

Clustering = True / False(CH = 70, CL = 30)

Pricing problem = True / False(npp = 2,Bpp = 15, ppp = 0.4)

Simulation (t = 7 : 00−11 : 00, S = 10, troute = F)
Clustering = False Clustering = True

Dynamic = False Dynamic = True

Total violations Total violations Total violations

Pricing Problem
= False

1131 1258.3 1269.1

Pricing Problem
= True

1129 1285.9 1261.4

The fewest violations occur when clustering is excluded, and the pricing problem included.

Note that this is the same conclusion as obtained in the parameter tuning chapter. Note that

the model is not highly dependent on the pricing problem as the improvement is marginal.

By conducting a t-test where the results obtained with and without the pricing problem

are compared, we observe that there is an 87% probability that the two configurations

perform equally well. Even though we do not have strong enough evidence to claim that

the pricing problem improves the quality of the solutions, we choose to include it as the

expected number of violations is lower, and as the computational time is reasonably low.

Thus, the clustering and pricing problem configurations stay unchanged for further testing.

10.2. PARAMETER TUNING WITH SIMULATION 111

10.2.3 Examination of Adjustments in Service Vehicle Routes

The subproblem assumes deterministic demand. However, the real world demand is

stochastic, and the demand patterns might deviate from its expected value. The route

re-generation point troute is defined as the time in which new service vehicle routes

are generated by the algorithm. Until troute, the service vehicles follow the rebalancing

strategy suggested by the previous subproblem. At troute, new exogenous information is

revealed, and service vehicle routes are re-generated.

We want to examine the changes in the service vehicle routes when routes are re-

generated. Figure 10.1, illustrates the routes generated for service vehicle 1 when test

instance 4_158 at 07:00 is used with five service vehicles, and with a re-generation point

corresponding to the first vehicle arrival. Each row represents one route. The circles

indicate the stations and their respective ids, the number to the right of the circles indicate

the loading quantities, and the numbers below indicate the arrival times.

Figure 10.1: Routes generated for service vehicle 1: instance 4_158 at 07:00 with five
service vehicles.

112 CHAPTER 10. COMPUTATIONAL STUDY: SIMULATION

Row 1 indicates the first route generated for service vehicle 1. The service vehicle visits

station 35 and loads five bicycles to the station. The next planned station visit is to

station 44 at 7:10. However, another service vehicle arrives at another station at 7:02,

and new routes are generated for all service vehicles. The new route for service vehicle

1 is illustrated in Row 2. Note that the first station visit is predetermined, and thus, not

changed. The loading quantities, on the contrary, are not predetermined, but we observe

that it remains unchanged at the first station. The rest of the route is changed, which

implies that the actual customer demand might have differed from its expected value.

At 7:10, service vehicle 1 arrives at station 44, and new routes are generated. The loading

quantity at station 44 is unchanged, and six bicycles are loaded to the station. Next station

visit is planned to station 141 at 7:19. The routes generated at 7:02 (Row 2) and 7:10

(Row 3) are identical, indicating that actual customer demand probably was as expected.

Between 7:10 and 7:19, six other service vehicle arrivals happen before service vehicle

1 arrives at station 141, and six new routes are generated for all service vehicles. These

routes correspond to Row 5-9, hidden in the figure. At 7:19, service vehicle 1 arrives at

station 141, and eleven bicycles are unloaded from the station.

This figure illustrates that the same stations often are picked when new routes are gener-

ated. Also, we observe that the loading quantity at the first station remains unchanged.

Hence, re-generating routes every time a service vehicle arrives at a station may be

unnecessary. This is further tested in Subsection 10.2.4. It also demonstrates that the

branching algorithm works well, and that the routes in the master problem are picked

wisely.

Figure 10.2 illustrates the routes generated for service vehicle 1. The routes shown are

generated each time service vehicle 1 arrives at a new station, i.e. routes generated when

other service vehicles arrive at a station are excluded. The time period is from 7:00 am to

08:00 am. Recall that the first station visit in each route is predetermined. These station

visits are marked as blue. The key output variables from each subproblem are the loading

quantity at the first predetermined station, and the second station visit, as these are the

instructions that are realized. These output variables are marked with a red dotted box.

Even though only the first station visit is predetermined, we observe in this example that

three out of the seven re-generated routes also keep the second station visit unchanged, i.e.

10.2. PARAMETER TUNING WITH SIMULATION 113

Figure 10.2: Station visits completed by service vehicle 1 between 7:00 and 8:00: instance
4_158 at 07:00 with five service vehicles and a time horizon of 20 minutes.

the third station visit from the previous route is not changed in the new route generated. In

addition, the loading quantity at the first station remains unchanged six out of seven times,

i.e. 86%. This further strengthens the hypothesis stating that it might be unnecessary to

re-generate new routes every time a new service vehicle arrives at a station.

10.2.4 Route Re-generation Point and Time Horizon

The time horizon T is the length of the planning horizon within the subproblem, and

is longer than the route re-generation point troute. By generating new routes before T ,

the system is allowed to adjust the already suggested routes. Table 10.5 summarizes

the findings from running the simulator with three different route re-generation points

troute; 1) the first vehicle arrival, 2) the third vehicle arrival, and 3) with a constant

time intervals of ten minutes. These are referred to as First, Third and 10 min in the

table. The length of the time horizon T is varied from 10 to 30 minutes, incremented by 10.

As the route re-generation point does not affect the computational time, the time is only

listed once for each value of T . Our evaluation of the best and worst result is marked with

green and red, respectively.

114 CHAPTER 10. COMPUTATIONAL STUDY: SIMULATION

Table 10.5: Route re-generation point and Time horizon

Test instance 4_158 (T = x, V = 5)

Solution method V3

Simulation (t = 7 : 00−11 : 00, S = 10, troute = x)
Time horizon

T

Re-gen. point
troute

Total violations
Computational time

sec.

10 min

First 1261.0

Third 1299.3 0.28

10 min 1370.2

20 min

First 1129.0

Third 1154.6 3.0

10 min 1225.2

30 min

First 1104.2

Third 1096.3 11.1

10 min 1122.0

We recognize that the total number of violations tend to increase when the route re-

generation point is delayed. This is reasonable as the opportunity to adjust the suggested

rebalancing strategies is reduced. We also observe that the model tend to perform better

with a longer time horizon T . Although the optimal state and reward in the objective

function account for future demand, it is challenging to bias the subproblem to make

good long-term decisions. The amount of future demand considered increases with a

longer time horizon. Hence, it is not surprising that the model performs better in a rolling

horizon framework when a longer time horizon is used.

The best result obtained within a reasonable time is marked with green, and is obtained

with a time horizon T = 20 minutes, and with a route re-generation point troute = First. It

is reasonable to believe that a time horizon of 10 minutes is insufficient, especially when

routes are re-generated less frequently. This is confirmed in the table, as this combination

yields the worst result. As for T = 30, the computational time is beyond what is defined as

reasonable and is therefore concluded as impractical. Note, however, that a time horizon

10.2. PARAMETER TUNING WITH SIMULATION 115

of 30 minutes yields the best results, and the trade-off between the computational time

and the quality of the solution can be re-evaluated. The best result, marked with grey,

regardless of computational time, is obtained with a time horizon T = 30 and a route re-

generation point troute = Third, and yields a 3% reduction in total violations compared to

when T = 20, and troute = First.

10.2.5 Summary of Parameter Tuning conducted with Simulation

By simulating the rebalancing strategies from version 1 and version 3 in a rolling horizon

framework, we conclude that version 3 performs best regardless of the number of service

vehicles in the system. This invalidates the hypothesis from Chapter ??, which states

that version 1 performs best when there are less than four service vehicles in the system.

Further, we conclude that including the pricing problem in version 3 improves the results

marginally, whereas clustering is shown to be counterproductive.

Table 10.6: Summary of Simulation

Parameter Value
Best-performing version Version 3

Clustering False

Dynamic Clustering False

Pricing Problem True

Route Re-generation Point First vehicle arrival

Time Horizon T 20 minutes

By examining the adjustments in the rebalancing strategies made before and after a route

re-generation point, we observe that the same stations often are picked and that the loading

quantity at the first station visit almost always remains unchanged. This may indicate

that re-generating routes at every vehicle arrival is redundant. However, varying route re-

generation points and time horizons are tested, and a time horizon of 20 minutes, and a

route re-generation point corresponding to every vehicle arrival is concluded to give the

best results within reasonable computational time. The final configurations for the column

generation heuristic are summarized in Appendix C.

116 CHAPTER 10. COMPUTATIONAL STUDY: SIMULATION

10.3 Operational Insights

Our primary focus in this thesis is the rebalancing strategies on the operational level.

However, it is interesting also to observe how the system is affected by different strategic

decisions. Relevant decisions at the strategic level include how many service vehicles

and bicycles to have in the system, the size of the service vehicles, how starvations

and congestions are prioritized, and whether geo-fencing should be used. Note that the

observations made in this section are merely intended as a basis for strategic decision-

making for UIP. Our column generation heuristic is compared to the rebalancing method

currently used by UIP to see if our heuristic potentially can improve the performance of

the system. The current strategic decisions made by UIP are summarized in Table 10.7.

These decisions are varied, and the effects are examined.

Table 10.7: UIP’s current strategic decisions

Parameter Setting
Number of service vehicles 5

Number of slots per vehicle 23

Number of stations 158

Number of locks 3580

Number of bicycles 1790

Geo-fencing False

10.3.1 Comparison with Current Rebalancing Method

Rebalancing a BSS is a necessary operation to satisfy customer demand. However,

rebalancing is costly as it requires operators and service vehicles. As of today, UIP does

not utilize any analytic program to determine routes for the service vehicles. Each service

vehicle is assigned two specific zones every morning. Today, they have 14 zones, where

each service vehicle in operation is responsible for one zone with mostly delivery stations

and one zone with mostly pickup stations. The rebalancing decisions are solely based on

experience and gut feeling.

Table 10.8 compares the performance of our heuristic to UIP’s current rebalancing method,

and the percentage improvement is observed. Note that the current rebalancing method is

based on our interpretation and implementation of how UIP conducts rebalancing today,

10.3. OPERATIONAL INSIGHTS 117

and is not necessarily entirely accurate. The results are also compared to a situation with

no rebalancing, i.e. no service vehicles are in operation. The total number of customer re-

quests within the simulated time period is listed in the last table row as a point of reference.

Table 10.8: Column generation heuristic compared to current rebalancing method

Test instance 4_158 (T = 20, V = 5)

Solution method V3 / Current / No rebalancing

Simulation (t = 7 : 00−11 : 00, S = 10, troute = F)
Total violations % Improvement compared to

current method
CG Heuristic 1129.0 31

Current method 1482.0 -

No rebalancing 1916.5 -

Total number of requests 8475.5 -

Compared to the current rebalancing method, our column generation heuristic reduces

the total violations with 31%. This means that 353 more customer requests are expected

to be satisfied over a period of four hours. By conducting a t-test, we can confirm with

a confidence of ∼ 100%, that version 3 of the master problem performs better than the

current rebalancing strategies. Hence, the generation of smart rebalancing strategies as

opposed to taking decisions based on gut feeling is advantageous.

A reason for this substantial improvement may be that the current method utilizes zones,

while testing conducted in this thesis has concluded that clustering is counterproductive.

We believe that dividing the stations into zones is a reasonable choice when the decisions

are taken solely by the operators as this narrows down the options each service vehicle

has, and decisions are easier made. However, with data-driven decisions from our column

generation heuristic, clusters only reduce the search space, and good routes are omitted.

10.3.2 The Value of Service Vehicles

Increasing the number of service vehicles will result in a higher level of satisfied customer

requests. However, managing the service vehicles is costly for UIP, and a trade-off between

the cost of operating additional service vehicles and the gain of satisfying more customer

requests should be considered.

118 CHAPTER 10. COMPUTATIONAL STUDY: SIMULATION

Optimal Number of Service Vehicles

The marginal effect of one additional service vehicle is observed by simulating with a

varying number of service vehicles. As UIP should do assessments regarding costs, the

intention of this analysis is not to conclude with an optimal number of service vehicles, but

rather present data as a basis for decision-making. Table 10.9 presents the total violations

and the marginal reduction in violations when one service vehicle is added.

Table 10.9: Value of Service Vehicles

Test instance 4_158 (T = 20, V = x)

Solution method V3

Simulation (t = 7 : 00−11 : 00, S = 10, troute = F)
No. of vehicles Total violations Marginal violation reduction

V = 2 1547.3 -

V = 3 1400.4 146.9

V = 4 1240.7 159.7

V = 5 1129.0 111.7

V = 6 1018.3 110.7

V = 7 951.9 66.4

V = 8 855.2 96.7

V = 12 682.5 43.2

Additional service vehicles should be added as long as the marginal cost of operating

one more service vehicle is less than the gain of satisfying the marginal improvement in

satisfied customer request. As expected, the total number of violations decreases when

the number of service vehicles increases. This is reasonable, as the service vehicles strive

to improve the balance in the system. More interesting is the observation of a diminishing

marginal reduction of violations. As the most critical stations are always prioritized,

a higher number of service vehicles allow visits also to less critical stations, and the

marginal reduction of violations, therefore, decreases with more service vehicles. Figure

10.3 illustrates the trend of a decreasing marginal reduction in total violations as the

number of service vehicles increases.

One might imagine that 12 service vehicles would yield a lot fewer than 607.9 violations

as 368 bicycles can be transported simultaneously. The reason for this may be that the

initial bicycle load at the stations is randomly distributed when simulating, as opposed

10.3. OPERATIONAL INSIGHTS 119

to in real-life where the initial load at the stations depend on the rebalancing job already

conducted. This means that if 12 service vehicles are in operation, the initial load is most

likely a lot closer to the stations’ optimal states than when the loads are picked randomly.

