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Abstract

This study provides a thorough investigation into the theoretical framework and back-
ground around the standard model used in multi-target tracking (MTT), including proba-
bilistic graphical models (PGMs) with belief propagation (BP), Bayesian state estimation
for a hybrid state space, random finite sets (RFSs) and labeling of sets in their union and
the Kullback-Leibler divergence (KL-divergence). This serves as a foundation for devel-
oping novel derivations of the Poisson multi Bernoulli mixture (PMBM) filter and for how
to include a hybrid state space. The models in the interacting multiple models (IMM) are
viewed as a discrete state in the hybrid state space. This enables appropriate conditioning
and thus it is possible to avoid the increase in computational complexity of having the
discrete states in the data association.

Through the derivations it is seen that the components of the target set, i.e. the underly-
ing sets in the union, can be handled independently under a given association. This is used
through the prediction and update step to provides track continuity, and hence the possibil-
ity for track labeling. Additionally, track labels are seen as being a latent variable pointing
to individual sets, being either a single track set or the undetected targets set, in the union-
ized set of targets. The track labels follow a specific track after first detection, and hence
in a manner provide target identities. The only change in the multi target distribution is
in the distribution of the union, and no changes are made to the individual distribution
components in this union. The only thing changed in the distribution of the union is the
addition of a “labeled subset extractor”. Thus, it is seen as being a different approach than
the labeling done in the labeled multi Bernoulli (LMB).

A total target information distribution is stated as a compact way of viewing the complete
picture within MTT, and furthering insight into identities and tracks. It might lend itself as
a starting point for studies of new approximative algorithms on PGMs. Furthermore, the
relationship to most of the well known MTT filters, including PMBM, multiple hypothe-
ses tracker (MHT), track-oriented marginal MeMBer-Poisson (TOMB/P), joint integrated
probabilistic data association (JIPDA) with its degenerate cases and probability hypothesis
density (PHD), are provided, recognizing them as approximations of the PMBM, or as at-
taining association variables within their distribution. The loopy belief propagation (LBP)
way of approximating the association probabilities of Williams and Roslyn is given. Lastly
it is shown how much larger the expected number of undetected targets is compared to the
expected number of born targets after convergence, as a function of model parameters,
along with the relationship between new born targets and clutter in the case of constant
initial probability.
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Sammendrag

Denne studien gir en grundig innføring i det teoretiske grunnlaget rundt standardmod-
ellen for multippel målfølging. Dette inkluderer grafiske sannsynlighetsmodeller med
beskjedsending, Bayesiansk tilstandsestimering for et hybrid tilstandsrom, tilfeldige en-
delige mengder og merking av mengdene i deres union, samt Kullback-Leibler-divergensen.
Dette fungerer som en grunnmur for en ny utledning av Poisson-multippel-Bernoulli-
mikstur-filteret og hvordan inkludere et hybrid tilstandsrom i dette. Modellene i inter-
agerende multiple modeller blir så tolket som en diskret tilstand i det hybride tilstand-
srommet. Dette gjør at en kan foreta en passende betingelse slik at vi kan unngå å øke
regnekompleksiteten ved å ta de diskrete tilstandene med i dataassosiasjonen.

I utlendingen ser en at komponentene i målmengden, altså de underliggende mengdene
i unionen, kan bli håndtert uavhengig gitt en assosiasjon. Dette blir brukt i prediksjo-
nen og oppdateringen for å gi kontinuitet i følgingen1, og derfor mulighet for merk-
ing. I tilegg, så er merkingen av følgingen sett til å være en latent variabel som peker
til individuelle mengder i unionen av målmengden, hvor de individuelle mengdene en-
ten er en enkeltfølgingsmengde eller den udetekterte målmengden. Merkingene hører til
en spesifikk følging etter første deteksjon, og gir derfor på en måte en mulighet til å ha
målidentiteter. Den eneste endringen i målmengdedistribusjonen er i distribusjonen over
unionen, og det er ingen endringer i de individuelle komponentdistribusjonene. Den en-
este forandringen i unionsdistribusjonen er at det er lagt til en “merket delmengdeplukker”.
Dette er derfor sett som annerledes tilnærming enn hva som er gjort i for eksempel i den
merkede multippel Bernoulli, kalt “labeled multi Bernoulli” på englesk.

En total målinformasjonsdistribusjon blir vist som en kompakt måte å se det komplette
bildet av multippel målfølging, og tilfører samtidig innsikt i identiteter, merkinger og
følgingene. Denne kan også muligens brukes som et utgangspunkt for å finne nye ap-
proksimeringsalgoritmer på grafiske sannsynlighetsmodeller. Hvordan man kan få de
fleste av de velkjente målfølgingsalgoritmene fra denne blir også gitt (se det engelske
sammendraget for en liste over hvilke). De kan bli sett på som approksimasjoner av
det utledede filteret eller at de trekker ut assosiasjonshypotesene fra det. Det blir også
vist hvordan tilbakekommende beskjedsending for å kalkulere de marginale assosiasjon-
ssannsynlighetene kan bli gjort som beskrevet av Williams and Roslyn. Til slutt vises det
hvor mange flere forventede udetekterte mål en vil ha enn forventede tilkommende mål
gitt som en funksjon av modellparametere når den har konvergert, sammen med forholdet
mellom det forventede antallet tilkommende mål og forventede antallet falske målinger
ved approximasjonen av konstant initiell eksistenssannsynlighet.

1følging blir her brukt for det engelske ordet “track”
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Preface

Problem description

Multi-target tracking
Using random finite sets with a hybrid state space and approximations
Multi-target tracking (MTT) can be decomposed into two tasks; data association and fil-
tering. The former task is about deciding which measurement comes from which target, if
any. The latter task is about estimating the kinematic state of a target conditional on such
associations. In recent years a new mathematical framework called random finite set (RFS)
has gained considerable attention. Data association, filtering and a probabilistic number
of targets appears within the mathematical framework, when modeled correctly, and it
has therefore given considerable insight into the problem with derivations of both old and
new algorithms. It also shows that the problem is still not fully understood, and there are
therefore several different schools on how to make algorithms based on the framework.

The association problem can be quite challenging due to its inherent exponential complex-
ity, which not only applies to multi-frame methods such as multiple hypotheses tracker
(MHT), but also to single-frame methods, such as joint probabilistic data association
(JPDA). One promising approach to circumvent this exponential complexity is belief prop-
agation (BP).

Another challenge in multi-target tracking is that a single kinematic model may not be ap-
propriate all the time. It may for example be desirable to switch between low-maneuverability
and high-maneuverability models in an adaptive manner. The standard solution to this is
the interacting multiple models (IMM) method, which is relatively straightforward to in-
tegrate with the single-target probabilistic data association (PDA).

The penultimate aim of this project would be to investigate the potential for including
multiple models (MM) in the RFS framework and combine notions between RFS, MHT
and JPDA.

The project involves the following tasks.

1. Generalize the standard IMM to state dependent model transitions and general dis-
tributions

2. Derive the RFS Poisson multi Bernoulli mixture (PMBM) filter and show how MM
can be incorporated

3. Describe a way to extract track identities from a RFS

4. Relate the PMBM to MHT, joint integrated probabilistic data association (JIPDA)
and probability hypothesis density (PHD) along with their inclusion of MM

5. Propose a way to combine notions from MHT and JPDA
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Work description

This project started out as a continuation of my semester project, which was about using
loopy belief propagation (LBP) on the association when including MM. It was first pro-
posed that I would continue to do some more experiments with IMM-JPDA using LBP
while also extending the algorithm to work on Gaussian mixtures using some form of
mixture reduction. After a while, I came about the hybrid state interpretation of MM, and
realized that what I had done in the semester project was over-complicating the problem.
I also signed a contract for a PhD position in sensor fusion right before starting this work,
so I wanted this thesis to build a good foundation for future work. At the same time,
there were also questions I had that were unanswered around the theoretical framework.
Knowing that I had some holes in my understanding from my semester project, wanting
to make a good foundation and having these unanswered questions, meant I spent much
time ‘doodling around’ with (or, focused on, if you prefer) some derivations and target
identities within RFSs.

I soon realized that the report was going to be quite theoretically heavy, and lengthy if I
included all this. Gaussian mixture target tracking was already to some degree studied,
and I had in mind some original notions and theoretical developments that I had not seen
combined in the literature before, at least in an accessible manner. It was therefore decided
to leave the Gaussian mixture implementation, as it would mainly just add pages to the re-
port if it was without thorough simulations and analysis. Some general results are already
available in the literature, and not providing it here allows more focus on the description of
the multi target framework, how the different algorithms come about, what their relations
are and how to interpret the different aspects. Even as it is now, there are quite some subtle
details that I do not feel I have been able to portray adequately, although I have certainly
tried.

Also, mastering notation in multi target tracking seems to be an art in itself. It often either
gets too cluttered or carries too little information, is not general enough, or too abstract.
Even after deciding upon a notation style, using it correctly is still a time consuming task.
I hope that I have been able to make the notation of this text understandable to the reader.
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1 Introduction

1.1 Motivation and problem

Multi-target tracking (MTT) is the field in which one tries to track several targets that are
in close proximity to each other. This involves estimating both the number and state of
targets from sensor data. Ongoing challenges include firstly determining measurement
origin and secondly tracking maneuvering targets. If no specific deterministic features of
the targets are captured, the origin of a received measurement may be ambiguous for near
targets. Also, some sensors have less than unity detection probability and may detect clut-
ter (targets that do not exist). Hence, upon completion of a sensor scan, measurements
could originate from clutter, known targets (previously seen), or new targets (not previ-
ously seen). On the other hand, an absence of measurements does not necessarily mean
there are no targets present. Furthermore, tracking maneuvering targets (targets varying in
speed and direction) is challenging because varying or multiple dynamical models must
be considered in order to properly estimate target behaviour. This can be computationally
expensive when dealing with several targets, and is further complicated by uncertainty in
measurement origin and target position. In order to develop a safely operating autonomous
system using such sensors, we need an effective way of retaining valuable information and
reducing measurement origin ambiguity as best as possible.

An example of such a system is a ship using radar as a sensor. The standard radar is exactly
a sensor of the type described above. Radar data does not give deterministic information
on ship identity, other ships might not be detected, and non-existent ships may be falsely
detected. To travel safely using only this sensor to avoid collision is therefore not straight-
forward; the number of other ships in close proximity and where they are moving can
only be determined probabilistically. If two ships are moving close to or crossing paths
with each other, it can be difficult to determine from the radar data which of the ships
gave rise to which measurement in each scan; are the ships travelling in a straight path,
or maybe one of them is maneuvering around the other somehow? Also one ship might
even be blocking the view to the other ship for the radar, and the other might therefore
be temporarily undetectable. Not knowing these things for sure can in some cases lead an
algorithm to fail to understand what is going on properly, and therefore lead to dangerous
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Chapter 1. Introduction

situations if decisions are made based on its output.

Through the years, there has mainly been two approaches to handle the measurement ori-
gin uncertainty in MTT. The first, known as multiple hypotheses tracker (MHT), is to form
an “ever growing” tree of hypotheses, with some method of discarding or combining hy-
potheses afterwards. The second, known as joint probabilistic data association (JPDA), is
to marginalize over all joint association hypotheses for each target at each time step. In
recent years a new statistical framework has emerged using something called random finite
set (RFS) with finite set statistics (FISST) as the mathematical tool to describe distribu-
tions, giving a new paradigm of understanding and algorithms. This framework has shown
to be a good generalized framework for MTT, providing new algorithms and derivations of
most of the earlier well known algorithms using different types of restrictions or approxi-
mations. However, no matter how we model the targets or receive the measurements, the
greatest challenge is how to best reduce the ever-growing set of hypotheses to form both
accurate and computationally tractable algorithms for specific applications. Even though
decent attempts on this have been proposed, it is still application specific how well these
methods perform.

In many real world applications, we do not know which dynamical model the targets fol-
low. Continuing with the example of tracking the behaviour of ships, different dynamical
models could describe a ship which is travelling on auto-pilot at a constant speed and di-
rection (non-maneuvering), or which can vary in speed and direction (maneuvering). One
therefore often increases the set of hypotheses to include several models for target dynam-
ics. In many cases, this has shown to give better tracking performance when the targets
vary in behavior. Again this increases the computational complexity, but the increased
set of hypotheses may be necessary to obtain acceptable tracking performance in some
scenarios.

