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Problem description

We study the effects of capacity payments on the operational decisions of plant man-
agers for peaking units in the Pennsylvania-New Jersey-Maryland (PJM) Interconnec-
tion. During the period under study, the market environment for peaking units has
changed profoundly, and we assess the impact of these changes on startup, tempo-
rary shutdown, and retirement decisions, as well as the costs associated with these

switches.
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Abstract

This thesis aims to study the effects of capacity payments on the operational decisions
of plant managers for peaking units in the Pennsylvania-New Jersey-Maryland Inter-
connection (PJM). We achieve this through a structural estimation of maintenance and
switching costs between the operational state, the standby state and retirement of gen-
erating units. We have focused on the period from 2001 throughout 2016 — a period
where we have identified some significant changes in the power market dynamics. We
conduct a counterfactual analysis on the level of capacity payments to study the effects
of introducing a capacity market in 2007. The reliability of the power system depends
crucially on the availability of flexible peaking units to cover load in periods of high de-
mand. Therefore, an understanding of the real costs facing the owners of these units is
essential in order to enforce policies that ensure sufficient peak capacity in the power
system. Capacity markets are introduced as a means of compensating capacity, and our

study aims to analyze the effects of this additional market on switching behavior.

The empirical data shows less switching between states after the introduction of capac-
ity remunerations. We find that the role of peaking units has changed, with the units
being dispatched more often. In the counterfactual analysis, we find a clear connection
between the level of capacity payments and switching. We conclude that the current
level of capacity payments in PJM incentivizes peaking units to stay in the operational

state.



Sammendrag

Denne oppgaven tar sikte pd & studere hvordan kapasitetsutbetalinger pavirker op-
erasjonelle beslutninger for topplastkraftverk i Pennsylvania-New Jersey-Maryland In-
terconnection (PJM). Vi utferer en strukturell estimering av vedlikeholdskostnader, samt
overgangskostnader mellom operasjonell modus, midlertidig nedstengt modus og per-
manent nedstengt modus. Vi studerer drene fra 2001 til 2016, fordi dynamikken i kraft-
markedet endrer seg betraktelig i denne perioden. Videre foretar vi en kontrafaktisk
analyse av nivdet pa kapasitetsbetalinger for & undersoke effekten av & innfore et kapa-
sitetsmarked i 2007. Fleksible topplastkraftverk er avgjerende for kraftsystemets pélite-
lighet i perioder med hoy ettersporsel. Forstdelse av de reelle kostnadene av a eie og
drifte slike enheter er avgjorende for & utarbeide markedsregler som sikrer tilstrekke-
lig kapasitet i kraftsystemet. Kapasitetsmarkeder er innfert for & kompensere tilgjen-
gelig kapasitet. I oppgaven var analyserer vi hvordan slike marked pdvirker topplas-

tkraftverkenes veksling mellom operasjonell og midlertidig nedstengt tilstand.

Fra de empiriske dataene vére fremgar det at vekslingsaktiviteten avtar etter at kapa-
sitetsbetalinger ble innfert. Rollen topplastkraftverk fyller i markedet har endret seg
ved at enhetene produserer oftere. Den kontrafaktiske analysen viser en klar sammen-
heng mellom nivaet pé kapasitetsutbetalinger og hyppigheten av veksling mellom op-
erasjonell og midlertidig nedstengt modus. Vi konkluderer med at dagens nivé péa ka-
pasitetsutbetalinger i PIM gir topplastkraftverk insentiv til & holde seg i operasjonell

tilstand.
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Chapter 1

Introduction

The fundamental task of maintaining an adequate and reliable power supply in a power
system requires low variable cost baseload and flexible peak generation units. Histori-
cally, in the US power system, the baseload generation capacity has consisted mainly of
nuclear and coal power plants. However, the development in recent years has shown in-
creased participation of both combustion turbines and renewables to serve as baseload

generation.

Peak generating units must be highly flexible and controllable with short response time
to be able to pick up the ever-fluctuating demand on both an intraday and a seasonal
basis. With increasing amounts of uncontrollable generation from intermittent en-
ergy sources such as solar and wind, the uncertainty regarding the reliability of sup-
ply increases, and generating units that can be ramped up on short notice will be even
more crucial. Combustion turbines are currently the technology best suited for this

role.

Electricity cannot be stored like other commodities, resulting in the fact that supply and
demand of electricity have to match instantaneously. This gives rise to two demand-
side market flaws making the electricity market different from other commodities mar-
kets (Stoft, 2002). Firstly, the lack of metering and real-time billing of consumers makes

demand inelastic, as the consumers cannot see the cost of the electricity they consume
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in real time. Secondly, there is no way to monitor the exact flow of electricity, making
it hard to allocate cost to individual consumers. Because of these flaws, the market is
unable to set a price on electricity in times of scarcity. If the market were efficient, it
would match supply and demand at the price consumers are willing to pay, hence cov-
ering the total cost of production for suppliers. In the presence of the market flaws, the
system operator (SO) needs to intervene and set a price that balances the consumers’
willingness to pay against the suppliers need for sufficient compensation to uphold the

production capacity required.

When the demand for electricity is less than the total generation capacity, the SO cost-
effectively matches supply and demand by merit order dispatching. Merit order dis-
patching entails that the generating units are ordered ascendingly based on their short-
run marginal cost of production so that the least costly units are dispatched first. This
means that units with high short-run marginal costs risk not being dispatched. The
marginal unit, i.e., the unit producing the last incrementally demanded amount of elec-
tricity, sets the market price for the entire market. Other dispatched units earn the
scarcity rent, which amounts to the compensation received beyond their short-run
variable cost of production. In effect, if the demand were constant at a certain level,
the marginal producing unit would never be able to cover the fixed cost of the genera-

tor and would be forced to retire.

There are different strategies for compensating generation units. Most commonly, gen-
erators are compensated only through payments for the electricity that they deliver into
the power system. A power system that relies solely on this compensation procedure
is called an energy-only market. In recent years, in addition to compensating for the
electricity delivered, some power markets have started compensating generators for
the capacity that they can deliver into the power system. This means that a genera-
tor can receive compensation based on a commitment to offer capacity in the future.
Some, such as Oren (2005) and Hogan et al. (2005), argue that such capacity remuner-
ation mechanisms should be unnecessary in power markets and that generating units
should be able to cover their fixed costs by bidding higher than their short-run marginal
costs in the auctions during shortage periods. Cramton and Stoft (2005), however, con-

clude that the power market imperfections always will be present, and that capacity



remuneration mechanisms can be needed to ensure adequacy and reliability in times

of shortage.

In an energy-only market, the fixed cost of the peak generators must be covered through
high price spikes, often capped by the SO. In cases where demand exceeds supply, the
price skyrockets because of a near vertical supply curve and it is the job of the SO to set
an appropriate price cap. This is when the marginal producer will be compensated in
excess of short-run marginal cost. Setting this price cap appropriately is inherently dif-
ficult, but crucial to create effective investment incentives, especially for peaking units
that are only producing when demand is high. In a capacity market, in addition to pay-
ment for delivered energy, the generators receive a fixed remuneration for the capacity
that they can offer into the power system, regardless of whether or not they are dis-
patched in the energy auction. In theory, the energy prices in a capacity market are
lower than in an equivalent energy-only market as part of the compensation is done
through the capacity payments. This can lead to a more stable energy price environ-

ment with lower price caps in times of scarcity.

The PJM capacity remuneration mechanism, the Reliability Pricing Model (RPM), was
launched in 2007 to address growing issues regarding the fulfillment of capacity obliga-
tions in the market. PJM holds annual capacity auctions three years in advance, where
generators commit to one year of capacity delivery. The bids of the generators add up
to the capacity supply curve. To stay competitive, it is vital for the peaking units to clear
the capacity auctions to cover their fixed costs. Therefore, it is reasonable to assume
that all generators will bid in their maximum allowed' capacity in the capacity auctions.
One fundamental characteristic of the RPM is that constraints in the transmission and
distribution grids are recognized, and zonal capacity prices are used to incentivize the

right level of capacity delivery for each zone.

Since the implementation of the RPM and up to the 2015/16 delivery year, a total of
28400 MW of capacity has been added in the PJM Interconnection. Table 1.1 shows the
distribution of sources of new capacity. Our analysis will only take new generation and

plant reactivation into account, amounting to approximately 20% of the total increase

! Generators are not allowed to bid in their nameplate capacity, as generator outages must be accounted
for.
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in generation capacity. The low share of plant reactivation indicates that there exists
a cost of reactivating a power plant that is higher than the cost of demand response?,

which amounts for most of the added capacity after the introduction of RPM.

