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Abstract 

In this master thesis the meandering of the wake of a three bladed horizontal axis model wind 
turbine has been studied. Measurements have been conducted by the use of four hot-wire 
probes located at multiple nearby points in the wake at X/D = 1, 3 and 5 downstream the 
model wind turbine. The meandering has been studied based on the location of the tip vortices 
shed by the turbine blades. The experiments were conducted in the wind tunnel at NTNU at 
the Department of Energy and Process Engineering.  

The aim of the study was to see the effect on the meandering of the wake of the model turbine 
when placed in an incoming flow with turbulence intensity typical for atmospheric turbulence, 
compared to an incoming flow with a low turbulence intensity round 0.3 %. The atmospheric 
turbulence was generated by inserting a grid in the inlet to the test section in the wind tunnel. 
The grid generated a turbulence intensity round 5.5 % and integral length scales of Luuz = 
3.1E-2 m and Luux = 6.5E-2 m at the position of the model wind turbine in the tunnel.  

The performance of the model turbine in both incoming flows was calculated based on 
measurements of the thrust and torque acting on the turbine in a free stream velocity of 10 
m/s. The greatest deviation in the performance curve was found at the top of the curve; 
however the difference between the two cases was minor.  

Initial measurements with a single hot-wire probe was conducted in the wake of the turbine to 
locate the tip vortices. Based on these results, the location to conduct the multiple hot-wire 
measurements was decided. Already at this stage the effect of the grid turbulence was evident 
due to the smeared out energy in the flow in the wake caused by diffusion and mixing.  

The tip speed ratio (TSR) of the model wind turbine was 6 in the case without grid generated 
turbulence, and 7 in the case with grid turbulence during the final measurements in the wake. 
The effect of the change in TSR was evaluated, and it was found that new measurements were 
not needed. The normal stress based on the velocity measurements in the wake were phase 
averaged according to the position of the turbine blade using Matlab. When comparing these 
results with the normal stress calculated directly from the time series, it was found that the tip 
vortices had merged together or broken up at all measurement point except at X/D = 1 
downstream the turbine without grid generated turbulence. Using power spectral density 
function (PSD) the observations were confirmed. 

The tip vortices was not equally distributed within the wake and were located 30°, 128° and 
224° at respectively z/R =1.12, 1.15 and 1.20. Their diameters were found to be 1.8E-2 m, 
1.4E-2 m, 2.7E-2 m in z direction. The location of the peak in the normal stress tended to 
meander a bit back and forth, mainly directed towards the rotor center, with a distance from 
4.5E-3 m to 1.8E-2 m, and in the streamwise direction with a total distance of 6.2E-2 m. The 
tip vortices seem to meander individually within the wake, and not with the same distance. 

Based on the results and observations conducted throughout this study, new measurements 
should be conducted at a shorter distance to the turbine rotor to be able to compare the 
meandering of the wake for the two different incoming flows.  
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Sammendrag 

 I denne master oppgaven har wake bevegelsen bak en tre-bladet horisontalakset 
vindturbinmodell blitt studert. Det har blitt utført målinger ved bruk at fire hot-wire prober 
plassert ved flere nærliggende punkter i waken ved X/D = 1, 3 og 5 nedstrøms i waken til 
vindturbinmodellen. Wake bevegelsen har blitt studert basert på plasseringen av tuppvirvlene 
kastet av turbin bladene. Eksperimentene har blitt utført i vindtunnelen på NTNU ved 
instituttet for Energi- og Prosessteknikk.  

Målet for studiet var å se på effekten av vandringen til waken av en vindturbinmodell som står 
plassert i en strømning med en turbulensintensitet typisk for atmosfærisk turbulens, og 
sammenligne med en strømning med lav turbulensintensitet på rundt 0,3 %. Den atmosfæriske 
turbulensen ble generert ved å installere et grid i innløpet til testseksjonen i vindtunnelen. 
Griddet genererte en turbulensintensitet på rundt 5,5 % og en integrallengdeskala på Luuz = 
3,1E-2 m and Luux = 6,5E-2 m ved posisjonen til vindturbinen i tunellen.  

Ytelsen til vindturbinmodellen ble beregnet for begge strømningene basert på målinger av 
skyvekraften og dreiemomentet som virket på turbinen med en fristrømhastighet på 10 m/s. 
Det var en liten forskjell mellom kurvene, og det største avviket i ytelseskurven ble funnet 
rundt toppen av kurven. 

Det ble utført innledende målinger med en enkelt hot-wire probe i waken til turbinen for å 
lokalisere tuppvirvlene. Basert på disse resultatene ble det bestemt hvor de multiple hot-
wiremålingene skulle utføres i waken. Allerede ved dette tidspunktet var det tydelig at 
gridturbulensen hadde smurt ut energien i strømningen i waken ved diffusjon og miksing.  

Tupphastighetsforholdet (TSR) var 6 under målingene uten grid generert turbulens, mens den 
var 7 under målingene med grid generert turbulens. Effekten av endringen i TSR ble evaluert, 
og det ble funnet at det ikke var nødvendig å gjennomføre nye målinger. Normalspenningen 
basert på de målte hastighetene ble fasemidlet i forhold til posisjonen av turbinbladene ved 
bruk av Matlab. Når disse verdiene ble sammenlignet med normalspenningen beregnet direkte 
fra tidsseriene, ble det funnet at tuppvirvlene hadde slått seg sammen eller blitt brutt opp ved 
alle målepunkt unntatt ved X/D = 1 nedstrøms turbinen uten grid generert turbulens. Det ble 
gjennomført en effektspektrumtetthetsfunksjon (PSD) som bekreftet observasjonene. 

Tuppvirvlene var ikke likt fordelt i waken, og oppstod ved 30°, 128° og 224° ved henholdsvis 
z/R = 1,12, 1,15 og 1,20. Diameterne var 1,8E-2 m, 1,4E-2 m, 2,7E-2 m i z retning. 
Plasseringen av den høyeste verdien til normalspenningen hadde en tendens til å vandre litt 
frem og tilbake, hovedsakelig i retning mot rotorsenter med en avstand fra 4,5E-3 m til 1,8E-2 
m og i strømningsretningen med en total avstand på 6,2E-2 m. Tuppvirvlene så ut til å vandre 
individuelt i waken og med ulik avstand.  

Basert på resultatene og observasjonene gjort i denne studien burde nye målinger 
gjennomføres ved en kortere avstand til turbinrotoren for å kunne sammenligne vandringen av 
waken for de to innkommende strømningene.  



IV 
 

  



V 
 

Contents 
 

1. Introduction ....................................................................................................................... 1 

1.1. Earlier work ................................................................................................................. 2 

 

2. Aim of study ....................................................................................................................... 5 

 

3. Theory ................................................................................................................................ 7 

3.1. Wind turbine aerodynamics ......................................................................................... 7 

3.2. General equations of fluid flow ................................................................................... 9 

3.2.1. Reynolds number .................................................................................................. 9 

3.2.2. Strouhal number ................................................................................................. 10 

3.2.3. Navier-Stokes equations ..................................................................................... 10 

3.3. Atmospheric boundary layer ..................................................................................... 12 

3.3.1. Viscosity and shear stress ................................................................................... 13 

3.3.2. Mean velocity profiles ........................................................................................ 14 

3.3.3. Velocity-defect law ............................................................................................ 15 

3.3.4. Nature of the wind .............................................................................................. 15 

3.4. Turbulence ................................................................................................................. 17 

3.4.1. Turbulent kinetic energy .................................................................................... 18 

3.4.2. Integral length scale ........................................................................................... 20 

3.4.3. Power spectral density function ......................................................................... 21 

3.4.4. Grid turbulence ................................................................................................... 23 

3.5. Wind turbine wakes ................................................................................................... 24 

3.5.1. Bluff body wakes and wake meandering ........................................................... 28 

3.6. Hot-wire ..................................................................................................................... 29 

 

4. The experiments .............................................................................................................. 33 

4.1. Setup and Equipment ................................................................................................. 33 

4.1.1. Model wind turbine ............................................................................................ 33 

4.1.2. Wind tunnel ........................................................................................................ 35 

4.1.3. Grid ..................................................................................................................... 36 

4.1.4. Hot-wire anemometry ........................................................................................ 36 



VI 
 

4.2. Calculations ............................................................................................................... 37 

4.3. Calibration ................................................................................................................. 38 

4.3.1. Forces ................................................................................................................. 38 

4.3.2. Free stream velocity ........................................................................................... 39 

4.3.3. Hot-wire ............................................................................................................. 40 

4.4. Experiments ............................................................................................................... 42 

4.4.1. The use of five hot-wire probes .......................................................................... 42 

4.4.2. Modeling atmospheric conditions in the wind tunnel ........................................ 43 

4.4.3. Grid turbulence measurements and integral length scale calculations ............... 44 

4.4.4. Performance measurements of the model wind turbine ..................................... 48 

4.4.5. Measurements in the wake of the model wind turbine ....................................... 51 

4.4.5.1. Locating the tip vortices ................................................................................. 51 

4.4.5.2. Measurements with hot-wire array ................................................................. 53 

4.4.5.3. Second experiment with hot-wire array .......................................................... 56 

 

5. Main results and discussion ........................................................................................... 59 

5.1. Time series X/D = 1 ................................................................................................... 59 

5.2. Time series X/D = 3 ................................................................................................... 66 

5.3. Time series X/D = 5 ................................................................................................... 71 

5.4. Time averaged turbulent kinetic energy .................................................................... 74 

5.5. Phase averaging of the measurements ....................................................................... 76 

5.5.1. Phase averaged fluctuating velocity, u’ .............................................................. 76 

5.5.2. Phase averaged normal stress, u’u’ .................................................................... 79 

5.6. Study on one tip vortex .............................................................................................. 83 

5.6.1. Without grid generated turbulence, X/D = 1 ...................................................... 83 

5.6.2. With grid generated turbulence, X/D = 1 ........................................................... 85 

5.7. Cross correlation of the flow field in the wake ......................................................... 88 

5.8. Power spectral density function, PSD ....................................................................... 92 

5.8.1. X/D = 1 ............................................................................................................... 92 

5.8.2. X/D = 3 ............................................................................................................... 96 

5.9. Final discussion ......................................................................................................... 97 

 

6. Conclusion ..................................................................................................................... 101 



VII 
 

7. Further work ................................................................................................................. 105 

 

Bibliography .............................................................................................................................. i 

 

A. Appendix ........................................................................................................................... iii 

A.1 Calibration data ........................................................................................................... iii 

A.1.1. Thrust gauge ............................................................................................................ iii 

A.1.2. Torque gauge ........................................................................................................... iv 

A.1.3. Pressure transducer Pitot probe ................................................................................ v 

A.1.4. Pressure transducer contraction............................................................................... vi 

A.1.5. Hot-wire anemometry ............................................................................................ vii 

A.2. Comparison normal stress ............................................................................................ viii 

A.3. Uncertainty calculations ................................................................................................ xi 

A.4. Fully developed pipe flow measurements .................................................................... xii 

A.6. Risk assessment of laboratory setup and experiment ................................................... xv 

 

 

  



VIII 
 

  



IX 
 

List of figures 
 

Figure 3.1: Wind speed spectrum, Van der Hoven (1957) Brookhaven, New York [10] ........ 16 
Figure 3.2: Normal stresses for the different components in turbulent kinetic energy, 
(modified) [16] ......................................................................................................................... 19 
Figure 3.3: General grid ........................................................................................................... 23 
Figure 3.4: Flow visualization experiment at TUDelft, showing two revolutions of tip vortices 
for a two-bladed rotor [2] ......................................................................................................... 24 
Figure 3.5: Velocity profile in the wake of a wind turbine ...................................................... 26 
Figure 3.6: Flow visualization with smoke grenade in tip, revealing smoke trails for the NREL 
turbine in the NASA-Ames wind tunnel [2] ............................................................................ 27 
Figure 3.7: Hot-wire probe ....................................................................................................... 29 
Figure 3.8: Hot-wire control circuit, constant current .............................................................. 31 
Figure 3.9: Hot-wire control circuit, constant temperature ...................................................... 31 
Figure 4.1: Model wind turbine ................................................................................................ 33 
Figure 4.2: Airfoil S826 [26] .................................................................................................... 34 
Figure 4.3: Sketch of wind tunnel [29] .................................................................................... 35 
Figure 4.4: Sketch of a section of the grid with dimensions .................................................... 36 
Figure 4.5: Calibration thrust gauge ......................................................................................... 38 
Figure 4.6: Setup hot-wire measurements ................................................................................ 40 
Figure 4.7: Grid installed in wind tunnel ................................................................................. 44 
Figure 4.8: Integral length scale compared to von Karman specter ......................................... 46 
Figure 4.9: Integral length scale based on cross correlation between two hot-wire probes ..... 47 
Figure 4.10: Autocorrelation of hot-wire signal in the center of the wind tunnel .................... 47 
Figure 4.11: Power coefficient curve, with and without grid turbulence, TSR 1-12 ............... 49 
Figure 4.12: Thrust coefficient curve, with and without grid turbulence, TSR 1-12 ............... 50 
Figure 4.13: Denomination of the directions according to the model wind turbine ................ 51 
Figure 4.14: X/D = 1, turbulent kinetic energy with (red line) and without (blue line) grid 
turbulence, left side .................................................................................................................. 52 
Figure 4.15: X/D = 1, turbulent kinetic energy with (red line) and without (blue line) grid 
turbulence, right side ................................................................................................................ 52 
Figure 4.16: X/D = 5, turbulent kinetic energy with (red line) and without (blue line) grid 
turbulence, left side .................................................................................................................. 52 
Figure 4.17: X/D = 5, turbulent kinetic energy with (red line) and without (blue line) grid 
turbulence, right side ................................................................................................................ 52 
Figure 4.18: Rake 1, with distance between hot-wire probes .................................................. 54 
Figure 4.19: Rake 2, with distance between hot-wire probes .................................................. 54 
Figure 4.20: Results from first multiple hot-wire probes measurements ................................. 55 
Figure 4.21: Picture of hot-wire rake 2 and Pitot probe setup ................................................. 56 
Figure 4.22: Velocity triangle .................................................................................................. 57 
Figure 5.1: X/D = 1, Position 1 (a) Five rotations without grid turbulence, (b) Five rotations 
with grid turbulence ................................................................................................................. 59 



X 
 

Figure 5.2: X/D = 1, Position 1, Contour plot (a) Five rotations without grid turbulence, (b) 
Five rotations with grid turbulence .......................................................................................... 60 
Figure 5.3: Tip vortex shedding ............................................................................................... 61 
Figure 5.4: X/D = 1, Position 2 (a) Five rotations without grid turbulence, (b) Five rotations 
with grid turbulence ................................................................................................................. 62 
Figure 5.5: X/D = 1, Contour plot, Position 2 (a) Five rotations without grid turbulence, (b) 
Five rotations with grid turbulence .......................................................................................... 62 
Figure 5.6: X/D = 1, Position 3, (a) Five rotations without grid turbulence, (b) Five rotations 
with grid turbulence ................................................................................................................. 64 
Figure 5.7: X/D = 1, Contour plot, Position 3 (a) Five rotations without grid turbulence, (b) 
Five rotations with grid turbulence .......................................................................................... 64 
Figure 5.8: X/D = 3, Position 1 (a) Five rotations without grid turbulence, (b) Five rotations 
with grid turbulence ................................................................................................................. 66 
Figure 5.9: X/D = 3, Contour plot, Position 1 (a) Five rotations without grid turbulence, (b) 
Five rotations with grid turbulence .......................................................................................... 66 
Figure 5.10: X/D = 3, Position 2 (a) Five rotations without grid turbulence, (b) Five rotations 
with grid turbulence ................................................................................................................. 68 
Figure 5.11: X/D = 3, Contour plot, Position 2 (a) Five rotations without grid turbulence, (b) 
Five rotations with grid turbulence .......................................................................................... 68 
Figure 5.12: X/D = 3, Position 3 (a) Five rotations without grid turbulence, (b) Five rotations 
with grid turbulence ................................................................................................................. 69 
Figure 5.13: X/D = 3, Contour plot, Position 3 (a) Five rotations without grid turbulence, (b) 
Five rotations with grid turbulence .......................................................................................... 70 
Figure 5.14: X/D = 5, Position 1 (a) Five rotations without grid turbulence, (b) Five rotations 
with grid turbulence ................................................................................................................. 71 
Figure 5.15: X/D = 5, Contour plot, Position 1 (a) Five rotations without grid turbulence, (b) 
Five rotations with grid turbulence .......................................................................................... 71 
Figure 5.16: X/D = 5, Position 2 (a) Five rotations without grid turbulence, (b) Five rotations 
with grid turbulence ................................................................................................................. 72 
Figure 5.17: X/D = 5, Contour plot, Position 2 (a) Five rotations without grid turbulence, (b) 
Five rotations with grid turbulence .......................................................................................... 73 
Figure 5.18: X/D=1, turbulent kinetic energy with (red line) and without (blue line) grid 
turbulence ................................................................................................................................. 74 
Figure 5.19: X/D=3, turbulent kinetic energy with (red line) and without (blue line) grid 
turbulence ................................................................................................................................. 74 
Figure 5.20: X/D=5, turbulent kinetic energy with (red line) and without (blue line) grid 
turbulence ................................................................................................................................. 74 
Figure 5.21: X/D = 1, Phase averaged fluctuating velocity without grid turbulence ............... 77 
Figure 5.22: X/D = 1, Phase averaged fluctuating velocity with grid turbulence .................... 77 
Figure 5.23: X/D = 3, Phase averaged fluctuating velocity without grid turbulence ............... 77 
Figure 5.24: X/D = 3, Phase averaged fluctuating velocity with grid turbulence .................... 77 
Figure 5.25: X/D = 5, Phase averaged fluctuating velocity without grid turbulence ............... 77 
Figure 5.26: X/D = 5, Phase averaged fluctuating velocity with grid turbulence .................... 77 
Figure 5.27: X/D = 1, Phase averaged normal stress without grid turbulence ......................... 80 



XI 
 

Figure 5.28: X/D = 1, Phase averaged normal stress with grid turbulence .............................. 80 
Figure 5.29: X/D = 3, Phase averaged normal stress without grid turbulence ......................... 80 
Figure 5.30: X/D = 3, Phase averaged normal stress with grid turbulence .............................. 80 
Figure 5.31: X/D = 5, Phase averaged normal stress without grid turbulence ......................... 80 
Figure 5.32: X/D = 5, Phase averaged normal stress with grid turbulence .............................. 80 
Figure 5.33: Position 1, PDF on the location of one tip vortex, X/D = 1 without grid 
turbulence ................................................................................................................................. 83 
Figure 5.34: Position 1, Time of which u’ maximum was measured with hot-wire probe nr. 3 
in each rotation, X/D = 1 without grid turbulence ................................................................... 83 
Figure 5.35: Position 2, PDF on the location of one tip vortex, X/D = 1 without grid 
turbulence ................................................................................................................................. 85 
Figure 5.36: Position 2, Time of which u’ maximum was measured with hot-wire probe nr. 1 
in each rotation, X/D = 1 without grid turbulence ................................................................... 85 
Figure 5.37: Position 1, PDF on the location of one tip vortex, X/D = 1 with grid turbulence 86 
Figure 5.38: Position 1, Time of which u’ maximum was measured with hot-wire probe nr. 5 
in each rotation, X/D = 1 with grid turbulence ........................................................................ 86 
Figure 5.39: Position 2, PDF on the location of one tip vortex, X/D = 1 with grid turbulence 87 
Figure 5.40: Position 2, Time of which u’ maximum was measured with hot-wire probe nr. 1 
in each rotation, X/D = 1 with grid turbulence ........................................................................ 87 
Figure 5.41: Cross correlation X/D = 1 without grid with z/R = 1.2 as zero point .................. 88 
Figure 5.42: Cross correlation X/D = 1 with grid generated turbulence with z/R = 1.2 as zero 
point .......................................................................................................................................... 89 
Figure 5.43: Cross correlation of the tip vortex located within the first 100° of rotation ........ 90 
Figure 5.44: PSD of measurements conducted at z/R=1.050, X/D = 1 with (blue line) and 
without (red line) grid turbulence ............................................................................................. 93 
Figure 5.45: PSD of measurements conducted at z/R=1.133, X/D = 1 with (blue line) and 
without (red line) grid turbulence ............................................................................................. 93 
Figure 5.46: PSD of measurements conducted at z/R=1.201, X/D = 1 with (blue line) and 
without (red line) grid turbulence ............................................................................................. 93 
Figure 5.47: PSD of measurements conducted at z/R=1.13, X/D = 3 with (blue line) and 
without (red line) grid turbulence ............................................................................................. 96 
Figure 5.48: PSD of measurements conducted at z/R=1.21, X/D = 3 with (blue line) and 
without (red line) grid turbulence ............................................................................................. 96 
 
  



XII 
 

Figure A.1: Calibration curve for thrust gauge ......................................................................... iii 
Figure A.2: Calibration curve for torque gauge ........................................................................ iv 
Figure A.3: Calibration curve for the pressure transducer Pitot probe ...................................... v 
Figure A.4: Calibration curve for the pressure transducer for the contraction of the wind 
tunnel ......................................................................................................................................... vi 
Figure A.5: Calibration curve for hot-wire probe .................................................................... vii 
Figure A.6: Normal stress at X/D = 1 without grid turbulence, phase averaged ...................... ix 
Figure A.7: Normalized normal stress at X/D = 1 without grid turbulence, time averaged ..... ix 
Figure A.8: Normal stress at X/D = 3 without grid turbulence, phase averaged ...................... ix 
Figure A.9: Normalized normal stress at X/D =3 without grid turbulence, time averaged ...... ix 
Figure A.10: Normal stress at X/D = 5 without grid turbulence, phase averaged .................... ix 
Figure A.11: Normalized normal stress at X/D = 5 without grid turbulence, time averaged ... ix 
Figure A.12: Normal stress at X/D = 1 with grid turbulence, phase averaged .......................... x 
Figure A.13: Normalized normal stress at X/D = 1 with grid turbulence, time averaged ......... x 
Figure A.14: Normal stress at X/D = 3 with grid turbulence, phase averaged .......................... x 
Figure A.15: Normalized normal stress at X/D = 3 with grid turbulence, time averaged ......... x 
Figure A.16: Normal stress at X/D = 5 with grid turbulence, phase averaged .......................... x 
Figure A.17: Normalized normal stress at X/D = 5 with grid turbulence, time averaged ......... x 
Figure A.18: Normalized velocity profile ............................................................................... xiii 
Figure A.19: u+ versus normalized y coordinate ..................................................................... xiii 
Figure A.20: Normalized normal stress as a function of y/R .................................................. xiii 
Figure A.21: Turbulence intensity based on the friction velocity as a function of y/R .......... xiii 
 

  



XIII 
 

List of tables 
 
Table 4.1: Suzlon wind turbine VS model wind turbine .......................................................... 43 
Table 4.2: Mean values during grid measurements .................................................................. 44 
Table 4.3: Results from grid turbulence measurements ........................................................... 45 
Table 4.4: Mean values during measurements of the performance of the model turbine ........ 48 
Table 4.5: Mean values during measurements locating the tip vortices .................................. 51 
Table 4.6: Mean values during measurements with hot-wire array ......................................... 54 
Table 4.7: Position of hot-wire probes ..................................................................................... 55 
Table 4.8: Mean values during second measurements with hot-wire array ............................. 58 
Table 5.1: X/D = 1, Position 1 of hot-wire probes ................................................................... 59 
Table 5.2: X/D = 1, Position 2 of hot-wire probes ................................................................... 62 
Table 5.3: X/D = 1, Position 3 of hot-wire probes ................................................................... 63 
Table 5.4: X/D = 3, Position 1 of hot-wire probes ................................................................... 66 
Table 5.5: X/D = 3, Position 2 of hot-wire probes ................................................................... 67 
Table 5.6: X/D = 3, Position 3 of hot-wire probes ................................................................... 69 
Table 5.7: X/D = 5, Position 1 of hot-wire probes ................................................................... 71 
Table 5.8: X/D = 5, Position 2 of hot-wire probes ................................................................... 72 
Table 5.9: X/D = 1, Position 1 of hot-wire probes ................................................................... 83 
Table 5.10: X/D = 1, Position 2 of hot-wire probes ................................................................. 84 
 
 
Table A.1: Calibration data for thrust gauge ............................................................................. iii 
Table A.2: Calibration data for torque gauge ............................................................................ iv 
Table A.3: Calibration data for pressure transduces Pitot probe ................................................ v 
Table A.4: Calibration data for the pressure transducer for contraction in the wind tunnel ..... vi 
Table A.5: Properties for the measurement in the fully developed pip flow ........................... xii 



XIV 
 

  



XV 
 

Nomenclature 

A Area 
A Constant dependent on grid geometry 
B Number of turbine blades 
CP Power coefficient 
CT Thrust coefficient 
CDv Induced drag coefficient 
Cd Drag coefficient, infinite span 
Cl Lift coefficient, infinite span 
D Diameter of model wind turbine 
D Drag force 
Euu Spectral energy density 
I Turbulence intensity 
I Current 
Lx Integral length scale 
Luux Integral length scale x direction 
Luuz Integral length scale z direction 
M  Distance between the centerlines of one opening in the grid 
Nu Nusselt number 
P Total wind turbine power 
T Thrust force 
T Temperature 
Q Torque 
Re Reynolds number 
Recrit Critical Reynolds number for transition 
R Radius wind turbine blade 
R Ideal gas constant 
R Resistance  
Ruu (τ) Normalized auto-correction function  
Ruu Cross correlation 
Rw  Resistance in hot-wire at operating temperature 
St Strouhal number 
T Time  
   Time scale 
Tw Operating temperature hot-wire 
U, V, W Mean velocity in direction (u, v, w) 
U∞ Free stream velocity 
Uref Reference free stream velocity 
Urel Flow velocity relative to the blade section 
V Voltage 
f Coriolis parameter 
f Frequency  
fb,i  Body forces due to the Coriolis effect and gravitation 
w Mean angular velocity 
c Chord length of airfoil 



XVI 
 

d Drag per unit span 
h Height of boundary layer 
h Heat transfer coefficient 
k Turbulent kinetic energy 
K Thermal conductivity 
l Lift per unit span 
l Characteristic length  
p Pressure  
r Radial position on wind turbine blade 
u* Friction velocity  
u’, v’, w’ Fluctuating velocity in direction (u, v, w) 
u’u’ Normal stress 
ui Instantaneous velocity component in the ith direction 
xi  Spatial coordinates (x, y, z) 
z Height above ground 
z Z direction (horizontal relative to wind tunnel floor) 
z0 Surface roughness 
  
  
  
  
  
  



XVII 
 

Greek symbols 

α Angle of attack 
θp Pitch angle 
δ Boundary layer thickness 
ω Rotational speed of wind turbine 
ρ Density 
μ Dynamic viscosity 
ν Kinematic viscosity 
σ Solidity  
σu Standard derivation of the fluctuations 
Γ Vortex strength 
λ Tip speed ratio 
λ Latitude  
τ Viscous shear stress 
τ Time lag 
κ  von Karman constant 
   ( ) Normalized power spectrum 
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1. Introduction 
 

 

One of the greatest challenges in the 21st century is climate change, and its most severe 
impacts may be avoided if the current energy systems were transformed. In the last decades 
there has been an increasing investment and interest in renewable energy production due to 
the climate change. Renewable energy production is known to reduce greenhouse gas 
emissions and thereby reduce the impacts on global warming.  