Ideally, if one had an infinite amount of computer power and memory, one would track the
full distribution over the full history of both model and association (origin) hypotheses.
However, due to computational limitations, approximations have to be made. In practice,
too many approximations will of course reduce the accuracy of tracking, while too few
approximations may not improve performance at all. To find the optimal level of approx-
imation is an ongoing research field. While JPDA is popular algorithm, it has drawbacks
when the number of targets become large, as the calculation of the exact marginal probabil-
ities has exponential computational complexity. Loopy belief propagation (LBP) between
the measurements and the targets has been shown as a possible way to speed up the calcu-
lation of these marginal association probabilities, and algorithms based on this have shown
promising tracking performance and computational run time.

One of the standard ways of handling maneuvering targets is to use multiple models, with
the algorithm of choice often being the interacting multiple models (IMM) [Bar-Shalom
et al., 2001]. When including this in a multi target scenario, it is not consistent in the litera-
ture if authors include these models into the data association or not. Authors such as Chen
and Tugnait [2001] include the models after claiming that there are interactions among
the different models between different targets that need consideration. On the other hand,
Musicki and Suvorova [2008] derive a version that does not need this by conditioning, and

2



1.2 Report outline

thereby keep the computational requirements of data association having multiple models,
down to a single-target marginalization overhead. We are going to investigate this in terms
of a hybrid state space, which both becomes the same as Musicki and Suvorova [2008].

How to label individual targets is something that is highly debated within the field of MTT
using RFS. Authors such as Mahler [2007] claim that the problem gets harder when one
labels the targets, Vo and Vo [2011] claims that it simplifies the problem, whereas Garcı́a-
Fernández et al. [2016] and Granström et al. [2018] in some way claim that it is not needed
due to being inherent in the problem already. We will here argue for the latter, but see if we
can keep some of the notions from the two former by labeling the sets instead of elements.
Finding proper ways of doing this and interpreting it is important. How we model the
real world using mathematics, to subsequently make reliable and tractable algorithms, can
depend on the labeling technique and interpretation.

1.2 Report outline

Part I starts with Chapter 2 providing an introduction to probabilistic graphical models
(PGMs) and LBP later to be used to calculated marginal association probabilities. Chapter
3 gives the necessary background in Bayesian state estimation including a novel deriva-
tion of the Kalman filter (KF), and how to deal with a hybrid state space. Chapter 4 is an
introduction to RFS and gives a novel interpretation of labeling. Chapter 5 presents the
Kullback-Leibler divergence (KL-divergence) and shows some standard statistical projec-
tion results.

Part II dels with the MTT properties under the standard model. Chapter 6 gives the as-
sumption of the standard model and then interprets these in the setting of FISST. Chapter
7 provides a novel derivation of the Poisson multi Bernoulli mixture (PMBM) filter using
these assumptions and shows how a hybrid state can be included.

Part III gives relations to other filters and gives some way of doing approximations to the
intractable PMBM filter. Chapter 8 shows how the PMBM can be approximated through
labeling and using the KL-divergence, to arrive at well known algorithms. Chapter 9 shows
Williams and Roslyn [2014] approximative LBP algorithm for calculating marginal asso-
ciation probabilities, and chapter 10 points out some interesting aspects of the undetected
targets, before chapter 11 finalizes and concludes this work.
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Background Theory
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2 Probabilistic graphical models

Probabilistic graphical models are a very convenient tool when dealing with distributions
over several variables. They provide an easy way of understanding connections between
variables and also can make inference and marginalization more tractable. Graphical mod-
els exploit factorization properties in probability density function (PDF)s that can simplify
the problem at hand considerably. This section presents relevant background theory mostly
based on Bishop [2016, Chapter 8]. Another reference that treats this in much more detail
is Koller and Friedman [2009].

2.1 Bayesian networks

One of the most intuitive models is the so-called Bayesian network, which specifies the
dependencies of the variables explicitly. A PDF of the form

p(a, b, c) = p(c | a, b)p(b | a)p(a), (2.1)

can be represented as a graph with three nodes and three edges. The representation uses
one node for each variable and one edge per dependency and is a directed acyclic graph
(DAG). The above distribution consists of three variables and three dependencies (two for
p(c | a, b) plus one for p(b | a)). The corresponding Bayesian network representation can
be seen in Figure 2.1a.

The key in using this representation is that if, for instance, c is conditionally independent
of a given b, the PDF can be written as

p(a, b, c) = p(c | a, b)p(b | a)p(a) = p(c | b)p(b | a)p(a), (2.2)

and the graph can be simplified to Figure 2.1b. Then we can immediately see the depen-
dencies just from looking at the graph. For instance, if b is now observed, we can get
information about a and c, whereas observing a will not give any more information about
c. Of course this can also be communicated through the math using Bayes rule, but it is
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a b

c

(a) p(a, b, c) = p(c | a, b)p(b | a)p(a)

a b

c

(b) p(a, b, c) = p(c | b)p(b | a)p(a)

a b

c

(c) p(a, b, c) = p(a | b)p(c | b)p(b)

a b

c

(d) p(a, b, c) = p(b | a, c)p(a)p(c)

Figure 2.1: Bayesian Networks

usually more convenient to see this in a glance of the graph. It also tells us which variables
we need knowledge about, in order to say something about another variable.

The representation is of course not unique, as one can decompose the conditions as one
likes, and therefore get other representations and different graphs. For instance, using
Bayes rule we have that p(c | b)p(b | a)p(a) = p(c | b)p(a | b)p(b) for which the latter
factorization can be seen as a graph in Figure 2.1c and is therefore an equivalent rep-
resentation to Figure 2.1b. The last example demonstrates that if a and c are uncondi-
tionally independent, while b is dependent on both, we get the distribution p(a, b, c) =
p(b | a, b)p(a)p(b) shown by the graph in Figure 2.1d. This last representation describes a
different set of dependencies than the others.

2.2 Markov Random Fields

The next model is the Markov random field (MRF) which is represented by undirected
graphs in contrast to the directed graphs in Bayesian networks. The PDFs shown in Fig-
ure 2.1 are similarly shown as MRFs in Figure 2.2. To describe the distributions in a
MRF, we need to form what is called potential functions over something called maximum
cliques. A potential function, ψ(·) is simply any non-negative function over the variables,
while a clique is a set of nodes where all the nodes are connected to each other (i.e. a
fully connected sub graph). A maximum clique is thus just the cliques in the graph that
are such that no other node can be added to the clique while still being a clique (adding
another node to the subgraph will make the subgraph not fully connected). So for instance,
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a b

c

(a) 1
Z1
ψa,b,c(a, b, c)

a b

c

(b) 1
Z2
ψa,b(a, b)ψb,c(b, c)

a b

c

(c) p(b | a, c)p(a)p(c)

Figure 2.2: MRF with the given factorization

in Figure 2.2a the only maximum clique is the full graph, while in Figure 2.2b there are
two maximum cliques consisting of (a, b) and (b, c) respectively.

Forming the potential functions for the three cases given in Figure 2.2 gives

p(a, b, c) = p(c | a, b)p(b | a)p(a) = 1
Z1
ψa,b,c(a, b, c), (2.3)

p(a, b, c) =
{
p(c | b)p(b | a)p(a)

p(c | b)p(a | b)p(b)

}
= 1
Z2
ψa,b(a, b)ψb,c(b, c), (2.4)

p(a, b, c) = p(b | a, c)p(a)p(c) = 1
Z3
ψa,b,c(a, b, c) (2.5)

for Figure 2.2a, Figure 2.2b and Figure 2.2c respectively. We need the normalizing con-
stants Zi because the potential functions ψ·(·) in general do not have to be valid PDFs.
The potential functions can in each case be seen to be

ψa,b,c(a, b, c) ∝ p(a, b, c), (2.6)
ψa,b(a, b) ∝ p(b | a)p(a) = p(a | b)p(b), (2.7)
ψb,c(b, c) ∝ p(c | b), (2.8)

and therefore, can be written as the conditional PDFs as for the Bayesian network. This
is not always the case as one can use quite general factorizations, but it will always be
possible when rewriting a Bayesian network as a MRF. The key difference is found by
looking at Figure 2.1a in contrast to Figure 2.2a and seeing that the dependencies clearly
shown in the first is no longer obvious in the latter. Representing the factorization given by
the Bayesian network in Figure 2.1d as a MRF we lose even more conditional information,
as one of the factors includes all three variables. In forming the potential functions we need
to take this into account and therefore add an edge as seen in Figure 2.2c. The two slightly
different factorizations in Figure 2.1b and Figure 2.1c will both be represented as the same
when turned into a MRF, as shown in Figure 2.2c.
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a b

c

ψa,b,c

(a) Conditionally dependent

a b

c

p(c | a, b)

p(b | a)
p(a)

(b) Conditionally independent

Figure 2.3: Factor Graph

2.3 Factor Graphs

Factor graphs are a third graphical description and can be seen as an extension of the
MRF to give more explicit modelling of different dependencies. A factor graph is a graph
where the factors also are given a node. They are therefore bipartite graphs (the graph
nodes can be separated into two different sets that have no internal connections), where
the first partition are the random variables (usually represented by circles), and the second
are the factors (usually represented by squares). Again the representation is not unique as
there are several ways to group the factors. The Markov field shown in Figure 2.2a can be
represented as both the graphs shown in Figure 2.2, where the first is factored according
to the factors in the MRF and the second is factored according to the Bayesian Network.
This shows some of the expressive power of Factor graphs as they can explicitly show the
modelled dependencies of a given problem. It also shows that a factor graph can be made
easily from both Bayesian networks and MRFs by just considering the given factorization
over conditionals or clique factors respectively.

2.4 Belief Propagation

Belief Propagation (BP), also sometimes known as the sum-product algorithm, is an algo-
rithm for making inference in factor graphs when one wants to find marginal probabilities.
The name belief propagation stems from the fact that one sends the beliefs as messages
from the leaves to the other variables. So one starts at the leaves and sums over the vari-
ables in the factor there before making a product of these sums, and then repeating at the
next layer. If we consider a case with say 31 binary variables and we want the marginal
for one of them; if we naively were to sum over all the other variables that would amount
to summing over 230 ≈ 109 = one billion values. Compared to many real world prob-
lems, 31 binary variables is not ’big’, so we can clearly see the need for more efficient
algorithms.
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2.4 Belief Propagation

BP exploits the graph structure, and hence the factorization of these problems and propa-
gates beliefs from the leaves of the graph to the desired node(s). The limitation is that the
graph cannot have loops (or has to be made into one without loops), for this algorithm to
give guarantees on convergence and correctness.

Taking a PDF over X with a given factorization, such that the factors, ψs(xs) are taken
over the subset of variables xs ⊂ X, s ∈ S such that

⋃
s∈S xs = X . Then the PDF can

be written as

p(x) = 1
Z

N∏
s∈S

ψs(xs). (2.9)

Say we are interested in the marginal distribution of the variable xi. The node correspond-
ing to xi will have a set of factors that are associated with it, that each is the root of a sub
tree disconnected from all the other factors associated with xi by assumption of no loops.
To simplify the notation slightly, we can group the factors to the joint over this kind of sub
tree to Ψs(xi, Xs). Here Ψ is the product of all the factors of that subtree including the
neighbouring factor of xi, and Xs is the set of variables that are in that particular sub tree.
Using ne(x) to denote the neighbours of x, X \ x to denote the set X with x taken out,
marginalizing to give the variable xi and expanding gives

p(xi) ∝
∑
X\xi

N∏
s∈S

ψs(xs) =
∏

s∈ne(xi)

∑
Xs

Ψs(xi, Xs) (2.10)

∝
∏

s∈ne(xi)

∑
xne(ψs)\xi

ψs(xi, xne(ψs)\xi)
∏

(m∈ne(ψs)\xi)

∏
(l∈ne(xm)\ψs)

∑
Xml

Ψl(xm, Xml).

(2.11)

From the first to the second line, we see that the expansion has led to a repetition in
structure as the last factors in the second line are of the same type as the factors of the
first line. We have moved out to the neighbouring variables and are considering the new
subtrees starting from their factors. As expected we can continue this expansion all the
way throughout the graph to get the full marginalization. It also shows that this is indeed
a set of products of sums, where the algorithm gets its name sum-product algorithm from.

