
Data-oriented Design approach for
processor intensive games

Walid Faryabi

Master of Science in Cybernetics and Robotics

Supervisor: Geir Mathisen, ITK

Department of Engineering Cybernetics

Submission date: September 2018

Norwegian University of Science and Technology

MASTER THESIS

Data-oriented design for processor
intensive games

Author:

Walid FARYABI

Supervisor:

Geir MATHISEN

September 2, 2018

Norwegian University of Science and Technology

Department of Engineering Cybernetics

i

Abstract

The gap between processor and memory speeds have motivated for an alternative method

for software development with focus on data and efficient use of memory, data-oriented

design. The primary objective of this design is to utilize the slower memory units in a

more efficient way through less cache-misses. The focus is solely on the data in an

application and the way they are stored in memory. This design will be compared

against the popular programming paradigm, object-oriented programming, to analyze

whether a memory-focused application will perform better. This thesis will primarily

focus on processor intensive applications where the processor must continuously write

and read data from the memory units. This type of application is most commonly found

with real-time applications such as video-games, which will be the main focus area for

this thesis.

This thesis will present three different applications that will be used to compare the

two different programming paradigms, with the goal of comparing which implemen-

tation performs better. The first application will involve the implementation of an ar-

chitectural pattern, the entity-component-system, which can be combined with data-

oriented principles to create more processor efficient applications. The second appli-

cation will involve a simulation implemented in Unity with data-oriented design. The

final part will involve conversion of an existing video-game that is object-oriented, into

a more data-oriented solution. A pure data-oriented solution was not achieved for the

conversion due to limitations imposed by the data-oriented features in the game en-

gine, as a result of the engine being in experimental stage.

The results indicate that the data-oriented design performs better in cases where the

processor must perform work on a large set of data. The design is more optimized for

applications that require same type of work on large data sets as this allows for better

spatial locality. Furthermore, the use of data-oriented principles allows for well estab-

lished separation between data and logic, making it easier to introduce new type of logic

and data into an application. However, the results gathered can not be completely at-

tributed to the underlying design, as there are external factors impacting performance

due to the development environments used.

ii

Problem Statement

Object-oriented design is a widely used programming paradigm in the video game in-

dustry. The concept of objects allows for a higher degree of modularity and readability.

However, this approach is not efficient when it comes to memory access, especially for

large memory intensive applications such as video games. A proposition is to use data-

oriented design, where the application is designed with focus on data instead of objects.

This design approach has some several advantages, such as easier parallelization and

better locality of reference. Performance can be improved by reducing the number of

cache misses through data-oriented design, which will as a result save number of clock

cycles spent for fetching data. This could in theory give better performance in different

variety of applications such as video-games.

Based on the statement above, this thesis will go through the following points:

• Relevant technology around data-oriented design will be researched.

• Performance of object-oriented design versus data-oriented design will be inves-

tigated.

• Based on the previous points, a new design for an existing video-game currently

in development will be suggested.

• As far as time permits, the suggested design will be implemented.

iii

Preface

This thesis is written for the department of engineering cybernethics at the Norwegian

University of Science and Technology. All students of the department are required to

hand in a master-thesis in their last semester in order to complete their master degree.

Part of the work described in this thesis is in cooperation with Pineleaf Studio, a video-

game development company.

The idea behind this thesis was given by their technical leader, Fredrik Chrislock, who

wanted to analyze alternative methods of optimization for their server due to costs. The

company provided me with their codebase for a video-game currently in development.

The existing codebase was modified by me to experiment with data-oriented principles.

As a part of the cooperation, I was allowed to stay in their offices in Trondheim from

April to end of June. Throughout this period I received guidance from Fredrik when it

came to general game design, the architecture of their game, use of Unity and potential

improvements in efficiency. The work related to data-oriented design principles were

solely done by me, as I worked indepedently with the codebase. Unfortunately, the re-

sults from this thesis were not discussed with the company due to me staying in Oslo

for the last months of this thesis. Furthermore, all other work not related to the video-

game were solely done by me with no input from the company.

Few number of tools were required for this thesis. For hardware, only a computer with

a graphics processing unit was needed. For software, Unity was used as a game engine

and Microsoft Visual Studio as IDE. This thesis was officially started on the 9th of April

and concluded on 3rd of September.

Walid Faryabi July 2018

iv

Acknowledgment

I would like to thank Geir Mathisen for accepting this thesis and being my supervisor.

His monthly meetings and guidance on writing this thesis made it easier for me to get

through.

I would also like to give thanks to the whole Dwarfheim team for assisting me with this

thesis and giving me the chance to have a very fun thesis. A special thanks is also given

to Fredrik Chrislock for guiding me through the thesis and coming with the problem

description.

Finally, I would like to give thanks to my parents, Hassan and Zohrah, for making my life

easier by providing with all the basic necessities required, allowing me to focus solely

on writing this thesis. It would be a lot more difficult without their support.

W.F

Contents

Summary and Conclusions . i

Preface . iii

Acknowledgment . iv

1 Introduction 3

1.1 Problem Formulation . 4

1.2 Goal Of This Master Thesis . 4

1.3 Required work for this thesis . 5

1.4 Cooperation with Pineleaf Studio . 6

2 Literature Study and Theory 9

2.1 Memory in modern computers . 9

2.2 Data-Oriented Design . 13

2.2.1 Data-oriented design principles . 13

2.2.2 Entity Component System . 18

3 Functional Specification and Evaluation Criteria 23

3.1 Evaluation criteria . 23

3.1.1 Frame Rate . 24

3.1.2 Cpu usage time . 24

3.2 Entity-component-system in C# . 25

3.2.1 Specifications . 25

3.2.2 Evaluating against object-oriented programming 25

3.3 Entity-component-system in Unity - Pure data-oriented solution 26

3.3.1 Evaluation of the application . 26

3.4 Converting DwarfHeim into a data-oriented solution 28

3.4.1 Specifications for conversion . 28

3.4.2 Evaluation of the conversion . 29

v

vi CONTENTS

4 Materials and Methods 31

4.1 Development Environment . 31

4.1.1 Game Engine - Unity . 31

4.1.2 Different terminologies and concepts in Unity 32

4.1.3 Scripting in Unity - Adding behaviour to game objects 34

4.1.4 Analyzing performance - Unity Profiler 35

4.1.5 Programming Language - C# . 36

4.1.6 Programming Language - Python . 36

4.2 Measuring the frame rate . 38

4.2.1 Measurement of frame rate for Unity 38

4.2.2 Frame rate counter outside Unity . 38

4.2.3 Refresh rate . 39

4.3 Entity Component System - Custom Implementation 39

4.3.1 Initial entity-component-system architecture details 39

4.3.2 Improved design . 43

4.3.3 Functional testing of the ECS implementation 46

4.3.4 Performance tests for the ECS implementation 47

4.3.5 Integrating OpenGL with the ECS implementation 49

4.3.6 Test Application using the entity-component-system implementa-

tion . 52

4.3.7 Simulating the sine wave . 53

4.3.8 Simulating a sine wave using opengl and object-oriented principles 54

4.3.9 Simulating a sine wave using opengl and the custom entity-component-

system implementation . 54

4.3.10 The sine wave simulation tests . 55

4.4 Entity-Component-System in Unity . 57

4.5 Pure data-oriented application in Unity . 59

4.5.1 Objected-oriented sine wave . 59

4.5.2 Data-oriented Sine wave . 60

4.5.3 Testing of the sine-wave simulations 62

4.6 Data-oriented design for Dwarfheim . 63

4.6.1 Computer architecture of Hybrid/Pinecone 63

4.6.2 Methodology for converting to data-oriented design 72

4.6.3 Making it more applicable on a server 88

4.6.4 Testing . 89

CONTENTS vii

5 Results 93

5.1 Entity-component-system implementation 93

5.1.1 Functional Test . 93

5.1.2 Performance tests for the different versions of ECS 93

5.1.3 OpenGL sine wave simulation tests 94

5.2 Sine wave simulation . 94

5.2.1 Sine wave simulation results . 96

5.3 DwarfHeim Conversion . 97

5.3.1 Functional results . 98

5.3.2 Performance test . 99

6 Discussion 105

6.1 Discussion of Results . 105

6.1.1 Custom C# implementation of Entity-Component-System 105

6.1.2 Limitations of the custom ECS implementation 108

6.1.3 Meeting the specifications . 108

6.1.4 Potential issues with the current design 108

6.1.5 Sine-wave simulation results in Unity 109

6.2 DwarfHeim conversion to a more data-oriented design 112

6.2.1 Functional features of the data-oriented design 112

6.2.2 Performance results . 112

6.2.3 Inspecting time values for the converted parts 114

6.2.4 A hybrid solution vs pure data-oriented 115

6.2.5 The implications of the research . 115

6.3 General results . 116

6.4 Developing with the entity-component-system 117

7 Conclusion 119

8 Further Work 121

8.1 Recommendations for the custom entity-component-system 121

8.2 Recommendations for the DwarfHeim conversion 122

Bibliography 123

A Acronyms 127

B Additional Information 129

B.1 Concepts in Unity - Some additional concepts 129

B.1.1 Graphics in Unity . 130

CONTENTS 1

B.2 Simple example of scripting in Unity . 135

B.3 ECS custom implementation . 137

B.3.1 Example of system structure . 137

B.3.2 Example of inject-attribute with componentDataArray 139

B.3.3 Optimization steps . 139

B.3.4 Reducing number of boxing and unboxing 140

B.3.5 Reducing number of function calls through another class 140

B.4 OpenGl program code . 141

B.4.1 Shader code . 141

B.4.2 Code for drawing a simple triangle. 142

B.5 Prototype-based programming . 142

B.6 Programming language C# and its features 143

B.7 Sine-wave simulation in Unity . 147

B.7.1 Accessing mesh and material data with entity-component-system . 147

B.7.2 Sine-wave simulation, profiler stats with profiler data exporter . . . 148

B.8 Unity profiler data exporter results for DwarfHeim 148

Bibliography 169

2 CONTENTS

Chapter 1

Introduction

Performance of computers are rapidly growing. Processors are getting more complex

with multiple cores, faster clock speeds and larger internal caches. Memory units such

as random-access-memory is getting better access times, larger bandwidth and larger

capacity. The improvements in performance allows for more complex applications

with better performance. However, the gap between processor performance and mem-

ory performance is growing, with processor performance outperforming memory at a

faster rate(1). As this gap increases, the more powerful processors can be stalled by the

memory units and its access times.

Figure 1.1: Performance gap between processor and memory (1)

A large amount of applications are developed in an object-oriented manner. Data fields

and the logic around these are encapsulated into "objects". This type of design paradigm

have several benefits such as re-usability, less maintenance and design benefits that al-

3

4 CHAPTER 1. INTRODUCTION

lows large teams to work together efficiently. One could also argue in favor of object-

oriented design by the claim that working with objects are more intuitive as they can

represent real world attributes in a more intuitive way for humans. However, this de-

sign paradigm do not care about the performance of the memory. In this kind of de-

sign, the objects are normally stored on a data structure called heap, which allocates

objects on random addresses on the main memory unit(2). The lack of coherence be-

tween placement of objects on the main memory increases cache misses. This can have

detrimental effect on the performance for applications with a significant number of dy-

namic allocations. This is especially the case for video-games.

The performance of complex applications will be more affected by the memory unit

as the performance gap increases. This holds true if applications are designed in an

object-oriented way. For this reason, another design paradigm will be researched and

analyzed in this thesis, data-oriented design. Data-oriented-design is a programming

paradigm where the applications are designed around data instead of objects. Data lay-

out and how data flows becomes the fundamental criteria of the design. The focus of

this approach is to reduce cache misses by inspecting how data related to each other

is used and laid out on the memory. This design focuses more on the limitation of the

memory unit and how the processor fetches data.

1.1 Problem Formulation

Given the introduction above, the problem formulation can be stated as the following:

«How does data-oriented design compare to object-oriented design in com-

puter games, when it comes to performance?»

In this thesis, the performance criteria will mostly be based on frame rate. Furthermore,

the usability of data-oriented design will also be discussed. The scope of this thesis is

only limited to few cases. These cases involves scenarios where large number of objects

are rendered. Due to this limitation, this thesis not applicable for all types of video

game, such as games with simpler structure consisting of less objects rendered.

1.2 Goal Of This Master Thesis

The two design paradigms will be compared and analyzed in this thesis. Comparing the

two solutions will give insight in how memory-access impacts performance. In reality,

what this thesis really tests for, is how much of a better performance an application

gains by having linear memory-layout for its data. A structure like this allows for less

1.3. REQUIRED WORK FOR THIS THESIS 5

cache-misses, and thus gives a better understanding of memory-bottleneck. In order

to assess the differences, several test applications will be constructed for this thesis.

First, a custom entity-component-system implementation following data-oriented de-

sign principles will be constructed in order to directly test the effect of linear memory-

layout. Opengl will be integrated into this architecture and used to simulate graphs con-

sisting of large number of objects. The data-oriented entity-component-system will be

compared to the object-oriented counter-part. The second part of this thesis will use

the game engine Unity to analyze the two programming paradigms. A simulation of

sine-wave will be performed in Unity utilizing the two different paradigms. For the final

part, the design principles of data-oriented design will be incorporated into the server

of a video-game currently in development by Pineleaf Studio, named DwarfHeim. The

goal behind the transformation of the server is to reduce the number of clock cycles

used by the server.

The data-oriented design approach for DwarfHeim will not be a complete rewrite of

the existing codebase, but rather a conversion. Unity will be used as the game engine

for this part as it is already used to develop DwarfHeim. To implement data-oriented

principles with Unity, their newly released entity-component-system will be used. For

this reason, the goal of this thesis will have two objectives

• Compare data-oriented design against object-oriented design in video-games.

• Devise a strategy for converting from object-oriented implementation to data-

oriented implementation with Unity’s entity-component-system.

In this thesis, video-games does not strictly mean playable systems. Parts of this thesis

will create non-playable simulations that use the same development environment and

methods as one would find in video-games.

1.3 Required work for this thesis

Based on the goals from previous section, the work required for this thesis can be sum-

marized with the following tasks:

• Research data-oriented-design principles.

• Research how data-oriented principles can be implemented with the architec-

tural pattern entity-component-system.

• Create a custom entity-component-system application in C# where data is stored

linearly in memory.

6 CHAPTER 1. INTRODUCTION

• Create a simple example in Unity to evaluate the performance boost gained by

using data-oriented principles.

• Use the data-oriented design principles for a video-game currently in develop-

ment.

1.4 Cooperation with Pineleaf Studio

Some of the work done in this thesis will be in cooperation with Pineleaf Studio. Pine-

leaf studio(3) is a video-game development studio working on their first, yet unreleased,

video-game titled DwarfHeim. Access to their source code, which is written in a typi-

cal object-oriented pattern, has been given to me in order to test data-oriented design

principles. Their technical leader, Fredrik Chrislock, has acted as my supervisor for this

part of the thesis.

As a part of our cooperation, I was assigned a desk at their offices in Trondheim. I at-

tended the weekly meetings and were treated as a member of the team. Their large

codebase allowed me to test data-oriented design principles in a more realistic setting.

By providing me with their code base and helping me with the thesis, I was allowed to

conduct research for them and figure out if they should move to data-oriented design.

The code assets given were valuable to this thesis. The studio is currently developing

their first game, DwarfHeim.

DwarfHeim is an online multiplayer real-time strategy game for pc. The game has a fan-

tasy setting where Dwarves are the main race. Each match in the game is divided into

two teams of four players each, where each player controls a subset of dwarves fulfill-

ing a specific role in the game. The roles are divided into four classes, warrior, diplomat,

builder and miner. Each role plays differently and the players on a team must collabo-

rate in order to win. The goal of the match is to destroy the other teams base.

The main goal behind our cooperation is to research if data-oriented design is more

optimized for their servers. A company like PineLeaf Studio will have to rent servers

for their game, the cost of servers are based on number of clock cycles executed on the

machine running the server. This means that reducing clock cycles will reduce cost.

Furthermore, using data-oriented principles means that the server will potentially re-

spond faster due to less cycles spent on memory access, giving better latency as a result.

Since this is a multi-player game, a server is required in order to synchronize the differ-

ent players on different computers. Each player is a client and communicates with a

1.4. COOPERATION WITH PINELEAF STUDIO 7

Figure 1.2: Warrior unit in Dwarfheim, property of Dwarfheim

server that synchronizes the game state for each player. The server has several func-

tions such as responding to player commands, updating game state for all players and

making sure each client is synchronized properly. The game is currently still in its early

stages, meaning there’s no real server used yet. For testing purposes, a client behaves

like a server.

8 CHAPTER 1. INTRODUCTION

Chapter 2

Literature Study and Theory

Several research topics relevant to this thesis will be covered in this chapter. The differ-

ent topics will cover the theory behind the foundation for the thesis and the background

necessary to understand the methodologies applied. First topic of discussion will be

about the memory architecture in modern computers. The second topic will discuss

the fundamentals behind data-oriented design. The final topic will cover an architec-

tural pattern that is suitable for data-oriented design, the entity-component-system.

2.1 Memory in modern computers

This section will cover the memory architecture in modern computers. The research

conducted here is mainly from two different sources, the "What every programmer

should know about memory" article written by LWN and the Unite Austin 2017 keynote

by Unity. Additional sources will be cited when necessary.

A typical memory hierarchy found on a computer is shown in figure 2.1. The relation

between memory speed and memory capacity is inverse, as the speed increases, the

memory capacity decreases. The non-volatile mediums are orders of magnitude slower

in exchange for significant larger capacity. For this thesis, the non-volatile mediums

are not of interest. The volatile storage mediums are storage entities that need constant

power in order to store data. For a modern computer, they can be divided into three

types of storage mediums, registers, caches and main memory.

Registers are the memory unit closest to the processor, and as a result, the fastest mem-

ory unit in a computer. It is a part of the processor itself and is used to store instruc-

tions, operands and results of the operations performed by the processor. A processor

do not usually use the registers to store application data during run-time. The registers

9

10 CHAPTER 2. LITERATURE STUDY AND THEORY

are mostly used to perform operation on data fetched from other parts of the memory

architecture. Cache and main-memory are two different storage mediums that uses

Figure 2.1: Computer Memory Hierarchy (4)

random-access-memory pattern. This means that the access of the data itself can be

done in any random order, without the need to be sequential. Essentially, this means

that accessing any data is not dependent on the previous memory access. The two

mediums differ in the type of ram technology used. Cache’s usually uses static random-

access-memory(SRAM), while the main-memory uses dynamic random-access mem-

ory(DRAM). The DRAM cells have simple structures, only consisting of one capacitor

and transistor. The state of each cell is stored in the capacitor, with the transistor guard-

ing access to the state. Whenever a cell is read, the capacitor will discharge, with it even-

tually being completely discharged. For this reason, each cell must go through a refresh

cycle where the capacitor is charged up so it does not loses its state. During the re-

fresh cycle, the access to the state is not available, thus making it slow. The SRAM cells

do not suffer this problem as they use six different transistors to store the state. This

makes SRAM faster than DRAM, but also more expensive. For this reason, main mem-

ory, which is used to store application data and instruction during run-time, is made of

DRAM. Some speed is sacrificed for larger capacity and cheaper price. Cache’s on the

other hand, are smaller in size and made of SRAM-technology in order to have faster

access

If a modern computer only used DRAM-technology with the main-memory, the mem-

ory access time would be very slow. The processor would spend significant more clock

cycles fetching data. On the other hand, if a computer only used SRAM-technology

for main-memory, the memory access time would be very fast but significantly more

2.1. MEMORY IN MODERN COMPUTERS 11

Figure 2.2: DRAM cell to the left, SRAM cell to the right

expensive. For that reason, most modern computers uses a combination of the two

technologies to achieve a faster access time without having to increase the total cost

too significantly. This is achieved by having caches placed nearer the central process-

ing unit, while the main-memory unit is farther away with larger capacity and slower

speed.

Caches are placed near, or is a part of, the central processing unit. More than one cache

unit is usually located on the computer. The different caches can be labelled with dif-

ferent levels, depending on how close to the processor they are. A cache of type level

1(L1), is the closest one to the processor. The closer the cache is, the faster access time

it has. The higher level caches have slower speed but more capacity. When the proces-

sor needs to fetch data through an application, it will first look at the cache units. If

the desired data is not available on the first level of cache, it will move onward to the

next cache unit on the hierarchy. If none of the cache’s have the desired data, it will

have a cache miss and move onward to fetch the data from the main-memory unit. As

figure 2.1 shows, fetching data from the cache is significant faster. When the processor

experiences a cache miss, it will use more clock cycles fetching the data from the main-

memory unit.

Whenever the processor needs to fetch data from the main-memory unit, it will fetch

a chunk of data including the desired data. The chunk of data, typically 64-bytes on a

modern computer, will be stored on the cache units. Data fetched from main-memory

will always be done in chunks through the cache-lines. Since the processor fetches a

chunk of data from the main-memory that will be stored on the cache, it is desirable

that the chunk of data is gonna be referenced soon, as it will already be in cache. Op-

timizing around the memory access pattern can save clock cycles due to this reason.

This brings us to the point of principle of locality, also known as locality of reference. It

is a term used to describe the phenomenon in which the same values or related storage

12 CHAPTER 2. LITERATURE STUDY AND THEORY

Figure 2.3: The memory hierarchy on the central processing unit

locations, are frequently accessed, depending on a specific memory access pattern (5).

There are two types of locality of reference that are of interest to this thesis, temporal

and spatial locality. Temporal locality is based on the assumption that if a particular

memory location is referenced, then it is likely that it will be referenced again in the

near future. For example, if a function uses some specific variable, then it is likely that

it will be used again in the near future. This is especially the case for for-loops. In that

case, the variable should be saved to reduce cache misses. Spatial locality is based on

the assumption that if a particular storage location is referenced at a particular time,

then it is likely that the nearby memory locations will be referenced in the near future.

To summarize the research provided above, the following important statements rele-

vant to the thesis can be made:

• The processor will always look at data from the cache first before moving onward

to the main-memory.

• Fetching data from main-memory is more expensive.

• The processor will always fetch a chunk of data whenever it reads from the main-

memory to the cache.

• Spatial locality can be in our favor if the chunk of data fetched is related to each-

other.

In conclusion, the most important aspect of this topic is that the processor is affected by

the slower memory units. Performance can be affected depending on how data is stored

on the ram. Following the logic learned here, one can conclude that performance can

2.2. DATA-ORIENTED DESIGN 13

be potentially improved if the memory-layout is strategically optimized for the way the

processor fetches data.

2.2 Data-Oriented Design

In this section, data-oriented principles will be covered. Two topics will be researched

for this part, the key elements of data-oriented design and the architectural pattern

entity-component-system which utilizes data-oriented principles. In addition, there

will be some examples of data-oriented design used for video-games today. Some basic

principles behind object-oriented programming will also be covered to give the reader

a clear distinction between object-oriented and data-oriented programming. The fol-

lowing resources were used as the basis for this section: Data Locality article by Bob

Nystrom (6), Unite Austin 2017 keynote by Unity (7) and "What is Data-Oriented Game

Engine Design?" by Davidović(8).

2.2.1 Data-oriented design principles

Data-oriented design is a programming paradigm motivated by the performance gap

between the processor and memory. As described in the previous section, memory ac-

cess time is increasing slowly compared to the processing times in processors. This

motivated a programming paradigm that focused around data and cache coherency,

with the goal of reducing cache misses. The design paradigm itself became widely used

during the PlayStation 3 and Xbox 360 era, where the delays caused by cache misses

became to detrimental toward performance. The optimization in this paradigm does

not come from advanced algorithms or faster processors, but simply by trying to reduce

the number of times the processor must access the slower memory units in a computer.

This paradigm is especially efficient for applications where large amount of data must

be processed in real-time, as usually found in many types of games. The basic premise

behind data-oriented design is simple, program around the data structures. A brief un-

derstanding of objected-oriented programming is required in order to further illustrate

the motivation behind this paradigm.

2.2.1.1 The pitfalls of object-oriented programming

Objected-oriented design is a programming language model organized around objects.

Data in the form of fields and logic in the form of procedures are encapsulated into

objects. The programs are designed around these objects. In most programming lan-

guages, objects instances are instantiated through classes, which defines the data fields

14 CHAPTER 2. LITERATURE STUDY AND THEORY

and procedures. The paradigm has several advantages that have made it popular to use

today:

• Inheritance: The concept of data classes, which represents objects, makes it pos-

sible to define sub-classes. These are objects that share some or all of the par-

ent class characteristics. This property of oop forces a better analysis of the data

models used for the application, reduces development time and ensures more

accurate coding by already using well established working models.

• Polymorphism: Objects of different types can be accessed through the same in-

terface, invoking different procedures based on their type.

• Data hiding: A class defines only the data it needs to be concerned with, so when

an instance of a class(object) is run, the code will not be able to accidentally ac-

cess other program data. This characteristic provides greater system security and

avoids unintended data corruption.

• Easily distributed: A class definition is reusable not only by the original appli-

cation, but also by other object-oriented programs as long as they use the same

design principles. This makes it easier to distribute among different platforms or

use in networks.

• User-defined data types: The concept of data classes allows the programmer to

define own data-types that are not already defined by the language itself.

• Higher level of abstraction: Classes can represent real-life components at a higher

level, making it easier to model real-life applications. One can solve the problem

by modelling around the problem space instead of thinking about low level prop-

erties of the hardware.

• Software maintenance: Oop is easier to understand as the objects are modelled

around logical entities that are easy to work with. It is therefore easier in theory

to test, debug and maintain.

These features makes the paradigm popular and beneficial to use for many applica-

tions, especially when working in large teams. It can be used to create different abstrac-

tion layers, allowing multiple developer groups to work with their own specific layer.

The data encapsulation philosophy allow developers to work with each others mod-

ules without having knowledge about the implementation details. All that is required

to know is how the data itself is altered, not the method used to achieve it. This is great

for maintainability, however not knowing exactly how the data is manipulated can be

detrimental for performance.