In 2008 it was estimated that approximately 19 % of the global electricity supply was 
contributed by the use of renewable energy. In 2010 renewable energy accounted for 
approximately half of the estimated 194 GW of the new electricity capacity added globally, 
which was up almost 8 % since 2009. In 2010, renewable energy delivered close to 20 % of 
global electricity supply and global wind power capacity increased the most by 39 GW. This 
is over three times the 11.5 GW of wind energy added worldwide five years earlier. The total 
existing wind power capacity in the end of 2010 was estimated to 2.0-2.5 % of the global 
electricity consumption. [1] 

Wind energy is a growing renewable energy source worldwide. In 2010 at least 52 countries 
increased their total existing capacity and 83 countries now use wind power on commercial 
basis. The European Union installed nearly 9.5 GW in 2010, and countries such as Denmark 
and Portugal met their electricity demand with respectively 22 % and 21 % with wind power. 
[1] 

Even though wind power increase as a renewable energy resource, and have several 
environmental benefits compared to the conventional electricity production in a global 
perspective, it has its negative externalities. Wind energy production will create noise and the 
turbines may interfere with living organism populations, and some will find wind turbines as a 
visual pollution. Another challenge in wind energy production is the variations in the wind 
and the influence the wind turbines have on each other when placed in a wind farm. The 
variations in the wind can make the energy production unstable if the turbine is not controlled 
according to the conditions, and the wake from a turbine can cause fatigue loads on a turbine 
further downstream in a wind farm. Another unfortunate consequence of using wind turbines 
in wind farm is that the wind turbines within the farm will produce less power due to the 
disturbed flow caused by the upstream turbines. It is therefore crucial to know how the wake 
of a turbine behaves and develops downstream, and to be able to predict the flow conditions 
by conducting simulations.  
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1.1. Earlier work  
 

When airflow passes through a rotating wind turbine rotor, the kinetic energy in the wind is 
extracted and converted to mechanical energy. This results in a field with reduced wind 
velocity and an interrupted airflow behind the rotor, which is termed the wake of the wind 
turbine.  

The research on wind turbine wakes has been ongoing since the late 1970s [2], and in the last 
decade it has increased even more as the turbines are installed in wind farms. The wake of a 
turbine is known to affect the downstream turbine and cause fatigue loads. Two primary 
characteristics of the wake are of special interest when considering the downstream wind 
turbine; the turbulence intensity and the velocity deficit.  

The airflow in the wake of a horizontal-axis wind turbine is a complex turbulent flow, but 
several studies have shown characteristics in the flow. There are rotational motion induced by 
the turbine blades, longitudinal and radial pressure gradients and vortices shed by the tip and 
root of the blade, generating spiral vortices. There have also been observed unsteady behavior 
of the wake, where the whole wake oscillates randomly. This unsteady behavior is termed 
wake meandering.  

Studies of the wake meandering phenomenon have resulted in two main possible explanations 
of its formulation. One deal with the intrinsic instabilities in the wake characterized by a 
periodic vortex shedding appearing in the wake, and the other is based on how large scale 
turbulent eddies in the atmospheric boundary layer affect the wake. Medici and Alfredsson 
conducted a study in 2006 on the meandering phenomenon in a wind tunnel with a rotating 
wind turbine model [3]. Their study showed a periodic spectral signature of the vortex 
shedding, which can be compared to those who appear in bluff body wakes. In another study, 
also conducted by Medici and Alfredsson in 2007, it was found that the meandering of the 
wake is related to the tip speed ratio and thrust coefficient of the turbine [4]. It was also 
proven that an increasing thrust coefficient is needed when increasing the tip speed ratio to 
obtain a meandering motion of the wake.  

Due to the fact that the wake meandering is, among other, believed to be caused by large scale 
turbulent eddies found in the atmospheric boundary layer (ABL), several studies have been 
conducted by the use of the actuator disk concept. Scaling down a wind turbine to a static 
porous disk, and physical modeling an atmospheric boundary layer in a wind tunnel, has been 
the experimental setup in many studies. In 2011, G. España, S. Aubrun, S. Layer and P. 
Devinant conducted a study based on this concept [5]. Their aim was to prove the role of the 
large atmospheric turbulent scales on the meandering phenomenon. They conducted 
measurements in both a quite rough ABL, with turbulent integral length scales of about 10 
times the disk diameter, and in HIT (homogeneous and isotropic turbulent) conditions where 
the integral length scales were 3-10 times smaller than the disk diameter. In the rough ABL, 
random oscillations of the wake were observed, while in the HIT conditions, no meandering 
was observed.  
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However, in studies conducted using this kind of experimental setup, the influence by the tip 
vortices in the wake of the turbine and the rotational motion of the wake are omitted.  

In 2012, S. Aubrun, T. F. Tchouaké, G. España, G. Larsen, J. Mann and F. Bingöl conducted 
a study where they compared wind tunnel experiments and field experiments on wind turbine 
wake meandering [6]. They found that the wind tunnel data representing the standard 
derivation of the instantaneous wake center locations and wake widths, showed systematically 
more variability than the corresponding for the field experiments, although the turbulence 
intensity and the turbulence length scales were approximately similar. From this they 
concluded that the content of the turbulent eddies responsible for the meandering is more 
pronounced in the wind tunnel. In their final conclusion they stated that the turbulence spectra 
must be carefully compared to ensure that field and wind tunnel data are obtained under 
similar conditions.  

Studies have shown that the wake deficits measured in the field are often smaller than those 
from wind tunnel experiments when comparing wind tunnel wake measurements with 
available field data. It is believed that the difference is caused by the variability of the wind, 
particular wind direction, which gives rise to wake meandering. This means that a measured 
deficit averaged over a few minutes will in fact be averaged over a portion of the wake 
profile. [7]  

At the Institute of Fluid Mechanics at NTNU, there have been conducted various studies on 
the flow around airfoils and on wind turbine models for many years. Currently, there are 
several experimental studies carried out on small scale wind turbine models in the wind tunnel 
at the institute.  

One of the wind turbine models, the one used in this study, has turbine blades designed at 
NTNU using the BEM (Blade Element Momentum) method. The design point for the turbine 
blades is a tip speed ratio of 5 and an angle of attack of 7.0°, with corresponding lift and drag 
coefficients of 1.2756 and 1.35E-2 respectively. The rotor has a diameter of 0.9 m, and the 
blades are machined from aluminum.  
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2. Aim of study 
 

 

The need for good predications of the wind turbine wake is required when developing a wind 
farm. The effect of the wake from an upstream turbine within a wind farm can be a 
fundamental factor when considering life expectancy and maintenance cost of the turbines. 
However, to model the wake accurately has proven to be difficult.  

Wind tunnel model test are very useful in order to verify computer predications. Though, a 
direct comparison with experimental data requires that the experimental data represent the 
quantities that one wishes to check. There exists many good measurements on the wake of a 
turbine, but they may not represent the same quantities as produced by the predications. The 
tendency of the wake to move around in space, often termed wake meandering, may be a 
source of error to the difficulty of modeling the wake accurately.  

In this master thesis the wake meandering phenomenon will be studied on a model wind 
turbine using a hot-wire array. There have been conducted many experiments on the wake 
meandering phenomenon, but most of them are based on single point measurements. When 
measuring turbulence in a fixed point in space, the meandering of the wake will lead to a 
smearing out of the steep gradients found in the wake. This will result in a measured 
turbulence level that appears lower that what is really the case.  

The experiments in this master thesis will be conducted in the wind tunnel at the Department 
of Energy and Process Engineering at NTNU. After initial measurements at multiple nearby 
points in the wake of the model wind turbine in a low turbulence incoming flow, the same 
measurements will be conducted when the turbine is placed in a flow with free stream 
turbulence intensity typical for atmospheric turbulence. Further, the wake meandering will be 
studied for the two cases based on the position of the tip vortices. This will be performed to be 
able to see how the wake development changes with free stream turbulence, and to see how 
this affects the smoothing of the data.  

It is crucial to use a correct measurement technique in order to establish trustworthy results 
when conducting an experiment in a wind tunnel. Thus, as an introduction to the measurement 
techniques when utilizing hot-wire anemometry, an experiment will be conducted on a fully 
developed pipe flow at an early stage of the thesis. Further, these techniques will be used 
when conducting simultaneous measurements at multiple nearby points in the wake of the 
model wind turbine, in both a low turbulence incoming flow and in a flow that has free stream 
turbulence intensity typical for atmospheric turbulence. The atmospheric turbulence will be 
generated by installing a grid in the wind tunnel.  
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To be able to comprehend grid generated turbulence, how the flow field in the wake behaves 
and how it is affected by turbulence, a study concerning wind turbine aerodynamics, fluid 
flows, turbulence and wakes will be conducted in an early stage in the thesis. This will be 
presented as an opening in the report, before the technique, experimental setup and results are 
presented. The results of the main measurements and the appurtenant discussion will be 
combined in one chapter. This will give a better overview when discussing and comparing the 
results. At the end of the report, a conclusion will be conducted based on the analysis, with 
some remarks on further work.  

Since model wind turbine in question in this thesis is a three bladed horizontal axis turbine, 
the literature regarding wind turbine aerodynamics and wake structure is based on these kinds 
of turbines.  

During the measurements in the wind tunnel it is assumed that the incoming flow is uniform 
distributed, and that the boundary layer created from the floor and sidewalls in the tunnel 
don’t affect the flow passing the model wind turbine rotor. The uncertainty regarding the use 
of hot-wire anemometry in the experiments will not be discussed or valuated in the thesis due 
to the difficulty of stating an accurate uncertainty. Though, it is crucial to keep in mind that 
there are numerous sources of error and uncertainties in experiments which can affect the 
results.  
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3. Theory  
 

 

There are many features that affect wind turbine performance and the predications of its 
behavior. In this chapter there are given an introduction to the general theory concerning the 
aerodynamics of a wind turbine and governing equations for fluid flows. Further, turbulence 
both in the atmosphere and grid generated are accounted for, before the complex behavior in 
the wake of a wind turbine is studied. A study on hot-wire anemometry will also be 
conducted.  

 

3.1. Wind turbine aerodynamics  
 

The most common design of wind turbines today is the horizontal axis wind turbine (HAWT), 
where the axis of rotation is parallel to the ground. These kinds of turbines are often placed in 
a wind farm to increase the energy production from a specific site. This will of course 
increase the investment and the turbines downstream in the farm will have poorer wind 
conditions due to the altered air flow caused by the upstream wind turbines.  

A wind turbine is a device that converts the kinetic energy in the wind to mechanical energy. 
The amount of available kinetic energy in the wind per unit time for a given area A, normal to 
the wind direction, is given by; 

   
 

 
    

  (3.1) 

 

where ρ is the air density and U∞ is the free stream wind velocity. This can be shown from the 
continuity equation of fluid mechanics. However, it is not possible for the wind turbine to 
utilize all the energy in the wind. In 1919 Albert Betz proved that the maximum power that 
can be extracted from the wind is 59.3 % (16/27) of the kinetic energy in the wind. This is due 
to that the air has to move past the turbine rotor and thus cannot stand still behind the turbine. 
The limit is referred to as Betz limit and is only theoretical. For a modern horizontal axis wind 
turbine, a maximum of about 45 % of the available wind energy is extracted.  

To determine the efficiency of a wind turbine, the ratio between the power extracted and the 
available power is calculated. This ratio is normally denoted the power coefficient, CP, and is 
given by; 
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 (3.2) 

 

where Q is the torque of the turbine, which is an estimate of the force in the rotational 
direction, ω is the rotational speed of the turbine rotor and A is the rotor area. 

The wind also generates a thrust force, T, on the wind turbine. This is the load the turbine 
needs to withstand in the axial direction. The thrust coefficient, CT, is normally expressed by; 

 
   

 

 
    

  
 (3.3) 

 

From the power equation it can be seen that the wind speed is a determining factor for the 
amount of energy in the wind. The wind speed will also influence the tip speed ratio (TSR) to 
the turbine. Tip speed ratio is given the symbol λ, and is governed by the equation; 

 
  

  

  
 (3.4) 

 

where ω is the rotational speed of the rotor, R is the radius of the rotor and U∞ is the free 
stream wind velocity. Tip speed ratio is an important design parameter for the turbine. 
Generally a wind turbine is not optimized for a certain wind speed, but an ideal tip speed 
ratio. This is done with the idea that if the wind speed changes from what the turbine is 
designed for, one can change the rotational speed and still obtain an optimum CP and the 
designed tip speed ratio.  

In the study conducted by Medici and Alfredsson in 2006 it was found that both the thrust of 
the turbine and the tip speed ratio influence the wake meandering behind a wind turbine [4]. 
They found, among other factors, that the thrust force needed to be increased when increasing 
the tip speed ratio in order to obtain a meandering motion of the wake. The phenomenon wake 
meandering will be clarified in Section 3.5.  

The aim with the shape of an airfoil, creating the turbine blade, is to have a high lift-to-drag 
ratio. By obtaining a high lift-to-drag ratio throughout the wingspan of a turbine blade, the 
power extraction can be optimized. Lift is generated by the difference in dynamic pressure 
that arises when the airflow passes the airfoil. The flow velocity over the airfoil increases over 
the convex surface. This result in a lower average pressure on the suction side of the airfoil 
compared with the concave side of the airfoil. The lift force is defined perpendicular to the 
direction of the relative wind. Lift per unit span, l, of the airfoil is normally expressed by; 

 
  

 

 
   

      
(3.5) 

 
where c is the airfoil chord length, and Cl is the sectional lift coefficient. 
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An airfoil is subjected to two different kinds of drag forces that opposes the direction of the 
flow when moving through a fluid; form drag caused by pressure, and skin friction drag 
caused by shear stress. When an airfoil is immersed in a free stream flow, there will be a 
pressure difference between the front and back of the object. This will push, or drag, the 
object in the flow direction. The form drag is dependent on the shape of the body, hence the 
name form drag. Skin friction drag is dependent on the roughness of the object. If an object 
has a smooth surface the shear forces, and hence the skin friction drag, will be lower than an 
object with a rough surface. For an airfoil the pressure drag will vary with the flow direction 
relative to the airfoil. 

Skin friction drag along the surface of an airfoil is often the main drag component for normal 
operating conditions of a wind turbine. This is created between the fluid and the surface of the 
body. Drag per unit span, d, on an airfoil is normally expressed by; 

 
  

 

 
   

       
(3.6) 

 
 

where U∞ is the free stream velocity, c is the chord length of the airfoil and Cd is the sectional 
drag coefficient. The drag force is defined to be parallel to the direction of the relative wind, 
and related to the thrust force acting on the wind turbine.  

The angle between the relative wind and the chord line of an airfoil is termed the angle of 
attack. The angle of attack is an important parameter in performance calculations.  

[8] 

 

3.2.  General equations of fluid flow 
 

In this section governing equations concerning fluid flow will be presented. These equations 
and flow properties are fundamental in the predications on the flow concerning wind turbine 
wakes.  

 

3.2.1.  Reynolds number 
Reynolds number can be used to determine if a flow is laminar, in transition or turbulent. It is 
a dimensionless parameter and is a measure of the ratio of inertia forces to viscous forces. A 
low Reynolds number corresponds to a laminar flow and a high Reynolds number to a 
turbulent flow. A number in-between, Recrit, indicate that the flow is in a transition from 
laminar to turbulent flow. The Reynolds number is normally defined by a characteristic 
length, l, and relative velocity, Urel, to the kinematic viscosity, υ, of the fluid; 

 
   

      

 
 (3.7) 
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3.2.2. Strouhal number 
When a solid body is immersed in a free stream flow, it might arise a periodic vortex 
shedding with an oscillatory pattern in its wake. This pattern can be described by the 
dimensionless Strouhal number, St. The Strouhal number is given by; 

 
   

  

  
 (3.8) 

 

where the f is the frequency of the vortex shedding, l is the characteristic length and U∞ is the 
free steam velocity.  

 

3.2.3.  Navier-Stokes equations 
The set of Navier-Stokes equations is the most basic set of equations used to describe the 
motion of fluid substances. The solution of the set is normally termed a velocity field or flow 
field and describes the velocity of a fluid at a given point in time and space. The equations 
arise from applying the assumption that the fluid stress is the sum of a diffusing viscous term 
and a pressure term together with Newton’s second law to fluid motion. For a Newtonian 
fluid, with constant density and viscosity, the motion can be described by; 

    
  
   

   
   

  
 

 

  

   
  

    

   
       (3.9) 

 

    
   

   (3.10) 

 

where ui is the instantaneous velocity component in the ith direction and t is time. p is the 
pressure and fb,i are body forces due to the Coriolis effect and gravitation. xi corresponds to 
the spatial coordinates (x, y, z) and are independent variables. ν is the kinematic viscosity 
given by      . The first Equation (3.9) concerns the conservation of momentum, while 
the second Equation (3.10) is the continuity equation. This set of equations gives four 
equations with four unknowns if density, ρ, and dynamic viscosity, μ, are known.  

In a turbulent flow the detailed velocity and pressure field is not reproducible due to the rapid 
fluctuations in time and space. Hence, the instantaneous values are split into two components; 
a mean value and a fluctuating part; 

 

                                                                              (3.11) 
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where the mean value, here represented only in U direction, is defined by; 

 
  

 

 
∫    
      

    

 (3.12) 

 

The mean of the fluctuating part is zero, while the standard derivation of the fluctuations 
gives the so called root mean square (rms) value; 

 
   √   ̅̅ ̅̅  √

 

 
∫      
      

    

 (3.13) 

 

When substituting the instantaneous components in Equation (3.11) with the sum of the mean 
value and the fluctuating part and taking the time average (as in Equation (3.12)) one obtain 
the so called Reynolds average Navier-Stokes (RANS) equations; 
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 (3.14) 

 

    
   

    (3.15) 

 

Equation (3.14) is quite similar to the original Navier-Stokes equation for conservation of 
momentum, except for the last term which represents the influence of the turbulent stresses on 
the mean motion. The term can also be written as   

 

   

   
 , giving           ̅̅ ̅̅ ̅ which is termed 

the Reynolds stress. This introduces six new unknowns to the original four in the Navier-
Stokes equation set. When solving this set of equations in simulations it is normally used 
transport equations for the Reynolds stresses. In this study u’u’ will be used and referred to as 
the normal stress of the flow.  

Solving the Navier-Stokes equations accurately is difficult. Turbulent flows are highly 
unsteady, and a plot of the velocity as a function of time at most points in the flow would 
appear random to an observer unfamiliar with these flows. There are three dimensional 
motions where the instantaneous field fluctuates rapidly in all three spatial dimensions. 
Solving this set of equations is thus time-consuming, expensive and requires huge amount of 
data capacity. This makes experiments crucial in the growth and progress of wind energy. 

 [9] 

In Section 3.4 the structure and properties in turbulent flows will be clarified.  
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3.3. Atmospheric boundary layer 
 

In this section it is given a general overview of how the atmospheric boundary layer is built 
up. This is studied to know how the flow field surrounding a full scale wind turbine affects 
both the performance and wake development of the turbine. To get a better understanding of 
boundary layer flow, properties such as shear stress and friction velocity will also be studied. 
This section is intended as a fundament and introduction turbulent flows and thus, the wake 
behind a wind turbine.  

The planetary, or the atmospheric boundary layer (ABL), is known as where the flow is 
affected by surface friction. It is normally divided into different regions in which the layer is 
influenced by various parameters; molecular layer, surface layer and Ekman layer. The 
molecular layer includes the lowest millimeters of the ABL, where the structure of scalars, 
such as temperature, is strongly influenced by molecular properties. However, the momentum 
is not influenced, unless the surface is unusually smooth, which can appear over waters in 
weak winds.  

Above the first millimeters of the ABL, the flow is affected by a vertical temperature gradient 
and surface friction. The effects of the earth’s rotations, the Coriolis force, and the vertical 
variation of stress can be neglected and the wind direction is nearly constant. This layer is 
normally termed the surface layer. The region is approximately 30 m high, but varies a great 
deal depending on the stratification. For instance, at night the fluxes can be weak and the 
stratification quite strong, leading to a narrow surface layer. 

At higher altitudes, the flow is affected by the Coriolis force, temperature gradients and 
friction. In these conditions the wind direction change significantly with height, and it forms 
the outer region of the ABL normally termed the Ekman layer. The height of the Ekman layer 
is dependent on many factors, and the boundary between the free atmosphere and the ABL 
has been observed to be at 20 m up to 5 km above the earth’s surface. Parameters that 
influence the height of the layer are, among other, orography, surface roughness, wind speed, 
temperature and the rate of heating and cooling of the surface.  

In unstable or neutral air the turning of the wind can be neglected in a region of the Ekman 
layer. It is therefore often convenient to subdivide the Ekman layer into two regions; below 
150 m the earth’s rotation is important, but the turning of the wind can be neglected. This is 
only useful in the absence of hydrostatically stable air, where the turning of the wind may 
start at much lower altitudes. The region below 150 m is often termed the tower layer, and it 
is found that many of the relationships developed for the surface layer is applicable in this 
part of the Ekman layer.  

When adiabatic cooling of the air as it rises is such that it remains in thermal equilibrium with 
its surroundings, the conditions in the atmosphere is termed neutral. This is often the case in 
strong winds, and the effects of the surface roughness and the Coriolis force have a sufficient 
effect on the boundary layer properties at these conditions.  
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The surface roughness is characterized by a roughness length z0 and is in the order from 1.0E-
3 for flat desert and rough sea, to 0.7 for cities and forests [10]. The Coriolis force is defined 
by a Coriolis parameter f; 

        (| |) (3.16) 
 

where f is the rotation of the earth represented as an angular velocity Ω and λ is the latitude. 
Further, the height of the boundary layer (at temperate latitudes) is given by; 

   
  
  

 (3.17) 

Here,    is the friction velocity defined by; 
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 (3.18) 

where κ is the von Karman constant, and Ѱ is a function dependent on the stability. The 
function is positive for stable conditions, giving high wind shear, and negative for unstable 
conditions, giving rise to low wind shear.    is the surface roughness length and z is height 
above the ground.    

[10-12] 

The friction velocity can also be expressed by shear stress, which will be presented in the next 
section.  

 

3.3.1. Viscosity and shear stress  
When fluid passes over a solid surface, the viscosity of the fluid will influence the flow. 
Viscosity may be thought of as a measure of fluid friction and describes the fluids internal 
resistance to flow. The viscosity will slow down the fluid such that the velocity of the fluid 
relative to the surface of the solid will be zero, which is termed the no-slip condition. This 
region of the fluid then transfers momentum to adjacent layers through the action of viscosity 
and creates a thin layer of fluid with slightly higher velocity than the inner flow. The velocity 
of the fluid will gradually increase with increasing distance to the surface, up to the value that 
corresponds to the external “frictionless” flow. The transfer of momentum creates a velocity 
gradient normal to the solid surface. The region between zero velocity and the external 
frictionless flow is termed the boundary layer. The boundary layer can be either laminar, in 
transition or turbulent.  

When fluid moves along any solid boundary it will incur a shear stress on that boundary. 
Shear stress is proportional to the velocity gradient normal to the wall, and is given by the 
elementary law of fluid friction; 

 
 ( )   

  

  
 (3.19) 

 
where μ is the dynamic viscosity of the fluid.  
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As long as the fluid viscosity and the velocity gradient at the solid surface are known, the 
friction caused by the shear stress can be calculated; 

 
    

  

  
|     (3.20) 

 

Integrated along the wall, one can find the shear stress causing a viscous friction force on the 
wall when exposed to a fluid flow. The friction velocity can then be expressed by; 

 
   √

  
 

 (3.21) 

 

where ρ is the fluid density. The friction velocity is thus a characteristic velocity and not a 
flow velocity. 

[13] 

3.3.2. Mean velocity profiles 
In the atmospheric boundary layer, the vertical wind profile for the mean streamwise 
velocities can be expressed by the power law; 
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 (3.22) 

 

This law is often used in micrometeorology, where zref is a chosen reference height. However, 
zref =10 m is often used due to uncertainties related to the gradient height in the atmospheric 
boundary layer. The exponent, α, is a factor that mainly depends on the roughness for 
aerodynamically rough surfaces. For aerodynamically smooth surfaces it depends on the 
Reynolds number. The power law is seen to give a good description of the velocity profile for 
a wide range of velocities, while the flow near the ground is not well represented.  

The logarithmic law is another law describing the vertical mean velocity profile in the 
streamwise direction, and can be written in two ways; 
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This law applies to a turbulent boundary layer and it is a physical basis for the use of this law, 
unlike for the power law. κ is the von Karman’s constant, normally equal 0.41,    is the 
friction velocity,     is the roughness length and Co is a constant, generally Co≈5.2. 
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The law can be derived in different ways, but it is generally derived by asymptotical fitting. 
This requires that the velocity profile in the outer layer match the velocity profile in the sub 
layer in the overlap region. The law is universal for smooth surfaces and is shifted downwards 
with increasing surface roughness.  

[14, 15] 

 

3.3.3. Velocity-defect law 
The flow in the outer layer, mentioned in the previous section, is independent of viscosity. 
Thus, the deviation between the free stream velocity and the mean velocity in the outer layer 
is given by the velocity-defect law; 

     

  
  ( ) (3.25) 

 

Here η represents Zz/δ. Zz is a parameter used for very rough surfaces as the height above a 
new zero level, and defined by z-d0, where z is the height above ground and d0 is a 
displacement height.    is the friction velocity.  

[14] 

 

3.3.4. Nature of the wind 
The energy available in the wind varies with the cube of the wind speed. Wind is highly 
variable, both in space and time, dependent on how one consider the wind. The wind variation 
can be considered on many time- and space scales, ranging from a large-scale global 
circulation pattern to turbulence at one specific point.  