Figure 10.3: Marginal reduction in violations as a function of number of service vehicles

Varying Number of Service Vehicles with Time of Day

Further, we hypothesize that the number of service vehicles should vary throughout the

day. In addition to minimizing the total violations, we assume that UIP strives to achieve a

constant level of violations throughout the day to increase predictability for the customers.

By adjusting the number of service vehicles, UIP can control the number of violations.

Also, if labor is a scarce resource, UIP should prioritize to utilize the service vehicles

when they are most needed. Figure 10.4 illustrates the expected demand for bicycles for

each hour during the day. We see that the demand increases from 7:00-13:00, and then

decreases again. Thus, the demand is highest between 12:00 and 15:00.

Figure 10.4: Requests for bicycles at different hours in the day

120 CHAPTER 10. COMPUTATIONAL STUDY: SIMULATION

Table 10.10 summarizes the results when the number of service vehicles is varied from

two to eight, and the simulation start time is varied between 8:00 and 17:00, incremented

by three hours. Note that the simulation duration is adjusted to one hour, so the num-

ber of total violations is substantially decreased compared to a four hour simulation period.

Table 10.10: A varying number of service vehicles for different times of the day

Test instance 4_158 (T = 20, V = x)

Solution method V3

Simulation (t = x, S = 10, troute = F)
No. of t = 08:00-09:00 t = 11:00-12:00 t = 14:00-15:00 t = 17:00-18:00

vehicles Total violations

V = 2 210.9 330.6 437.5 178.1

V = 3 203.8 318.7 420.1 171.6

V = 4 185.1 308.2 413.2 158.5

V = 5 171.8 297.5 399.5 149.1

V = 6 164.0 287.5 383.6 154.1

V = 7 158.1 283.4 372.8 154.2

V = 8 141.4 265.4 355.0 145.3

As expected, the number of total violations decreases when the number of service vehi-

cles increases. We observe that the number of violations correlates with the number of

customers. As the demand varies throughout the day, increasing the number of service

vehicles in the period with the highest customer demand seems reasonable.

Effect of introducing larger service vehicles

Further, the effect of replacing the standard-size service vehicles with larger service

vehicles is assessed. We assume that a large service vehicle has a capacity of 60 bicycles,

as opposed to the standard-size service vehicle with 23 slots. Moreover, we assume that

the fixed parking time and the unit handling time are increased from 2 to 6 minutes and

0.25 to 0.4 minutes per bicycles, respectively, when the large service vehicles are used.

This is based on conversations with the service vehicle operators in UIP. The number of

large service vehicles is varied from 2 to 5, and Table 10.11 outlines the results obtained.

10.3. OPERATIONAL INSIGHTS 121

Table 10.11: Value of one large service vehicle

Test instance 4_158 (T = 20, V = x)

Solution method V3

Simulation (t = 7 : 00−11 : 00, S = 10, troute = F)
Type No. of service

vehicles
Capacity per

vehicle
Total capacity Total

violations
Standard

5 23 115 1129.0

Large
2 60 120 1686.7

3 60 180 1575.4

4 60 240 1495.5

5 60 300 1428.9

9 60 540 1114.5

Replacing five standard-size service vehicles with two large service vehicles yields the

same total service vehicle capacity, but shows not to be efficient in terms of avoiding

violations. On the contrary, operating two large service vehicles may be cheaper than

operating five standard-size service vehicles, assuming only one operator at each service

vehicle. Five service vehicles have to be replaced by a minimum of nine large service

vehicles to satisfy an approximately equal amount of customer requests. Hence, despite

the extended service vehicle capacity, the increased handling and parking time make the

large service vehicles less efficient. Note, however, that the branching algorithm in the

initialization is unchanged when the model is solved with the large service vehicles. Thus,

the assumptions made regarding route generation and loading quantities may no longer be

suitable.

10.3.3 Different Prioritization of Starvations and Congestions

In this thesis, we have assumed equal prioritization of avoiding starvations and conges-

tions. However, a congested station may result in customers leaving their rented bicycles

unlocked, which is very costly for UIP if stolen. Also, UIP suspects a greater amount of

frustrations from customers that experience congestions than from customers experiencing

starvations. Hence, UIP has expressed that avoiding congestions is prioritized. In the

objective function in the subproblem, total violations are weighted with the weight wv.

The objective function in the subproblem is now re-formulated so that the total amount

122 CHAPTER 10. COMPUTATIONAL STUDY: SIMULATION

of congestions and starvations are weighed separately with the weights wC and wS,

respectively. As discussen in Section 7.1.6, the optimal value of wv is set to 0.6. In

the re-formulated objective function, this is equivalent to setting both wC and wS to 0.6.

Different priorities of starvations and congestions are examined in Table 10.12.

Table 10.12: Different weighting of starvations and congestions

Test instance 4_158 (T = 20, V = 5)

Solution method V3

Simulation (t = 7 : 00−11 : 00, S = 10, troute = F)
wC wS Total violations Congestions Starvations
0.6 0.6 1129.0 200.4 928.6

0.7 0.5 1125.4 199.6 925.8

0.8 0.4 1123.5 192.4 931.1

0.9 0.3 1133.4 191.4 942.0

1.0 0.2 1162.9 193.5 969.4

As shown in Table 10.12, different weightings of starvations and congestions have minor

implications on the number of congestions. However, the number of starvations and the to-

tal number of violations, tend to increase when the congestions are weighted higher. Thus,

weighting the congestions higher with the aim of reducing the congestions, is concluded

to be counterproductive. Consequently, equal prioritization is maintained. An interesting

observation is, however, that 82% of the total violations is due to starvations, i.e. no avail-

able bicycles, when congestions and starvations are equally weighted. We believe that the

reason for this is that UIP intentionally has set the number of bicycles in the system low

enough to achieves this distribution.

10.3.4 The Value of Bicycles

The impact caused by varying the number of bicycles is examined. Figure 10.5 presents

the results obtained from simulation when the total number of bicycles is varied between

1000 and 3500, incremented by 500. Today, they have 1790 bicycles, and a total of 3580

locks in the system, i.e. the total number of bicycles is approximately half the number

of locks. The results obtained with 1790 is marked with a red dotted line. Note that as

the number of bicycles increases, the total number of locks remains the same, and the

bicycle/lock ratio increases.

10.3. OPERATIONAL INSIGHTS 123

Figure 10.5: Violations as a function of number of bicycles in the system

The current number of bicycles, i.e. 1790 bicycles, does not yield the lowest total

violations, but is most likely chosen to reduce the number of congestions, and thus, the

number of possibly stolen bicycles. Figure 10.5 shows that an increasing amount of

bicycles decreases the number starvations while increasing the number of congestions.

Further, we observe that the total number of violations first decreases, and then increases

when the total number of bicycles increases. The minimum number of violations is

obtained with approximately 3000 bicycles in the system, i.e. a bicycle/lock ratio of 0.84.

An interesting discovery is that the total violations are at its minimum when the total

starvations equal the total congestions.

By increasing the number of bicycles in the system from 1790 to 3000, the total number of

violations is reduced by 21%. This is at the expense of 254 additional congestions. This is

equivalent to a 126% increase in the number of congestions.

10.3.5 The Value of Geo-fencing

With emerging technology, concepts like geo-fencing are enabled. Geo-fencing allows

a station to be overflowed by bicycles beyond its fixed capacity. A geo-fenced area is

an area around a station in which bicycles can be locked. As more bicycles now can be

parked, geo-fencing can mitigate the issue of congestion at stations, i.e. when there are no

available locks. Note, that the geo-fencing is not a replacement of the physical stations.

Starved stations, i.e. no available bicycles, are not affected by geo-fencing.

124 CHAPTER 10. COMPUTATIONAL STUDY: SIMULATION

Increasing Station Capacity with Geo-fencing

It is reasonable to set an upper limit on the total capacity within the geo-fence. Figure

10.6 presents the results when the effect of geo-fencing is simulated by increasing each

stations’ capacity by multiplying their current capacities with a multiplier of 1, 1.5, 2, 3,

and 4.

Figure 10.6: The Value of Geo-fencing and different capacity multipliers

As illustrated in Figure 10.6, the number of total violations decreases when geo-fencing

is enabled. The minimum number of total violations is obtained when each stations’

capacity is doubled, i.e. a station capacity multiplier of 2 is applied. By doubling the

station capacities, an 18% reduction in total violations is obtained. Not surprisingly, the

number of congestions converges to zero as the station capacities increase. The number of

starvations first decreases, and then increase again.

Avoiding excessively loaded stations when geo-fencing is enabled is favorable as there

are people and other surroundings to consider. It is impractical if hundreds of bicycles

are parked at a station in the center of Oslo, as this may block traffic and prevent people

from passing. Hence, the station with the highest load throughout the simulation period

is observed to get an image of how geo-fencing would affect the city environment. When

geo-fencing is enabled with an upper limit of 4x the station capacity, the most loaded

station is station 126, Spikersuppa Vest, with 81 bicycles. This is in fact only 33 bicycles

above the capacity. Whether 81 bicycles at one station is manageable, has to be assessed

by UIP.

10.3. OPERATIONAL INSIGHTS 125

Optimal number of bicycles when geo-fencing is applied

In Subsection 10.3.4, an increasing number of bicycles in the system was tested. Increas-

ing the number of bicycles led to an increasing amount of congestions as the total number

of locks remained unchanged. However, increasing the number of bicycles may be conve-

nient if geo-fencing is enabled. Figure 10.7 illustrates the results obtained when the total

number of bicycles is varied from 1000 to 7000, incremented by 1000. The upper limit on

the geo-fence is set to 2x the station capacity.

Figure 10.7: Violations as a function of number of bicycles in the system when geo-fencing
is enabled

We observe from Figure 10.7 that with approximately 4000 bicycles in the system, the

fewest number of violations are experienced. If congestions are prioritized, a lower

total number of bicycles could be considered at the expense of more starvations. To

conclude, enabling geo-fencing allows for more bicycles in the system, and the number of

total violations is decreased to approximately 280. Compared to the current rebalancing

strategy used by UIP today, this is equivalent to an 81% decrease in the total number of

violations.

Similarly to the above analysis, the most loaded station is observed to get an image of

how geo-fencing would affect the city environment. With 4000 bicycles, the station that

experiences the highest load during the ten different scenarios, is station 126, Spikersuppa

Vest, with 96 bicycles. Whether 96 bicycles is a reasonable amount of bicycles locked at a

station has to be assessed by UIP. To summarize, increasing the number of bicycles when

geo-fencing is enabled satisfies more customers, but goes at the expense of an excessive

amount of bicycles at the most popular stations.

126 CHAPTER 10. COMPUTATIONAL STUDY: SIMULATION

Effect of introducing large service vehicle when geo-fencing is applied

With geo-fencing and more bicycles in the system, it might be more appropriate to utilize

large service vehicles. Table 10.13 presents the results when the number of large service

vehicles is varied between 2 and 5, the geo-fence factor is set to 2x the capacity, and there

are 4000 bicycles in the system. Note that the fixed parking time and the variable handling

time are again increased to 6 minutes and 0.4 minutes per bicycle handled, respectively.

Table 10.13: Geo-fencing and Large Service Vehicles

Test instance 4_158 (T = 20, V = x)

Solution method V3

Simulation (t = 7 : 00−11 : 00, S = 10, troute = F)
No. of large

service vehicles
Total violations Congestions Starvations

V = 2 728.2 303.0 425.2

V = 3 660.4 269.5 390.9

V = 4 584.8 239.1 345.7

V = 5 540.6 211.2 329.4

As observed in Table 10.13, the total violations occurring when there are five large service

vehicles in the system is nowhere near the total violations when five standard size service

vehicles are used. Hence, replacing the standard sized service vehicles with large service

vehicles appear to be inefficient. This is reasonable as a large service vehicle uses more

time on parking and handling bicycles than a standard size service vehicle and therefore

reaches out to fewer stations.

10.3.6 Summary of Operational Insights

Through analyses conducted at the operational level, we learned that compared to UIP’s

current rebalancing method, our column generation heuristic decreases the number of total

violations in the system with as much as 31%, leaving the number of service vehicles,

the number of bicycles and other settings unchanged. This is a significant improvement

which substantiates that rebalancing strategies should be data-driven as opposed to being

based on gut-feeling and human experience.

10.3. OPERATIONAL INSIGHTS 127

Various factors regarding the BSS were analyzed, e.g. the number of service vehicles

and bicycles in the system, the effect of large service vehicles, different prioritization of

starvations and congestions, and the effect of allowing geo-fencing. As for the number

of service vehicles, we observed that both the total violations that occur and the marginal

reduction in violations, reduce when additional service vehicles are added. This means

that with more service vehicles, the contribution of each service vehicle diminishes. The

break-even point between the marginal costs of operating an additional service vehicle

and the gain of satisfying additional customers has to be evaluated by UIP. Further, we

observed that the number of service vehicles in operation should be increased mid-day

when the demand is highest.

UIP has expressed that they often prioritize congested stations, i.e. full stations, as a

stolen bicycle is costly. However, we observed that different prioritization of starvations

and congestions in the objective function has approximately no effect on the distribution

between starvations and congestions. On the contrary, we observed that adjusting the

number of bicycles in the system has a major effect on the distribution between starvations

and congestions. By increasing the number of bicycles, the number of starvations and

congestions decreases and increases, respectively. To minimize the total number of

violations, the number of bicycles should be increased from 1790, i.e. today’s level, to

approximately 3000 bicycles. This results in a 21% reduction in the number of violations.

However, this increases the number of congestions, and the trade-off should be evaluated.