2.2. DATA-ORIENTED DESIGN 15

Unfortunately, there are several issues with objected-oriented programming, that is rel-

evant to this thesis, that affects performance. It is the way dynamic objects are allo-

cated. Whenever the application needs to create new object instances dynamically, it

needs to allocate new space for the data. The memory space of an application is mainly

divided into two segments, the stack and the heap. The stack will implement data in a

last in, first out order. This means that the last item stored on the stack, will be the first

item out when data is retrieved from the stack. The ordering of data is done in a lin-

ear fashion, where items are added or removed sequentially on the address space. The

stack is used to store temporary variables, function arguments and other similar pur-

poses. The heap is a specialized tree-based data structure that is often used for dynamic

allocations in applications during run-time. When an application needs to instantiate a

new object, it will look for free space in the heap and then allocate it there. The memory

allocation in that segment is not sequential. This means that objects instantiated after

each other can be placed in complete different addresses on the main-memory. This is

against the desire for spatial locality.

Figure 2.4: Example of 4 objects of arbitrary type person being allocated dynamically
on the heap

The second issue arising with the use of objected-oriented programming, is the way

object data is stored and the way they are processed in applications. When an object is

allocated on the heap, the complete object with all its data will be stored. All the data

associated with the object will be fetched from the memory every time the application

needs to work with the object data. This will happen regardless if the processor only

needs one data field from the object. This will affect performance if a large number of

objects with several data fields are needed, with only work being done on some of the

fields. This will make the processor fetch the complete object data, meaning that the

object will take more space on the cache line and as a result have less space for other

data. In addition, if the processor only needs to work on a small subset of the data fields

on the object, all the other fetched data will waste space on the cache. This can greatly

16 CHAPTER 2. LITERATURE STUDY AND THEORY

affect performance for operations on large number of objects.

The third issue is about parallelization. Synchronization primitives are required for

multi-threaded processes for objects, because the state of the data is within the object.

Two threads can not operate logic on the same object at the same time without addi-

tional overhead, as that could cause race conditions or unsynchronized alteration of

data. Each thread must know if some other thread is working on the same object, what

type of data it modifies, the side-effects and so on. This makes parallel-programming

more difficult for developers, more prone to errors and less efficient use of the proces-

sor, all because data is explicitly linked to an "object".

2.2.1.2 How data-oriented programming solves these problems

Given the issues caused by pure object-oriented programming, how does data-oriented

programming solve them? As previously stated, the basic premise of data-oriented ap-

proach is simple:

Construct your code around the data structures, and describe functions

and methods in terms of what you want to achieve in terms of manipu-

lation of these structures.

Emphasis is put on data, not objects. One does not care about objects that explicitly

define a set of data. Instead one cares about the set of data one needs, and allows the

"objects" to implicitly be defined by the set of data. Figure 2.5 demonstrates this with an

example consisting of data for two persons. In the typical object-oriented manner, the

data for two persons would be stored as objects as shown on the figure. The set of data

for the person object would be encapsulated into one data type represented through the

object. The collection of different data types would be stored together in the memory.

For data-oriented design, the set of data associated with a person is not encapsulated

together in the same manner. The set of data types could be placed in different sections

of the memory and not be referenced through an object reference that collects them

into one unit. Some kind of manager would be necessary in that case to link the set of

data types that belongs together in the case for the data-oriented design. The benefit

from the data-oriented layout is the fact that the collection of data of the different types

are separated. This structure allows the same type of data to be efficiently placed lin-

early in memory. This allows for different processes to work on different type of data

sets belonging to the same person, as the data for that particular person is not tightly

tied together.

The goal behind this approach is to achieve performance gain by simply making sure

2.2. DATA-ORIENTED DESIGN 17

Figure 2.5: Representing data for two persons with objects(top) and implicitly without
use of objects(bottom)

the order of data is efficiently used by the processor. It is desirable that the data chunk

fetched from main-memory is used sequentially by the processor. For example, imag-

ine a process that prints out the national id of all persons available in a procedure. If

the memory layout was object-oriented, then the processor would have to potentially

fetch data from non sequential addresses on the memory address. The fetched data

through the cache line might not be related to each other, some could be person data

and some could be something else. As a result of this ordering, the number of cache

misses would increase. In addition, the processor would have to fetch not only the na-

tional id of each person object, but also all the additional data associated with it. This

would waste space on the cache line and as a result increase cache misses. On the other

hand, if the memory followed the pattern as shown in figure 2.5, with the application

making sure that data of the same type is tightly packed on ram, the number of cache

misses would decrease. All the data on the cache line would be national id’s, and after

processing the first national id from the cache, the next one could be efficiently fetched

from the cache. Not retrieving all type of data would also allow the processor to fetch

larger amount of national id’s in the chunk each time it fetches through the cache line.

This example is visually demonstrated in figure 2.6. Eight national id’s are processed for

each cache hit.

18 CHAPTER 2. LITERATURE STUDY AND THEORY

Figure 2.6: The processor requesting national id data

When relevant data is stored contiguously on the memory, the grade of spatial local-

ity is good. The number of cache misses are reduced whenever the processor needs to

operate on a set of data of the same type. The processor will fetch a chunk of data con-

taining multiple instances of that specific data type due to its sequential layout. This

solution is more efficient for the processor than the heap structure.

Since "objects" do not exist in this scheme, it is easier to separate logic and data. Data

is no longer explicitly linked to an object. As a result of this, the application can work

on any type of data and make the processor only retrieve the data types required. This

gives better principle of locality as the data fetched from main-memory is relevant to

each other. This will allow the processor to work on more set of data from the same

cache-line. Finally, this structure also makes parallelization easier. Each thread can

work on its own specific data type without caring about the others, given that they do

not alter each other. This allows for larger scale of parallelization.

2.2.2 Entity Component System

Data-oriented design is all about the ordering of data for efficient memory access. As al-

ready stated, by placing related data in a linear fashion, performance can be improved

due to less cache misses. There is an architectural pattern that suits well with data-

oriented principles, the entity-component-system. Entity-component-systems are mainly

2.2. DATA-ORIENTED DESIGN 19

used for games today. The use of it is increasing as it is more efficient for processor in-

tensive games, with Unity recently releasing a new version of their game engine with

support of this design pattern (9).

Entity-component-system(ECS) follows the "Composition-over-inheritance" principle,

which means that an objects functionality or definition is not given by inheriting the

templates of other objects. An object can be defined as having certain methods and

functionality by consisting of elements that represent different dataset or functionality.

With inheritance, you define your objects with respect to what they are, while with com-

position, you define your objects with respect to what they can do(10). In practice, this

means that you define new types of objects through inclusion of different data types

instead of inheriting from a base class. Figure 2.7 tries to illustrate the differences be-

tween those two for the same type of object representing a villainous orc in a hypotheti-

cal game. With inheritance, the orc class is defined by inheriting from a base class called

for "Monster" which represents all kind of objects that can attack and have health. The

orc class is extended with the ability to heal and also do more damage through a criti-

cal damage attribute. This is what you will usually find in an object-oriented structure.

With composition, the orc class is simply defined by including several data types and

functions. There is no base class to inherit from, the class itself is defined by its set of

attributes and functions.

Figure 2.7: Inheritance over Composition vs Composition over Inheritance

There are several benefits of using composition-over-inheritance(c-o-h) such as more

flexibility as the objects can implement new features by simply including it in the com-

position set. The family hierarchy becomes more flat and less complex. This means

20 CHAPTER 2. LITERATURE STUDY AND THEORY

that developers don’t need to revise the parent classes, child classes and the interoper-

ability between them as much since the objects are no longer dependent on inheriting

functionality or data type through each other. The different types in this system will

no longer include redundant data or functionality because they only include what they

need of features, instead of deriving the whole package from a class(11).

The drawback of using this design pattern is that the types/classes must often imple-

ment the methods derived by the functions in the composition set. When using inheritance-

over-composition, a child class can inherit several methods from a parent class without

the need of implementing their own version of this. For a typical c-o-h architecture, this

is not a given behaviour. This means that one must possibly write more code for same

functionality as one would do with pure object-oriented way. One could also argue that

it is less intuitive to work with composition instead of inheritance, however this is up

for discussion.

Entity-component-system uses composition-over-inheritance by separating the appli-

cation into three different regions, entities, components and systems. Entities are sim-

ply an unique identifier that implicitly defines an object. Components are structures

that only contains data, they are thus the data-part of this architecture. Systems are

the logic-running structure that operates on data from the components. An "object" is

implicitly defined in this architecture by having an unique entity id and a collection of

different components. These components define the behaviour of an entity by being

operated by the systems. The previous orc example in figure 2.7 is again represented in

figure 2.8, with the entity-component-system pattern. As the figure demonstrates, the

orc object has an unique entity id and a collection of components attached to it. The

systems will perform transformation on the data sets it needs, as shown with the dotted

lines.

Entity-component-system allows more design flexibility since it follows the composition-

over-inheritance principle described earlier. An in-game "object" can easily be ex-

tended by adding a new component to its unique entity identifier. New functions and

data logic can be implemented by creating a new system that only operates on certain

types of components. The data and logic part of this scheme is separated, meaning it is

simple in theory to extend each domain without touching the other. ECS can be quite

efficient for data-oriented design if the related data is laid out linearly in memory. Some

conditions should apply for the ECS design pattern in order to achieve the benefits from

data-oriented design.

• All instances of a component type should be laid out sequentially in memory.

2.2. DATA-ORIENTED DESIGN 21

Figure 2.8: An orc "object" represented in the entity-component-system

• Same type of component data used in a system should be laid out linearly in

memory so that the system can efficiently iterate through each component in-

stance.

• Accessing component data through entity id should be done through array index-

ing and not by the use of associative containers .

• Reduced use of branching due to potential branch misprediction.

22 CHAPTER 2. LITERATURE STUDY AND THEORY

Chapter 3

Functional Specification and

Evaluation Criteria

A foundation for how the two programming paradigms are to be compared will be es-

tablished in this chapter, based on the research done until now. This chapter will set the

basis for the work needed in this thesis. The different topics will cover the type of work

required and the specifications along with details on how the solutions can be verified

and tested. In total, three different applications will be implemented in this thesis. A

custom entity-component-system in C#, a pure data-oriented application in Unity and

a conversion of the existing DwarfHeim codebase into a data-oriented solution.

3.1 Evaluation criteria

Each of the solutions proposed will be compared against an object-oriented counter-

part. A common evaluation criteria is required for both programming paradigms in

order to evaluate the difference in performance. The evaluation will come down to the

cpu as this thesis is about cpu efficiency. Some method is required to measure how

well the cpu performs in each solution. Given that data-oriented principles are focused

around structure of data for better locality of reference, it is important to evaluate the

time cpu spends on same type of operation. If data-oriented implementation is indeed

better, then it should be able to perform same type of operations with lower amount of

cpu clock cycles. For this reason, the frame rate will be chosen as the main evaluation

criteria for this thesis. The frame rate is based on time elapsed, which will as a result

give an indication of time elapsed for the cpu. Furthermore, frame-rate is an important

factor for video-games, as it is also an indicator of visual fidelity.

23

24 CHAPTER 3. FUNCTIONAL SPECIFICATION AND EVALUATION CRITERIA

3.1.1 Frame Rate

Frame rate is used to describe the number of consecutive images appearing in one sec-

ond. The frame rate is expressed in frames per second(fps), where a frame is an image.

Frame rate is an important performance value for video-games. Animations are visual-

ized by having consecutive frames illustrating the same object, but with small modifi-

cation each frame. This will give the impression of a moving object. A higher frame-rate

means a higher number of frames can be outputted to the display each second, giving

smoother animation and thus smoother gameplay. The frame rate is also an indication

of how fast the processor is. The frame rate can be calculated as:

f ps = 1/ f r ame_d t

Where frame_dt is the time elapsed between two frames. If the processor is fast at pro-

cessing one single frame, then it will be able to output larger number of frames each

second. This formula does not always give an accurate representation of the real frame

rate. Sporadic processing events can increase the time elapsed between two frames in

different situations, giving different values to the frame rate. For this reason, average

frame rate should be used. This can be done by storing several frame rate values and

then calculate the average based on the values stored.

The frame rate will be used to compare the different programming paradigms. To get an

accurate representation based on frame rate, it is important that the implementations

done in each programming paradigm is as similar as possible when it comes to features

and the task they are to perform. The only difference in implementation should only

be the fact that one is object-oriented and the other data-oriented. Other factors must

remain equal to get an accurate representation.

3.1.2 Cpu usage time

The frame rate gives an overall representation for performance. It is not necessary an

accurate representation on how the data-oriented design performs versus the object-

oriented solution. There might be other factors in the tests that are not related to the

programming paradigm that might affect performance negatively. These could be for

instance operations related to calculation of physics. For this reason, an extensive in-

spection into the cpu usage times will be done for a better evaluation of the different

solutions. This is only applicable for the solutions done in Unity as it has support for

a diagnostic tool, the Unity profiler. This profiler gives a comprehensive look into cpu

usage time for the different operations each frame within a process.

3.2. ENTITY-COMPONENT-SYSTEM IN C# 25

3.2 Entity-component-system in C#

To test the usability and efficiency of using the architectural pattern entity-component-

system with data-oriented principles, a custom implementation will be written in C#.

Using Unity’s entity-component-system will not require any knowledge about the in-

ternal structure. For this reason, creating a custom implementation in C# will allow

for better understanding of the pattern and its advantages and disadvantages. Another

purpose behind this is to have full autonomy behind the pattern, allowing the use of

data-oriented principles to test the efficiency of data-oriented solution against a tra-

ditional object-oriented implementation. This will allow for more control on how the

memory layout is for the different data types.

3.2.1 Specifications

The design will have a list of specifications that sets the basis. The requirements must

be fulfilled in order to correctly verify intended behavior and have a reference point

for comparison against a traditional object-oriented solution. Table 3.1 outlines the

specifications for the design along with description of acceptable criteria for each re-

quirement.

The specifications will set the foundation for the implementation described on later

sections.

3.2.2 Evaluating against object-oriented programming

The design will have to be compared against a traditional object-oriented application.

To evaluate the efficiency of an entity-component-system which follows several of the

data-oriented principles, a test application will be devised. The application must be

implemented twice, once with the entity-component-system, and once in a traditional

object-oriented way. A set of requirements are needed for the test application in order

to accurately analyze the differences in the programming paradigms when it comes to

memory efficiency. The specifications are listed in table 3.2 and will be the basis for the

implementation. The main objective behind the test application is to compare iteration

times for the two programming paradigms. The test application should thus perform

cpu work that requires iteration through component data.

26 CHAPTER 3. FUNCTIONAL SPECIFICATION AND EVALUATION CRITERIA

Specification Acceptable criteria

The design must follow the architectural pattern

of the entity-component-system.

The software follows the entity, component

and system definition.

There should be a strict separation between the

representation of data(through components)

and the behaviour on these data sets(system).

Systems define the intended logic for an

application while components store data.

Component data of same type should be

addressed linearly in contiguous memory.

Component data of one type is stored in

arrays.

The three different domains should be

decoupled and only accessed through a

manager.

The manager is the only class that directly

interacts with all the different domains.

Entities should be unique
Each entity can have an unique id assigned

by the manager.

Entities should have a weak reference to

its components and not direct.

The manager will access component data

through an entity id.

It should be easy to define new behaviour

and functionality by creating a new system.

New systems can be created by inheriting

a base system class that defines the system

interaction in the design.

The solution must be able to render graphics.
The design is able to send draw calls

to the graphics processing unit.

The solution must be able to be comparable

against an object-oriented solution

An application that could be made

object-oriented, must be able to be

implemented with the entity-component-

system.

Table 3.1: Specification for the custom ECS implementation

3.3 Entity-component-system in Unity - Pure data-oriented

solution

The second part of this thesis will consist of an application completely implemented in

Unity with their entity-component-system. This solution will have a set of requirements

given in table 3.3 that it must fulfill in order to properly assess the efficiency of data-

oriented principles.

3.3.1 Evaluation of the application

This application will be written twice with data-oriented and object-oriented principles

respectively. The two solutions will be compared against each other using diagnostic

3.3. ENTITY-COMPONENT-SYSTEM IN UNITY - PURE DATA-ORIENTED SOLUTION27

Specification Acceptable criteria

The test application must perform significant

cpu work.

The application will continuously do work

on a large number of objects.

The test application must have visual output
Draw calls can be sent to the graphics

processing unit for visuals.

The test application must consist of a large

number of objects.

Instantiate and create a significant number

of objects/entities for the application during

the initialization phase.

The test application must continuously

retrieve data from the memory units.

References to variables and types storing

data must be continuously referenced.

The test application must iterate through

large number of entities/objects.

The application must perform same type of

work on each individual object.

The test application must perform the

same type of work for both implementations.

The function of the application must remain

the same for both implementations. The only

difference is the underlying architecture.

Table 3.2: Specifications for the test application written for the ECS design and the
object-oriented counter-part

Specification Acceptable criteria

The application must use Unity’s data-oriented

entity-component-system.

This is given as long as the

entity-component-system feature in Unity

is used.

The application must perform significant cpu

work.

The application will continuously do work

on a large number of objects.

The application must be able to measure frame

rate.

Time elapsed between each frame must

be measured in order to calculate the

frame rate.

The application must continuously and often

access data from the memory units

References to variables and types storing

data must be continuously referenced.

Table 3.3: Specifications for the pure data-oriented solution in Unity

tools provided by Unity, along with the frame rate. The two implementations of the ap-

plication must be very similar in design with exception to the underlying programming

paradigm used. The specifications set for this part will allow for comparison between

the two paradigms through significant cpu work for the application.

Frame rate will be an indicator on performance for both solutions. If a higher frame

rate is acquired with one of the designs, then it will imply that it is better at using the

28 CHAPTER 3. FUNCTIONAL SPECIFICATION AND EVALUATION CRITERIA

cpu than the counter-part. The profiler in Unity will be further used to assess the dif-

ferences in performance in order to get a more accurate representation of the values

collected.

3.4 Converting DwarfHeim into a data-oriented solution

Converting the existing object-oriented DwarfHeim codebase into a data-oriented ap-

plication will be the final part for this thesis. This part is mainly aimed at the client-

server interaction part of the code, and not the complete codebase itself. Data-oriented

principles will be achieved for this design by the use of the entity-component-system

feature in Unity, which itself follows data-oriented principles. There are two possible

alternatives for moving forward with the DwarfHeim game:

• Re-write the complete codebase from start using the entity-component-system

in Unity.

• Convert the current codebase into the entity-component-system.

The first option would not be limited by the current object-oriented codebase. A com-

plete refactoring from the beginning would mean that the game could be made into

a pure data-oriented game. However, the amount of work required for this is too sig-

nificant at its current state, especially for this thesis. Not only is the code related to

the game itself object-oriented, but also most of the 3rd party assets that it uses. The

amount of work required is substantial and not feasible for this thesis. The second

option would involve a conversion of the current design, by slowly transitioning the

object-oriented parts into the entity-component-system. By converting small parts of

the game at a time, one could strategically convert the complete game. However, this

alternative is still affected by the fact that parts of the codebase is very object-oriented,

and as a result difficult to truly convert into a data-oriented game without investing

substantial time. A strategy for this conversion will be devised in section 4.6.2.3.

3.4.1 Specifications for conversion

It is important that the conversion strategy for DwarfHeim does not alter the game too

significantly when it comes to features of the game. The conversion aims to make the

game more data-oriented and as a result more efficient. The design is going to be re-

stricted due to the objected-oriented structure, which means that the specifications set

can not be to restrictive. The basis for this conversion will follow the specifications

given in table 3.4.

3.4. CONVERTING DWARFHEIM INTO A DATA-ORIENTED SOLUTION 29

Specification Acceptable criteria

The converted parts must conform under

data-oriented principles.

This is given as long as the

entity-component-system feature in Unity

is used for the converted parts.

There should be clear separation between

data and logic.

This is achieved by using components

and systems in the entity-component-system

The application must be able to measure frame

rate.

Time elapsed between each frame must

be measured in order to calculate the

frame rate.

The conversion must remain true to the

games features

The converted areas of the codebase must keep

the same type of features as the one found in

the original.

Table 3.4: Specifications for the DwarfHeim conversion

3.4.2 Evaluation of the conversion

The conversion will be applied to the existing codebase if time permits. After the im-

plementation is done, the new design must be compared to the old one. The changes

must be analyzed and compared to the previous version in order to verify whether the

design is more efficient or not. The standard evaluation criteria will be used for this

part, the frame rate and cpu usage time. Furthermore, since the main objective behind

the conversion is the server-client interaction, it will be the main area of interest for the

evaluation.

If the new design has a higher frame rate and better cpu usage times, then it will im-

ply that the design is indeed better when it comes to cpu efficiency. The cpu usage

time will give further information about whether the improvements are due to data-

oriented principles or other unrelated changes not directly applicable to data-oriented

principles. This will have to be analyzed in order to get an accurate representation of

the results.

30 CHAPTER 3. FUNCTIONAL SPECIFICATION AND EVALUATION CRITERIA

Chapter 4

Materials and Methods

Materials and methods used for this thesis will be described in this chapter.

4.1 Development Environment

A brief description of the development environment will be presented here. This sec-

tion covers the programming language used for this thesis and the integrated develop-

ment environments used.

4.1.1 Game Engine - Unity

Several functions are required in order to develop a complex game with graphics. Some

of the more important features are the following:

• Implementation of physics in order to handle physical alterations such as trans-

formation and rotation of objects in the game.

• Input from the user who plays the game.

• Graphical rendering of objects in the game.

• Scripting functionality allowing developers to implement new features and game

logic in an efficient manner.

• Collision detection.

It would be possible to implement all these features on your own, however that would

require substantial amount of work. Fortunately, there are several game engines avail-

able on the market which provides with all these features. Some of the more popular

31

32 CHAPTER 4. MATERIALS AND METHODS

game engines available today are Unreal Engine, Unity and GameMaker. They all pro-

vide important features such as a physics system, giving you an easier entry into video-

game development. Since Dwarfheim is already written in Unity, I decided to use Unity

from the start for this thesis.

Unity is a multi-platform game engine developed by Unity Technologies(12). Rich with

features, it makes it easier to jump into video-game development. The engine is cus-

tomized for both 2d and 3d-game development, allowing a large collection of possible

game genres. There are several important features provided by Unity that comes in

handy for this thesis such as:

• An extensive physics engine that provides convincing physical behaviour.

• Game-behaviour scripts that can be written in C# or javascript.

• Developer friendly interface for connecting game objects to scripts.

• Mesh renderer for rendering of meshes and other visual entities.

In addition, Unity recently released their newest version, Uni t y2018.1 with support

for data-oriented design. The new update introduces entity-component-system to the

engine along with easier parallelization through their new job system. These features

will allow for easier transition into data-oriented design.

4.1.2 Different terminologies and concepts in Unity

Some of the more basic concepts of Unity will be briefly described, as they are related

to the work done for this thesis. Only the concepts relevant in a significant way will be

described here. These concepts are necessary to know in order to understand future ref-

erences in this thesis. Additional information are supplemented in the appendix B.1 for

other concepts that are of less importance. The concepts described here are all related

to the Unity game engine and its interface.

4.1.2.1 Game objects

Game objects in Unity are all objects with some property within the game engine. All

entities that affect the environment, gameplay or physics of the engine are considered

game objects. In practice, this means that all objects in Unity are game objects. Entities

such as the camera, light sources, visual effects and game characters are all considered

game objects, even though they do vastly different things. Understanding the concept

behind game objects is important since almost everything done in the engine is done

4.1. DEVELOPMENT ENVIRONMENT 33

through game objects. The entities created with the entity-component-system is the

exception. All references to game objects in this thesis means any object that affect the

game in some way, in an object-oriented way.

4.1.2.2 Components

Components are scripted objects attached to game objects. Components define be-

haviour that game objects will adhere to as long as they own that component. Compo-

nents must not necessarily contain behaviour logic, and can instead only contain data.

Unity allows you to define your own components by writing the scripts in either C# or

javascript. When the behaviour or data type is defined in the component script, it can

be attached to all the game objects that it is relevant to. Components will be further

described in section 4.1.3.

4.1.2.3 Transforms

Transform is a component that every game object must include as part of their compo-

nent set. The transform component is used to store a gameobjects position, rotation

and scale. It is not possible to create a game object without a transform component

attached to it. The position and rotation part of the transform component defines its

position and orientation in the game world, while the scale part defines the scale of

the size relative to some default values. The transform component is a vital part of the

Unity engine as this is the component that is used to update a game objects position

or orientation. In addition, the physics engine within Unity uses these values to calcu-

late physical alterations and other behaviour such as physical collision. Unity provides

with a scripting api that allows for changes to the transform component, the transform

api. For example, the position of a game object can be changed by simply retrieving the

current position and updating it with new value through the transform api. The code

snippet below shows an example of this.

Listing 4.1: Example of code updating the position of a game object with dx in x direction, dy in y

direction and dz in z direction

1 public void UpdatePosition(float dx, float dy , float dz)
2 {
3 // Access the current position of the relevant gameobject
4 Vector3 newPosition = this.transform.position;
5 newPosition.x += dx;
6 newPosition.y += dy;
7 newPosition.z += dz;
8 // Update the current position with the new position
9 this.transform.position = oldPosition;

34 CHAPTER 4. MATERIALS AND METHODS

10 }

4.1.3 Scripting in Unity - Adding behaviour to game objects

In order to create a game, one needs objects that perform some sort of behaviour through

scripts. The type of behaviour can vary in a game, for example, objects can respond to

input from the player or an event that triggers physical collision. An essential part of a

video-game is to have objects that are scriptable. Fortunately, Unity offers an easy inter-

face for adding scriptable behaviour through their component system. Components in

Unity are scripts that are written in either C# or javascript, deriving from the monobe-

haviour class. The monobehaviour class is the base class from which every Unity script

derives from , giving access to several event functions (13). Once a C# class derives from

the monobehaviour class, it becomes available as a component. The component class

can then be added to a gameobject in order to give it the behaviour defined in the script.

A gameobject can consist of several components, where each component can perform

different type of behaviour.