The origin of the wind is the differential surface heating of the earth caused by sun energy. 
Warm air rises to the atmosphere, circulates and cools down, before it sinks back to cooler 
places. The Coriolis force affects the large-scale motion of the air and the result is a global 
circulation pattern of the air. The non-uniformity of the earth’s surface interrupt the 
circulation pattern, leading to a chaotic airflow witch gives the daily unpredictable variations 
at particular locations. The wind speed in the ABL increases with height above the surface, 
thus local regions of increased wind speed is often found on top of mountains and hills. The 
different heating of land and sea also cause considerable local variations in the wind speed. 
Along the coastal line it is often seen a local circulation of air, from the land out to the sea and 
back again, caused by the warm sea and cooler land. The process is reversed, air moving from 
the sea and onshore, when the land is warmer that the sea. As the land heats up and cools 
down more rapidly than the sea, this pattern of land and sea breezes tends to reverse every 24 
hours.  
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The variation in the wind can be represented on many time-scales; annual, seasonal, monthly 
and diurnal, to mention some. On an even shorter time-scale, typically less than 10 minutes, 
the variation, or fluctuation in the wind speed is termed turbulence.  

Figure 3.1 show a wind-speed spectrum for long- and short-term records for Brookhaven in 
New York created in 1957 by Van der Hoven. It clearly states the frequency content 
corresponding to some of the time-scales mentioned above.  

 

Figure 3.1: Wind speed spectrum, Van der Hoven (1957) Brookhaven, New York [10] 

The wind can be thought of as consisting of a mean wind speed, depending on the time-scale 
(monthly, diurnal etc.), with turbulent fluctuations superimposed, as seen in Section 3.2.3. 

 

[10] 
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3.4. Turbulence 
 

As seen in the frequency spectrum in the previous section, turbulence has a relatively fast 
time-scale compared to the rest. There are mainly two effects that generate turbulence; 
friction and thermal effects. The friction against any surface causes the flow to alter its 
behavior, as explained in Section 3.3.1, leading to a chaotic and unpredictable flow. The 
thermal effects can cause the air to move both vertical and horizontal due to the change in 
density. The result is a complex flow, with motions in three dimensions, which cannot be 
represented in a simple manner. It is however possible to formulate a set of differential 
equations describing the process and integrate the expressions forward in time, starting from 
certain initial- and boundary conditions. Small changes or mistakes in the conditions can 
evolve to great differences between the predications and the real flow, thus it’s more useful to 
describe the turbulence in terms of statistical properties. Turbulence intensity is a statistical 
property describing the overall level of turbulence in the flow; 

   
 

     
 (3.26) 

 

where σ is the standard variation of the wind speed variations about the mean wind speed 
Umean. The mean velocity of the wind is often taken as an average over 10 minutes to 1 hour.  

Since the turbulent properties vary in three dimensions it is common to denote the parameters 
according to a reference system with components u (longitudinal), v (lateral) and w (vertical). 
The longitudinal component of the turbulent intensity then becomes Iu and the standard 
deviation σu. Turbulence intensity depends on the surface roughness and especially in a 
neutral atmosphere.  

Most of the fluid flows in the nature and in engineering applications are turbulent. As a fluid 
flow passes an obstacle, e.g. a sphere, the flow tends to separate from the obstacle and form a 
“shadow” of turbulent flow behind it. In this shadow the flow is unpredictable and fluctuates 
in all three dimensions, i.e. the flow is turbulent. The fluctuations occur in a wide range of 
time- and length scales in physical space. Turbulence is in other words a multi-scale problem 
with highly nonlinear coupling between these scales. However, the flow is not totally chaotic 
when studying high-Reynolds number turbulent flows. When investigating a flow separation 
from e.g. a sphere, the flow rolls up in eddies downstream the separation. These eddies tends 
to either merge together to form a greater eddy and at the same time create a new and smaller 
eddy in their intersection, or to break up in smaller eddies. If the eddies preserves a certain 
spatial structure, i.e. eddies can be found further downstream with approximately the same 
shape, it is termed a coherent structure. Examples of coherent structures are the so called 
horseshoe vortices and vorticity tubes, often called worms or filaments. The analysis of these 
coherent structures is important due to their significance to the transport and mixing of the 
flow.  
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When the flow becomes unstable, the large flow structures in the turbulent flow break up in 
smaller and smaller eddies, until they are diffused into heat due to viscous effects. In this way 
the turbulent kinetic energy is handed down from large eddies to progressively smaller and 
smaller eddies. This effect is termed the energy cascade.  

As mentioned, the instantaneous velocity field in a turbulent flow is unpredictable; however it 
is possible to distinguish distinct statistical features such as average velocity. This makes it 
possible to characterize scales of statistical correlations. The instantaneous velocity, u (x,t), 
can be divided into a mean value, U, and a fluctuating value, u’ as shown in Equation (3.11). 

The root mean square (rms) values of the velocity components in a turbulent flow, see 
Equation (3.13), are of particular importance in turbulent flows, since it gives information 
regarding the fluctuating part of the flow. The rms values can be easily measured with a 
velocity probe sensitive to the turbulent fluctuations, e.g. a hot-wire anemometer.  

[9, 10] 

 

3.4.1. Turbulent kinetic energy  
The kinetic energy per unit mass associated with turbulence is given the symbol k, and is 
defined as; 
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The turbulence intensity, I, see Equation (3.26), is linked to the turbulent kinetic energy by; 

 

  
(
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 (3.28) 

 

where Uref is a reference mean flow velocity. [9] 

In Figure 3.2 previous measurements conducted in the wake of the model wind turbine in 
question in this master thesis is represented. The figure shows the measurements of the 
turbulent energy and normal stress distributions measured along a horizontal diagonal. 
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Figure 3.2: Normal stresses for the different components in turbulent kinetic energy, (modified) [16] 

The green line represents the normalized normal stress (normalized by Uref
2) in the 

circumferential direction, utheta
2, the blue line in the streamwise direction, ux

2, and the pink 
line represents the normalized normal stress in radial direction, ur

2. The black line represents 
the turbulent kinetic energy, k, normalized by the same Uref

2 as the normal stresses. It is clear 
that the turbulent energy is some kind of mean, according to Equation (3.27), of the three 
components of the normal stresses. When comparing the level of the normal stresses with the 
turbulent energy in the figure, the normal stress in the streamwise direction is a factor of 
round 1.5 lower than the turbulent energy. Thus, a correlation between the normal stress in the 
streamwise direction and the turbulent energy is found to be approximately;  

 
  

 

 
(    ) (3.29) 

 

During the measurements conducted in the thesis, only the normal stress in the streamwise 
direction, u’x

2, will be measured/calculated. 

[16, 17] 

  



3. Theory 

20 
 

3.4.2. Integral length scale 
The fluctuating part of the velocity at time t can be related to the corresponding value at the 
time t + τ by the normalized auto-correction function Ruu (τ) for a time series u’(t). This 
function then provides information about the correlation of the time series with itself for 
different time lags τ, and can be used to find the integral length scale associated with the 
average eddy size of the turbulence;  

 
   ( )  
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 (3.30) 

 

The function decreases to 0 as τ increases, and has its maximum at 1 when τ=0. When 
integrating Equation (3.30) from zero time lag to the first zero crossing one obtain the integral 
time scale Tu; 

 
   ∫    ( )  

        

   

 (3.31) 

 

This time scale provides a measure of the duration over which velocities are correlated, and 
can further be used to find the integral length scale xLu at a given point; 

           
  (3.32) 

 
where the Umean is the streamwise mean velocity.  

The integral length scale provides a measure of the extent of the region over which velocities 
are appreciably correlated. In other words, the average size of eddies in the streamwise 
direction, indicating the scales of eddies containing the major part of the kinetic energy. 

The cross correlation between two measurement points in a flow can also be obtained by the 
use of Equation (3.30). Instead of using time lag, one of the time series, or measurement 
points, are used as a reference, while the other time series is used as the delay expression. 
This will give a delay as the distance between the two measurement points, and hence the 
cross correlation between the two points in the flow. Further, a time delay can be used on the 
second time series, and thus obtain a cross correlation both in space and time.  

The integral length scale in the vertical direction, Luuz, is normally shorter than in the 
streamwise direction Luux. The ratio between them, Luux/Luuz, is usually found to be 2. [18] 

There have been suggested several relationships on how the surface roughness and the length 
scale are related. It is known that the integral length scale in the atmospheric boundary layer 
decreases with increasing surface roughness, and that it increases with increasing height up to 
200-300 m above the ground. A recommended relationship, given by ESDU, is commonly 
used to estimate the integral length scale in an atmospheric boundary layer;  
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  (3.33) 

 

where z is the height above ground and z0 is the surface roughness.  

The length scale to the energy-containing eddies can also be defined by using an energy 
spectrum. In an energy spectrum the wave number is the domain and it indicates how the 
energy is distributed over length scales (inverse wave number).  

[15, 17] 

3.4.3. Power spectral density function  
The strength of the variation in a time series as a function of frequency can be described by 
using power spectral density function (PSD). The dimension of the function is represented by 
power per unit of frequency, and when analyzing a velocity time series the unit will be m2/s. 
PSD clearly show at which frequencies the variations are strong, and at which frequencies 
variations are weak. The computation of PSD is done by using a Fast Fourier Transform 
(FFT). PDS can be very useful for detecting and identifying oscillatory signals in a time series 
and to find their amplitudes.  

When considering the time series of velocity, the spectral energy density, Euu, can be 
integrated over all frequencies by; 
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 (3.34) 

 

This can further be normalized, giving the normalized power spectrum; 
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 (3.35) 

 

It is common to rewrite the normalized power spectrum to give a total area under the curve 
Фuu versus f equal to 1; 

 
∫    ( )   ∫     ( )  [   ]   

 

 

 

 

 (3.36) 

 

This way the area under the curve between two frequencies correspond to the fraction of the 
variance contained in that range of frequencies. However, the wide range of values will result 
in a figure where the data is compressed to the axis. By modifying the curve by plotting f Фuu 
versus ln f the curve will be readable, and the characteristics of the area under the curve will 
be conserved.  
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The peaks that occur in the power spectral density function represent something repeating in a 
time series. In the wake of a three blades horizontal axis wind turbine it is normal to obtain 
three distinct peaks; one at the rotational frequency of the turbine, another at two times the 
rotational frequency and one at three times the rotational frequency. These are the so called 
3P’s. The first peak represents something occurring once within every rotation of the turbine, 
the second peak something occurring two times and the third something occurring three times 
within every rotation.  

The turbulence spectra must, according to the Kolmogorov law, approach an asymptotic limit 
proportional to f -5/3 at high frequencies. When plotting the range of frequencies as ln f versus 
ln f Фuu the sub range of the spectrum will be proportional to this limit, which can be seen as a 
straight line with slope -5/3. There are two commonly used models for the spectrum of the 
longitudinal component of turbulence that tends to this asymptotic limit; von Karman spectra 
and Kaimal. Both models use a length scale Lu. They are defined as given in Equation (3.37) 
and (3.38) respectively.  

von Karman;    
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 (3.37) 

 

Kaimal; 
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 (3.38) 
 

 

Here, the length scales L1u and L2u must be related by the ratio L1u = 2.329L2u to have the same 
high-frequency asymptotic limit. f is the frequency and Umean is the mean wind speed at the 
point of interest in the above expressions.  

The von Karman spectrum coincides well with description of turbulence in wind tunnels, 
while the Kaimal spectrum gives a better fit to empirical observations of atmospheric 
turbulence. Thus, it have been suggested that the von Karman spectrum gives a good 
representation of atmospheric turbulence above about 150 m.  

[10, 18, 19]  
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3.4.4. Grid turbulence 
In a flow with no mean velocity gradients, there will be no production of turbulence, and as a 
result homogenous turbulence will decay. In a wind tunnel, a good approximation to decaying 
of homogenous turbulence can be achieved by placing a grid in a uniform flow. This will 
create a flow where the statistics of the flow only will vary in the direction of the flow, and 
the turbulence will evolve with time, t = x/Umean, where t is time, x is the position downstream 
the grid, and Umean is the mean velocity of the flow.  

It is found that the normal stresses and the turbulent kinetic energy in a flow with grid 
turbulence decay as power laws. This can be written as; 

  

      
  (

    
 

)
  

 (3.39) 

 

where k is the turbulent kinetic energy, Umean is the mean velocity of the flow, A is a constant 
dependent on the geometry of the grid (Cp) and the Reynolds number, n is a decay exponent 
with values typical in the range between 1.15 and 1.45, x specifies the position downstream 
the grid, and M is the distance between the centerlines of one opening in the grid, see Figure 
3.3.  

 

Figure 3.3: General grid 

The Reynolds number of the flow will decrease as the turbulence decays downstream the grid, 
and eventually the viscous effects will dominate, unless there are other turbulence production 
mechanisms introduced to the flow. 

[17] 
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3.5. Wind turbine wakes 
 

The wake of a wind turbine can be defined as the region behind a wind turbine where the 
wind velocity has decreased compared to the free stream velocity upstream the turbine. 
Immediately behind the turbine, the region with the reduced wind speed will be slightly larger 
than the turbine itself. The wake is in principal generated by the loss of momentum due to the 
force on the fluid by the wind turbine, directed in the upstream direction. The reduction in the 
velocity is in other words directly related to the thrust coefficient of the turbine.  

The wake of a wind turbine is a highly complex flow, influenced by numerous properties, e.g. 
the shape of the turbine blades and turbine, operating condition, loads acting on the turbine 
blades, surrounding turbulence and the velocity profile of the upstream air. However, some of 
the properties give the wake of the turbine its characteristics such as the tip and root vortices.  

When air passes over a blade, the air will try to even out the pressure difference over the 
blade, resulting in a flow going from the high pressure side, passing the tip of the blade to the 
low pressure side. This will give a reduced lift force towards the tip of the blade. Further, 
there will be induced spanwise velocity components over the blade. This will create vortex 
sheets behind the blade, which tend to roll up in large wingtip vortices distributed along the 
span with low pressures and high velocities. The downwash has the effect of “tilting” the 
undisturbed air so that the effective angle of attack is reduced. This results in an additional 
drag component known as induced- or vortex drag, or drag-due-to-lift. Figure 3.4 visualizes 
two revolutions of tip vortices for a two-bladed rotor. 

 

Figure 3.4: Flow visualization experiment at TUDelft, showing two revolutions of tip vortices for a two-
bladed rotor [2] 
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The lift force generated by the blades on a wind turbine can be attributed to a distributed 
bound cortex by the Kutta-Joukowski law. This bound vortex causes the pressure difference 
over the turbine blades and thus the lift force, by creating a jump in the tangential velocity 
over the blades. The Kutta-Joukowski law can be used to describe the strength of the tip 
vortices created by the blades; 

 
  

 

   
 (3.40) 

 

where Γ is the strength of the vortex, L is the lift force, U∞ is the free stream velocity and ρ is 
the air density. The strength of the tip vortices is, among other influences, dependent on the 
loads acting of the turbine blades. [20] 

The tip vortex in the wake is known to first decrease in diameter, due to vortex stretching as a 
result of wake expansion, and then increase in diameter due to viscous effects [21]. The tip 
vortices follow a helical path with rotation opposite of the rotor. This is due to the fact that the 
airflow gives torque to the wind turbine, and as a result, an angular momentum to the flow in 
the wake of the turbine. The energy extraction then creates some kinetic energy which will 
rotate the wake in the opposite direction to the rotor. The tip and root vortices gives a periodic 
upstream boundary condition to the wake, while downstream in the wake the tip and root 
vortices may interact and pair with each other, or break up.  

The tip vortices have been found to significantly affect the turbulent structures in the wake, 
and also have a strong influence on the wind turbine rotor as a whole [2]. Tip vortices spirals 
shed from blades with different pitch angle tend to have their own path and transport velocity. 
This might result in that one or two tip vortices catches up with the other after a few 
revolutions, and thus become entwined as one. The merging of the tip vortices is possible due 
to that they rotate in the same direction. [2] 

The turbulent flow in the wake of a wind turbine is, as mentioned, complex. The velocity 
destabilizations in the wake is a combined result of turbulence contribution originating from 
the wake generated shear, conventional background atmospheric turbulence, blade bound 
vorticity effects and the meandering movement of the wake. The turbulence in the wake 
which is generated by the turbine is of relatively high frequency and decays rather quickly, 
and the length scale of the turbulence introduced by the wake is in the order of the rotor 
diameter [7]. In 1983, Bossanyi developed a theoretical model which describes how this 
turbulence might decay. As explained in previously sections, large eddies give rise to smaller 
eddies, thus the turbulent energy moves to higher and higher frequencies, until it dissipates as 
heat. The model developed by Bossanyi predicts a faster rate of decay in high ambient 
turbulence intensities and in low winds.  
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The wake of a wind turbine is typically divided into two regions; near and far wake, where the 
near wake is the region up to approximately one rotor diameter downstream the turbine. In 
this region the presence of the rotor is apparent by the blade aerodynamics, number of blades, 
3-dimensional effects and the tip vortices, determining the performance of the turbine. The far 
wake is the area beyond the near wake. Figure 3.5 shows how the wake of a wind turbine 
might be divided into a near and far wake. 

 

Figure 3.5: Velocity profile in the wake of a wind turbine 

The velocity difference between the air outside and inside the wake creates a shear layer. In 
this shear layer there are formed eddies and the layer thickens when moving downstream in 
the wake. In the near wake, when conducting single point measurements of the wake profile, 
it appears two peaks with higher turbulence intensity which, in the far wake, is no longer 
evident, see Figure 3.5. The wake and the surrounding flow will start to mix, and the region of 
the mixing will spread inwards to the center of the wake, as well as outwards which makes the 
width of the wake increase. In this way the wake becomes broader, but shallower until the 
flow has fully recovered far downstream the turbine, and the velocity deficit in the wake is 
eroded. The diffusion of the kinetic energy is thus greatest in radial direction when dividing 
the diffusion into streamwise and radial direction. The diffusion in radial direction will 
therefore contribute most to the diffusion, which then will smear out the velocity gradients 
when a wind turbine is exposed to a turbulent incoming flow.  

Figure 3.6 visualizes a smoke trail from the tip of the blade when smoke is emanated from the 
tip of the turbine blade. From this smoke trail it is not clear whether the smoke trail reveals 
the path of the tip vortex or some streamline in the tip region. However, it illustrates how the 
outer region of the wake of a wind turbine evolves downstream the turbine. In this figure the 
wake hardly expands. This is due to a very low thrust value during the experiment.  
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Figure 3.6: Flow visualization with smoke grenade in tip, revealing smoke trails for the NREL turbine in 
the NASA-Ames wind tunnel [2] 

The maximum velocity deficit has been estimated to be attained after 1-2 diameters, or even 
further downstream at low ambient turbulence levels, and the expansion region length about 1 
diameter [22]. In 2006, D. Medici and P. H. Alfredsson conducted measurements on a wind 
turbine wake where they studied the velocity field in the wake of a two-bladed model wind 
turbine under different conditions [3]. One of their findings was that the wake is substantially 
changed by the presence of free stream turbulence. The wake of the model turbine had a faster 
recovery of the velocity defects due to a higher energy mixing and a shorter persistence of the 
tip vortices when the turbine was subjected to free stream turbulence.  

The forces acting on the turbine affects the wake of the wind turbine. For instance, a higher 
thrust force acting on the rotor will result in a lower velocity in the wake, and thus greater 
shear between the flow velocities outside and inside the wake. This means that a changed tip 
speed ratio or pitch angle will change the total momentum deficit in the wake. E.g. a higher 
thrust coefficient will result in a larger the wake expansion. 

[17, 20]  
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3.5.1. Bluff body wakes and wake meandering 
The wake of a wind turbine can be viewed as a wake of a bluff body. A bluff body wake has 
the characteristics of self-similarity far downstream, at round 50 diameters, and the 
development of the wake downstream can be described by an appropriate normalization. The 
wake “remembers” the shape of the solid body in the form of the larger eddies that travels 
downstream. The large scale vortex shedding from the body is connected to a wake 
meandering, described by the Strouhal number. However, in the wake of a wind turbine the 
tip vortices shield the wind turbine wake and will decay turbulent mixing.  

In many cases it appears vortical structures in the wake of a solid body due to instability 
processes. An example of such a vortical structure is the well-known von Karman vortex 
street, which appears in the wake of a circular cylinder when the Reynolds number exceeds 
44. It has been shown that the shedding frequency of the von Karman vortex street can be 
expressed by the non-dimensional Strouhal number, and is found to be constant over a wide 
range of Reynolds numbers. [23]  

The term wake meandering is used for large scale movements of the entire wake. The 
meandering phenomenon is important due to possible increased fatigue and extreme loads in 
wind farms by causing the wake to sweep in and out of the rotor plane of downstream 
turbines. The meandering phenomenon is not well understood, but there are believed to be 
two main possible reasons for its formation. As mentioned, atmospheric turbulence consists of 
eddies of different size, and it is suggested that the meandering is caused by eddies whom are 
large compared to the size of the wake, transporting the wake as a whole. The smaller eddies, 
smaller than the rotor diameter, is then believed to be responsible for diffusive effects in the 
wake only. The second suggestion is based on that the instinct instabilities in the wake is 
characterized by a periodic vortex shedding within the wake, as observed in the wake of a 
bluff body. In 2012, España, Aubrun, Loyer and Devinant conducted a wind tunnel study of 
the wake meandering downstream of a modeled wind turbine [24]. The study was based on a 
modeled wind turbine by the actuator dick concept in a wind tunnel with modeled 
atmospheric boundary layer. Based on their experimental setup, the results showed that the 
wake meandering is certainly inextricably linked to the large turbulent eddies in the 
atmospheric boundary layer. However, further investigation on the meandering phenomenon 
is necessary. 

[3, 20]  
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3.6. Hot-wire 
 

The measurements in the wake of the model wind turbine in this master thesis is to be 
conducted with a hot-wire array. A hot-wire anemometer is a measuring device used for many 
years in fluid mechanics as a research tool, despite its intrusiveness in the flow stream. 

The hot-wire anemometer has the ability to describe the turbulent behavior in a flow stream in 
detail. It consists of the sensor, an electrically heated wire exposed to the fluid flow, and 
electric equipment which transforms the output of the sensor to an electric signal. The wire is 
soldered to two support needles, and is normally in the size of 1-3 mm in length and 5 μm in 
diameter, see Figure 3.7. 

 

Figure 3.7: Hot-wire probe 

Using the principle of heat transfer, derived from Fourier’s law and the conservation of 
energy, the velocity of the airflow can be determined by; 

                 (     )              (3.41) 
 

where I is the current running through the wire, Rw is the resistance at operating temperature 
Tw, h is the heat transfer coefficient and D and l is the diameter and length of the wire. The 
heat transfer coefficient is related to the thermal conductivity of the fluid, k, by the Nusselt 
number given by; 

 
   

  

 
 (3.42) 

 

Combining Equation (3.41) and (3.42) gives; 

         (     )   (3.43) 
 

As the fluid passes the heated wire it will cool down the wire by heat transfer, which will be a 
function of the fluid velocity. This will give a relationship between the fluid velocity and the 
electrical output which can be detected by an electronic circuit. 
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The Nusselt number is again a function of the Reynolds number and Prandtls number. There 
have been conducted many investigations on how these characteristic properties in the flow 
are related and it has been tried to derive a universal expression for the cooling of cylinders. 
This has led to numerous expressions for the Nusselt number based on different ranges of 
Reynolds numbers. Even though one has failed to derive one universal expression, the 
numerous investigations have shown a similarity in the expressions for the Nusselt number; 

          (3.44) 
 

In this term A is the natural convection term and BUn is forced convection. When considering 
that the wire resistance is a function its temperature, an expression for the resistance in the 
wire can be derived; 

      [    (     )] (3.45) 
 

Combining Equation (3.43),  (3.44) and (3.45) one obtains the expression; 

 
  
      
     

       (3.46) 

 

An actual value of the heat transfer can be obtained by this expression, either by keeping I 
constant or Rw constant in the control circuit. 

As seen from the above expression, there are two basic methods of using a hot-wire 
anemometer as a measuring device; constant current and constant temperature. The constant 
current method, see Figure 3.8, is as obvious as it sounds, constant current supply through a 
measurement bridge. In the bridge there are two equal resistors, R1, and an adjustable 
resistance R, which is set to be equal to the resistance to the warm hot-wire (usually 1.8 times 
the cold wire). By increasing the supplied current the bridge will become balanced. As the 
fluid passes the hot-wire, the resistance in the wire will change due to heat transfer and the 
bridge will become unbalanced. This will give a voltage output which is linked to the velocity 
by the expressions seen above, and the hot-wire anemometry is ready to be calibrated when 
balanced. 



3. Theory 

31 
 

 

Figure 3.8: Hot-wire control circuit, constant current 

When using the constant temperature method, the temperature, and thus the resistance in the 
wire are held constant by varying the supplied current, see Figure 3.9. The level of supplied 
current is determined by monitoring the voltage over the bridge and keeping the bridge 
balanced. The output from the bridge is amplified and the amplified output, used to keep the 
wire temperature constant, is then a function of the fluid velocity. As when using the constant 
current method the wire is calibrated by adjusting the resistance R, normally to 1.8*RHW,C, 
depending on the desired wire temperature. 

 

Figure 3.9: Hot-wire control circuit, constant temperature 

The constant temperature method is normally the preferred method, due to its high frequency 
response compared to the constant current method. When using hot-wire anemometer the aim 
is normally to detect and follow the rapid velocity fluctuations in the flow. Using the constant 
current method, the actual change in the velocity will not be as good described since the 
response of the sensor will lag behind due to the thermal inertia in the sensor. This can cause a 
problem when determining the frequency response of the system.  
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When using the constant temperature method, the temperature variation in the wire is much 
smaller, leading to an almost negligible thermal inertia in the wire when determining the 
frequency response. 

When conducting measurements with hot-wire probes it is important to optimize the 
anemometer response to the mean fluid velocity at which the probe is likely to operate. The 
instantaneous velocity of a flow can be found if the frequency response is flat over a region 
that covers all the spectrum of frequencies of interest. Before initiating hot-wire 
measurements it is also important to investigate if there is any noise on the signal. The hot-
wire is sensitive to noise, both white and from other electrical instruments, thus a low-pass 
filter is often used to filtrate frequencies above the region of interest.  

In the experiments conducted in this master thesis, the constant temperature method will be 
used.  

[25] 
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4. The experiments 
 

During this master thesis there have been conducted many initial measurements in order to get 
the correct conditions in the wind tunnel, and to prepare for the final measurements in the 
wake of the model wind turbine. In this chapter, the initial experiments with a description of 
the method and results will be presented after an introduction to the equipment and setup used 
during the experiments in this study.  

The results from the final experiment will be presented and discussed in Chapter 5. 

 

4.1. Setup and Equipment 
 

The signals, or the acquiring voltage from the equipment, were monitored with an 
oscilloscope to be able to detect any abnormal behavior during the measurements.  

 

4.1.1. Model wind turbine 
The wind turbine in question is a three bladed horizontal axis turbine. The rotor of the turbine 
is connected to a nacelle which is placed on top of a tower made out of four cylinders of 
different size, mounted on top of each other, see Figure 4.1. The height of the tower is 0.725 
m above the wind tunnel floor, and the front area of the tower is approximately 5.6E-2 m2. 
The nacelle is circular and has a diameter of 9.0E-2 m and is 0.43 m long.  