Moreover, we observed that, with the number of bicycles that are in the system today,

82% of the violations stem from starvations.

Combining geo-fencing and more bicycles appear to be the best solution when the aim

is to decrease violations. By increasing the number of bicycles to 4000, and by doubling

each station’s capacity through geofencing, the number of total violations reduces with ap-

proximately 75% and the total congestions reduces with 44%. Compared to UIP’s current

rebalancing method, this corresponds to an 81% reduction in total violations. The effect

of replacing today’s service vehicles with larger trucks was examined, and concluded to

be inefficient regardless of geofencing and the number of bicycles.

128 CHAPTER 10. COMPUTATIONAL STUDY: SIMULATION

Chapter 11

Concluding Remarks

In this chapter, the concluding remarks are drawn in Section 11.1, and future research

opportunities are presented in Section 11.2.

11.1 Conclusion

In this thesis, we presented a column generation heuristic for solving the dynamic

rebalancing problem for a Bike Sharing System (BSS). A BSS offers short-term bicycle

rental to its users, but due to the one-directional flow of travel, the system becomes

imbalanced and customers requesting the service are left unsatisfied. The BSS in Oslo,

operated by Urban Infrastructure Partners (UIP), is used as a sample case in this thesis.

They utilize service vehicles to restore balance. The key objective of the dynamic

rebalancing problem is to generate efficient routes and loading quantities for the service

vehicles with the aim of minimizing violated customer demand. The real-world problem is

complex as it is both dynamic and stochastic. A simplification is made, and the real-world

problem is approximated through a set of smaller subproblems with known customer de-

mand, denoted as the Dynamic Deterministic Bicycle Rebalancing Subproblem (DDBRS).

A heuristic solution approach is necessary to solve the DDBRS of realistic size. As only

a small portion of the variables in the DDBRS will take a value greater than zero, a

column generation heuristic is proposed. The heuristic includes a heuristic initialization

procedure, a master problem solved to optimality, and a heuristic pricing problem. The

initialization process consists of a branching algorithm that generates a set of columns for

129

130 CHAPTER 11. CONCLUDING REMARKS

each service vehicle. The master problem further determines the optimal combination of

columns by allocating one column to each service vehicle. The mathematical formulation

of the master problem differs from others in literature as we interpret a long-term focus

by accounting for future demand. We propose three different versions of the master

problem, where the amount of predetermined information in the initialized columns

differs. In version 1, the loading quantities are determined in the master problem; in

version 2, the loading quantities are predetermined in the initialization and re-evaluated in

the master problem; and in version 3, the loading quantities are entirely predetermined. A

heuristic pricing problem is developed with the goal of generating new and better columns.

The column generation heuristics is compared to each other and to an exact solution

algorithm. For the large test instances, the exact solution method is unable to obtain a

solution, and the column generation heuristics excel. Further, version 3 of the master

problem, where loading quantities are predetermined, is shown to outperform the others

as it is able to handle many service vehicles and a more extensive search space. We also

observed that the optimal solution from one subproblem was not necessarily the best

solution in a dynamic setting. This highlights the fact that the subproblem only is a proxy

of the stochastic problem. The computational time when solving the DDBRS with 158

stations and five service vehicles is approximately 3 seconds. As the master problem

is capable of handling a large subset of columns, a substantial number of columns are

generated in the initialization process, and the pricing problem showed only to improve

the results marginally. Additionally, clustering of stations is proposed, but is shown to be

counterproductive when version 3 of our column generation heuristic is used.

As the DDBRS does not account for real-world uncertainties, the results are simulated

using an implemented discrete-event simulator. A configuration is evaluated by observing

the expected total violations obtained from ten randomly drawn demand scenarios gener-

ated based on historical data. After a certain time, new exogenous information is revealed,

and routes are re-generated by the algorithm. By examining the routes re-generated for a

service vehicle, it is observed that the branching algorithm performs well. Compared to

UIP’s current rebalancing method, our column generation heuristic reduces the expected

total violations by 31%. Hence, the generation of smart and data-driven rebalancing

strategies as opposed to making decisions based on gut feeling is advantageous.

The main findings from analyses conducted at a strategic level were that increasing the

11.2. FURTHER RESEARCH OPPORTUNITIES 131

number of bicycles in the system combined with the concept of geo-fencing appear to be

the best opportunity when the aim is to decrease violations. By increasing the number

of bicycles to 4000, and by doubling each station’s capacity through geo-fencing, the

total violations reduces further with approximately 75% and the total congestions reduces

with 44%. In addition, more service vehicles should be added as long as the marginal

cost of operating one more service vehicle is less than the gain of satisfying the marginal

improvement in satisfied customer requests. As expected, the total number of violations

decreases when the number of service vehicles increases.

To conclude, solving the DDBRS with a column generation heuristic produces high-

quality solutions within a reasonable computational time. Our heuristic increases the num-

ber of satisfied customer requests substantially, and can thus be a significant contribution

to BSSs. In fact, by implementing our column generation heuristic, applying geo-fencing,

and increasing the number of bicycles in the system, the total violations in Oslo can de-

crease with as much as 81% compared to today’s current rebalancing strategies.

11.2 Further Research Opportunities

This section highlights research opportunities that can contribute to further improvements

of the BSS. How the realism of customer interactions can be improved, further devel-

opment of the pricing problem, the implementation of user incentivizing, and demand

forecasting are discussed.

11.2.1 Improving Realism of Customer Interactions

The simulation framework developed in this thesis separates the generation of requests

for bicycles and locks when generating demand scenarios. In the real-world, requests

for bicycles and locks are dependent as a customer renting a bicycle also must return it.

Also, if the customer experiences starvation, and chooses not to find a bicycle at another

station, the customer does not have a bicycle to return. A future research opportunity is to

develop a simulation framework that generates customer trips where the request for a lock

is dependent on whether the customer gets a bicycle or not instead of customer requests.

Implementing this will further improve the realism of the simulated results.

Further, one can assume that if a customer experiences a starvation/congestion, she will

132 CHAPTER 11. CONCLUDING REMARKS

look for an available bicycle/lock at a nearby station, and the violation might be omitted.

This assumption is probably rational as many stations are placed close to each other. This

assumption can be incorporated in the simulation framework, but also in the initialization.

Even though a station is starved or congested, it might not be a problem if another station

nearby has available bicycles/locks, and the station can thus be given a lower criticality

score.

11.2.2 Further Development of the Pricing Problem

The pricing problem developed in our column generation heuristic is based on simple

mechanisms. We identify critical stations omitted in the chosen routes that may contribute

to a better solution if included. The improvements obtained with this implementation of

the pricing problem were marginal. Hence, a future research opportunity is to develop a

smarter pricing problem algorithm.

11.2.3 User Incentivizing

An interesting topic regarding BSSs is to engage the users themselves to rebalance the

system and equalize the one-directional flow of travels. Singla et al. (2015) discuss that

utilizing service vehicles goes against the green concept of BSS, and present a mechanism

that incentivizes the customers to pick up and return bicycles at preferred stations. In Paris,

Velib’ runs a static incentive schema that offers users 15 extra free minutes each time they

return a bicycle to an elevated station. Fricker and Gast show that even simple incentives,

such as suggesting that users return to the least loaded station among two stations, improve

the imbalance by an exponential factor. There is much potential in intelligent and self-

sustainable systems, and lots of interesting research topics can be related to this.

11.2.4 Demand Forecasting

The rebalancing strategies determined by our model are highly dependant on the net de-

mand and optimal state derived from the demand data obtained from UIP. Hence, any

miscalculations or incorrect assumptions leads to inefficient and unsuitable rebalancing

strategies. Developing a smarter and complete demand forecast is therefore beneficial.

The main challenge is to estimate demand in the periods when the stations are either full

or empty, as true demand is not captured. An opportunity is to utilize smart technology and

machine learning in demand forecasting. In addition, the demand forecast should consider

weather, events and holidays that affect the demand patterns.

Appendix A

Linearization

A lot of the constraints from Section 5.4 are nonlinear. To solve a problem using linear

solving tools, we need to make these constraints linear before we can implement them.

Big-M formulations are used, where the Ms are set to values that are large enough to

include all solutions at the same time as they are as tight as possible. Section A.1 presents

linear versions of all the nonlinear constraints from Section 5.4.1. Section A.2 presents

linear versions of all the nonlinear constraints from Section 5.4.2. And, lastly Section A.3

presents linear versions of the nonlinear constraints from Section 5.5.

A.1 Ensure Feasible Routes

Constraints (5.7), (5.12) - (5.14),and (5.16) - (5.18) are nonlinear and need to be linearized

before implementation. Big-M formulations are used for linearization. The M values are

specified so that they are of sufficient size, but also as tight as possible.

Constraints (5.7):

(lVimv +qU
jnv−qL

jnv− lVjnv)xim jnv = 0 v ∈V, i ∈ S\{d}, j ∈ S,m,n ∈M

Constraints (5.7) ensure that the service vehicle load is in balance before and after a visit.

Big-M is set to the upper capacity inventory level for service vehicle v. The linear version

133

134 APPENDIX A. LINEARIZATION

is presented in Constraints (A.1) and (A.2).

lVimv +qU
jnv−qL

jnv− lVjnv−M(1− xim jnv)≤ 0 v ∈V, i ∈ S\{d}, j ∈ S,m,n ∈M (A.1)

lVimv +qU
jnv−qL

jnv− lVjnv +M(1− xim jnv)≥ 0 v ∈V, i ∈ S\{d}, j ∈ S,m,n ∈M (A.2)

where

M = max{lVimv +qU
jnv−qL

jnv− lVjnv}= QV
v

Constraints (5.12):

(lS
i,m−1 + ∑

v∈V
(qL

i,m−1,v−qU
i,m−1,v)+Di(tim− ti,m−1)+ vS

im− vC
im− lS

im)

∑
j∈S

∑
n∈M

∑
v∈V

xim jnv = 0i ∈ S,m ∈ m\{1}

Constraints (5.12) capture violations between each stations visit. The linear version is

presented by Constraints (A.3) and (A.4). Equation (A.5) shows the terms that have to be

maximized in the big M-formulation. Equation (A.6) states that the maximum quantity

loaded to the station equals the minimum of the stations capacity and the service vehicle

capacity. The last station visit within the time horizon can theoretically happen right before

the time runs out, before it get the chance to unload or load any bikes. Since the station

visit tim can happen after the time horizon, max{tim} equals the length of the time horizon,

plus the maximum driving time to the station and the maximum handling and parking time

at the previous station. This is shown in Equation (A.7). The maximum violation is shown

in Equation (A.8), and equals the demand times the maximum value for tim. Equation

(A.9) states the maximum load at the station, and equals the station capacity.

lS
i,m−1 +∑

v
(qL

i,m−1,v−qU
i,m−1,v)+Di(tim− ti,m−1)+ vS

im− vC
im− lS

im

+M(1−∑
j∈S

∑
n∈M

∑
v∈V

xim jnv)≥ 0 i ∈ S,m ∈ m\{1}
(A.3)

lS
i,m−1 +∑

v
(qL

i,m−1,v−qU
i,m−1,v)+Di(tim− ti,m−1)+ vS

im− vC
im− lS

im

−M(1−∑
j∈S

∑
n∈M

∑
v∈V

xim jnv)≤ 0 i ∈ S,m ∈ m\{1}
(A.4)

M = max{qU
im−Di · tim + vC

im + lS
im} (A.5)

A.1. ENSURE FEASIBLE ROUTES 135

where

max{qU
im}= min{maxv∈V QV

v ,Q
S
i } (A.6)

max{tim}= T +T H(min{maxv∈V QV
v ,maxk∈SQS

k})+T P +maxk∈ST D
ki (A.7)

max{vC
im}= max{Di · tim} (A.8)

max{ls
im}= QS

i (A.9)

Constraints (5.13):

(tim +T H(qL
imv +qU

imv)+T P +T D
i j − t jn)xim jnv ≤ 0 v ∈V, i, j ∈ S\{d},m,n ∈M

Constraints (5.13) restrict the time between station visits. Constraints (A.10) is a linear

version of Constraints (5.13). Equation (A.11) shows the terms that have to be maximized

in big-M. max tim is as described above, and is shown is Equation (A.12). The maximum

quantity that is unloaded or loaded at station visit (im) is shown in Equation (A.13). As

shown in Equation (A.14), the driving time from station i to the next station j will be zero

as the next station will be the artificial destination when tim is maximized. (A.15) The

maximum value of −t jn equals zero.

tim +T H
∑
v∈V

(qL
imv +qU

imv)+T P +T D
i j − t jn−M(1−∑

v∈V
xim jnv)≤ 0

i ∈ S, j ∈ S\{d},m,n ∈M
(A.10)

M = max{tim +T H
∑
v∈V

(qL
imv +qU

imv)+T P +T D
i j − t jn} (A.11)

where:

max{tim}= T +T H(min{maxw∈V QV
w,maxk∈SQS

k})+T P +maxk∈ST D
ki (A.12)

max{∑
v∈V

(qL
imv +qU

imv}) = min{maxw∈V QV
w,Q

S
i } (A.13)

max{T D
i j }= 0 (A.14)

max{−t jn}= 0 (A.15)

136 APPENDIX A. LINEARIZATION

Constraints (5.14):

tim− (ti(m−1)+T H
∑
v∈V

(qL
i(m−1)v +qU

i(m−1)v)+T P)∑
j∈S

∑
n∈M

∑
v∈V

xim jnv ≥ 0

i ∈ S,m ∈M\{1}

Constraints (5.14) say that if visit (i,m) is planned, then this visit has to start after visit

(i,m− 1) is done with handling. Constraints (A.16) is a linear version of this constraint.