The monobehaviour class gives access to event functions such as Update(), FixedUp-

date(), Start() and OnEnable(). The Update() method on a Unity script will be called

every frame, executing the logic defined inside. The time between each frame can vary

and thus give different times elapsed between each Update() call. If it is desirable to

update at fixed intervals, one can use the FixedUpdate() call which will be called at a

fixed frame rate. Furthermore, the Start() method will be triggered once the compo-

nent is enabled and ready to run, before any Update() calls. The OnEnable() method is

another event function that is activated once the the script is enabled. All these func-

tions are available in a script through the monobehaviour class, allowing developers to

easily add behaviour based on different events. Moving an object every frame can easily

be done by adding the logic to a script on the Update() function, which will then update

movement each frame. All these event methods have different order of execution and

different condition for triggering it. The Update() method will run each frame, while

OnEnable() method will only be triggered once a gameobject has the component en-

abled.

A simple example demonstrating how the scripting system works in Unity is included

in the appendix B.2.

4.1. DEVELOPMENT ENVIRONMENT 35

4.1.4 Analyzing performance - Unity Profiler

Unity has its own profiling tool for analyzing performance. The tool records perfor-

mance data for different point of interests. Performance criteria such as frames per

second, time spent on rendering and time spent each frame is available through this

tool. The profiler will be used to compare performance between the two different pro-

gramming paradigms. The most important type of data from this tool will be frames

per second and cpu usage.

The cpu usage in the profiler displays time information about the different operations

during a single frame. It can be used to inspect the time elapsed for one single opera-

tion, such as a script update function. The data here can be used to inspect spikes and

bottlenecks. For this thesis, the data provided here will be used to find anomalies in

the results and to verify that the improvement in performance is actually due to data-

oriented principles and not other unrelated changes. The profiler also provides with the

frame rate in the cpu usage profiler, however the value is not an actual representation

of the overall frame rate for one single frame. The values are given for the different op-

eration groups in the engine, such as the frame rate for rendering, physics and scripts.

A script calculating the actual frame rate is required to get an accurate representation.

Figure 4.1: Unity Profiler

A third-party script, profiler data exporter(14), will be used to gather useful stats on

the data provided in the profiler for cpu usage. The script will be used to calculate min-

36 CHAPTER 4. MATERIALS AND METHODS

imum, average and maximum values for the data recorded on the last 300 frames, as

300 frames are the limit of the profiler data stream.

4.1.5 Programming Language - C#

The C# programming language developed by Microsoft will be used as the main lan-

guage for this thesis. C# is a part of the software framework developed by Microsoft, the

.NET framework, for the windows operating system. The language itself supports sev-

eral programming paradigms, with emphasis on object-oriented structure. It follows

many of the same features as C++, and follows same philosophy as Java with its own

just-in-time compiler(15).

There are several reasons for choosing this language instead of a more optimized lan-

guage such as C++ First, C# is an integrated part of Unity and thus required for this

thesis anyway. Second, there are several important features of C# not found in C++

which makes it easier to develop the entity-component-system with. The most impor-

tant features are reflection and custom attributes, which used in conjunction allows for

dynamic creation and processing of data with the simple use of attribute fields. Using

these allows for creation of an entity-component-system that can fill data linearly in ar-

rays before a system executes with the use of attribute fields. These things could still be

achieved with C++, however it would require more work as the users must spend more

time on managing the memory layout correctly. A detailed description of these features

and some more are described in the appendix B.6. Finally, even though C++ might be a

more optimized language due to it being a compiled language, it is not necessarily more

efficient for this thesis as there’s little use of direct memory management. Unity takes

care of most of the memory management, the user just needs to tell the engine that it

will require it. For the custom entity-component-system, the ordering of memory will

be done indirectly through the use of arrays and value types. These do not require the

autonomy that the C++ language provides anyway, and might thus not really affect the

efficiency of the solution.

4.1.6 Programming Language - Python

Python will be used to plot the results from the tests on graphs. Several python scripts

will be written for this thesis. The scripts will read in output files in text format, and

parse the data points available. Depending on the type of test and format, the scripts

will plot graphs of different kind visualizing the results. The python libraries matplotlib

and numpy will be used to plot the graphs and figures of interest.

4.1. DEVELOPMENT ENVIRONMENT 37

Before the script can plot the graphs, it must read in the data set for x- and y-values

on the graph. The results outputted in the text files from the tests must be written in

a specific format. For this thesis, all data points and other variables required for the

python script is gonna be written with the following format:

T y peO f Dat a : Dat a

TypeOfData specifies the kind of data the given data is. This value can be used for spec-

ifying type of data on the graph, and the parameters for the graph itself, such as the title

of the graph. Figure 4.2 demonstrates an example utilizing this format with the graph

plotted. The parsing part and type of data read in will not be the same for the different

tests, however they will all follow this format.

Figure 4.2: Example of output file and the resulting graph plotted

38 CHAPTER 4. MATERIALS AND METHODS

4.2 Measuring the frame rate

The frame rate for the different applications will be measured by recording the time

elapsed between the latest frame and the previous one. The implementation for this

differs based on whether the solution is written with Unity or Microsoft visual studio.

4.2.1 Measurement of frame rate for Unity

A frame rate measuring script was written in Unity following the tutorial by Catlikecoding(16).

Minor modifications were done to the scripts in the tutorial in order to make it more ap-

plicable for this thesis, such as writing results to a text file. In total three script files are

created, one to display the frame rate on the screen, one for calculating the frame rate

and one for setting color and labels to the value shown on the screen. The frame rate

data shown on the screen will be based on three different values, the lowest frame rate,

the highest frame rate and the average frame rate. These values are based on the 60 last

frames measured. The frame rate is calculated by following the formula shown in 3.1.1,

where 1 is divided by the time elapsed between the last and current frame.

Figure 4.3: FPS counter for Unity showing max, average and lowest fps based on the 60
last measurements

4.2.2 Frame rate counter outside Unity

There are several tests written in this thesis with Microsoft visual studio. In these cases,

the frame rate will be calculated by using the standard stopwatch library in C#, which

can be used to measure time between frames. This value can be used to calculate the

frame rate. The frame rate values will be written to a text file in scenarios where the

frame rate is needed for analysis.

4.3. ENTITY COMPONENT SYSTEM - CUSTOM IMPLEMENTATION 39

4.2.3 Refresh rate

The frame rate of a display is bounded by its refresh rate. The refresh rate of a monitor

is the maximum number of frames it can render in one second. The standard refresh

rate for monitors are around 60 hz. The monitor used for this thesis has a refresh rate

of 60 hz. For this reason, the max fps will be 60 for some of the tests. It is possible to

output a higher fps than what the monitor is capable of displaying. Video cards usually

have vertical synchronization, which prevents the video card from changing the dis-

play memory until the monitor is finished with its current refresh cycle. In practice, this

caps the frame rate to the refresh rate. It is possible to turn this setting off, allowing a

fps value higher than the monitor. This will still not increase the actual frame rate dis-

played by the monitor, but it will allow the processor and gpu to output larger number

of frames each second. The vertical synchronization option will be turned off if deemed

necessary during testing.

4.3 Entity Component System - Custom Implementation

The design of the custom entity-component-system in C# went through several itera-

tions before being finalized. The initial and final design will be described in this section.

The entity-component-system will hereby be abbreviated as ECS.

4.3.1 Initial entity-component-system architecture details

An initial design was constructed with no regards to optimization or speed in order to

get a good overview of the overall architecture. This implementation was inspired by

a library written in C++ by Sébastien Rombauts(17). The application can be divided

into eight different parts, as shown in figure 4.4. A description of each module will be

given before proceeding with further optimization into the final design. A more detailed

description is given in the appendix B.3

4.3.1.1 Entity Data Type

Entity is an unsigned integer that represents an unique entity. The identifier itself is

implemented as a struct with implicit conversion from unsigned integer type. This was

necessary as C# does not support the typedef specifier found in C/C++. It is merely

a data type representing an aggregation of components through weak reference. This

means that every "object" in the game is addressable through an unique entity id, and

its components can be found indirectly through this entity. In order for this to work as

a weak reference, there must be some kind of data structure that keeps track of which

40 CHAPTER 4. MATERIALS AND METHODS

Figure 4.4: The overal architecture of the first implementation for custom ECS

entity belongs to which component instance. This is achieved through the component

store module.

4.3.1.2 Component Type

Down at implementation level, the Component type data type is similar to the entity

data type. It represents the different component types available in the application.

Each component must have an unique component type id assigned to it. This data

type uniquely represents the different component structs in the system.

4.3.1.3 Components

Components are user-defined structs that also implements the IComponent interface.

These structs are defined by the developer. Component structs are used to represent

data for the different entities. They are separate from the entity module and is only

weakly referenced through the component store module. Structs were used instead of

classes because they are of value type in C#, meaning that the whole struct data-set is

stored in the stack and not the heap.

4.3.1.4 IComponent

Every new component created by the developer must be assigned a component type id.

IComponent is a C# interface that forces new component structs to include the compo-

nent type property. It is important for every component to have a component type id

in order for the application to work, as reflection is used to access the component data

through this interface.

4.3. ENTITY COMPONENT SYSTEM - CUSTOM IMPLEMENTATION 41

Figure 4.5: Example of components

4.3.1.5 Systems

Systems represent the system part of ECS. All systems in the application derive from an

abstract system class LSystem. This base class contains some fields that are necessary

for all derived systems. It also includes a virtual function that every derived class must

implement, the update function that runs once every loop on the main thread. Be-

haviour of a system can be defined through this virtual update function. LSystem was

chosen as the base class name in order to avoid confusion with the system namespace

in .NET. Every derived system class has two containers that are necessary, a list of all

entities that are legal and a set of all components that the system operates on. An entity

is defined as legal if it has the required components. The system classes access compo-

nent data of an entity through a manager which invokes calls through reflection. The

data is not retrieved in a linear fashion at this state, breaking one of the data-oriented

design principles. An example demonstrating the use of this class is shown in the ap-

pendix B.3.1.

4.3.1.6 Component Store Class

It is desirable to have multiple entities with different type of components attached to

it. Since entities have their own component instance of a component type, a method

for mapping a component instance to the correct entity is required. This functionality

is achieved through the component store class. This class is defined as a generic class,

which means it can operate with different type of components. A new component store

object is created for each component available on in the application. Internally, this

class has an associative container which maps entities to their respective components.

Figure 4.6 shows an example of two different component stores. Entity 1 and entity 2

42 CHAPTER 4. MATERIALS AND METHODS

has only one type of component each, while entity 3 has both components. The man-

ager class will contain a list of these component stores which it then uses for accessing

the correct component for an entity.

Figure 4.6: Component store for two different components

4.3.1.7 Manager Class

An entity-component-system architecture divides the application into three different

separated modules. For an application to run with this decoupled design, a manager is

required to connect entities to their components and the systems to the correct com-

ponents. This is the purpose of the manager class. The manager class has a list of all

entities, component types and systems of the application stored internally. The man-

ager creates new entities and assigns them a new id, it couples entities with their re-

spective component instance and runs the virtual system function every frame. A list of

component stores are also a part of this manager, and it is the managers sole responsi-

bility to handle these structures. The manager will run a loop that continuously iterates

through each system and activates its update function. A complete iteration of the loop

is defined as one frame.

4.3. ENTITY COMPONENT SYSTEM - CUSTOM IMPLEMENTATION 43

4.3.1.8 Component Store Dictionary Class

The manager class needs a way to map component types to their respective component

stores. This is achieved through the component store dictionary class which uses C#

dictionary. This is an associative container that uses the component type value as the

key value. A reference to the component store object is then given by the key value.

4.3.2 Improved design

As mentioned in the previous section, the way a system retrieves data is not efficient,

nor does it follow the specifications given in 3.2.1. It doesn’t really follow the princi-

ple behind data-oriented design, where data layout is important. It is desirable to have

component data linearly stored in memory for a system once it iterates through it. For

this reason, the top level architecture was modified in order to achieve this functional-

ity. The application structure needs some minor modifications. The improved design

is shown in figure 4.7. The goal of this revision was to have memory stored linearly

when accessed by the different systems in order to improve performance through spa-

tial locality. The improved design involves extensive use of C# reflections and custom

attributes, partly inspired by Unity’s entity-component-system.

Figure 4.7: Improved ECS top level architecture

Component data array is a new generic class that is very similar to the standard

container List in C#. The purpose of this class is to store component data linearly in

memory. An internal array is used as a container for the component data. The systems

44 CHAPTER 4. MATERIALS AND METHODS

must declare component data array objects for each type of component type it wants

to operate on.

Once the different component data array objects are declared in a system, they will be

filled with component data. The component data array object can be modified through

reflection in conjunction with custom attributes, allowing the application to fill it with

component data for a system before update function is called.

A custom attribute was created for the application, named Inject. The name was in-

spired by the same type of custom attribute found in Unity. The inject attribute is only

associated with component data array objects. Once a component data array of com-

ponent type T is associated with the Inject attribute, it will fill its arrays with data of

type T during run time before the system executes its update function. An example

demonstrating the inject attribute in conjunction with the component data array type

is shown in the appendix B.3.2.

The improved design will bring some new challenges to the implementation. One of the

issues is the fact that the new design has two storage containers for component data, the

component store and the component data arrays. The component store contains data

for the different types as a part of the manager class. In addition, the system class now

holds its own component data array fields for storage of component data relevant to it.

This means that the application needs to synchronize between the two containers for

each component type. The component stores must update the component values ev-

ery time a system performs data manipulation. The component data array fields must

include new component data every time a new entity has been registered.

These changes makes memory layout more linear, however it also brings more over-

head which might reduce performance. Giving each system its own set of component

data array fields will also mean that more memory is required by the application. An

example of how the manager transfers memory between different storage containers

are shown in figure 4.8. The two systems operate on the same component data, with

system 1 being the first to execute. After the steps are finished, system 2 will perform

the same steps.

By using component data arrays objects with internal array storing data linearly, the

system is able to retrieve data from contiguous memory space during its update func-

tion. This will in theory give better performance in exchange for larger files. Even

though the improved design might improve performance, it is still not close to an object-

oriented application when it comes to speed. The naive implementation was written

4.3. ENTITY COMPONENT SYSTEM - CUSTOM IMPLEMENTATION 45

Figure 4.8: Order of operations performed by the manager for a system

first to create a functional ECS design, without putting emphasis on speed. For this rea-

son, the improved version was further optimized in order to make it usable for realistic

applications. The changes for this part aren’t directly related to the architecture, but

rather optimization steps relevant to the C# language. A brief list of the optimization

done is given her, with more detailed description in the appendix B.3.3.

• Reduced number of boxing and unboxing

• Reduced number of function calls through another class during reflection

• Component stores will only be updated if changes have been made to the com-

46 CHAPTER 4. MATERIALS AND METHODS

ponent data array in a system

The final design fulfills all the requirements set in section 3.2.1

4.3.3 Functional testing of the ECS implementation

Several functional tests were performed for the implementation in order to verify cor-

rect behaviour. The different tests tested the following functions:

1. Creation and deletion of entities

2. Each entity is created with an unique id

3. Entities are assigned component data

4. System registering a component type as part of its list of required components

5. Entity and all of its component data is deleted

6. Systems performing logic on the list of components it has been given

7. Modified component data is updated to the component stores

8. Retrieving component data using the entity manager

9. Systems run in a specific order

10. Allow multiple systems to run

11. Verify synchronization between different systems operating on the same subset

of data.

These functions define many of the properties found with the entity-component-system

pattern. A verification of the intended behaviour verifies that the design follows the

pattern, fulfilling one of the functional specifications given in 3.1. The tests were al-

ways performed with the same input values and same expected output values. Assert

functions were used in the tests to verify that the functions had correct output when

changes were made to the design.

Three tests were created in order to verify all the behaviour listed. The first test verified

the behavior for 1-5 in the list above. Twenty entities were created with a dummy com-

ponent attached to it. Then a system registered that dummy component as a required

component for that system. This means that all the entities should be legal for the sys-

tem in the test. The test will proceed to print all legal entities for the system, delete

some entities then re-print with the updated set of legal entities. An assert method is

4.3. ENTITY COMPONENT SYSTEM - CUSTOM IMPLEMENTATION 47

invoked after the creation and deletion of entities in order to verify that the design have

correct behaviour. If the values differ from the expected values, an error exception will

be thrown. The output of the results are written to a text file.

The second test confirms the behaviour for 6-8 in the list above. The test has a test

component which consists of an integer and float variable, registered to a system. Sev-

eral entities will then be created with an instance of the test component attached to it.

The system will increment the int value of each component with one, while increasing

the float value with 20. The values of the test component will be updated afterwards to

the component stores. Once again, the assert method is used to verify that the values

after system update is equal to the expected values. The output of the results are written

to a text file.

The final functional test tested the points 9-11 listed on the list above. The test consists

of two systems operating on a set of component types each. The first system will oper-

ate on two components with some data fields, while the second one will only operate

on one of these components. This test was created to confirm that the systems correctly

update values so that the next system can use the updated values. It also tested the pos-

sibility of having multiple systems working together. The results were outputted to a

text file.

The results of these functional tests are shown in section 5.1.1

4.3.4 Performance tests for the ECS implementation

The ECS design went through several revisions before being finalized. Improving per-

formance and conforming to the specifications given was the aim behind the changes

applied. The main performance parameter of interest was the iteration time for com-

ponent data. A test was written to verify that the iteration time were improved upon

the design modifications. The test will be performed on two versions of the implemen-

tation, the initial implementation and the final revision. The test is not intended for

the object-oriented solution, as it only measures the performance improvements for

the entity-component-system design. The reason for choosing these two points are be-

cause they differ fundamentally in how they access data. All the other revisions are just

intermediate steps in reaching the final version. The first version of the design retrieved

component data through calls to the component stores which contained the data. The

data was not laid out linearly for fast access. The final version injects the system with

component data stored in a linear fashion before update function is called. Allowing

the manager to fill the component data arrays before a system update introduces more

48 CHAPTER 4. MATERIALS AND METHODS

overhead, which could have given worse performance. This test will essentially con-

firm whether the cpu is able to perform better when data is linearly stored in memory

through arrays.

The test itself is simple. A large amount of entities are created, with each entity hav-

ing the same type of component attached to it. The component consists of a three-

dimensional vector variable that holds a hypothetical "position". The test will run through

all the entities and its component data on a system that registers this position compo-

nent. The position component of each entity will be updated, by simply being incre-

mented. This operation will happen 100 times for each entity in this test. Figure 4.9

illustrates the structure of the performance test. The time elapsed will be measured af-

ter all the entities are created with their initialized component, right after the manager

activates the systems. The test was performed for different number of entities created,

and each single test was run 10 times in order to reduce discrepancy in hardware during

boot-up of application. The test will simply measure time elapsed before the system is

done. The exact same type of test is performed for each revision in order to compare re-

sults. The results of these tests are written to a text file with the format defined in 4.1.6.

Figure 4.9: The structure of the performance test

The results will be shown in section 5.1.2 and discussed further in section 6.1.1.2

4.3. ENTITY COMPONENT SYSTEM - CUSTOM IMPLEMENTATION 49

4.3.5 Integrating OpenGL with the ECS implementation

Now that a functional entity-component-system is created in C#, it is time to add graph-

ical support in order to run some visual tests. OpenGL will be used for this task. OpenGL

is an industry-standard protocol for high-performance graphics (18). OpenGL itself is

not a language, but a standard for common graphics library, written by Khronos. The

implementation detail is up to each language. The opengl standard describes api’s for

accessing the graphics processing unit found in computers. Opengl provides standards

for how one should use the graphic processor to render 2d and 3d vector graphics(19).

A C# language binding of OpenGL is required for the ECS implementation. There are

currently seven different language bindings for C# listed in the language binding page

from Khronos(20). Opengl4csharp(21) was chosen as the language binding after look-

ing through the available options. It was chosen based on availability of tutorials and

ease of use. Several tutorials were available for this language, with an easy setup. Tutori-

als provided by giawa(22) was used in order to get started with opengl using the chosen

language binding.

An opengl context needs to be created in order to send commands to the graphics

processing unit(gpu). This context represents the internal opengl instance and all its

states associated with it. It is not possible to draw meshes or send other commands

to the gpu without having a context to reference from. All opengl graphic commands

require a context to work from, which should always be provided during initialization

from the application. Fortunately, there are several frameworks that makes it easy to

create a context without going in depth with the details. One of the more popular ones

are FreeGlut (23), which is open-source and free under the MIT license. FreeGlut pro-

vides api for creating context and defining parameters such as window size of appli-

cation. The library itself uses opengl calls to construct the context for the user, how-

ever this is abstracted away from the users. Another framework, the Tao framework, is

used to access the Freeglut library. This framework provides access to C# libraries most

commonly used for game development, such as opengl. Now that the types of libraries

required have been established, it is time to import them into the ECS project. The dif-

ferent libraries were downloaded and imported into the custom ECS project.

A simple method for drawing graphics are required for the ECS integration. Opengl

render graphics in a similar way as described for Unity in the appendix B.1.1. A buffer

of data containing vertices and indices are transfered to the gpu, which will then use the

data provided to render the visuals once a draw command has been received. Opengl

50 CHAPTER 4. MATERIALS AND METHODS

Figure 4.10: The libraries imported to the project and their function

performs a sequence of steps whenever it renders an object, called the rendering pipeline(24).

There are several steps in this pipeline, however only some steps are relevant for this

part. The application needs to prepare the vertex data for the gpu before it proceeds

with the rendering pipeline. The data are loaded into vertex buffer objects stored on

the gpu side. Furthermore, a vertex shader must be defined for the vertex stage, which

is the step where each individual vertex is processed. The processed vertex data is then

moved forward to the primitive assembly. The primitive assembly will take the stream

of vertex data and convert it into a sequence of primitives. The primitives determines

what the stream of vertices really represents. These primitives can be shapes such as

a triangle or a quadrilateral. The type of primitive is decided by the input given to the

draw command. The primitives are then constructed based on the values given on the

vertex index array, containing the indices for the primitives. After this step, each prim-

itive will go through the rasterization process. At this stage each primitive is broken

down into discrete elements called fragments. These fragments have a window space

position, values for depth, color and other parameters. Each individual fragment will

be processed by the fragment shader, which must be supplied to the gpu. The shader

can control parameters such as the color of each fragment. The shaders are the pro-

grammable stages of the pipeline, which the users can control. The program in these

shaders are written in "OpenGL Shading Language"(GLSL), which is similar to C/C++

in many ways.

To summarize it up, in order to render an object on the gpu, vertex data must be loaded

into the vertex buffer and shader programs must defined. The other stages in the pipeline

are done automatically without our involvement. Figure 4.11 illustrates the relevant

steps involved in the pipeline and the required data.

Following the tutorials available, a simple basic shader program was created. In prac-

tice, this is done by writing the whole shader program in a C# string. The string will then

4.3. ENTITY COMPONENT SYSTEM - CUSTOM IMPLEMENTATION 51

Figure 4.11: The relevant parts of the rendering pipeline in opengl

be compiled into a program which the gpu can execute, with the use of opengl api. The

vertex shader will take the position of each vertex and then calculate the position of it

on a global axis, based on three transformation matrices.

g l _posi t i on = pr o j ect i on_matr i x∗vi ew_matr i x∗model_matr i x∗vec4(ver texPosi t i on,1)

The vertex position is defined in its own local coordinate-system, so a model matrix is

required in order to transform it into the global world coordinate-system. The view ma-

trix transforms the vertex relative to our view, which would be the camera view. Finally,

the projection matrix is responsible for transforming the 3d vertices into our 2d view,

making corrections for how close and far an object is to the camera (25).

These matrices can be set by the application before each draw call, allowing the user to

change the level of transformation done by each matrix. In addition, the vertex shader

will take a buffer of vectors representing color values for each vertex. These values will

be passed on to the fragment shader. The fragment shader simply takes in a three-

dimensional vector parameter which decides the color of each fragment. The vector

specifies the color intensity for the three color types used in the additive red-green-blue

color model (26). The complete code for the shader program is shown in the appendix

B.4.1

A foundation for graphical rendering is now established after following the steps

described. The following steps are required in order to use opengl with the ECS imple-

mentation:

• Create a context for the opengl application

52 CHAPTER 4. MATERIALS AND METHODS

Figure 4.12: How the vertex shader transformation matrices transforms the object - im-
age taken from opengl tutorial website(25)

– Initialize the window and its size

– Choose the display mode for the application

– Create the window itself

– Choose the idle function that should run each time the processor is ready to

render a new frame

• For each frame update, set the viewport and clear the buffer masks

• Fill vertex buffer objects with vertices, the indexes and their color intensity

• Set the transformation matrices found in the vertex shader

• Bind buffer to the gpu

• Send draw command to the gpu to initialize rendering

Figure 4.13 shows an example of a render after following the steps. Complete code fol-

lowing the steps above for drawing a triangle is available in the appendix B.4.2.

4.3.6 Test Application using the entity-component-system implemen-

tation

A complete game could have been created with the entity-component-system and opengl

integration, however due to limited time, something easier was created. To evaluate

4.3. ENTITY COMPONENT SYSTEM - CUSTOM IMPLEMENTATION 53

Figure 4.13: Rendering of a triangle done with the opengl binding for C#

the entity-component-system, a test application is required following the requirements

given in section 3.2.2. It is important for the tests to analyze both the weak and strong

parts of the implementation in order to get a fair analysis. The following key points are

in theory improvements for the entity-component-system implementation:

• The use of systems make it easier to divide different tasks in an application

• The use of linear memory layout for the data makes iteration faster due to less

cache misses

• No direct references are made to "objects" containing set of data, instead the de-

sign works solely on data types.

To test these claims and follow the requirements given, a simple test will be made which

simulates a sine-wave. The simulation will consist of several thousand points that to-

gether, based on their current position on the x-axis, will simulate a sine wave. The

simulation will be created twice using the ECS implementation and traditional object-

oriented programming respectively. For the graphical rendering part, opengl will be

used. There will be several tests simulating a sine wave, with each test doing it in a dif-

ferent way. The frame rate will be measured multiple times in order to get an average

value. Furthermore, the values can fluctuate depending on other external factors, so

the same test will run multiple times, reducing the number of potential random dis-

crepancies. Further description of the tests will be given.

4.3.7 Simulating the sine wave

The simulation of the sine wave will be rendered by rendering a large number of quadri-

laterals, each representing a single point on the sine curve. Each quad will be evenly

54 CHAPTER 4. MATERIALS AND METHODS

spread across the x-axis, while each individual quad will only move along the y-axis. The

y-positions for each quad is calculated using the sinus function with their x-position

and elapsed time as the input parameters. These quads will then be placed close to

each other, giving the illusion of a connected sine curve even though the quads are de-

coupled. Four vertices are required in order to render a single instance of a quad. By

defining a vertex array consisting of the vertices, along with another array representing

the indices, a quadrilateral object to render can be created.