To develop the algorithm one uses the notion of messages. Two types of messages are
used, one from variables to factors and one from factors to variables. The message from
the factors ψs(xs) to the variable xi in it, is defined as the marginal for xi in the factor
over that sub tree with root at ψs;

µψs→xi(xi) =
∑
Xs

Ψs(xi, Xs) =
∑

xne(ψs)\xi

ψs(xi, xne(ψs)\xi)
∏

m∈ne(ψs)\xi

µxm→ψs(xm), (2.12)

and the message from a variable xm to a factorψs is defined as the product of the remaining
marginal factors;

µxm→ψs(xm) =
∏

l∈ne(xm)\ψs

∑
Xml

Ψl(xm, Xml) =
∏

l∈ne(xm)\ψs

µψl→xm(xm). (2.13)
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From these two definitions it is clear that calculation of the messages can be done recur-
sively through the graph as the messages are dependent on similar messages. Rewriting
the marginal distribution over xi in terms of the messages, now gives

p(xi) ∝
∏

s∈ne(xi)

µψs→xi(xi) = µxi→ψd(xi)µψd→xi(xi) ∀ d ∈ ne(xi), (2.14)

where the normalization constant can be found by summing over xi again. It is here
assumed that the variables are discrete, but when there are continuous variables the sum-
mations can be replaced by integrals where needed. In addition, xi is any variable, so the
algorithm will also work for any wanted variable. Moreover we have that the messages
will be the same for all variables and the only thing needed is that a node needs to have
all the other incoming messages before it can pass along its message. We can therefore
start at the outer rim of the graph and propagate the messages through the graph until all
messages have reached all nodes. In this way we have calculated the messages in the graph
and can thus form the marginal of all the variables.

The leaves can either be a variable or a factor. In the case of a variable the message will
simply be a 1, and in case of a factor, it will simply be the factor. In case we want to
condition on some variables, this is also done simply by not summing over those partic-
ular nodes, and using the value assumed or observed. Hence we are able to include the
information available in the conditioning.

This algorithm is shown to give the exact marginals as long as the graph does not contain
any loops. It has been extended to work exact on graphs with loops, with the resulting
algorithm called the junction tree algorithm, where the loops are basically dealt with by
clustering them into “bigger” nodes. However if the nodes get too big, the marginalization
over them quickly becomes intractable.

2.5 Loopy Belief Propagation

In loopy belief propagation (LPB) one applies the BP even though there are loops. Since
we now cannot know the input from all the other messages from before (the messages from
one variable in the loop to another will be dependent on the variable itself) we just have
to assume some value (like unity) and then try. The message will then be passed around
the loop and will most likely come back as something different than assumed in the first
place. Since it was based on this value, we now have to pass this new corrected message
as the earlier one was wrong. This value was still dependent on what was given by this
message in the first place, so it is likely to change again after one round. Hence we have
to do several rounds of BP. In general this is not guaranteed to converge, and when it does,
it is not even guaranteed that it gives the right value.

There exists some conditions for which LBP converges. For instance, if it can be shown
that a full cycle of the message passing is a contraction mapping, we know that it has
to converge to one of the fixed points. There are also other conditions, which are not
discussed here.
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3 Bayesian state estimation

State estimation is a major component of MTT. Multi-target tracking can in many ways
be seen as an extension of single target tracking, with the main difference lying in the
ambiguity surrounding measurement origin in MTT. Tracking a single target when there
are no erroneous measurements 1 and with unity detection probability, becomes standard
state estimation when the input to the system is unknown.

We therefore start with the derivation of Bayesian state estimation, and the special case
linear Gaussian dynamics and measurement model, which results in the KF. Next we take
a look at how to handle hybrid state spaces within the Bayesian framework. This provides
the basis for a discussion of MTT in chapter 7

3.1 Bayesian state estimation

A general dynamical system for x with known exogenous inputs u, unknown exogenous
inputs v, measurement y and measurement noise w can be written as

x0 = x(t = 0), x0 ∼ px0
(x0) (3.1)

xt = f(xt , ut , vt ), vt ∼ pv(vt ) (3.2)
zt = h(xt, ut, wt), wt ∼ pw(wt) (3.3)

where subscript t on the variables indicates the discrete time, and pσ(ξ) are PDF over
σ evaluated at ξ. The subscript σ will sometimes be omitted when it is clear from the
context which variable the PDF comes from. Knowing the PDF we can do estimation in
this system by using the total probability theorem between time steps and Bayes theorem
when measurements are received.

1Not to be confused with measurement noise, as this means that the sensor detected something that is not
there
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3.1.1 Prediction

From the state distribution at a given time we often want to predict the distribution at
the next time step. This can be done by using the total probability theorem, where the
marginalization is done over the variables from the previous time step.

First we see that given xt , the only unknown variable in (3.2) is vt . Abusing notation
and assuming f in (3.2) is invertible w.r.t vt we can use the change of variable formula
for PDFs to get

pxt | xt (xt |xt ) = pv(f−1(xt , ut , xt))
∣∣∣∣det

(
∂vt
∂xt

)∣∣∣∣ . (3.4)

If the function f is not invertible (i.e. non-injective but surjective in v, pointwise in x and
u), it will still be piecewise invertible in v. In that case (3.4) has to be replaced by a sum
over the piecewise inverses that exist for a particular value of xt. Intuitively, if two or
more different values of v map to the same value in xt, we need to take into account all
the events in v that give the particular xt.

For clarity and simplicity, the PDF in (3.4) will hence be denoted as

f (xt |xt ) (3.5)

and is read as the density function of xt given the state at time t− 1. The notation

ft | t′(xt) (3.6)

will also be used to denote the PDF of xt at time t given all information available up to
and including t′.

Using this notation and the total probability theorem to form the joint distribution over xt
and xt , then marginalizing over xt we get the predicted distribution for xt;

ft | t (xt) =
∫

xt ∈X

f (xt |xt ) ft | t (xt ) dxt , (3.7)

where X , namely the state space, denotes the set of possible states x can have.

3.1.2 Measurement update

When we get a new measurement we want to update our state distribution in a statistically
optimal way. This is done using Bayes theorem. Knowing the distribution for the state
xt and the conditional distribution for the measurement zt given xt, Bayes rule with our
notation becomes

ft | t(xt) =
h(zt |xt) ft | t (xt)

p(zt)
=

h(zt |xt) ft | t (xt)∫
xt∈X

h(zt |xt) ft | t (xt) dxt
. (3.8)
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3.1 Bayesian state estimation

Note that the denominator is simply a normalizing constant in terms of xt. The PDF
h(zt |xt) is calculated in the same manner as (3.4) assuming invertibility, or in the case of
non-invertibility is the summands of the piece wise inverses.

3.1.3 State estimation as a probabilistic graphical model

Since the dynamical system is treated using random variables, it can be formulated on a
PGM. This is done in Figure 3.1, where the gray variables is signaling that we are condi-
tioning on them. Figure 3.1a is the Bayesian network, and clearly shows how we condition
in the problem. The conditional PDF is here written explicitly in the Bayesian network for
clarity, whereas this is usually just implicit from the edge directions. Figure 3.1b shows
the factor graph where we can clearly see the factors (constraints, or functions) involved,
and the difference from the Bayesian network is the factor over the prior f(x0). These
PGMs give a clear and good graphical description of what we were doing in the last two
subsections. It is an easy way of understanding the dependencies and the information flow
between the involved variables.

Let us see what happens if we apply belief propagation (BP) to this graph. Notice that
this graph has no loops, and BP should give an exact answer. The algorithm is given for
disrete variables, but can be easily extended to continuous variables by applying integrals
instead of sums. The limitation is of course that these integrations may not be solvable
parametrically, and in general one has to rely on numerics to solve them. Nevertheless it
can be “solved” both in conceptually and theoretically.

The general BP messages, (2.12) and (2.13) are restated here for reference:

µψs→xi(xi) =
∑
Xs

Ψs(xi, Xs) =
∑

xne(ψs)\xi

ψs(xi, xne(ψs)\xi)
∏

m∈ne(ψs)\xi

µxm→ψs(xm),

(3.9)

µxm→ψs(xm) =
∏

l∈ne(xm)\ψs

∑
Xml

Ψl(xm, Xml) =
∏

l∈ne(xm)\ψs

µψl→xm(xm). (3.10)

We can start off by forming the message from the factor f0|0(x0), with shorthand notation
f0, to the variable x0 in the factor graph of Figure 3.1b. By looking at (3.9) we can see that
the factor f0 only contains the variable we are sending a message to. Hence the message
reduces to the factor itself;

µf0→x0(x0) = f0|0(x0). (3.11)

Continuing with the message from x0 to f(x1|x0) (shorthand: f1,0) we see from (3.10)
that it is the product of all the messages to that node, except the one coming from the one
we are sending a message to. This message therefore becomes the single other incoming
message;

µx0→f1,0(x0) = µf0→x0(x0) = f0|0(x0). (3.12)
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x0 x1 x2 . . . xn

f(x1|x2) f(x2|x1) f(x3|x2) f(xn|xn−1)

y1 y2
. . . yn

h(y1|x1) h(y2|x2) h(yn|xn)

(a) Bayesian

f0|0(x0)
x0

f(x1|x0)
x1

f(x2|x1)
x2

f(x3|x2)
. . .
f(xn|xn−1)

xn

h(y1|x1)

y1

h(y2|x2)

y2

h(yn|xn)

. . . yn

(b) Factor graph

Figure 3.1: General networks for a dynamical system

This may not be a very interesting result, but it makes sense. The contribution from x0 is
its prior.

Again continuing this, we will discover something familiar. Next up is the message from
the factor f1,0 to the node x1. The general formula gives that it is the of the product of the
factor multiplied with the message coming from all the other connected nodes marginal-
ized with respect to all other nodes, that is the factor f1,0 multiplied with the message from
x0 to f1,0 marginalized with respect to x0. Doing this becomes;

µf1,0→x1(x1) =
∫
f(x1|x0)µx0→f1,0(x0)dx0 =

∫
f(x1|x0)f0|0(x0)dx0 = f1|0(x1),

(3.13)

and should be recognized as the prediction step, (3.7) of the Bayesian state estimation
filter.

The message from y1 to x1 through h1 = h(y1|x1) is dependent on if we want the observed
version or the marginal version. Since there are no prior over the y’s the marginalized
version of the message to x1 will simply be the 1, and hence have no contribution to the
belief over x1. The observed version on the other hand, uses the information contained
in observing the variable and will be similar to conditioning, as will become clear next.
The variable y1 has no other factors than h1, and the message from y1 to h1 is thus simply
given by

µy1→h1(y1) = 1. (3.14)
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3.2 Kalman filter

Similarly as for the message from f1,0 to x1 the (marginalized) message from h1 to x1 is

µh1→x1(x1) =
∫
h(y1|x1)µy1→h1(y1)dy1 =

∫
h(y1|x1) · 1dy1 = 1, (3.15)

but the observed message from h1 to y1 is

µh1→x1(x1, y1) = h(y1|x1)µy1→h1(y1) = h(y1|x1). (3.16)

The next message to compute is the message from x1 to f2,1 = f(x2|x1), and will be the
product of the incoming messages from f1,0 and h1. For the case of marginalized y1 this
messages becomes

µx1→f2,1(x1) = µf1,0→x1(x1)µh1→x1(x1) = f1|0(x1), (3.17)

and for the case of observing y1 this becomes

µx1→f2,1(x1) = µf1,0→x1(x1)µh1→x1(x1, y1) = h(y1|x1)f1|0(x1) ∝ f1|1(x1). (3.18)

We can now see that calculating the messages between the states becomes an non-normalized
version of the Bayes filter, where the messages from ft,t−1 to xt give the prediction, and
the messages from xt to ft+1,t give the measurement update in the case of including a
measurement (this can be generalized in a straightforward manner to the case of several
measurements), and doing nothing in the case of not including any more information. The
difference in using BP is that the messages are not necessarily normalized and that this has
to be done explicitly whenever the true marginal distribution is needed.

3.2 Kalman filter

The standard discrete KF assumes a linear dynamic and measurement model with additive
Gaussian noise, that is uncorrelated between dynamics and measurement, between time
steps, and an initial state that is also Gaussian distributed

xt = Axt +But + vt ,

{
vt ∼ N (vt ; 0, Qt )
xt ∼ N (xt ; x̂t , Pt ) , (3.19)

yt = Cxt + wt, wt ∼ N (wt; 0, Rt) . (3.20)

This model can make the KF somewhat limiting. However, it can be extended to work
in the correlated case, in exchange for increased complexity, and in the nonlinear case by
linearization around the expected values, in exchange for non-optimality.