Equation (A.17) shows the terms that have to be maximized in big-M. The terms that have

to be maximized in M are specified in Equations (A.18) and (A.19), and follow the same

logic as described above.

tim− (ti(m−1)+T H
∑
v∈V

(qL
i(m−1)v +qU

i(m−1)v)+T P)+M(1−∑
j∈S

∑
n∈M

∑
v∈V

xim jnv)≥ 0

i ∈ S,m ∈M\{1}
(A.16)

M = max{ti(m−1)+T H
∑
v∈V

(qL
i(m−1)v +qU

i(m−1)v)+T P} (A.17)

where:

max{ti(m−1)}= T +T H(min{maxw∈V QV
w,maxk∈SQS

k})+T P +maxk∈ST D
ki (A.18)

max{∑
v∈V

(qL
i(m−1)v +qU

i(m−1)v)}= min{maxv∈V QV
v ,Q

S
i } (A.19)

Constraints (5.16):

(1−∑
v∈V

ximd(v)1v) · tim ≤ T i ∈ S\{d},m ∈M

Constraints (5.16) restrict the visit time at a station to be before the time horizon as long

as it is not the last station the vehicle visits. Constraints (A.20) show the reformulation

using big-M. M is set to the maximum value tim +T can take, shown in Equation (A.21).

Equation (A.22) specifies the variable term in big-M.

tim−T −M ∑
v∈V

ximd(v)1v ≤ 0 i ∈ S\{d},m ∈M (A.20)

M = max{tim−T} (A.21)

max{tim}= T +T H(min{maxw∈V QV
w,maxk∈SQS

k})+T P +maxk∈ST D
ki (A.22)

A.2. VIOLATIONS AND DEVIATIONS 137

Constraints (5.17):

tim(1−∑
j∈S

∑
n∈M

∑
v∈V

xim jnv)≤ 0 i ∈ S\{d},m ∈M

Constraints (5.17) say that the visit time must be zero if no visits remade. Constraints

(A.23) is a linear version.

tim ≤M ∑
j∈S

∑
n∈M

∑
v∈V

xim jnv i ∈ S\{d},m ∈M (A.23)

where

M = max{tim}= T +T H(min{maxw∈V QV
w,maxk∈SQS

k})+T P +maxk∈ST D
ki

Constraints (5.18):

tim(1−∑
j∈S

∑
n∈M

∑
v∈V

xi(m−1) jnv)≤ 0 i ∈ S,m ∈M|{1}

Constraints (5.18) say that visit (m−1) has to be done before visit m. Constraints (A.24)

are linear versions of these constraints.

tim ≤M ∑
j∈S

∑
n∈M

∑
v∈V

xi(m−1) jnv i ∈ S,m ∈M|{1} (A.24)

where

M = max{tim}= T +T H(min{maxw∈V QV
w,maxk∈SQS

k})+T P +maxk∈ST D
ki

A.2 Violations and deviations

Constraints (5.30), (5.32), (5.33), (5.35) and (5.37) - (5.45) are nonlinear and need to be

linearized before implementation. Big-M formulations are used for linearization. The M

values are specified, and are of sufficient size, and as tight as possible.

138 APPENDIX A. LINEARIZATION

Constraints (5.30), (5.32), (5.33), and (5.35):

tim(1−δ
T
im)≤ T i ∈ S,m ∈M

tim · (1−θim)≤ ti(m+1) i ∈ S,m ∈M\{|M|}

tim ≥ ti(m+1)θim i ∈ S,m ∈M\{|M|}

ti|M|(1−θi|M|)≤ 0 i ∈ S

Recall the binary variables:
δ T

im 1 if visit (i,m) is after the time horizon T , 0 otherwise

θ
f

im 1 if visit (i,m) is the last visit for station i, 0 otherwise

γi 1 if station i gets at least one visit, 0 otherwise

These constraints can be linearized with Constraints (A.25), (A.26), (A.27), and (A.28),

respectively.

tim ≤ T +Mδ
T
im i ∈ S,m ∈M (A.25)

tim ≤ ti(m+1)+Mθim i ∈ S,m ∈M\{|M|} (A.26)

tim ≥ ti(m+1)−M(1−θim) i ∈ S,m ∈M\{|M|} (A.27)

ti|M| ≤Mθi|M| i ∈ S (A.28)

where

M = max{tim}= T +T H(min{maxw∈V QV
w,maxk∈SQS

k})+T P +maxk∈ST D
ki

Constraints (5.37):

(−si +LS,o
i +DiT − vC, f

i + vS, f
i)(1− γi) = 0 i ∈ S\{d}

Constraints (5.37) capture the violations from the beginning of the time horizon until the

end of the time horizon for stations that do not get any visit, i.e.γi = 0. These constraints

can be linearized by Constraints (A.29) and (A.30).

si ≤ LS,o
i +DiT − vC, f

i + vS, f
i +Mγi i ∈ S\{d} (A.29)

si ≥ LS,o
i +DiT − vC, f

i + vS, f
i −Mγi i ∈ S\{d} (A.30)

A.2. VIOLATIONS AND DEVIATIONS 139

where

M = QS
i

Constraints (5.38):

(−sI + lS
im + ∑

v∈V
(qL

imv−qU
imv)+Di(T − tim)+ vS, f

i − vC, f
i)(1−δim) ·θim = 0

i ∈ S,m ∈M

Constraints (5.38) capture the violations from the last visit until the time horizon from

stations that gets its last visit before the time horizon, i.e. δim = 0 and θim = 1. Constraints

(A.31) and (A.32) are linearizations of these constraints.

si ≥ lS
im + ∑

v∈V
(qL

imv−qU
imv)+Di(T − tim)+ vS, f

i − vC, f
i −M(δim +1−θim)i ∈ S,m ∈M

(A.31)

si ≤ lS
im + ∑

v∈V
(qL

imv−qU
imv)+Di(T − tim)+ vS, f

i − vC, f
i +M(δim +1−θim)i ∈ S,m ∈M

(A.32)

where

M = QS
i

Constraints (5.39):

(−si +(vS
im− vS,F

i)− (vC
im− vC,F

i)+ lS
im−Di(tim−T)+ vC

im− vS
im)δim ·θim = 0

i ∈ S,m ∈M

Constraints (5.39) capture the violations from the time horizon T until the last visit for

stations that gets their last visit after the time horizon, i.e. δim = 1 and θim = 1. Constraints

(A.33) and (A.34) are linearizations of these constraints.

si≥ (vS
im−vS,F

i)−(vC
im−vC,F

i)+lS
im−Di(tim−T)+vC

im−vS
im−M(2−δim−θim)i∈ S,m∈M

(A.33)

si≤ (vS
im−vS,F

i)−(vC
im−vC,F

i)+lS
im−Di(tim−T)+vC

im−vS
im+M(2−δim−θim)i∈ S,m∈M

(A.34)

where

M = max{QS
i + |Di|tim +di(tim−T)}

max{tim}= T +T H(min{maxw∈V QV
w,maxk∈SQS

k})+T P +maxk∈ST D
ki

140 APPENDIX A. LINEARIZATION

Constraints (5.40) and (5.41):

(QS
i − si)(vC

im− vC,F
i) = 0 i ∈ S,m ∈M

si(vS
im− vS,F

i) = 0 i ∈ S,m ∈M

Constraints (5.40) and (5.41) ensure that the violations can be greater than zero only if

the station is actually full or empty at the time of visit.To make these constraints linear we

introduce the following binary variables and constraints:

δ
C,H
i 1 if station i is full at the time horizon, 0 otherwise

δ
S,H
i 1 if station i is empty at the time horizon, 0 otherwise

Constraints (5.40) and (5.41) can be linearized by Constraints (A.35)-(A.38).

si +QS
i δ

S,H
i ≤ QS

i i ∈ S\{d} (A.35)

(vS
im− vS,F

i)−M(δ S,H
i −θim−δ

T
im +2)≤ 0 i ∈ S\{d},m ∈M (A.36)

si−QS
i δ

C,H
i ≥ 0 i ∈ S\{d} (A.37)

(vC
im− vC,F

i)−M(δC,H
i −θim−δ

T
im +2)≤ 0 i ∈ S\{d},m ∈M (A.38)

where

M = |Di|T

Constraints (5.42) and (5.43):

vC,F
i (1− ∑

m∈M
δ

T
im) = 0 i ∈ S\{d}

vS,F
i (1− ∑

m∈M
δ

T
im) = 0 i ∈ S\{d}

Constraints (5.42) and (5.43) ensure that the violations after the time horizon equal zero

if the last visit is before the time horizon. Constraints (A.39) and (A.40) represent linear

A.2. VIOLATIONS AND DEVIATIONS 141

versions of these.

vC,F
i ≤M ∑

m∈M
δ

T
im i ∈ S\{d} (A.39)

vS,F
i ≤M ∑

m∈M
δ

T
im i ∈ S\{d} (A.40)

where

M = max{|Di|(tim−T)}

max{tim}= T +T H(min{maxw∈V QV
w,maxk∈SQS

k})+T P +maxk∈ST D
ki

Constraints (5.44) and (5.45):

vC,F
i ·θim ·δim ≤ vC

im i ∈ S\{d},m ∈M

vS,F
i ·θim ·δim ≤ vS

im i ∈ S\{d},m ∈M

Constraints (5.44) and (5.45) specify the relationship between the violations after the time

horizon and the violations between this station visit and the previous station visit. Con-

straints (A.41) and (A.42) represent linear versions of these.

vC,F
i −M(2−θim−δim)≤ vC

im i ∈ S\{d},m ∈M (A.41)

vS,F
i −M(2−θim−δim)≤ vS

im i ∈ S\{d},m ∈M (A.42)

where

M = max{|Di|(tim−T)}

max{tim}= T +T H(min{maxw∈V QV
w,maxk∈SQS

k})+T P +maxk∈ST D
ki

142 APPENDIX A. LINEARIZATION

A.3 Objective Function

Constraints 5.57:

t f
v = ∑

i∈S
∑

m∈M
ximd(v)1v · tim−T v ∈V

Constraints (5.57) track the remaining driving time to the last station visit beyond the time

horizon, and Constraints (A.43) and (A.44) show the reformulation using big-M. M is set

to the maximum value t f
v − tim +T can take, shown in Equation (A.45). Equations (A.46)

and (A.47) specify the terms in big-M.

t f
v − tim +T −M(1− ximd(v)1v)≤ 0 i ∈ S\{d},m ∈M,v ∈V (A.43)

t f
v − tim +T +M(1− ximd(v)1v)≥ 0 i ∈ S\{d},m ∈M,v ∈V (A.44)

where

M = max{t f
v − tim +T} (A.45)

max{t f
v }= T P +T H ·min{QV

v ,max j∈SQS
j}+max j,k∈ST D

jk (A.46)

max{−tim}= 0 (A.47)

Appendix B

Parameter Tuning

B.1 Parameter Tuning for MP Version 1

In version 1 of the master problem, the loading quantities and the visit times are determined

in the master problem, along with the best combination of geographical routes.

Weights in the Criticality Score

To determine the criticality score for version 1 of the master problem, a branching constant

B of 3 is used. Table B.1 summarizes important findings from the test. The third and fourth

columns, marked as Lowest obj. val. and Highest obj.val., indicate the lowest and highest

objective values found out of the 286 weight combinations, respectively. The fifth column

states the percentage of the weight combinations that results in the lowest objective value.

143

144 APPENDIX B. PARAMETER TUNING

Table B.1: Testing of criticality score weights, V1

Test instance x (T = 20, V = 2, M = 1)

Solution method V1 (B = 3)

Clustering = False

Pricing problem = False

Instance Hour Lowest obj.val. Highest obj.val. % with lowest obj.val

1_8

07:00 55.67 56.13 82.1

17:00 18.05 18.90 93.4

2_50

07:00 207.49 219.03 16.1

17:00 154.91 167.02 0.3

3_100

07:00 381.08 394.37 15.4

17:00 230.72 235.12 1.1

4_158

07:00 514.32 535.76 0.3

17:00 343.60 360.64 0.7

For test instance 1_8, almost all weight combinations result in the same objective value.

We can conclude that with such small test instances, the lowest objective value is easily

found regardless of the values of the weights in the criticality score. For test instance 2_50

and 3_100, we observe that several weight combinations find the lowest objective value.

Common factors are that the driving time weight wk is low and the remaining weights all

have a value higher than zero.

The results with test instance 4_158, show a clear trend that the model performs best

when the time to violation weight wt is low, and when the net demand weight wn and the

deviation weight wo are high. The top twenty results are obtained when wt is 0.0 or 0.1.

The best weight combinations for instance 4_158 at 07:00 and 17:00 are (wt ,wn,wd ,wo) =

(0.0,0.7,0.0,0.3), and (0.1,0.6,0.1,0.2), respectively. Based on the trends discovered, the

weight combination is set as (wt ,wn,wk,wo) = (0.1,0.7,0.0,0.2). The chosen values are

used for further testing for version 1.

B.1. PARAMETER TUNING FOR MP VERSION 1 145

Branching Constant and Number of Possible Visits

The branching constant is varied from B = 3 to B = 9, incremented by 2, while the

maximum number of visits M is set to 1. Table B.2 shows the results.