Table 1.1: Sources of new capacity under RPM (Pfeifenberger et al., 2011)

Source MW %

Demand response 11800 41.5
Net change in exports/imports 6900 24.3
New generation 4800 16.9
Plant uprates 4100 144
Plant reactivation 800 2.8

In addition to the introduction of a capacity market, several other exogenous factors
have changed in the PJM in recent years. The United States Environmental Protection
Agency (EPA) is responsible for environmental regulation standards. Examples are the
NO, budget trading program (NBP), the Clean Air Interstate Rule (CAIR) and the Cross-
State Air Pollution Rule (CSAPR), all introduced between 2003 and 2014. These regula-
tions are cap and trade programs, designed to reduce the environmental impact from
power plants and industrial units, primarily emissions of nitrogen oxides (NO,) and
sulfur dioxide (SO,). A generator can become compliant through technology upgrades
or by trading in the markets established by the EPA. These programs all affect genera-
tors operating in PJM, and thus their effects should be controlled for in an analysis of

switching costs in this area.

Another macroeconomic factor that affects the operational decision making for peak
generator managers is the emergence of shale gas extraction in the US, which started
around 2007. Advances in hydraulic fracturing technology lowered the production costs
of shale gas, and by 2016, shale gas amounted for 51%° of the total US gas production.
As a consequence, the price of natural gas dropped significantly after 2008, as seen in
Figure 2.2c, and has stayed low since. Together with an increased amount of intermit-
tent renewable energy sources (RES) in the baseload, the low price of natural gas acted

as a disruptive force in the power generation market, altering the role of the peak gen-

2Demand response is the mechanism where consumers are financially compensated for reducing load in
peak hours.
3Numbers from the US Energy Information Administration.



erators. Prior to these changes, coal-fired units served as baseload, and combustion
turbines were dispatched in periods of peak demand. Today, this picture is somewhat
more complex. The intermittent nature of baseload RES requires peaking units to run
not only in the short periods of peak demand but also at times where RES are not able
to deliver. This effect is amplified by the low variable costs of production following
the price drop of natural gas in 2008, making gas turbines rank lower in the merit or-
der of dispatch. Besides, stricter environmental regulations have made older coal-fired
units less competitive unless they undergo substantial upgrades. Thus, the competitive
landscape has changed for peaking units; they now compete with other peaking units,
combined-cycle gas turbines and in the extreme case, conventional baseload plants
(Ott, 2012). This might give rise to challenges since peaking units are designed to run
at their specified design point for shorter periods of time. We expect these altered pat-
terns of operation for peaking units to affect the maintenance and switching cost esti-

mates.

In order to design a market where peak generators are compensated appropriately to
secure sufficient investment activity, a regulator must have a thorough understanding
of the generators’ cost structure as well as the market dynamics. Regulators make cost
estimates, but empirical testing of such estimates is difficult. Generator costs are influ-
enced by exogenous factors that can be hard to observe. Also, the cost structure of a
power producer is business sensitive information, as this determines the lower limit of
their bids in market auctions. Therefore, the empirical estimation of generator costs is
one of few viable options for investigating the real costs faced by generators. The busi-
ness decisions of an owner of a peaking unit are readily formulated as a sequential de-
cision process in time, where choices about the operational state of the generator must
be made before each consecutive time period. Markov decision processes provide an
excellent framework for modeling sequential decision making under uncertainty (Rust,
1994). Under the assumption that the generator owners act rationally, dynamic pro-
gramming provides a way of identifying the optimal decision rule for choosing how
to operate one’s generator. The agent can be represented through a set of economic
primitives, describing their utility function, transition probabilities and discount fac-

tor for future states. The primitives convey information about the decision process of
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the generator owner as well as the uncertainty of the decision environment. Structural

estimation provides a framework for robustly estimating such primitives.

In the literature, the estimation of parameters in structural models and dynamic games
of entry and exit is given much attention. Computation time has been a major issue
since the seminal work of Rust (1987) was published, introducing the Nested Fixed
Point Algorithm (NFXP) for estimating the optimal stopping problem of bus-engine re-
placements in a discrete choice model. It relies on finding the set of predictions that
most closely represent the data for each guess of a set of structural model parameters
— a computationally overwhelming task even by today’s standards. Since then, alter-
native approaches has been proposed; see Pakes et al. (2007), Aguirregabiria and Mira
(2007), Bajari et al. (2007) and Pesendorfer and Schmidt-Dengler (2008) for methods of
estimating dynamic games. These papers build on the two-step approach introduced
by Hotz and Miller (1993) for estimating single agent dynamic discrete choice models

using the Conditional Choice Probability estimator.

However, Su and Judd (2012) conclude that many of these methods are not asymptoti-
cally efficient, and introduce a new computational method; a Mathematical Program
with Equilibrium Constraints (MPEC). Here, the problem is solved as a constrained
optimization problem, where the maximum likelihood of observing the data is found
subject to constraints that ensure optimality of the solution. This significantly reduces
computational time compared to the NEXP algorithm, since the constraints do not
need to be satisfied until the last iteration of the algorithm. Our work builds on this
branch of the structural estimation literature, through slightly revised versions of the

model formulations in Fleten et al. (2015, 2017).

Relevant applications of structural models include Thome and Lin Lawell (2015). They
employ both a reduced-form discrete response model and a structural model of a dy-
namic game, building on the model developed by Pakes et al. (2007), to model the de-
cision to invest in corn-based ethanol plants in the Midwestern United States. They
find that there is a significant strategic component present when making investment
decisions in corn-ethanol plants. Aguirregabiria et al. (2007) use an extended version of
the Nested Pseudo Likelihood estimation method from Aguirregabiria and Mira (2007)

when developing a dynamic model of entry, exit, and growth in the oligopolistic Chilean



retail market. Fleten et al. (2015) address the strategic component of competition be-
tween players in the North-Eastern American electricity markets through an element
in the state variable vector capturing the competitive advantage between different gen-
erators within the same US state. We further refine this approach by calculating the
relative competitive advantage within the generators’ transmission zone, a more rele-

vant measure of competitiveness.

A variety of different models have been used to study the effect of capacity markets on
investments in capacity. Hach et al. (2016) use an iterative dynamic capacity model
to study investments in capacity. Petitet et al. (2017) and Cepeda and Finon (2013)
utilize a similar long-term system dynamics model incorporating new investments in
large-scale RES projects to assess the capacity remuneration mechanism. Bhagwat et al.
(2017) use a bottom-up agent-based modeling approach to study the development of
electricity markets under imperfect information and uncertainty and assess different
capacity remuneration mechanisms. Others, such as Botterud et al. (2002) and Dahlan
and Kirschen (2014) use dynamic simulation optimization to model the capacity invest-
ments in deregulated power markets. Fleten et al. (2017) analyze the effect of the newly
introduced US capacity markets using structural estimation in an empirical study of

peaking unit switching costs, but lacked data on the capacity payments.

In this thesis, we use a structural model to estimate the switching costs of peaker gener-
ators in the PJM Interconnection with capacity payments and account for other major
exogenous factors. We observe a different pattern of switching activity after the intro-
duction of the RPM and employ our structural model to quantify these changes. We also
consider current US power markets trends, where the natural gas price has dropped and
units previously serving solely as peak generators are now serving loads more often. Be-
sides, a series of new environmental regulations has been introduced. Finally, we ex-
plore the effect of different levels of capacity remuneration in a counterfactual analysis.
Structural estimation of cost structures in power markets with capacity payments is as
far as we know new to the literature. The use of zonal resolution for electricity and ca-
pacity prices as well as for the measure of competitiveness makes us able to implicitly
include information on congestion in the power system, something that earlier struc-

tural estimations of power system costs have not considered.
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The rest of this thesis is outlined as follows. Chapter 2 introduces the data used in the
structural estimation. Chapter 3 describes the decision problem for the plant managers
and introduces the model formulations as well as the methodology for the counterfac-
tual analysis. Chapter 4 presents and discusses the results from the structural estima-
tions for the model formulations. Chapter 5 presents the findings from the counter-
factual analysis and evaluates how the level of capacity payments influence switching

behavior. Chapter 6 concludes the findings of this thesis.



Chapter 2

Data

2.1 Data sources

We analyze data on PJM peaking generators from 2001 until 2016, extending the time
frame of Fleten et al. (2015, 2017), who used data on peaking units from the PJM In-
terconnection, as well as ISO-NE and NYISO. We have data on a total of 859 unique
generators from 252 different power plants, giving us a total of 10401 generator-year

observations.