Figure 4.1: Model wind turbine 
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The blades are connected to an almost semi spherical hub with a diameter of 9.0E-2 m placed 
in front of the nacelle. The diameter of the rotor is 0.894 m and the lengths of the blades are 
0.45 m. The blades can be pitched about the blade quarter chord with pitch angle θp. The 
center of the rotor is 0.817 m above floor level in the wind tunnel. At the rear of the nacelle is 
a cap that is linked to the rotor. The cap is formed like a sphere, with a diameter of 9.6E-2 m, 
and is connected to a transmission belt that transfers the moment of a generator located under 
the floor of the wind tunnel. This mechanism makes it possible to control the rotational speed 
of the rotor by having the generator connected to a full-frequency converter. The moment on 
the transmission axis is measured by a torque gauge located inside the nacelle and the 
acquiring voltage is logged by a computer during experiments, using the program LabView.  

The forces acting on the wind turbine is measured by a force plate which the model wind 
turbine is placed upon. The force plate is placed underneath the wind tunnel and can measure 
forces in three dimensions. During the experiments in this thesis, only the thrust force will be 
measured by this force plate.  

The pitch angle of the blades was adjusted to 0° by using a protractor before initiating the 
measurements. The blades of the turbine use the NREL (National Renewable Energy 
Laboratory) S826 airfoil along the entire span. The NREL S826 airfoil, see Figure 4.2, is 
designed for a Reynolds number of 2.0E+6, and with two primary objectives; a high 
maximum lift coefficient, insensitive to leading-edge roughness, and a low profile-drag 
coefficient. [26] 

 

Figure 4.2: Airfoil S826 [26] 

To achieve an airfoil that is insensitive to leading-edge roughness, the profile is highly curved 
on the suction side close to the leading edge, resulting in a suction peak to appear. This will 
give a boundary layer that is turbulent over most of the suction side by promoting transition 
close to the leading edge independent of free stream turbulence and roughness. [26] 

The blades on the wind turbine model is designed for an angle of attack of 7.0° at a tip speed 
ratio 5, with corresponding lift and drag coefficients of 1.2756 and 1.35E-2 respectively. [27] 
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The model blockage ratio, defined as the rotor swept area of the turbine divided by the cross-
sectional area of the wind tunnel, is 13 %. The recommended maximum is 10 % to avoid 
tunnel interference on the wake expansion, thus the ratio during this experiment is a bit high. 
[28] 

  

4.1.2. Wind tunnel 
The wind tunnel has a test section that is 2.7 m wide, 11.1 m long and 1.9 m high. A sketch of 
the tunnel is given in Figure 4.3. Since the model turbine is developed for testing at NTNU, 
the dimensions of the turbine and the wind tunnel is a good match. The tip of blades on the 
turbine is at a distance of 0.37 m from the nearest wall. This distance should be long enough 
to prevent the boundary layers caused by the wind tunnel walls to affect the performance of 
the turbine. 

To measure the free stream velocity, the venturi effect was used. The wind tunnel has a 
contraction upstream of the test section, A1/A2 = 4.36, and the pressure difference was 
measured using pitot tubes, pressure transducer and a alcohol manometer.  

The temperature in the wind tunnel during the experiments was measured by the use of a 
regular digital thermometer placed on the wall inside the wind tunnel. During the experiment 
it was a temperature rise in the tunnel, which is a result of the heat generated by the wind 
tunnel fan. The total atmospheric pressure was found by a precision mercury manometer.  

The free stream velocity during the measurements involving the wind turbine was set to round 
10 m/s. This is based on previous experiments conducted in the wind tunnel. [18] 

 

Figure 4.3: Sketch of wind tunnel [29] 
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4.1.3. Grid 
A grid was placed in the inlet to the test section to create a free stream with turbulence 
intensity typical for atmospheric turbulence intensity in the wind tunnel. Figure 4.4 shows a 
sketch of the grid with its dimensions. 

 

Figure 4.4: Sketch of a section of the grid with dimensions 

The boards have a width of 4.8E-2 m and the width of the openings are 0.192 m x 0.192 m, 
giving a mesh size of M = 0.24 m. There are in total 10 x 7 boards, which give a total of 11 x 
8 openings, and a solidity of 0.33 (blocked area / total area). The drag coefficient across the 
grid was approximately CD ≈ 2. The turbulence generated by the grid is expected to be more 
or less homogeneous in front of the model wind turbine.  

When referring to the case without grid turbulence during the report, the grid was laid down 
on the wind tunnel floor in the front of the model wind turbine. This will create a boundary 
layer which will grow downstream in the test section. The thickness of this boundary layer is 
unknown and it might affect the experimental results. This effect is neglected when analyzing 
the measurements, and can thus be a source of error in the data.  

 

4.1.4. Hot-wire anemometry 
The hot-wire probes used during the experiments were all made from 10 % rhodium and 90 % 
platinum. The wires have a diameter of 5 μm and a length of 1 mm, which gives an L/D ratio 
equal 200. The cold resistance in the wires varied from 5.6 Ω to 5.7 Ω. The temperature of the 
wires was set to 300 °C and 350 °C giving a overheat ratio of 1.4732 and 1.5577 respectively, 
when the ambient temperature was 20°.  

The hot-wire probes were all connected to anemometers which generates the voltage signal 
(balancing the bridge). The anemometers included both filter and amplifier. The signals from 
the anemometers were carefully supervised on oscilloscope during measurements, as well as 
being logged in LabView.  
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4.2. Calculations 
 

During the measurements and the treatment of the data there were some calculations that were 
repeated for several experiments; 

The total atmospheric pressure was found by using equation; 

       (4.1) 
 

Using the pressure and the logged temperature in the wind tunnel during the experiment, the 
density of the air was calculated by; 

 
     

 

  
 (4.2) 

 
Further, the free stream velocity was calculated using the pressure difference measured using 
the Pitot probe, the rate between the areas of the contraction in the wind tunnel and the 
density; 
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During most of the measurements the acquiring voltage from the Pitot probes in the 
contraction was used to calculate the free stream velocity.  

The rotational velocity, RPM, logged using LabView, the reference velocity, Uref, and the 
radius, R, were used to find the tip speed ratio by; 

 
  

     
    

    
 

(4.4) 
 

A free stream Reynolds number was obtained using the rotor diameter, the free stream 
velocity calculated upstream of the turbine and ideal gas law; 

 
   

    

   
 (4.5) 

where the dynamic viscosity was calculated based on Sutherland’s equation; 

 
            

    

       
 (4.6) 

 

This formula is valid for temperatures below 3000K when the air is independent of pressure 
[13]. 

Most of these calculations were computed during the experiments and an overview of the 
results is given in the sections describing the experiments.  
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4.3. Calibration 

4.3.1. Forces 
The force plate used to measure the thrust force acting on the turbine needed to be calibrated. 
To get a calibration curve that covered the maximum expected thrust force, CT,max was 
calculated based on earlier measurements conducted on the turbine to find Tmax. Using 
Equation (3.3) with U = 10 m/s and CT,max = 2.4, the maximum thrust was found to be almost 
92 N, which can be rounded up to 10 kg. This result was used to determine the maximum 
weight needed in the calibration.  

For the calibration of the force plate, weights in a range between 0.5 kg to 10 kg were used in 
both ascending and descending order. Figure 4.5 shows a picture from the calibration process 
of the force plate. LabView was used to log the acquiring voltage at a frequency of 100 Hz in 
30 seconds, resulting in a total number of 3000 samples. The calibration coefficient was found 
to be 8.3019 N/V. The calibration data and the appurtenant calibration curve can be found in 
Appendix A.1.1.  

 

Figure 4.5: Calibration thrust gauge 

When calibrating the torque gauge, the maximum expected torque was found to be 
approximately 2 Nm based on earlier measurements conducted on the turbine. Dividing this 
by the radius of the rotor, R = 0.45 m, gives a maximum value of 4 N, which is equal to 
approximately 400 grams.  

In the calibration of the torque, weights in the range between 0.05 kg to 0.5 kg were used. The 
weights were placed on a small weight connected on the tip of the turbine blade. The 
measurements for the calibration curve were conducted by first increasing the weights, and 
then decreasing with the same weighs to account for hysteresis. The acquiring voltage was 
logged in LabView using the same frequency and sampling time as when calibrating the 
thrust gauge. The calibration coefficient was found to be -0.2062 Nm/V. The calibration curve 
and data can be found in Appendix A.1.2 
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4.3.2. Free stream velocity 
The free stream velocity was measured using a Pitot probe placed on a traverse inside the 
wind tunnel, and the contraction of the wind tunnel was used as a reference. Both the pressure 
transducer for the Pitot probe and the contraction of the wind tunnel was calibrated using an 
inclined alcohol manometer, see Appendix A.1.3. and A.1.4. for the calibration data.  

To find the correct free stream velocity where the turbine was placed in the tunnel during 
measurements, the same pressure transducer was used to calibrate both the Pitot probe on the 
traverse and in the contraction of the wind tunnel. Since the velocity given by the contraction 
corresponds to the velocity at the inlet to the test section, and the turbine was placed 3.75 m 
downstream of the inlet (decided after initial measurements), the velocity calculated based on 
the contraction needed to be corrected. When calculating the power- and thrust coefficients 
the free stream velocity is needed, and it is also necessary to have a reference free stream 
velocity to the measurements conducted in the wake of the turbine. Calibration data can be 
found in appendix A.1.3. and A.1.4.  

Velocity measurements from the Pitot probe placed at x = 3.75 m in an empty tunnel and the 
contraction was conducted both with and without the grid installed in the inlet to the test 
section. The relationship between the two was Upitot=Ucontaction/0.99 without the grid, and 
Upitot=Ucontaction/1.15 with the grid installed. Upitot will then represent the free stream velocity 
where the turbine was placed in the tunnel, and will be used as Uref. The ratios between the 
velocities are given together with the calibration data for the contraction of the wind tunnel. 

An uncertainty analysis was conducted on the reference velocity. This gave an estimated 
uncertainty of ± 0.6 % with a confidence interval of 95 %. The method used to estimate the 
uncertainty is given in appendix A.3.  
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4.3.3. Hot-wire 
A sketch of the setup used during the hot-wire calibration and measurements is given in 
Figure 4.6. The figure only illustrates the use of one hot-wire probe. 

 

Figure 4.6: Setup hot-wire measurements 

The Pitot probe attached to the traverse in the wind tunnel was used to calibrate the hot-wire 
anemometry. When calibrating the hot-wire anemometry, a cup mounted on a stand was 
placed around the hot-wire probe when taking zero point measurements in order to eliminate 
any disturbances in the wind tunnel.  

When calibrating several hot-wire probes attached to a rake, a garbage can was used in the 
same way during the zero point measurements. It was taken two zero point measurements, the 
first at last calibration point, for each calibration of the hot-wire anemometry. The probes 
were calibrated every second hour, due to drift in the temperature in the wind tunnel, and that 
the wire has a tendency to attract dust, which can affect the measurements. The hot-wire will 
also “get old” due to that the heat will slowly change the crystal structure in the wire, which 
will affect the resistance in the wire. [18]  

After the zero point measurement, the wind speed in the wind tunnel was gradually increased 
up to round 20 m/s, and measurements were taken at different velocities. The sampling 
frequency used during the calibration of the hot-wire probes was 20 kHz and a sampling time 
and 45 seconds.  

For all experiments involving the use of with hot-wire anemometry, in-house programs were 
used for fitting polynomials to the velocity calibration data and converting the acquiring 
voltage from the hot-wire probes to time series of velocities vectors. These two programs, 
utilp for calibration and hwsconv for conversion, have been used as standard programs at the 
institute for many years. The programs are written in Fortran and include temperature 
correction. 
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The calibration curve of a hot-wire is non-linear, and has approximately the shape of 4th order 
polynomial with maximum sensitivity at low velocities. An example of a calibration curve, 
with calibration coefficients, is given in Appendix A.1.5. The calibration coefficients are 
found by best fit calculations.  
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4.4. Experiments 
 

In order to learn a correct measurement technique using hot-wire anemometry, an initial 
experiment was carried out on a fully developed pipe flow with known results. The 
experiment was intended as a learning step, where the goal was both to learn how to calibrate 
the hot-wire anemometry and measure correctly, and to treat the data reasonable. The results 
were approved by the supervisor before initiating the measurements on the wind turbine 
model in the wind tunnel. An overview of the results is given in Appendix A.4.  

 

4.4.1. The use of five hot-wire probes 
To comprehend how the wake of the model turbine behaves and to be able to detect any 
meandering, the measurements are based on the position of the tip vortices in the wake. Using 
5 hot-wire probes attached to a rake, positioned horizontal relative to the wind tunnel floor, 
the normal stress, u’u’, in the area round the tip vortices can be mapped. Comparing the 
measurements from one revolution of the wind turbine rotor with the next will make it 
possible to detect any oscillating movements in the tip vortices, and hence of the wake. 

The diameter of the vortices, and width of the location of the three tip vortices in the wake, 
need to be known in order to be sure to cover the whole area where the tip vortices might 
meander within the rotations. When using only one hot-wire probe, the results will be a 
smeared out image of the behavior of the wake. Hence, if the wake of the wind turbine 
meanders, the centerline velocity deficit measured by an observer will become less than the 
stationary value, because the measurement point sweeps across a region of the wake profile 
during the averaging period of the measurement [7]. By using five hot-wire probes, a wider 
area of the wake can be covered in one measurement, and thus the movement of the vortices 
can be studied within the measurement range. Using cross correlation between the time series 
given by the hot-wire probe measurements, one can obtain an indication of how well the flow 
field at one place in the flow is correlated to another point the flow field in the wake.  

By studying the normal stress distribution over the measurement area given by the five hot-
wire probes within each rotation of the turbine, a study on the stability in the tip vortices, and 
hence the wake, can be conducted.  

In all the experiments involving the use of hot-wire anemometry, the probes were pointed 
perpendicular to the mean flow to measure properties in the streamwise direction. All the 
probes were positioned horizontal relative to the floor of the wind tunnel. 

.  
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4.4.2. Modeling atmospheric conditions in the wind tunnel 
In order to simulate the situation for a full scale wind turbine subjected to atmospheric 
turbulence, the normal operating conditions needed to be specified. In this master thesis, the 
simulation of atmospheric conditions in the wind tunnel is based on properties from a full 
scale wind turbine (tower height, diameter, efficiency etc.) and finding the length scale and 
turbulence intensity for its typical conditions from theory. Further, the length scale was scaled 
down to fit the model wind turbine. The model wind turbine has an efficiency round 45 %, so 
finding a real size wind turbine with the same efficiency was desirable.  

Suzlon manufacturer delivers a wind turbine with an efficiency of around 45 % at 11 m/s [30]. 
The diameter of the turbine is 64 m and at a wind speed of 11 m/s it produces 1.19 MW. The 
height of the hub is 74.5 m above the ground. Based on the height of the hub and the 
relationship given by ESDU (Equation (3.33)), the integral length scale was found to be 174.7 
m for this turbine in atmospheric conditions, with a surface roughness of 1.0E-3 (sea surface 
roughness [15]). This is thus only an estimate and seems a bit over predicted. A length scale 
closer to 100 m would probably be more reasonable [18].  

The turbulence intensity offshore at 90 m height is dependent on the surface roughness, but 
based on a study conducted by Matthias Turk and Stefan Emeis the mean turbulence intensity 
varies round 4-6 % [31].  

The full scale wind turbine and the model wind turbine are scale according to the height of the 
turbines. The dimensions of the turbines with the scale are represented in Table 4.1. 

Table 4.1: Suzlon wind turbine VS model wind turbine 

Dimension Suzlon S66  
Mark II - 1.25 MW 

Model wind turbine Scale 

MW 1.19 - - 
Diameter [m] 64  0.9 9/640 
Tower height [m] 74.5 0.725  29/2980 
Efficiency [%] 45 45 1 
  

Using 29/2980 as scaling parameter, the downscaled integral length scale should be 1.7 m for 
the atmospheric conditions created in the wind tunnel in order to satisfy the correct integral 
length scale according to the size of the model wind turbine and the recommended 
relationship given by ESDU. This is however a long integral length scale, and thus not likely 
to achieve in the wind tunnel due to the restricted size of the tunnel. 
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4.4.3. Grid turbulence measurements and integral length scale calculations 
It was conducted calculations on the geometry of a grid that produces an integral length scale 
of 1.7 m and turbulence intensity round 4-6 %. The results gave a grid geometry close to an 
already existing grid at the institute which was used instead of creating a new grid. Figure 4.7 
shows a picture taken inside the wind tunnel of the grid and the model wind turbine. The grid 
covers the whole inlet to the test section, and the dimensions were given in Section 4.1.3. 

 

Figure 4.7: Grid installed in wind tunnel 

To measure the integral length scale and turbulence intensity produced by the grid, numerous 
measurements were taken downstream the grid in the test section. In order to measure the 
velocity fluctuations and thereby finding the turbulence intensity and properties required to 
estimate the integral length scale, a hot-wire probe was used. The hot-wire probe was placed 
in the center of an opening in the grid, 0.775 m above the floor of the wind tunnel, and 1.36 m 
from each sidewall of the test section. This was done to avoid the vortices shed by the boards 
of the grid and any disturbances from the boundary layer created by the walls. This height is 
also close to the height of the center of the turbine rotor. Using a traverse installed in the wind 
tunnel, the hot-wire probe was traversed downstream with a 0.5 m increment from 0.0 m 
down to 8.5 m behind the grid. The conditions during the measurements are given in Table 
4.2.  

Table 4.2: Mean values during grid measurements 

Mean values  
Free stream velocity [m/s] 
(mean value in test section) 

8.3 

Patm [Pa] 100887.3 
ρ [kg/m3] 1.182 
Temperature [°C] 24.5 
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The acquiring voltage from the hot-wire anemometer, together with the acquiring voltage 
from the contraction and Pitot probe during the measurements, were logged at 20 kHz, using a 
filter at 10 kHz (Nyquist theorem), at a sampling time of 60 seconds. The turbulence 
intensities at each location downstream the grid is given in Table 4.3. Based on these results, 
the desired turbulence intensity of 4-6 % is located round 3.5 m to 4.0 m downstream of the 
grid, with a free stream velocity at 8.3 m/s. The mean, maximum and minimum velocities at 
each location are also given in the table, as well as the normal stress u’u’.  

Table 4.3: Results from grid turbulence measurements 

Distance from grid 
[m] 

Umean 

[m/s] 
Umax 

[m/s] 
Umin 

[m/s] 
u’u’ 
[m/s] ^2 

Turbulence 
[%] 

0 15.597 16.540 14.081 0.108 2.108 
0.5 9.657 21.781 0.846 6.03 25.429 
1 8.821 16.166 2.35 2.091 16.392 
1.5 8.512 13.315 4.871 0.949 11.448 
2 8.395 12.291 5.437 0.561 8.925 
2.5 8.328 11.367 6.026 0.382 7.423 
3 8.313 10.814 6.193 0.289 6.462 
3.5 8.285 11.065 6.316 0.233 5.83 
4 8.281 10.534 6.559 0.189 5.254 
4.5 8.302 10.238 6.773 0.157 4.768 
5 8.295 9.921 6.822 0.139 4.5 
5.5 8.273 9.916 6.785 0.121 4.212 
6 8.265 9.764 7.025 0.107 3.955 
6.5 8.241 9.577 6.976 0.093 3.704 
7 8.244 9.563 7.029 0.085 3.537 
7.5 8.191 9.448 6.944 0.078 3.399 
8 8.185 9.809 7.098 0.076 3.364 
8.5 8.186 9.323 7.174 0.069 3.2 
 

The turbulence intensity does not change significantly with the free stream wind speed. Thus, 
the fact that the measurements was conducted with a mean free stream velocity at 8.3 m/s, and 
not 10 m/s as the measurement on the model wind turbine were to be conducted, will not give 
a significant change the turbulence intensity.  

As stated in the theory, grid generated turbulence in a wind tunnel will decay downstream 
with increasing distance to the grid. This is clearly seen in Table 4.3, where the turbulence 
intensity is at 25 % at x = 0.5 m and 3.2 % at x = 8.5 downstream the grid.  

To find the integral length scale produced by the grid, the hot-wire probe was traversed in the 
horizontal direction at x = 3.5 m behind the grid, which is where the turbulence intensity 
produced by the grid is as desired. The probe was traversed from the center of the tunnel, 
0.778 m above the wind tunnel floor, with an increment of 0.10 m.  
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Also during these measurements were the acquiring voltage from the hot-wire anemometry, 
contraction and Pitot probe logged at a sampling frequency of 20 kHz during a sampling time 
of 60 seconds, using a filter of 10 kHz. The free stream velocity in the wind tunnel was 
increased to 10 m/s during these measurements. The temperature, atmospheric pressure and 
air density during the measurements were the same at for the previous measurements, and are 
given in Table 4.2. 

Using an in-house program, Spec-mac-big-ASCII, it was calculated a power density spectrum 
from the time series to the hot-wire anemometry using Fast Fourier Transform. The frequency 
and Фuu(f) for the time series from the hot-wire anemometry was then obtained. Using 
Equation (3.37) for the von Karman specter and adjusting the integral length scale, an integral 
length scale of Luux = 0.12 m was found. The two spectrums are given in Figure 4.8.  

 

Figure 4.8: Integral length scale compared to von Karman specter 

In the figure, fФuu is plotted as a function of the normalized frequency X = fL/U on a semi-log 
axis.  

The length scale was found by adjusting L in such a way that the curves from the 
measurements and the von Karman specter corresponds, and is just an estimate. In order to get 
a more accurate integral length scale, additional measurements were conducted using two hot-
wire probes simultaneously. One of the probes was places in the center of the wind tunnel, 
while the other was traversed in the horizontal direction, perpendicular to the streamwise 
direction. Also during these measurements the sampling frequency was 20 kHz and the filter 
frequency was 10 kHz, and samples were taken is a time of 60 seconds. The cross correlation 
between the signals from the two hot-wire probes, calculated using Equation (3.30), is given 
in Figure 4.9.  

0,E+00

5,E-02

1,E-01

2,E-01

2,E-01

3,E-01

3,E-01

4,E-01

4,E-01

1,E-03 1,E-01 1,E+01 1,E+03

f*
Ф

uu
 

f*L/U 

Measurements

von Karman



4. The experiments 

47 
 

 

Figure 4.9: Integral length scale based on cross correlation between two hot-wire probes 

By integrating the area beneath the curve given by the cross correlation, the integral length 
scale in z-direction, Luuz, was found to be 3.1E-2 m. The integral length scale produced by the 
grid in z-direction was in other words smaller than the length scale in the streamwise direction 
(x-direction) found by using the von Karman specter, which is as expected. 

The autocorrelation for the hot-wire probe placed in the center of the tunnel is given in Figure 
4.10. This was also used to find the integral length scale in the streamwise direction in 
addition to the use of the von Karman specter. 

 

Figure 4.10: Autocorrelation of hot-wire signal in the center of the wind tunnel 

Integrating the area beneath the curve, the integral length scale in the streamwise direction 
was found to be Luux= 6.5E-2 m, which is 5.5E-2 m lower than the integral length scale found 
by using the von Karman specter.  

The relationship between the two integral length scales, Luux and Luuz, found by using auto- 
and cross correlation corresponds to the theory. The ratio between Luux and Luuz is 2.1 which is 
close to the theory stating the ratio should be 2. The fact that the integral length scale 
produced by the grid is at least 15 times smaller than the one expected for a full scale wind 
turbine, result in that a smaller part of the model wind turbine will be affected by the vortices 
compared to the full-scale turbine. Hence, the turbulence generated in the wind tunnel will 
probably have a weaker effect on the performance and wake development of the model wind 
turbine compared to a full scale turbine placed in an atmospheric boundary layer.  
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As mentioned in the introduction, S. Aubrun et al. found that the content of the turbulent 
eddies responsible for the meandering is more pronounced in wind tunnel experiments than in 
field experiments. Thus, the fact that the integral length scale produced by the grid is smaller 
than the one expected in atmospheric conditions might give a more realistic incoming flow. 

 

4.4.4. Performance measurements of the model wind turbine 
The performance of the wind turbine, with and without grid generated turbulence, was 
measured to find the tip speed ratio where the grid turbulence gave the greatest deviation in 
the performance of the turbine. At this point it is thought that the turbulence affects the wake 
the most, as the performance of the wind turbine affects the behavior of the wake. The 
rotational speed of the turbine was varied to obtain the different tip speed ratios, while the free 
stream velocity was kept constant. The conditions during the experiment are given in Table 
4.4.  

Table 4.4: Mean values during measurements of the performance of the model turbine 

Mean values  
Free stream velocity, Without grid [m/s]  10.7 
Free stream velocity, With grid [m/s]  10.4 
Patm [Pa] 101405.7 
Re [-] 3.95E+06 
ρ [kg/m3] 1.18 
Temperature [°C] 25.8 

 

The initial measurements conducted to find the relationship between the velocity calculated 
based on the contraction of the wind tunnel versus the one measured at x = 3.75 m 
downstream the grid with a Pitot probe, as described in Section 4.3.2, gave the relationships 
Ux=3.75 = Ucontaction/0.99 without the grid, and Ux=3.75 = Ucontaction/1.15 with the grid installed. 
The velocities in Table 4.4 are corrected with these relationships, and are the once used in the 
calculations of the power and thrust coefficients.  

The acquiring voltage for thrust, torque, temperature, pressure difference and RPM were 
logged in LabView using a frequency of 100 Hz and a sampling time of 60 seconds, resulting 
in a total number of 6000 samples for each tip speed ratio from 1 to 12. Both mean values and 
standard deviation values were collected during the measurements. The power and thrust 
coefficients were calculated using Equations (3.2) and (3.3). The results are shown in Figure 
4.11 and Figure 4.12 respectively.  
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Figure 4.11: Power coefficient curve, with and without grid turbulence, TSR 1-12 

Figure 4.11 show that the greatest deviation between the performance curves is in the area on 
the top of the power curve. Based on these results, tip speed ratio 6 was chosen as the tip 
speed ratio to conduct the rest of the experiments. The calculated maximum power coefficient 
was 0.455 at tip speed ratio 5.42 without grid generated turbulence, and 0.446 at tip speed 
ratio 5.72 with grid turbulence. In other words, the grid turbulence slightly decreased the 
efficiency of the turbine, with approximately 2.4 %. 

The reason for the deviation between the CP curves is likely due to that the flow conditions 
over the wind turbine blades is altered, resulting in a lower lift force and increased drag force 
on the turbine blades. At the top of the power coefficient curve the flow over the turbine 
blades is most crucial. As mentioned in the theory, the blades of a wind turbine are often 
designed for specific tip speed ratio. At this TSR the flow over the blade is equally 
distributed, giving an almost constant spanwise angle of attack and a maximum lift-to-drag 
ratio. When the TSR is increased or decreased, part of the blade will eventually become 
stalled (the airflow separates from the blade) and the lift force acting on this section of the 
blade is lost. Thus, it was as expected that the deviation between the curves would be greatest 
round the designed tip speed ratio 5.  