4.3.8 Simulating a sine wave using opengl and object-oriented prin-

ciples

A class defining each cube point on the graph was created for the object-oriented im-

plementation. The class QuadPoint represents a single quad point object on the graph.

This class contains several fields required to define the quad point, as shown in table

4.1. The class has a draw method that will retrieve the data stored on the fields and use

them to send draw calls to the gpu in order to draw the quad point. The test will be

initialized by creating a large number of objects and adding them to a list. The update

function that runs each frame will then iterate through this list, set new position for

each quad object and then execute the draw function. Additional classes for color and

mesh data was created in order to have more than one layer of classes in the test. This

will increase the number of references required and give a more realistic application.

QuadPoint field Type Description

Position Vector3 Position of the point

Square Mesh Mesh Contains vertices data for the shape

Color Color Contains color data for a single quad

ColorValues Vector3[] Contains color data for each vertex of a single quad

Vertices VBO Vertex buffer object for the vertex points

VerticeIndexes VBO Vertex buffer object for the vertex indices

ColorsVBO VBO Vertex buffer object for the color values for each vertex

ShaderProgram The shader program that will be executed

Table 4.1: The fields in the QuadPoint class

4.3.9 Simulating a sine wave using opengl and the custom entity-component-

system implementation

In the ECS implementation, each quad point is represented as an entity consisting of

two components. One component representing position value of the point, and one

4.3. ENTITY COMPONENT SYSTEM - CUSTOM IMPLEMENTATION 55

component representing color value of the point. In addition, a component for de-

scribing the mesh is used in some of the tests. Two systems are used, one that updates

the position component and another system that reads in the position component and

draws the objects. The system that updates position are always executed first. Figure

4.14 shows the structure of the quad point in this scheme. While only one system could

have been used for this example, two were used in order to create a more realistic sit-

uation for the application. Since the application now uses opengl and its own update

function, the manager can no longer be used to activate the systems. This has to be

done through the frame function within opengl, which will now instead activate the

system update function.

Figure 4.14: Sine-wave simulation structure for ECS

4.3.10 The sine wave simulation tests

The sine-wave will be simulated through a number of different tests, where each test

is performed for both programming paradigms. The different tests are listed in table

??. The tests can be divided into two main groups. One group of tests where the draw

command is only called once for the whole graph each frame, this is achieved by hav-

ing the graph strictly described by the vertices and their local axis relative to the world

axis. In essence, the complete graph is drawn by defining each vertex possible on the

graph. The other group consists of tests where the draw command is called for each

quad point. This only requires the application to define one quadrilateral object and

then copy the array for each further draw. We simply modify the transformation matrix

before each draw call in order to move the quad to its correct position on the graph.

56 CHAPTER 4. MATERIALS AND METHODS

Test Nr Description

1 All VBO buffers allocated once, no changes to color values.

2
VBO buffer for vertices and indices are allocated once,

with inclusion of VBO buffer for colors

3
Similar to previous test, however color values are now

updated each frame.

4

Similar to previous test, but component data for color

and position is merged into the same component for the

ECS implementation.

5 VBO buffers are allocated each frame for each quad point.

6
The complete graph is drawn by calling the draw api once

each frame.

7
Similar to previous test, with only one system used instead

of multiple for ECS.

The reason for doing the tests in two different ways are to check how the opengl api

affects the performance. We want to verify our results by making sure that the opengl

api calls are not too detrimental in regards to performance when it comes to the frame

rate compared to the object-oriented and data-oriented design. The goal is to compare

the two paradigms, and thus inspecting other external factors will be beneficial in con-

cluding whether the difference in performance is based on the programming paradigm

used.

Furthermore, the tests will also have a variation in how vertices are stored for one of

the tests. The vertex buffer objects will vary in how they are allocated dynamically. In

one variation of the test, the vertex buffer objects will be allocated only once, saving

time spent on allocating and deallocating memory for gpu. In the second variation, a

new vertex buffer object will be called for each quad. Again, this is done in order to

make sure that the results of the two implementations are not significantly affected by

opengl api calls.

These tests aim to compare their efficiency against the traditional object-oriented ap-

proach. However, the custom implementation is not fully complete and has its advan-

tages and disadvantages. These tests will analyze the different scenarios and verify hy-

pothetical situations. The first four tests investigates how efficient the iteration scheme

is with the entity-component-system. The other tests will do the same, but apply to

a more realistic setting, such as having points with different meshes to represent ob-

4.4. ENTITY-COMPONENT-SYSTEM IN UNITY 57

jects of different types. The final two tests will only call the draw command once each

frame, instead of calling it for every point. This is one of the most expensive calls in the

tests, and thus having only one call will allow us to have a significant larger amount of

points on the simulation. This will allow us to test the efficiency of storing and loading

component data arrays each frame, which is linearly dependent on number of entities

presented.

Each test will run for a different number of objects created in order to include the im-

pact the sizes have. The results from the tests will be written to a text file which will then

be parsed by a python script. The results of these tests are shown in section 5.1.3 and

further discussed in section 6.1.1.3 All the tests will simulate the same type of graph.

Figure 4.15 shows the simulation for one of the tests.

Figure 4.15: Sine wave test with opengl

4.4 Entity-Component-System in Unity

Unity has recently provided support for data-oriented design through their own im-

plementation of the entity-component-system. The structure behind it is quite similar

to the custom design implemented in this thesis, however it is significantly more opti-

mized. The memory management of the component data is more complex and linear.

It stores data on an entity-to-entity basis instead of just component data of the same

type. A brief description of the feature will be given here.

Unity implements the typical entity-component-system architecture. Entities repre-

sent an unique object on the game world, with a set of component data that it associates

58 CHAPTER 4. MATERIALS AND METHODS

with. Furthermore, each system performs data transformation on a set of component

data that the user defines. The users can define their own component data types and

create their own systems. When a system is defined with a set of component data types,

it will fill component data arrays with the data that it can operate on. All component

data of the same type is stored in what Unity refer to as chunks. The component data is

laid out based on their type, where components of the same type are tightly packed lin-

early in arrays. This structure allows for fast access and iteration through component

data. The engine also provides with a new type of components, shared components.

Shared components are component data that are shared between many entities, and

thus should not be changed often. All entities that use the same instance of a shared

component, is grouped together for efficient extraction of data. The inject attribute

found in my design is also found in the implementation provided by Unity.

Entity archetypes are arrays of component types that define one type of an entity. It

can be seen as a template for an entity and the associated set of components. Entity

archetypes can be used to define and instantiate the same type of entities more effi-

cient. The chunks in Unity are all linked to a specific entity archetype, which means

that all entities in a chunk follow the exact same memory layout.

Entity manager is a manager that has control over entity data. A collection of api calls

related to entities are available in the manager class. The manager can be used to create

new entities, check if an entity exists, set or get component data for an entity and other

similar entity related methods. Furthermore, a Entity commands buffer object, named

PostUpdateCommands, are available in the system classes. The PostUpdateCommand

will store entity manager commands to a buffer and then execute it after the system is

finished with iterating through the component data arrays. This is necessary in order to

avoid corrupting the arrays by inserting or deleting entities that would be legal to that

system while the system is not completely done with one whole iteration.

A system can be set with its list of required component types by simply creating a data

struct consisting of component data arrays for the different component types. Once

the struct has the inject attribute, it will fill the arrays with data and only operate on

the entities that have all the required components given in the struct. The PostUpdate-

Command should be used here to avoid corruption of the data arrays.

4.5. PURE DATA-ORIENTED APPLICATION IN UNITY 59

4.5 Pure data-oriented application in Unity

For the pure data-oriented application, a sine-wave simulation will be created using the

entity-component-system in Unity. The same application will be created in an object-

oriented manner for comparison. The simulation will do the same type of work as the

test application written for the custom entity-component-system. A sine-wave will be

simulated using a large number of cubes connected together. Each cube will then be

given a position along the x-axis and update its y-position by using the sine function

with time and x-position as parameters. Iterating through the cubes and updating each

movement based on the sine function will then give us a large connected graph that

moves like a sine wave. The pseudo code for this behaviour is shown in the code snippet

below. To make sure that both solutions execute work in the same type of environment,

same type of materials and calculations will be used for the cube points. In addition,

both solutions will have gpu instancing activated.

Listing 4.2: Sine wave simulation

1 // Get number of ms elapsed since initialization of game.
2 float dt = Time.time;
3 for(int i = 0; i < points; i++){
4 // Get the next cube point
5 Point cubePoint = points[i];
6 // Retrieve the position
7 Position cubePosition = cubePoint.position;
8 // Calculate new position along z-axis
9 Position newPosition = Sin(π * (cubePosition + dt));

10 cubePoint.position = newPosition;
11 }
12 \label{code :2}

4.5.1 Objected-oriented sine wave

The object-oriented implementation was inspired by a tutorial written by Jasper Flick

(27). Only two scripts are needed for simulating the sine wave. One monobehaviour

script is needed to represent a point object on the graph. This class will have variables

for x and y position on the xy-graph. Another monobehaviour script is needed for in-

stantiating and updating these points along the x-axis. The points will have the form of

a cube and be placed close enough to each other such that they illustrate a connected

graph. A couple of game objects were created on the scene with the scripts added as

components. The results will be discussed in chapter 5.

60 CHAPTER 4. MATERIALS AND METHODS

Figure 4.16: Scene view of sine wave in Unity

4.5.2 Data-oriented Sine wave

The newly released entity-component-system framework in unity is used for the data-

oriented implementation. The data-oriented implementation performs the same in-

structions as the one shown in the sine-wave simulation code snippet. A system will

be used for updating each point, while another system will render the cubes. When the

entity-component-system is used, game objects do not exist on the scene. This means

that much of the work and debugging has to be done purely through code, making it

more of a challenge. It is possible to attach game objects to the entities through the

game object entity interface, however this will not be done for this implementation.

An entity archetype is created for the points. Each point must have a position on the

scene and be represented visually as a cube. Unity has several native components

available that supports the type of components required. A three-dimensional position

component is available in Unity for entities to have. This component has three float val-

ues that represent a point on the scene along the cartesian coordinate system. For the

rendering part, the mesh instance renderer component can be used. This component

contains data for the mesh and type of material used. This is a shared component that

multiple entities can use together, since the cube mesh will be the same for each point.

Finally, one more component is needed for the entities, the transform matrix compo-

nent. Each cube entity must update its position along the y-axis, and for this reason,

there must be some mathematical definition for the translation. Unity provides with

a transform matrix component that can be added to the components. The transform

4.5. PURE DATA-ORIENTED APPLICATION IN UNITY 61

matrix is used in order to calculate transformations such as translation and rotation.

The default values are sufficient to use for the application and further changes are be-

yond the scope of this thesis. Based on the given information, the cube entities only

need three type of components, position, transform matrix and a mesh instance ren-

derer component.

Figure 4.17: The entity that represents a single point

Only one user-defined system is required for this application. A system that iterates

through each point on the graph and updates the y-position value. The system only

requires the position component, which means that a component data array must be

defined within the system. The system will as a result only be legal for entities that have

the position component, which all the cube entities have. Unity provides with another

native system that will render the points as cubes on the scene. The system is provided

by Unity and will automatically render all entities that have a position, mesh instance

renderer and transform matrix component attached to it.

There is no simple method for accessing the cube mesh or material type in Unity through

scripts with the entity-component-system. A workaround is to create a cube game ob-

ject on the scene, and use data from this object to define the mesh and material. The

game object data was extracted by the use of a Unity api, GameObject.Find(), which

finds game objects on the scene and returns object data. The cube object was first cre-

ated on the scene with the desired size and material before the data was extracted in

the script. The extracted data was added to the mesh instance renderer component in

order to define the graphical part of the cube entity. The same method was applied

to define parameter values for the graph, through a setting game object. Code snippet

demonstrating this is shown in the appendix B.7.1

To bootstrap everything and activate the simulation, an initialize function was created

with a game object. This game object will simply run once and initialize all the data

62 CHAPTER 4. MATERIALS AND METHODS

required for the systems.

Figure 4.18: Sine-wave simulation in Unity

4.5.3 Testing of the sine-wave simulations

The main performance criteria for the two simulations will be the average frame rate.

The test will be performed multiple times with different number of objects spawned in

each test case. All the tests will be performed with a window resolution of 1600 x 900.

Both solutions will be built in order to remove all kind of overhead related to the unity

editor.

Figure 4.19: Build settings for the tests

The values will be written to a text file that is parsed by a python script as described

in section 4.1.6. To make sure that the real effct of data-oriented design is inspected,

the Unity profiler with the profiler data exporter script will be used to inspect cpu usage

4.6. DATA-ORIENTED DESIGN FOR DWARFHEIM 63

times. This part of the analysis will only be done for 50000 objects spawned.

4.6 Data-oriented design for Dwarfheim

The architecture behind DwarfHeim, the conversion strategy and implementation will

be described in this section.

4.6.1 Computer architecture of Hybrid/Pinecone

DwarfHeim is being developed with their own custom engine on top of the Unity en-

gine. The custom engine, hybrid/Pinecone, is an engine specialized for real-time strat-

egy games. Converting the game will require changes to the specialized engine as well

since the game is deeply integrated into the engine. For this reason, it is important

to understand how the engine works, as changes to the game will involve changes to

the engine. The different sections described here will be relevant for the data-oriented

transformation, as these parts will be affected by changes done to the engine and game.

The following sections will go more in-depth for the parts of the hybrid engine prone to

changes in order to get a data-oriented solution.

4.6.1.1 Networking model

The game is mainly going to be played as a multiplayer game, meaning it requires net-

working. The network development of the engine is currently not finished.

It is desirable to have a client-server model for these type of games. Each player in a

match acts a client, while the server is responsible for synchronization between the dif-

ferent clients. It is important for the clients to have their game states synchronized, oth-

erwise each player would play their own version of the match. The server is responsible

for multiple things, such as making sure each unit in the game has the same position

across all clients and calculating non-deterministic actions. In addition, the server is

responsible for giving commands to each client. The commands can be of different na-

ture, such as moving towards a position or attacking another unit.

The engine uses Photon Unity Networking framework, which is a 3rd party asset in

Unity. The framework takes care of all the back-end work necessary for networking,

as well as providing an user-friendly interface. Games that utilize their framework are

hosted on their globally distributed cloud service.

64 CHAPTER 4. MATERIALS AND METHODS

The engine is currently not using a client-server model in the sense explained previ-

ously. Instead, each client can be seen as a peer, with one of them being the host. The

host peer will act like a server, but is actually just a client that does additional work in

order to allow communications between the different clients. This is possible through

the master client api available with the photon framework. Basically, all the clients in a

game will act as a peer, with one of them being defined as the master client. The client

that is responsible for starting the match is usually the master client. The other clients

will then join the game match provided by the master client. Once a peer is a master

client, by enabling a boolean, it will act as the host. It is then possible to execute "server"

specific code by checking if the peer is a master client or not. In practice, each client

uses the same code, with one of them having the master client boolean set. Each client

will then check if it is the master client, and as a result execute server-specific code if

it is. The game is still in its early developmental phase, so using such a model makes it

easy to quickly test networking part.

For testing purposes, whenever game code is tested, the client will act as a master client

and create a new client that will be loaded with the same scene. The testing environ-

ment will then have two clients, with one of the clients being the master client. The

scenes that are used to play with will act as a normal client, with the master client in the

background. This scheme allows for testing of the networking, client code and server

code at the same time.

4.6.1.2 World Objects

All objects in the game that can be directly interacted with by a player is derived from

the World Object class in the hybrid/Pinecone engine. The class defines some general

parameters that all derived objects must have in order to be manipulated by a player.

Having a base class for all objects in the engine allows for extensive use of polymor-

phism. The class provides several virtual methods that are to be invoked after fulfilling

certain conditions, such as first time being initialized or when the object is dead. The

world object type can be used as a generic type to access data of underlying types with-

out knowing the exact type of that object. All references to derived classes of world ob-

ject can then be done through the world object base class itself, allowing the program to

execute the virtual methods that the derived classes overrides. The derived classes can

then invoke their own specific methods within the virtual method. This scheme allows

for all references through the world object, making the code more modular and adapt-

able to changes. All references to the world object derived classes in hybrid/Pinecone is

accessed through the base class. Furthermore, the class contain fields for the prototype

4.6. DATA-ORIENTED DESIGN FOR DWARFHEIM 65

id, unique name and the prototype it is created from.

Figure 4.20: WorldObject class and its virtual methods

Figure 4.21: Example of a derived class Unit that has its OnInit() function invoked vir-
tually through the base class

4.6.1.3 Basic Commands, Basic Actions and Basic Command Chain

Basic commands are commands that a world object can perform. These commands

are sent from the server-side to the client. Each command has a basic action associated

with it. Basic actions are the actions that a world object can execute, such as moving to-

wards a position. These actions are deterministic, meaning that the outcome of the ac-

tion is always the same for the same input, regardless of the type of hardware the client

has. Basic command chains are queues of basic commands that are to be executed in

order. Each world object has its own basic command chain, which it will iterate through

each time a basic command is completed.

The type of action a basic action perform is limited due to it being deterministic. The

reason for the deterministic requirement is because every client can have different hard-

ware. Different hardware in the clients can cause calculation error and thus give small

variances in the results carried out by the actions. An example of this, is the floating-

point unit found in computers, which performs mathematical calculations with floats.

The results of these calculations can vary from computer to computer, giving differ-

ent results(28). The server will then as a result not be correctly synchronized with the

clients. In addition, the clients won’t be synchronized with each-other. This problem

66 CHAPTER 4. MATERIALS AND METHODS

forces the design to limit basic actions to be deterministic, reducing such errors.

To further illustrate the problem of non-determinism, imagine that an unit is to walk

from point A to point B, with an obstacle between the two points, as shown in figure

4.22. Let’s assume that the two paths outlined in the figure, has almost the same exact

distance with only a small variance in value. Now if we were to calculate a path with two

computers that have different hardware, the resulting path distance calculated might

have a small variance. This means that both path A or path B is valid, depending on the

hardware. The action is thus not deterministic in this case, giving different results for

movement. The hybrid engine solves problem like these by having non-deterministic

Figure 4.22: Two different possibilities for movement

calculations performed on a server, where the hardware is equal. The resulting path

calculated in the server will then be broken down into a chain of small deterministic

movements, such as movement in a straight line, and sent to the basic command chains

for relevant world objects. The deterministic path is shown in figure 4.23.

Figure 4.23: A chain of deterministic basic commands where each command is a move
action in a straight line

4.6. DATA-ORIENTED DESIGN FOR DWARFHEIM 67

4.6.1.4 Abilities, Utilities and Sentries

Abilities are actions that a world object can execute. They range from movement ac-

tions such as following another world object to combat-specific actions such as attack-

ing another unit. Abilities will in essence create new basic commands for the world

object to perform. The logic behind abilities are calculated on the server-side only. An

ability request will be sent to the server once a world object activates an ability. Abilities

will then be executed on the server-side, calculating new set of basic commands for the

world object to execute. Abilities can be divided into two subcategories, instant abilities

and active abilities. Instant abilities are performed instantly in a single frame. A typical

example of such abilities are those who add stat boosts to units immediately.

Active abilities are abilities that executes over several frames. The structure behind

these abilities are more complicated than those found in instant abilities. Active abil-

ities consists of a set of utilities. Utilities are a type of class that are responsible for

creating new chains of basic commands. Each utility is responsible for its own type

of commands to send. Once an utility is finished with creating a new basic command

chain consisting of new commands, the chain will be transferred to the relevant world

object. The structure of utilities can be depicted as a graph tree, where each node is

an utility. An active ability will only have one active utility in all instances. In order to

traverse to the next utility on the graph, an utility must meet its exit condition. Exit

conditions are conditions that moves the utility out of a valid state to the next one. An

utility can have more than one exit condition. Once an exit condition is met, the ac-

tive ability will look at the next utility to perform in its node list. Utilities can be seen

as block functions, they take in input values, calculate new basic commands based on

these and transfer it onward to the clients. If an utility’s exit condition is met, it will end

execution. An utility will perform one specific function, such as calculating a path for

movement.

To demonstrate how an utility works, the pathfinding utility in the game will be de-

scribed. The pathfinder utility calculates a new path for a world object to move towards.

It takes the destination as input, calculates a new path and outputs a basic command

chain consisting of move actions. The pathfinder utility has two exit conditions, one

for when the destination is reached and one for when the destination is suddenly in-

valid. This can happen if the destination is some target, and that target happens to be

removed during calculation. When one of the exit conditions are met, the active ability

will either traverse to the next utility or finish the ability given that there are no other

utilities to traverse to. Figure4.24 demonstrates the pathfinder utility with its inputs,

68 CHAPTER 4. MATERIALS AND METHODS

exit conditions and internal logic. An ability for movement can then be created by only

Figure 4.24: The pathfinder utility in Dwarfheim

using the pathfinding utility. Another example is a close-range attack ability, which uses

two utilities. One utility for pathfinding and one for doing the attack. The pathfinding

utility must be executed first in order to ensure that the unit is close enough to the tar-

get. The graph nodes for the abilities are shown in figure 4.25.

Figure 4.25: Two examples of abilities created by using a set of utilities

There is a reason for why this structure is used. Once a game has defined a varied set

of utilities, they can be connected together in multiple ways, creating different abilities.

Two abilities with the same set of utilities can be different by simply having different

traversal order for the utilities. This allows developers to create new abilities in a fast

way, as long as the utilities are defined. In addition, the hybrid engine provides with

a graphical user-interface for creation of new abilities. This allows non-developers to

create new abilities without having to write code. Only the code for utilities needs to be

written.

4.6. DATA-ORIENTED DESIGN FOR DWARFHEIM 69

Figure 4.26: Ability editor view, showing the active ability for meele attacks

4.6.1.5 Agents of hybrid engine

Agents of the hybrid engine plays an important role in making the world objects inter-

actable. They are all monobehaviour scripts that give access to certain types of data

for manipulation. Each game object using this engine will have to include some of

these agents as part of their component list in order to access certain functionality. The

agents are one of the first areas that will need to be transformed into a data-oriented

structure as they play a vital role in most of the code logic seen in the engine. For in-

stance, each game object in the game can have their own view agent, which is responsi-

ble for playing the correct animation during execution. Another agent is the command

agent, which is responsible for updating the next command for a world object to exe-

cute. To summarize it, these agents are attached to game objects so that they can be

responsible for the data manipulation in a specific domain. Currently the engine have

6 different agents and they will be briefly described here. Note that the assisting figures

do not show the complete class, only some of the more important attributes.

Figure 4.27: Agents of the hybrid engine, the lines show dependencies

World Object Agents Each world object must include a world object agent component.

The world object agents act as an interface to the world object data in a game object.

The agent is a monobehaviour type which means that a game object can include it as a

70 CHAPTER 4. MATERIALS AND METHODS

component, thus getting access to the data it employs. It is responsible for initializing

the world object class by calling the initializing function. Furthermore, it is responsi-

ble for synchronizing the transform of the world object on the network, the server, with

the transform found in the client version. This synchronization happens through the

update function in the world object agent component. The tasks of world object agent

can be listed as following:

• Provide an interface to the world object data by having a reference to it.

– All other scripts can access the world object data by having a reference to

the world object agent component linked to a game object.

• Initialize world object data

• Synchronize client transform with server transform

• Keep track of abilities that the world object can perform

• Keep track of effects related to world object stats

Command Agents Command agents are responsible for keeping track of the basic com-

mand chains attached to world objects. It tracks the progress of the current basic com-

mand that is to be executed. Every game object that has the command agent com-

ponent will have a basic command chain, as the agent component contains a basic

command chain object. The command agent can be seen as the interface to the basic

command chain in a world object. Inserting new chains of commands, deleting current

chain and iterating to the next basic command in the chain, are all methods available

through the command agent.

Game agents Game agents are responsible for execution of basic actions contained in

basic commands. Each basic command comes with a basic action, which is a type of

action a world object can perform. This agent will check the current action available

through the current basic command by referencing through the command agent. This

happens every frame through the update function found in a monobehaviour script.

Every game object that includes a game agent component will then be able to execute

basic actions. The same game object must also have a command agent in order to ac-

cess the basic command chain.

Ability Agents Ability agents are only found on the servers-side of the engine. These

agents are responsible for executing the ability requests that a client sends. The agent

keeps track of the current ability and makes sure it correctly iterates to the next utility

4.6. DATA-ORIENTED DESIGN FOR DWARFHEIM 71

found within an ability. The agents have their own reference to a basic command chain,

which it will fill with new commands given by the utilities. Furthermore, the agent will

transfer the newly constructed chains over the network to the respective clients that it

belongs to. One key difference between this agent and the others, are that the ability

agents do not belong to a world object. A single instance of an ability agent is indepen-

dent and can perform work for different world objects.

View Agents View agents have access to animators found in a world object. The agent

is responsible for setting and playing the correct type of animation.

4.6.1.6 Prototype-based model in DwarfHeim

Prototype-based programming is briefly described in the appendix B.5. DwarfHeim

and the hybrid engine has a well-defined support for prototype-based instancing of

new types through their own customized editors in Unity. It is used for creating new

type of abilities, units and basic actions. The motivation behind this feature is sim-

ple, it allows non-programmers of the team to develop new types without having any

software-development knowledge. In DwarfHeim/hybrid, this model is implemented

by having base classes with a set of modifiable fields for each base type representing

prototypes. In the case of a base class for units, the fields can represent values such as

attributes, type of equipment it can equip and list of ability ids for the abilities it can

execute. Units with different stats, abilities and equipment can then be created by cre-

ating an instance of this base type with the required values to the fields. This makes it

easy to create units that are quite different, without needing to write software code for

each different unit. The only thing one needs to write code for, is the base class and the

associated abilities it can use.

When a prototype is created by a base prototype class, it will be stored in the prototype

library as a json file containing data for the prototype. In this library, each prototype

will be linked to the base class it is created from, and the set of values it has been given

to the base class fields. An instance of the prototype can then be created by retrieving

the data stored on this library. The structure behind this model is similar to just cre-

ating instances of a class and then assign it the values one desire, however this has to

be done with code. The major advantage of the prototype-based modeling is that you

do not need to write the instances in code, you can simply do it through an editor and

allow it to deal with the rest back-end, given that some developers have already created

the interface for it.