2.1.1 Observed switching

Our main sources of data are the Energy Information Administration (EIA), the U.S. En-
vironmental Protection Agency (EPA) and PJM. Form EIA-860 provide generator-level
specific data about existing power plants with 1 MW or greater of combined name-
plate capacity. This form also reports on the current status of the individual generator,
which can be in one of three possible states; Operational (OP), Stand-by (SB) or Re-
tired (RE). In OP state, the power plant can start production on short notice. In SB
state, the plant is temporarily shut down to reduce maintenance costs, and cannot be
used in power production before it is switched back to OP state. A plant in RE state is

considered abandoned, and cannot be used for power production in the future.
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2.1.2 Heatrate

Form EIA-923 gives detailed information about power generation and fuel consump-
tion. From this data, we can calculate the yearly average heat rates for each generator.
The heat rate of a generator is defined as the thermal energy input required per unit
of electric energy output, measured in MM Btu/kW h. By calculating a yearly reported
value, as opposed to using nominal heat rate, we capture the effect of generators run-
ning at non-optimal loads for some time during the year. This also enables us to capture
the effect of aging equipment and declining efficiency over time. We have form EIA-923
heat rate data on 2952 of the generator-year observations from 273 different genera-
tors, which amounts to 28.7% of all observations, and heat rate data being available for
at least one year in the period for 31.8% of the generators. For generators where no
heat rate data is available, we estimate heat rates using an OLS regression with age and

installed capacity as explanatory variables.

2.1.3 Variable operating and maintenance costs

The generators face other variable non-fuel operating and maintenance costs (VOM).
Following the method from Fleten et al. (2017), we estimate these costs based on the
information available in the Annual Energy Outlook document and the accompany-
ing assumptions document (U.S. Energy Information Administration, 2018), where EIA
estimates and breaks down the costs of new power plants. As EIA only recently has
started publishing these reports, and we have generators in our dataset dating back to
the 1960’s, data on VOM is not complete. Therefore, we estimate the VOM for each fuel

type, by assuming that it is linearly increasing with age!.

2.1.4 Time series data

The time series for historic peak hour? electricity and capacity prices are collected from

PJM’s database. There are significant transmission constraints within the transmission

1YOM estimates for new plants in the EIA assumptions documents for different years vary substantially
from year to year, but we see the general trend that old plants have higher VOM.
2The 16-hour interval from 06:00 to 22:00.
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and distribution grids in the PJM Interconnection, especially in areas where PJM con-
nects with neighboring RTOs (United States Department of Energy, 2014). PJM uses
zonal pricing to address congestion in the power system. The zonal price data pub-
lished by PJM shows great variations in prices for the different zones, which will affect
the profitability of the generators. For this reason, we have matched generators to zones
and use zonal prices for electricity and capacity. Capacity payments are yearly fixed

payments for committed capacity measured in $/ MW —day.

We collect historic spot prices of Henry Hub Natural Gas (NG), New York Harbor No. 2
Heating Oil (DFO) and US Gulf Coast Kerosene-Type Jet Fuel (KER), from the EIA. Figure
2.2 shows the development of the time series used for calculation of the profitability

indicator.

2.2 Construction of spark spread profitability measure

Similar to Fleten et al. (2017), we calculate a spark spread profitability measure for each
generator-year observation based on profits from the sale of electricity, fuel costs and
VOM. Our approach deviates from their work in how we use zonal pricing for the PJM
Interconnection, thus avoiding the simplification of using the system price for all gen-
erators when calculating the spark spread. By mapping generators to price zones, we

implicitly account for congestion in the power system.

Data on the individual generator’s bids in the capacity auctions is unavailable. How-
ever, given that the capacity remuneration mechanisms are designed to cover the fixed
costs of generating units, it is reasonable to assume that all peaking units will bid their
maximum allowed capacity. By the same reasoning, we also assume that all generators
in the operating state clear the capacity auction and receive payments for their full ca-
pacity. Peaking units will have no incentive to bid below their allowed capacity, and they
are likely rather to enter the standby state than operate if they do not clear the capacity

auction to avoid incurring production costs®. Therefore, we incorporate the capacity

3These assumptions are established in discussion with Benjamin J. Fram, PhD Research Scholar at the Nor-
wegian School of Economics, Department of Business and Management Science, and former Power Market
Analyst at Monitoring Analytics in the Greater Philadelphia Area.



12 CHAPTER 2. DATA

payments in the profitability measure in the period after 2007 by adding the zonal ca-
pacity prices. By doing this, we get two different profitability measures: the energy-only
profitability measure, which can be calculated for the whole period, and the RPM ad-

justed profitability measure, which only exists from data from 2007-2016.

2.3 Description of data set

2.3.1 Observed switches and profitability

Table 2.1: Average yearly payments from energy and capacity markets for all switching
decisions. Profitabilities in [$/ kW — year].

Current state opP SB
Switching to orp SB orp SB RE
Number of observations 3479 64 161 755 76
2001-2007 Share 982% 1.8% 162% 761% 7.7%
Average profitability 12.28  5.85 14.25 13.00 5.58
Number of observations 4435 4 15 521 32
Share 99% 0.1% 2.6 % 91.7% 5.6%

2008-2016 Energy-only profitability 18.50 11.64 15.67 7.88 9.25
Capacity payments 40.22 58.59 29.17 45.10 50.91

Average profitability 58.72  70.23 44.84 5298  60.15

Table 2.1 shows the possible transitions as well as the number of observed transitions
and the corresponding average profitability. For the first period, we see that operational
generators choose to stay operational in periods of high profitability, shut down in years
when the profitability is low, and switch back to OP when profitability picks up. Many
generators choose to stay in SB, even with rather high profitability, until they reach a
certain threshold, where they switch back into operation. They only choose to retire
when profitability drops very low. This behavior aligns well with the re-entry and exit

barriers described in real options theory (Dixit and Pindyck, 1994).
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After the introduction of the RPM, there are two sources of revenue for generators. The
compensation of a generator comprises an element for the electricity produced in real
time, varying throughout the day, and a yearly fixed element for the available capacity.
This change in the dynamics of the remuneration of generators in RPM complicates the
effort of discovering what drives the observed switching behavior. Compared to the pe-
riod prior to the introduction of the RPM, the number of observed switches is drastically
reduced, with only four observations of plants entering SB state and 15 switching back
to the OP state. Because of few observations, average profitabilities for these switches
should be interpreted with care. However, looking only at the profitability indicator for
the energy-only market in Table 2.1, the average profitabilities makes sense when in-
terpreted in a real options perspective. It is worth noting that the average profitability
for retiring plants is higher than that of plants entering SB state, but once again only a
few observations with high profitability will have a significant impact on the average.
From Table 2.1, there is no apparent relationship between the capacity payments and

the observed switching behavior.

In view of real options literature, the switch from the operational state directly to retire-
ment can be regarded as irrational. One would rather switch to the mothballed (SB)
state, recognizing the value of the option to re-enter the market if profitability rises.
Therefore, we argue that the few empirically observed switches from OP to RE can
be explained by other non-economical circumstances. Examples are physical break-
downs of generators due to uncontrollable factors such as natural disasters or retire-
ments caused by state-level regulations. Consequently, we have excluded these obser-

vations from our data.

Figure 2.1 illustrates the observed switching behavior in combination with the distri-
bution of the energy-only spark spread profitability measure for the whole period from
2001 to 2016. The grey shapes illustrate the distribution of profitability, with wider re-
gions indicating more observations for this level of profitability the specific year. The
colored lines in the plot describe the observed switching behavior, gathered from Form
EIA-860. The figure clearly illustrates that the switching pattern changed after 2007.
The development of switches between the operating state and the standby state is most

interesting. In the period before 2007, the observed switches seem to develop in ac-
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cordance with the profitability indicator. In an environment driven mainly by revenue
from delivering energy into the power system, one would expect that switching behav-
ior is strongly related to the development in the profitability indicator. In relative terms,
there are more switches from the standby state to operating state (SB — OP) when the
profitability indicator is high than when it is low. By the same token, we observe few
switches from the operating state to the standby state (OP — SB) when profitability is
high and many when it is lower. This pattern is not as evident after 2007, with fewer

switches between the operational and standby state.

It is also worth commenting on the spikes in the retirements in 2003 and the period be-
tween 2011-2014. These must be seen in relation to the changes in environmental reg-
ulation, as discussed in Chapter 1, because it would be financially irrational to upgrade
an old, dirty peaking generator to comply with regulatory requirements. This kind of
exogenous factor must be modeled explicitly in the structural estimation, as such infor-

mation is not available through the development of the profitability indicator.

For the fuel prices, we can see signs of a new regime after 2007, as illustrated in Figure
2.2c. The natural gas price stabilizes at a lower level, and recognizing that natural gas is
used as fuel for approximately 65% of the generators in our dataset, this development is
likely to be the main driver of the improved energy-only profitability seen for the plants

in the period after 2009.

Figure 2.3 illustrates how the switching behavior relates to the development of the energy-
only profitability measure from one year to the next*. We gain insight into the relation-
ship between profitability measures for the individual generator-year observations and
the corresponding transition observed. We clearly see that switches from OP to SB and
SBto RE, colored orange and red respectively, happen for lower pairs of the profitability

indicator than the more optimistic switch from SB to OP.