The turbulent incoming flow will also make the flow in the boundary layer surrounding the 
turbine blades go from a laminar flow to a turbulent flow at a faster rate. This will increase the 
boundary layer thickness and hence the drag force action of the blade, which again will 
decrease the power extraction of the turbine. It can also be shown that a turbulent flow will 
increase the relative velocity of the blades, and thus increase the power extraction. When 
considering the power coefficient curves, it seems that the increased drag has affected the 
power extraction the most.  

An uncertainty calculation was conducted on the power coefficients. This gave an uncertainty 
of ± 1.0 % without grid and ± 0.9 % with grid, with confidence interval of 95 %, for the 
selected tip speed ratio. The method for the analysis is given in Appendix A.3.  
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Figure 4.12 show the calculated thrust coefficients for the turbine with and without grid 
turbulence. To account for the thrust force acting on the tower, the calculated thrust 
coefficient was reduced with 4.1E-3. This value is based on earlier experiments conducted on 
the model wind turbine [32]. 

 

Figure 4.12: Thrust coefficient curve, with and without grid turbulence, TSR 1-12 

The figure shows that the thrust force acting on the turbine is increased when the grid is 
installed in the wind tunnel. This is an effect of the turbulence in the free stream caused by the 
grid. The instability in the flow results in a greater load on the turbine. The thrust coefficient 
at the tip speed ratio giving the highest power coefficient without grid turbulence was 
calculated to 0.86 and 0.66 with grid turbulence.  

The increased thrust force is mainly due to increased drag on the turbine, which will decrease 
the velocity in the wake of the turbine. This corresponds to the slightly decreased power 
coefficient when the turbine was placed in an incoming flow with turbulence intensity typical 
for atmospheric turbulence.  

As mentioned, Medici and Alfredsson conducted an experiment where they compared the 
thrust force on a model wind turbine and the meandering of the wake [4]. When comparing 
the thrust coefficient obtained during these measurements with their results from the 
experiment, the thrust on the turbine should be high enough to create meandering of the wake.  
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4.4.5. Measurements in the wake of the model wind turbine 
During this thesis there have been conducted numerous measurements in the wake of the 
turbine leading up to the final measurements. In this section the results from the initial 
measurements will be presented. The dominations of the directions used when presenting the 
results are illustrated in Figure 4.13. It also illustrates the experimental setup in the wind 
tunnel used during the measurements.  

 

Figure 4.13: Denomination of the directions according to the model wind turbine 

 

4.4.5.1. Locating the tip vortices 
In order to find the right spacing of the hot-wire probes for detecting any meandering of the 
wake, measurements were conducted to find the location and width of the turbulent peaks 
downstream the wind turbine. The model turbine was placed at x = 3.75 m downstream the 
inlet of the test section, and measurements using only one hot-wire probe was conducted at 
X/D = 1 (D is the rotor diameter) and X/D = 5 downstream the turbine rotor, with and without 
the grid installed in the wind tunnel.  

The conditions during the measurements are given in Table 4.5.  

Table 4.5: Mean values during measurements locating the tip vortices 

Mean values  
Free stream velocity [m/s] 10.7 
Patm [Pa] 101405.7 
Re [-] 4.20E+06 
ρ [kg/m3] 1.19 
Temperature [°C] 22.8 

 

The signals from the thrust and torque gauge, hot-wire probe, contraction and Pitot probe 
were logged at a sampling frequency of 13 kHz in 60 seconds, giving a total of 780 000 
samples at each measurement point. It was used a filter of 6.5 kHz, satisfying the Nyquist 
theorem.  
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The tip speed ratio of the turbine was set to 6, based on the results given in Section 4.4.4. 
Using the traverse, the hot-wire probe was traversed with an increment of 2.0E-2 m, from 
0.27 m to 0.63 m from the rotor center. Measurements were taken on both sides of the turbine. 
Figure 4.14, Figure 4.15, Figure 4.16 and Figure 4.17 show the results from the measurements 
given as the turbulent kinetic energy at each measurement point. The turbulent kinetic energy 
is calculated based on the normal stress obtained from the program hwsconv and Equation 
(3.29). In all the figures the red line represents the measurements with grid generated 
turbulence, and the blue without grid generated turbulence. The distance to the rotor center 
given in the figures is normalized by the radius of the model wind turbine, R = 0.45 m. The 
sides are named according to when facing the grid.  

 
Figure 4.14: X/D = 1, turbulent kinetic energy 
with (red line) and without (blue line) grid 
turbulence, left side 

 
Figure 4.15: X/D = 1, turbulent kinetic energy 
with (red line) and without (blue line) grid 
turbulence, right side 

 
Figure 4.16: X/D = 5, turbulent kinetic energy 
with (red line) and without (blue line) grid 
turbulence, left side 

 
Figure 4.17: X/D = 5, turbulent kinetic energy 
with (red line) and without (blue line) grid 
turbulence, right side 

 

At X/D = 1 downstream the turbine, the effect of installing a grid in the wind tunnel is clear. 
The peak in the turbulent kinetic energy is much wider with an incoming flow with turbulence 
intensity round 5.5 %, and the maximum value of the turbulent kinetic energy is decreased 
with a factor a bit under two compared to the case with an incoming flow with low turbulence 
intensity. However, the area beneath the curves seems to be in the same order.  
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This indicates that the energy in the flow is smeared out due to the incoming flow with 
turbulence intensity typical for atmospheric turbulence. This is as expected when considering 
the theory given in Chapter 3.  

At X/D = 5 downstream the turbine, the peaks in the energy are not that obvious. Both 
measurements, with and without grid generated turbulence, give a wide profile with a much 
lower value of the turbulent kinetic energy compared to X/D = 1. This can be an indication 
that the tip vortices have merged together/broken up. However, at the right side of the turbine 
at X/D = 5, the turbulent kinetic energy is decreased when the grid is installed. This might 
indicate that the tip vortices are not fully broken up at X/D = 5 without grid turbulence, since 
it is some congestion of the energy in the wake. In general, the energy in the wake has been 
smeared out over much wider area.  

Based on these results, the tip vortices seems to be located between z/R =0.95 to z/R=1.27 at 
X/D = 1 without the grid, and z/R=0.90 to z/R=1.30 with grid generated turbulence. At X/D = 
5 one might guess that the tip vortices is located a bit farther from the rotor center, if they 
exists, due to the expansion of the wake downstream the turbine. The small peak in the 
turbulent kinetic energy at the left side at X/D = 5 may be an indication that if the tip vortices 
still exist, they exists in an area between z/R=1.10 to z/R=1.35. However, the turbulent kinetic 
energy is not symmetric as seen in the figures.  

Previous measurements have also shown an unsymmetrical behavior in the wake of the model 
wind turbine. This it is believed to be caused by either the tower of the turbine and/or a banner 
that the placed on one of the sidewalls in the wind tunnel (on the right side when facing the 
grid).  

  

4.4.5.2. Measurements with hot-wire array 
The main measurements in the wake, which is used to study the wake meandering, were 
conducted using 5 hot-wire probes attached to a rake. The distance between the probes was 
decided based on the results when locating the tip vortices behind the turbine, given in the 
previous section. Since the diameter of the tip vortices were a bit uncertain, a gradually 
increasing distance between the probes was chosen in hope of detecting all three tip vortices 
with at least two probes at the same time and to cover the area where the tip vortices might 
meander. The measurements was to be cross correlated at a later stage to see how the well the 
occurrences in the flow field were related.  

The minimum distance was set to 1.60E-2 m and a maximum distance of 0.25 m. A sketch of 
the rake is given in Figure 4.18. Hot-wire probe 1 was placed closest to the rotor center. The 
distance between the probes was measured with a micrometer.  
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Figure 4.18: Rake 1, with distance between hot-wire 
probes 

 
Figure 4.19: Rake 2, with distance between hot-wire 
probes 

 

The rake was attached to the traverse in the wind tunnel together with the Pitot probe, which 
made it possible to move the hot-wire probes and the Pitot probe in all three directions during 
measurements. The measurements were carried out at X/D = 1, 3, and 5 downstream the wind 
turbine rotor at rotor height, and samples were taken in an area of z/R=0.45 to z/R=1.70 in the 
horizontal direction relative to the wind tunnel floor, with an increment of 2.0E-2 m.  

The tip speed ratio of the model wind turbine was set to 6. The acquiring voltage from the 
hot-wire probes was logged at a frequency of 20 kHz at a sampling time of 60 seconds, giving 
a total of 1.2E+6 samples per hot-wire probe. The signal was filtered at 10 kHz. A ramp 
generator was used to signal every rotation of the turbine. This signal was logged 
simultaneously as the acquiring voltage from the hot-wire anemometers and stored in the 
same time series. This makes it possible to pick out data from only one rotation of the turbine 
at a later stage. The acquiring voltage from the Pitot probe, contraction and the temperature 
during the measurements were sampled at the same sampling frequency and stored as mean 
values for each measurement point.  

The conditions during the measurements are given in Table 4.6.  

Table 4.6: Mean values during measurements with hot-wire array 

Mean values  
Free stream velocity [m/s] 11.0 
Patm [Pa] 101400.6 
Re [-] 4.23E+06 
ρ [kg/m3] 1.19 
Temperature [°C] 22.2 

 

During the experiments one of the hot-wire probes broke, resulting in that the minimum 
distance between two probes was 2.4E-2 m when conducting the experiment. In Figure 4.20, 
the normal stress, u’u’, from the four remaining probes are plotted.  
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The z positions of the probes are given in Table 4.7. Based on the measurements locating the 
tip vortices, these locations should cover the area in the wake where the tip vortices are 
located. 

Table 4.7: Position of hot-wire probes 

 HW 1 HW 2 HW 3 HW 5 
Distance from rotor center [m] 0.640 0.490 0.466 0.390 
z/R 1.4 1.1 1.0 0.9 
 

 

Figure 4.20: Results from first multiple hot-wire probes measurements 

The figure shows the four hot-wire signals as well as the pulse signal measured at X/D = 1 
downstream the turbine without grid generated turbulence in the wind tunnel. Each drop in the 
pulse signal indicates a new rotation of the turbine. In other words, the figure shows 5 whole 
rotations of the turbine.  

As seen from the figure, none of the hot-wire probes detected all three tip vortices in one 
rotation, which would have been represented as three distinct peaks in the normal stress 
within one rotation. In this figure there is only sign of two tip vortices in the flow, which 
indicate that the tip vortices is not equally shed from the wind turbine blades. It is likely to 
believe that one of the tip vortices is located between two of the hot-wire probes, and thus is 
not detected with the rake.  

From the results it appeared like the diameter of the tip vortices are smaller than first 
assumed. After studying previous measurements conducted in the wake of the turbine, the 
diameter was thought to be in the area of 1.8E-2 m to 2.2E-2 m [33].  
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Based on this it was decided to conduct a new experiment with a narrower distance between 
the probes. A sketch of the new rake, with the new distances between the probes, is given in 
Figure 4.19.  

 

4.4.5.3. Second experiment with hot-wire array 
Also in the second experiment were the measurements carried out at X/D = 1, 3, and 5 
downstream the turbine at rotor height. Samples were taken in an area of z/R=0.67 to 
z/R=1.64 at X/D = 1, of z/R=0.44 to z/R=1.64 at X/D = 3, of z/R=0.43 to z/R=1.71 at X/D = 5 
in the horizontal direction relative to the wind tunnel floor. In this experiment the increment 
between the measurement points was increased to 3.5E-2 m between each measurement due 
to the narrow distance between the probes. It was used the same sampling frequency and 
setup as the in fist experiment conduced with rake number 1. The measurements were only 
executed on the left side in the wake of the turbine when facing the inlet to the test section in 
the wind tunnel. 

Figure 4.21 shows a picture of the setup of the hot-wire rake, with the five hot-wire probes 
and the Pitot probe attached to a bar on the traverse, used during the measurements in the 
wake of the model wind turbine. 

 

Figure 4.21: Picture of hot-wire rake 2 and Pitot probe setup 

In the experiment without the grid installed in the wind tunnel, the rotational speed of the 
model wind turbine varied round 1300 rpm. This provides a number of round 940 samples per 
rotation using a sampling frequency of 20 kHz. When conducting the measurements with the 
grid installed, the turbine was set to a rotational speed of round 1500 rpm, which gives a 
number of round 810 samples per rotation when using the same sampling frequency. 

The fact that there was a difference between the rotational speed of the wind turbine during 
the two experiments was not intended, and was discovered at a late stage in the master thesis. 
The calculated tip speed ratio based on the conditions during the two measurements gave a tip 
speed ratio of 6 during the measurements without the grid installed and close to 7 for the 
measurements with the grid turbulence.  
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To estimate the error, or the influence this will have on the results, the spanwise angle of 
attack over the turbine blade was calculated for the two scenarios. The calculations showed a 
decrease of round 40 % in the spanwise angle of attack at the root of the blade, while for the 
tip of the blade, the decrease was round 15 %. This means that the change in the tip speed 
ratio will increase the loads on the root of the blade more than on the tip of the blade. Thus, 
the increased tip speed ratio will not affect the tip vortices as much. The velocity in the wake 
will decrease, as the drag force increase at the root, which can result in a more rapidly 
expanding wake. The lift force acting on the turbine blade will also decrease, which might 
affect the strength of the tip vortices, as seen from Equation (3.40). However, the increased tip 
speed ratio is hopefully not that great that the flow field in the wake will be significantly 
altered between the two cases.  

The angle of which the tip vortices travel downstream in the wake in the two cases can be 
calculated by using the velocity triangle. A sketch is given in Figure 4.22. 

 

Figure 4.22: Velocity triangle 

Using the free stream velocity during the measurements without grid generated turbulence, 
Uref, the radius of the turbine, R, the rotational speed, ω, and the time Δt, the angle was 
calculated to 9.45°. This is the same angle as obtained when taking the inverse of the tip 
speed ratio; 

 

 
       

Calculating the angle of which the wake expands with the tip speed ratio used during the 
measurements with grid turbulence, λ=7, gives α=8.13°. The wake will in other words expand 
with a narrower angle in this case.  
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The conditions during the second measurements conducted with an hot-wire array are given in 
Table 4.8. The turbine was placed x = 3.75 m behind the inlet to the test section, giving a 
turbulence intensity of round 5.5 % in the incoming flow when the grid was installed. The 
integral length scales at this position were, as found previously, Luux = 6.5E-2 m and Luuz = 
3.1E-2 m. The incoming freestream without grid generated turbulence has previously been 
measured to be uniform within ±1 % measured over the area swept by the rotor, and the 
turbulence intensity to 0.3 % [34]. 

Table 4.8: Mean values during second measurements with hot-wire array 

Mean values  
Free stream velocity, both 
with and without grid [m/s] 

10.2 

Patm [Pa] 100542 
Re [-] 3.54E+06 
ρ [kg/m3] 1.173 
Temperature [°C] 27.3 

 

At a rather late state in the master thesis, when analyzing the results, it was revealed that hot-
wire probe number four gave incorrect values. The measurements conduced with hot-wire 
four is therefore excluded in the analysis of the measurements.  

The results from the second measurements will be presented and discussed in Chapter 5.  
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5. Main results and discussion 
 

In this chapter the results from the measurements conducted both with and without grid 
generated turbulence with rake number two will be presented. The results of the 
measurements for both cases will be presented side by side in order to see the effect of the 
grid turbulence more clearly. In the end of the chapter there will be a short summary and final 
discussion of the results seen in this chapter.  

The time series chosen in the first part of this chapter are chosen on the basis of the initial 
measurements indicating the location of the tip vortices in the wake.  

 

5.1. Time series X/D = 1 
 

The values presented in this section all represents five rotations of the model wind turbine.  

Figure 5.1 (a) and (b) and Figure 5.2 (a) and (b) shows the normal stress, u’u’, for five 
rotations of the wind turbine rotor, measured at X/D = 1 downstream the turbine with and 
without grid turbulence. The drops in the pulse signal in Figure 5.1 (a) and (b) indicate the 
start of a new rotation of the turbine. The location of the probes in z direction is given in 
Table 5.1.  

Table 5.1: X/D = 1, Position 1 of hot-wire probes  

 HW 1 HW 2 HW 3 HW 5 
Distance from rotor center [m] 0.475 0.4888 0.5056 0.5264 
z/R 1.056 1.086 1.124 1.170 
 

 

(a) Without grid turbulence 

 

(b) With grid turbulence 

Figure 5.1: X/D = 1, Position 1 (a) Five rotations without grid turbulence, (b) Five rotations with grid 
turbulence 
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(a) Without grid turbulence 

 

(b) With grid turbulence 

Figure 5.2: X/D = 1, Position 1, Contour plot (a) Five rotations without grid turbulence, (b) Five rotations 
with grid turbulence 
 
In Figure 5.1(a) the presence of the three tip vortices within each rotation is quite clear 
compared to Figure 4.16, which represented the measurements conducted with the rake 
number one. However, the amplitudes of the normal stress and the distance between them are 
a bit varying. This might indicate the loads on the rotor blades are unequal, and thus be the 
cause to why only two of the tip vortices were detected in the first experiment. If this is the 
case, it will cause the tip vortices to be shed in different courses out from the tip of the blade 
(clarified in a later section). The unequal loads can for instance be a consequence of 
deformation/damages on the rotor blades and/or different pitch angle on the turbine blades.  

When comparing Figure 5.1 (a) and (b), it is quite clear that the turbulence has affected the 
wake of the turbine, even though the integral length scale was smaller than desired in order to 
satisfy the downscaled atmospheric conditions, though the turbulence intensity is at a correct 
level. There are no longer clear peaks indicating the presence of the tip vortices, and no 
evident structure within the rotations. In general, the amplitudes of normal stress are 
decreased when the turbine is placed in the turbulent incoming flow. However, there is one 
peak that stands out which has the same amplitude as the measurements conducted without 
turbulence. One of the effects of the decreased amplitudes of normal stress is a normal stress 
that is more spread out over the range of z/R given by these time series. This can be seen as 
the noisier signal in Figure 5.1 (b).  

Figure 5.2 (a) and (b) visualizes the peaks in the normal stress as a function of the distance to 
the rotor center, z/R. The figures represent the same measurement points and the same five 
rotations as in Figure 5.1 (a) and (b). The division into the five rotations can be done by 
comparing the time at which the pulse signal drops in Figure 5.1 (a) and (b), with the time 
given in Figure 5.2 (a) and (b). (Each rotation is a bit under 0.5 in the time scale). 
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In Figure 5.2 (a) the three tip vortices within each rotation is quite clear, represented by the 
accumulated normal stress. The figure also shows a repeating pattern within each rotation. 
However, the tip vortices seem to be shifted a bit to the right. This coincides with the different 
loads on the blades mentioned earlier.  

Figure 5.3 illustrates how different loads on the rotor blades can cause the tip vortices to be 
shed in different direction, and thus, be the reason for the tip vortices to be shifted to the right 
in Figure 5.2 (a).  

 

Figure 5.3: Tip vortex shedding 

As mentioned in the Chapter 3, the tip vortices might follow their own path with unequal 
transport velocities if the pitch angle of the turbine blades is unequal. Since the fine setting of 
the pitch angle on the turbine blades was done with a protractor, it might be some uncertainty 
related to this angle. This might be the reason for the tip vortices to be shed unequal.  

One of the tip vortices in Figure 5.2 (a) seems to be located round z/R = 1.12 in each rotation. 
The center of the vortex is located between z/R = 1.10 to z/R = 1.14, which is a distance of 
1.80E-2 m. The tip vortex center is defined as where the normal stress is higher than the mean 
value of the normal stress, which in other words is when the normal stress has a value over 40 
in Figure 5.2 (a). This indicates that the size of the tip vortex is smaller than expected and as 
first assumed when conducting the measurements with rake 1. The center of the other two 
vortices is not that evident in this figure, and thus the sizes of them difficult to state.  

Figure 5.2 (b) illustrate what was seen in the plot representing the normal stress with grid 
turbulence in Figure 5.1 (b). There is no evident repeating pattern between the rotations, 
which makes it difficult to state if there are three single tip vortices present in the wake, or if 
they already have merged together.  

When keeping in mind that the wake might expand faster in an incoming flow with higher 
turbulence intensity, the same plot, but at a location further from the center of the rotor is 
given in Figure 5.4 (a) and (b). The positions of the probes are given in Table 5.2.  



5. Main results and discussion 

62 
 

Table 5.2: X/D = 1, Position 2 of hot-wire probes 

 HW 1 HW 2 HW 3 HW 5 
Distance from rotor center [m] 0.510 0.5238 0.5406 0.5614 
z/R 1.133 1.164 1.201 1.248 
 

 

(a) Without grid turbulence 

 

(b) With grid turbulence 

Figure 5.4: X/D = 1, Position 2 (a) Five rotations without grid turbulence, (b) Five rotations with grid 
turbulence 
 

 

(a) Without grid turbulence 

 

(b) With grid turbulence 

Figure 5.5: X/D = 1, Contour plot, Position 2 (a) Five rotations without grid turbulence, (b) Five rotations 
with grid turbulence 

 

In Figure 5.4 (a) the presence of the three tip voices are still quite evident in the case when the 
turbine is placed in a flow with low turbulence intensity. However, one of the tip vortices 
seems to be a bit weaker at this location, and the amplitudes of the normal stress vary a bit 
more when comparing the different rotations. In the measurements with grid generated 
turbulence, given in Figure 5.4 (b), it seems that it might be at bit more systematic behavior 
within the rotations compared to the location closer to the rotor center.  
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There are more evident peaks in the normal stress, which might indicate the presence of tip 
vortices. However, it is difficult to state if the peaks represent one or more tip vortices. The 
amplitudes of the normal stress have in general increased compared to the previous location 
of the probes, indicating that more of the energy in the wake is located in this z/R range. 

In Figure 5.5 (a) and (b) the location of the peaks in the normal stress are given as a function 
of the distance to the rotor center by z/R. Figure 5.5 (a) clearly illustrates a repeating pattern 
within the rotations, the same as seen in the contour plot in Figure 5.2 (a). However, there are 
now two evident tip vortices which have their center in this range of z/R. The peaks in the 
normal stress are located round z/R = 1.17 and z/R = 1.20. The tip vortex to the left in the 
figure is located between z/R = 1.15 and z/R = 1.18, which is a distance of 1.35E-2 m, and the 
tip vortex to the right is located between z/R = 1.18 and z/R = 1.22, giving a distance of 
1.80E-2m. In other words, the two tip vortices seen in this figure seem to be of same different 
size.  

As seen previously, the tip vortices are a bit shifted from one another. To the left in the 
contour plot in Figure 5.5 (a), it seems to be a small indication of the first tip vortex which 
was found in the previous section when presenting the measurements conducted at position 1 
of the rake.  

As seen in Figure 5.5 (b), there is still no clear indication of any repeating pattern in the wake 
when the turbine is placed in a turbulent incoming flow. However, there are some peaks in the 
normal stress. As seen in the z/R range given previously, the energy is more smeared out over 
the entire range. This corresponds to the measurements described in Section 4.4.5.1 when 
locating the tip vortices. 

The normal stress for an even further position from the rotor center, represented in Table 5.3, 
is given in Figure 5.6 (a) and (b) and Figure 5.7 (a) and (b).  

Table 5.3: X/D = 1, Position 3 of hot-wire probes 

 HW 1 HW 2 HW 3 HW 5 
Distance from rotor center [m] 0.5450 0.5588 0.5756 0.5964 
z/R 1.211 1.242 1.279 1.325 
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(a) Without grid turbulence 

 

(b) With grid turbulence 

Figure 5.6: X/D = 1, Position 3, (a) Five rotations without grid turbulence, (b) Five rotations with grid 
turbulence 
 

 

(a) Without grid turbulence 

 

(b) With grid turbulence 

Figure 5.7: X/D = 1, Contour plot, Position 3 (a) Five rotations without grid turbulence, (b) Five rotations 
with grid turbulence 
 
There are still some evident peaks in the normal stress both with and without grid generated 
turbulence. However, in the measurement with low turbulence intensity, represented in Figure 
5.6 (a), it seems that the normal stress representing only one of the tip vortices is picked up by 
the hot-wire probes. There are some small indications of a second one, but its amplitude is 
quite small compared to the other one. Hot-wire probe five seems to be located outside, or at 
the edge of the wake. The normal stress at this location, z/R = 1.325, is barely visible as small 
peaks occurring at the passage of the one evident tip vortex in this range of z/R. This 
corresponds well to the results obtained when locating the tip vortices in the wake. In the case 
with grid generated turbulence, represented in Figure 5.6 (b), none of the signals have this 
kind of calm signal. Thus, the normal stress in the wake with the incoming flow with 
turbulence intensity round 5.5 % seems to be more spread out at this location in the wake. 
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Figure 5.7 (a) and (b) represents the same measurements as given in Figure 5.6 (a) and (b), 
but presented as a contour plot giving the position of the normal stress according to the 
distance to the rotor center, z/R.  

In Figure 5.7 (a) the tip vortex located round z/R = 1.20 in the previous section is clearly seen 
within every rotation. The location of the peak value seems to vary a bit, from z/R = 1.20 to 
z/R = 1.24, which equals a distance of 1.80E-2 m. However, it seems that the tip vortex is not 
fully captured at this z/R range. Later in this chapter, in Section 5.5, a phase averaging of the 
results will be conducted. This will give a clearer image of the locations of the tip vortices and 
their size based on the normal stress in the wake.  

In Figure 5.7 (b), there is still no evident systematic behavior in the normal stress within the 
different rotations. However, the normal stress is located to the left in the figure, which is the 
same as in the case for the measurements conducted in a flow with low turbulence intensity. 
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5.2. Time series X/D = 3 
 

The values in this section represent five rotations of the model wind turbine. 

Figure 5.8 (a) and (b) and Figure 5.9 (a) and (b) represents the normal stress measured at X/D 
= 3 downstream the model wind turbine, for the cases with and without grid generated 
turbulence. The positions of the hot-wire probes are given in Table 5.4.  