HereN (x;µ,Σ) denotes the Gaussian distribution, sometimes called the normal distribu-
tion, over x with mean µ and covariance Σ, such that

N (x;µ,Σ) = 1√
det (2πΣ)

exp
(
−1

2(x− µ)TΣ−1(x− µ)
)
. (3.21)
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3.2.1 The product identity

KF assumes a Gaussian distribution, therefore we need to consider some properties of the
given model equations. We start with the general model used in both the linear-Gaussian
dynamical equation (3.19) and the linear-Gaussian measurement equation (3.20);

γ = Gλ+ σ (3.22)

where G is a given transformation matrix and the other variables are Gaussian distributed
vectors of appropriate sizes. The expected values are given as E[γ] = γ̄, E[λ] = λ̄ and

E[σ] = σ̄ = 0, and the covariances given as Cov(γ) = Γ, Cov(λ) = Λ and Cov(σ) = Σ.
λ and σ are assumed to be independent.

In this setting, γ and λ are the vectors of interest, and σ is some kind of (unwanted)
noise. To derive the distributions of either of them, we need to find their joint distribution.
Moving Gλ over to left hand side and taking λ as given, we see that the the resulting left
hand side follows the distribution of σ;

pγ|λ(γ|λ) = pσ(γ −Gλ). (3.23)

The joint distribution will therefore be

pγ,λ(γ, λ) = pγ |λ(γ |λ)pλ(λ) = pσ(γ −Gλ)pλ(λ)
= N (γ −Gλ; 0, Σ)N

(
λ; λ̄, Λ

)
= N (γ; Gλ, Σ)N

(
λ; λ̄, Λ

)
.

(3.24)

It will be shown that

γ̄ = Gλ̄+ σ̄ = Gλ̄, (3.25)

Γ = GΛGT + Σ, (3.26)

λ̂ = E[λ | γ] = λ̄+ ΛGT (GΛGT + Σ)−1(γ −Gλ̄), (3.27)

Λ̂ = Cov(λ | γ) = Λ− ΛGT (GΛGT + Σ)−1GΛ. (3.28)

and that therefore the Gaussian product identity holds;

N (γ; Gλ, Σ)N
(
λ; λ̄, Λ

)
= N (γ; γ̄, Γ)N

(
λ; λ̂, Λ̂

)
. (3.29)

The product identity can be derived by algebraic manipulation of the quadratic exponen-
tial in the Gaussian product. We already know that the normalizing constant must follow,
since (3.24) is a valid probability distribution. In any case, one can use the same following
derivation to show that the normalization constant is also given by this new covariance
matrix. This is done by seeing that the determinants of the covariances will form a prod-
uct. Knowing that the determinant of a block triangular or diagonal matrix is also the
product of the determinants of the diagonal blocks, one can form the same matrix as in
the exponent. The steps for finding the means and the covariances of the product identity
are shown by (3.30) where the last equality defines the given values. Marginalizing over λ
or conditioning on γ will now simply result in the removal of one of the terms. This also
shows that the joint, marginal and conditional distributions are Gaussian as well.
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3.2 Kalman filter

(γ −Gλ)TΣ−1(γ −Gλ) + (λ− λ̄)TΛ−1(λ− λ̄)

=
[
γ −Gλ
λ− λ̄

]T [Σ−1 0
0 Λ−1

] [
γ −Gλ
λ− λ̄

]
=
[
γ −Gλ̄
λ− λ̄

]T [
I 0
−GT I

] [
Σ−1 0

0 Λ−1

] [
I −G
0 I

] [
γ −Gλ̄
λ− λ̄

]
=
[
γ −Gλ̄
λ− λ̄

]T ([
I G
0 I

] [
Σ 0
0 Λ

] [
I 0
GT I

])−1 [
γ −Gλ̄
λ− λ̄

]
=
[
γ −Gλ̄
λ− λ̄

]T [
GΛGT + Σ GΛ

ΛGT Λ

]−1 [
γ −Gλ̄
λ− λ̄

]
=
[
γ −Gλ̄
λ− λ̄

]T ([
I 0

ΛGT (Σ +GΛGT )−1
I

]
. . .[

Σ +GΛGT 0
0 Λ− ΛGT (Σ−GΛGT )−1GΛ

]
. . .[

I (Σ +GΛGT )−1GΛ
0 I

])−1 [
γ −Gλ̄
λ− λ̄

]
=
([

I 0
−ΛGT (Σ +GΛGT )−1

I

] [
γ −Gλ̄
λ− λ̄

])T
. . .[

Σ +GΛGT 0
0 Λ− ΛGT (Σ−GΛGT )−1GΛ

]−1
. . .([

I 0
−ΛGT (Σ +GΛGT )−1

I

] [
γ −Gλ̄
λ− λ̄

])
=
[

γ −Gλ̄
λ− λ̄− ΛGT (Σ +GΛGT )−1(γ −Gλ̄)

]T
. . .[

Σ +GΛGT 0
0 Λ− ΛGT (Σ−GΛGT )−1GΛ

]−1
. . .[

γ −Gλ̄
λ− λ̄− ΛGT (Σ +GΛGT )−1(γ −Gλ̄)

]
=
[
γ − γ̄
λ− λ̂

]T [Γ−1 0
0 Λ̂−1

] [
γ − γ̄
λ− λ̂

]
, (3.30)
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3.2.2 Prediction

Predicting the PDF of xt for the subsequent time step t, amounts to finding the PDF of xt
based on the PDFs of xt and vt , and not their true values. This is done using the product
identity (3.29) and the prediction rule (3.7) and marginalizing out the variables from the
previous time step. By using xt = γ, xt = λ, v = σ, A = G, Γ = Pt | t, Pt | t = Λ and
Qt = Σ, we get

ft | t (x) =
∫

xt ∈R

N (xt; Axt +But , Qt )N
(
xt ; x̂t | t , Pt | t

)
dxt

=
∫

xt ∈R

N
(
xt; x̂t | t , Pt | t

)
N
(
xt ; E[xt |xt] , Cov(xt |xt)

)
dx

= N
(
xt; x̂t | t , Pt | t

)
, (3.31)

where x̂t | t denotes the mean and Pt | t denotes the covariance of xt given the information
up to and including t− 1 and so on.

The mean and covariance of xt+1 are thus calculated as;

x̂t | t = Ax̂t | t +But , (3.32)

Pt | t = APt | t A
T +Qt . (3.33)

These equations are the standard discrete KF equations for the prediction step.

3.2.3 Measurement update

If we have a prior distribution of xt and receive a measurement zt, by conditioning on this
measurement we can obtain a distribution with a smaller covariance, as more information
is included. This is also done using the product identity (3.29), however for measurement
update we will of course use the measurement update rule (3.8). We now let zt = γ,
xt = λ, wt = σ, x̂t | t = λ̄, x̂t | t = E[xt | zt] = λ̂, C = G, Pt | t = Cov(xt | zt) = Λ̂,

Pt | t = Λ, Rt = Σ and St = Γ and thus get

ft | t(xt) =
N (zt; Cxt, Rt)N

(
xt; x̂t | t , Pt | t

)
p(zt)

(3.34)

=
N (zt; ẑ, St)N

(
xt; x̂t, P̂t

)
N (zt; ẑt, St)

(3.35)

= N
(
xt; x̂t | t, Pt | t

)
, (3.36)
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with

x̂t | t = x̂t | t + Pt | t C
T (CPt | t CT +Rt)−1(yt − Cx̂t | t )

= x̂t | t +Kt(yt − Cx̂t | t ),
(3.37)

Pt | t = Pt | t − Pt | t CT (CPt | t CT +Rt)−1CPt | t

= Pt | t −KtStK
T
t

= (I−KtC)Pt | t (I−KtC)T +KtRK
T
t ,

(3.38)

Kt = Pt | t C
T (CPt | t CT +Rt)−1 = Pt | t C

TS−1
t , (3.39)

which are the standard discrete KF measurement update equations. As shown, the co-
variance update equation (3.38) can be put into several different forms where the last two
equations are often used to help an implementation keep the covariance matrix symmetric.

3.3 Hybrid state space

Sometimes the state space consists of a continuous state, x ∈ X ⊆ Rdc , and a discrete
state, l ∈ L ⊆ Ndd , where dc and dd are the numbers of dimensions of the continuous and
discrete parts of the state space, respectively. Such a state space is called a hybrid state
space. Bayesian estimation is optimal on continuous, discrete and hybrid state variables,
so the theory above is also valid for discrete and hybrid state spaces, assuming the correct
integrals are interchanged with summations. However, mixing continuous and discrete
random variables tends not to give simple distributions to work with, and one can treat this
in several ways. How to do this in practice is thus not necessarily so obvious, and we will
go through one way it can be done here.

We will be tracking two separate PDFs, one for the discrete variables µlt | t′ , P (lt = l | t′)
and one for the continuous variables conditioned on the discrete variables f lt | t′(x) ,
ft | t′(xt | lt). From a joint distribution, ft | t′(x, l) one can separate it into this conditioning
according to

µ
l

t | t′ =
∫

x∈X

ft | t′(x, l) dx (3.40)

f
l

t | t′(x) =
ft | t′(x, l)

µ
l

t | t′
. (3.41)

The transition function is going to be modeled as

f (xt, lt |xt , lt ) = f l(xt |xt , lt )πltlt (xt ) (3.42)

= f l(xt |xt )πltlt (xt ) , (3.43)
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Chapter 3. Bayesian state estimation

where there is and explicit independence between xt and lt when lt is given. It is possible
to relax this independence assumption, but the mixing step will then be problematic, and
one might have to do the prediction in one step.

Given these two distributions at time t − 1 given information up to and including time
t−1, and applying the prediction step rule, we can write the prediction step for the discrete
variables as

µ
l

t | t =
∑
lt ∈L

∫
xt ∈X

π
lt
lt

(xt ) f lt | t (xt )µlt | t dxt . (3.44)

To predict the continuous states to get f lt | t (xt) we are going to do an intermediate step of
conditioning xt on lt to obtain ft | t (xt | lt), which will be called mixing. To see why
this is a good idea, we can consider

f
l

t | t (xt) , ft | t (xt | lt) =
∑
lt ∈L

∫
xt ∈X

ft | t (xt, lt, xt , lt )

µ
l

t | t

dxt

=
∫

xt ∈X

f l(xt |xt )
∑
lt ∈L

π
lt
lt

(xt ) f lt | t (xt )
µ
l

t | t

µ
l

t | t

dxt

=
∫

xt ∈X

f l(xt |xt ) ft | t (xt | lt) dxt , (3.45)

where we have gotten the wanted mixing PDF

ft | t (xt | lt) =
∑
lt ∈L

π
lt
lt

(xt ) f lt | t (xt)
µ
l

t | t

µ
l

t | t

. (3.46)

We can clearly see that this distribution is a valid PDF and a mixture. The optimal thing
to do is to keep the mixture. However it will grow in size through time and one therefore
needs to do mixture reduction to make the estimation algorithm feasible. As pointed out
by Blom and Bar-Shalom [1988], doing the hypothesis reduction in the PDF ft | t (xt | lt)
is ideal for systems with linear Gaussian continuous part and an independent jump Markov
discrete part. This is due to the fact that doing it before the mixture reduces the informa-
tion available to the continuous state from the specific discrete state that we are going to
predict. Whereas doing it later, i.e. after prediction, increases computational cost and due
to linearity in the linear Gaussian case, will be equivalent to doing it before.

In the nonlinear or non Gaussian case it is less obvious, but nevertheless a good idea to
retain as much information as possible for as long as possible. The main computational
load will be in the continuous state prediction and the update step. Thus doing mixture
reduction straight after the mixing step (which is also the source of the increasing number
of mixture components) does still seem like the best option in the general case, but further
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3.3 Hybrid state space

investigation is needed to check if this is indeed the case. Special dynamics or distributions
have to be considered on their own anyway.