4Note once again that capacity payments are excluded for illustrative purposes. In addition, all of the
observations along the center line are observations from 2016. There is no data for 2017, so 2016 values were
assumed.



16

Price [$/MWh]

Price [$/MW-day]

Price [$/MMBtu]

CHAPTER 2. DATA

1000

750

500

250

—JCPL
—METED
—PECO
—PENELEC
—PEPCO
—PPL
—PSEG
—RECO

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

(a) Zonal prices for electricity

300

N
o
o

L L

Zone
—AECO
—AEP
—APS
—ATSI
—BGE
—COMED
—DAY
— —DEOK
—DOM
—DPL
—EKPC
— —JCPL

-
o
o

2007 2008 2009

—METED
— —PECO
—PENELEC
L —PEPCO
—PPL
—PSEG
—RECO

| N S N e
2011 2012 2013 2014 2015 2016 2017

(b) Zonal prices for capacity

30-

20-

10-

TRAWLTL Fuel

I ‘ \ —DFO
" ) ~ KER

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

(c) Fuel prices

Figure 2.2: Time series used for profitability indicator calculations



2.3. DESCRIPTION OF DATA SET 17

125
100

-

@® . .

(5]

T .

= 75 .

= - .

S~ . L]

ﬂ L]

i

ha .

8 50 r - d

Q . * e .

> v . -

E . % o . . 0

9 : . " .

o LS et ar OP —> OP

25 . ,"' o : P e SB —>SB
¥, AL or —>s8
a2 psde 0t . %" .. . ->
Szee 5P 02000 Bes oo
3o’ Lo "."- og0® ¢
0 M."“'ﬂ"' it

0 25 100 125

50 75
Profit year t [$/kW-year]

Figure 2.3: Scatter plot of profitability and switching

2.3.2 Retirement observations

PJM state that there are two main drivers of the retirements (PJM Interconnection, L.L.C,
2018). Firstly, the emergence of low-cost shale gas from 2007 onwards led to more com-
petition from new market entrants. Modern and efficient generators have put older
units under pressure. The introduction of the RPM coincides with the price drop of nat-
ural gas, leading to a drastic change in market conditions. Under RPM, the generators
are forced to compete directly on fixed costs, as generators bid in the capacity auction
based on their fixed costs. This favors efficiently managed generators. Less efficiently
run units can be forced to forfeit the capacity remuneration in cases where they do not

clear the capacity auction, possibly forcing the units into retirement.

The second driver mentioned by the PJM concerns the environmental regulations that
have been introduced during the period of study. The spike of retirements seen in 2003
must be considered in relation to the introduction of the NO, Budget Trading Program

(NBP) in this year. A NO, emission scheme will punish older units more than more
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newer ones, as designs have been improved to reduce emissions (Lefebvre and Ballal,
2010). Also, there are more retirements seen in the period after 2011. In this period,
CAIR was active and later replaced by the CSAPR. Limitations on SO, emissions and
trace elements such as heavy metals will generally hit generators fueled by heavier oil
derivates harder than gas-fired units, as the concentration of pollutants is higher in
such fuels (Lefebvre and Ballal, 2010). Based on this, it is likely that the stricter envi-
ronmental regulations will have had an impact on the switching decisions of the gen-
erators, and especially on retirements, as owners of older units will face the choice of
upgrading a less competitive unit or retire it. As these regulations apply to all generators
in the market, some coal-fired baseload plants will be forced into retirement, leading to

more frequent dispatching of gas-fired peaking units.

The two main drivers of retirements mentioned by PJM align well with what we observe
in our dataset, as seen in Figure 2.4. Figure 2.4a illustrates the age at retirement for the
retiring capacity. We see that most retiring capacity is from old plants in both periods.
However, the plants that retire after 2007 are on average older. These older plants are in
general more polluting and have been hit harder by stricter environmental regulations,
in particular, the CAIR and CSAPR. They are not competitive under new regulation and

are thus forced into retirement.

We see the same effect in Figure 2.4b, with a very high proportion of retiring capacity
running on DFO and KER®, which are dirtier fuels than NG. These observations point
us in the direction that the retirements seen after 2007 can be explained by it becoming
less favorable to operate older, dirtier plants. It also reflects the first main driver of
retirements mentioned by the PJM, that lower NG prices has made these plants more

competitive than the DFO- and KER-fired plants.

We also see that there are almost no retirements of capacity from newer units in the
latter period, indicating that RPM has been successful in retaining capacity provided by
efficient generators. Previous literature, such as (Fleten et al., 2017, 2015) has not recog-

nized this connection between retirements and environmental policy changes.

5Keep in mind that the total share of DFO and KER units in our data set is low, compared to NG.
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Chapter 3

Modelling approach

3.1 The agent’s decision problem

As discussed in Chapter 1, the power market has changed profoundly during the period
of observation. The introduction of capacity remunerations, stricter environmental
regulations, and the plummeting of natural gas prices contribute to a different market
dynamic. For this reason, we are using two model formulations to capture the agent’s
decision problem in a period where the market situation changes a great deal. First, we
employ an energy-only formulation, only considering a generator’s spark spread in the
energy-only market. In the second model formulation, we include additional factors,
which are thought to explain generator switching behavior. Capacity remuneration has
also been included in the spark spread calculation after 2007. The energy-only formu-
lation estimates the costs of operating a combustion turbine in a relatively simple mar-
ket. The capacity market formulation incorporates more variables, resulting in a more
complex model that explores the effects of added exogenous variables on the agent’s
decision problem. The added complexity will reduce the relevance of the estimates as a
means of unveiling actual costs but will give insight into how the external factors affect

the agent’s decision problem.
The model is written in AMPL, based mainly on code kindly provided by our supervisor

21
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Stein-Erik Fleten. The model formulation originates from Fleten et al. (2017) and has
later been modified by Marius Johansen in his master thesis (Fleten et al., 2015). We use
the KNITRO solver, an optimization software library primarily built for solving large-

scale, continuous, non-linear mathematical optimization problems.

Firstly, in Section 3.1.1, we will present the general formulation of the agent’s decision
problem. This formulation represents a common framework for the energy-only and
the capacity market formulations. Thereafter, in Section 3.2, we present the general
optimization model. Finally, in Section 3.3, we take a closer look at how the two model

formulations differ.

3.1.1 Thereal options formulation of the agent’s decision problem

Table 3.1: Nomenclature for dynamic discrete-choice model

Symbol Description

t Time index; time unit is one year.

Xy State process, publicly observed.

€t Information not observable for researcher.

S Set of possible states: {OP, SB, RE}.

st€S Operational state in year ¢.

u;eS Operational state in year ¢ + 1, decided in year ¢.

g(x,s;u) Net profit function.

V(x,s)  Value function.

v(x,Ss) Expected (s-alternative specific) value function.
B€(0,1) Discount factor.

The agent’s decision problem can, as briefly discussed in Chapter 1, be modeled as a
Markov Decision Process. Such processes have two variable categories; state variables
x; and decision variables s;. The agent’s payoff function can be formulated by letting
a set of primitives represent the agent. Further, we let a transition function {X;, s;; u}
represent the agent’s belief about uncertain future stages and let 8 be the discount fac-
tor. A plant in the operational state will choose to produce only in times where the
spark spread is positive. Assuming the agent to be fully rational, the expected value of
owning a generator can then be viewed as a series of daily call options on the spark

spread. Thus, we can study the agent’s decision problem using a real options frame-
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work. The Bellman equation of the problem is developed below following Fleten et al.

(2017):
o0
V(x,s)= max [E(Zﬁtg(Xt,st;sHl) XO:x) 3.1
St=8¢(x¢) =0
o0
= max [E(g(Xo,s();slHﬁ-[E( B g (Xes1, St+1; Se42) | X =x1) Xo =xO) (3.2)
Sr=5¢(X¢) =0
= max g, s;u) + B-E(V(Xpr1, u) | X; = X) (3.3)
ue

Equation 3.3 defines an optimal decision rule for choosing the operating state, u;, of
the plant for the next operation period. Equation 3.3 cannot be solved using non-linear
regression techniques for three reasons. Firstly, our dependent variable u is discrete.
Secondly, the form of the optimal decision rule is not known and needs to be estimated.
Thirdly, there will be information available to the agents that is non-observable to the
researcher. This will however need to be accounted for in the problem formulation in
the form of a stochastic term € (Rust, 1994). It will be non-additive, non-separable, pos-
sibly multi-dimensional and carry additional, non-observable information concerning
the transitions u; € S. In our case, ¢ will account for plant owners’ private information.
The private information held by the agents is an important source of uncertainty in the
model. To incorporate the private information of the agents, we reformulate Equation
3.3:

V(x,e€,$) = max gX,e,5;u)+ - [E(f V(Xy,€1,u)é&(der |X1)‘Xo = x) (3.4)

We define the last part of Equation 3.4 as the s-alternative specific value function
v(x, ) =[E(fV(Xl,el,u)é’(dellxl)’Xo =x) 3.5)
which is the average of the value functions V of all agents operating in the market.