Table 5.4: X/D = 3, Position 1 of hot-wire probes 

 HW 1 HW 2 HW 3 HW 5 
Distance from rotor center [m] 0.480 0.4938 0.5106 0.5314 
z/R 1.067 1.097 1.135 1.181 
 

 

(a) Without grid turbulence 

 

(b) With grid turbulence 

Figure 5.8: X/D = 3, Position 1 (a) Five rotations without grid turbulence, (b) Five rotations with grid 
turbulence 
 

 

(a) Without grid turbulence 

 

(b) With grid turbulence  

Figure 5.9: X/D = 3, Contour plot, Position 1 (a) Five rotations without grid turbulence, (b) Five rotations 
with grid turbulence 
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When comparing Figure 5.8 (a) and (b) with the once representing the normal stress at X/D = 
1 downstream the turbine, the flow in the wake seems much more chaotic. In the case with an 
incoming flow with low turbulence intensity, presented in Figure 5.8 (a), the amplitudes of the 
normal stress are decreased and the clear indication of the three tip vortices is no longer 
present. Though, at X/D = 3 downstream the wind turbine rotor, the wake might have 
expanded and the tip vortices might be found further from the rotor center. Since the 
amplitude of the normal stress at X/D = 1 downstream the turbine without the grid generated 
turbulence was quite high, one might expect that the tip vortices still exist at X/D = 3 
downstream the turbine rotor. However, the energy in the flow at this location is much more 
spread out in the range of the measurement.  

In Figure 5.8 (b), representing the normal stress at X/D = 3 with an incoming flow with a 
turbulence intensity round 5.5 %, there seems to be no sign of anything other than chaos. The 
energy is spread out as seen in the noisy and chaotic signal. This is what one might expect at 3 
diameters downstream the rotor when the turbine is placed in the grid generated turbulence. 
The turbulent flow will dissolve any systematic behavior in the wake more rapidly due to the 
faster decay of the turbulence and recovery of the wake deficit. Even though, the level of the 
normal stress is quite equal for both the cases with and without grid generated turbulence. 

Figure 5.9 (a) and (b) represents the same measurement, but presented in a contour plot 
indicating the position of the normal stress according to the distance to the rotor center. It 
doesn’t seem to be any systematic behavior in the wake in either of the two cases. Though in 
Figure 5.9 (a) the normal stress is more gathered, which might indicate that it still exist some 
kind of structure in the wake. Figure 5.9 (b) shows the chaotic behavior in the wake behind 
the turbine at this location with an incoming flow with turbulent intensity round 5.5 %. The 
normal stress is smeared out over the entire range given in the figure.  

In Figure 5.10 (a) and (b) and Figure 5.11 (a) and (b), the probes are moved a bit further from 
the rotor center. The positions of the hot-wire probes are given in Table 5.5.  

 

Table 5.5: X/D = 3, Position 2 of hot-wire probes 

 HW 1 HW 2 HW 3 HW 5 
Distance from rotor center [m] 0.5150 0.5288 0.5456 0.5664 
z/R 1.144 1.175 1.212 1.259 
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(a) Without grid turbulence 

 

(b) With grid turbulence 

Figure 5.10: X/D = 3, Position 2 (a) Five rotations without grid turbulence, (b) Five rotations with grid 
turbulence 
 

 

(a) Without grid turbulence 

 

(b) With grid turbulence 

Figure 5.11: X/D = 3, Contour plot, Position 2 (a) Five rotations without grid turbulence, (b) Five rotations 
with grid turbulence 
 
Even at this distance from the rotor center, there are no evident structures within the rotations. 
There are some peaks in the normal stress in the wake when the turbine is placed in a low 
turbulent incoming flow, as seen in Figure 5.10 (a). The level of the normal stress has in 
general decreased when compared to the z/R range given in the previous section, and it seems 
to be less “noise” in the flow. However, there are still some peaks, which might indicate that 
there still exists a distinct tip vortex at this distance from the turbine rotor in the wake.  

In the case with grid generated turbulence, given in Figure 5.10 (b), the normal stress is quite 
equal as seen at the z/R range given previously; it is no repeating pattern and the level of the 
normal stress has not changed. The energy in flow is smeared out over the entire area.  

The locations of the peaks in the normal stress according to the distance to the rotor center are 
illustrated in Figure 5.11 (a) and (b). Figure 5.11 (a) indicates that the location of the peaks in 
the normal stress varies when comparing the different rotations.  
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In rotation number 1 and 5 the peak is located round 1.17, in rotation 2 and 3 it is located 
round 1.25, while in rotation number 4 there is no evident peak in normal stress. The fact that 
the normal stress in rotation 4 is so weak is a bit surprising, since the energy in the flow needs 
to be somewhere. The change in the location of the peak values might indicate the energy 
moves around in the wake. 

In Figure 5.11 (b) there are still no sign of any repeating pattern within the rotations. The 
normal stress is more spread out over entire the area at this location, and there is no indication 
of systematic behavior. The level of the normal stress is decreased compared to the case 
without grid generated turbulence. This might indicate that the energy in the wake has spread 
out even more due to the turbulent incoming flow.  

When mowing even further from the rotor center, to the positions given in Table 5.6, the level 
of the normal stress increase in both cases and it still exist evident peaks in the normal stress; 
see Figure 5.12 (a) and (b).  

Table 5.6: X/D = 3, Position 3 of hot-wire probes 

 HW 1 HW 2 HW 3 HW 5 
Distance from rotor center [m] 0.5500 0.5638 0.5806 0.6014 
z/R 1.222 1.253 1.290 1.336 
 

 

(a) Without grid turbulence 

 

(b) With grid turbulence 

Figure 5.12: X/D = 3, Position 3 (a) Five rotations without grid turbulence, (b) Five rotations with grid 
turbulence 
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(a) Without grid turbulence 

 

(b) With grid turbulence 

Figure 5.13: X/D = 3, Contour plot, Position 3 (a) Five rotations without grid turbulence, (b) Five 
rotations with grid turbulence  
 
As seen when comparing Figure 5.12 (a) and (b), the amplitudes of the normal stress for the 
two cases are quite even, but the energy distribution in the flow for the two cases are not 
comparable. It is much less noise in the normal stress in the case without grid generated 
turbulence.  

In the case with grid turbulence the flow seems more chaotic and disorganized and the energy 
in the flow is spread between the positions of the hot-wire probes.  

The positions of the peaks in the normal stress for the two cases are given in Figure 5.13 (a) 
and (b). Figure 5.13 (a) indicates that the peaks are a bit spread over the z/R range given in the 
figure. At the other two z/R ranges given in the previous sections, the peaks tended to appear 
at the some of the same z/R positions for the different rotations. At this position it seems to be 
some congestion round z/R = 1.3 within each rotation. The energy in the wake at this distance 
from the turbine rotor is however quite gathered compared to the case with an incoming flow 
with turbulence intensity round 5.5 %. The normal stress in the wake behind the turbine when 
placed in the turbulent flow, see Figure 5.13 (b), is smeared out with no apparent structure, 
and the peaks seen in Figure 5.12 (b) in the first two rotations are located at different z/R 
positions.  

Having in mind that the at X/D = 1 downstream the turbine it was observed that the tip 
vortices were shed from the blade in slightly different courses, the vortices courses can have 
spread even more at 3 diameters downstream the wind turbine. This might be an explanation 
to why there seems to be only one or two tip vortices/ or congestions of normal stress at the 
different positions of the hot-wire probes in the areas of the wake given in the previous 
sections. One of the tip vortices might appear at one position of the rake and the other two at 
another position. The phase averaging of the measurements conducted later in the study, in 
Section 5.5, might reveal if the three tip vortices are still evident at three diameters behind the 
rotor or if they have merged together.  
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5.3. Time series X/D = 5 
 

The values presented in this section all represents five rotations of the model wind turbine.  

Figure 5.14 (a) and (b) represents the normal stress at X/D = 5 downstream the wind turbine 
rotor at the position given in Table 5.7.  

Table 5.7: X/D = 5, Position 1 of hot-wire probes 

 HW 1 HW 2 HW 3 HW 5 
Distance from rotor center [m] 0.5100 0.5238 0.5406 0.5614 
z/R 1.133 1.164 1.201 1.248 
 

 

(a) Without grid turbulence 

 

(b) With grid turbulence 

Figure 5.14: X/D = 5, Position 1 (a) Five rotations without grid turbulence, (b) Five rotations with grid 
turbulence 
 

 

(a) Without grid turbulence 

 

(b) With grid turbulence 

Figure 5.15: X/D = 5, Contour plot, Position 1 (a) Five rotations without grid turbulence, (b) Five rotations 
with grid turbulence 
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Figure 5.14 (a) and (b) give a clear indication that there are no sign of tip vortices at this 
position in the wake of the turbine. The tip vortices are most likely broken up or merged 
together and the flow in the wake seem to be an ordinary turbulent flow. The normal stress 
has decreased a great deal compared to X/D = 1 and X/D = 3 downstream the turbine. Thus, 
when studying Figure 5.14 (a), there are peaks in the normal stress in the wake within the five 
rotations measured at the positions of hot-wire probe 1 and 5. This might indicate that the tip 
vortices are just merged and not fully broken up, and that there still is some structure in the 
wake. While in the wake where the turbine is placed in an incoming flow with turbulence 
intensity round 5.5 %, Figure 5.14 (b), it seems that the structure is fully broken up.  

In Figure 5.15 (a) and (b), the position of the small peaks in the normal stress is indicated by a 
contour plot. Figure 5.15 (a) indicate that the peak seen in the normal stress in every rotation 
in Figure 5.14 (a) in not located at the same z/R position in the wake, and it is rather weak. In 
the case with a turbulent incoming flow, see Figure 5.15 (b), the wake seems to be fully 
dissolved at this location. Within the first rotation there is almost no normal stress, while in 
the third and fourth rotation the level on the normal stress is increased.  

When studying the normal stress in the wake at a position further from the rotor center, given 
in Figure 5.16 (a) and (b), (positions are given in Table 5.8) the trends mentioned in the 
previous section, regarding the one peak in the normal stress within every rotation, is not 
present.  

Table 5.8: X/D = 5, Position 2 of hot-wire probes 

 HW 1 HW 2 HW 3 HW 5 
Distance from rotor center [m] 0.5800 0.5938 0.6106 0.6314 
z/R 1.289 1.320 1.357 1.403 
 

 

(a) Without grid turbulence 

 

(b) With grid turbulence 

Figure 5.16: X/D = 5, Position 2 (a) Five rotations without grid turbulence, (b) Five rotations with grid 
turbulence 
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(a) Without grid turbulence 

 

(b) With grid turbulence 

Figure 5.17: X/D = 5, Contour plot, Position 2 (a) Five rotations without grid turbulence, (b) Five rotations 
with grid turbulence 
 
The level of the normal stress have in both cases decreased even more at this location in the 
wake, as can be seen in Figure 5.16 (a) and (b), and there are no evident peaks repeating itself 
in the normal stress in either case. Figure 5.17 (a) and (b) are the contour plots of the 
measurement at this location. There is some difference in the normal stress for the two cases. 
In the case with grid generated turbulence, the energy is decreased at this location. This 
coincides with the theory that the wake deficit and thus the turbulent energy in the wake are 
dissolved at a faster rate when the turbine is placed in a flow with a higher level of turbulence 
intensity.  
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5.4. Time averaged turbulent kinetic energy 
 

Based on the mean values from the time series and Equation (3.29), the turbulent kinetic 
energy from time averaged measurements can be plotted and compared for the cases with and 
without grid turbulence. In Figure 5.18, Figure 5.19 and Figure 5.20 the turbulent kinetic 
energy is normalized by the reference free stream velocity for the 3 positions X/D = 1, 3 and 5 
downstream the model wind turbine. The values are plotted as a function of the position z/R. 
The blue lines represent the measurements without grid generated turbulence, and the red 
lines the measurements conducted with an incoming flow with turbulence intensity round 5.5 
%.  

 
Figure 5.18: X/D=1, turbulent kinetic energy with 
(red line) and without (blue line) grid turbulence 
 
 

 
Figure 5.19: X/D=3, turbulent kinetic energy with 
(red line) and without (blue line) grid turbulence 
 

 
Figure 5.20: X/D=5, turbulent kinetic energy with 
(red line) and without (blue line) grid turbulence 
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As seen in the figures, the turbulent kinetic energy decreases, or is smeared out in the wake, 
when moving downstream in the wake of the turbine. This coincides with the theory stating 
that the turbulent kinetic energy will decrease due to dissipation and diffusion, termed the 
energy cascade. The turbulent energy at the downstream position in the wake has been 
smoothed out by spanwise turbulent diffusion. Another observation is that in the case with the 
grid generated turbulence at X/D = 1, the amplitude of the turbulent kinetic energy is 
decreased compared to the case without grid turbulence. This is due to that the grid generated 
turbulence affects the wake development in such a way that the turbulence will decay faster, 
as also predicted in the model by Bossanyi. The increased turbulence level in the free stream 
has in other words increased the radial transport of energy in the wake leading to a smearing 
out of the energy; but the total energy beneath the curves in the two cases seems to be in the 
same order.  

At X/D = 3 and X/D = 5 downstream the wind turbine the turbulent kinetic energy is higher 
when moving toward the rotor center in the case with grid generated turbulence compared to 
the case with a low turbulent incoming flow. The level of the energy is quite equal for the two 
cases, and the peak in the stress is located almost at the same z/R position. However, it seems 
that the total energy is higher in the case with grid turbulence. This might be a consequence of 
the increased tip speed ratio, resulting in a reduced lift force, especially at the root of the 
blade, and thus a reduced power extraction from the incoming flow. This leads to more energy 
in the wake of the turbine, which is lost in the power extraction.  

At X/D = 3 downstream the turbine, the turbulent kinetic energy is at a higher level over a 
wider area for the case with grid turbulence. It’s still a small peak in the energy, though not as 
pronounced as in the case without grid generated turbulence. This is clearly an effect of the 
turbulent flow causing the wake to expand and be smeared out. 
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5.5. Phase averaging of the measurements  
 

An averaging of the measurements was conducted by using the pulse signal accumulated by 
the ramp generator. It was made a Matab script where the converted voltage signal from the 4 
hot-wire probes was placed in different bins according to the position of the turbine blades. 
The drop in the pulse signal, as seen in some of the figures in Section 5.1 to 5.3, indicates the 
start of a new rotation. Since the pulse signal and the signal from the hot-wire anemometry 
were logged simultaneously, the index of the drop in the pulse signal could be used to sort the 
measured velocities. The fluctuating velocities from the anemometers were divided into 180 
bins, which mean that each bin represented a two degree rotation of the turbine. This gave a 
number of 4-6 samples in each bin for each rotation, dependent on number of samples within 
the rotation. The result matrix was then three-dimensional matrix with nr. samples x 4 (HW) x 
180. The velocities in each bin were then summed up and divided by the number of samples 
in the bin.  

 

5.5.1. Phase averaged fluctuating velocity, u’ 
In Figure 5.21 to Figure 5.26 the phase averaged fluctuating velocity, u’, at the given z/R 
position for all the measurements conducted at X/D = 1, 3 and 5, both with and without grid 
generated turbulence, are presented in contour plots. The rotation in degrees is represented on 
the ordinate. The column to the left represents the measurements without grid generated 
turbulence and the right column with grid generated turbulence. The fluctuating velocity is 
given as real value, not normalized.  
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Figure 5.21: X/D = 1, Phase averaged 
fluctuating velocity without grid turbulence 
 
 

 
Figure 5.22: X/D = 1, Phase averaged 
fluctuating velocity with grid turbulence 
 
 

 
Figure 5.23: X/D = 3, Phase averaged 
fluctuating velocity without grid turbulence 
 
 

 
Figure 5.24: X/D = 3, Phase averaged 
fluctuating velocity with grid turbulence 
 

 
Figure 5.25: X/D = 5, Phase averaged 
fluctuating velocity without grid turbulence 
 
 

 
Figure 5.26: X/D = 5, Phase averaged 
fluctuating velocity with grid turbulence 
 

The figures clearly show both the effect of the grid generated turbulence and the changes in 
the wake structure at the different positions downstream the turbine. In Figure 5.21 the three 
tip vortices in the wake are evident. As seen in Section 5.1, when only studying the 
measurements from 5 rotations of the wind turbine rotor at X/D = 1, the tip vortices are not 
equally distributed within the 360° and the size of the vortices are unequal.  
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This is even more clarified in this plot. The tip vortices are seen as a positive and a negative 
field in the fluctuating velocity. This is due to the rotation of the tip vortices, giving both a 
negative and a positive velocity compared to the streamwise direction, x. The center of the 
positive part of the vortices are round z/R = 1.12, z/R = 1.17 and z/R = 1.23, which coincides 
with the observations conduced in Section 5.1. The sizes of the tip vortices will be studied in 
the section representing the phase averaged normal stresss, Section 5.5.2. 

When comparing the phase averaged result at X/D = 1 with and without grid generated 
turbulence, given in Figure 5.22 and Figure 5.21 respectively, the effect of the turbulent 
incoming flow is evident. The three tip vortices seem to be merged together and there are now 
only two peaks, or four when counting both positive and negative peaks, in the fluctuating 
velocity. The level of the fluctuating velocity has decreased with a factor of 10 compared to 
the case with an incoming flow with low turbulence intensity, and the sizes of the fields with 
the greatest deviation from the mean velocity are larger when comparing the two cases. Thus, 
it’s rather unlikely that these fields represent the single tip vortices seen in the case without 
grid generated turbulence, and instead represent the location of merged tip vortices.  

When studying the phase averaged fluctuating velocity at X/D = 3 downstream the turbine 
without grid generated turbulence in Figure 5.23, the evident tip vortices seen at X/D = 1 are 
no longer present. There is one clear positive peak located round z/R = 1.30 appearing at 300° 
of the rotation of the wind turbine rotor. The location of the center is in the range between z/R 
= 1.19 to z/R = 1.40. In the contour plot for five rotations given in Section 5.2 it was also seen 
a peak in the normal stress at this locations, though not as wide as the one seen here. This 
might indicate that the peak seen in Figure 5.23 is a location of the merged tip vortices. As 
seen, there are clear fields in the wake, which indicates that there is some structure in the 
wake. However, the level of u’ is reduced by a factor of 15 compared to the measurements 
conducted at X/D = 1. Thus, the energy in the wake seems to be spread out at this position 
downstream the turbine.  

In the case with grid turbulence at X/D = 3 downstream the turbine, given in Figure 5.24, the 
flow in the wake seems to be chaotic and unstructured. The level of the fluctuating velocity is 
still reduced by a factor of 10 compared to the case without grid generated turbulence and a 
factor of 12 compared to the same case at X/D = 1. The chaotic behavior coincides well with 
what was seen in the figures representing five rotations of the turbine, given in Section 5.2.  

At X/D = 5, represented in Figure 5.25 and Figure 5.26, the flow seems to be chaotic and 
unstructured for both cases. This indicates that the wake might be fully dissolved, and the 
flow in the wake is now an ordinary turbulent flow with no evident structure. The maximum 
level of the fluctuating velocity is quite equal in both cases. Though, the level of the 
fluctuating velocity in the case without the grid generated turbulence is quite equal to the case 
at X/D = 3 with a turbulent incoming flow. It seems that the contour plots, and thus the flow, 
are comparable at these two locations. This might indicate that the wake of the turbine 
encountered by a turbulent flow recovers at an earlier stage downstream the turbine, which 
agrees with theory.  
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5.5.2. Phase averaged normal stress, u’u’  
In Figure 5.27 to Figure 5.32, the normal stress, u’u’, at X/D = 1, 3 and 5 downstream the 
model wind turbine with and without grid generated turbulence are averaged according to the 
position of the blade. The rotation of the rotor turbine is represented on the ordinate in 
degrees. The figures to the left is the phase averaged normal stress without grid turbulence, 
and to the right is the phase averaged normal stress with grid turbulence.  

The normal stress is given in real values, not normalized.  
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Figure 5.27: X/D = 1, Phase averaged normal 
stress without grid turbulence 

 
Figure 5.28: X/D = 1, Phase averaged normal 
stress with grid turbulence 
 

 
Figure 5.29: X/D = 3, Phase averaged normal 
stress without grid turbulence 
 

 
Figure 5.30: X/D = 3, Phase averaged normal 
stress with grid turbulence 
 

 
Figure 5.31: X/D = 5, Phase averaged normal 
stress without grid turbulence 
 

 
Figure 5.32: X/D = 5, Phase averaged normal 
stress with grid turbulence 

To be sure that the results were correct phase averaged, the sum of the normal stress for the 
360° at each z/R position was compared to the time averaged normal stress computed in the 
in-house converting program hwsconv. It was a good correspondence between shapes the two 
different averages. The comparison is given in Appendix A.2.  
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In Figure 5.27 the three tip vortices are clearly seen as the peaks in the normal stress, and the 
figure is quite equal to Figure 5.21 representing the fluctuating velocity given in Section 
5.5.1. The plot is scaled equal to the contour plots given in Section 5.1 to be able to compare 
the locations of the tip vortices.  

The position and the size of the tip vortices are as seen in previous sections in the study; the 
tip vortices are of different size and are shifted to the right in the figure. The center of the tip 
vortices, or the peak value in the normal stress, is located round 30°, 128° and 224° based on 
the phase averaged measurements. This equals a distance of 98° and 96° between, 
respectively, tip vortex one and two, and two and three. The distance between the third and 
the first tip vortex then becomes 166°. 

Using a criterion that the center of the tip vortex is located where the normal stress is higher 
than the mean value for each accumulation of normal stress, a study on the size of the tip 
vortices can be conducted. The first tip vortex, emerging within the first 70° of rotation, is 
located between z/R = 1.05 to z/R = 1.15, giving a distance of 4.50E-2 m, with the center 
located between z/R = 1.09 to z/R = 1.13. The center width corresponds to a distance of 
1.80E-2 m. The second tip vortex emerging, located between 100° and 160° of the rotation of 
the turbine rotor, has its extremes points at z/R = 1.08 and z/R = 1.21. The center is located 
between z/R = 1.09 and z/R = 1.20 which equals a distance of 4.95E-2 m. The third and last 
tip vortex emerges between 190° and 260° of the rotation of the turbine rotor. It has its 
extreme points at z/R = 1.13 and z/R = 1.28. The center of the tip vortex is located between 
z/R = 1.15 and z/R = 1.25, which equals a distance of 4.50E-2 m.  

The strength of the tip vortices is also unequal. The first tip vortex has a maximum normal 
stress round 40.0, while the second tip vortex is weaker, with a maximum value of 31.7. The 
strongest tip vortex is the third, which is clearly seen from the figure, with a maximum value 
of 51.4.  

In Figure 5.28, representing the case at X/D = 1 downstream the turbine with grid generated 
turbulence, the normal stress is decreased by a factor of round 10 compared to the case at X/D 
= 1 without grid turbulence. There is a continuous field in the wake with increased normal 
stress, stretching from round 150° around to 50° with a center at 320° of the rotation of wind 
turbine rotor. Since there is no indication of three peaks representing the tip vortices, is it 
likely to believe that this might be location of the merged tip vortices. The fact that there is a 
continuous filed with only one “open space” during the rotation, indicates that the tip vortices 
have caught up with each other. This might also explain the peaks seen in Section 5.1 when 
presenting the measurements for only five rotations of the turbine, and why they emerged at 
different z/R positions. There is, in other words, still a structure in the wake at this point 
downstream the turbine, and thus, the grid generated turbulence have not dissolved the whole 
wake structure to an ordinary turbulent flow.  

The phase averaged measurements conducted at X/D = 3 downstream the turbine without grid 
turbulence is given in Figure 5.29. The level of the normal stress has decreased by a factor of 
20 compared to the measurements conducted at X/D = 1.  
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In the figure there are two fields in the wake with increased normal stress, one at 100° and 
one at 290° of the rotation, both appearing round z/R =1.22, but the peak located at 290° is 
much stronger than the other. One explanation might be that two of the tip vortices have 
merged together, creating the field with greatest normal stress, while the third tip vortex is 
represented by the weaker peak in the normal stress. The fact that the tip vortices are located 
quite close to each other in the wake, as seen at X/D = 1, and that the vortex located in 
between the two other vortices is the weakest one, is a good support to this statement. 
However, there is an increased normal stress stretching over the area between z/R = 1.10 to 
z/R = 1.31, which might indicate that the weaker tip vortex moves around. 

At X/D = 3 with grid generated turbulence, presented in Figure 5.30, there seem to be a 
continuous field through the entire wake with increased normal stress. It is likely that the field 
seen at 1 diameter downstream the turbine has been smeared out to this one big field since the 
z/R range of the field is the same in both cases, ranging from z/R = 0.90 to z/R = 1.30. The 
level of the normal stress has only decreased by a factor of 2.5 compared to the same case at 
X/D = 1. This is a small reduction compared to the decrease seen in the case without grid 
generated turbulence.  

The phase averaged measurements at X/D = 5 downstream the turbine for the case without 
and with grid turbulence are given in respectively Figure 5.31 and Figure 5.32. In neither case 
are there any signs of distinct peaks representing the tip vortices. The figure representing the 
case without grid generated turbulence is quite equal to Figure 5.30, who represents the 
measurements conducted at X/D = 3 with grid turbulence. Based on this, one might believe 
that the flow field in the wake at X/D = 5 with a low turbulent flow is quite equal to the flow 
field in the wake at X/D = 3 in a flow with turbulence intensity round 5.5 %. This coincide 
with the theory, claiming that the wake recover faster when introduced to a higher free stream 
turbulence. There is however a slightly reduced normal stress at X/D = 5 in the case without 
grid generated turbulence compared to X/D = 3 with grid turbulence.  

The level of the normal stress at X/D = 5 is equal in both cases. The normal stress in wake 
exposed to the grid generated turbulence is not as clearly divided into fields as in the case 
without grid turbulence. This indicates that the flow pattern in the wake of the turbine in the 
case with grid turbulence is more disturbed and broken up.  
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5.6. Study on one tip vortex 
 

Based on the contour plots representing the phase averaged measurement, specific locations in 
the wake has been selected to study the behavior of one of the tip vortices. In the next 
sections, a study on the stability of one of the tip vortices in the streamwise direction, x, will 
be conducted based on statistical values from the rotations of the wind turbine rotor within 
different time series.  

 

5.6.1. Without grid generated turbulence, X/D = 1  
It is clear from Figure 5.27 in Section 5.5.2 (the phase averaged normal stress) that one of the 
tip vortices at X/D = 1 downstream the turbine, measured in the case with an incoming flow 
with low turbulence intensity, is located within the first 100° of each rotation at a location 
round z/R = 1.12. Based on this, the hot-wire measurements representing the fluctuating 
velocity round this location for the first 100° for each rotation were selected and studied. The 
positions of the hot-wire probes are specified in Table 5.9.  

Table 5.9: X/D = 1, Position 1 of hot-wire probes  

 HW 1 HW 2 HW 3 HW 5 
Distance from rotor center [m] 0.475 0.4888 0.5056 0.5264 
z/R 1.056 1.086 1.124 1.170 
 

To locate the where, or which hot-wire probe detected the tip vortex, a Matlab script was 
made to sort out the maximum fluctuating velocity within this selected data set for every 
rotation in the four time series. This location was assumed to represent the location of the tip 
vortex. Further, it was summed up how many maximum points each probe detected, and a 
probability density function of the maximum fluctuating velocity was made as a function of 
z/R. The distribution is given in Figure 5.33. The values are normalized by the total number of 
rotations, which is 1278 in these four time series. 