Table B.2: Testing of branching constant when M = 1, V1

Test instance x (T = 20, V = 2, M = 1)

Solution method V1 (B = x)

Clustering = False

Pricing problem = False

B = 3 B = 5 B = 7 B = 9
Instance Hour obj.val. / time obj.val. / time obj.val. / time obj.val. / time

1_8

07:00 55.67 / 0.92 55.67 / 1.13 55.67 / 1.14 55.67 / 1.07

17:00 18.01 / 0.57 18.01 / 0.67 18.01 / 0.68 18.01 / 0.63

2_50

07:00 213.31 / 0.95 213.31 / 2.18 213.31 / 5.76 213.31 / 20.47

17:00 160.59 / 0.91 158.81 / 1.79 158.81 / 3.68 158.81 / 10.82

3_100

07:00 395.52 / 1.10 395.30 / 2.49 389.95 / 4.83 389.95 / 15.35

17:00 243.61 / 1.44 239.25 / 2.60 239.25 / 4.99 239.25 / 12.76

4_158

07:00 540.70 / 2.14 540.68 / 3.27 540.38 / 5.64 538.24 / 22.60

17:00 370.54 / 1.98 365.97 / 3.11 364.97 / 4.47 362.61 / 11.20

We observe that the objective value improves and the computational time increases as the

branching constant increases. As reasonable time is defined to be ten seconds, a branching

constant of B = 9 seems to be too high. Thus, we conclude that a branching constant of 7

produces the best solutions within a reasonable time.

To ensure a reasonable computational time when M increases, lower branching constants

are tested while the number of possible visits M is set to 2. The branching constant is

varied from B = 3 to B = 7, incremented by 2. Table B.3 presents the results.

146 APPENDIX B. PARAMETER TUNING

Table B.3: Testing of branching constant when M = 2, V1

Test instance x (T = 20, V = 2 M = 2)

Solution method V1 (B = x)

Clustering = False

Pricing problem = False

B = 3 B = 5 B = 7
Instance Hour obj.val. / time obj.val. / time obj.val. / time

1_8

07:00 55.67 / 4.02 55.67 / 4.75 55.67 / 4.77

17:00 18.01 / 1.23 18.01 / 1.35 18.01 / 1.48

2_50

07:00 213.31 / 2.189 213.31 / 19.23 213.31 / 130.05

17:00 160.59 / 2.55 158.81 / 16.67 158.81 / 71.00

3_100

07:00 395.52 / 3.16 395.30 / 13.41 389.95 / 100.45

17:00 243.61 / 4.13 239.25 / 21.07 239.15 / 76.72

4_158

07:00 540.70 / 6.18 540.69 / 17.09 540.38 / 61.94

17:00 370.04 / 5.99 365.97 / 12.73 364.96 / 65.64

As shown in Table B.3, the computational time increases considerably when multiple

visits to a station is allowed, while the objective values improve marginally or remain

unchanged compared to when M = 1. A branching constant of 3 must be used when

M = 2 to maintain reasonable computational time.

Figure B.1 illustrates the objective value for instance 4_158 at 17:00. When B = 3 and

M = 2, there is a 0.3% improvement in the objective value compared to when M = 1.

When B= 5 or B= 7, even smaller improvements occur. The computational time increases

drastically when M = 2. When B = 9 and M = 2, the model provides no solution within

200 seconds, whereas a 0.6 % reduction is obtained when M = 1. Within reasonable

time, the model result in an objective value of 370.04 when M = 2, and an objective

value of 364.97 when M = 1. This demonstrates that although a better solution is found

when M = 2 compared to when M = 1 when the same branching constant is used, we

can increase the branching constant when M = 1 and find even better solutions. Hence,

allowing multiple visits is concluded to reduce the quality of the model.

B.1. PARAMETER TUNING FOR MP VERSION 1 147

Figure B.1: Instance 4_158, 17:00: Objective value as a function of branching constant B
and the number of possible visits M, V1

Parameter Tuning for Clustering Problem

Different combinations of the clustering weights wK ,wN and wZ are tested. All the

weights are varied from 0.0 to 1.0, incremented by 0.1. Also, they must sum up to 1.0.

This produces a total of 66 weight combinations for each test instance. The lowest and the

highest objective values are observed for each instance. The percentage of combinations

that gives the lowest objective value is stated, as this conveys the impact the weights have

on the quality of the clusters. Table B.4 presents the results.

Table B.4: Testing of weights in clustering problem

Test instance x (T = 20, V = 2, M = 1)

Solution method V1 (B = 7)

Clustering = True (CH = 90, CL = 25)

Pricing problem = False

Instance Hour Lowest obj.val. Highest obj.val. % with lowest obj.val.

2_50

07:00 213.94 215.44 2.4

17:00 158.81 164.76 15.5

3_100

07:00 389.36 394.57 84.4

17:00 239.32 239.55 84.4

4_158

07:00 536.90 537.14 34.4

17:00 364.81 365.02 40.4

148 APPENDIX B. PARAMETER TUNING

For all instances, we observe that the solution is better when the net demand weight wN

is between 0.0 and 0.2. For instance 3_100 and 4_158, we observe that the clustering

performs better when the driving time wK is weighted the highest. The gap between the

lowest and highest objective value is relatively small for all instances, which suggests that

the impact of the clustering weights is minor. Based on the observed trends, the clustering

weights are set to (wK ,wN ,wZ) = (0.5,0.1,0.4).

Whether a station has low, medium or high net demand, i.e. belongs to zero, one or two

clusters, is determined based on the demand parameters CH and CL. CH is varied from

0 to 50, and CH is varied from 50 to 100, both incremented by 10. The result from the

testing is presented in Table B.5.

Table B.5: Testing of high and low demand parameters, CH and CL, in clustering problem

Test instance x (T = 20, V = 2, M = 1)

Solution method V1 (B = 7)

Clustering = True(CH = x, CL = x)

Pricing problem = False

Instance Hour Lowest obj.val. Highest obj.val. % with lowest obj.val.

2_50

07:00 213.31 214.32 66.7

17:00 158.81 159.1 86.1

3_100

07:00 389.07 393.07 52.8

17:00 236.38 239.55 8.3

4_158

07:00 535.12 539.12 2.8

17:00 362.62 366.74 16.7

For instance 2_50, the model performs best when CH is lower than 80. The percentages of

combinations with the lowest objective value are relatively high, meaning many different

combinations perform well. For instance 3_100, the objective values are lowest when CL

is lower than 40, and when CH is lower than 90.

Figure B.2 illustrates the objective values for instance 4_158 when the demand parameters

B.1. PARAMETER TUNING FOR MP VERSION 1 149

are varied. a) presents the results from 7:00, and b) from 17:00. The green and red colors

indicate lower and higher objective values, respectively. We observe that the green areas

do not overlap, meaning that different combinations perform well on different instances.

However, both have worse performance when CL is very low, and CH very high.

Based on all the observed trends, the CH and CL parameters are set to 70 and 30, respec-

tively. Note that these values are used in the rest of this paper, and are not tested again for

version 2 and 3.

Figure B.2: Instance 4_158 7:00 and 17:00: Objective value as a function of clustering
weights

150 APPENDIX B. PARAMETER TUNING

Effect of Introducing Clustering

Table B.6 compares the objective values for all instance/hour combinations when

clustering is included and excluded. The objective value obtained with clustering is

marked as red, green or with nothing depending on whether it produces a higher, lower, or

unchanged value, respectively.

Table B.6: Testing of clustering, V1

Test instance x (T = 20, V = 2, M = 1)

Solution method V1 (B = 7)

Clustering = True(CH = 70, CL = 30)

Pricing problem = False

Clustering = False Clustering = True
Instance Hour Objective value Objective value

2_50

07:00 213.31 213.31

17:00 158.81 158.81

3_100

07:00 389.95 389.36

17:00 239.25 239.25

4_158

07:00 540.38 536.90

17:00 364.96 362.77

For three of the six instance/hour combinations, the results remain unchanged. For in-

stance 4_158 at both hours, and for instance 3_100 at 07:00, the objective value is im-

proved, marked with green in the table. As the objective value remains unchanged or

improves, and, most importantly, do not worsen in any of the test instances, we conclude

that clustering should be included when version 1 is used.

Parameter Tuning for Pricing Problems

First, the pricing problem score weight wpp within the criticality score is tested. The

weight is varied from 3 to 7, incremented by 1. The weight is set relatively high compared

to the other weights in the criticality score as this increases the change of creating routes

with stations that were not visited before.

B.1. PARAMETER TUNING FOR MP VERSION 1 151

The different weight combinations are tested on all instance/hour combinations, with a

time horizon T of 20 minutes, a maximum number of visits to each station M of 1, and

with two service vehicles. As the other pricing problem parameters are not yet determined,

these are set based on our hypothesis: the pricing problem is run once for each test, the

pricing problem branching constant is 3, and the probability of including the pricing prob-

lem score in the criticality score is set to fifty percentage, i.e. npp = 1,Bpp = 3, ppp = 0.5.

Table B.7 presents the results. When the different weights wpp produces different average

objective values for a test instance, the best result is marked with green, and the worst

with red.

Table B.7: Testing of pricing problem score weight

Test instance x (T = 20, V = 2, M = 1)

Solution method V1 (B = 7)

Clustering = True(CH = 70, CL = 30)

Pricing problem = True(npp = 1,Bpp = 3, ppp = 0.5)

wpp = 3 wpp = 4 wpp = 5 wpp = 6 wpp = 7

Instance Hour obj. val. obj. val. obj. val. obj. val. obj. val.

1_8

07:00 55.67 55.67 55.67 55.67 55.67

17:00 18.01 18.01 18.01 18.01 18.01

2_50

07:00 213.31 213.31 213.31 213.31 213.31

17:00 158.81 158.81 158.81 158.81 158.81

3_100

07:00 389.36 389.36 389.36 389.36 389.36

17:00 238.05 237.60 237.60 237.81 237.69

4_158

07:00 536.90 536.13 536.35 536.91 536.55

17:00 362.77 362.77 362.77 362.77 362.77

Table B.7 shows that the objective value is dependent on the weight value only for two of

the eight instance/hour combinations. For instance 3_100, 17:00, the problem performs

152 APPENDIX B. PARAMETER TUNING

best when the value is 4 or 5, and for instance 4_158, 7:00, the pricing problem performs

best when the value is 4. Thus, the weight value is set to 4.

Further, different values of the probability ppp of including the pricing problem score

in the the criticality score is tested. The probability parameter is varied from 0.2 to

1.0, incremented by 0.2. Table B.8 presents the results. Similarly, when the different

probabilities ppp produces different average objective values for a test instance, the best

result is marked with green, and the worst with red.

Table B.8: Testing of probability of including pricing problem score

Test instance x (T = 20, V = 2, M = 1)

Solution method V1 (B = 7)

Clustering = True(CH = 70, CL = 30)

Pricing problem = True(npp = 1,Bpp = 3, ppp = x

ppp = 0.2 ppp = 0.4 ppp = 0.6 ppp = 0.8 ppp = 1.0

Instance Hour obj. val. obj. val. obj. val. obj. val. obj. val.

1_8

07:00 55.67 55.67 55.67 55.67 55.67

17:00 18.01 18.01 18.01 18.01 18.01

2_50

07:00 213.31 213.31 213.31 213.31 213.31

17:00 158.81 158.81 158.81 158.81 158.81

3_100

07:00 389.36 389.36 389.36 389.36 389.36

17:00 238.77 237.79 236.90 237.69 237.45

4_158

07:00 536.19 536.53 536.90 536.90 536.90

17:00 362.77 362.77 362.77 362.776 362.77

From Table B.8, we observe that the results are dependent on the probability value only for

test instance 3_100 at 17:00 and instance 4_158 at 07:00. The pricing problem performs

best when ppp = 0.6 for instance 3_100 at 17:00, and when ppp = 0.2 for instance 4_158

at 07:00. However, the pricing problem is chosen as ppp = 0.4, since this works well for

both test instances. Note that these values are used also for version 2 and 3.

B.1. PARAMETER TUNING FOR MP VERSION 1 153

Effect of Introducing Pricing Problem

The number of pricing problem runs npp is varied from 1 to 3, and the branching constant

in the pricing problem Bpp is varied from 2 to 4. In theory, the solution should improve

when npp or Bpp increases. However, due to randomness in the pricing problem this does

not always occur.

Without the pricing problem, and with a branching constant of 7, the computational times

are just slightly within reasonable time. However, with the pricing problem and B = 7,

the computational times become unreasonable. Hence, this test is conducted with a lower

branching constant of 5. When conducting the test, we observe that instance 3_100 at

17:00, and instance 4_158 at 7:00 and 17:00 are the only instances where the objective

values change as a function of Bpp and npp. Table B.9 presents the results obtained when

testing on those three instance/hour combinations.

Table B.9: Testing of pricing problem parameters, V1

Test instance x (T = 20, V = 2, M = 1)

Solution method V1 (B = 5)

Clustering = True(CH = 70, CL = 30)

Pricing problem = True(npp = x,Bpp = x, ppp = 0.4)

npp = 1 npp = 2 npp = 3

Instance Hour Bpp obj. val. / time obj. val. / time obj. val. / time

3_100

17:00 2 237.74 / 6.48 237.26 / 10.07 237.74 / 15.37

3 238.68 / 6.96 237.26 / 11.03 237.03 / 17.36

4 238.29 / 8.54 237.87 / 14.41 236.67 / 21.13

4_158

7:00 2 538.74 / 9.29 537.77 / 15.33 537.81 / 20.93

3 537.36 / 9.93 536.38 / 20.03 535.01 / 28.51

4 536.01 / 12.28 535.25 / 29.60 534.21 / 41.94

17:00 2 364.38 / 7.67 364.38 / 12.98 363.84 / 17.36

3 363.93 / 9.33 364.38 / 16.74 364.24 / 25.31

4 364.38 / 10.89 364.04 / 22.04 364.08 / 37.08

154 APPENDIX B. PARAMETER TUNING

As observed in Table B.9, the model produces best results within reasonable time when

npp = 1 and Bpp = 3. This is marked with green in the table.