72 CHAPTER 4. MATERIALS AND METHODS

Figure 4.28: Unit editor in Dwarfheim

Figure 4.29: Two unit type prototypes created from the unit base class

4.6.2 Methodology for converting to data-oriented design

Now that a general understanding of the architecture behind the engine and game have

been established, it is time to consider the methodology for transforming it into a data-

4.6. DATA-ORIENTED DESIGN FOR DWARFHEIM 73

oriented solution. To avoid confusion with the naming scheme behind game objects

components and components in entity-component-system, the ECS abbreviation will

be used as a prefix to indicate parts that are in the entity-component-system domain.

4.6.2.1 Scope of conversion

Since conversion of the complete game would be infeasible due to time and complexity

at its current state, only small sections of the game will be converted. The transformed

parts will create the foundation for a potential data-oriented DwarfHeim. Collecting re-

sults for the modified parts will indicate whether the conversion has brought improve-

ments.

Since the main task behind the conversion is to improve performance server-side by

reducing cpu usage time, the server will be the main part being changed in this con-

version. The server is responsible for receiving commands from the player and return a

new chain of commands for the game objects to perform. This part will require changes

to the current agent system in the engine and the basic command chain structure. To

implement changes to the server and client, with the ability to verify correct behaviour

for the changes done, the unit model in DwarfHeim will be changed. Units are in-

teractable types in the game representing dwarf characters, which are able to execute

different type of abilities depending on type of unit, such as being a warrior unit or a

ranger. For this task, the warrior unit will specifically be changed. Figure 4.30 shows an

overview of the unit model with the important types of objects it contains in the origi-

nal object-oriented DwarfHeim version.

Figure 4.30: Overview of the unit model and the attached monobehaviour components
- Not all details are shown

Converting the warrior model will require changes to the current implementation of

74 CHAPTER 4. MATERIALS AND METHODS

abilities and utilities as well, as they are executed server-side and responsible for gen-

erating new basic actions. This part of the code needs to become more hard-coded and

less polymorphic, meaning that virtual functions are no longer possible. Only a few

number of abilities will be converted for this thesis. The current plan is to convert the

abilities associated with movement and melee attacks. Changes to some of the utilities

must also be done since abilities use them. Finally, basic commands and basic actions

will also be converted as a result of this.

To summarize, the parts that will be converted will be listed here. Not all changes are

listed up, only the major ones.

• The unit type.

• The agents - command agent, ability agent, game agent, view agent.

• Basic command for standing idle, movement and melee attack.

• Utilities for pathfinder, idle and melee attack.

• Abilities for standing idle, movement and melee attack.

Much of the changes will be done through the agents. Figure 4.31 gives an overview of

the important data parts and structure of the agents in the engine.

Figure 4.31: Agent data structure prone to changes during the conversion

4.6.2.2 Limitations with the conversion from object-oriented to data-oriented

The ideal conversion would be complete separation between data and logic, as shown

in figure 4.32. All data would be contained in ECS-components while systems would

4.6. DATA-ORIENTED DESIGN FOR DWARFHEIM 75

perform logic based on the data found within these components. Furthermore, all sets

of data are of value types and thus traversal are faster for the systems, making the pro-

cessor more efficient.

Figure 4.32: Ideal implementation for a data-oriented approach

The entity-component-system in Unity has the goal of providing with linear memory-

layout for component data. Achieving this functionality imposes some limitations to

the engine. At the time of writing, the development behind the entity-component-

system in Unity is still in its early stages. The limitations written here might not be

any limitation in the future. Here is a list of some the limitations found with the entity-

component-system in Unity that affects the conversion:

• All data types in a component struct must be blittable.

• Arrays, lists and other containers with non-fixed sizes are not allowed in a com-

ponent struct.

• Arrays of fixed size can only contain basic data types such as integers and doubles.

• Polymorphic behaviour is not possible with the current design.

• The Post update commands api lacks features found in the normal Entity man-

ager.

Blittable types in C# are data types that have the same representation in managed and

unmanaged code. These types includes only the basic types such as integers, bytes and

integer pointer. No reference types are blittable, neither is a boolean. This means that

the engine is quite limited in what it can use in the ECS-component data fields. This

makes it challenging to transform the hybrid code as it is very object-oriented and con-

tains several fields with non-blittable types.

76 CHAPTER 4. MATERIALS AND METHODS

The ECS-component data fields can not contain fields that vary in size. The arrays

must have a fixed length, and can only consist of basic blittable types such as integers

or floats. This makes it a challenge in converting the current object-oriented basic com-

mand structure into a data-oriented one. It is possible to declare ECS-components as

shared, which can contain all types of fields. However, shared components are shared

by multiple entities and is not meant to be changed often, meaning that it can’t really

be used as a basis for data found within a single entity.

The lack of polymorphic support means that the code will have to become more func-

tional and more "hard-coded". It becomes a challenge to operate with object references

as they do not really exist anymore. Furthermore, the prototype structure which is heav-

ily object-oriented and relies on dynamic allocation of parent classes, will potentially no

longer be a beneficial solution with the entity-component-system.

Finally, the PostUpdateCommands api lacks some methods that are available in the

normal entity manager. The api lacks many of the features that the normal entity man-

ager have. Especially to functions related to dynamic creation and deletion of entity

component data based on component type, which is not available in the api. This

makes it more difficult to dynamically work with entities and its component data as

the application must always know the type beforehand. The current lack of it makes it

more difficult to transition into a data-oriented implementation that is more dynamic

in nature and less reliant on static information.

The fact that DwarfHeim and the hybrid engine is object-oriented brings another set

of challenges. The basic command chain structure is very object-oriented in its nature.

The size of the chain is not fixed, making it difficult to convert due to the limitations

associated with the entity-component-system. Furthermore, the chain references ba-

sic command objects with basic actions in a polymorphic way. Another problem is the

calculation of paths for the game objects, as shown in figure ??. The module uses a 3rd

party asset that requires monobehaviour components in order to calculate the path.

Making this part data-oriented would mean that the internal structure behind the path

finding module must also be changed, which is not a feasible option for this thesis due

to complexity.

The limitations by the entity-component-system and the current implementation of

the game will limit the conversion. Converting the complete game would be infeasible

due to complexity and lack of time. The conversion can be a combination of object-

4.6. DATA-ORIENTED DESIGN FOR DWARFHEIM 77

and data-oriented principles, at the cost of potential performance gained by not going

pure data-oriented. Figure 4.33 shows an overview of the model for the unit in this hy-

brid conversion. As the figure shows, the solution will consist of both entity-component

data and object-based data through monobehaviour scripts. In addition, logic is both

found in systems and monobehaviour scripts.

Figure 4.33: Overview of the model for the hybrid solution

4.6.2.3 Methods for conversion

The different methods used for conversion will be covered here, with examples for some

of them. Due to the nature of the changes done and the size of the overall architecture,

the methods will be described in parts. Figures will illustrate the different methodolo-

gies as they are explained. Not all details will be provided in this thesis as there were

large changes done to the code. Only a general understanding of the strategy will be

given. Both the hybrid engine and the game itself will be referenced as DwarfHeim from

this point on. Figure 4.34 gives a brief overview of the final implementation without cov-

ering every detail related to the implementation. As the figure shows, the unit model

is now defined through a set of monobehaviour components, ECS-components and

shared components. The movement module is a 3rd-party asset that handles move-

ment in an object-oriented manner, and was not changed for this thesis.

4.6.2.4 Working with the existing DwarfHeim code

It is desirable to work with the current existing code available.. Use of 3d-models, ani-

mations, game-logic and general code architecture are all available to base the work on.

In-game objects are accessible through game objects in the traditional object-oriented

78 CHAPTER 4. MATERIALS AND METHODS

Figure 4.34: Overview of the data structure in the converted version

way. A good starting point is to give the objects entities, making it possible to access

them with the new entity-component-system, while at the same type keep much of

the same logic available in the regular class. It is fortunately possible to do this with

the new entity-component-system. Unity has added a method for slowly transitioning

from object-oriented style to the new entity-component-system, by using the game ob-

ject entity component. This is a normal C# script that gives an unique entity id to an

object class. An interface to the entity-component-system is made possible for a class

once it has this component. There are some benefits in using the game object entity

in the beginning. There are a lot of classes in the codebase that access data through

prototype libraries, gets initialized by manager classes and other similar primitives that

setups the state of the game. It would be difficult to take the current classes and re-write

them from scratch with the new entity-component-system class, as that would require

additional changes to the already existing overhead that takes care of the initialization

for the game. Using the game object entity interface provided by Unity will remove the

need to change the networking instancing and prototype library structure. Instead, en-

tities can be based on existing classes by copying the data found in the newly instanced

objects once they are initialized.

4.6. DATA-ORIENTED DESIGN FOR DWARFHEIM 79

An example where this method is used, is the unit class in DwarfHeim. The class con-

tains stats for attributes such as move-speed, health and attack damage. The stats for

these attributes vary based on the different type of units available. The units differ in

how those values differ, along with the type of abilities that they can execute. The data

for these fields are stored in prototype files, and a new unit of a type is instanced by ex-

tracting the data found in the prototype file. Instead of changing the current structure

of the system, a game object entity component is used. The game object entity com-

ponent is added for the class during the initialization phase. Once the game object is

associated with an entity, ECS-component data is added to the entity through the en-

tity manager. The component data is simply the data found in the unit object. After the

data has been copied to a new entity associated with the unit object, the data in the unit

object can be ignored. All further processing is now done with the entity-component-

system. The original object-oriented object was only used as a template for type of data

to copy for a new entity, which represents the old object.

Figure 4.35: Example of an unit object being initialized then used to create the equiva-
lent entity in entity-component-system

4.6.2.5 Animations and dwarf 3d-models

Using the animations and 3d-models available in DwarfHeim is not easily done with the

entity-component-system. Currently, at the time of writing, a good animation system is

not supported. Nor is it easy to represent 3d-models unless they are simple meshes. The

DwarfHeim 3d-models representing units consist of several visual components bun-

dled together. This makes it difficult to render with the entity-component-system. It

is still desirable to test the entity-component-system with animations and proper 3d-

models, to confirm that those assets would still be usable for the conversion. For this

reason, both objects and entities were used for the parts that have 3d-models and ani-

80 CHAPTER 4. MATERIALS AND METHODS

mations.

Figure 4.36: Warrior unit 3d-model

Game objects that have graphics and animations are divided into two parts, one part

that contains the animations and 3d-model components, and another part that han-

dles logic and other data related to the object. The 3d-models are displayed based

on the current transform position, given by the transform component. The transform

component is handled as an object, which means that accessing the data found in the

transforms are not done in a memory-efficient way. It would be better if the game

objects also had a ECS-position component in the entity-component-system, which

handled all logic related to position. The problem with only having this position ECS-

component is that the 3d-model attached to a game object, is rendered based on the

transform component, and not the position ECS-component. The latter would be pos-

sible by attaching a mesh to the entity-component-system, however the 3d-models are

not simple meshes that can be represented in that way. Both positions are needed in

order to make this work. The transform position component in the traditional game ob-

ject based system will be used to render the position of the actual 3d-model. Another

position component in the entity-component-system will also be included as a ECS-

component for the game object. All logic requiring position will be done through this

position ECS-component. After one frame is finished, a system will be used to synchro-

nize the position component data in the entity-component-system, with the transform

position data in the old object-based system. This system will update last and read in

all position data found in the ECS-components, and synchronize them with the trans-

form component. This change leads to more overhead as the application now requires

4.6. DATA-ORIENTED DESIGN FOR DWARFHEIM 81

an additional system for synchronization between the position components.

Figure 4.37: Unit consisting of both a traditional game object and entity with compo-
nents - A system is used to synchronize the data between the two domains

The new change allows for faster memory access for position data, while at the same

time making it possible for the engine to render the graphical models with the old trans-

form system. The same will be done for rotation. The current approach should only be

temporary, a pure solution should get completely rid of the transform component and

instead render graphics and animation with the entity-component-system. Using a mix

of both solutions provide with easier implementation, but at the cost of performance.

Support for disabling them should also be made possible so that the data-oriented prin-

ciples can be tested appropriately.

Animations are set through the view agent component. To render different type of ani-

mations for the units, a system referencing view agents will be created. Only one system

will have access to this view-agent, to reduce the usage of reference types.

4.6.2.6 Representing object data with entity-component-system

Data is defined and accessed as fields within a class in traditional object-oriented pro-

gramming. With the entity-component-system, data is instead stored in components

and accessed through entities. To convert an object containing data fields, one must

create components that contain the same type of data as the one found in the template

class. Several components can be used to represent data found within a single class, de-

pendent on how the data is accessed by systems. If a class has set of data fields that are

82 CHAPTER 4. MATERIALS AND METHODS

accessed in different ways, then it would be wise to split the fields into multiple com-

ponents, making it easier to distribute work to several systems. For example, the unit

class in DwarfHeim has several data fields related to object state within the class object.

The attributes represent values such as the current health of an unit, the move-speed

and attack turn. All these stats are related to the unit, but are not used together when

engaged with. Whenever an unit is attacked, the health it will lose is not relevant to its

move speed or attack turn. The data attributes are used independently of each other

based on different circumstances. For this reason, it is wise to split the data fields in

that class into different components. Different systems will be responsible for different

type of components. A system which updates health status, will only care about the

health data, while another system that updates movement will care about move-speed

and not the health. For this reason, multiple components should be created for the data

fields in the class. Figure 4.38 demonstrates an example of this.

Following the situation given above, the following strategy was devised:

Figure 4.38: Splitting data fields of Warrior object into multiple ECS-components based
on their usage

1. Identify how the different data sets in an object is used.

2. Split the data fields of objects into ECS-components.

3. Group data sets that are used together in the same ECS-component

Data sets are grouped together if they are likely to be used together in a system. This

scheme allows for clear separation of data. A system can be created for the different

ECS-components and perform logic on them easily through this separation. Not all

4.6. DATA-ORIENTED DESIGN FOR DWARFHEIM 83

data-fields can be directly converted due to the limitations of components described in

4.6.2.2. Different tactics must be employed for data-fields that have arrays of non-fixed

size or non-blittable types. Changes done to these kind of fields did not follow a general

strategy, but were rather changed based on their usage. They will be covered in further

sections.

4.6.2.7 Converting the behaviour of monobehaviour scripts

The current codebase of DwarfHeim consists of several C# scripts defining behaviour

through components. The monobehaviour scripts usually have an update function that

runs every frame for every component on every game object the script has been at-

tached too. The most important scripts for this task are the agent scripts, described in

4.6.1.5. Using the tips from Unity provided in their github repository(29) for converting

from object-oriented to data-oriented, the following strategy was devised for this part:

1. Identify the relevant scripts with an update function.

2. Create an ECS-system that implements the same behaviour as the one found in

the update function of the original script.

3. Include the required script data through ECS-components

This scheme will provide with some advantages that are beneficial to the task in hand.

The logic and data is separated, as the data is now in defined within ECS-components

and the logic in systems, resulting in cleaner code. By having the required data given

through components and not class objects, the engine is allowed to optimize their place-

ment in memory. All ECS-components made with the iComponent interface in Unity

will be tightly packed in chunks of data for effective iteration. However, the last step

is not always possible in some cases for the DwarfHeim codebase. Parts of the en-

gine such as the pathfinder utility uses a 3rd party asset for calculation of pathfinding,

which is strictly done through objects. It is not possible to convert the required data in

components without also creating a system for the calculation part, which is complex

and requires more time than available for this thesis. For this reason, some monobe-

haviour scripts were only partially converted into a proper entity-component-system

structure. The engine allows for iteration of normal objects in systems by referencing

them through a component array. These objects will keep their data and methods in-

stead of being split into entities and set of components. The data given in those arrays

are reference types and thus not guaranteed to be linear in memory. This goes against

data-oriented principles, but are a necessary trade-off at the current state. The objec-

tive is to reduce the number of such calls in the conversion stage.

84 CHAPTER 4. MATERIALS AND METHODS

With the old structure, the engine would go through each game object and activate

their script update functions. Data would be updated as a part of the game object, and

large data sets in an object would require more calls to the ram. With the new structure

provided through the entity-component-system architecture, the systems will iterate

through each set of data for an entity and update the values. The data sets of each sys-

tem are tightly packed in memory as long as they are of the ECS-component type. This

will in theory reduce iteration time as the processor will have higher grade of spatial

locality. Small improvement in performance will still be possible for cases where only

partial conversion is achieved with references to actual objects. The data and logic part

will still be separated and the system will operate on many objects in batches through

the component object arrays, allowing for batch-related optimization, such as setting

common variables used by all objects before the iteration.

4.6.2.8 Converting the basic command chain

The basic command chain is a data type containing chain of basic commands for a

unit to execute in the game. It is defined as a class containing an internal list, some

fields related to the chain status along with methods related to the chain. The methods

in the class are used for iteration of the chain, either backward or forward depending

on the condition. The command agent within the engine is the only script that have

direct access to the command chain in an unit. Converting the existing basic command

chain into the new entity-component-system is not easily done due to the chain being

represented as a list of basic commands. The list is non-blittable, non-fixed and is a

list of basic commands objects. The limitations imposed on the ECS system makes it

difficult to split the data into components. The internal list can not be represented by a

component, which gives the conversion two possible alternatives:

1. Represent chain of commands in a different way that are not through objects.

2. Keep the internal list structure, and instead refer to it through objects in a system.

One possible way of doing the first alternative is creating a new entity for every new

basic command sent to an unit. A chain consisting of basic commands can be split into

multiple entities, where each entity represents one of the basic commands. Once a ba-

sic command has been executed, the entity can be deleted. The entity will consist of

components representing the basic command data, the execution order and the unit it

belongs to. This will require synchronization between the different commands in the

new structure. To have a working chain, the basic command entities must have some

way of knowing the previous and next basic command in the chain. The amount of

overhead will be significant and possible require to large changes to the code base as

4.6. DATA-ORIENTED DESIGN FOR DWARFHEIM 85

they all refer to a basic command chain. This alternative would truly be data-oriented,

however lack of time and complexity makes it too difficult to start with. For this reason,

the second alternative will be the first approach, and if given enough time, the first al-

ternative will also be attempted.

Referencing the basic command chains through objects will go against the desire for

spatial locality. Having too many systems referencing objects will affect performance

negatively, so the number of systems using them should be kept at the minimum. There

are in total three systems that have component data arrays consisting of objects that

have access to the basic command chain. One system in the client-side will get access

to the basic command chain through a command agent object reference, and a second

system on the server-side that will get access through the ability agent. The third sys-

tem is used to add basic commands sent from the server to the basic chains found in

the clients. These two agents no longer function the same way, as most data and meth-

ods are stripped away in the new data-oriented approach. Instead, they are used as a

way to access the basic command chains associated with an entity. This is done as a

hybrid solution, where both a game object and entity exists. Other data related to the

chain is no longer accessed through the agents, but instead through component data in

the entity-component-system. Figure4.39 illustrates the conversion.

Figure 4.39: The change done to the basic command chain

4.6.2.9 Converting objects with execution logic - Basic actions and utilities

DwarfHeim uses traditional object-oriented design for execution of logic that can vary

during run-time. The different type of basic actions and utilities are represented through

parent classes with a number of virtual methods. When a game object is ready to exe-

cute a basic action or an utility, it will simply call the virtual execution method found in

86 CHAPTER 4. MATERIALS AND METHODS

the parent class. The type of logic found in the execution can vary based on the type of

class it holds. The current way is polymorphic and modular as it is easy to just create a

new class defining new behaviour for a new action or utility. A game object will retrieve

the correct virtual method based on the current basic action or utility that it currently

holds. Once something such as an unit requires new basic action, it will use the type

id found within the basic command to extract the appropriate object instance from

the prototype library. The object-oriented model with the prototype-based instanc-

ing gives a modular setting for creation of new functionality in an easy way. With the

entity-component-system, it is not possible to use the same prototype based scheme

with virtual functions without breaking some of the data-oriented design principles. A

new approach is required where polymorphism isn’t used extensively. The following

strategy was devised for this part:

1. Take the execution logic found in these types of objects and move them into ECS-

systems.

2. Create group of component types that are only used within these type of systems.

3. Create systems that manages the actions or utilities an entity should execute next.

The group of component types in step two are component types that are exclusively

used by one system. When an entity is assigned one of these component types, it will

be able to execute its current basic action or utility. Figure 4.40 shows the systems im-

plemented for the basic actions and utilities. As the figure shows, each basic action

and utility have a special type of parameter ECS-component that the system requires

before executing its logic on the entity data. The parameter components are dynami-

cally added and removed to an entity when it needs to perform one of the basic actions

or utility. Step three is required for managing the type of basic action or utility system

an entity should be updated by. It is important that one entity does not have multiple

parameter ECS-components at the same time, otherwise several systems will execute

their basic action or utility logic on the same entity at the same time, which should not

be possible. In the old design, the game agent used to be responsible for switching to

the next basic action. The agent has been changed into a system in the new design, with

the task of creating and deleting the proper basic action for entities. The ability agent

has also been changed into a system which handles the same with utilities. The util-

ity execution will still be done in the server-side, so the desire for determinism is kept.

Figure 4.41 shows the two new systems.

4.6. DATA-ORIENTED DESIGN FOR DWARFHEIM 87

Figure 4.40: Overview of systems for basic actions and utilities

Figure 4.41: Game agent system and ability update system which handles proper exe-
cution of basic actions and utilities

4.6.2.10 Converting abilities

Abilities are just a set of utilities with a specific iteration order. Converting abilities re-

quires some sacrifices to the current prototype based scheme. In the old design, ability

data is dynamically extracted from prototype files. These files are created when the

ability editor is used to create a new ability. The dynamic instancing is no longer done

in the new design. Instead, abilities are defined in shared components, and as a result

more hard-coded than the previous approach.

88 CHAPTER 4. MATERIALS AND METHODS

Shared components in the entity-component-system do not suffer the same limitations

as regular components. They are allowed to have non-fixed arrays of any type and dele-

gates. A specific ability can be defined through an instance of these shared components.

A general ability shared component struct is created with two fields, one specifying the

id of the ability and another for a delegate. The delegate represents pointer to a switch

function that is unique for each instance of an ability. By defining different types of

switch functions for the abilities, the shared components can be used to iterate through

the correct ability. In addition to the shared ability component, each entity will have a

ability data ECS-component that holds information about the current ability that they

execute. The shared ability component holds information about the actual ability itself,

while the ability ECS-component holds state information about the ability, which is dif-

ferent for each entity.

Using the shared ability component that is shared among many entities, in conjunc-

tion with the ability data ECS-component, allows for a functional ability system. Sys-

tems can correctly iterate the ability of entities by reading the current ability data and

execute the switch function. The switch function takes in the current utility that an en-

tity executes, and outputs the new utility that it should execute once the exit condition

has been met. The ability update system is responsible for managing correct ability be-

haviour shown in figure 4.41.

This scheme moves away from the prototype-based ability structure, making it per-

haps less modular in exchange for better iteration times overall for the complete design.

However, changing the shared component values for an entity means that it has to be

moved in memory, potentially affecting performance negatively if switched too often.

4.6.3 Making it more applicable on a server

The goal of the DwarfHeim conversion was to improve server efficiency. Up until this

point, no consideration has been done for the game as a server. A server needs to run an

instance of the matches being played client-side in order to synchronize between the

players in a game. Additional tasks are required such as performing many of the same

calculations needed in the clients in order to keep the same game state. Clients send-

ing ability requests must also be processed. The server does not need to compute any

graphic-related operation. This means that the visuals and animations can be removed

and in theory improve performance. This is especially useful for the data-oriented so-

lution, as all overhead associated with visuals and animations are object-oriented.

4.6. DATA-ORIENTED DESIGN FOR DWARFHEIM 89

As previously described, the networking model currently uses a master client model,

where one of the clients act as a server by being defined as a master client. The client

declared as a master client will act as a host and perform server related operations.

Whenever new functionality or other behaviour needs to be tested in DwarfHeim, two

clients will be loaded with one acting as a master client. One challenge with this de-

sign is that there is no easy way to test the efficiency of the server without also having

to modify the clients. For this reason, the clients will also have to be modified to act

like the server. This means that when visuals and animations are removed, the clients

will also need to remove them in order to test the server efficiency. However, the results

collected from this scheme will still give an indication in the performance boost gained

by the data-oriented solution, as long as both solutions implement the same changes

to the server.

Two major changes are done to the clients in order to make them behave more like a

server. The first change involves removal of the 3d-models and animations. The graph-

ics could be completely removed for this part, however some sort of visual output are

required during testing to verify correct behaviour. For this reason, a cube mesh is used

to represent an unit. By removing the visuals and animations, the dependency for trans-

form position component is also removed for the data-oriented solution. The second

change involves removal of several game object components, such as the transform

position. Removing this dependency means that there will no longer be need for the

system that synchronizes between the two position components in an object, and as a

result improve performance.

The removal of transform component requires some changes to the RVO controller,

which is one of the scripts used for calculation of movement. The RVO controller is de-

pendent on transform position component when calculating collision between units.

The RVO controller will be changed to use position ECS-component through the entity

manager instead of the transform position.

4.6.4 Testing

The new data-oriented design will be compared to the old object-oriented design writ-

ten by Pineleaf studio. The same type of test will run multiple times for the two solu-

tions, with minor variations in order to test how different parts affect the performance.

The frame rate will be collected and used as a basis for how the two different solutions

perform. Furthermore, the profiler will be used to analyze the time spent on the differ-

ent operations for the solutions, to verify whether the new introduced systems are in

90 CHAPTER 4. MATERIALS AND METHODS

fact faster or not.

Since most of the changes done to the DwarfHeim game is related to the processing

of basic commands through utilities and abilities, a test testing performance in these

cases are needed. To compare the results between the two different solutions in regards

to the efficiency of the client-server model, a test will be made which creates a large

number of units moving in random directions. This test will give each unit a new move

direction every specific time interval. Once a move command has been given from one

unit on the client side, the server must create basic commands as response through the

utility systems. The basic commands will then be transferred to the client units, allow-

ing them to move in the direction and position given.