Now the Bellman equation (3.3) can be rewritten in a way that incorporates private in-

formation:

Vixe, ) =max gx,e,s;u) +f- v(x, u) (3.6)
ue
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As proposed by Rust (1987), we need to impose two additional restrictions on our prim-
itives, namely that € enters the state process in an additive separable way and that the
stochastic component is conditionally independent. Consequently, our payoff function

can be separated in the following way:
glx,e,s,u)=g(x,s,u)+ey 3.7

Using the property of additive separability expressed in Equation 3.7, we rewrite v(x, s)

as:
v(x,s) = [E([ max gX,s;w e+ pv(Xa, u)g(del)‘Xo = x) (3.8)
ue

Following extreme value theory the maximization in Equation 3.8 will converge to an
extreme value distribution. Because the Gumbel distribution is the only extreme value
distribution with two-sided support, and the € is assumed to have the property of addi-
tive separability, ¢ will follow a process of mutually independent Gumbel distributed
variables. Now, following the general lines of McFadden et al. (1973) and following
Fleten et al. (2017), we rewrite our Bellman equation and solve it under the assump-
tion that € is a process of mutually independent Gumbel variables, which also are in-
dependent of the state process. Under the above conditions, the expectation can be
simplified by using the property that the Gumbel distribution is closed under maxi-

mization:

fmax(eu +¢y)&(dey) =b- log( > expc—;) (3.9)

ues ues

By defining ¢, = g(x,¢,s;u) + B~ v(x, u) and applying Equation 3.9 to Equation 3.8 we

arrive at:

g(Xu,s; u)+ﬁ-v(X1,u)))
b

v(x, ) ZE(b-log(Zexp( onx) (3.10)

ues

Here, b is a scale parameter, that can be interpreted as the degree of uncertainty about
the decision of agents in situations where they have the same information when decid-

ing (Fleten et al., 2017).
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3.2 Optimization model for parameter estimation

The estimation of primitives is done by solving the maximum likelihood problem below

(Rust, 1987; Su and Judd, 2012):

maximize <% (g, Vg, (Xi, 81, ui)ﬁ\il ) (3.11)
subjectto g e G (3.12)
Vg = tg(vg), (3.13)

Here, i denotes a generator-year observation and N is the number of generator-year

N

observations. % is the likelihood of observing the observed data (X;, s;, u;) i

1 and
is restricted by the payoff function g(-) € G, where G is the set of possible profitabil-
ity functions for a generator. The second constraint is a fixed point equation for the
expected s-alternative specific value function, see Equation 3.10. Because of private in-

formation that is unobservable to the analyst, the decision for a given state (x, s) is not

deterministic, but given by a choice probability

gx,s;u)+Pv(x,u)

exp (S —)
Zu’ exp (g(x,s;u’);ﬁv(x,u/))

Py(ulx,s) = (3.14)
determined by the fact that € follows the Gumbel distribution. Hence, the objective

function becomes:
N
L (g v X siud)l ) = [] PolwilXi,si), (3.15)
i=1

For a more thorough explanation of the optimization problem, we refer to Fleten et al.

(2017), where the above problem formulation is presented more in-depth.

As briefly discussed in Chapter 1, we use the MPEC algorithm of Su and Judd (2012)
to estimate the primitives. For our purposes, the MPEC is far less computationally de-
manding than if we were to use the NFXP of Rust (1987) because the NEXP would re-
quire us to solve the constraint vy = #4(vg) to optimality for each iteration as it enters
the objective function. By using the MPEC algorithm, the constraint must only be sat-

isfied for the last iteration of the algorithm.
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3.3 Model formulations

The payoff function g(X;, s;; u;) describes the payoff the agent can expect in each dis-
crete time step, and therefore how the rational agent should act. The agent’s payoff
depends on his current operational state and his choice about next period, as we as-
sume that the transition to a new state starts halfway through the current year. This
gives five possible transitions, OP — OP, OP — SB, SB — OP, SB — SB and SB — RE.

In the following, we present how the two model formulations differ.

3.3.1 Energy-only formulation

A generator in the operational state in an energy-only market will be compensated for
the energy it produces according to the price in the specific zone it is located within.
The generators utilize different fuels and have different heat rates. In addition, there
are non-fuel variable maintenance and operational costs associated with being oper-
ational. The resulting day d spark spread for a specific generator n in an energy-only
market (EO) can be expressed as follows:

St :Pﬁ,d—Hn,t*P,{d—Vn,t (3.16)

Here, sz, 4 1s the daily zonal electricity price! in $/ MW h for generator n on day d and
P,j: 4 1s the generator n specific fuel price in $/ MMBtu for day d. Hp,, is the heat rate
for generator nin MW h/MMBtu in year ¢, and V,, ; is the non-fuel variable operation

and maintenance costs in $/ MW h for generator 7.

For the energy-only formulation, the state process simply consists of the sum of non-
negative daily spark spreads. The generator-year specific state process is, in fact, a sin-

gle state variable established in the following way:

Ty
EO EO
Xn,t = max(Sn‘d,t,O) * (
1

16
)

—_— 3.17
1000kWMW -1 ( )

and has units $/ kW h — year. T; is the number of days in year .

1 Averaged over the 16 peak hour interval from 7 am to 10 pm.
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The payoff function for the energy-only formulation is:

XE9 - Mop ifs=0OPand u= OP

. (Xrlf,(l) —Mop _MSB) _KOP—~SB if s=OPand u= SB

NoI—

8(x, 8 w) =4 5 - (XE9 - Mop — Msp) -~ Ksp—op ifs=SBandu= OP (3.18)

—Mgp ifs=SBand u= SB

_KRE_%MSB if s=SBand u= RE

The payoff function depends on the agent’s choice of operational state u in the next pe-

riod. In general we associate three different elements with the payoff function:
1. Profitability from participating in the electricity market, X:.
2. Maintenance costs in the operating state (Mop) and stand-by state (Mgp).

3. Switching costs associated with shutdown (Kpp—_sg), startup (Ksg—op) or aban-

donment (Ksg—_RrEg).

The estimates of maintenance and switching costs should not be interpreted solely as
monetary estimates, as any perceived risk associated with the transitions is factored

into the estimates.

3.3.2 Capacity market formulation

The spark spread calculation for the capacity market formulation is similar to the energy-
only formulation but differ by the fact that capacity payments are included. Generators
that clear the capacity auctions commit to one year of capacity delivery, and receive
payments for each day of the delivery year. The spark spread calculation for the capac-
ity model formulation becomes:

St =Pfl,d—Hn,r*P,f,d—Vn,ﬁPf,,t (3.19)
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where Pj, , is the capacity price in year ¢ in $/ MW — day, for generator n. The prof-

itability measure becomes:

T,
PEM = 3" max(sCM ) « ( 19 ) (3.20)

= nd ™\ 1000kW MW 1
In contrast to the energy-only formulation, we include other factors than the yearly sum
of the spark spread in the state process. For the capacity market formulation the state
process vector consists of the following elements, which all are thought to have an effect

on the switching behavior through the payoff function.
XM = (pCM c; R;, PN} (3.21)

We use the subscript i to denote a generator-year observation. C; is a variable measur-
ing the competitiveness of a generator, R; a dummy variable for environmental regu-
lations and PN the first order difference of the natural gas price. In contrast to P¢Y,
which represents a monetary amount per kW? of capacity, the other elements are not
directly implementable in the payoff function, because they have no obvious monetary
interpretation. Therefore, we use the approach of Fleten et al. (2015) and use linear
combinations of these elements to estimate switching costs. This is sensible because
these factors are important exogenous processes that define the market conditions of
the generator. When including them in the state process, we are able to account for
changes in the generator’s environment and better estimate the perceived risk of the

agents. We refer to these variables as the subset XM c XM | 5o that

XM =(Ci, Ri, P (3.22)

2We scale the capacity payments to arrive at the correct units.
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The resulting payoff function has the following form:

PG — Mop ifs=OPand u= OP

'(Pr(f,]y_MOP_MSB) —Kop-sg(X) ifs=OPandu= SB

N=

8(x; s, w) =1 3-(P5Y — Mop— Msg) —Ksp—op(X) ifs=SBandu= OP  (3.23)

—Mgp ifs=SBand u= SB

—Krp(X) — 3 Msp ifs=SBand u= RE

The rest of this section describes the elements of the state variable vector X“M.