Introducing the pricing problem is at the expense of a higher branching constant B in the

initialization as it must be reduced to 5 to keep the computational time reasonable. To

conclude whether the pricing problem should be applied on not, Table B.10 compares

the objective values obtained when B = 7 and with no pricing problem, to the objective

values obtained with B = 5 and with the pricing problem. The objective value obtained

with the pricing problem is marked as red, green or with nothing depending on whether it

produces a higher, lower, or unchanged value, respectively.

Table B.10: Effect of introducing pricing problem, V1

Test instance x (T = 20, V = 2, M = 1)

Solution method V1 (B = 7/5)

Clustering = True(CH = 70, CL = 30)

Pricing problem = True(npp = 1,Bpp = 3, ppp = 0.4)

B = 7 B = 5
Pricing problem = False Pricing problem = True

Instance Hour Objective value Objective value

1_8

07:00 55.67 55.67

17:00 18.08 18.08

2_50

07:00 213.31 213.31

17:00 158.81 158.81

3_100

07:00 389.36 389.36

17:00 239.25 238.68

4_158

07:00 536.90 537.36

17:00 362.77 363.93

The objective value gets better for instance 3_100 at 17:00, and worse for instance 4_158,

both at 7:00 and 17:00, when the pricing problem is included. The fact that a higher

branching constant during the initialization of columns is better than including the pricing

B.1. PARAMETER TUNING FOR MP VERSION 1 155

problem and using a lower branching constant, demonstrates that the initialization algo-

rithm performs well. As larger instances are prioritized, including the pricing problem in

version 1 is concluded to be counterproductive.

Number of vehicles

The model may be solvable with a higher number of service vehicles. However, the

branching constant must be adjusted to keep the computational time reasonable. Table

B.11 shows the highest possible branching constant that can be applied with an increasing

number of service vehicles.

Table B.11: Highest possible branching constant B for different numbers of vehicles V ,
V1

Test instance x (T = 20, V = x, M = 1)

Solution method V1 (B = x)

Clustering = True(CH = 70, CL = 30)

Pricing problem = False

V=3 V=4 V=5
Instance Hour Highest possible B Highest possible B Highest possible B

1_8

07:00 7 7 7

17:00 7 7 7

2_50

07:00 6 4 3

17:00 5 4 3

3_100

07:00 6 3 2

17:00 5 3 2

4_158

07:00 5 3 2

17:00 4 3 2

As observed in Table B.11, if extra service vehicles are added, the branching constant must

be decreased to keep the computational time reasonable. The highest possible branching

constants when 3, 4, and 5 service vehicles are included are 4, 3 and 2, respectively.

156 APPENDIX B. PARAMETER TUNING

B.2 Parameter Tuning for MP Version 2

In version 2, the loading quantities and visit times are predetermined in the initialization,

but the master problem has a given flexibility to adjust these values later. To start with the

flexibility is set to its median value of 12, before it is tested and its best-performing value

is obtained.

Weights in the Criticality Score

A branching constant B of 3 is used, and Table B.12 summarizes important findings from

the test. The third and fourth columns, marked as Lowest obj. val. and Highest obj.val.,

indicate the lowest and highest objective values found out of the 286 weight combinations,

respectively. The fifth column states the percentage of the weight combinations that results

in the lowest objective value.

Table B.12: Testing of criticality score weights, V2

Test instance x (T = 20, V = 2, M = 1)

Solution method V2 (B = 3, F = 12)

Clustering = False

Pricing problem = False

Instance Hour Lowest obj.val. Highest obj.val. % with lowest obj.val.

1_8

07:00 55.67 56.13 82.3

17:00 18.01 18.90 92.1

2_50

07:00 213.31 223.84 15.9

17:00 159.20 174.44 0.4

3_100

07:00 395.40 403.67 4.8

17:00 239.05 252.32 1.8

4_158

07:00 539.39 549.27 0.4

17:00 365.59 379.86 18.3

For instance 1_8, the values of the weights have minor significance as the model is able to

detect the solution with the lowest objective value for almost all weight combinations. For

test instance 2_50, the best solution is found when the driving time is not weighted. For

B.2. PARAMETER TUNING FOR MP VERSION 2 157

instance 3_100, multiple weight combinations yield the lowest objective value. Generally,

when the best solution is found, net demand and deviation are weighted highest, while the

driving distance is given minor weight. For instance 4_158 at 07:00, the lowest objective

value is only found once with the weight combination (wt ,wn,wk,wo)= (0.0,0.9,0.0,0.1).

The values of the weights have less impact at 17:00, but generally, the best solutions are

found when the time to violation and driving time are weighted between 0.0 or 0.1. The

distribution between net demand and deviation does not seem to be significant. Based on

the trends discovered from the analyses, the weight combination is set as (wt ,wn,wk,wo) =

(0.1,0.8,0.0,0.1). The chosen values for the weight coefficients are used for further testing

of version 2.

Branching Constant and Number of Possible Visits

When each station is only allowed one visit, different branching constants yield the re-

sults presented in Table B.13. The branching constant is varied from B = 3 to B = 9,

incremented by 2.

Table B.13: Testing of branching constant when M = 1, V2

Test instance x (T = 20, V = 2, M = 1)

Solution method V2 (B = x, F = 12)

Clustering = False

Pricing problem = False

B = 3 B = 5 B = 7 B = 9
Instance Hour obj.val. / time obj.val. / time obj.val. / time obj.val. / time

1_8

07:00 55.67 / 1.11 55.67 / 0.96 55.67 / 0.86 55.67 / 0.84

17:00 18.01 / 0.65 18.01 / 0.45 18.01 / 0.65 18.01 / 0.57

2_50

07:00 213.31 / 1.04 213.31 / 2.52 213.31 / 9.22 213.31 / 24.47

17:00 166.34 / 0.96 159.20 / 3.31 158.81 / 4.89 158.81 / 9.69

3_100

07:00 396.50 / 1.12 395.52 / 1.96 390.40 / 6.07 390.40 / 16.95

17:00 244.87 / 1.27 240.85 / 2.67 239.51 / 8.52 239.51 / 10.98

4_158

07:00 541.95 / 1.92 540.70 / 3.28 540.68 / 6.41 536.51 / 21.09

17:00 377.61 / 1.83 370.76 / 3.07 365.59 / 6.66 365.59 / 12.40
For test instance 1_8 and 2_50 at 7:00, the best solution is found even with the lowest

158 APPENDIX B. PARAMETER TUNING

branching constant. This is expected as the test instances are relatively small, and the

total number of possible columns are limited. For test instance 3_100 and 4_158 the

objective value improves as the branching constant increases. This is expected, as more

columns increase the solution space in the master problem. However, the computational

time is considerably increased when B increases. For test instance 4_158 at 07:00, the

computational time increases with 998% when the branching constant is increased from

3 to 9. A branching constant of 7 seems to be the best performing value as this is the

highest values that keeps the computational time reasonable. When each station is allowed

two visits, different branching constants yield the results presented in Table B.14. The

branching constant is varied from B = 3 to B = 7, incremented by 2.

Table B.14: Testing of branching constant when M = 2, V2

Test instance x (T = 20, V = 2, M = 2)

Solution method V2 (B = x, F = 12)

Clustering = False

Pricing problem = False

B = 3 B = 5 B = 7
Instance Hour obj.val. / time obj.val. / time obj.val. / time

1_8

07:00 55.67 / 4.62 55.67 / 5.28 55.67 / 5.39

17:00 18.01 / 1.26 18.01 / 1.58 18.01 / 1.60

2_50

07:00 213.31 / 2.46 213.31 / 15.67 213.31 / 309.19

17:00 166.34 / 2.07 159.20 / 13.41 158.81 / 68.60

3_100

07:00 396.50 / 3.54 395.52 / 8.09 390.41 / 75.92

17:00 244.87 / 3.28 240.85 / 12.87 239.251 / 45.84

4_158

07:00 541.95 / 5.62 540.70 / 13.74 540.68 / 55.89

17:00 377.53 / 5.14 370.51 / 15.75 365.59 / 70.46

As shown in Table B.14, the computational times are increased immensely when each sta-

tion is allowed multiple visits. With a branching constant of 5, the computational time

has increased on average 570% for all test instances compared to when M = 1. However,

the model is rarely able to detect better solutions than when M = 1. Because of the dras-

tic increase in computational time and marginally improvement in solution, allowing for

B.2. PARAMETER TUNING FOR MP VERSION 2 159

multiple visits is concluded to be unnecessary.

Flexibility Parameter

The flexibility parameter F in version 2 allows for some slack in the predetermined

loading quantities and visit times. When F = 23, version 2 has full flexibility and equals

version 1 as the MP has complete control over this determination. When F = 0 and

M = 1, version 2 has no flexibility, and equals version 3 as the loading quantities are now

entirely predetermined in the initialization process. If the predetermined loading quantity

qL
imv equals 8, a flexibility of F = 12, means that the final loading quantity can be in the

interval (8− 12,8+ 12). However, capacity and non-negativity constraints must still be

complied. The flexibility parameter is tested for F = 6 to F = 23, incremented by 6. The

aim is to observe the flexibility value that results in the best objective value in shortest

possible time. The results are shown in Table B.15.

Table B.15: Testing of flexibility parameter, V2

Test instance x (T = 20, V = 2, M = 1)

Solution method V2 (B = 7, F = x)

Clustering = False

Pricing problem = False

F = 6 F = 12 F = 18 F = 23
Instance Hour obj.val. / time obj.val. / time obj.val. / time obj.val. / time

1_8

07:00 56.21 / 1.35 55.67 / 0.96 55.67 / 0.85 55.67 / 1.09

17:00 19.68 / 0.61 18.01 / 0.49 18.01 / 0.71 18.01 / 1.15

2_50

07:00 214.32 / 10.01 213.31 / 11.66 213.31 / 10.00 213.31 / 11.90

17:00 161.31 / 5.08 158.81 / 4.17 158.81 / 4.23 158.81 / 4.41

3_100

07:00 390.90 / 5.24 390.40 / 5.34 390.40 / 6.51 390.40 / 4.46

17:00 239.25 / 7.05 239.25 / 8.17 239.25 / 7.07 239.25 / 7.78

4_158

07:00 540.68 / 5.99 540.68 / 6.48 540.68 / 7.23 540.68 / 7.29

17:00 367.58 / 7.35 365.59 / 6.98 364.72 / 6.38 364.72 / 7.33
By comparing the results obtained with a flexibility parameter of F = 18 and F = 23, we

observe that the objective values are the same. This may indicate that the objective values

160 APPENDIX B. PARAMETER TUNING

have converged. In addition, the computational times tend to increase when F is set to

23, and we conclude that F = 18 dominates F = 23. When F = 12, one out of the eight

test instances results in a worse objective value than when F = 18. Moreover, we cannot

conclude that the computational times are lower for F = 12 than for F = 18 as F = 12 only

results in a lower computational time in 50 percentage of the cases. Thus, we conclude

that F = 18 also dominates F = 12. All results produced when F = 18 are obtained within

reasonable time. based on this, F = 18 is concluded to be the best value.

Effect of Introducing Clustering

Table B.16 compares the objective values for all instance/hour combinations when clus-

tering is included and excluded. The objective value obtained with clustering is marked as

red, green or with nothing depending on whether it produces a higher, lower, or unchanged

value, respectively.

Table B.16: Testing of clustering, V2

Test instance x (T = 20, V = 2, M = 1)

Solution method V2 (B = 7, F = 18)

Clustering = True(CH = 70, CL = 30)

Pricing problem = False

Clustering = False Clustering = True
Instance Hour Objective value Objective value

2_50

07:00 213.31 213.31

17:00 158.81 158.81

3_100

07:00 390.40 389.36

17:00 239.25 239.25

4_158

07:00 540.68 535.15

17:00 364.72 362.77

When clustering is including in version 2, the objective value is reduced for three of the

six instance/hour combinations. As the objective value does not worsen for any instances,

clustering is concluded to have a positive effect on the model and is used for version 2.

B.2. PARAMETER TUNING FOR MP VERSION 2 161

Effect of Introducing Pricing Problem

The number of runs npp is varied from 1 to 3, and the branching constant in the pricing

problem Bpp is varied from 2 to 4. Similarly as for version 1, a branching constant of 7

gives computational times just slightly within reasonable time. However, when the pricing

problem is applied while B remains 7, the computational times become unreasonable.

Hence, the branching constant B must be lower. A branching constant of B = 5 also

gives unreasonable computational times, and the branching constant is set to 3 in this test.

When conducting the test, we observe that instance 3 and 4 at both hours are the only

instances where the objective values change as a function of Bpp and npp. Hence, Table

B.17 presents the results obtained when testing on those two instances.

Table B.17: Testing of pricing problem parameters, V2

Test instance x (T = 20, V = 2, M = 1)

Solution method V2 (B = 3, F = 18)

Clustering = True(CH = 70, CL = 30)

Pricing problem = True(npp = x,Bpp = x, ppp = 0.4)

npp = 1 npp = 2 npp = 3

Instance Hour Bpp obj. val. / time obj. val. / time obj. val. / time

3_100

07:00 2 389.82 / 3.38 389.70 / 6.02 389.61 / 9.82

3 389.80 / 4.13 389.64 / 9.72 389.59 / 14.09

4 389.87 / 5.54 389.87 / 15.54 389.66 / 26.05

17:00 2 240.44 / 3.73 241.30 / 7.24 240.09 / 9.55

3 240.92 / 4.55 239.90 / 8.28 238.35 / 13.03

4 240.93 / 5.56 238.36 / 10.38 237.05 / 17.76

4_158

7:00 2 539.22 / 5.48 538.47 / 9.23 537.04 / 13.06

3 538.03 / 6.74 537.13 / 13.76 535.82 / 21.83

4 535.94 / 9.08 536.37 / 18.84 534.30 / 33.13

17:00 2 365.62 / 5.07 365.53 / 8.26 365.51 / 13.08

3 364.78 / 6.18 365.13 / 12.00 363.58 / 13.88

4 365.63 / 7.24 364.85 / 16.57 364.43 / 30.08

162 APPENDIX B. PARAMETER TUNING

Table B.17 illustrates that the model produces best results within reasonable time when

npp = 1 and Bpp = 3.