 
Figure 5.33: Position 1, PDF on the location of one 
tip vortex, X/D = 1 without grid turbulence 
 

 
Figure 5.34: Position 1, Time of which u’ maximum 
was measured with hot-wire probe nr. 3 in each 
rotation, X/D = 1 without grid turbulence 
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It is clear from Figure 5.33 that the probe located at z/R = 1.124, hot-wire probe number 
three, measured the highest fluctuating velocity most frequently, with 96.54 % of the times of 
the total number of rotations within the time series. This corresponds well to the location of 
the tip vortex found when presenting the phase averaged normal stress at X/D = 1 without 
grid generated turbulence. It was also measured at the locations of the other three probes 
every now and then, as can be seen in the distribution.  

After locating the tip vortex, a study on the meandering of the tip vortex in the streamwise 
direction within each rotation could be conducted. This was done by finding when the 
maximum fluctuating velocity was measured within the first 100° of rotation at hot-wire 
probe number three for the different rotations. In one rotation it was measured round 940 
samples (varied with one or two samples) which gave a total of 261 samples within the first 
100° of rotation.  

Figure 5.34 illustrates how the maximum fluctuating velocity measured with hot-wire probe 
three is distributed according to the number of sample within each rotation. The values are 
normalized by the total number of maximum u’ points measured with hot-wire probe number 
three. The sampling frequency during the measurements was, as mentioned, 20 kHz, and the 
free stream velocity was 10.2 m/s. This gives a distance of 5.10E-4 m variation between each 
sample in the streamwise direction.  

The figure clearly illustrates that the location of the maximum fluctuating velocity sampled is 
gathered round sample number 87. It is a quite even variation around this measurement point, 
which gives the impression that the tip vortex meanders slightly back and forth in the 
streamwise direction. However, the variation is somewhat larger to the left in the figure. In 
other words, the tip vortex seems to appear at an earlier stage within the first 100° of the 
rotations more often than at a later stage. Though, the range where the maximum u’ appears 
most frequently seems be from sample number 60 to 90. This equals a distance of 1.53E-2 m. 
The total spread in the figure is 121 samples, giving a distance of 6.17E-2 m.  

To be sure that this slight meandering in the streamwise direction seen in the previous section 
was not a contingency, the same procedure was conducted on a measurement point shifted to 
the right. The position of the hot-wire probes are given in Table 5.10.  

Table 5.10: X/D = 1, Position 2 of hot-wire probes 

 HW 1 HW 2 HW 3 HW 5 
Distance from rotor center [m] 0.510 0.5238 0.5406 0.5614 
z/R 1.133 1.164 1.201 1.248 
 

At this measurement point hot-wire probes 2, 3 and 5 should be placed as far to the right that 
hot-wire probe number 1 should measure all the maximum fluctuating velocities belonging to 
the tip vortex within the first 100° of rotation.  
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Figure 5.35: Position 2, PDF on the location of one 
tip vortex, X/D = 1 without grid turbulence 

 
Figure 5.36: Position 2, Time of which u’ maximum 
was measured with hot-wire probe nr. 1 in each 
rotation, X/D = 1 without grid turbulence 

 

As seen in Figure 5.35 nearly all, 99.37 % to exact, of the maximum points where located at 
the position of hot-wire probe number 1. The values in the figure are the normalized by the 
total number of rotations in the four time series, which was 1278 at this measurement point in 
the wake. 

Conducting the same analysis as for the previous measurement point at z/R = 1.12, Figure 
5.36 was obtained. Also in this figure there is a variation of when the maximum fluctuating 
velocity was measured when comparing the different rotations. It is a clear peak around 
sample number 75, and the variation is quite equal in each direction in the figure. The total 
spread is 100 samples, giving a distance of 5.10E-2 m, while the greatest variation lies 
between sample numbers 60 to 85, giving a distance of 1.28E-2 m.  

Thus, is seems like the location of the tip votes is not as stable in the streamwise direction at 
X/D = 1 downstream the wind turbine when the turbine is placed in an incoming flow with 
low turbulence intensity.  

 

5.6.2. With grid generated turbulence, X/D = 1 
To see the effect of the grid generated turbulence on the wake, the same analyses as conduced 
in the previous section, Section 5.6.1, was performed on the measurements from the same 
locations, but now with an incoming flow with turbulence intensity round 5.5 %. Figure 5.37 
gives the distribution on where the maximum fluctuating velocity was measured at the 
positions given in Table 5.9, with grid generated turbulence in the wind tunnel. The values are 
normalized by the total number of rotations in the four time series representing the 
measurement point, which was 1428.  
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Figure 5.37: Position 1, PDF on the location of one 
tip vortex, X/D = 1 with grid turbulence 

 
Figure 5.38: Position 1, Time of which u’ maximum 
was measured with hot-wire probe nr. 5 in each 
rotation, X/D = 1 with grid turbulence 

 

In the case with grid generated turbulence, the rotational speed of the turbine was round 1500 
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represented by the first 225 samples for each rotation in the time series. 
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Figure 5.28 when presenting the phase averaged normal stress located within the first 100° of 
rotation, is in this z/R range. The fact that hot-wire probe number five is the probe where the 
maximum fluctuating velocity occurs the most, might be due to that z/R = 1.17 is located in 
the middle of the increased normal stress field seen in Figure 5.28. 

Based on Figure 5.37, it was chosen to study the appearance of the maximum u’ within the 
different rotations for hot-wire probe number five, located at z/R = 1.17. Figure 5.38 
illustrates the distribution according to when maximum u’ was measured for the different 
rotations at hot-wire probe five. Also in this figure is there an evident change between the 
cases with and without grid generated turbulence. In the case without grid generated 
turbulence in the wind tunnel it was a clear peak where u’ maximum appeared most 
frequently. Now it is spread out over the entire selected data set, with just a narrow peak in 
the beginning of the rotations. The total distance over where the maximum fluctuating 
velocity is measured is 11.48E-2 m in the streamwise direction. The small peak round sample 
number 1 in Figure 5.38 corresponds well to the location of the merged tip vortices, located 
within 0° to 50°, found in the phase averaged measurements. 
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When conducting the same analysis on a measurement point further from the rotor center, 
given in Table 5.10, the same trends appear. However, the distribution on where the 
maximum fluctuating velocity is located within the given z/R area is more evident. As seen in 
Figure 5.39, hot-wire number one, located at z/R= 1.13, measured almost 50 % of the 
maximum u’ for the 1482 rotations in these four time series.  

 
Figure 5.39: Position 2, PDF on the location of one 
tip vortex, X/D = 1 with grid turbulence 

 
Figure 5.40: Position 2, Time of which u’ maximum 
was measured with hot-wire probe nr. 1 in each 
rotation, X/D = 1 with grid turbulence 

 

Based on this, the time at which the maximum fluctuating velocity occurred within the first 
100° in each rotation for hot-wire probe number one was studied. Figure 5.40 illustrates the 
distribution. It is clearly the same trends as seen at the position given in the previous section. 
The maximum values are smeared out over the first 100° of rotation, with a small peak at the 
beginning of the rotations. There is no accumulation round one specific point as in the case 
without grid generated turbulence in the wind tunnel.  

That fact that it is such an evident change between the two cases is no surprise. As seen in the 
phase averaged measurements, the tip vortices seems to have merged together when the 
turbine in placed in an incoming flow with turbulence intensity typical for atmospheric 
turbulence intensity.  
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5.7. Cross correlation of the flow field in the wake  
 

It has been conducted two cross correlation calculations between the probes to illustrate how 
the flow behaves in a given area in the wake and how well the flow is correlated. The cross 
correlations are computed by the use of Equation (3.30).  

The first cross correlation given in this section is related to one specific z/R location. Based 
on all the measured time series that included this position for one of the four hot-wire probes, 
the correlation between the probes, and the distance between them was found. It is used a time 
delay increment of 30 samples in the cross correlation, which equals 1.5E-3 seconds. 

In Figure 5.41 and Figure 5.42, z/R = 1.20 is used as “zero point”. As seen from the figures 
given in the Section 5.5.2, the measurements conduced at z/R=1.20 should detect at least one, 
maybe two, of the tip vortices. Since the hot-wire rake was traversed with an increment of 
3.50E-2 m in the horizontal direction between each measurement, in the range between 
z/R=0.67 to z/R=1.64 at X/D = 1, all four probes was used to conduct measurements 
relatively close to z/R=1.20.  

Figure 5.41 shows the results obtained by a cross correlation between the fluctuating velocity 
signals from the measurements conducted at X/D = 1 without grid turbulence. The distance 
given in the figure is normalized with respect to the radius of the model wind turbine. On the 
horizontal axis the distance represents the deviation from the zero point z/R = 1.20, where the 
negative direction is directed towards the rotor center and positive direction is increasing 
distance to the rotor center. The total spread is 10.26E-2 m. On the vertical axis the delay is 
represented as numbers of rotations, which equals a bit over five rotations of the wind turbine 
rotor.  

 

Figure 5.41: Cross correlation X/D = 1 without grid with z/R = 1.2 as zero point 

 

Distance [z/R]

D
el

ay
 g

iv
en

 a
s 

nr
. o

f r
ot

at
io

ns

Ruu

-0.1 -0.05 0 0.05 0.1

1

2

3

4

5



5. Main results and discussion 

89 
 

As seen in the figure, the pattern repeats itself throughout the five rotations. The width of the 
strong correlated fields, indicated by the dark red fields, is round 4.50E-2 m. This is the same 
distance as found in Section 5.5.2 for the third tip vortex at X/D = 1 in the case without grid 
generated turbulence. This strong correlated field indicates the size of which the flow is well 
correlated, and thus is an indication of the location and size of the tip vortex.  

Comparing Figure 5.41 to Figure 5.27, whom represents the phase averaged measurements, 
the tip vortex captured in this cross correlation seems to the third tip vortex. Since the tip 
vortices are so well defined in this location of the wake, the tip vortex is clearly seen in the 
cross correlation. 

As seen in the figure, the flow has a greater correlation when moving to the right in the figure, 
which is directed further from the rotor center. This means that the flow is directed away from 
the center line in the wake of the turbine, and expanding downstream, which coincides with 
the theory.  

Figure 5.42 presents the cross correlation from the same z/R positions as given in the previous 
section, however, now it represents the cross correlation in the case with an incoming flow 
with turbulence intensity round 5.5 %. The distance and delay is normalized in the same way 
as in the previous case. 

 

Figure 5.42: Cross correlation X/D = 1 with grid generated turbulence with z/R = 1.2 as zero point 

In the cross correlation the delay equals 4.5 rotations of the turbine. The figure clearly shows 
that there is no correlation in the flow when mowing downstream in the wake of the turbine. 
This indicates that the flow in the wake is random, chaotic and unstructured with no 
correlation between the different positions in the wake at X/D = 1 when the model turbine is 
placed in an incoming flow with turbulence intensity typical for atmospheric turbulence 
intensity. There is however a clear correlation right around in the center of the zero point, 
which is as expected. This corresponds well to the observations seen earlier in the study.  
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The second cross correlation conduced is based on the point (index) of which the maximum 
fluctuating velocity occurs most frequently within the different sets of time series (total of 
four time series within one set) for the first 100° of rotation of the turbine rotor. This point is 
found using the same method used in Section 5.6. The index of which the maximum 
fluctuating velocity occurs most frequently is found for the time series where the hot-wire 
probes are located close to z/R = 1.1. In other words, the cross correlation is based on the zero 
point, z/R = 1.10, and will indicate how the tip vortex seen in the Section 5.6 is correlated 
within a given area of the flow in the wake. The cross correlation is based on the 
measurements at X/D = 1 in an incoming flow with low turbulence intensity.  

The index point, found as described in Section 5.6, within each rotation for the reference 
probe is multiplied with all the fluctuating velocities within the same rotation for the other 
probes. The products between two probes are then summed up for each of the locations 
(index), and divided by the number of rotations. Further, this is divided by the variance of the 
time series for reference probe. This will give the mean cross correlation in z direction in the 
flow for that specific tip vortex within the rotations. The cross correlation is given as a 
contour plot in Figure 5.43.  

 

Figure 5.43: Cross correlation of the tip vortex located within the first 100° of rotation 

The figure shows that the greatest correlation is at a delay round 0.1, which equals a rotation 
of round 36° of the turbine rotor. This coincides to the location found in the phase averaged 
measurements, which is as expected, since the correlation is based on the tip vortex located at 
this location.  

The tip vortex seems to have a greater correlation when moving towards the centerline of the 
wake, in other words, towards the left in the figure. However, the resolution in the correlation 
is not as great due to the restricted number of hot-wire probes used during the measurements.  
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It is clear that the tip vortex is correlation to the two other tip vortices in the wake of the 
turbine. The center of the second tip vortex seems to be located at a distance of 2.25E-2 m to 
the right in the figure, directed outward towards the free stream, from the reference tip vortex. 
The center of the third tip vortex is not seen in this correlation due to the narrow distance 
between the extreme points of the rake (5.1E-2 m). However, there is an indication of its 
presence at the edge of the correlation at a delay round 0.7.  

Based on this correlation it seems that the tip vortices are located with a distance of round 
108° between one another. This leaves a distance of 144° between the third and the first tip 
vortex.  
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5.8. Power spectral density function, PSD 
 

A Fast Fourier Transformation (FFT) was conducted on some of the measurements point to 
convert the time series to frequencies using the in-house Fortran program spac-mac-big-
ASCII. This allows the strength of the variation in the time series as a function of frequency to 
be described using a power spectral density function (PSD). In the FFT it was used a Hanning 
style window, and the number of FFT was 145. 

The spectrum is based on the time series from only one of the hot-wire probes. The analysis is 
conducted on measurements at X/D = 1 and 3 downstream the turbine, both with and without 
grid generated turbulence. 

The selected measurement points are chosen on the basis on the location of the tip vortices 
and increased normal stress seen in Section 5.5.2.  

 

5.8.1. X/D = 1 
Figure 5.44, Figure 5.45 and Figure 5.46 illustrates the distribution of the energy at 
respectively the locations z/R = 1.050, z/R = 1.133 and z/R = 1.201 as a function of 
frequency. The dimension of the function is in other words represented by power per unit of 
frequency. The red lines represent the case without grid turbulence, while the blue line 
represents the case with grid turbulence. The values are normalized by the maximum f*Фuu 
within each PSD. 
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Figure 5.44: PSD of measurements conducted at 
z/R=1.050, X/D = 1 with (blue line) and without 
(red line) grid turbulence 
 
 

 
Figure 5.45: PSD of measurements conducted at 
z/R=1.133, X/D = 1 with (blue line) and without 
(red line) grid turbulence 
 

 
Figure 5.46: PSD of measurements conducted at 
z/R=1.201, X/D = 1 with (blue line) and without 
(red line) grid turbulence 
 

 

The three peaks mentioned in Section 3.4.3 are clearly present in all the spectrums 
representing the case with an incoming flow with low turbulence intensity. The rotational 
frequency of the turbine in this case was 21.67 Hz, and for every z/R position of the probe 
there is a peak close to 21 Hz. This peak in the spectrum means that there is one incidence 
occurring once in each rotation. This might be due to that one of the tip vortices is shed 
different from the two other, which is a result from different loading on the turbine blades, as 
mentioned earlier in the report. It could also be that one of the tip vortices has a different 
strength than the other two vortices, as also has been seen earlier in the study.  

The second peak is also present in every spectrum with a frequency round 45 Hz. This means 
that there is some repeating pattern occurring two times during the rotations. The third peak, 
occurring at a frequency of 66 Hz in every spectrum for the case with an incoming flow with 
low turbulence intensity, represents the three tip vortices and is the most evident peak in every 
spectrum. As can be seen by the PSD representing the measurements with an incoming flow 
with low turbulence intensity, there are no evident noise in the flow, which would have 
occurred as peaks at frequencies other than the 3P’s.  
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When comparing the three spectrums representing the case without grid generated turbulence, 
the size of the first and second peak varies with the z/R position of the probe. In Figure 5.44 
the two peaks, 1P and 2P, are barely visible. The position z/R=1.05 is quite close to the rotor 
center, and when studying the position of the tip vortices from the phase averaged results in 
Figure 5.27, the tip vortices locations are further from the rotor center. However, the hot-wire 
probe still detects the presence of the tip vortices in the wake of the turbine.  

The fact that the two first peaks are small in Figure 5.44, compared to the two other z/R 
positions of the probe given in Figure 5.45 and Figure 5.46, is mainly due to that the values 
are scaled down with the maximum f*Фuu for the different time series. The highest value of 
f*Фuu is actually at z/R = 1.05, with a value of 3.77. For the z/R = 1.13 the maximum value of 
f*Фuu is 2.26 and for z/R = 1.201 (f*Фuu)max = 2.064. This indicates that the presence of the tip 
vortices in the three selected time series is strongest at z/R = 1.05, which might be due to that 
at this location the variations of the tip vortices is not “visible”, and only the presence of the 
vortices is detected.  

When moving further from the rotor center, to z/R = 1.13 given in Figure 5.45, both the first 
and the second peak increase, mainly due to the decreased maximum value of f*Фuu. Though, 
when scaling the amplitudes in Figure 5.45 with (f*Фuu)max from z/R = 1.05, there is still a 
small increase in the first and second peak. This indicates that the energy in the time series 
measured at z/R = 1.13 is more spread over the two other frequencies 1P and 2P, than at z/R = 
1.05.  

At position z/R = 1.13, the first peak has increased the most compared to z/R = 1.05, and 
when comparing it to Figure 5.46 representing z/R = 1.20, there is almost no change. This 
might indicate that the first peak is connected to the different loading of the turbine blades 
since there is almost no change in this peak between these two measurements points. The tip 
vortex that causes this peak might be shed in a different course that the two other, or be of 
different strength. The increase in 2P is more interesting. This indicates that there is some 
interaction between the tip vortices in a way that they might pulsate between one another.  

However, the second peak increase a great deal when moving from z/R = 1.13 to z/R = 1.201. 
When scaling the values with the maximum f*Фuu found at z/R = 1.05, the second peak is still 
greatest at z/R = 1.20, which indicates that interaction between the tip vortices is even 
stronger at this location. This might, as mentioned, be caused by a pulsation between the tip 
vortices; the first tip vortex pulsates towards the second tip vortex, and the second tip vortex 
pulses towards the third. In other words, there seems to an instability and interaction between 
the tip vortices. The pulsation may lead to a merging of two of the tip vortices further 
downstream in the wake. 

A trend for all the figures is that the energy is much more spread out when the turbine is 
placed in an incoming flow with turbulence intensity typical for atmospheric turbulence. 
There are still some peaks representing a repeating occurrence in the flow in the case with the 
grid generated turbulence. The rotational frequency of the turbine during the measurements 
with grid generated turbulence was 25 Hz.  
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This means that the 3P’s should be located round 25 Hz, 50 Hz and 75 Hz. The maximum 
value of f*Фuu is round 0.4 for all the z/R locations. 

In Figure 5.44, representing z/R = 1.05, the greatest peak is at a frequency of 12 Hz in the 
case with grid turbulence, which is half of the rotational frequency. There are peaks appearing 
at the two first P’, at 25 Hz and 50 Hz. At the last P, 75 Hz, there is no apparent peak in the 
specter. This might indicate that the tip vortices have already merged or are not detectable at 
this point in the flow when the turbine is exposed to a turbulent flow.  

In Figure 5.45, representing the spectrum for position z/R = 1.13, there are still two clear 
peaks at the first two P’2 in the specter representing the case with grid generated turbulence. 
When studying the specter even closer, there is a small hint of an increased energy at 70 Hz. 
This might be the last P, representing the tip vortices in the wake. However, the peak is barely 
visible. 

The PDS for when the turbine is placed in an incoming flow with a turbulence intensity round 
5.5 %, at position z/R = 1.20, is given in Figure 5.46. Also at this location the two first P’s, 25 
Hz and 50 Hz, are visible in the figure. The second P at 50 Hz is actually the greatest peak in 
the spectrum. Neither at this position is there any clear sign of the three tip vortices in the 
wake, which should be represented by a peak round 75 Hz.  

One common feature for the two cases with and without grid turbulence is the increased 
energy at the second P at position z/R = 1.20.  
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5.8.2. X/D = 3 
The power spectral density function from measurements conducted at X/D = 3 downstream 
the model wind turbine are given in Figure 5.47 and Figure 5.48. The chosen measurements 
point are z/R = 1.13 and z/R = 1.21 based on the phase averaged normal stress at X/D = 3 
given in Section 5.5.2.  

 
Figure 5.47: PSD of measurements conducted at 
z/R=1.13, X/D = 3 with (blue line) and without (red 
line) grid turbulence 

 
Figure 5.48: PSD of measurements conducted at 
z/R=1.21, X/D = 3 with (blue line) and without (red 
line) grid turbulence  
 

As seen in the figures the energy distribution as a function of frequency is quite equal in both 
the cases. However, the spectrum without grid turbulence is shifted a bit to the left. This 
might be due to the reduced rotational frequency of the turbine in the case with an incoming 
flow with low turbulence intensity.  

The fact that there are no clear peaks indicates that the tip vortices are merged together or 
broken up in both cases, and that the flow field in the wake is quite equal for both with and 
without grid generated turbulence in the wind tunnel. Hence, there are no specific oscillating 
patterns within the time series.  
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5.9. Final discussion 
 

The grid generated turbulence did not give a significant change to the power or thrust 
coefficient curves. Based on this it is naturally to believe that the change in the wake would 
not be as severe as seen in the results, as least not at X/D = 1. However, the turbulence 
intensity typical for atmospheric turbulence altered the wake structure considerably. The 
reason for the small change in the power coefficient curves might be that the boundary layer 
created by the grid, when placed on the floor in front of the turbine, might have disturbed the 
flow at the tip of the blade closest to the floor, and thus reduced the power extraction in the 
measurement conducted without grid turbulence.  

The study of the meandering of the wake is only possible when the model wind turbine is 
placed in an incoming flow with low turbulence. This is due to that the method for this study 
is based on the location of the tip vortices, and the only well-defined vortices were found in 
the case without grid generated turbulence in the wind tunnel. As seen in Section 5.8, the only 
clear indication of the three tip vortices is in the case with a low incoming turbulent flow at 
X/D = 1 downstream the turbine. However, it were indications of merged tip vortices at X/D 
= 1 in the case with an incoming flow with turbulence intensity typical for atmospheric 
turbulence and at X/D = 3 in the case with low turbulence intensity. At X/D = 5 the wake 
seems to be fully dissolved in the case with grid generated turbulence. In the case without grid 
generated turbulence at X/D = 5 there seems to be some kind of structure in the wake, based 
on the congestion in the normal stress seen in the phase averaged measurements. The flow 
field in the wake at X/D = 5 without grid generated turbulence is comparable to the flow field 
at X/D = 3 with grid turbulence, both when considering the structure of the flow field and 
level of normal stress. The fact that the tip vortices merge together and break up at a faster 
rate when the incoming flow has higher turbulence intensity corresponds well to the theory. 
The increased tip speed ratio in the case with grid generated turbulence might also be a 
contributing reason to the faster recovery of the velocity deficit in the wake due to the 
increased thrust coefficient of the turbine.  

Based on the PSD, the three peaks seen in the normal stress at X/D = 1 without grid 
turbulence, presented both in the phase averaging and from the first five rotations, can be said 
to represent the tip vortices in the wake. The lack of the 3P frequency in the PSD representing 
the other measurement points in the wake indicate that the three tip vortices were broken up 
or merged together at these positions.  

Also indicated by the PSD is instability in the tip vortices position, due to the high 2P 
frequency. The high 2P frequency at z/R = 1.20 might indicate that the most unstable tip 
vortex is the second vortex, or the tip vortex in the middle. Since this measurement point is in 
the area of the second and third tip vortex, and the 2P frequency is highest at this 
measurement point, a pulsating motion between these two tip vortices might be the 
“strongest” compared to a pulsating motion between tip vortex one and two.  
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The tip vortices found at X/D = 1 downstream the turbine in the case where the model wind 
turbine was placed in an incoming flow with low turbulence, seems to be located relatively 
stable. When comparing the z/R position of the center of the tip vortices from the phase 
averaged measurements with the once presented for the five first rotations of the turbine, 
based on the level of the normal stress in the flow, the deviation varies with a distance from 
4.50E-3 m to 1.80E-2 m. The first tip vortex, located within the first 100° of rotation, seems 
to be most stable. When studying the location of the center of the tip vortex directly from the 
time series, the center seems to be located between z/R = 1.10 and z/R = 1.14, while in the 
phase averaged measurements the range is from z/R = 1.09 to z/R = 1.13. This indicates that 
the center of the tip vortex tends to move a bit to the left, in a direction closer to the wind 
turbine rotor, with a distance of 4.50E-3 m. However, in both Figure 5.2 and Figure 5.27 the 
peak value in the normal stress, indicating this tip vortex, is located within a narrow range, 
and the diameter of the tip vortex seems to be in the order of 1.8 0E-2 m. This corresponds 
well to the assumptions conducted after the first measurement with rake 1. 

The second tip vortex, located within 100° to 160° of rotation at X/D = 1, seems to be a bit 
more unstable. When presenting the normal stress for only five rotations of the wind turbine, 
the center seems to be located within z/R = 1.15 to z/R = 1.18, see Figure 5.5. However, in the 
third rotation the center is shifted a bit to the right in the figure, to z/R = 1.17 to z/R = 1.20, 
which equals a displacement of 9.0E-3 m. Both ranges indicate a diameter of 1.35E-2 m of the 
tip vortex. In the phase averaged measurements the peak value in the normal stress is located 
between z/R = 1.09 and z/R = 1.20. This is a much wider range, going from 1.35E-2 m when 
studying the location of one rotation, to 4.95E-2 m when the studying the phase averaged 
measurements. Thus, the location of the center of the tip vortex seems to move mainly 
towards the rotor center within the rotations. This indicates that the location of this tip vortex 
is more unstable than the first tip vortex.  