After having done (3.46), one does the prediction and update steps for each discrete state
individually. The prediction step is shown in (3.45), and the update is given by

f
l

t | t(x)µlt | t =
hl(zt |x) f lt | t (x)µlt | t∑

lt∈L

∫
x∈X

hl(zt |x) f lt | t (x) dxµlt | t
=
hl(zt |x) f lt | t (x)µlt | t∑

lt∈L

hl(zt)µ
l

t | t

=

hl(zt |x) f lt | t (x)
hl(zt)


 hl(zt)µ

l

t | t∑
lt∈L

hl(zt)µ
l

t | t

 , (3.47)

where the bracketed terms on the right hand side (RHS) correspond to the terms on the
left hand side (LHS). We have also introduced a discrete-state dependent measurement
PDF, hl(zt |x), and the measurement likelihood conditioned on the discrete state, hl(zt).
Allowing the measurements to be conditioned on the discrete state as well, lets us model
that a target for instance can switch between giving biased measurements and not, change
measurement noise levels and so on. Say that a sensor is set up to give point estimates
of the target, which specific point it is measuring and how exact this point location is,
might be dependent on some property of the target. If this property can be described by a
discrete variable, we can model this and therefore be able to estimate better measurement
properties, which again can result in a more consistent estimate.

This concludes the full step of prediction and update of a hybrid system in what could be
called IMM style, due to the mixing step that is a special feature of IMM.

3.3.1 The interacting multiple models as a hybrid state formulation

IMM [Blom, 1984] or even variable structure interacting multiple models (VSIMM) [Li
and Bar-Shalom, 1992, 1996] are a special case of the hybrid formulation given here,
where lt, or a subset thereof, represents the discrete event that the continuous state evolves
according to a specific dynamic model, and the discrete transition function is of a particular
type.

We can let the discrete transition probabilities be independent of the continuous state,
such that πltlt (xt ) = π

lt
lt

. Then this is the same transition as considered in the IMM
for its multiple models, where it here can (if needed) represent more than just different
models. With this independence, the discrete state prediction given in (3.44) becomes the

model prediction of the IMM, given by [(11.6.6-8)]1, and πltxt
µ
l

t | t

µ
l

t | t

, the mixing probabil-

ities in (3.46), becomes the mixing probabilities of the IMM given by [(11.6.6-7)]1. The

1[·] refers to content on pages 455-456 in Bar-Shalom et al. [2001, pp.455] which describes the IMM algo-
rithm
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Chapter 3. Bayesian state estimation

prediction and update equations for the continuous state given by (3.45) and (3.47) respec-
tively, are just generalizations to general distribution compared to the Gaussian assumption
in the prediction and update step of the IMM as given by [step 3]1. Lastly we have the
discrete-state probability updates, also given by (3.47), are exactly the IMM model update
given by [(11.6.6-15)]1. The hybrid state formulation is therefore, just as said, a gener-
alization of the IMM, as given by Bar-Shalom et al. [2001] on pages 455-456, to allow
general continuous-state distributions and continuous-state dependent discrete-state tran-
sition function.

One might argue that such a generalizations are of little value without any specific algo-
rithms to accommodate them. However, it shows that the IMM is a solution to a specific
problem within a broader set of problems, which also for instance includes problems where
detectability changes. This tells us that we can look for other types of modeling within this
class whenever the IMM assumptions breaks down. If, for instance, the model transitions
are dependent on the target position, which in many cases might be the case, one might
get into trouble if this is not considered by the algorithm. By placing properly scaled
Gaussians in the state space to model varying transition probabilities, the problem is still
solvable with a closed form solution. Some caution must be taken however. Since the
transitions must sum to one, one will have one transition with a positive weighted Gaus-
sian and one or more of the others will have the same Gaussian with negative weight so
that their sum will cancel it. This leads to a Gaussian mixture with negative weights in the
mixing step, son one should be careful when performing mixture reduction to ensure that
distribution stays non-negative.

The IMM was originally made by Blom [1984] and later rederived by Blom and Bar-
Shalom [1988] seen as the optimal timing of hypothesis reduction. The hypothesis reduc-
tion step in the standard IMM is to reduce the mixture of (3.46) down to one Gaussian,
while we here leave this as a separate problem that can be fine tuned to the application.

VSIMM, as described by for instance Li and Jilkov [2005] or Li and Bar-Shalom [1996],
is to the authors understanding a way of doing on-line model parameter estimation and
handling the state dependent model transition function in such a way that one can discard
unlikely models. The implementations are in general ways to discard unlikely transitions,
merge others or estimate new ones in some manner, if there are sufficient evidence to do
so. One way this can be done, is by applying a somewhat crude gating to Gaussians in
the transition, and not having any uniform transition probability what so ever. Doing this
gating in the hybrid state transition can then make it behave like a variable structure, since
some discrete state transitions will give zero probability. Otherwise, the VSIMM uses the
same assumptions as described here, but then goes on to make ways to prune unlikely
discrete states and and use data to estimate new ones.

3.3.2 Detectability and features as states

If one adds an independent discrete state for target detectability, which could be needed if
there is an ambiguity in measurement origin or if there is uncertain target existence, the
hybrid state space also allows for this through the discrete state measurement likelihood
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3.3 Hybrid state space

if we allow it to integrate to something less than unity, i.e. having detectability less than
unity. For this problem we will defer more elaboration until existence and measurement
origin uncertainty has been properly introduced in chapter 6.

With the appropriate modeling, it is possible to include features, both static and dynamic,
both discrete and continuous, into this framework so that when the measurement origin is
uncertain we can evaluate likelihoods of, for instance, the visual cues to identify targets.
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4 Random Finite Sets

In MTT one deals with the situation in which there are an unknown number of targets
with unknown positions in the scanned environment. A notion of these unknowns can
be given by a probability distribution. From a given number of targets, one needs to
estimate the location of the targets, which typically can be dependent on the number. RFSs
allow you to model the situation as a set with an unknown number of elements (targets)
with unknown positions (states). This uses something similar to PDFs to treat this in a
Bayesian framework similar to that of normal state estimation. These distribution-like
functions, which we will call set distribution functions (SDFs) here, are treated using a
framework known as FISST [Mahler, 2007]. This chapter presents a short description of
RFSs, their distributions, how to do integrals in this framework and taking unions both
with and without keeping identities.

Sets are unordered

A RFS X consists of a set of random vectors xi, i ∈ {1, . . . , n}, where n = |X| ∈ N, the
cardinality of the set (e.g. the number of targets), is also a random variable. Like any set,
a RFS is unordered;

{
x1, x2} =

{
x2, x1}, i.e. the indicies are irrelevant and therefore in

general are only included for notational purposes [Mahler, 2007].

In the context of MTT, the measurements, for instance, are unordered in nature, they have
no identity other than that they maybe arrive or are stored in a certain arbitrary order. When
treating the measurements in a scan as a RFS within the FISST framework, the need to do
data association shows up as a result of this unorderedness without any more modelling,
as will be discussed further in chapter 7.

4.1 The general set distribution

A distribution of a RFS will be called a SDF in this text as it cannot be treated as a PDF.
For a RFS the SDF is defined using FISST [Mahler, 2007], and can be represented by
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Williams [2015b, (1)]

pX
(
{x1, . . . , xn}

)
= P(n)

∑
π∈Pn

pn(xπ1 , . . . , xπn) (4.1)

where P(n) is the cardinality distribution of the random set, pn(·) is the cardinality-
conditioned joint state distribution, and Pn is the set of n! possible permutations of the
n objects. The reason for using the sum is that any of the “positions” in the argument
of pn(·) could have given any of the vectors xi, and we thus need to account for of all
combinations of vectors in all positions so that the distribution is permutation invariant, as
the set is.

Seeing the permutation variable π as latent variable could also be done. This can be viewed
as having what could be called a random tuple or random orderer list, if that makes sense
in the application and the modeling of it;

pX,π
(
(x1, π1), . . . , (xn, πn)

)
= P(n)pn

(
xπ

1
, . . . , xπ

n
)
. (4.2)

4.2 The independent identical set distribution

When the targets are independent identically distributed (i.i.d.) with PDF px(x) we have
that

pn(X) =
n∏
i=1

px(xi) , pXx , (4.3)

where the last equality defines the simplifying set exponent notation. The SDF ot the set
is then as (11.121) on page 366 by Mahler [2007]

pX
(
{x1, . . . , xn}

)
= n!P(n)

n∏
i=1

px(xi) = n!P(n)pXx . (4.4)

Here the summation have simply been replaced with a multiplication by n! since it gives
the same for all permutations.

Note that (4.1) is much more general than this, since it can handle the case where the set
members are correlated (i.e. not independent). Having correlated set members can for
instance model cases where there are can be up to two targets, but with zero likelihood for
them being in the same area, which cannot be modeled properly with the i.i.d. SDF. The
notion of keeping the latent permutation variable does not necessarily make much sense
in this case, since there is no extra information obtained by knowing the order in an i.i.d.
distribution, unless we have more information from application dependent modeling.
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4.3 The set integral

It might at first be a little counter intuitive that the factor n! should be there in (4.4), since
integrating out all the xi would leave n!P(n) and not just simply P(n). This comes again
from the fact that we are dealing with sets, and looking at (4.1) the PDF pn(·) is given for
a special ordering of the vectors, which is only one of n! equally plausible. By using a
random tuple, that makes this ordering specific, we get what is expected. Instead we have
to adapt our integral when we marginalize out the state from the SDF to be performed with
a set differential so that all the permutations we integrate over are accounted for. Introduc-
ing set differential notation and integrating out the set elements to get the cardinality, the
cardinality conditioned set integral is given by Mahler [2007, pp. 361]∫
xi∈X

pX
(
{x1, . . . , xn}

)
δ{x1, . . . , xn}

= 1
n!

∫
xi∈X

P(n)
∑
π∈Pn

pn(xπ1 , . . . , xπn)dx1 · · · dxn

= P(n)
n!

∑
π∈Pn

∫
xi∈X

pn(xπ1 , . . . , xπn)dx1 · · · dxn = P(n)
n! n!. (4.5)

We can now see that marginalizing out the state will result in the cardinality distribution as
intended, and thus the correct way to perform the integral over the set given a cardinality.
Without conditioning on the cardinality we also have to sum over n, and we see that the
total set integral will then become unity as any distribution should. Without conditioning
on the caridinality it is written as∫

pX(X) δX =
∞∑
n=0

1
n!

∫
pX
(
{x1, . . . , xn}

)
dx1 · · · dxn (4.6)

4.4 Union of independent sets

Say we have two independent RFSs, Y ∼ p1 and Z ∼ p2, where p1 and p2 are their SDFs.
Then their joint distribution can be written as

p(Y,Z) = p1(Y )p2(Z), (4.7)

by the independence assumption. Now, let us say that their elements come from the same
space, i.e. Y ⊂ X and Z ⊂ X , so that it is possible to take their union, X = Y ∪Z. What
can we say about the distribution of their union?

Let us first introduce what the author would call component labeling of the set, X;

XL = {(x1, π1), . . . , (xn, πn)} :
n⋃
i=1
{xi} = X, (4.8)
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where πi, the label, describes which of the sets in the union element i is from. For our
example, we have πi ∈ {1, 2}, where πi = 1 is the event xi ∈ Y and πi = 2 is the event
xi ∈ Z. We will also use what the author would call the ‘component extractor’

XL(k) = {x : (x, k) ∈ XL} ⊆ X, (4.9)

which extracts an unlabeled subset of XL that has component label k, i.e. XL(k) 6⊆ XL,
since unlabeled elements are different from labeled elements.

The labeled union can then be written as XL = Y 1 ∪ Z2 where the numbered superscript
denotes the label of the elements in the set, such that Y 1 = {(y1, 1), . . . , (yn, 1)} etc..
With this we can write the joint distribution over Y and Z as a distribution of their labeled
union;

p(XL) = p1(XL(1))p2(XL(2)). (4.10)

This can be interpreted as having modeled two distinct independent sets, but the only event
we can observe is their union. The component labeling is then also an actual event, and
may or may not be observed. In the case when the label is not observed, it is only a latent
variable. The observed event will then be the unlabeled union, X = Y ∪ Z. The labeling
can then be seen as giving the likelihood of which elements in X came from the set Y or
Z. Hence the (unlabeled) distribution of X can then be seen as the marginalization of the
labels;

p(X) = p(Y ∪ Z) =
∑

πi∈{1,2}

p(XL) (4.11)

=
∑

πi∈{1,2}

p1(XL(1))p2(XL(2)) =
∑
Ŷ⊆X

p1(Ŷ )p2(X \ Ŷ ). (4.12)

The last formula is equivalent to the set convolution by Mahler [2007, pp. 386], although
we have taken a completely different approach to arrive at it. Another way to see that we
need this summation is that the permutation invariance means we have to “try all combi-
nations” as in (4.1). The name set convolution is used, since the formula resembles that of
a convolution, and there exists integral transformations to turn them into multiplications
similar to Fourier transforms [Mahler, 2007].