Inverse competitive advantage: The inverse competitive advantage reflects the rela-
tive competitiveness of a generator in comparison to its peers within the same trans-
mission zone. Specifically, this is done through a comparison of the generator’s heat
rate to the average heat rate. Since PJM uses locational marginal pricing, we take all
generators within a given zone as competitors, in contrast to Fleten et al. (2015), which
define competition on a state level. Since electricity from peaking generators is a strictly
homogeneous commodity, their only way to gain a competitive advantage is through
increased efficiency. Hence, this variable will capture any technological advantage that

one generator might hold over its competitors. We have:

Cin=—2 (3.24)

where H; , is the average heat rate of the competitors of generator n in year £°.

Expectation of stricter environmental regulation: In Chapter 1, we describe the re-
cent changes in environmental policy schemes, and how these will affect the market

dynamics. We employ the binary variable R; to capture these effects on the switching

3In the following, we use the subscript i to denote a generator-year observation (1, £).
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costs of the generators. We have

1 if £ €[2002, 2003, 2010, 2011, 2012, 2013, 2014]
R, = (3.25)

0 else

The main drivers of uncertainty regarding environmental policy schemes are the intro-
duction of the CAIR, CSAPR and the NBP. The choice of values for ¢ where R; is set to
1 is based on judgement on how the policy discussions have affected the expectations
of the decision makers. We argue that in these years, plant managers would expect the
stricter regulations to be implemented, and thus that they are expected to act differ-

ently.

Change in natural gas price: In addition to the natural gas price information in the

spark spread, we include the first order difference of the NG price time series*

as a
separate state variable. We believe that the evolution of the natural gas price carries
decision-relevant information that must be addressed because the NG market has changed
profoundly. This variable will capture any change in perceived switching costs caused

by the changes in the NG market. We have:
pNG = pNG, _pNG,_, (3.26)

where PNG, denotes the average gas price over year f. P;V G is positive in periods with

increasing gas price, and negative if the gas price is falling.

We present the state variable correlation matrix in Table 3.2. If state variables are highly
correlated, we can run into issues with multicollinearity in our models. Because of low

correlations, we do not expect multicollinearity to be a problem.

From the discussion in Section 2.3.2, where we emphasize the distribution of age for
retired plants, one could argue that we should include a variable for the generator age
in our model formulation. The effect of older generators becoming less attractive will
be captured in the time-varying heat rate in the calculation of C;, and also in the R;

variable.

4Since we have yearly data on decisions, we use a yearly average time series for NG price.
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Table 3.2: Correlation between state variables

Ci p;  PNG R,
Ci - -0.196 -0.012  0.004
P;  -0.196 - -0.198  0.039
pN¢  .0.012 -0.198 - 0144
R; 0.004 0.039 0.144 -

3.4 Clustering analysis

When including additional exogenous factors in the state process vector, the dimen-
sionality of the problem expands. This is known as the curse of dimensionality, where
the number of sampling points required to get statistically significant estimates grow
exponentially as the vector space is expanded (Keogh and Mueen, 2017). Computa-
tional time will also grow accordingly for discrete dynamic problems. To avoid these
problems, we utilize k-means clustering to construct a finite number of observation
clusters that minimizes the Euclidean distance from the empirical data to the clusters.
This means that optimization is done using a finite number of clusters as allowed val-
ues for the state variables, as each empirical observation is assigned to one of k clus-
ters. Figure 3.1 illustrates this approach using three state variables and five clusters for
all generator-year observations in our dataset”. The small markers represent generator-
year observations, and the large markers indicate the cluster centroids. It is clear from
Figure 3.1 that each generator-year observation is allocated to the nearest cluster using

a measure of Euclidean distance.

3.5 Choice probability counterfactual analysis

Figure 3.2 illustrates how we use the choice probability matrix from the optimization
model to do a counterfactual analysis. Given the current operational state and the clus-
ter in which the observation belong, the choice probability matrix is calculated. This
matrix contains information about the probability of switching to either of the possi-

ble other states, given the state variable vector and the current state. Using this, we

5We used 30 clusters and four state variables in our capacity model formulation.
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50

Figure 3.1: Illustration of k-means clustering

conduct a counterfactual analysis on the capacity payments. By adjusting the capacity
payment levels, we get new, counterfactual, generator-year observations that we match
to the same set of clusters. If we assume that the agent behaves according to the choice
probability matrix, we can generate sets of switches under both the original and simu-
lated capacity payment levels, because the generator-year observations will be assigned
to different clusters depending on the level of capacity payments. Therefore, the pre-
dicted switching behavior will change. The counterfactual sets of switching allow us to

study how adjusted capacity payments change the switching behavior.

The switching behavior predicted by the model, when assuming that decision makers
act according to the choice probability matrix, deviate substantially from the observed

behavior. However, we believe that the model captures the most important market dy-
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Figure 3.2: Counterfactual model overview

namics. Therefore, by systematically changing the level of capacity payments we can

simulate how this will influence switching behavior.

In the counterfactual analysis, we present scenarios with different levels of capacity
payments and study the predicted switching behavior under these scenarios. We con-
duct a sensitivity analysis to assess the responsiveness of the decision makers to changes

in the capacity payment level, as predicted by the counterfactual model.

Ideally, a capacity remuneration mechanism should incentivize the right amount of in-
vestment in capacity and create an incentive for generators to be available in times of
scarcity. Measuring the performance of the RPM is out of the scope of this thesis. We
focus on the effect of the capacity payments introduced through RPM on the switching

behavior of peaking generators.
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Chapter 4

Results and discussion

4.1 Energy-only formulation

Table 4.1 shows the results from the estimation of the energy-only formulation for the

period before the introduction of the RPM.

Table 4.1: Energy-only formulation for the period 2001-2007

Mop Msg  Ksp—op Kop-sp Ksp—RE

Estimate [$/kW — year] 9.127 0.409 1.911 0.436 -56.066
Significance level 1% - - - 1%

We estimate positive maintenance costs in the operational state and standby state, with
the standby maintenance cost being much lower. Both switching costs are positive, with
a higher startup than shutdown cost. The retirement cost is negative and of far greater
magnitude than the startup and shutdown costs. Using parametric bootstrapping, we

find that only Mop and Ksp_. gg are significant.

The sign and magnitude of the estimates for the energy-only formulation support the
findings of Fleten et al. (2017). In this paper, the same model formulation is used to
estimate costs for PJM, NYISO, and ISO-NE peaking units in the period between 2001

and 2009. The authors conclude that the estimates lie in the range of the true main-
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tenance and switching costs. EIA estimate that the fixed O&M costs of a combustion
turbine lie in the range between 6.70 and 6.98 $/ kW — year (U.S. Energy Information
Administration, 2010). The retirement cost (i.e., scrapping value) is larger in our esti-
mates than in the estimates of Fleten et al. (2017). The scrapping value will reflect the
value of replacing an old unit with a newer one, as well as the second-hand value of the

unit.

4.2 Capacity market formulation

The capacity market formulation aims to better model the market dynamics after 2007,
with the introduction of the RPM, the shale-gas revolution, and stricter environmental
regulation. When interpreting the results, it is important to keep the numeric range of
each variable in mind, to get a sense of the magnitude of impact. Table 4.2 present the

range and average for the state variable vector X;.

Table 4.2: Descriptive statistics for elements in the state variable vector

peM ¢ pPNY R
Min 0 062 -492 0
Max 199.40 217 303 1

Average 3742 1.00 -0.08 0.38

Estimates for the maintenance costs and switching costs between the different opera-
tional states for all generators in the data set are presented in Table 4.3. Significance
levels from parametric bootstrapping are indicated with asterisks in parentheses. For
an in-depth interpretation of the results, we refer the reader to Appendix B, where sam-
ple splits based on generator age and fuel type are presented in Table B.1 and Table B.2

respectively.
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Table 4.3: Capacity market formulation

Estimated value

Mop 33.565 (**%)
Msa 0 (**
Ksp—op

Intercept 0

C; 22.457

pNG 2.074 (*)

R; -14.281 (***)
Kop—sa

Intercept 1.233

C; -38.628 (**)

pNG -7.435 (**%)

R; 13.049 (¥**)
Ksp—rE

Intercept -80.807 (***)

C; -69.147 (**¥)

pNG -1.465 (**)

R; 10.155 (**)
Observations 10401
Note: *p<0.1; **p<0.05; ***p<0.01

4.2.1 Maintenance cost estimates

The estimate for the maintenance cost in the operating state, Mop, is higher for the
capacity market formulation than for the energy-only formulation, implying that the
perceived costs of maintaining the turbine and generator in the operational state have
increased in the years after 2007. The increased maintenance costs can be attributed
to several factors. After the sudden drop in NG prices around 2008, peaking units be-
came competitive not only in times of peak demand. They were dispatched more often,
giving increased wear and tear on both the generator and the turbine. The stricter en-
vironmental regulations that were imposed on power generating units from 2010 have

affected the maintenance cost!.