Introducing the pricing problem is at the expense of a higher branching constant B in

the initialization as it must be reduced to 3 to keep the computational time reasonable.

Table B.18 presents the objective values for all instances and hours with and without the

pricing problem, and with a branching constant of B = 7 and B = 3, respectively. The

objective value obtained with the pricing problem is marked as red, green or with nothing

depending on whether it produces a higher, lower, or unchanged value, respectively.

Table B.18: Effect of introducing pricing problem, V2

Test instance x (T = 20, V = 2, M = 1)

Solution method V2 (B = 7/3, F = 18)

Clustering = True(CH = 70, CL = 30)

Pricing problem = True(npp = 1,Bpp = 3, ppp = 0.4)

B = 7 B = 3
Pricing problem = False Pricing problem = True

Instance Hour Objective value Objective value

1_8

07:00 55.67 55.67

17:00 18.01 18.01

2_50

07:00 213.31 213.31

17:00 158.81 159.06

3_100

07:00 389.36 389.80

17:00 239.25 240.92

4_158

07:00 535.15 538.03

17:00 362.77 364.78

We observe that the objective values increase or remain unchanged when the pricing prob-

lem is applied. Thus, we conclude that the pricing problem should not be applied.

B.2. PARAMETER TUNING FOR MP VERSION 2 163

Number of Vehicles

The model may be solvable with a higher number of service vehicles. However, the

branching constant must be adjusted to keep the computational time reasonable. Table

B.19 shows the highest possible branching constant that can be applied with an increasing

number of service vehicles. Note that all configurations concluded are kept constant.

Table B.19: Highest possible branching constant B for different numbers of vehicles V ,
V2

Test instance x (T = 20, V = x, M = 1)

Solution method V2 (B = x, F = 18)

Clustering = True(CH = 70, CL = 30)

Pricing problem = False

V=3 V=4 V=5
Instance Hour Highest possible B Highest possible B Highest possible B

1_8

07:00 7 7 7

17:00 7 7 7

2_50

07:00 7 4 3

17:00 6 3 3

3_100

07:00 6 3 2

17:00 5 3 2

4_158

07:00 5 3 2

17:00 5 3 2

As observed in Table B.19, if extra service vehicles are added, the branching constant must

be decreased to keep the computational time reasonable. The highest possible branching

constant when 3, 4, and 5 service vehicles are included is 5, 3 and 2, respectively.

164 APPENDIX B. PARAMETER TUNING

B.3 Parameter Tuning for MP Version 3

In version 3, the loading quantities and visit times are entirely predetermined in the ini-

tialization. Oppose to the other versions, the stations are restricted to no more than one

visit, i.e. M = 1, and the optimal combination chosen by the master problem consists

of unique station visits. Hence, violations and deviations may also be predetermined in

the initialization and a significant simplified mathematical model of the master problem is

implemented.

Weights in the Criticality Score

Version 3 is tested with a branching constant of B = 10. Compared to the testing of

version 1 and version 2, the branching constant is drastically increased as our hypothesis

is that version 3 can be solved with a considerably lower computational time. Table B.20

summarizes important findings from the test.

Table B.20: Testing of criticality score weights, V3

Test instance x (T = 20, V = 2 M = 1)

Solution method V3 (B = 10)

Clustering = False

Pricing problem = False

Instance Hour Lowest obj.val. Highest obj.val. % with lowest obj.val.

1_8

07:00 56.34 56.34 100

17:00 27.15 27.15 100

2_50

07:00 214.738 218.38 15.0

17:00 167.83 177.14 49.4

3_100

07:00 391.14 401.79 33.3

17:00 240.11 125.35 2.7

4_158

07:00 538.53 547.06 14.3

17:00 369.39 381.00 6.2

B.3. PARAMETER TUNING FOR MP VERSION 3 165

We observe that any weight combination yield the same results for test instance 1_8.

Again, we see that the % of weight combinations with the lowest objective value decreases

with larger test instances. This means that it is more critical to use good weights when

larger test instances are used.

For test instance 2_50 and 3_100, 7:00, we observe that the best results are found when

the driving time weight wk is lower than 0.2, the deviation weight wo higher than 0.4, and

the time to violation weight wt lower than 0.2. For instance 2, 17:00, the same findings

hold except that the lowest objective value is also found when the time to violation weight

is as high as 0.7.

For test instance 4_158, 7:00, the lowest objective value is found when the time to

violation weight wt is in the interval 0.1-0.3, the net demand weight wn in the interval

0.0-1.0, the driving time weight wk = 0, and the deviation weight wo in the interval

0.4-0.9. At 17:00 we observe very similar trends, except that the time to violation weight

wt is in the interval 0.1-0.4.

Based on the trends discovered, the weight combination is set as (wt ,wn,wk,wo) =

(0.1,0.5,0.0,0.4). The chosen values are used for further testing for version 1.

Branching Constant

As the mathematical formulation of version 3 of the master problem is considerably

simplified compared to the other version, a higher branching constant may be used to

obtain better solutions. The branching constant is varied from B = 20 to B = 50, and the

results are presented in Table B.21.

166 APPENDIX B. PARAMETER TUNING

Table B.21: Testing of branching constant when M = 1, V3

Test instance x (T = 20, V = 2, M = 1)

Solution method V3 (B = x)

Clustering = False

Pricing problem = False

B = 20 B = 30 B = 40 B = 50
Instance Hour obj.val. / time obj.val. / time obj.val. / time obj.val. / time

1_8

07:00 56.34 / 0.15 56.34 / 0.16 56.34 / 0.38 56.34 / 0.28

17:00 27.15 / 0.03 27.15 / 0.03 27.15 / 0.18 27.15 / 0.15

2_50

07:00 214.74 / 0.41 214.74 / 0.47 214.74 / 0.68 214.74 / 0.72

17:00 167.83 / 0.27 167.83 / 0.66 167.83 / 0.67 167.83 / 0.72

3_100

07:00 391.14 / 0.47 391.14 / 1.21 391.14 / 2.86 391.14 / 3.75

17:00 240.11 / 0.29 240.11 / 0.97 240.11 / 1.33 240.11 / 2.46

4_158

07:00 535.56 / 0.60 535.56 / 2.36 535.56 / 8.19 535.56 / 25.43

17:00 369.39 / 0.40 369.39 / 1.21 369.39 / 2.59 363.39 / 9.64

As shown in Table B.21, the objective values are unchanged when the branching constant

is increased. With B = 20, the branching algorithm branches to 20 pickup stations and 20

delivery stations in each node, which we assume are sufficient on these test instances.

Effect of Introducing Clustering

Table B.22 compares the objective values for all instances and hours when clustering is

included and excluded. The objective value obtained with clustering is marked as red,

green or with nothing depending on whether it produces a higher, lower, or unchanged

value, respectively.

B.3. PARAMETER TUNING FOR MP VERSION 3 167

Table B.22: Testing of clustering, V3

Test instance x (T = 20, V = 2, M = 1)

Solution method V3 (B = 20)

Clustering = True(CH = 70, CL = 30)

Pricing problem = False

Clustering = False Clustering = True
Instance Hour Objective value Objective value

2_50

07:00 214.74 217.52

17:00 167.83 167.83

3_100

07:00 391.14 391.27

17:00 240.11 240.11

4_158

07:00 535.56 535.56

17:00 369.39 369.39

As shown in Table B.22, the objective value is worse in two out of six instance/hour

combinations when clustering is included. The reason for this may be that the branching

constant is so high in version 3 that the master problem has no problem finding non-

overlapping geographical routes, and applying clusters only prevents some good columns

from being creates. As there is a chance of worsening the objective value, clustering should

not be included in version 3.

Effect of Introducing Pricing Problem

The number of runs npp is varied from 2 to 4, and the branching constant in the pricing

problem Bpp is varied from 5 to 15, incremented by 5. All combinations are tested and all

other parameters are as determined above. In theory, the solution should improve when

npp or Bpp increases. However, due to randomness in the pricing problem this does not

always occur in practice. When conducting the test, we observe that instance 3_100 at

07:00 are the only instance where the objective value changes as a function of Bpp and

npp. As the purpose of the first test is solely to set the parameters in the pricing problem

to their best-performing values, only test instance 3_100 is presented in Table B.23.

168 APPENDIX B. PARAMETER TUNING

Table B.23: Testing of pricing problem parameters, V3

Test instance x (T = 20, V = 2, M = 1)

Solution method V1 (B = 20)

Clustering = True(CH = 70, CL = 30)

Pricing problem = True(npp = x,Bpp = x, ppp = 0.4)

npp = 2 npp = 3 npp = 4

Instance Hour Bpp obj. val. / time obj. val. / time obj. val. / time

3_100

7:00 5 391.14 / 1.15 391.14 / 1.43 391.14 / 1.80

10 391.14 / 1.22 391.14 / 1.67 391.14 / 2.19

15 391.03 / 1.46 391.10 / 2.28 391.03 / 3.29

As opposed to the other versions, including the pricing problem is not at the expense of

the branching constant B, as computational time are more than reasonable. As shown in

Table B.23, the pricing problem is able to create new columns that improved the solution

when npp = 2 and 4, and when Bpp = 15. As npp = 4 yield the same result as npp = 2,

but with a higher computational time, the best-performing value of npp is concluded to be

2. Bpp = is set to 15. Additionally, we observed that the computational time is reasonable

when test instance 4_158 is solved with the pricing problem.

Further, the effect of introducing the pricing problem is tested. The first test was solely to

set the best parameter values for the pricing problem, and thus, only the test instance with

changes in the objective value with changing parameter values was presented. Next, we

want to observe if introducing the pricing problem enables better solutions to be generated.

Table B.24 compares the objective values for the eight instance/hour combinations when

the pricing problem is included and not included. The objective value obtained with the

pricing problem is marked as red, green or with nothing depending on whether it produces

a higher, lower, or unchanged value, respectively.

B.3. PARAMETER TUNING FOR MP VERSION 3 169

Table B.24: Effect of introducing pricing problem, V3

Test instance x (T = 20, V = 2, M = 1)

Solution method V3 (B = 20)

Clustering = True(CH = 70, CL = 30)

Pricing problem = True(npp = 2,Bpp = 15, ppp = 0.4)

Pricing problem = False Pricing problem = True
Instance Hour Objective value Objective value

1_8

07:00 56.34 56.34

17:00 27.15 27.15

2_50

07:00 214.74 214.74

17:00 167.83 167.83

3_100

07:00 391.14 391.03

17:00 240.11 240.11

4_158

07:00 535.56 535.56

17:00 369.39 369.39

The objective value improves for test instance 3_100 at 07:00 when the pricing problem is

included. As larger instances are prioritized, including the pricing problem in version 3 is

concluded to be appropriate.

Number of Vehicles

This version of the master problem is able to run within reasonable computational time for

all instances when B = 20, even when the number of service vehicles is set to five. Thus,

the branching constant of 20 is kept regardless of the number of service vehicles.

170 APPENDIX B. PARAMETER TUNING

Appendix C

Final Configurations for Column
Generation Heuristic

Table C.1: Final configurations for CG heuristic

Parameter Value
Master problem version 3

Crit. score weight, time to violation wt 0.1

Crit. score weight, net demand wn 0.5

Crit. score weight, driving time wk 0.0

Crit. score weight, deviation wo 0.4

Number of possible visits M 1

Branching constant B 20

Clustering False

Dynamic clustering False

Pricing problem True

Number of pricing problem iterations npp 2

Branching constant in pricing problem Bpp 15

Route re-generation point troute First vehicle arrival

Time horizon T 20 minutes

171

172APPENDIX C. FINAL CONFIGURATIONS FOR COLUMN GENERATION HEURISTIC

Bibliography

Andersen, M. (2016). How much does each bike share ride cost a sys-

tem? Let’s do the math. http://betterbikeshare.org/2016/08/16/

much-bike-share-ride-cost-system-lets-math/. (Accessed: 2017-

September-22).

Antoniades, P. and Chrysanthou, A. (2009). European Best Practices in Bike Sharing

Systems. Students Today Citizen Tomorrow.

Beheshti, A. K. and Hejazi, S. R. (2015). A novel hybrid column generation-metaheuristic

approach for the vehicle routing problem with general soft time window. Information

Sciences, 316:598–615.

Bellman, R. (1957). A markovian decision process. Journal of Mathematics and Mechan-

ics, pages 679–684.

Brinkmann, J., Ulmer, M., and Mattfeld, D. (2015). Short-term strategies for stochastic

inventory routing in bike sharing systems. Transportation Research Procedia, 10:364–

373.

Chen, L., Zhang, D., Wang, L., Yang, D., Ma, X., Li, S., Wu, Z., Pan, G., Nguyen, T.-M.-

T., and Jakubowicz, J. (2016). Dynamic cluster-based over-demand prediction in bike

sharing systems. In Proceedings of the 2016 ACM International Joint Conference on

Pervasive and Ubiquitous Computing, pages 841–852. ACM.

Clarke, G. and Wright, J. W. (1964). Scheduling of vehicles from a central depot to a

number of delivery points. Operations Research, 12(4):568–581.

Clemitson, S. (2017). A History of Cycling in 100 objects. Bloomsbury Publishing, Lon-

don, UK.