If one has the union of several sets, the above formula is applied recursively for adding in
one set at a time, to give (11.252) in Mahler [2007, pp.385]. One can also keep the latent
component pointer, if one is interested in the likelihood of which underlying set an element
came from. This could for instance be the case if one is modeling ships as being the union
of a cargo ship, cabin cruiser and sailboat. If one is measuring this using a radar it can be
hard to distinguish which type of ship a measurement is, but their likelihood might change
over time as they behave differently. Another thing this can be used for, is during tracking
where new components are added at each prediction and update step, so it is possible to
keep track of the likelihood of having a set of targets coming from that component.
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4.5 Specific set distribution functions

4.5.1 The Poisson point process

A commonly used distribution in MTT is the Poisson point process (PPP) where the car-
dinality distribution is given by the Poisson distribution P(n) = λ̄n

n! e−λ̄, with λ̄ being the
expected cardinality, and the objects are i.i.d. according to some PDF p(x). This gives the
SDF [Mahler, 2007, (11.122), pp.366]

pX(X) = λ̄n

n! e−λ̄n!pXx = e−λ̄
n∏
i=1

λX , (4.13)

in which we have the PPP intensity, λ(xi) = λ̄ p(xi), and therefore also λ̄ =
∫
x∈X λ(x)dx.

This tells us that modeling the intensity is all we need if we are dealing with a PPP.

Union of independent PPP

Say we have a union of two independent RFSs, X = X1 ∪ X2, where each is a PPP
with intensities λ1 and λ2 respectively. Then, since we in general do not know which
distribution gave rise to which element, we have that the total distribution is given by the
set convolution of (4.12)

p(X) =
∑

X1⊆X,
X2=X\X1

p(X1)p(X2) = e−λ̄1−λ̄2
∑

X1⊆X,
X2=X\X1

λX1
1 λX2

2 = e−(λ̄1+λ̄2) (λ1 + λ2)X . (4.14)

The last equality is most easily observed by writing the left hand side out for some sets
and see that it follows, and also by noting that it integrates to unity using the set integral.
Thus the union of two independent PPPs is again a PPP with the summed intensity, which
should not be a surprise from standard theory on the Poisson distribution.

An approach to labeling the PPP

By rewriting the sum with a label variable instead of directly over the subsets we can get
another insight into unions of several different i.i.d. RFSs

∑
X1⊆X,

X2=X\X1

λX1
1 λX2

2 =
∑

π∈{1,2}|X|

n∏
i=1

λπi(xi). (4.15)

A RFS that is made up of several different i.i.d. components can (similar to the general
SDF, but not quite the same) be seen to be a marginalization over a latent component
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indicator variable. By including this as an augmentation to the set elements, we can include
which component gave rise to the individual elements if wanted;

p

({[
xi
πi

]}
i∈{1,...n}

)
= e−λ̄1−λ̄2

n∏
i=1

λπi(xi). (4.16)

Even more generally, we can perform a mix of these, where we want to know the com-
ponent for some and not for some others. By letting πi = 0 mean it is irrelevant which
component and λ0(x) = λ1(x) + λ2(x), the last equation still holds.

Note that this does not suggest that we can perform a labeling to distinguish the individual
objects that are realizations of a PPP, but rather have distributions over which components
they came from. This follows from the fact that the PPP is inherently unordered and i.i.d.,
and any individual labeling, as done by for example Vo and Vo [2011], introduces an or-
dering that is not necessarily described by anything in the PPP itself. If the PPP models
a discrete time arrival process derived from a continuous time exponentially distributed
arrival rate, a specific ordering could be inferred from the continuous time ordering, an
indistinguishable event in the homogeneous case, and not an i.i.d. event in the inhomoge-
neous case.

4.5.2 The multi Bernoulli point process

Another common distribution in the MTT setting is the multi Bernoulli (MB) [Mahler,
2007, sec 11.3.4.5], which is the union of multiple Bernoulli point processs (BPPs) [Williams,
2015b]. A Bernoulli process describes an event with a binary outcome and can be used
to describe the existence probability of a given object. To describe the state (or the point)
of the process we also need an existence conditioned state distribution. If the probability
of existence is r ∈ [0, 1] and the existence conditioned state distribution is p(x), the BPP
uses both to make single target RFS SDF to be given by [Williams, 2015b, (9)]

pX(X) =


1− r, X = ∅,
rp(x), X = {x},
0, otherwise (X =

{
x1, x2} etc.).

(4.17)

This distribution is seen to either have a cardinality of zero or one as all other sets have
zero likelihood.

If we now have a union of independent RFS that follow a Bernoulli point process such that
X =

⋃N
i=1Xi with individual existence probabilities ri and existence conditioned state

distributions pi(xi) we get the SDF by applying (4.12) recursively and simplifying the set
convolutions into a sum over a single variable, to be [Mahler, 2007, (11.132)][Williams,
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2015b, (11)]

pX(X) =
∑
π∈PNn

 n∏
i=1

rπipπi(xi)


 N∏
j=1
j 6∈π

(1− rj)

 (4.18)

=
N∏
i′=1

(1− ri′)
∑
π∈PNn

n∏
i=1

rπipπi(xi)
1− rπi

(4.19)

for a set X of n <= N elements, and otherwise 0. PNn is the set of all sets π of indexes so
that all possible ways to choose n elements out of N in order (i.e. including permutations)
is in the set, where each element πi ⊆ [1 : N ] and |π| = n. Again, this is summed
over all possible ways that n objects could have come from the N components. Given the
permutation, and hence the origin and existence state of the components, the SDF becomes
the product of the individual densities. This SDF has a maximum of N on its cardinality,
as higher cardinalities have a probability of zero. Another thing to note is that this set is
not i.i.d. as adding another object might change the likelihood of the others.

Labeling of MB

Again we can consider π as a latent component origin variable, and get a random multi
Bernoulli distributed tuple instead. For πi 6= πj ∀ i, j this can be written as

pX
(
(x1, π1), . . . , (xn, πn)

)
=
[
N∏
i′=1

(1− ri′)
][

n∏
i=1

rπipπi(xi)
1− rπi

]
. (4.20)

This is exactly what is known as labeled multi Bernoulli (LMB) [Vo and Vo, 2011], but π
is not thought of as a label here, but rather as a latent component pointer, which one could
form a PDF over. It is essentially just a convenient notation for not having a tuple with
one set element per BPP component. One can also, more naturally, write this using the
individual BPPs as given by (4.17) as

pX
({

(x1, π1), . . . , (xn, πn)
})

= pX
(
XL
)

=
N∏
i=1

pi(XL(i)), (4.21)

where pi(·) now is the single component BPP SDF. That is, all targets xi
′

that have πi
′ = i

are treated as coming from component i, and if there are several components such that
πi

′ = πi
′′ = i, the BPP will give a likelihood of zero and therefore the LMB will also give

a zero likelihood.

Note that this type of “labeling” is slightly different from what for example Vo and Vo
[2011] is considering, in the sense that here it is a latent variable extracted from the SDF,
whereas Vo and Vo [2011] introduces the labeling on top of the SDF and introduces an
unnecessary indicator function in (4.20) to achieve (4.21). Indicator functions and delta
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functions typically mean that there is some sort of over-representation in the distribution.
It seems to the author that this is the case with the formulation by Vo and Vo [2011] as
there is, as shown here, already a latent variable describing what they want, and the BPP
as given here is already capable of handling this from its cardinality distribution.

As previously noted, Vo and Vo [2011] also include a labeling on the PPP that is different
to what was done in this text. If they are considering the PPP as the limit of a MB with
infinite amount of components, one could possibly conceive a labeling structure similar
to what is done here for the MB, but then having to work on the joint of the underlying
MB instead, which then reduces to the MB anyway. Since a MB have to arise naturally
or be engineered, one should try to avoid handling individual components in these limits.
Therefore the only practical individual object labeling of a PPP conceivable to the author
is that of the arrival order in continuous time, but will not be discussed further. Of course
there could also be other ways of seeing this that the author does not know about.
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5 The Kullback-Leibler divergence

If we want to approximate one distribution with another, we need to specify what con-
stitutes a good approximation. A metric could be a good choice, but in statistics one
sometimes considers unsymmetrical cases, and these “distance” functions are called di-
vergences. Since one is approximating a function by another, the literature often considers
functionals and these methods are called variational inference. The following is mostly
based on Koller and Friedman [2009].

5.1 Negative log likelihood divergence

To consider an approximation of p(x) by a usually much simpler distribution q(x), one
often considers minimizing the negative log likelihood with respect to N data points xi
sampled from p. By taking the limit of infinite data points we get

lim
N→∞

− 1
N

N∑
i=1

ln(q(xi)) =
∫
x

−p(x) ln(q(x))dx = E
p
[− ln(q(x))] = H[p(x), q(x)],

(5.1)

where H[·, ·] is the cross entropy between p and q [Goodfellow et al., 2016, (3.51)]. This
divergence can also be used for discrete variables or RFSs by changing the integral to a
summation or set integral respectively.

5.2 KL-divergence its projections

The cross entropy has the problem of not being zero even with perfect match between
the distributions. This is seen from the fact that the entropy, given by the cross entropy
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between p and itself, is nonzero;

H[p(x)] = −
∫
x

p(x) ln(p(x))dx > 0. (5.2)

Subtracting this from the negative log likelihood divergence gives the well known KL-
divergence;

DKL(p || q) = H[p(x), q(x)]−H[p(x)]

=
∫
x

−p(x) ln(q(x))dx+
∫
x

p(x) ln(p(x))dx

=
∫
x

p(x) log
(
p(x)
q(x)

)
dx = E

p
[ln(p(x))− ln(q(x))] , (5.3)

which is non negative, and equal to zero if and only if the two distributions are equal on the
support of p [Bishop, 2016, sec. 1.6]. This is also known as relative entropy. Performing
the minimization of DKL(p || q) with respect to q is known as moment projection, while
minimizing DKL(q || p) with respect to q is known as information projection. The moment
projection version of this divergence we “derived” used the interpretation that we want
to find the best q to approximate data sampled from p in the log-likelihood sense. The
information projection can therefore be seen as the opposite; we find the best approximate
distribution, q, such that p is the best fit distribution when sampling from q in the log
likelihood sense, which is likely to be a different distribution than the other way around.

5.3 Moment projection onto the exponential family

Suppose we want to approximate p by q, where q = q(x; θ) is a distribution of the expo-
nential family parameterized by θ, with a sufficient statistic given by a function τ(x) such
that

q(x; θ) =
exp

(
τ(x)T t(θ) + g(x)

)
Z(θ) . (5.4)

Here, t(θ) and g(x) are appropriate functions and Z(θ) is a normalizing constant. The
moment projection of this can be written as

DKL(p(x) || q(x; θ)) = E
p
[ln(p)− ln(q(x; θ))] (5.5)

= E
p

[
ln(p)− τ(x)T t(θ)− g(x) + ln(Z(θ))

]
(5.6)

= E
p
[ln(p)]− E

p

[
τ(x)T

]
t(θ)− E

p
[g(x)] + ln(Z(θ)). (5.7)
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Now assume that θ′ is a unique parameter such that E
q(x;θ′)

[
τ(x)T

]
= E

p

[
τ(x)T

]
, and add

and subtract DKL(p(x) || q(x; θ′)). We then get

DKL(p(x) || q(x; θ)) = E
p
[ln(p)]− E

p

[
τ(x)T

]
t(θ)− E

p
[g(x)] + ln(Z(θ))

−E
p
[ln(p)] + E

p

[
τ(x)T

]
t(θ′) + E

p
[g(x)]− ln(Z(θ′))

+ DKL(p(x) || q(x; θ′))

(5.8)

= E
q(x;θ′)

[
τ(x)T

]
t(θ′) + E

q(x;θ′)
[g(x)]− ln(Z(θ′))

−E
q(x;θ′)

[
τ(x)T

]
t(θ)− E

q(x;θ′)
[g(x)] + ln(Z(θ))

+ DKL(p(x) || q(x; θ′))

(5.9)

= E
q(x;θ′)

[ln(q(x; θ′))− ln(q(x; θ))] + DKL(p(x) || q(x; θ′))

(5.10)

= DKL(q(x; θ′) || q(x; θ)) + DKL(p(x) || q(x; θ′)) (5.11)
≥ DKL(p(x) || q(x; θ′)) . (5.12)

Where the last line follows from the non negativity of the KL-divergence, and we have
that θ′ : E

q
[τ(x)] = E

p
[τ(x)] is the moment projection of p onto this set of distributions

parameterized by θ. Note that this holds for any distributions p and all distributions q that
can be written as (5.4).