1 An example could be exhaust gas treatment processes.
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The SB state maintenance costs are estimated to zero. In reality, there are costs as-
sociated with maintenance in the SB state. Power plants are subject to taxation on
the plant site, equipment needs to be maintained, long-term rental contracts on build-
ings and equipment might run, etc. All these costs will be SB state maintenance costs
for the plant owner. However, to explain the zero estimate for Mgg, we recognize that
our model formulation allows two sets of equilibrium solutions. The first set of solu-
tions assigns cost incurred in the standby state to Mgp and consequently estimates a
startup cost Ksg—.op at a moderate level. The results from the energy-only formulation
in Table 4.1 adhere to this group of solutions. We believe that this group reflects reality
most accurately. The other set of equilibrium solutions assigns costs incurred in the
maintenance state to the startup cost estimate Ksp_.op as a lump sum. This gives high
startup costs, and low or zero SB maintenance costs, as seen in Table 4.3. When run-
ning parametric bootstrapping samples for the capacity market formulation, all results
converged to the low or zero SB maintenance cost and high costs of startup equilib-

rium?.

We conclude that the energy-only formulation better reflects the true maintenance costs
in standby mode and that the changed market conditions introduce effects that we fail

to control for in the capacity market formulation.

4.2.2 Switching cost estimates

Intercepts for startup and shutdown costs are estimated to be zero. As long as we fo-
cus on the sign of the estimates and to a lesser degree focus on their magnitude when

interpreting how they impact switching costs, the intercept is of less interest.

Startup cost, Ksg_.op

A positive coefficient for the inverse competitive advantage C; implies that generators
with a high value for C;, equivalent to low fuel-to-electricity conversion efficiency, have

a high perceived cost associated with starting up. This is as expected, as a generator

2Efforts were made to put restrictions on the maintenance costs to allow only the positive Mgg and low
Ksp— op set of solutions, without meaningful results.
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performing worse than its competitors will have a higher barrier of entry into the mar-
ket. This is consistent with real options theory predicting a high entry barrier for units
with high costs. However, the coefficient is not significant in parametric bootstrapping

and should be interpreted with this in mind.

As for the NG price development, P;N G, increasing natural gas prices implies higher
costs of starting up. The cost of fuel is the most important driver of variable costs for
a gas turbine. A minority of the turbines studied run on distillate fuel oils or kerosene,
but there is a positive correlation of 0.134 between the NG and DFO prices. Therefore
we would still expect a positive sign for this coefficient. The coefficient is low, indicat-
ing that the gas price development has only a limited effect on the startup costs. The

differences between fuel types are further treated in Appendix B.

The effect of expectations to stricter environmental regulation, R;, is not straightfor-
wardly interpreted. At first glance, it seems intuitive that new, stricter, environmental
regulation would increase the perceived cost of re-entering the market. Many genera-
tors must make investments to ensure compliance with the new regulations. For gen-
erators that are in SB mode when these regulations are expected to be implemented,

these costs can be viewed as part of the startup cost.

However, there are effects working in the opposite direction. When new environmental
regulation schemes are implemented, those affected usually have a few years to comply
with the new rules — a grace period. A turbine that expects to be affected by new reg-
ulations might realize that it is better to stay operational until the regulations force it to
retire. In other words, the value of waiting is significantly reduced as a consequence of
the new regulations. If this is true, we would expect to see peaks of SB — OP transitions
in the years before the introduction of new policy schemes. Looking at Figure 2.1, this

is indeed the case.

It is also paramount to keep in mind that environmental regulations will hit all genera-
tors in the power market, not only peaking units. In fact, much old coal-fired baseload
capacity will be forced to retire (Institute of Energy Research, 2013). This will create a
capacity deficit that makes it more attractive for gas turbines to go into operation. The

attractiveness of this option is enhanced by the favorable development in the natural
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gas price. A negative and highly significant coefficient for the environmental regulation
coefficient suggests that these effects dominate how new environmental regulations af-

fect startup costs.

Shutdown cost, Kpop_.sp

Analogous to the effect on startup cost, increased inverse competitive advantage C;

gives lower perceived costs of shutdown, as the market favors efficient units.

A positive development in the NG price reduces the cost of shutdown. When NG prices
rise, it becomes more expensive to run the generator and the perceived cost of entering

standby mode drops.

The expectations to stricter environmental regulation variable, R; is positive, meaning
that we see the same dynamic for the shutdown cost as we did for the startup cost. Gen-
erators seem to recognize the vacuum left by retiring coal-fired baseload and therefore
see a substantial opportunity cost of switching away from the operational state when
new regulations are expected. The coefficient is of similar magnitude and significance

as for the startup cost.

Retirement cost, Ksp_.rp

The intercept of the retirement estimate is negative and can be seen as a baseline mone-
tary estimate of the scrap value for the generators. This can be attributed to the second-
hand value of the machinery and the opportunity cost of freeing space, labor and cap-
ital that has been tied to the operation of the turbine or replacing the unit with a new

one.

The coefficient for the inverse competitive advantage is negative and large in magni-
tude, implying that a reduction in competitiveness leads to an increase in perceived
scrapping value. We recognize that this result is somewhat puzzling. However, part of
the effect can be explained by the higher value of freeing space, labor, and capital held

up in a less competitive plant.
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The scrapping value increases when the gas price is increasing. It is more favorable to
scrap the turbine when the variable costs increase, which makes sense in a situation
where the plant manager has to choose between staying in standby and retiring the
plant. Re-entering the market would be economically irrational in a situation with in-
creasing natural gas prices, at least for generators running on NG®. From real options
theory itis known that when in a mothballed state, the agent should wait until the spark
spread either picks up to the entry barrier or drops to the barrier where abandonment
is the best option (Dixit and Pindyck, 1994). From this perspective, it is reasonable that
the perceived value of scrapping the turbine increases when the natural gas price drops

closer to the abandonment barrier.

In years where it is expected that new environmental regulation will be implemented,
we see that the scrapping value is reduced since the regulatory schemes also affect gen-
eration units in the second-hand market. This effect seems to outweigh the value of

freeing space, labor and capital for alternative use.

3 A sample split on fuel type is presented in Appendix B.
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Chapter 5

Counterfactual analysis

RPM introduced capacity remuneration to ensure adequacy in the power system. A
key issue in such a market scheme is to set the appropriate level of compensation. Too
much compensation might induce too much investment, and too low levels will not
give sufficient investment signals. In our counterfactual analysis, we construct sce-
narios by lowering and upping the capacity payments from the observed levels in our

data.

Figure 5.1 shows the switching behavior under different capacity payment (CP) scenar-
ios as predicted by the counterfactual model. The predictions show less switching and
more plants staying in OP when capacity payments are high. This is in line with the

regulator’s goal of having generators ready to deliver energy when needed.

For the switching behavior predicted in Figure 5.1a, we see that reducing the capacity
payments lead to increased switching, and increasing the capacity payments reduces
switching. The effect of reducing the capacity payment level is much greater than the
effect of a corresponding increase in capacity payments. The reduction in switching
activity under higher capacity payment levels leads to more plants staying operational,

as seen in Figure 5.1b.

Figure 5.2 plots the result of a sensitivity analysis on the capacity payment levels in

the counterfactual model. Figure 5.2a shows that increased capacity payments lead to
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an increase in the share of plants staying in OP state. Broken down to switches for

plants currently in the operational state, Figure 5.2b clearly illustrates that the higher

the capacity remuneration, the more attractive it becomes to stay in the operational

state. The sensitivity analysis shows that the generators are most sensitive to changes

in capacity payments when the payments are 50% — 90% of the empirically observed

level. Figure 5.2c shows that the switching behavior from the SB state is unaffected by

the level of capacity payments. However, fewer plants switch away from OP as capacity

payments increase. The means that there are fewer plants in the SB state as capacity

payments increase. This mechanism explains the development in Figure 5.2a.
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Figure 5.1: Counterfactual analysis on switching behavior from OP
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Chapter 6

Conclusion

We find evidence that market conditions for peaking units in the PJM has changed sig-
nificantly after 2007, and identify three market trends influencing the behavior of peak-
ing units. Technological advancements have changed the supply side of the natural
gas market, giving a persistent drop in fuel prices for gas-fired turbines. New environ-
mental regulations have forced old coal-fired baseload into retirement, presenting new
market opportunities for gas-fired units. We also see that the regulations have led to the
retirement of old combustion turbines. The introduction of capacity payments has led

to less switching and a higher amount of peaking plants staying in OP.

The first trend, the penetration of shale gas in the US gas market, significantly reduced
the fuel price for many generators. We conclude that this has disrupted the traditional
market dynamics where coal-fired plants serve as baseload, and combustion turbines
cover peak demand. Gas-fired turbines have become more competitive in serving baseload,
and besides, traditional baseload has been punished harder by stricter environmental
regulations than gas units. Consequently, peaking units are now dispatched more often,
increasing the wear and tear on the mechanical equipment. This is a plausible explana-

tion for the increase in the estimated maintenance cost for generators after 2007.