173

http://betterbikeshare.org/2016/08/16/much-bike-share-ride-cost-system-lets-math/
http://betterbikeshare.org/2016/08/16/much-bike-share-ride-cost-system-lets-math/

174 BIBLIOGRAPHY

Dell, M., Iori, M., Novellani, S., Stützle, T., et al. (2016). A destroy and repair algorithm

for the bike sharing rebalancing problem. Computers & Operations Research, 71:149–

162.

DeMaio, P. (2008). The Bike-Sharing Phenomen. Carbusters, page 12.

EcoBici (2016). What’s ECOBICI? https://www.ecobici.cdmx.gob.mx/en/

service-information/what%20is%20ecobici. (Accessed: 2017-September-20).

ESCI (2016). Hangzhou Public Bicycle. https://esci-ksp.org/project/

hangzhou-public-bicycle/?task_id=651. (Accessed: 2017-September-20).

Espegren, H. M. and Kristianslund, J. (2015). Modeling the Static Bicycle Repositioning

Problem. Technical report, Industrial Economics and Technology Management, NTNU.

Espegren, H. M. and Kristianslund, J. (2016). Optimal Repositioning in Bike Sharing

Systems. Technical report, Industrial Economics and Technology Management, NTNU.

European Commission (2017). The Digital Economy and Society Index country profile.

Fricker, C. and Gast, N. Euro journal on transportation and logistics = , volume=5,

number=3, Pages = 261–291, Title = Incentives and redistribution in homogeneous

bike-sharing systems with stations of finite capacity, Year = 2014.

Ghosh, S., Trick, M., and Varakantham, P. (2016). Robust Repositioning to Counter Un-

predictable Demand in Bike Sharing Systems. Technical report, Institutional Knowl-

edge at Singapore Management University.

Ghosh, S., Varakantham, P., Adulyasak, Y., and Jaillet, P. (2015). Dynamic redeployment

to counter congestion or starvation in vehicle sharing systems. Twenty-Fifth Interna-

tional Conference on Automated Planning and Scheduling, pages 79–87.

Gleditsch, M. D. and Hagen, K. (2017). A Dynamic Rebalancing Model for Bike Sharing

Systems. Technical report, Norwegian University of Science and Technology, Depart-

ment of Industrial Economics and Technology Management.

Goodyear, S. (2015). The Bike-Share Boom. www.citylab.com/

city-makers-connections/bike-share. (Accessed: 2017-September-10).

Gray, A. (2017). China’s ‘Uber for bikes’ model is go-

ing global. https://www.weforum.org/agenda/2017/06/

https://www.ecobici.cdmx.gob.mx/en/service-information/what%20is%20ecobici
https://www.ecobici.cdmx.gob.mx/en/service-information/what%20is%20ecobici
https://esci-ksp.org/project/hangzhou-public-bicycle/?task_id=651
https://esci-ksp.org/project/hangzhou-public-bicycle/?task_id=651
www.citylab.com/city-makers-connections/bike-share
www.citylab.com/city-makers-connections/bike-share
https://www.weforum.org/agenda/2017/06/china-leads-the-world-in-bike-sharing-and-now-its-uber-for-bikes-model-is-going-global/

BIBLIOGRAPHY 175

china-leads-the-world-in-bike-sharing-and-now-its-uber-for-bikes-model-is-going-global/.

(Accessed: 2017-September-16).

Guedes, P. C. and Borenstein, D. (2015). Column generation based heuristic framework

for the multiple-depot vehicle type scheduling problem. Computers & Industrial Engi-

neering, 90:361–370.

Ho, S. C. and Szeto, W. (2014). Solving a static repositioning problem in bike-sharing sys-

tems using iterated tabu search. Transportation Research Part E: Logistics and Trans-

portation Review, 69:180–198.

Ho, S. C. and Szeto, W. (2017). A hybrid large neighborhood search for the static multi-

vehicle bike-repositioning problem. Transportation Research Part B: Methodological,

95:340–363.

Ho, S. C. and Szeto, W. Y. (2016). Grasp with path relinking for the selective pickup and

delivery problem. Expert Systems with Applications, 51:14–25.

Hughes, C. (2017). Bike Share: The Dawn of the Smartbike (and the

Death of Dock-Blocking). https://medium.com/social-bicycles/

bikeshare-the-dawn-of-the-smartbike-and-the-death-of-dock-blocking-9f52bb642ae.

(Accessed: 2017-September-20).

Høgåsen-Hallesby, J. (2017). What can cycling do for public transport?.

Interview with CTO of UIP. https://medium.com/@urbansharing/

what-can-cycling-do-for-public-transport-71b7ef751502. (Accessed:

2017-September-22).

Mahvash, B., Awasthi, A., and Chauhan, S. (2015). A column generation based heuristic

for the capacitated vehicle routing problem with three-dimensional loading constraints.

IFAC-PapersOnLine, 48(3):448–453.

Meddin, R. (2018). The Bike-Sharing World map. www.bikesharingmap.com. (Ac-

cessed: 2018-June-01).

Mes, M. R. and Rivera, A. P. (2017). Approximate dynamic programming by practical

examples. In Markov Decision Processes in Practice, pages 63–101. Springer.

Moungla, N. T., Létocart, L., and Nagih, A. (2010). Solutions diversification in a column

generation algorithm. Algorithmic Operations Research, 5(2):86–95.

https://www.weforum.org/agenda/2017/06/china-leads-the-world-in-bike-sharing-and-now-its-uber-for-bikes-model-is-going-global/
https://www.weforum.org/agenda/2017/06/china-leads-the-world-in-bike-sharing-and-now-its-uber-for-bikes-model-is-going-global/
https://medium.com/social-bicycles/bikeshare-the-dawn-of-the-smartbike-and-the-death-of-dock-blocking-9f52bb642ae
https://medium.com/social-bicycles/bikeshare-the-dawn-of-the-smartbike-and-the-death-of-dock-blocking-9f52bb642ae
https://medium.com/@urbansharing/what-can-cycling-do-for-public-transport-71b7ef751502
https://medium.com/@urbansharing/what-can-cycling-do-for-public-transport-71b7ef751502
www.bikesharingmap.com

176 BIBLIOGRAPHY

Oslo Bysykkel (2017). About Oslo Bysykkel. Availableat:https://oslobysykkel.

no/en/about. (Accessed: 2017-September-22).

Papadimitriou, C. H. and Tsitsiklis, J. N. (1987). The complexity of markov decision

processes. Mathematics of operations research, 12(3):441–450.

Pfrommer, J., Warrington, J., and Schildbach, G. (2014). Dynamic vehicle redistribution

and online price incentives in shared mobility systems. IEEE Transactions on Intelligent

Transportation Systems, 15(4):1567–1578.

Pinto, T., Alves, C., and de Carvalho, J. V. (2018). Column generation based primal

heuristics for routing and loading problems. Electronic Notes in Discrete Mathematics,

64:135–144.

Popova, M. (2016). EcoBici: Mexico City’s Ambitious Bike-

Sharing Program. http://bigthink.com/design-for-good/

ecobici-mexico-citys-ambitious-bike-sharing-program. (Accessed:

2017-September-20).

Powell, W. B. (2014). Clearing the jungle of stochastic optimization. In Bridging Data

and Decisions, pages 109–137. Informs.

Rainer-Harbach, M., Papazek, P., Hu, B., and Raidl, G. R. (2013). Balancing bicycle

sharing systems: A variable neighborhood search approach. In European Conference

on Evolutionary Computation in Combinatorial Optimization, pages 121–132. Springer.

Shui, C. and Szeto, W. (2017). Dynamic green bike repositioning problem - a hybrid

rolling horizon artificial bee colony algorithm approach. Transportation Research Part

D: Transport and Environment.

Singla, A., Santoni, M., Bartók, G., Mukerji, P., Meenen, M., and Krause, A. (2015).

Incentivizing users for balancing bike sharing systems. In AAAI, pages 723–729.

Social Bicycles. Worldwide Rides. http://socialbicycles.com/. (Accessed: 2017-

September-14).

Szeto, W., Liu, Y., and Ho, S. C. (2016). Chemical reaction optimization for solving

a static bike repositioning problem. Transportation research part D: transport and

environment, 47:104–135.

Teetor, P. (2011). R cookbook. O’Reilly Media, Sebastopol, United States of America.

Available at: https://oslobysykkel.no/en/about
Available at: https://oslobysykkel.no/en/about
http://bigthink.com/design-for-good/ecobici-mexico-citys-ambitious-bike-sharing-program
http://bigthink.com/design-for-good/ecobici-mexico-citys-ambitious-bike-sharing-program
http://socialbicycles.com/

BIBLIOGRAPHY 177

The Pennsylvania State University (2018). Hypothesis Testing (P-value ap-

proach). https://newonlinecourses.science.psu.edu/statprogram/node/

138/. (Accessed: 2018-May-28).

Urban Infrastructure Partners (2017a). Urban Sharing. http://urbansharing.com/

about. (Accessed: 2017-September-22).

Urban Infrastructure Partners (2017b). Using Data to Op-

timize Resources. https://medium.com/@urbansharing/

using-data-to-optimize-resources-c6f7b7f48328. (Accessed: 2017-

September-16).

Van der Zee, R. (2016). How this Amsterdam inventor gave bike-sharing

to the world. https://www.theguardian.com/cities/2016/apr/26/

story-cities-amsterdam-bike-share-scheme. (Accessed: 2017-September-

26).

Venkateshan, P. and Mathur, K. (2011). An efficient column-generation-based algo-

rithm for solving a pickup-and-delivery problem. Computers & Operations Research,

38(12):1647–1655.

Victoria, J. F., Afsar, H. M., and Prins, C. (2016). Column generation based heuristic

for the vehicle routing problem with time-dependent demand. IFAC-PapersOnLine,

49(12):526–531.

Walpole, R. E., Myers, R. H., Myers, S. L., and Ye, K. (2007). Probability Statistics for

Engineers Scientists. Pearson Prentice Hall, London, UK, 8 edition.

https://newonlinecourses.science.psu.edu/statprogram/node/138/
https://newonlinecourses.science.psu.edu/statprogram/node/138/
http://urbansharing.com/about
http://urbansharing.com/about
https://medium.com/@urbansharing/using-data-to-optimize-resources-c6f7b7f48328
https://medium.com/@urbansharing/using-data-to-optimize-resources-c6f7b7f48328
https://www.theguardian.com/cities/2016/apr/26/story-cities-amsterdam-bike-share-scheme
https://www.theguardian.com/cities/2016/apr/26/story-cities-amsterdam-bike-share-scheme

	Problem Description
	Preface
	Abstract
	Sammendrag
	Introduction
	Background
	Bike Sharing Concept
	History
	New Variations of the Bike Sharing System
	Bike Sharing in Norway
	Bike Sharing in Other Countries
	Challenges Encountered

	Literature Survey
	Exact Solution Methods
	Heuristic Solution Methods
	Heuristic Column Generation
	Conclusion and Motivation of the Thesis

	Problem Description
	Dynamic Stochastic Bicycle Rebalancing Problem
	Example Problem
	Complexity of the Dynamic Stochastic Problem

	Dynamic Deterministic Bicycle Rebalancing Subproblem
	Example Problem

	Mathematical Model
	Limit Shortsigthedness
	Assumptions
	Notation
	Constraints
	Ensure Feasible Routes
	Violations and Deviations

	Objective Function

	Column Generation Heuristic for the DDBRS
	Overview of Algorithm
	Master Problem
	Version 1: Loading Quantity and Arrival Time Determined in MP
	Version 2: Loading Quantity and Arrival Time Predetermined
	Version 3: Violations and Deviations Predetermined

	Initialization of Columns
	Overview of Branching Algorithm
	Determine Subset S^R: Clustering
	Determine Subset S^R: Filtering
	Calculate Criticality Score for each Station
	Estimation of Loading Quantity and Arrival Time

	Pricing Problem

	Implementation
	Key Input Data
	Service Vehicles and Bicycles
	Parking, Handling and Driving Time
	Customer Demand
	Initial State
	Optimal State
	Weights in the Objective Function

	Test Instances
	UIP's Current Rebalancing Strategy

	Simulation Framework
	General Overview
	Generation of Customer Arrivals Scenarios
	Simulation of Real-World Performance
	Example of a Simulation Process

	Computational study: Parameter Tuning
	Elaboration of Parameter Tuning
	Weights in the Criticality Score
	Branching Constant and Number of Possible Visits
	Parameter Tuning for Clustering Problem
	Effect of Introducing Clustering
	Parameter Tuning for Pricing Problem
	Effect of Introducing Pricing Problem
	Number of Service Vehicles

	Parameter Tuning for MP Version 1
	Parameter Tuning for MP Version 2
	Parameter Tuning for MP Version 3
	Comparison of CG heuristics and Exact Solution Method

	Computational Study: Simulation
	Evaluation Setup
	Evaluation Metric
	Statistical T-test

	Parameter Tuning with Simulation
	Comparison of Heuristics
	Clustering and Pricing Problem
	Examination of Adjustments in Service Vehicle Routes
	Route Re-generation Point and Time Horizon
	Summary of Parameter Tuning conducted with Simulation

	Operational Insights
	Comparison with Current Rebalancing Method
	The Value of Service Vehicles
	Different Prioritization of Starvations and Congestions
	The Value of Bicycles
	The Value of Geo-fencing
	Summary of Operational Insights

	Concluding Remarks
	Conclusion
	Further Research Opportunities
	Improving Realism of Customer Interactions
	Further Development of the Pricing Problem
	User Incentivizing
	Demand Forecasting

	Linearization
	Ensure Feasible Routes
	Violations and deviations
	Objective Function

	Parameter Tuning
	Parameter Tuning for MP Version 1
	Parameter Tuning for MP Version 2
	Parameter Tuning for MP Version 3

	Final Configurations for Column Generation Heuristic
	Bibliography