5.3.1 Moment projection onto normal distribution

The normal distribution is clearly of the form (5.4), where we can identify

θ = {µ,Σ} , (5.13)

τ(x) =
[

x
vec(xxT )

]
, (5.14)

t(θ) =
[

Σ−1µ
−0.5vec(Σ−1)

]
, (5.15)

Z(θ) =
√

det(2πΣ) exp(0.5µTΣ−1µ), (5.16)
g(x) = 0. (5.17)

The sufficient statistics are the two first moments of x. Thus, making θ = {µ,Σ} such
that the two first moments of q match those of p, will be the moment projection of p onto
the set of normal distributions. That is

{µ′,Σ′} = arg min
µ,Σ

DKL(q || p) =
{
E
p
[x] ,E

p

[
xxT

]
− E

p
[x]E

p
[x]T

}
. (5.18)
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5.3.2 Mixture distributions and their two first moments

A mixture is a distribution consisting of several other weighted distributions. In applica-
tions, one often ends up having a mixture. This may be due to having several weighted
hypotheses, wherein each hypothesis has its own distribution, given that the hypothesis is
correct. A mixture can thus be seen as a marginal of a joint distribution over the random
variable of interest and a discrete latent variable of the form

p(x) =
N∑
i=1

pi(x)µi, (5.19)

where i is the latent variable with the subscript indicating the i’th component of the mix-
ture, having the distribution pi(x), and µi :

∑n
i=1 µi = 1 is probability of the latent

variable, called its weight. We can find the mean x̂ and covariance P of this type of
distribution by calculating the first and second order moments

x̂ = E
i,x

[x] =
N∑
i=1

µi E
x | i

[x] =
N∑
i=1

µix̂i, (5.20)

P = E
i,x

[
xxT

]
− E
i,x

[x] E
i,x

[x]T (5.21)

=
[
N∑
i=1

µi E
x | i

[
xxT

]]
− x̂x̂T (5.22)

=
[
N∑
i=1

µi(Pi + x̂ix̂
T
i )
]
− x̂x̂T , (5.23)

where the subscript i denotes that the mean x̂i or covariance Pi is conditioned on coming
from mixture i. It is therefore straightforward to project a mixture, in which we know the
individual components means and covariances, into a normal distribution according to the
last subsection.

5.3.3 Merging components in Gaussian mixture

When one is dealing with mixtures one often wants to reduce the mixture to a mixture
with less components. However, the optimal solution to this reduction is not known, and
is a challenging problem. This is due to the fact that the components in the new mixture
can for instance explain only a part of the probability mass of a component in the mixture
to be reduced, while the rest is explained by some of the others. The optimal solution
hence consists of finding how much of which component is to be described by each of
the new components. This typically lends itself to algorithms like expectation maximiza-
tion[Bishop, 2016] and using some form of gradient descent. However, partly because
a mixture often is multi modal and partly because the new components can be permuted
in the optimal solution and still be optimal, this optimization problem is not convex, and
therefore a though problem.
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5.3 Moment projection onto the exponential family

However, heuristics can be applied. One heuristic would be to merge similar components,
and pruning (throwing away) some others. Ideally, one would just use the KL-divergence
to find the components to merge and then merge them using moment matching as de-
scribed above. Unfortunately no closed form solution exists even to the simplified prob-
lem of finding the best components to merge. What exists, however, is an upper bound
when the components are Gaussian. This upper bound is due to Runnalls [2007] and has
proven to give better results than using the heuristic by Salmond [2009, 1990] and behave
slightly different than when using the integral squared error [Williams, 2003]. Runnalls
upper bound is basically based on using the log sum inequality on the KL-divergence, and
combining component i and j is given by [Runnalls, 2007, (21)]

B(i, j) = 1
2 [(wi + wj) ln (det(P ))− wi ln (det(Pi))− wj ln (det(Pj))] , (5.24)

where wi and wj are the weights of the components to be combined, and Pi and Pj their
covariances respectively. P is the moment matched merged covariance and is given by

P = 1
wi + wj

[
wiPi + wjPj + wiwj

wi + wj
(µi − µj)(µi − µj)T

]
, (5.25)

where µi and µj are the components means, respectively.

This distance between two Gaussian mixture components can be used to choose compo-
nents to merge in a greedy fashion.

5.3.4 Moment projection onto Poisson distribution

The Poisson distribution,

P (n) = e−λλn

n! = exp (n ln(λ)− ln(n!))
exp(λ) (5.26)

is also of the form (5.4), with expected value

n̄ = E[n] =
∞∑
n=0

n
e−λλn

n! = λ

∞∑
n=1

e−λλn−1

(n− 1)! = λ. (5.27)

We can identify

θ = λ, (5.28)
τ(x) = n, (5.29)
t(θ) = ln(λ), (5.30)

g(n) = ln(n!) =
n∑
i=1

ln(i), (5.31)

Z(θ) = eλ. (5.32)
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Hence, the moment projection of a distribution, p, over the natural numbers onto a Poisson
distribution, q, is achieved with

λ = E
p
[τ(n)] = E

p
[n] . (5.33)

5.4 Moment projection onto factorized distribution

Sometimes we want approximate a joint distribution p by something much simpler. One
such simplification is to moment project the joint p(x) onto a fully factored distribution
q(x) =

∏n
i=1 q

i(xi), where dim(x) = n. Using pi(xi) to denote the marginal distribution
of xi we can write the divergence as.

DKL(q || p) = E
p

[
ln
(

p(x)∏n
i=1 q

i(xi)

)]
= E

p

[
ln
(

p(x)
∏n
i=1 p

i(xi)∏n
i=1 q

i(xi)
∏n
i=1 p

i(xi)

)]
(5.34)

= E
p

[
ln
(∏n

i=1 p
i(xi)∏n

i=1 q
i(xi)

)
+ ln

(
p(x)∏n

i=1 p
i(xi)

)]
(5.35)

= E
p

[
n∑
i=1

ln
(
pi(xi)
qi(xi)

)]
+ E

p

[
ln
(

p(x)∏n
i=1 p

i(xi)

)]
(5.36)

=
n∑
i=1

E
pi

[
ln
(
pi(xi)
qi(xi)

)]
+ DKL

(
n∏
i=1

pi(xi) || p(x)
)

(5.37)

≥
n∑
i=1

DKL

(
qi(xi) || pi(xi)

)
. (5.38)

Since the KL-divergence reaches its minimum, zero, when the distributions are equal, we
see that the moment projection of p onto a fully factored distribution is the product of its
marginals.

5.5 Moment projection of SDF onto i.i.d. SDF

A general SDF can be written as p(X) = P(n)n!pn(x1, . . . , xn), where pn is a permutation-
invariant distribution. Permutation invariance can be achieved from non-permutation-
invariant distributions, by summing over permutations and dividing by n!.

The moment projection of this general SDF, p, onto an i.i.d. SDF, q(X) = P̂(n)n!g{x1,...,xn},
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can be written as

DKL(p || q) = DKL

(
P(n)n!pn(x1, . . . , xn) || P̂(n)n!g{x

1,...,xn}
)

= E
p

[
log
(

P(n)n!pn(x1, . . . , xn)
P̂(n)n!g{x1,...,xn}

)]

= E
p

[
log
(

P(n)
P̂(n)

)]
+ E

p

[
log
(
pn({x1, . . . , xn})

g{x1,...,xn}

)]
, (5.39)

where the expectations are taken with respect to the true distribution, p(X). Since we have
no restrictions on the form of the cardinality, we can set P̂ (n) = P (n) ∀n to achieve the
minimum of zero in the first term. The last term can be better understood through some
more massage;

E
[
log
(
pn({x1, . . . , xn})

g{x1,...,xn}

)]
−H[pn(X)] (5.40)

= E
[
log
(
pn({x1, . . . , xn})

)]
− E

[
log
(
g{x

1,...,xn}
)]
−H[pn(X)] (5.41)

cancelling the entropy, and expanding the log-product into a sum-log and then writing out
the expectation in terms of the set integral;

= −E
[

n∑
i=1

log(g(xi))
]

= −
∫
p(X)

∑
x′∈X

log(g(x′)) δX (5.42)

expanding the set integral;

= −
∞∑
|X|=0

1
|X|!

∫
p(X)

∑
x′∈X

log(g(x′))dx1· · · dx|X| (5.43)

noting that this is zero for |X| = 0, and that the summands will be equal after taking the
integral, thereby simply turning into a factor of |X| and the log of an arbitrary x′ ∈ X;

= −
∞∑
|X|=1

1
|X|! |X|

∫
log(g(x′))p(X)dx1· · · dx|X| (5.44)

noting that this can be rewritten as a set integral of X \ {x} as an inner integral and over
x′ as an outer integral;

= −
∫

log(x′)
∫
p(X ∪ {x′})δ X dx′ (5.45)

recognizing the formula for the probability hypothesis density (PHD), D(x) [Mahler,
2007, (16.26)];

= −
∫

log(g(x′))D(x′)dx′ (5.46)
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substituting D(x) = n̄s(x), the factorization into a proper distribution and a scaling fac-
tor1;

= −n̄
∫

log(g(x′))s(x′)dx′. (5.47)

The last line is known to attain its minimum for g(x) = s(x), which can for instance,
be shown using calculus of variations with Lagrange multipliers for the normalization
constraint.

It is thus shown that the moment projection onto an i.i.d. SDF, q, is achieved with

q(X) = P̂(|X|)gX = P̂(|X|)
∏
x∈X

g(x), (5.48)

P̂(|X|) = P(|X|), (5.49)

g(x) = D(x)∫
D(x)dx

, (5.50)

D(x) =
∫
p(X ∪ {x}) δX, [Mahler, 2007, (16.26)] (5.51)

where D(x) is the PHD of the set X , described by Mahler [2007, sec. 16.2], under the
SDF p.

1This scaling factor is known to be the expected number of targets, and hence the notation n̄ = E[n].
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6 Properties multiple targets

6.1 Assumptions

For MTT we need to know the underlying properties of the targets and measurements, or
at least the assumptions we make about them. The literature there has become a set of
appropriate assumptions that are regarded as the standard model. These assumptions can
be summarized as follows [Williams, 2015b]:

Assumption A.

1. There is a “scene” of interest, described by a subset of the target state space Xt,
where at any time t there exists an unknown number nt ∈ N of targets.

2. Between each time step, each target xi
t
, i ∈ [1 : nt ] at time t < t follows some

i.i.d. Markovian dynamics, with transition PDF

f
(
xit |xit

)
. (6.1)

3. Between each time step, each target i ∈ [1 : nt ] stays, or survives if you like, in
the scene according to an i.i.d. Markovian process with possibly both a time- and a
time step size- dependent probability of survival, given by

Ps
(
xit
)
, (6.2)

4. At each time t, there is an unknown number of new targets nηt arriving, where nηt is
a random number following a Poisson distribution

n
η
t ∼

e−η̄t η̄n
η

t
t

n
η
t !

, (6.3)

and each newly arriving target follows an i.i.d. PDF, referred to as the “arrival
distribution” over the state space, independent of the pre-existing targets, given by

f
η
t (x) . (6.4)
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5. At each time step t, the measurement device will receive at most one measurement
from a specific target, i, in state xi

t
with a possibly time and state dependent proba-

bility of detection

Pd
(
xi
t

)
. (6.5)

6. Each received measurement zjt , j ∈ [1 : mt], conditioned on its corresponding
detected target xi

t
, independent of all other measurements and targets, follows the

measurement PDF

h
(
zjt |xit

)
. (6.6)

7. At each time t, a unknown number mµ
t of false alarms, e.g. erroneous measure-

ments, are received, with mµ
t being a random variable following a Poisson distribu-

tion

m
µ
t ∼

e−µ̄t µ̄m
µ

t
t

m
µ
t !

. (6.7)

Each false alarm received, follows an i.i.d. PDF over the measurement space, inde-
pendent of the targets and target related measurements, given by

h
µ
t (z) . (6.8)

8. Each measurement can come from at most one target, and each target can give at
most one measurement.

There are applications where some of these assumptions are relaxed or slightly different.
For example, relaxing the last part of assumption A-8 will result in extended object track-
ing[Granstrom et al., 2016], where targets can give more than one measurement. Some
other authors, such as for instance Vo et al. [2014], consider the arrival of new targets to be
that of a MB instead of assumption A-4. This might be appropriate for some applications,
given that it is modeled appropriately.