The second effect that influences the switching behavior of peak generators is the in-

troduction of stricter environmental regulation schemes. In years where regulatory

47



48 CHAPTER 6. CONCLUSION

changes are expected, our estimates show that the perceived cost of startup decreases
and the perceived cost of shutdown increases. This tendency to prefer to operate in
years with new regulations must be seen in light of the fact that environmental regula-
tions are imposed on all actors in the power market. Coal-fired baseload is more pollut-
ing than most other technologies and is therefore affected more severely by stricter en-
vironmental regulations. Gas is cleaner, has become cheap, and gas plants are quick to
bring online. This makes it possible for gas-fired units to replace the retiring coal-fired

baseload, a fact reflected in the environmental regulation coefficient estimate.

Finally, after the introduction of the RPM, less switching is observed, and the share of
operational peaking generators is larger, with few generators being in the standby state.
The results from the counterfactual analysis indicate that the switching behavior is af-
fected by the level of the capacity payments. Lowered capacity payments will give more
switching, whereas increased payments cause minimal change. Overall, our findings
indicate that the system operator is successful in incentivizing peaking generators to

stay in an operational-ready state through capacity payments.
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Appendix A

Extended counterfactual

analysis

Figure A.1 shows the predicted switching behaviour from the SB state under different
levels of capacity payments. From Figure A.la, it is clear that increased capacity pay-
ments generally lead to a reduction of switches from SB to OP. This is caused by the
fact that under high capacity payments, the share of generators in SB is low, so there
are fewer candidates for making this switch. They rather choose to stay in OP as seen in
Figure 5.1b. This effect becomes clear from looking at Figure 5.2, where the total share

of capacity in OP state is increasing as capacity payment levels increase.

As Figure A.1c illustrates, there are more retirements when the capacity payments are
reduced. This tendency is even more pronounced when capacity payments are re-
moved compared to when they are decreased by 50%. We suspect that some generators
follow a strategy in which they clear the capacity auction, but bid high in the electricity
auction so that they avoid being dispatched. In effect, they are compensated through
the capacity market without actually producing electricity. When pursuing such a strat-
egy, heat rate, emissions and how expensive maintenance is becomes irrelevant, mak-
ing it an attractive strategy for old generators. However, if capacity payments are absent,

the strategy becomes unfeasible, and the old generators would rather retire.

53



54 APPENDIXA. EXTENDED COUNTERFACTUAL ANALYSIS

Figure A.1b indicates that no plants choose to stay in the standby state after 2009; those

who are in standby switch to either OP or RE the following year.
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Figure A.1: Counterfactual analysis on switching behavior from SB
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Appendix B

Sample splits for the capacity

market formulation

The following sections present the results for sample splits of the dataset. These re-
sults serve as an addition to the results presented in Chapter 4, but the reader should
be aware of the fact that these results are derived based on an even lower amount of
observed switches than presented in Table 2.1. The results should be interpreted with

this in mind. We will only comment on the most interesting findings.

Firstly, in Table B.1, we present results for a sample split based on the age of the gener-
ators. Secondly, in Table B.2, results for a sample split based on fuel type are presented.
For the age split, generators younger than 25 years are compared to those older than 25
years. 25 years is chosen to split the dataset roughly in half, in addition to being close to
the average generator age of 22.1 years. This gives 5740 generator-year observations in
the youngest group, and 4661 in the group older than 25 years. For the fuel type sample
split, we compare units running on natural gas to the units using distillate fuel oil or
kerosene!. The NG sample split counts 6808 generator-year observations, compared to

3593 for the other fuel types.

1DFO and KER fuel prices have a correlation of 0.99.
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B.1 Age of generator

Table B.1: Capacity market formulation, stratified by age

Split by age
Below 25years  Above 25 years

Mop 55.180 (***) 13.365 (***)
Mg 0 0
Ksp—op

Intercept 0 0

C; 130.411 (***) 94.784 (***)

pNG -2.375 (*¥) 3.765 (**)

R; 2.506 -5.423
Kop—sB

Intercept 0 0

C; -173.203 (***) -96.660 (***)

pNG -15.525 (%) -10.687 ()

R; 18.831 (***) 5.599
Ksp—rE

Intercept -23.986 -177.676 (***)

C; -123.301 (***) -10.512

pNG -9.261(%) -5.316 (***)

R; 15.973 0.600
Observations 5740 4661
Note: *p<0.1; **p<0.05; ***p<0.01

Table B.1 shows that the maintenance cost in operation is lower for the older generators,
with high significance. In general, we would expect to see the opposite effect; a higher
maintenance cost for older units as older equipment need more care. It is possible that
the evolution of the peaker role discussed in Chapter 1 play out differently for genera-
tors of different ages. Older units that clear the capacity market auction, but rarely are
called upon to deliver in the energy market because of high variable cost, will be subject

to lower actual wear than younger units which are dispatched more frequently.

For the perceived startup cost, we have highly significant estimates for the coefficients

for the inverse competitive advantage. For both age groups, the coefficient is positive
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and large in magnitude indicating that the perceived cost of starting up a generator with
low competitiveness is higher than for more competitive units. The competitiveness of

the unit is apparently more important for the younger units.

For the shutdown cost, the C; coefficient is estimated with the opposite sign as the cor-
responding startup cost coefficient. Again, the estimated coefficient is larger in magni-
tude for the younger generators, indicating that the competitiveness is more important

among the younger generators. Also for the natural gas price, PlN G

, the perceived shut-
down costs decreases more for younger generators than it does for the old when gas

prices are increasing.

For the retirement cost, the intercepts are estimated to be negative, with a larger mag-
nitude for older units than for younger units. This is explained by the fact that space
and resources occupied by an old, inefficient and highly polluting generator are more
valuable for alternative usage than is the case for a cleaner, more efficient and young

generator. The intercept is however not significant for the younger units.

B.2 Fuel type

The operational maintenance cost for DFO and KER-fired units is about 40 % higher
than the maintenance cost for an NG-fired unit. This difference in maintenance costs
can be explained by the more complex combustion system required for the efficient
combustion of DFO and kerosene and the higher content of trace elements in heavier
fuels (Lefebvre and Ballal, 2010). This leads to more wear on the machinery through
more oxidation as well as melting of trace elements such as vanadium. Soot formation
is also much more present when DFO is used as fuel than when natural gas is burnt

(Najjar and Goodger, 1981).

We estimate that the startup cost increases for less competitive NG generators. This in-
dicates that the NG-fired turbines operate in a highly competitive environment, where
entering the operational state is unattractive for less competitive units. Environmental
regulations lower the perceived startup costs for natural gas-fired units. This must be

viewed in the context of coal baseload retirements as a consequence of regulations.
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Table B.2: Capacity market formulation, stratified by fuel type

Split by fuel
NG DFO and KER

Mop 29.390 (***) 41.992 (***)
Msg 0 (**) 0
Ksp—op

Intercept 0.789 1.060

C; 31.270 (%) -6.910

pNG 1.417 6.378

R; -10.563 (**) 9.666
Kop-ss

Intercept 7.512 0.768

C; -56.618 (**) 6.862

PLNG -3.393 (*%) -20.259 (**¥%)

R; 14.961 (**%) -21.828 (%)
Ksp—rE

Intercept -138.036 (***) -89.744 (%)

C; -44.631 -10.644

pNG -4.712 (%) -9.024

R; 10.381 (%) 3.282
Observations 6808 3593
Note: *p<0.1; **p<0.05; ***p<0.01

The perceived shutdown costs are lower for less competitive natural gas-fired units, in-
dicating fierce competition on heat rates for these generators. We do not see the same

effect for the DFO and KER-fired ones.

As expected, the shutdown cost is reduced for NG-fired units when gas prices increase.
For the DFO and KER-fired, the shutdown cost lowers drastically with positive changes

in the NG price - a somewhat puzzling effect.

Environmental regulations provide a strong signal for NG-fired units to stay opera-
tional. For DFO and KER-fired units, we see the opposite effect, however significant
only at a 10% level. Since both types of generators compete in the same market, better

conditions for cleaner technologies mean higher perceived operational risks for DFO
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and KER-fired units, and thus a lower perceived cost of shutting down.

For the retirement costs, the lower negative intercept for NG-fired units implies a greater
scrapping value for these units. NG-fired units run cleaner, making it easier to comply
with new regulations. NG-fired units have also seen a very favorable fuel price develop-

ment. This increases the second-hand market value for the turbine.

The inverse competitive advantage seems to have no significant impact on the retire-
ment cost. A positive change in the gas price makes it marginally more attractive to
retire a natural gas-fired unit. This estimate is significant and makes sense as the mar-
ket becomes less profitable as the fuel costs increase. The scrapping value decreases
for both fuel groups when environmental regulations are introduced. The effect is only

significant for NG-fired units, at a 10% level.
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