As seen from Figure 5.7 and Figure 5.27, tip vortex number three, located within 190° and 
260° of the rotation, seems to be even more unstable. In Figure 5.7 the increased normal stress 
representing the tip vortex seems to be located between z/R = 1.235 and z/R = 1.260, though 
in Figure 5.5 it is located between z/R = 1.19 and z/R = 1.22. However, none of the two 
figures seem to capture the whole tip vortex, so an presumption based on Figure 5.5 and 
Figure 5.7 is that the tip vortex is located between z/R = 1.19 to z/R = 1.26. In the third 
rotation in Figure 5.7 the whole tip vortex seems to be captured, with a center located within 
z/R = 1.21 to z/R = 1.26. When studying the tip vortex presented by phase averaged 
measurements, it might seem like the division of the tip vortex seen between Figure 5.5 and 
Figure 5.7 is caused by the “two parts” of the tip vortex. In other words, the negative 
fluctuating velocity was captured in Figure 5.5 and the positive in Figure 5.7. However, when 
comparing the width of the tip vortex found by the phase averaged measurements with the 
once found for a single rotation, there are deviations in the range of 1.80E-2 m to the left in 
the figures, and thus the tip vortex seems to move towards the wind turbine rotor within some 
of the rotations. The average diameter of the tip vortex seems to be round 2.70E-2 m based on 
the normal stress given in Section 5.1.  
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When comparing the average size of the tip vortices, they seem to be different. The average 
size of the first tip vortex is 1.80E-2 m, while the second tip vortex is 1.35E-2 m. The third tip 
vortex seems to be in the order of 2.70E-2 m, which is 9.0E-3 m wider than the fist and 
1.35E-2 m wider than the second vortex.  

Based on the comparison given in the previous sections, for the case with an incoming flow 
with low turbulence at X/D = 1, all the tip vortices seem to meander a bit. The meandering is 
mainly directed towards the rotor center based on the locations seen within the five first 
rotations. The exact meandering of the tip vortices in the horizontal direction, z, is difficult to 
state based on the method used to present the measurements in this master thesis. A criterion 
on level of the normal stress indicating the exact position of the tip vortices is difficult to 
state, and thus the comparison between the positions of the tip vortices is just an estimate. In 
the comparison in this section the location of the tip vortices are based on when the normal 
stress is greater than the mean value for the specific accumulation indicating the vortices.  

The fact that all the tip vortices seem to meander mainly towards the rotor center might be 
caused by the strength in the free stream flow, holding the wake in place. In other words, the 
strength of the tip vortices is not great enough to “push” the free stream in an outward 
direction relative to the rotor center, and the instability in the tip vortices cause a meandering 
motion mainly towards the rotor center. The strength of the tip vortices is unequal when 
considering the level of the normal stress presented both in the phase averaged results and 
from the first five rotations. The second tip vortex is the weakest one, while the third is the 
strongest. The strongest tip vortex, number three, is also the tip vortex that seems to meander 
most outward from the centerline in the wake when compared to the other two vortices. This 
corresponds well to the statement that the strength of the vortices has an influence on 
meandering in outward direction, towards the free stream. It seems that even though the tip 
vortices are located within the same wake, they tend to meander with different distance, both 
in the streamwise and horizontal direction. This indicates that the displacement of the tip 
vortices might not be a correct method of determining if the whole wake of the model wind 
turbine meanders. It also proves that the displacement of the tip vortices is individual. 

One explanation to the unequal strength of the tip vortices might be an unequal lift force 
acting the blades. This coincides with the assumption of the uncertainty related to the pitch 
angle of the blades. When changing the pitch angle, the lift force will either increase or 
decrease, dependent of the angle, which again will change the strength of the vortex. 
However, a damaged blade will also affect the total lift force acting on the turbine blade.  

At X/D = 3 downstream the turbine, in the case with an incoming flow with low turbulence 
intensity, it seems like two of the tip vortices have merged together, due to the two peaks in 
the normal stress. This corresponds well with the instability seen at X/D = 1. Tip vortex two 
and three seems to be the most unstable, and the fact that these two have merged together at 
X/D = 3 is not unlikely. The high 2P frequency seen at z/R = 1.20 is also a good support to 
this statement.  
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As seen in Section 5.6, the maximum value of the fluctuating velocity, assumed to represent 
the center of the tip vortex, is nor stable in the streamwise direction. For the two cases chosen 
to study, z/R = 1.12 and z/R = 1.13, the maximum fluctuating velocity varied quite frequently 
within a range of respectively 1.53E-2 m and 1.28E-2 m. This is in the same magnitude as the 
once estimated in the horizontal direction, z.  

The instability might indicate variable loads on the turbine blades during the measurements, 
causing the tip vortex to be shed in a slightly different path. It might also be caused by 
instability in the tip vortex. The meandering in the streamwise direction corresponds to the 
high 2P frequency seen in the PSD. 

The distribution of the tip vortices within the 360° of rotation was different when studying the 
phase averaged measurements and the cross correlation based on the location of tip vortex 
number one. In the phase averaged measurements, the distribution of the vortices were 30°, 
128° and 224°, and according to the cross correlation the locations was found to be 36°, 144° 
and 252°. Since both analyses are based on averaged values, one might expect the vortices to 
appear at the same location. However, the cross correlation is based on the index value where 
the maximum u’ occurs most frequently. This will be a source of error due to the meandering 
of the peak. Thus, the distribution of the vortices will not be comparable for these two 
averages. The only clear observation is that the tip vortices are not equally distributed within 
the 360°, and are most likely to appear at the distribution given by the phase averaged 
measurements.  

As seen from the results and analysis conducted in this chapter, the tip vortices seems to 
already have merged together at X/D = 1 when the turbine is placed in an incoming flow with 
turbulence intensity that is typical for atmospheric turbulence. However, there is some 
congestion of energy indicating a certain structure in the wake at this location. The gap in the 
normal stress seen in the phase averaged measurements indicate that the tip vortices have 
caught up with one another, creating a field of increased normal stress in the wake of the 
turbine. Thus, the grid generated turbulence seems to have an effect which forces the tip 
vortices to merge together at a faster rate. The fact that the vortices are not equally distributed 
within the 360° in the wake might make it easier for the vortices to merge together in the 
turbulent incoming flow. Further downstream the model wind turbine, the wake structure 
seems to be fully dissolved due to the grid generated turbulence. All these observations 
correspond well to the theory. 
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6. Conclusion 
 

 

It has been conducted a study on wake meandering downstream a horizontal axis model wind 
turbine in an incoming flow with both low turbulence intensity and turbulence intensity 
typical for atmospheric turbulence. The experiments were conducted in the wind tunnel at 
NTNU at the Department Energy and Process Engineering. Several initial measurements, 
including grid geometry calculations and measurements, performance measurements of the 
model turbine, integral length scale measurements, among other, lead up to a final 
measurement with four hot-wire probes in the area of the tip vortices in the wake of the 
turbine. The measurements were conducted at X/D = 1, 3, and 5 downstream the model wind 
turbine.  

The aim of the experiments was to study the meandering of the wake of the model wind 
turbine in the two incoming flows. There have been conducted numerous experiments on the 
wake of wind turbines, and the phenomenon wake meandering, where the wake moves around 
in space, is a topic of interest for many. The meandering can cause fatigue loads on 
downstream wind turbines in a wind farm, and the phenomenon has shown difficult to model 
accurately.  

The fact that a wind turbine blade sheds tip vortices, a total of three for a three bladed 
horizontal axis turbine, which follow the wake of the wind turbine downstream, makes it 
possible to state if the wake meanders based on the location of the tip vortices. By using an 
array of four hot-wire probes, simultaneous measurements were conducted at multiple nearby 
points in the wake, and thus the location of the tip vortices was obtained based on the 
increased normal stress in the wake. 

An incoming flow with turbulence intensity typical for atmospheric turbulence was created by 
inserting a grid in the inlet to the test section in the wind tunnel. The grid produced a 
turbulence intensity of round 5.5 % and the integral length scales was found to be Luux = 6.5E-
2 m and Luuz = 3.1E-2 m at x = 3.75 m downstream the grid. The tip speed ratio of the model 
wind turbine was set to 6 in the measurement conducted with an incoming flow with a low 
turbulence intensity of round 0.3 %, and 7 in the case with a turbulence intensity round 5.5 %.  

Well-defined tip vortices were only found at X/D = 1 downstream the model wind turbine, 
when the incoming flow had low turbulence intensity, based on the increased level of normal 
stress in the wake. The presence of the tip vortices were also confirmed by a 3P frequency in a 
power spectral density function conducted on chosen time series from the measurements.  
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At the other measurements points downstream the turbine, phase averaged measurements 
showed only broad fields with increased normal stress, indicating that the tip vortices had 
either merged together or broken up. This was also confirmed by a power spectral density 
function, which lacked the 3P frequency. In the case with an incoming flow with turbulence 
intensity typical for atmospheric turbulence, the tip vortices seemed to already have merged 
together at X/D = 1 downstream the turbine.  

The phase averaged measurements showed a field in the wake with increased normal stress, 
with only one gap with almost no normal stress, throughout the 360° in the wake. Thus, the 
increased turbulence intensity in the incoming flow forced the tip vortices to merge together 
at an earlier stage downstream the model wind turbine compared to an incoming flow with 
low turbulence intensity. This corresponds well to previous observations and theory. Though, 
it was not assumed that they would merge together at such an early stage downstream the 
turbine. This was likely due to an unequal distribution of the tip vortices and that the turbulent 
flow smeared out the energy in the wake by diffusion and mixing. 

The strength and size of the tip vortices, based on the normal stress at X/D = 1 without grid 
generated turbulence in the wind tunnel, were found to be unequal. This is likely caused by 
different loading and/or different pitch angles of the turbine blades, which resulted in a 
different transport velocity of the vortices and that they followed their own path in the wake. 
The result of this was clearly seen in the phase averaged measurement, where the distribution 
of the vortices within the 360° of rotation was unequal. The location of the vortices was found 
to be at 30°, 128° and 224° from the phase averaged measurements. The diameters of the 
three tip vortices were found to be in the order of 1.80E-2 m, 1.35E-2 m and 2.70E-2 m 
respectively. The weakest tip vortex was found to be the one in the middle, and the strongest 
tip vortex was the one with the greatest diameter.  

The tip vortices located at X/D = 1 without grid generated turbulence seemed to meander a bit 
back and forth, with a distance from 4.50E-3 m to 1.80E-2 m in the horizontal direction, z, 
though mainly towards the rotor center. However, the exact meandering of the tip vortices in 
the horizontal direction is difficult to state based on the method used to present the 
measurements in this master thesis. A criterion on level of the normal stress indicating the 
exact position of the tip vortices is difficult to state, and thus the comparison between the 
positions of the tip vortices is just an estimate.  

In the PDS a 2P frequency indicated a pulsating motion between the tip vortices within the 
rotations. A study on the location of the peak in the normal stress in the streamwise direction, 
x, believed to represent one of the tip vortices, also indicated a meandering of the tip vortex. 
The peak value varied within a total distance of 6.17E-2 m between the rotations measured in 
one time series. The 2P frequency was highest at z/R = 1.20, indicating that the pulsating 
motion might be strongest between tip vortex two and three, with coincides with the strength 
and a merging of two tip vortices at X/D = 3 in the low turbulent incoming flow.  

 



6. Conclusion 

103 
 

Even though the tip vortices are located within the same wake, they tend to meander with a 
different distance, both in the streamwise and horizontal direction. This indicates that the 
displacement of the tip vortices might not be a foolproof method of determining if the whole 
wake of the model wind turbine meanders. It also proves that the meandering of the tip 
vortices is individual. 

At X/D = 3 downstream the turbine, in the case with an incoming flow with low turbulence 
intensity, it seemed like two of the tip vortices had merged together. While at X/D = 5 for the 
same case, the vortices seemed to create only a continuous field with increased normal stress.  

The turbulent kinetic energy in the wake was clearly smeared out when comparing the 
measurements conducted with and without grid turbulence. The energy in the incoming 
turbulent flow was thus high enough to affect the flow in the wake and cause the tip vortices 
to merge together.  
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7. Further work 
 

Due to lack of time, a correct and thorough (or foolproof) method of studying the meandering 
of the tip vortices in the horizontal direction, z, was not obtained in this study. In a later study 
a method of locating the tip vortices within the rotations in the time series needs to be 
established. In a selected data set there will always be a maximum value for each 
measurement point, or index, in the set. A way to find the area of where the tip vortices are 
within this data set, and to see if this area moves from one hot-wire probe to another might be 
a way to conduct such a study. It then needs to be established a criterion of locating this area 
in a way to be sure that it just represented the tip vortex. If such a criterion could be found, the 
meandering can be studied thorough. Based on this, a histogram can be made as to where the 
tip vortices are located within the range measured by the hot-wire probes within the rotations.  

Since the tip vortices seem to be of different size and strength, and are unequal distributed 
within the 360° in the wake of the turbine, the fine tuning of the pitch angle on the blades 
prior to the experiment, should be conducted even more carefully. The model wind turbine 
blades should also be examined even more closely to see if there is any damage on the blades 
causing the tip vortices to be shed unequal. 

Due to the significant change in the wake structure at X/D = 1 when the model wind turbine 
was placed in an incoming flow with a turbulence intensity typical for atmospheric 
turbulence, new measurements should be conducted closer to the rotor of the turbine. This 
way the meandering of the wake can be studied and compared for the two incoming flows. 
The measurements should also be conducted with more than four hot-wire probes to be sure to 
cover the entire range over where the tip vortices are located. It is shown that an integral 
length scale Luux as short as 6.5E-2 m and Luuz = 3.1E-2 m are sufficient to affect the behavior 
of the wake. If it is long enough to make the whole wake meander will be remained to see at a 
later time.  

The use of more than 4 hot-wires probes will also increase the resolution in the analysis. This 
way the cross correlation based on the single tip vortex can be used to find the angle of which 
the tip vortices travel downstream in the wake and further comparing this to the one found by 
using the velocity triangle and/or the tip speed ratio of the turbine. A velocity difference 
between the wake, or tip vortices, and the free stream velocity may also be found if a cross 
correlation with a higher resolution is obtained. 

A study on the meandering of the two other vortices in the streamwise direction, x, should 
also be conducted. This might confirm the assumption that the high 2P frequency seen in the 
PSD is caused by a pulsating motion between the vortices, and that the motion is strongest 
between tip vortex two and three.  

When conducting new measurement the grid should be taken out of the wind tunnel and not 
be placed on the floor in front of the model turbine during the measurements.  
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A.  Appendix 
 

A.1 Calibration data 

A.1.1. Thrust gauge 
The offset for the thrust gauge was -5.732 V, and it was used a gain of 4 on the amplifier. The 
measurements for the calibration are given in Table A.1, and the calibration curve is given in 
Figure A.1. 

Table A.1: Calibration data for thrust gauge 

Weight [g] Temp [°C] Voltage [V] delta V [-] Thrust [N] 
0 20.52 -5.732 0.000 0.000 

460 20.54 -5.187 0.545 4.513 
960 20.56 -4.603 1.129 9.418 
1460 20.56 -4.016 1.716 14.323 
1960 20.54 -3.429 2.303 19.228 
2460 20.54 -2.848 2.884 24.133 
3460 20.55 -1.674 4.058 33.943 
4460 20.56 -0.498 5.234 43.753 
5460 20.52 0.832 6.564 53.563 
7460 20.53 3.081 8.813 73.183 
9460 20.54 5.397 11.129 92.803 
7460 20.53 3.145 8.877 73.183 
5460 20.57 0.864 6.596 53.563 
4460 20.57 -0.482 5.250 43.753 
3460 20.56 -1.598 4.135 33.943 
2460 20.56 -2.726 3.006 24.133 
1960 20.54 -3.377 2.355 19.228 
1460 20.54 -3.940 1.793 14.323 
960 20.57 -4.535 1.197 9.418 
460 20.60 -5.136 0.597 4.513 
0 20.59 -5.708 0.024 0.000 

 

 

Figure A.1: Calibration curve for thrust gauge 

The calibration coefficient for the thrust gauge was 8.3019 N/V. 
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A.1.2. Torque gauge 
The offset value for the torque gauge was 7.033 V, and it was used no gain, or G = 1, on the 
amplifier. The calibration data is given in Table A.2 and the calibration curve is given in 
Figure A.2. 

Table A.2: Calibration data for torque gauge 

Wight [g] Temp [°C] Torque [V] Delta V Moment 
0 20.10 7.033 0.000 0.000 
16 20.09 6.862 -0.171 0.068 
66 20.14 5.939 -1.093 0.282 
116 20.13 5.013 -2.020 0.496 
166 20.13 3.790 -3.243 0.709 
216 20.16 2.735 -4.298 0.923 
266 20.15 1.539 -5.494 1.136 
316 20.16 0.784 -6.249 1.350 
416 20.18 -1.444 -8.477 1.777 
516 20.19 -3.587 -10.620 2.204 
616 20.17 -5.525 -12.558 2.632 
516 20.17 -3.623 -10.655 2.204 
416 20.20 -1.449 -8.482 1.777 
316 20.19 0.276 -6.756 1.350 
266 20.18 1.448 -5.585 1.136 
216 20.16 2.586 -4.446 0.923 
166 20.18 3.737 -3.295 0.709 
116 20.15 4.632 -2.401 0.496 
66 20.19 5.758 -1.274 0.282 
16 20.19 6.706 -0.327 0.068 
0 20.19 6.968 -0.064 0.000 

 

 

Figure A.2: Calibration curve for torque gauge 

The calibration coefficient for the torque gauge was -0.2062 Nm/V. 
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A.1.3. Pressure transducer Pitot probe 
Gain = 5 was used on the amplifier connected to the pressure transducer. The calibration was 
conducted in an empty wind tunnel and with the use of a inclined manometer. The data for the 
calibration is given in Table A.3 and the calibration curve is given in Figure A.3. 

Table A.3: Calibration data for pressure transduces Pitot probe 

RMP 
Wind tunnel 

Temp 
[°C] 

ρ 
[kg/m3] 

mm 
[Pa] 

dp V 
[V] 

Delta V U 
[m/s] 

0 23.492 1.1935 0 0.0 -9.205 0 0 
100 23.873 1.1920 20 4.0 -8.870 0.335 2.591 
200 24.155 1.1909 85 17.0 -7.840 1.368 5.343 
300 24.463 1.1896 195 39.0 -6.048 3.157 8.097 
380 24.748 1.1885 317 63.4 -4.128 5.077 10.330 
404 24.918 1.1878 359 71.8 -3.463 5.741 10.995 
500 25.230 1.1866 550 110.0 -0.381 8.824 13.616 
600 25.363 1.1860 795 159.0 3.558 12.763 16.374 
700 24.830 1.1882 1085 217.0 8.230 17.434 19.112 

 

 

Figure A.3: Calibration curve for the pressure transducer Pitot probe 

The calibration coefficient for the pressure transducer using a Pitot probe was 12.458 Pa/V.  

This is the calibration used to find the correlation between the velocities calculated based on 
the values given by the contraction and the free stream velocity at x = 3.75 m downstream the 
inlet to the test section.  
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A.1.4. Pressure transducer contraction 
Gain = 5 was used on the amplifier connected to the pressure transducer. The calibration was 
conducted in an empty wind tunnel. The data for the calibration is given in Table A.4 and the 
calibration curve is given in Figure A.4. 

Table A.4: Calibration data for the pressure transducer for contraction in the wind tunnel 

RPM 
wind 

tunnel 

Temp 
[°C] 

ρ 
[kg/m3] 

mm 
[Pa] 

dP V 
[V] 

Delta V U 
[m/s] 

Ratio 
[-] 

0 23.73 1.193 0 0.0 -9.158 0 0  
100 24.06 1.191 20 4.0 -8.834 0.323 2.662 1.028 
200 23.94 1.192 81 16.2 -7.873 1.285 5.357 1.003 
300 23.99 1.192 192 38.4 -6.267 2.890 8.248 1.019 
380 24.25 1.190 295 59.0 -4.514 4.644 10.230 0.990 
404 24.40 1.190 331 66.2 -3.926 5.231 10.837 0.986 
500 24.93 1.188 510 102.0 -1.177 7.981 13.464 0.989 
600 25.75 1.184 720 144.0 2.1862 11.344 16.020 0.978 
700 26.95 1.180 978 195.6 6.1693 15.327 18.708 0.979 

 

The ratio given in the table is the ratio between the velocity given by the contraction divided 
by the velocity given by the Pitot probe at x = 3.75 m downstream the inlet to the test section 
in the wind tunnel. At free stream velocity of 10.23 m/s the ratio between the velocities are 
Ux=3.75 = Uref_cont / 0.99.  

 

Figure A.4: Calibration curve for the pressure transducer for the contraction of the wind tunnel 

The calibration coefficient for the pressure transducer for the contraction was 12.733 Pa/V.  

It was also conducted measurements of the velocities given by the contraction of the wind 
tunnel and the Pitot probe located at x = 3.75 m with the grid installed in the inlet section. 
This gave the ratio; Ux=3.75 = Uref_cont / 1.15. 
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A.1.5. Hot-wire anemometry 
Due to the numerous calibrations of hot-wire probes, and that the probes needs to be 
calibrated every hour, only one of the calibration curves are shown in the appendix. It 
illustrates how the velocity and the voltage signal are correlated.  

 

Figure A.5: Calibration curve for hot-wire probe 

The calibration is done by using a Pitot probe to measure the mean velocity, and then finding 
the correlation between the acquiring voltage from the hot-wire probe and the mean wind 
speed.  

The four calibration coefficients are given in the figure. As can be seen, this is a four degree 
polynomial. The probe is, as seen from the curve, more sensitive to low velocities.  

The gain used on the amplifier, which was included in the anemometers, varied from G = 12 
to G = 16 for the different hot-wire probes.  
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A.2. Comparison normal stress 
 

A comparison between the phase averaged normal stress and the time averaged normal stress 
was conducted to make sure that the phase averaging of the measurements conducted in 
Matlab was correct. The values given in the figures from the phase averaging is not 
normalized, thus the level in of the normal stress between the two averages are not correct. 
However, the shape of the curves correlates well as seen Figure A.6 to Figure A.17.  
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Figure A.6: Normal stress at X/D = 1 without grid 
turbulence, phase averaged  
 

 
Figure A.7: Normalized normal stress at X/D = 1 
without grid turbulence, time averaged 
 

 
Figure A.8: Normal stress at X/D = 3 without grid 
turbulence, phase averaged 
 

 
Figure A.9: Normalized normal stress at X/D =3 
without grid turbulence, time averaged 
 

 
Figure A.10: Normal stress at X/D = 5 without grid 
turbulence, phase averaged 
 
 

 
Figure A.11: Normalized normal stress at X/D = 5 
without grid turbulence, time averaged 
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Figure A.12: Normal stress at X/D = 1 with grid 
turbulence, phase averaged 
 

 
Figure A.13: Normalized normal stress at X/D = 1 
with grid turbulence, time averaged 
 

 
Figure A.14: Normal stress at X/D = 3 with grid 
turbulence, phase averaged 
 

 
Figure A.15: Normalized normal stress at X/D = 3 with 
grid turbulence, time averaged 
 

 
Figure A.16: Normal stress at X/D = 5 with grid 
turbulence, phase averaged 
 

 
Figure A.17: Normalized normal stress at X/D = 5 with 
grid turbulence, time averaged 
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A.3. Uncertainty calculations 
 

During the experiment conduced to find the performance characteristics of the model wind 
turbine, both the mean values and the standard deviations (rms) of the different scalars where 
measured. These values where used to calculate the random errors during the experiment. 

The estimate for the total uncertainties for the measurements conducted to calculate the power 
coefficient are computed with the root of the sum of squares (RSS) formula given by Equation 
1; 

    √        Equation 1 
 

where B is the systematic uncertainties, or the so called bias, and the P is the random 
uncertainties, which are also called precision or probabilistic errors. The random uncertainty 
was calculated for the pressure (venturi), rotational speed and torque based on the RMS 
values obtained from the measurements with a confidence interval of 95 % and the t-
distribution. The random uncertainties in the temperature and density measurements were 
neglected since they were relatively constant throughout the experiments. The systematic 
uncertainties for the torque, thrust and pressure transducer for the contraction were found 
from calibration by using the maximum deviations between the measured points and the 
fitting curve of the calibrations. The systematic error in the RPM measurement was neglected 
due to lack of information. Finally, the uncertainties were combined to find the uncertainty for 
the wind speed and CP by the RSS formula given by Equation 2;  

 

   (∑[   
  

   
]
 

)  

 

   

 
 

 Equation 2 
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A.4. Fully developed pipe flow measurements  
 

As a learning step and introduction to the use of hot-wire anemometry, it was conducted hot-
wire measurements on a fully developed pipe flow. It was executed two different 
measurements on the same flow; one with the hot-wire probe in horizontal direction, and one 
with the probe in the vertical direction. The measurements were compared to previous 
measurements conducted on the same flow, which are validated measurements and used as 
the correct properties of the flow.  

The dimension of the pipe was 0.186 m. The conditions during the measurements and the 
properties used in the calculations are given in Table A.5. 

Table A.5: Properties for the measurement in the fully developed pip flow 

Property Horizontal Vertical 
ν [m2/s] 1.45E-05 1.45E-05 
U=Q/A [m/s] 7.57E+00 8.05E+00 
ReD [-] 9.71E+04 1.03E+05 
Cf [-] 4.48E-03 4.41E-03 
u* [-] 3.58E-01 3.78E-01 
u*(used) [-] 3.73E-01 3.78E-01 
y correction [-] -1.50E+00 7.00E-01 
τw [-] 1.52E-01 1.69E-01 
u* corr [-] 1.50E-02 0.00E+00 
 

In Figure A.18 to Figure A.21 the results are compared to the previous measurement 
conduced on the pipe flow. The values are normalized to be able to compare the 
measurements. 

Figure A.18 shows the normalized velocity profile in the pipe. As seen in the figure, there is a 
good coherence between the previous measurements, known as the correct measurements, and 
the once conducted during this master thesis.  
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Figure A.18: Normalized velocity profile 
 

 
 
Figure A.19: u+ versus normalized y coordinate 
 

 
 
Figure A.20: Normalized normal stress as a 
function of y/R 
 

 
 
Figure A.21: Turbulence intensity based on the 
friction velocity as a function of y/R 
 

 

In Figure A.19 the dimensionless velocity u+ is plotted versus the wall coordinate y+ together 
with the log law. The figure shows that there is a good coherence between both the previous 
measurements and the measurements conduced with the probe directed both vertical and 
horizontal, and with the log law up to round y+ = 600.  

Figure A.20 shows the normalized normal stress given by Equation 3; 

 
    √

    

   
 Equation 3 

 

The figure shows that there is a good coherence between the measurements conduced 
previously and the once conducted during this master thesis.  

Figure A.21 gives the turbulence intensity, based on the friction velocity, as a function of y/R, 
and is calculated by the use of Equation 4; 
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    √

    

   
     Equation 4 

 

Also in this figure there is a good coherence between the measurements conducted earlier and 
the once conducted during this master thesis.  

As seen from the figures, the measurements coincide well with the previous measurement 
conducted on the same flow.  
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A.6. Risk assessment of laboratory setup and experiment 
 

Before initiating the experiments in the wind tunnel, an internet based safety course named 
NTNU-SINTEF- Helse, miljø og sikkerhet i laboratorier and a guided tour of the fluid 
dynamics lab was accomplished. By completing this, I was approved as an operator of the 
experimental setup. The setup of the experiment has been risk evaluated and is approved of 
the leader at the institute.  

 


	førsteside
	andreside
	Oppgave10