There will be small variations in the test to inspect different parts that can affect perfor-

mance. The first test will use the 3d-models with animations available in DwarfHeim.

The second test will not use the 3d-models or animations. This change will remove

the need to have system for animation control in the new design. The game object

components associated with an unit, such as position will still be kept so the physics

calculations are the same for both solutions. A cube figure will be used to represent

each individual unit when the dwarf models are removed. The final variation in the test

will only apply to the dod-solution. In this test, several game object components as-

sociated with an unit will be removed. Not only will the animations and 3d-models be

removed, but also all game object data associated with an unit that is not needed. Game

object data for command and ability agents will still be kept in order to reference the

basic command chain in an object-oriented manner. Everything else not related to the

entity-component-system will be stripped away in the final test for the dod-solution.

The test for the oop-solution requires only one monobehaviour script. The script will

instantiate a specific number of dwarf units on the scene. The script will take input pa-

rameters to decide whether the 3d-models and animations should be removed, along

with other parameters deciding other test factors such as enabling collisions. The script

will also consist of an update function that will activate every specific time interval given

by one of the input parameters. The update function will iterate through each unit on

the scene and give it a new move command. The dod-solution implemenents the same

script for instantiating the units. However, the move commands are given through a

system and not a monobehaviour script as the case with the oop-solution. The system

will iterate through each entity representing an unit and give it a new move command.

Figure 4.42 shows the input parameters for the instantiation of units. Figure 4.45 and

4.44 shows the test performed with different number of units and 3d-models.

4.6. DATA-ORIENTED DESIGN FOR DWARFHEIM 91

The 3rd-party script profiler data exporter will be used to calculate cpu usage statis-

tics, such as minimum, maximum and average time values for the different functions.

The profiler does not output stream of more than 300 frames at a time, so only data

for the last 300 frames will be gathered. Data of interest are those involved with the

agents, basic action and utility executions. The results will only be gathered for 400

units spawned.

Figure 4.42: Test options for instancing units representing warriors

Figure 4.43: The moving units and their planned path

92 CHAPTER 4. MATERIALS AND METHODS

Figure 4.44: Test running with animations and dwarf 3d-models - 100 units

Figure 4.45: Test running without animations and dwarf 3d-models - 100 units

Chapter 5

Results

5.1 Entity-component-system implementation

Several tests were performed for the custom entity-component-system. All the tests

were performed on the same computer with the same hardware specifications. Some

of the tests compared the different versions of the implementation, verifying if the opti-

mization steps actually worked. The other tests compared the implementation against

traditional object-oriented design in order to compare the efficiency of using ECS.

The results of these tests will be presented in this section. Discussion of results will take

place in next chapter.

5.1.1 Functional Test

Several tests for the ECS implementation were described in section 4.3.3. In total three

tests were created which verified the points listed. The results of each test was written

to a text file. If an error occurred, the console command would notify. Figure 5.1, 5.2

and 5.3 shows the results for test 1, 2 and 3 respectively for the final design.

5.1.2 Performance tests for the different versions of ECS

The results of the performance tests, described in section 4.3.4, will be presented here.

The tests were completed with different number of entities created, ranging from 10 to

10,000,000. Figure 5.4 and figure 5.5 shows the results of the test for the two different

versions. The graphs to the left shows the time elapsed based on the number of entities

used. The second graph shows the ratio between the two different implementations,

with regards to time elapsed. For the second graphs to the right, logarithmic scale is

used.

93

94 CHAPTER 5. RESULTS

Figure 5.1: Functional test 1 output results

Figure 5.2: Functional test 2 output results

5.1.3 OpenGL sine wave simulation tests

The results of the test described in ?? will be presented here. The different tests were ran

with different number of objects. Not all tests were performed with the same number of

objects, due to the refresh rate. Each bar graph figure shows test result for one specific

number of objects created. The blue and red bars represent the dod and oop solution

respectively. The ratio between the two solutions are also shown for each graph.

5.2 Sine wave simulation

The results for the sine-wave simulation tests from section 4.5 will be presented here.

Both implementations ran the simulation with different number of objects spawned.

5.2. SINE WAVE SIMULATION 95

Figure 5.3: Functional test 3 output results

Figure 5.4: Performance test results: 10-10,000 entities

Figure 5.5: Performance test results: 500,000 - 10,000,000 entities

96 CHAPTER 5. RESULTS

Figure 5.6: Opengl test results with 4000 objects

Figure 5.7: Opengl test results with 15,000 objects

Figure 5.8: Opengl test results with 100,000 objects

5.2.1 Sine wave simulation results

Figure 5.9 shows the average frames per second achieved for both implementations

with different number of points spawned. The green bargraph represents the objected-

oriented solution, while the blue bar graph represents the data-oriented solution. The

ratio between the two solutions are also presented in the figure. Furthermore, some

5.3. DWARFHEIM CONVERSION 97

statistics from the profiler for CPU usage will be presented in the tables, collected with

the profiler data exporter asset. The values show minimum, average and maximum val-

ues for some functions of interest, based on the last 300 frames. The percentage of total

average time for a frame that the functions take will also be shown. Only data which is

directly relevant to the design and important for the discussion is shown in the table.

The original source for the values are available in the appendix along with other time

values for other less important functions in the appendix B.7.2.

In addition, the data-oriented approach was tested with a higher number of objects

in order too see how many object it could simulate with before breaking down to the

same performance level as the object-oriented solution. The results are shown in figure

5.11.

Figure 5.9: Simulation results in Unity

Figure 5.10: Simulation results in Unity - Ratio between DOD and OOP

5.3 DwarfHeim Conversion

This section will cover the results related to the DwarfHeim conversion.

98 CHAPTER 5. RESULTS

Figure 5.11: Simulation results for higher number of objects for data-oriented solution

Function type Min time(ms) Avg time (ms) Max time(ms) Total time %

PointMovementSystem 3.59 8.14 11.70 37.87

Gfx.WaitForPresent 0.89 13.14 23.73 47.61

MeshInstanceRenderer

System
1.14 1.39 3.05 6.41

Render.OpaqueGeometry 0.12 0.17 0.34 0.76

TransformSystem 3.63 4.90 8.14 22.68

Table 5.1: Minimum, average and maximum time elapsed for several functions based
on the last 300 frames for the dod sine-wave - Total time is based on average values

Function type Min time(ms) Avg time (ms) Max time(ms) Total time %

graph.Update() 15.63 16.22 22.68 12.15

Render.OpaqueGeometry 57.16 60.99 77.86 45.79

Gfx.WaitForPresent 0 0 0 0

Table 5.2: Minimum, average and maximum time elapsed for several functions based
on the last 300 frames for the oop sine-wave - Total time is based on average values

5.3.1 Functional results

In total three basic actions were converted for DwarfHeim, the idle, move and meele at-

tack actions. The 3d-models and animations were used for this part to correctly retain

the same features in the original conversion. Figure 5.12 shows the successful imple-

mentation of movement, where a dwarf unit moves toward another unit. Figure 5.13

5.3. DWARFHEIM CONVERSION 99

shows two units attacking another unit until its health reaches 0, unfortunately there

is no animation for death implemented, nor is the health status shown. When the

unit dies, the game object representing it will be destroyed and vanish immediately

without death animation. The results are from the converted version where the entity-

component-system was used in Unity.

Figure 5.12: Unit walking towards another unit

5.3.2 Performance test

The results from the performance tests, described in section 4.6.4, are shown in figure

5.14, 5.15 and 5.16. The results are shown for both the original DwarfHeim codebase

and the converted version. 5.14 shows the results for test where both animation and

3d-models were activated while 5.15 shows results for animation and dwarfheim 3d-

models deactivated. Furthermore, 5.16 shows the results for the converted DwarfHeim

version once additional object-oriented components were deactivated alongside the

original version without 3d-models or animations. The ratio between the results are

100 CHAPTER 5. RESULTS

Figure 5.13: Two units attacking enemy unit

also shown for each figure.

Figure 5.14: Results for DwarfHeim tests with animations and 3d-models on

Figure 5.15: Results for DwarfHeim tests with animations and 3d-models off

Cpu usage times were inspected for all the variations in the tests, with 400 objects

5.3. DWARFHEIM CONVERSION 101

Figure 5.16: Results for the converted DwarfHeim with additional object-oriented com-
ponents deactivated versus the original version without animations or 3d-models

spawned in each. The tables below shows the data gathered for the three tests with the

profiler data exporter script. The only values of interest are the time elapsed for the

different functions. The script is only able to extract data for the latest 300 frames. The

original data representation with the data exporter is available in the appendix B.8

Function type Min time (ms) Avg time (ms) Max time (ms)

ViewSynchronizationSystem 1.39 1.72 2.99

MoveSystem 0.4 0.51 0.88

GameAgentSystem 0.12 0.41 9.67

AbilityAgentSystem 0.09 0.29 1.05

BasicChainUpdateSystem <=0.01 0.44 9.13

MovingTestSystem <=0.01 0.25 12.21

PathfinderSystem 0.02 1.02 1.02

AnimationViewSystem 0.03 0.06 0.6

AbilityUpdateSystem 0.03 0.07 0.75

Sum 4.77

Table 5.3: Results for type 1 DOD

102 CHAPTER 5. RESULTS

Function type Min time (ms) Avg time (ms) Max time (ms)

ViewSynchronizationSystem 1.37 1.56 2.52

MoveSystem 0.39 0.48 0.85

GameAgentSystem 0.14 0.22 2.41

AbilityAgentSystem 0.09 0.14 0.77

BasicChainUpdateSystem 0 0.08 1.67

MovingTestSystem 0 0.06 10.51

PathfinderSystem 0.01 0.02 0.23

AnimationViewSystem 0 0 0

AbilityUpdateSystem 0.03 0.04 0.51

Sum 2.6

Table 5.4: Results for type 2 DOD

Function type Min time (ms) Avg time (ms) Max time (ms)

ViewSynchronizationSystem 0 0 0

MoveSystem 0.35 0.47 0.9

GameAgentSystem 0.09 0.17 1.72

AbilityAgentSystem 0.05 0.11 0.87

BasicChainUpdateSystem <=0.01 0.02 1.73

MovingTestSystem <=0.01 0.04 11.33

PathfinderSystem <=0.01 0.01 0.07

AnimationViewSystem 0 0 0

AbilityUpdateSystem 0.03 0.03 0.47

Sum 0.85

Table 5.5: Results for type 3 DOD

Function type Min time (ms) Avg time (ms) Max time (ms)

CommandAgent.Update() 0.04 0.07 0.12

GameAgent.Update() 2.03 2.63 7.50

AbilityAgent.Update 0.20 1.19 10.83

WarriorCreator.Update <=0.01 0.33 13.44

Sum 4.22

Table 5.6: Results for type 1 oop

5.3. DWARFHEIM CONVERSION 103

Function type Min time (ms) Avg time (ms) Max time (ms)

CommandAgent.Update() 0.03 0.07 0.23

GameAgent.Update() 2.02 2.42 4.41

AbilityAgent.Update 0.18 0.50 3.27

WarriorCreator.Update <=0.01 0.10 10.37

Sum 3.09

Table 5.7: Results for type 2 oop

104 CHAPTER 5. RESULTS

Chapter 6

Discussion

The results will be discussed in this chapter.

6.1 Discussion of Results

Several tests and tools for analyzation was used for this thesis. The results will be dis-

cussed in this section.

6.1.1 Custom C# implementation of Entity-Component-System

Several tests were performed for the custom entity-component-system implementa-

tion in C#. The tests can be categorized into three objectives, testing for optimization in

regards to implementation, testing for confirming correct functionality and behaviour,

and testing for performance compared to object-oriented design.

6.1.1.1 Functional tests

The functional tests were created for one reason that happened to be beneficial during

production, to verify that the intended behaviour of the design was correct. There were

large changes in the code every time improvements were made. This caused all kind

of changes in the different modules of the implementation, making it sometimes diffi-

cult to verify that the behaviour was correct. Due to this, functional tests were created.

These tests were always performed with the same data input with some expected out-

put values. This made it easy to make changes to the module and then verify that the

intended behaviour was not corrupted during changes by running the test. In addition,

these tests were helpful in verifying the specifications given in 3.2.1. The results shown

105

106 CHAPTER 6. DISCUSSION

in section 5.1.1 showed the results for the final changes, showing that the intended be-

haviour was correct for the implementation.

6.1.1.2 Performance Tests

The performance test results showed promising gain with the improvements done to

the ECS implementation. The final implementation was around 8,5 times faster than

the original solution. When a system operates on a significant number of entities, re-

trieving data through the GetComponent api is expensive as the function will use re-

flection to retrieve correct id before using that value to retrieve the component store

reference. Even though having all the component data stored in arrays for each system,

the extra overhead was not significant enough to reduce overall performance, as the re-

sults showed. However, the results showed that the original implementation was more

efficient for small number of entities. Thus, it would probably be beneficial to use the

regular Get Entity data api for systems with small data set. Furthermore, the decrease

in the ratio between the two solutions seen for 10,000,000 entities can be due to the

memory transfer between the component data arrays in the two different systems. Ev-

ery time a system is finished with its update function, the updated data will be stored to

the component stores. With a large number of entities in the system, this overhead will

be more costly, thus not having the same performance gap ratio.

One could also argue in favor of the inject attribute for making it easier for users to

prepare data. Even though the results were positive, one must keep in mind that these

tests were performed for only a single system. Having multiple systems would mean

that more time would be spent on storing and loading values to the component arrays

for each system. However, the results showed significant gap between time elapsed,

meaning that it would in theory require a huge number of additional systems before

the final design experiences worse performance.

Overall, the results of these tests strengthens one of the claims about data-oriented-

design principles. Iteration is significant faster when the processed data is stored lin-

early in memory. Having the data linear in ram will cause less cache-misses and thus

less memory fetches from the ram, increasing performance as the results showed.

6.1.1.3 OpenGL integration - Sine wave simulation

Several tests were performed for the ECS implementation once it was integrated with

openGL. The test simulated a sine-wave graph consisting of large number of quadrilat-

eral points in order to benchmark the application. Each of these tests were performed

6.1. DISCUSSION OF RESULTS 107

twice, one with the ecs system and one with pure object-oriented method. The goal

was to compare the results between the different approaches and see if having data-

oriented principles were indeed more efficient or not. The results of the seven different

tests were presented in section 6.1.1.3, and they will be discussed here.

For most of the tests, the data-oriented system was more efficient with a higher average

fps than the objected-oriented counter-part. This strengthens the assumption that a

linear data-layout is more efficient for the processor as the system will experience less

cache misses. The data-oriented design performs better than the object-oriented de-

sign when the vertex buffer objects are only allocated once during startup, as oppose

to allocating it every frame. Measuring the time between the different order of calls

showed that allocation of vertex buffer objects were expensive, and thus had a larger im-

pact on performance. This caused smaller performance gap between the data-oriented

and object-oriented design for cases where the vertex buffer objects were allocated each

frame. Furthermore, test 1 had no internal reference to other objects, which made it

very fast for the object-oriented design. This gave similar performance between the

two solutions for low number of objects. The other tests had a class structure for the

object-oriented design, where the quad point class had references to a color object and

mesh object. The increased number of references in the object-oriented design created

a larger gap in performance between the two solutions, as test 2-5 shows.

One interesting result from the tests are the one given from test 1 and 6, which shows

that the two solutions are approximately equal in performance for low number of ob-

jects, however with the object-oriented design slowly performing better as we increase

the number of objects and entities. I assumed this was because of the manager al-

ways updating the component stores each frame for each system, which becomes quite

costly as the number of entities increases. The object-oriented approach does not need

to transfer memory between component data arrays in component stores, and as a re-

sult would perform better when the number of points increase. To further test this

hypothesis, test 7 was created. In this test, the data-oriented approach only had one

system for updating the positions, colors and renders of the points. This would remove

the need to transfer memory between the different component data arrays in different

systems. As the results showed, the data-oriented design was now faster and more effi-

cient than the object-oriented solution. The results from this test shows that the linear

memory layout is more efficient in the case where we only have one system with large

number of entities. However, there comes a point where a large number of entities will

have large enough overhead where the performance boost gained by the linear data-

layout is not good enough to give an overall performance boost.

108 CHAPTER 6. DISCUSSION

6.1.2 Limitations of the custom ECS implementation

The results from the different tests for the custom implementation strengthened the

hypothesis that linear memory-layout is more efficient for a processor. However, this

was only tested for a specific case. The ECS implementation is incomplete and not

really tested to its fully extent when it comes to the types of applications one could

make with it. It is still uncertain whether the custom implementation could create more

efficient games, especially for small number of entities required. There is two things we

can assume the tests performed for the custom design. First, using entity-component-

system makes it easier to divide our application into clear domains. This is mostly based

on personal preference and experience, however it is clearly easier to work when you

separate data and logic into different domains. Second, the linear memory-layout is

better for the processor, given that we do not have too much overhead on making it

linear.

6.1.3 Meeting the specifications

The final design of the custom C# implementation satisfies all the specifications de-

termined for the design. The design follows the entity-component-system pattern de-

scribed in section 2.2.2. The functional tests proved the intended behaviour for the

entity-component-system. Data and logic is separated in components and systems re-

spectively, with entities being weak references to the data available. Furthermore, the

use of component data arrays forces component data of same types to be stored lin-

early. The three different domains are decoupled and only accessed through a man-

ager. The base class LSy stem gives access to easy interface for defining new logic in

an application. The opengl integration provided the possibility of rendering graphics,

making it possible to make games. At its current state, the design is advanced enough

to be able to create games. An example of such a game demonstrating the capabilities

were unfortunately not implemented due to time constraints.

6.1.4 Potential issues with the current design

The current implementation of the entity-component-system in C# is incomplete. Com-

ponent data of same types are stored linearly together in memory, without any regards

to the entities that own them. The memory allocation is not optimal for scenarios where

multiple entities have the same set of data. In these cases, it would be more efficient for

a system to iterate through the data based on entities instead of strictly component

types, as identical data sets would imply that the entities represent the same type of

"object".

6.1. DISCUSSION OF RESULTS 109

Furthermore, the tests ran for this part were simple in its design and construction. An

actual game was not constructed for the test implementation, but rather a simulation

that only required large number of objects. The design might not necessarily be bet-

ter for cases where the number of objects are low nor for games that requires many

systems. These cases are yet to be tested for, but should be in the future if work is to

continue for this design.

6.1.5 Sine-wave simulation results in Unity

The results from the sine-wave simulation done in Unity were shown in section 5.2.

As the results demonstrate, the data-oriented solution performed better in every way. It

managed to outperform the objected-oriented solution with a factor of over 15 once the

number of objects spawned became significant. This shows that the entity-component-

system in Unity is very optimized and able to waste less time on the same type of

work, given that the data is laid out in a different way. Another interesting observa-

tion from the result shown in figure 5.11, is how much better the data-oriented design

is in spawning larger number of objects. The object-oriented solution struggled with

outputting more than a couple of frames per second at 40,000-60,000 objects, while the

data-oriented solution did not go down to the same level of frame rate until it reached

400,000 objects.

6.1.5.1 Deviation in gpu rendering

The results shows that the entity-component-system in Unity is efficient, however it is

uncertain whether it can all be attributed to memory layout. For this reason, the unity

profiler was used for further inspection of cpu usage as explained in section 5.2. As the

table for the dod-solution shows in 5.1, one of the most time consuming operations was

the Gfx.WaitForPresent operation. This operation consumed as much as 47.61% of the

total cpu time in an average frame. According to Unity, this operation is simply a stall

in the processor as it waits for the gpu to finish rendering (30). This implies that the

decrease in performance is related to the graphical processing unit and not the central

processing unit. Based on this, it can be assumed that the processor would be able to

perform even better if the performance wasn’t bounded by the rendering time on the

gpu.

On the other hand, the objected-oriented solution is not affected by a slower gpu. In-

spection showed that the Render.OpaqueGeometry operation is the most time consum-

ing operation of the post late update function, consuming a total of 45.79% cpu time as

110 CHAPTER 6. DISCUSSION

shown in table 5.2. Interestingly enough, the same operation only requires 0.17 ms for

the dod solution. The huge difference in the operations between the two solutions were

surprising and further research were conducted in order to figure out the cause, as this

operation is responsible for rendering the geometry of opaque elements.

After checking the unity frame debugger available in the profiler, which shows every

draw call command sent to the gpu, it was discovered that the oo-solution sent 99 draw

calls for this specific operation each frame, as oppose to the dod-solution which only

sent 1 call. The profiler also stated that the draw calls were not batched since they used

different meshes, which is not true in this case. All the cube objects have the same

mesh and materials, as they are clones of each other. Unfortunately, there was no con-

crete answer to this question, other than the fact that the automatic gpu instancing in

Unity is not completely reliable. The results from these numbers implies that the huge

performance boost gained is not completely thanks to the data-oriented approach, but

also the way unity handles the graphical rendering of objects. It might still be possi-

ble that the entity-component-system in Unity processes graphics in a more efficient

method through the mesh instance renderer system which is responsible for drawing

the meshes. The conclusion around these operations are not clear.

One possible theory for the discrepancy might be due to the way the two solutions rep-

resent a cube point. Every cube point is a game object in the oo-solution. This means

that they all have transform position components that are updated and further used by

the physics engine for calculation. There is no game object representing a cube point in

the dod-solution as they are instead directly drawn by sending exact draw commands

to the gpu. There is no associated game object with transform position for the physics

engine to perform calculations with, as they are now represented in another way. This

hypothesis was tested by disabling the physics simulation in Unity, however the results

hardly changed.

6.1.5.2 Iteration time for the two solutions

Another interesting outcome of the tests are the time elapsed for the update functions

that runs each frame for the two solutions. As the values in table 5.1 shows, the point

movement system, responsible for updating position of each cube point, used 8.14 ms

to complete its update function. On the other hand, the oo-solution used 16.22 ms to

execute its update function as table 5.2 shows. This function performed the same task

as the point movement system, with the exception of being object-oriented. The results

here shows that the dod-solution were twice as fast at iterating through each cube point

6.1. DISCUSSION OF RESULTS 111

and updating its position compared to the oo-solution. The results here indicates that

the linear memory-layout is indeed more efficient for the processor. If the graphical

rendering part and other overhead associated with the solutions were the exact same

for both, then the implication would be that the dod-solution would be only twice as

good at its best in average. This is certainly not the case in this scenario due to other

operations playing a larger part than the update functions.

The efficiency of data-oriented design is even more highlighted when the minimum

and maximum values are discussed. For the dod-solution, the minimum and maximum

update time for the iteration was 3.59 and 11.70 ms respectively for the point movement

system. On the other hand, the oo-solution had a minimum and maximum update

time of 15.61 and 22.68 ms respectively. At the cases where minimum loop times were

achieved, the dod-solution performed 4 times faster than the oo-solution.

6.1.5.3 Implications of the research

The data-oriented solution performed better with the ability to spawn a significant

larger number of objects than the object-oriented solution. The results clearly showed

that the dod-solution is better. Whether the performance boost gained by the data-

oriented solution is only attributed to the data-oriented design, is unclear. The re-

search conducted for the gpu rendering deviation was inconclusive. However, the dod-

solution were still twice as fast at iterating through each point than the counter-part

for an average frame. It is possible that the use of systems and clear separation be-

tween data and logic allows for a more efficient rendering system, handled by the en-

gine. Two assumptions can be made from the research done here. First, the entity-

component-system is more efficient than the typical object-oriented solution. Second,

linear memory-layout made the cpu more efficient as updating the points on the graph

were faster on the dod-solution. Both solutions were able to perform the same task, re-

gardless of how the two solutions differed in how they executed different functions, the

dod-solution were able to spawn more objects with better frame rate. In the end, that’s

the most important thing for playing games. At least for this specific case, it is safe to

claim that the dod-solution performed better.

112 CHAPTER 6. DISCUSSION

6.2 DwarfHeim conversion to a more data-oriented de-

sign

6.2.1 Functional features of the data-oriented design

The mix of data-oriented and object-oriented conversion proved that it would be pos-

sible to turn parts of DwarfHeim into a more data-oriented solution while still keep-

ing the same features. This was shown by the results illustrating dwarf units with the

ability to move and attack. The prototype-based library structure was not directly con-

verted into a data-oriented solution, however it was used as an intermediate step for the

entity-component-system to gather data from objects through that library. This shows

the possibility of still using those types of features while still making the game data-

oriented.

The main issue with going full data-oriented is the basic command chain,current ani-

mation and 3d-model system. The animation is controlled through an animator object

which is tied to Unity’s engine back-end. Time was not spent on improving this part,

however it was later discovered that Unity had a data-oriented example application that

showed the use of animations in a data-oriented system. The example was too compli-

cated and involved exhaustive knowledge about animation and was thus ignored for

this thesis. The 3d-models of dwarfs consists of a set of visual components that to-

gether define the complete model, which made it hard to represent through meshes in

the game. The basic command chain could be converted into a pure data-oriented so-

lution if enough time was given. Solving these problems would make it significant more

easier to convert it into a data-oriented solution, as the game logic itself can easier be

divided into systems and components.

While the results are promising when it comes to features, it must be noted that it was

done only for a small part of the game. Large parts of the codebase were not touched

nor inspected, making it uncertain whether the game is truly completely convertible. At

minimum, the small scope showed promising outlook for the server-part of the game,

which is one of the parts where the desire for cpu optimization is biggest due to costs.

6.2.2 Performance results

Three type of performance tests were performed for the data-oriented solution and two

type of tests for the original object-oriented version.

6.2. DWARFHEIM CONVERSION TO A MORE DATA-ORIENTED DESIGN 113

6.2.2.1 Test with animation and 3d-models activated

Figure 5.14 showed the results for performance test for the case where both animation

and 3d-models were activated. For lower number of objects, the data-oriented solution

was performing slightly better until the number of objects spawned increased above

400, at which point the object-oriented solution started to perform better. A potential

reason for this might be the increased overhead in the dod-solution where a system

is used to synchronize position data between the entity-component position and the

transform position. Table 5.3 shows time statistics for several systems, including the

ViewSynchronizationSystem which has the task of synchronizing the positions. This

system uses an average time, based on the last 300 frames before completion of test,

1.72 ms to complete. At its minimum and maximum it spends 1.39 2.99 ms respectively.

This number increases as the number of objects increase. Furthermore, the system uses

reference type references to the transform position component, which violates the the

spatial locality property, explaining its inefficiency.

The results here shows that the dod-solution is either equal or slightly worse when

many of the object-oriented dependencies are injected into the systems.

6.2.2.2 Test with animation and 3d-models deactivated

The dod-solution outperformed the oop-solution once the ViewSynchronizationSys-

tem was deactivated and 3d-models were replaced with simple meshes. The additional

overhead brought from the ViewSynchronizationSystem and animation system made

the dod-solution perform better than the oop-solution with same features turned off.

Both solutions saw a huge jump in frame rate once these parts were removed. This

gives promising outlook for the server-side where these parts are not needed. At 1000

objects, the ratio between the dod and oop solution were slightly above 1.4, indicating

a moderate boost in performance.

6.2.2.3 Test with dod-solution having additional object-oriented components deac-

tivated

When transform position, animations and 3d-models were completely removed with

all path movement calculation done through the 3rd-party path handler, performance

improved significantly. The dod-solution had a frame rate seven times better versus the

oop-solution for 1000 objects. Much of the gain in performance can be attributed to the

reduction in physics due to the non existing transform position, which now stays static.

The static transform position values causes less calculation for physics. Collisions and

path movement are still taken care by the RVOController, so the extra physics applied

114 CHAPTER 6. DISCUSSION

to the game is not really needed.

This version of the test is most applicable to a server, as unnecessary components are

removed.

6.2.3 Inspecting time values for the converted parts

Evaluating how the converted parts of the game performs versus the original version is

important to establish the efficiency of the solution. The tables in 5.3.2 presented the

different time values for the functions associated with the agent, basic action and utility

actions. These values will be further examined. In general, lower maximum values were

found for the tests that performed with a higher frame rate. This can be attributed to

the fact that the statistics calculated were based on the last 300 frames. The range of

possible values will be smaller in the case of high frame rates since the 300 frames will

cover in total a smaller time span.

6.2.3.1 Game agent conversion

The old game agent structure was split into the Game Agent System, which manages

the type of basic action an entity should execute, and the group of systems represent-

ing basic actions. The basic action move system is the only relevant part here as the test

only dealt with movement. In addition the animation view system overtook responsi-

bility for setting animation through the view agent, which the game agent previously

did. The total average time for the new systems representing the old game agent is 0.98,

0.7 and 0.64 ms for the first, second and third type of tests respectively. On the other

hand, the total average time for the old game agent is 2.63 and 2.42 ms for first and

second type of tests respectively. In average, the new converted version performs bet-

ter. However, the game agent system has larger spikes in values than the other solution,

going as high as 9.67. This spike does not happen often and is in rare cases where the

system must change basic action parameter component for every entity in the system.

In general, the new game agent system was able to perform better.

6.2.3.2 Command Agent conversion

The command agent did not perform a lot of work in the original version. It was used as

a reference to the basic command chain, and thus most of the work was done through

other scripts that accessed it. Due to this it is not easy to compare this agent against

its respective system. Parts of the command agent was converted into the basic chain

update system, which is responsible for updating the chain with new basic commands

received from the server. This work is more time consuming in cases where significant

6.2. DWARFHEIM CONVERSION TO A MORE DATA-ORIENTED DESIGN 115

requests are received. This can be seen from the values given in the tables, with the

system having spikes as high as 9.13 ms.

6.2.3.3 Ability Agent Conversion

The ability agent was split into the ability agent system, group of utility systems and

the ability update system. For the tests performed, the pathfinder utility system were

the only one used in addition to the idle utility system, which had negligible values.

The total average time for these systems were 1.38 and 0.2 for the first two tests. On the

other hand, the total average time for the original version was 1.19 and 0.5 ms. The oop-

solution experienced larger spikes due to it having larger workload. The time results

gathered are not sufficient to conclude whether the new ability agent system is better

or not. There are still too many dependencies on object-oriented objects.

6.2.4 A hybrid solution vs pure data-oriented

As previously stated, the conversion was a combination of data-oriented and object-

oriented principles due to complexity and time constraint. Too many systems were

dependent on objects as the figures in section 4.6.2.3 illustrated. This dependency goes

against spatial locality and increases cache misses. An ideal solution would have none

of these object-oriented dependencies. Due to this, the current solution prevents the

application from being truly tested in a real data-oriented setting.

The current solution does not truly compare a data-oriented application versus an object-

oriented solution. Instead, a combination is tested. It is still possible to see improve-

ments with the hybrid version as the changes can indicate better performance, as the

results showed. However, these changes are difficult to interpret when the solution still

have many object-oriented dependencies. The current solution prevents the applica-

tion from being truly tested in a real data-oriented setting. The next step in the design

would be to remove all object-oriented dependencies and convert the game into a pure

data-oriented solution.

6.2.5 The implications of the research

The hybrid solution proved to be better in cases where it is made more applicable for

a server, such as no animations or graphics. The results are promising and indicative

of better cpu efficiency when the entity-component-system in Unity is utilized. At best

case, the dod-solution managed to outperform the oop-solution with a factor of seven.

The server costs could be significantly reduced if same grade of conversion were ap-

116 CHAPTER 6. DISCUSSION

plied to the complete server-part of the game. The conversion can potentially be even

better if the conversion were pure data-oriented.

The dod-solution didn’t perform as well when animations and 3d-models representing

dwarfs were used. A pure data-oriented solution with data-oriented animation system

and graphic renders are necessary to conclude the efficiency of data-oriented solution

for a complete game. The results from the other tests are indicative of better perfor-

mance when the entity-component-system is properly used. While the results from

the first tests were not positive for the dod-solution, it still showed remarkable promise

when it comes to efficiency. This remains to be seen with a complete conversion.

Lack of time made it difficult to test other parts of the converted version, such as the

meele attack ability. Nor was any other test implemented for the design than the move-

ment one. This limited the scope of the test to the single instance of movement, which

can cause results that are not strong enough to imply superiority with one design against

the other.

It would also be advisable to test the new job system in Unity with the entity-component-

system. Much of the work done in the conversion can be split into multiple threads. It

would be beneficial to research the improvements gained by using this feature as data-

oriented design is in theory better for parallelization.

6.3 General results

In general, most of the data-oriented tests achieved higher frame rate. The frame-rate

was an indirect indication of processor efficiency, as higher frame rate meant the pro-

cessor was able to perform more work in same time span. The frame-rate gave an

overall look at performance without providing in-depth details about how the differ-

ent processes in the applications performed. Rendering, scripting and physics calcu-

lation were performed better in most cases due to linear memory-layout. This was

especially the case for the applications written in the Unity engine, as the engine op-

timized the rendering once the entity-component-system was used. A higher frame-

rate meant that the graphics had smoother animation, better response times and able

to output more work. The data-oriented solution performed better than the object-

oriented counter-part based on the frame rate.

6.4. DEVELOPING WITH THE ENTITY-COMPONENT-SYSTEM 117

6.4 Developing with the entity-component-system

Most of the software developed in this thesis involved the entity-component-system.

The architectural pattern proved to be effective when it came to writing software as

the separation between data and logic allowed me to easily implement new functions.

Throughout this thesis I experienced many positive things with the usability of the pat-

tern that will be listed here.

• Focusing on data allows for better planning on structure.

• The separation between data and logic allows you to focus on each part sepa-

rately.

• The pattern allows for easy implementation of systems that do specialized work.

• Adding new behaviour to a set of entities only involves creating a new system.

• Adding additional data to an entity and thus potential new behaviour, is easily

done by attaching components.

• Data dependency is negligible as each component data is its own instance.

• Component data is reusable as it does not belong to any specific entity or in-

stance, any "object" can use the type of data if required.

The positives from this pattern is especially beneficial for a video-game in development.

With a pattern like this, a developer can easily define new set of component data and

systems operating on them without touching other parts. Component data is just data,

it is not related to any object or entity that it must adhere to, any new entity can choose

to have it as part of its component set. This allows for good re-use of code.

There are however certain issues with the entity-component-system that can be chal-

lenging for developers.

• It is less intuitive to work without objects that encapsulate logic and data.

• It is not easy to implement polymorphic behaviour.

• It can sometimes be difficult keeping track of the type of data en entity has and

how the data is used.

Overall, using entity-component-system with data-oriented principles can potentially

create games that are more optimized. One important factor for video-games is visual

fidelity, which is also impacted by the frame-rate. If the goal is to have better frame-

rate, then data-oriented principles with entity-component-system is the method future

118 CHAPTER 6. DISCUSSION

video-game developers should choose. It performs better than object-oriented design

in exchange for less readability and polymorphism.

Chapter 7

Conclusion

Throughout this thesis, three applications have been implemented proving the effi-

ciency of data-oriented design. The results indicate that developing applications with

focus on memory-layout of data can improve the efficiency of processors. The use of

entity-component-system allows for clear separation between data and logic, making

it easier to develop applications that are data-oriented. The usability of the architec-

tural pattern along with the results given from the tests indicates that this is a benefi-

cial alternative for video-game development. The results also strengthened the use of

data-oriented principles with the entity-component-system in Unity as the results il-

lustrated performance boost by using a data-oriented approach. Even the incomplete

DwarfHeim conversion performed better in certain cases, showing that the processor

is indeed better when data layout is optimized for cache efficiency.

Although the results points toward data-oriented design, it is still not absolutely clear

whether all performance gains are due to data-oriented principles. The applications

that were used to verify the efficiency are dependent on external factors that affect per-

formance as well, making it difficult to clearly assess that data-oriented design is better

in every way. Nonetheless, further inspection of results showed that some of the im-

provements can be attributed to data-oriented principles.

In the end, many of the improvements due to data-oriented design increased the over-

all frame rate. For video-games, this is one of the most important factors. The im-

provements in frame rate gained through data-oriented design should motivate future

developers to use this paradigm when developing games.

119

120 CHAPTER 7. CONCLUSION

Chapter 8

Further Work

A list of propositions for further work will be presented in this chapter. the propositions

are possible improvements based on my experience with the work done in this thesis.

8.1 Recommendations for the custom entity-component-

system

The current custom entity-component-system is functional but not optimal when it

comes to performance. This is especially the case for the memory-management done

in the architecture, which is fairly simple. No game was developed using the custom

entity-component-system due to time constraints, which could prove useful in analyz-

ing a real-world scenario. The list of further work is inspired by the discussion given in

section 6.1.1. The list of recommendations for further work are as follows:

• Better memory allocation based on entities and its component data instead of

arranging strictly through component types.

• Making the API more user-friendly.

• Creating systems that handles graphical renders automatically through compo-

nents.

• Developing a game using the architecture versus an object-oriented implemen-

tation to compare results.

121

122 CHAPTER 8. FURTHER WORK

8.2 Recommendations for the DwarfHeim conversion

The current conversion of DwarfHeim is not pure data-oriented, nor is the scope of the

conversion significant. The next step in converting the game would involve steps in

removing object-oriented dependencies. Additional changes can involve more com-

plex changes such as converting the 3rd-party path movement controller. A full list of

recommendations for further work are as follows:

• Convert the basic command chain structure into a pure data-oriented solution.

– Each basic command in the chain could be turned into entities representing

a basic command, as partly described in 4.6.2.8

– This will involve overhead for synchronizing the correct order of basic com-

mands for an entity.

– Alternatively create a component with fixed size variables representing the

chain.

• Convert the movement calculation part into a pure data-oriented solution.

– This would involve taking all the monobehaviour components and turning

them into systems as described in 4.6.2.7.

– All data should be moved to components.

• Research methods for representing the 3d-models and animations strictly through

systems.

– Unity has provided source code for achieving this, however the codebase

was to complex for this thesis.

• Turn the whole client-server model data-oriented.

– Allow systems to handle all communication between clients and servers.

• Improve performance by using Unity’s job system for multi-threaded program-

ming

– The job system has support for data-oriented principles

Bibliography

[1] C. Carvalho, “The gap between processor and memory speeds,” 2002.

[2] “Finalizing objects, and memory concepts (stack versus heap),” http://archive.

oreilly.com/oreillyschool/courses/csharp2/csharp214.html.

[3] “Pineleaf studio,” http://pineleafstudio.com.

[4] L. T. Bojan Jovanović, Raphael M. Brum, “Mtj-based hybrid storage cells for

normally-off and instant-on computing,” 2015.

[5] “Locality of reference,” https://en.wikipedia.org/wiki/Locality_of_reference.

[6] B. Nystrom, “Data locality,” http://gameprogrammingpatterns.com/data-locality.

html.

[7] J. Ante, “Unite austin 2017 - writing high performance c scripts,” https://www.

youtube.com/watch?v=tGmnZdY5Y-E.

[8] D. Davidović. (2014) What is data-oriented game engine design? Access date:

20-04-2018. [Online]. Available: https://gamedevelopment.tutsplus.com/articles/

what-is-data-oriented-game-engine-design--cms-21052

[9] “New 2018 features for unity,” https://unity3d.com/unity/features/

job-system-ECS.

[10] M. P. Johansson, “Medium - composition over inheritance,” https://medium.com/

humans-create-software/composition-over-inheritance-cb6f88070205.

[11] “Composition over inheritance,” https://en.wikipedia.org/wiki/Composition_

over_inheritance.

[12] “Unity technologies,” https://unity3d.com/company.

[13] U. Technologies, “Unity - scripting api:monobehaviour,” https://docs.unity3d.

com/ScriptReference/MonoBehaviour.html.

123

http://archive.oreilly.com/oreillyschool/courses/csharp2/csharp214.html
http://archive.oreilly.com/oreillyschool/courses/csharp2/csharp214.html
http://pineleafstudio.com
https://en.wikipedia.org/wiki/Locality_of_reference
http://gameprogrammingpatterns.com/data-locality.html
http://gameprogrammingpatterns.com/data-locality.html
https://www.youtube.com/watch?v=tGmnZdY5Y-E
https://www.youtube.com/watch?v=tGmnZdY5Y-E
https://gamedevelopment.tutsplus.com/articles/what-is-data-oriented-game-engine-design--cms-21052
https://gamedevelopment.tutsplus.com/articles/what-is-data-oriented-game-engine-design--cms-21052
https://unity3d.com/unity/features/job-system-ECS
https://unity3d.com/unity/features/job-system-ECS
https://medium.com/humans-create-software/composition-over-inheritance-cb6f88070205
https://medium.com/humans-create-software/composition-over-inheritance-cb6f88070205
https://en.wikipedia.org/wiki/Composition_over_inheritance
https://en.wikipedia.org/wiki/Composition_over_inheritance
https://unity3d.com/company
https://docs.unity3d.com/ScriptReference/MonoBehaviour.html
https://docs.unity3d.com/ScriptReference/MonoBehaviour.html

124 BIBLIOGRAPHY

[14] “Unity profiler data exporter,” https://github.com/steve3003/

unity-profiler-data-exporter.

[15] “Introduction to the c language and the .net framework,”

https://docs.microsoft.com/en-us/dotnet/csharp/getting-started/

introduction-to-the-csharp-language-and-the-net-framework.

[16] J. Flick, “Frames per second - measuring performance,” https://catlikecoding.

com/unity/tutorials/frames-per-second/.

[17] S. Rombauts, “A small and easy c++ entity-component-system (ecs) library,” https:

//github.com/SRombauts/ecs.

[18] “Opengl overview,” https://www.opengl.org/about//.

[19] “Opengl,” https://en.wikipedia.org/wiki/OpenGL.

[20] “Opengl language bindings,” https://www.khronos.org/opengl/wiki/Language_

bindings#C.23.

[21] “Opengl 4 for c/.net,” https://github.com/giawa/opengl4csharp.

[22] “Opengl 4 for c/.net tutorials,” https://github.com/giawa/opengl4tutorials.

[23] “The freglut project,” http://freeglut.sourceforge.net/.

[24] “Rendering pipeline overview,” https://www.khronos.org/opengl/wiki/

Rendering_Pipeline_Overview.

[25] “The model, view and projection matrices,” http://www.

opengl-tutorial.org/beginners-tutorials/tutorial-3-matrices/

#the-model-view-and-projection-matrices.

[26] “Rgb color model,” https://en.wikipedia.org/wiki/RGB_color_model.

[27] J. Flick, “Building a graph,” https://catlikecoding.com/unity/tutorials/basics/

building-a-graph/.

[28] G. Fiedler, “Floating point determinism,” https://gafferongames.com/post/

floating_point_determinism/.

[29] “Unity ecs - getting started,” https://github.com/Unity-Technologies/

EntityComponentSystemSamples/blob/master/Documentation/content/

getting_started.md#getting-started.

https://github.com/steve3003/unity-profiler-data-exporter
https://github.com/steve3003/unity-profiler-data-exporter
https://docs.microsoft.com/en-us/dotnet/csharp/getting-started/introduction-to-the-csharp-language-and-the-net-framework
https://docs.microsoft.com/en-us/dotnet/csharp/getting-started/introduction-to-the-csharp-language-and-the-net-framework
https://catlikecoding.com/unity/tutorials/frames-per-second/
https://catlikecoding.com/unity/tutorials/frames-per-second/
https://github.com/SRombauts/ecs
https://github.com/SRombauts/ecs
https://www.opengl.org/about//
https://en.wikipedia.org/wiki/OpenGL
https://www.khronos.org/opengl/wiki/Language_bindings#C.23
https://www.khronos.org/opengl/wiki/Language_bindings#C.23
https://github.com/giawa/opengl4csharp
https://github.com/giawa/opengl4tutorials
http://freeglut.sourceforge.net/
https://www.khronos.org/opengl/wiki/Rendering_Pipeline_Overview
https://www.khronos.org/opengl/wiki/Rendering_Pipeline_Overview
http://www.opengl-tutorial.org/beginners-tutorials/tutorial-3-matrices/#the-model-view-and-projection-matrices
http://www.opengl-tutorial.org/beginners-tutorials/tutorial-3-matrices/#the-model-view-and-projection-matrices
http://www.opengl-tutorial.org/beginners-tutorials/tutorial-3-matrices/#the-model-view-and-projection-matrices
https://en.wikipedia.org/wiki/RGB_color_model
https://catlikecoding.com/unity/tutorials/basics/building-a-graph/
https://catlikecoding.com/unity/tutorials/basics/building-a-graph/
https://gafferongames.com/post/floating_point_determinism/
https://gafferongames.com/post/floating_point_determinism/
https://github.com/Unity-Technologies/EntityComponentSystemSamples/blob/master/Documentation/content/getting_started.md#getting-started
https://github.com/Unity-Technologies/EntityComponentSystemSamples/blob/master/Documentation/content/getting_started.md#getting-started
https://github.com/Unity-Technologies/EntityComponentSystemSamples/blob/master/Documentation/content/getting_started.md#getting-started

BIBLIOGRAPHY 125

[30] U. Technologies, “Diagnosing performance problems using profiler win-

dow,” https://unity3d.com/learn/tutorials/temas/performance-optimization/

diagnosing-performance-problems-using-profiler-window.

https://unity3d.com/learn/tutorials/temas/performance-optimization/diagnosing-performance-problems-using-profiler-window
https://unity3d.com/learn/tutorials/temas/performance-optimization/diagnosing-performance-problems-using-profiler-window

126 BIBLIOGRAPHY

Appendix A

Acronyms

FPS Frames per second

OOP Object-oriented programming

DOD Data-oriented design

RAM Random access memory

ECS Entity-component-system

API Application programming interface

OO-solution Object-oriented solution

DOD-solution Data-oriented solution

127

128 APPENDIX A. ACRONYMS

Appendix B

Additional Information

Several topics that are relevant to the thesis will be presented here. These topics were

not written on the thesis as they were either too detailed, too long or only had a minor

role. However, they are supplemented here to give the reader a better understanding.

B.1 Concepts in Unity - Some additional concepts

Several concepts in Unity that were either considered too long or not as important to

the thesis will be covered here.

B.1.0.1 Scenes

Scenes in Unity are the domain that contains the environments, menus and objects of

a game. A single instance of a scene can be seen as an unique level. A game in unity can

consist of several scenes, where each scene can have its own environment and closed

domain of objects. Having multiple scenes allows us to design our games in multiple

separated pieces. The position of objects and design of the level can be done directly in

a scene through the scene window, allowing quick changes.

B.1.0.2 Camera and light sources

Camera and light sources are important parts for every scene found in Unity. The cam-

era is used to display the scene found in the game world to the user. All the visual in-

formation is controlled by the use of cameras found in Unity. Each scene must have a

minimum of one camera. By deciding how the camera is used, one can create menus,

games in first-person or third-person perspective. The user will only see the visuals di-

rected by the camera once a game starts, even though the scene contains a large amount

129

130 APPENDIX B. ADDITIONAL INFORMATION

Figure B.1: Example of scene view in Unity

of objects. Light sources are gameobjects that display light on the scene. The camera

captures the information from these sources to correctly represent the world. The col-

ors and mood of the environment can be influenced by how the light sources are used.

B.1.1 Graphics in Unity

Unity uses three different components in order to render an objects surface in the game

world, materials, textures and shaders. For rendering of the geometric shape of the ob-

ject itself, meshes are used.

Meshes are a collection of vertices, edges and faces that defines the shapes of polyhe-

dral objects in 3d. Polyhedral shapes are solids in three dimensions with flat polygonal

faces, straight edges and sharp vertices. Triangles are usually used as the face in com-

puter graphics. Geometric shapes can be created by combining a collection of polygons

together. An example of this is shown in figure B.5 from wikipedia. Meshes can be seen

as a collection of triangles that are linked together in 3d space, giving the impression of

3d shapes.

https://docs.unity3d.com/Manual/AnatomyofaMesh.html for mesh part In Unity, a mesh

is represented by the mesh class. All the vertices of the mesh is stored in a single array.

B.1. CONCEPTS IN UNITY - SOME ADDITIONAL CONCEPTS 131

Figure B.2: Direction of camera view on the scene(top) and the actual view the player
sees(bottom)

Figure B.3: Example of camera and light source object on the scene.

A single triangle is then defined by three of the vertices found in the vertex array. All the

triangles in a mesh is defined in a single integer array. Three integers in a row define

one single triangle, and the integers represent the indices found in the vertex array. For

example, the three first elements in the triangle array defines the vertices for the first

triangle, while the three next one defines the second triangle. Additionally, there are

two more parameters for the mesh class that can decide the outcome of the final shape.

A normal vector must be applied to each vertex in order to calculate correct lightning

for the shape. The normal of the vertices are used to identify the direction of the light

132 APPENDIX B. ADDITIONAL INFORMATION

Figure B.4: Same camera view of gameobject with light source off(left) and on(right)

compared to the surface angle. Finally, an array of two-dimensional vectors are used

to determine the fractional offset into a texture. This array is called for uv in the mesh

class. Having a value of (0,0) means that the lower left corner of the texture is to be used

for that specific vertice. This allows us to use different part of the textures for the differ-

ent vertices. In order to render the meshes in Unity, you must first pass a reference to

the mesh asset in a mesh filter component. The mesh filter will only hold a reference to

the mesh asset and not render it graphically. The mesh filter must be passed further on

to a mesh renderer. The mesh filter will pass on the mesh to the mesh renderer, which

will then render the shape defined in the mesh class. An external modelling software

Figure B.5: Mesh of a dolphin, from wikipedia (1)

such as blender is usually used in order to create meshes. Unity does not offer a mod-

elling plugin as part of its engine, however it is possible to create simple meshes in Unity

with scripts.

Materials are the component part that defines how a surface should be be rendered in

the game world. There are several references in the material data to different proper-

ties, such as the textures it uses, tiling information and color tint. Furthermore, the

same material can have different options depending on the type of shader it uses.

Shaders are small scripts responsible for calculating the color of each pixel rendered.

B.1. CONCEPTS IN UNITY - SOME ADDITIONAL CONCEPTS 133

The shader script itself contains the mathematical calculation required, following some

shader algorithm such as the Lambertian reflectance B.6.0.6 that defines an ideal matte

surface. The output from these scripts are dependent on the material configuration at-

tached to it in addition to the lightning provided. Unity provides with a default shader

called for standard shader with a comprehensive set of features and customization. A

game developer does not necessarily need to know the mathematical intricacies behind

the shading algorithms in order to utilise them.

Textures are image files usually stored as bitmaps. Textures are applied on the surface

of graphical objects in order to give it finer detail. A shader algorithm can access ref-

erences to textures through the materials and use this data to calculate the color of

surfaces, giving different surfaces based on the textures used.

As described, the shaders are responsible for calculating the color of each pixel ren-

dered. How it is done is dependent on different factors such as the materials. The ma-

terials contain metadata about how the surface should be rendered. The material can

contain references to textures, which the shader can use to calculate the surface. These

together gives us a way to define the surfaces of objects. A material specifies one type

of shader to use in Unity. A material will have access to different options depending on

the shader chosen. Furthermore, the shader specifies one or more textures to use for its

calculations.

Given our knowledge above, we can create a simple 2d rectangular shape in Unity by

using four different vertices. The shape consists of two triangles connected together

to form a rectangular shape. Figure B.5 shows a schematic of the shape that I want to

render in Unity. The mesh class in Unity needs three type of data in order to render this

Figure B.6: Vertices of the quad mesh and the two triangles constructed

shape. It needs an array specifying all the vertices, an array that specifies the triangles

and an array that specifies the normals to the vertices. The vertex array simply con-

sists of the four points shown in figure B.5. The triangle array needs 6 elements in total,

134 APPENDIX B. ADDITIONAL INFORMATION

three for each triangle in the shape. Following the coloring scheme in figure B.5, we can

create our first triangle using the following vertices: (0, 0 ,0), (1, 0, 0) and (0, 1, 0). The

second triangle can then include the following vertices: (1, 0, 0), (1, 1, 0) and (0, 1, 0).

It is important that the indices in this triangle array correctly responds to the vertices

found in the vertex array. Finally, the normal vectors for each vertex is simply pointing

in the negative z-direction since we are creating a 2d shape. Using this information, we

can create the arrays and then pass it to a mesh component in Unity. The code for this

is shown below.

Listing B.1: Creating a new mesh representing a rectangular shape

1 // The vertex array containing vertices
2 private Vector3 [] vertices =
3 {
4 new Vector3(0, 0, 0),
5 new Vector3(1, 0, 0),
6 new Vector3(0, 1, 0),
7 new Vector3(1, 1, 0)
8 };
9

10 // The normal array containing vertex normals
11 private Vector3 [] normals =
12 {
13 new Vector3(0, 0, -1),
14 new Vector3(0, 0, -1),
15 new Vector3(0, 0, -1),
16 new Vector3(0, 0, -1),
17 };
18 // Triangle array representing triangles
19 private int[] triangles =
20 {
21 // First triangle
22 0, 1, 2,
23 // second triangle
24 1, 3, 2
25 };
26

27 // Use this for initialization
28 void Start ()
29 {
30 // Create a new mesh component
31 Mesh mesh = new Mesh();
32 // Add the new mesh to the mesh filter
33 GetComponent <MeshFilter >().mesh = mesh;
34 mesh.vertices = vertices;
35 mesh.triangles = triangles;

B.2. SIMPLE EXAMPLE OF SCRIPTING IN UNITY 135

36 mesh.normals = normals;
37 }

The result of this code is shown in figure B.7. A default material was used for this render.

The surface of this object was rather boring, so we can use another type of material. As

explained, the material contains data for how the surface should be calculated, along

with a algorithm found in a shader component attached to the material. We can add a

texture map to our material and let the shader calculate colors based on that. A picture

of hovedbygget was chosen as the texture. A new array was included in our script for the

uv part, which decides how the image should be mapped on to the surface. By having

the values (0, 0), (1, 0), (0, 1) and (1, 1) for the uv array, we simply tell the mesh that it

should contain the whole range of pixels found in the texture. The new object is shown

in figure B.8 after updating the materials.

Figure B.7: The rectangular shape created by the script

B.2 Simple example of scripting in Unity

A simple example will be created in order to test the concepts explained in previous

section. In this example, a cube will rotate around its axis by using scripts. First, a

gameobject representing a cube must be created. Unity already offers a template for a

cube. The cube is found by creating a 3d object of type cube already available in the

unity editor. Figure B.9 shows the newly created gameobject and its default compo-

nents. As one can see from the figure on the right, it is possible to add component to

this gameobject. These components are the C# scripts previously explained.

136 APPENDIX B. ADDITIONAL INFORMATION

Figure B.8: Same rectangular shape with new material that includes a texture image of
NTNU hovedbygget

For this example, the cube will rotate around its axis every frame. This can be achieved

by using the monobehaviour.Update() function in a script. A new C# script is created by

right-clicking on the project window and then selecting Create>C# script. Figure B.10

shows the newly created script in visual studio. The script is already derived from the

monobehaviour class, with two of the event functions already defined. The Update()

function will trigger each frame, so the rotation logic must be written there. The cube

will only rotate around the y-axis for this example.. Unity has native support for rotation

of gameobjects by using the transform api available. The transform of a gameobject is

its position, orientation and scale on the world. Several methods for transform manipu-

lation is available through this api. One specific function that is useful for this example

is the transform.Rotate(float x, float y, float z) function that will rotate a gameobject

along the x,y and z-axis based on the value given in euler degrees. This can be used to-

gether with the time api to rotate it with a given degree each frame. The Time api gives

access to information such as the time elapsed since last frame. By using this in combi-

nation with transform.Rotate, the cube object can be rotated easily. The code is shown

in figure B.11. Vector3.Up is simply a vector pointing up, which is the y-axis normalized.

In addition, the value is multiplied with 50 to rotate it faster. Finally, in order to make

the cube gameobject rotate, the newly created script component must be added to the

cube object. It will then perform the behaviour defined in Update() each frame, making

it rotate. This is also shown in figure B.11

B.3. ECS CUSTOM IMPLEMENTATION 137

Figure B.9: Cube on the scene and its components

Figure B.10: A newly created Monobehaviour script

Figure B.11: Script code along with the component attached to a gameobject

B.3 ECS custom implementation

B.3.1 Example of system structure

In the example, a positionMovement system is used. This system has the main task of

updating the position of objects. In order to transform the position of an object, the

current position is required along with the velocities in each direction. For this rea-

son, two components are required in our example. They are included as a part of the

required component set of our system in figure B.12. All entities that have these two

components are legal for the system and is to be included in the list of entities for the

specific system. The example demonstrates two different entities that do fullfil require-

138 APPENDIX B. ADDITIONAL INFORMATION

ment, however their attached components are not shown explicitly. Finally, the derived

system class must override the abstract virtual function and define the behaviour. The

following code snippet demonstrates how this could be achieved:

Listing B.2: System example

1 public override void OnUpdateEntity(Entity entity , float
elapsedTime)

2 {
3 Position position = manager.GetEntityComponent <Position >(

entity);
4 Velocity velocity = manager.GetEntityComponent <Velocity >(

entity);
5

6 position.x = position.x + velocity.x * elapstedTime;
7 position.y = position.y + velocity.y * elapstedTime;
8 position.z = position.z + velocity.z * elapstedTime;
9 manager.SetEntityComponent <Position >(entity , position);

10 }

Figure B.12: Example demonstrating the structure of derived system classes

An entity’s component value can be accessed and modified through the Manager.GetEntitycomponent<T>()

and Manager.SetEntityComponent<T>() functions.

B.3. ECS CUSTOM IMPLEMENTATION 139

B.3.2 Example of inject-attribute with componentDataArray

The following code snippet shows an example of a system class using the inject attribute

for componentDataArray.

Listing B.3: System example

1 class PositionMovementSystem : LSystem
2 {
3 public PositionMovementSystem(Manager manager)
4 {
5 this.manager = manager;
6 AddSystemComponent <Position >();
7 AddSystemComponent <ExistenceID >();
8 }
9

10 [Inject] public ComponentDataArray <Position > myPos;
11

12 public override void OnUpdateEntity(Entity entity , float
elapsedTime)

13 {
14 for (int i = 0; i < myPos.Count; i++)
15 {
16 Position positionius = myPos[i];
17 positionius.x++;
18 positionius.y++;
19 myPos[i] = positionius;
20 }
21 }
22 }

The [In j ect] attribute found in line 10 will tell the application to fill it with data of type

Position before first execution of OnUpdateEntity. Theres no need to activate any other

function, this will be done internally as part of the manager class with the use of reflec-

tion. ComponentDataArray will only be filled with data from entities that are legal.

B.3.3 Optimization steps

Some optimization steps were performed for the custom entity-component-system im-

plementation. Those were briefly referenced in the thesis. A more detailed description

is given here for those interested.

140 APPENDIX B. ADDITIONAL INFORMATION

B.3.4 Reducing number of boxing and unboxing

In C#, boxing is the process of converting a value type to the ultimate base class for all

objects, Object, or any other interface type implemented by that value type. Unboxing is

the opposite process, where an object or interface type is converted back to its original

value type. When using reflection in C#, you only operate with objects. When a func-

tion that normally returns value type is used through reflection, it will be boxed and an

object will instead be returned. In the current design, data is moved from Component-

DataArray to the component stores and vica versa through reflection. The data that is

moved is of the type struct, meaning it is value type. Each component moved from one

location is thus boxed or unboxed. According to the documentation provided by mi-

crosoft boxing and unboxing can be computationally expensive(2). If the application is

to move large amount of component data, then it will require a large amount of box-

ing/unboxing, which will have a detrimental impact on performance. All data of value

type is stored in the stack, however they are copied to the heap when boxed. When our

application later needs to unbox the object, it needs to look after the data on the heap.

Doing this for large number of component data means we have large amount of data on

the heap, which then needs to be retrieved later to store on the other storage container.

The performance loss due to boxing and unboxing large amount of objects are not de-

sired and can easily be fixed. In the Manager::InitializeComponentArraysWithStruct()

and Manager::UpdateComponentArraysWithStruct() function, an object reference to

the internal data structures are obtained through reflection. Initially, each function

used to invoke a method on each individual component data for transfer of data. This

meant that every component was boxed and unboxed, impacting performance. Instead

of unboxing each individual data component for the component stores, a new function

was created that only unboxes the array of data, instead of each individual component.

Once the whole array is unboxed once, all of its data are available to be accessed directly

on the stack without having to unbox. A quick time test showed that this improved per-

formance with around 30%(maybe show results of this).

B.3.5 Reducing number of function calls through another class

ComponentDataArray must invoke its insert method several times when data is trans-

ferred to it. If this process is done outside the class in another class method, the appli-

cation must continously look up the object function once it is called. Instead of calling

ComponentDataArray:insert() multiple times for each component data that is to be in-

serted, we can call it in the end once all the data is ready. A temporary array is instead

used to fill all the data directly, before inserting the whole array into the componentdata

array.

B.4. OPENGL PROGRAM CODE 141

Figure B.13: Example of boxing process of component data - OP is a reference to com-
ponent data on the heap

ComponentdataArray uses an internal array for storing data. The size of the array must

be doubled whenever it is completely filled with data. This is done by creating a new

array with double the size, with all the old data copied to it. If we are to move large

amount of data to an array of this type, then it must double its size and copy values

multiple times. In order to avoid this, we can initialize the component array with a

large size to begin with.

B.4 OpenGl program code

B.4.1 Shader code

The code for the two shader program used for the custom entity-component system is

presented here.

142 APPENDIX B. ADDITIONAL INFORMATION

Figure B.14: Vertex and fragment shader code

B.4.2 Code for drawing a simple triangle.

The code for drawing a triangle will be presented here.

Figure B.15: Code for setting up the opengl context and shader program

B.5 Prototype-based programming

Prototype-based programming is a style of objected-oriented programming where newly

created objects are "cloned" from generic existing objects that act as templates, called

for prototypes.(3). The templates define behaviour and data that are common to all

inherited objects. These objects can be further modified to have their own specific be-

haviour. This style is more dynamic in nature, as much of the class and object defi-

nitions happens during runtime. One of the key advantages with this style is that the

B.6. PROGRAMMING LANGUAGE C# AND ITS FEATURES 143

Figure B.16: Code for setting up the triangle data in vertex buffer objects that will be
sent to the gpu

Figure B.17: Code that runs each frame, where vertex buffer object data is sent to the
gpu along with a draw command

number of similar classes are reduced, as they can instead clone from a generic proto-

type.

B.6 Programming language C# and its features

B.6.0.1 Types and Assemblies in C#

C# is a strongly-typed language, meaning that each variable and constant must have

a type. The use of the word type in this context means the entity that contains data

about a specific type of variable or constant. The type contains information such as the

storage required for the type, the minimum and maximum values it can represent, the

base type it inherits from and the member that it contains. This means that a class is

also a type which stores these type of information. In essence, the type of something

144 APPENDIX B. ADDITIONAL INFORMATION

simply contains metadata about the type itself. The language provides with some basic

types such as int, double and float. User-defined types can be created by defining new

classes, structs, enums and interfaces.

Assemblies in C# is defined as a collection of types and resources that together forms

a logical unit of functionality. They form the building blocks of the .NET framework

applications. In essence, an assembly is a chunk of precompiled code that can be ex-

ecuted by the .NET environment. All types found in the .NET framework must exist

in assemblies, this is because the common language runtime does not support types

outside an assembly. Most applications built in visual studio is for instance stored as a

single assembly. Assemblies are either compiled as .exe file or dynamic-link library, dll.

B.6.0.2 Value Types and Reference Types

All variables in C# can be divided into two set of types, value type and reference type.

Variables that are of value types will directly contain values of the specified type(4).

With other words, the value found on the address represented by the variable is the

data of interest itself. Reference types do not directly contain the relevant values itself,

but rather a reference to another location on the heap memory space, where the values

are found(5). Reference types only store pointers to their respective types on the heap,

while value types can be found in the stack or static fields. Figure ??emonstrates how

the different types are stored in memory. Typical standard data types such as integers,

floats, booleans and structs are of value type. Examples of reference types are all class

objects defined in C#. There are certain aspects one must be aware of when working

Figure B.18: Value types and reference types in memory

with these types, since they are stored different in memory. When passing value types as

function arguments, the values will be copied into new variables for the function to use,

the result of this is that the original variable will not be changed. For reference types, the

pointer to the object itself will be passed by. This means that every change done within

a function will affect the original reference type. Another interesting property is that

an array of value types will contain the values in a linear contiguous memory layout.

B.6. PROGRAMMING LANGUAGE C# AND ITS FEATURES 145

This is not the case for reference types, instead the array will contain pointers stored in

the same linear contiguous way. However the difference here is that the pointers will

point to different locations on the memory heap once accessed. This is an important

property to know for data-oriented principles, which will be further discussed.

Figure B.19: Array of value type vs array of reference type

B.6.0.3 Interfaces

Interfaces in C# represent a group of functions that classes or structs must implement if

they inherit it. Interfaces are important for including behaviour from different sources

for a class or struct since C# does not support inheritance from several parent classes. In

addition, structs can simulate inheritance-like behaviour by including interfaces since

they are not allowed to inherit from other classes or structs.

B.6.0.4 Delegates

Delegates are similar to function pointers found in C and C++. It is a type that holds

references to methods with a particular parameter list and return type. Delegates allows

different objects to customize their behaviour based on what kind of method a delegate

holds. They are also used for events in C#.

B.6.0.5 Events

Events implement the observer pattern, which is a software design pattern. Multiple

different objects can "subscribe" to an event with a given method. Once the event has

been activated, each subscribing object will call their registered event function. Events

can thus be used to signal to other dependent objects that an action has occured.

The type of a variable or constant contains information The type specifier in C#

stores information about the type which the

146 APPENDIX B. ADDITIONAL INFORMATION

B.6.0.6 Reflection

The last topic of interest four our chosen language is reflection. Reflection gives access

to objects of the base type Type, which describes assemblies, modules and types. Hav-

ing access to this information in runtime allows us to dynamically create instances of a

specific type, bind types to an existing object or get type from existing objects and in-

voke the methods available in that type. Attributes are accessible through reflection, al-

lowing you to read data associated with the attributes or invoke attribute related meth-

ods. Using reflection together with custom attributes allows us to modify data with ease

by simply adding the attribute to the data field or class. Furthermore, it is possible to

create complete new types at runtime by using reflection. Understanding reflection is

important for using Unity as the engine has an extensive use of custom attributes.

An example will demonstrate the power of reflection and attributes. Let’s say we want

to keep track of how often fields of a specific type are used in classes. Say that every

time we attach our custom attribute, FieldCounter, to a class field, it counts that type.

We can create a simple application that will iterate through the assembly and look at

every class that has this attribute. We can then count the number of times the attribute

occurs for a type. By using a dictionary, we can keep track of occurrences for a specific

type. The custom attribute will only be used as a marker, specifying that this field is of

interest. We can then have a function that prints out this information for us. The below

code snippet shows an example of this function. In this example, our customattribute

is named FieldCounterAttribute.

Listing B.4: Using reflection to access fields with our customattribute

1 static void PrintFieldsOfInterest ()
2 {
3 // Dictionary containing the type and number of

instances found in classes.
4 Dictionary <Type , int > FieldCounts = new Dictionary <

Type , int >();
5

6 // Get the current executing assembly
7 Assembly myAssembly = Assembly.GetExecutingAssembly ();
8

9 foreach (Type type in myAssembly.GetTypes ())
10 {
11 // Only look for class types
12 if (type.IsClass)
13 {
14 // Check if a field has the Fieldcounter

attribute
15 var fieldInfos =

B.7. SINE-WAVE SIMULATION IN UNITY 147

16 type.GetFields ().Where(field => field.
IsDefined(typeof(FieldCounterAttribute)
));

17

18 foreach (var fieldInfo in fieldInfos)
19 {
20 var fieldType = fieldInfo.FieldType;
21 if (FieldCounts.ContainsKey(fieldType))
22 {
23 FieldCounts[fieldType]++;
24 }
25 else
26 {
27 FieldCounts.Add(fieldType , 1);
28 }
29 }
30 }
31 }
32 Console.WriteLine("The following types were attached

with the custom attribute: ");
33 foreach (var types in FieldCounts.Keys)
34 {
35 Console.WriteLine($"Type: {types}, number of

occurrences: {FieldCounts[types]}");
36 }
37 }

The function will print out every type that has the FieldCounterAttribute applied to it,

along with the number of times the attribute is applied to the same type. A complete

example is demonstranted in appendix .

B.7 Sine-wave simulation in Unity

B.7.1 Accessing mesh and material data with entity-component-system

The folllowing code snippet demonstrates how data for settings and materials were re-

trieved. The way references are retrieved are shown in line 21-28.

Listing B.5: Getting mesh and setting data

1 public sealed class Graph{
2 /// <summary >
3 /// Archetype for the point , specifying kind of components

attached to it
4 /// </summary >
5 public static EntityArchetype pointArcheType;

148 APPENDIX B. ADDITIONAL INFORMATION

6

7 /// <summary >
8 /// Settings for the graph
9 /// </summary >

10 public static Settings graphSettings;
11

12 public int numberOfPoints;
13

14 public static MeshInstanceRenderer cubeLook;
15

16 // Run this function after scene has been loaded.
17 [RuntimeInitializeOnLoadMethod(RuntimeInitializeLoadType.

AfterSceneLoad)]
18 public static void InitializeWithScene ()
19 {
20 // Name of gameobject representing cube point on the

scene is PointRenderPrototype
21 var pointProtoType = GameObject.Find("

PointRenderProtype");
22 cubeLook = pointProtoType.GetComponent <

MeshInstanceRendererComponent >().Value;
23 Object.Destroy(pointProtoType);
24

25 // Retrieve setting data from settings gameobject on
scene

26 var settings = GameObject.Find("Settings");
27 graphSettings = settings.GetComponent <Settings >();
28 Object.Destroy(settings);
29

30 NewGame ();
31 }

The GameObject.Find(string name) function will search for the game object on the cur-

rent active scene.

B.7.2 Sine-wave simulation, profiler stats with profiler data exporter

A number of figures showing the cpu usage stats from unity profiler for the sine-wave

simulation tests done for 50,000 objects.

B.8 Unity profiler data exporter results for DwarfHeim

Tables displaying cpu usage times were shown in the results section. These values were

gathered from the statistics shown with the profile data exporter. The original data rep-

resentation is shown here, as the result section only displayed values of interest.

B.8. UNITY PROFILER DATA EXPORTER RESULTS FOR DWARFHEIM 149

Figure B.20: Profiler data stats for dod - Minimum values

Figure B.21: Profiler data stats for dod - Average values

150 APPENDIX B. ADDITIONAL INFORMATION

Figure B.22: Profiler data stats for oop - Max values

B.8. UNITY PROFILER DATA EXPORTER RESULTS FOR DWARFHEIM 151

Figure B.23: Profiler data stats for oop - Average values

fig/Appendix_files/oop_Max_1.pngfig/Appendix_files/oop_Max_2.pngfig/Appendix_files/oop_Max_3.png

Figure B.24: Profiler data stats for oop - Max values

152 APPENDIX B. ADDITIONAL INFORMATION

Figure B.25: Profiler data stats for dod - Minimum values

B.8. UNITY PROFILER DATA EXPORTER RESULTS FOR DWARFHEIM 153

Figure B.26: Profiler data stats for dod - Average values

154 APPENDIX B. ADDITIONAL INFORMATION

Figure B.27: Profiler data stats for dod - Max values

B.8. UNITY PROFILER DATA EXPORTER RESULTS FOR DWARFHEIM 155

Figure B.28: DOD DwarfHeim profiler minimum elapsed time statistics for test with
animation and models activated

156 APPENDIX B. ADDITIONAL INFORMATION

Figure B.29: DOD DwarfHeim profiler average elapsed time statistics for test with ani-
mations and models activated

B.8. UNITY PROFILER DATA EXPORTER RESULTS FOR DWARFHEIM 157

Figure B.30: DOD DwarfHeim profiler maximum elapsed time statistics for test with
animations and models activated

158 APPENDIX B. ADDITIONAL INFORMATION

Figure B.31: DOD DwarfHeim profiler minimum elapsed time statistics for test with
animation and models deactivated

B.8. UNITY PROFILER DATA EXPORTER RESULTS FOR DWARFHEIM 159

Figure B.32: DOD DwarfHeim profiler average elapsed time statistics for test with ani-
mations and models deactivated

160 APPENDIX B. ADDITIONAL INFORMATION

Figure B.33: DOD DwarfHeim profiler maximum elapsed time statistics for test with
animations and models deactivated

B.8. UNITY PROFILER DATA EXPORTER RESULTS FOR DWARFHEIM 161

Figure B.34: DOD DwarfHeim profiler minimum elapsed time statistics for test with an-
imation and models deactivated + several object-oriented components removed such
as transform position

Figure B.35: DOD DwarfHeim profiler minimum elapsed time statistics for test with an-
imation and models deactivated + several object-oriented components removed such
as transform position

162 APPENDIX B. ADDITIONAL INFORMATION

Figure B.36: DOD DwarfHeim profiler minimum elapsed time statistics for test with an-
imation and models deactivated + several object-oriented components removed such
as transform position

B.8. UNITY PROFILER DATA EXPORTER RESULTS FOR DWARFHEIM 163

Figure B.37: OOP DwarfHeim profiler minimum elapsed time statistics for test with
animation and models activated

164 APPENDIX B. ADDITIONAL INFORMATION

Figure B.38: OOP DwarfHeim profiler average elapsed time statistics for test with ani-
mations and models activated

B.8. UNITY PROFILER DATA EXPORTER RESULTS FOR DWARFHEIM 165

Figure B.39: OOP DwarfHeim profiler maximum elapsed time statistics for test with
animations and models activated

166 APPENDIX B. ADDITIONAL INFORMATION

Figure B.40: OOP DwarfHeim profiler minimum elapsed time statistics for test with
animation and models deactivated

B.8. UNITY PROFILER DATA EXPORTER RESULTS FOR DWARFHEIM 167

Figure B.41: OOP DwarfHeim profiler average elapsed time statistics for test with ani-
mations and models deactivated

168 APPENDIX B. ADDITIONAL INFORMATION

Figure B.42: OOP DwarfHeim profiler maximum elapsed time statistics for test with
animations and models deactivated

Bibliography

[1] “Polygon mesh,” https://en.wikipedia.org/wiki/Polygon_mesh.

[2] “Boxing and unboxing (c programming guide),” https://docs.microsoft.com/

en-us/dotnet/csharp/programming-guide/types/boxing-and-unboxing.

[3] “Prototype-based programming,” https://en.wikipedia.org/wiki/Prototype-based_

programming.

[4] Microsoft, “Value types (c reference),” https://docs.microsoft.com/en-us/dotnet/

csharp/language-reference/keywords/value-types.

[5] ——, “Reference types (c reference),” https://docs.microsoft.com/en-us/dotnet/

csharp/language-reference/keywords/reference-types.

169

https://en.wikipedia.org/wiki/Polygon_mesh
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/types/boxing-and-unboxing
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/types/boxing-and-unboxing
https://en.wikipedia.org/wiki/Prototype-based_programming
https://en.wikipedia.org/wiki/Prototype-based_programming
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/value-types
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/value-types
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/reference-types
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/reference-types

	Summary and Conclusions
	Preface
	Acknowledgment
	Introduction
	Problem Formulation
	Goal Of This Master Thesis
	Required work for this thesis
	Cooperation with Pineleaf Studio

	Literature Study and Theory
	Memory in modern computers
	Data-Oriented Design
	Data-oriented design principles
	Entity Component System

	Functional Specification and Evaluation Criteria
	Evaluation criteria
	Frame Rate
	Cpu usage time

	Entity-component-system in C#
	Specifications
	Evaluating against object-oriented programming

	Entity-component-system in Unity - Pure data-oriented solution
	Evaluation of the application

	Converting DwarfHeim into a data-oriented solution
	Specifications for conversion
	Evaluation of the conversion

	Materials and Methods
	Development Environment
	Game Engine - Unity
	Different terminologies and concepts in Unity
	Scripting in Unity - Adding behaviour to game objects
	Analyzing performance - Unity Profiler
	Programming Language - C#
	Programming Language - Python

	Measuring the frame rate
	Measurement of frame rate for Unity
	Frame rate counter outside Unity
	Refresh rate

	Entity Component System - Custom Implementation
	Initial entity-component-system architecture details
	Improved design
	Functional testing of the ECS implementation
	Performance tests for the ECS implementation
	Integrating OpenGL with the ECS implementation
	Test Application using the entity-component-system implementation
	Simulating the sine wave
	Simulating a sine wave using opengl and object-oriented principles
	Simulating a sine wave using opengl and the custom entity-component-system implementation
	The sine wave simulation tests

	Entity-Component-System in Unity
	Pure data-oriented application in Unity
	Objected-oriented sine wave
	Data-oriented Sine wave
	Testing of the sine-wave simulations

	Data-oriented design for Dwarfheim
	Computer architecture of Hybrid/Pinecone
	Methodology for converting to data-oriented design
	Making it more applicable on a server
	Testing

	Results
	Entity-component-system implementation
	Functional Test
	Performance tests for the different versions of ECS
	OpenGL sine wave simulation tests

	Sine wave simulation
	Sine wave simulation results

	DwarfHeim Conversion
	Functional results
	Performance test

	Discussion
	Discussion of Results
	Custom C# implementation of Entity-Component-System
	Limitations of the custom ECS implementation
	Meeting the specifications
	Potential issues with the current design
	Sine-wave simulation results in Unity

	DwarfHeim conversion to a more data-oriented design
	Functional features of the data-oriented design
	Performance results
	Inspecting time values for the converted parts
	A hybrid solution vs pure data-oriented
	The implications of the research

	General results
	Developing with the entity-component-system

	Conclusion
	Further Work
	Recommendations for the custom entity-component-system
	Recommendations for the DwarfHeim conversion

	Bibliography
	Acronyms
	Additional Information
	Concepts in Unity - Some additional concepts
	Graphics in Unity

	Simple example of scripting in Unity
	ECS custom implementation
	Example of system structure
	Example of inject-attribute with componentDataArray
	Optimization steps
	Reducing number of boxing and unboxing
	Reducing number of function calls through another class

	OpenGl program code
	Shader code
	Code for drawing a simple triangle.

	Prototype-based programming
	Programming language C# and its features
	Sine-wave simulation in Unity
	Accessing mesh and material data with entity-component-system
	Sine-wave simulation, profiler stats with profiler data exporter

	Unity profiler data exporter results for DwarfHeim

	Bibliography