6.2 The multi target transition function

Assumption A-4 basically states that targets arrive according to a PPP with intensity given
by ηt(x) = η̄tf

η
t (x). There are several reasons for this to be a good approximation.

Firstly the targets are assumed to move i.i.d., so one should expect targets to also arrive
i.i.d., and therefore at least the i.i.d. assumption of the PPP is valid. Secondly, the Poisson
distribution is the discrete time cardinality distribution of objects arriving with intervals
that are, not necessarily uniformly, exponentially distributed in continuous time. Thirdly,
a good approximation of the cardinality of a multi Bernoulli process with bounds on the
sum of absolute error in distribution is given by Le Cam [1960] to be

∑n
i r

2
i (very small

when the ri’s are small), where ri is the individual Bernoulli probabilities.
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6.3 The multi target measurement function

In terms of mathematics, assumptions A-2 and A-3 basically state that the single target
transition is that of a BPP, and therefore that the transition of multiple targets is that of a
MB. Together with the birth model, we get that the multi target transition density is that of
a Poisson multi Bernoulli (PMB). This is also in accordance with Mahler [2007, pp. 472],
and we have that combining assumptions A-2, A-3 and A-4 is given in mathematical terms
by the conditional SDF

f (Xt |Xt ) =
∑

Xs⊆Xt:
|Xs|≤Xt

e−η̄tηXt\X
s

t

∑
ω∈P

|X
t

|
|Xs|

|Xt |∏
i=1:
i/∈ω

(
1− Ps

(
xit
))

×
|Xs|∏
i=1

f
(
xs,i |xωit

)
Ps(x

ωi
t )

. (6.9)

This can be seen from the marginalization of the labeled union individual surviving targets
and a set of arriving targets, as was discussed in chapter 4. The component labeling of Xt

would then first be describing if it is a newly arrived target or a surviving target, and the
labeling of individual elements in the surviving set would mean which of the set elements
in Xt it transitioned from. This is represented in the above as the set convolution over
surviving and arriving targets, and the sum over the permutation variable ω, respectively.

6.3 The multi target measurement function

Assumption A-7, similarly as assumption A-4, states that false alarms follow that of a PPP
with intensity µt (z) = µ̄th

µ
t (z). Typically a sensor has a resolution in space, and its

measurements are then actually over a discrete grid. If one then assumes that each grid
cell has a Bernoulli process for generating false alarms, and that the resolution is large
enough, we have, again by Le Cam [1960], that the PPP is a good descriptor of the false
alarm process.

Also similar to the multi target transition function, assumptions A-5 and A-6 tell us that a
target originated singleton set measurement, Z , given a single target, x, is a BPP with ex-
istence probability given by Pd(x) and existence conditioned distribution given by h(z |x)
such that

h(Z |x) =


h(z |x) Pd(x) , Z = {z}
1− Pd(x) , Z = ∅
0, otherwise

(6.10)

Therefore, using the same labeling and marginalization argument of the transition function,
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Chapter 6. Properties multiple targets

we have that the total multi target measurement function is also a PMB

h(Zt |Xt) =
∑

Zd⊆Zt:
|Zd|≤|Xt|

e−µ̄tµZt\Z
d

t

∑
ωd∈P

|X
t

|

|Zd|

|Xt|∏
i=1:
i/∈ωd

(
1− Pd

(
xit
))|Zd|∏
j=1

h
(
zd,i |xω

d

t

)
Pd
(
xω

d

t

)

= e−µ̄t
∑

ω∈Q
|X
t

|
|Z
t

|

|Zt|∏
j=1:
ωj=0

µt

(
zjt

) |Xt|∏
i=1:
i/∈ω

(
1− Pd

(
xi
t

)) Zt∏
j=1:
ωj>0

h
(
zjt |x

ωj
t

)
Pd
(
x
ωj
t

)
,

(6.11)
with

QNn = {qj ∈ [0 : N ]∀ j ∈ [1 : n]|qj = i > 0 =⇒ qj′ 6= i ∀ j, j′ ∈ [1 : n]} ,
(6.12)

which is equivalent to the description by Mahler [2007, pp. 421]. Here, we have also used
a measurement to target association variables ω, where one can see that ωj = 0 implies
false alarm, ωj = i > 0 implies a specific measurement to target association, and QNn is
the set of feasible associations that satisfies assumption A-8. It is also possible to formulate
this with a target to measurement variables, σ, as

h(Zt |Xt) = e−µ̄t
∑

σ∈Q
|Z
t

|
|X
t

|

|Zt|∏
j=1:
j /∈σ

µt

(
zjt

) |Xt|∏
i=1:
σi=0

(
1− Pd

(
xi
t

)) |Xt|∏
i=1:
σi>0

h
(
zσit |xit

)
Pd
(
xi
t

)
, (6.13)

Similarly to the meaning of the measurement to target association variables, the target to
measurement variables we have that σi = 0 implies no detection, and σi = j > 0 implies
that target i is associated with measurement j. It should also be clear that the target to
measurement and measurement to target formulations are equivalent. This means that
given ω we also know σ, and the the other way around. In other terms

Q|Zt||Xt| ⇐⇒ Q|Xt||Zt|
: (6.14)

σi = j > 0 ⇐⇒ ωj = i > 0, ∀ i, j. (6.15)
or, perhaps even simpler;

σi = j > 0 =⇒ ωσi = i (6.16)

Where the last line in some sense indicates that σ can be thought of as the inverse of ω
since it has the same information, but points in the other direction.

The last formulation we are going to look at is the over-representation where we use both
σ and ω, and we introduce a function γ (σ, ω) to indicate if (6.15) is true;

γ (σ, ω) = 1[σi = j > 0 ⇐⇒ ωj = i > 0, ∀ i, j] . (6.17)
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6.3 The multi target measurement function

With this we write the multi target measurement function as

h(Zt |Xt) = e−µ̄t
∑

σ∈[0:|Zt|]
|X
t

|,

ω∈[0:|Xt|]
|Z
t

|

γ (σ, ω)
|Zt|∏
j=1:
ωj=0

µt

(
zjt

) |Xt|∏
i=1:
σi=0

(
1− Pd

(
xi
t

))∏
(i,j)∈[1:|Xt|]×[1:|Zt|]:

σi=j, ωj=i

h
(
zjt |xit

)
Pd
(
xi
t

)
,

(6.18)

where the set to be summed over is extended to include non feasible associations, since
γ = 0 in those cases anyway.

As we shall see later, and also stated by Mahler [2007], the sum in the above equations,
over what could be interpreted as measurement origin, can be seen as one of, if not the,
greatest difficulties in MTT.
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7 The multi target filter

Using the notions discussed in chapter 6, we are now going to have a look at what the op-
timal filter will look like, first starting with a look on the birth process and the distribution
it induces, then on incorporating measurements and how that changes the distribution. It
is also going to be pointed out how labeling can be achieved and how to handle a hybrid
state space. At last we are going to describe some implications of the modeling towards
the initial distribution of targets.

7.1 The birth process and undetected targets

Let us first consider that there are no targets at time 0. From assumption A-4, we then know
that the prediction to time 1 must give a PPP for the targets, since it will be a union of the
arriving targets, that follows a PPP with intensity η , and no targets (can be seen as a PPP
with intensity zero). At the time 2, the targets that arrived at time 1 survive with a certain
probability and a new set of targets arrive. We then want the distribution of the union
of the surviving targets and the newly arrived targets. Note that there is no detection or
any sensor information involved yet. We are simply following the assumptions regarding
target arrival, which apparently tell us to consider distributions over targets that are yet to
be detected by any sensor. This quantity will be denoted by λt | t′(x); read as the intensity
of undetected targets at time t given information up to and including time t′. If we have
no targets at time 0 we have λ0 | 0(x) = 0 and λ1 | 0(x) = η1(x) from this reasoning.

So, assumption A-4 tells us that the arrival process is a PPP. We know that the union of
several PPPs is again a PPP, and are therefore going to assume that the arrival process
induces a PPP that we need to handle. This will be called the SDF of undetected targets
since it comes from the distribution of arriving targets, which may or may not be detected,
and will be seen later to have prediction and update steps that only deal with the undetected
portion of the distribution.

We are going to see what the prediction step, and then subsequently the update step will do
with this undetected distribution. We shall see that the prediction step keeps the PPP form,
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Chapter 7. The multi target filter

which is no surprise if one knows of the PHD filter of cahpter 16 and its connection to the
PPP given in secton 16.2.1.2 by Mahler [2007], or the Poisson distributions relationship to
the binomial distribution. The update step on the other hand, will not keep the form and
will induce a MB in addition to the PPP. This will be seen as the result of the measure-
ments being finitely many, unordered, and possibly false alarms, and will automatically
provide us with descriptions of the measurement origin uncertainty and target existence
uncertainty.

7.1.1 Prediction of undetected targets

Say we have estimated an undetected target PPP to have an intensity of λt | t (x) for some
t , for brevity simply denoted by λ(x) in this section. We will also use

λs(xt, xt ) = f
(
x |xr,it

)
Ps
(
xr,it

)
λ
(
xr,it

)
, (7.1)

Ps
(
xit
)
λ
(
xit
)

=
∫

x′∈X

λs
(
x′, xit

)
dx′ =

∫
x′∈X

f
(
x′ |xit

)
Ps
(
xit
)
λ
(
xit
)

dx′ (7.2)

and

λs(xt) =
∫

xt ∈X

λs(xt, xt ) dxt

=
∫

xt ∈X

f
(
x |xr,it

)
Ps
(
xr,it

)
λ
(
xr,it

)
dxt (7.3)

to try and make life a bit simpler. We are interested to see what our new multi target
estimate should be at the next time step, in a similar manner to the standard Bayesian state
estimation.

To predict the SDF of undetected targets forward, we first form the joint over the two time
steps. By using superscript s to denote surviving targets at time t, the joint distribution over
Xt and Xt will be the multiplication of the PPP of undetected targets and the conditional
PMB for the transition of multiple target, given by (6.9);

p (Xt, Xt ) = e−λ̄λXt
∑

Xs⊆Xt:
|Xs|≤Xt

e−η̄tηXt\X
s

t

∑
ω∈P

|X
t

|
|Xs|

|Xt |∏
i=1:
i/∈ω

(
1− Ps

(
xit
))

×
|Xs|∏
i=1

f
(
xs,i |xωit

)
Ps(x

ωi
t )
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7.1 The birth process and undetected targets

distributing λXt and ηX
s

t into the products;

= e−λ̄−η̄tηXtt
∑

Xs⊆Xt:
|Xs|≤Xt

∑
ω∈P

|X
t

|
|Xs|

|Xt |∏
i=1:
i/∈ω

(
1− Ps

(
xit
))
λ
(
xit
)

×
|Xs|∏
i=1

f
(
xs,i |xωit

)
ηt(x

ωi
t ) Ps(x

ωi
t )λ(xωit )

substituting in (7.1) and (7.2), and multiplying out the parenthesis;

= e−λ̄−η̄tηXtt
∑

Xs⊆Xt:
|Xs|≤Xt

∑
ω∈P

|X
t

|
|Xs|

|Xt |∏
i=1:
i/∈ω

λ(xit )− ∫
x′∈X

λs
(
x′, xit

)
dx′


×
|Xs|∏
i=1

λs
(
xs,i, xωit

)
ηt(xs,i)

.

(7.4)

Now we want to marginalize over Xt in (7.4) using the set integral to get the predicted
multi target state SDF. First we see that we can split the integral over the surviving and
non-surviving components. We also have that the targets in Xt are i.i.d., so the permu-
tations after marginalization will give the same outcome and can therefore be treated by
multiplying in a combinatorial constant. After integration, the last sum will simply turn
into the number of ways to choose the surviving elements inXs out ofXt in order, which
are |Xt |!

(|Xt |−|Xst |)!
. Lastly we have that the integral of the different non-surviving targets

will become the same constant. This will give

p(Xt) =
∫
p(Xt, Xt ) δXt (7.5)

inserting (7.4) for the SDF and (4.6) for the set integral;

=
∞∑

|Xt |=0

e−λ̄−η̄tηXtt
|Xt |!

∑
Xs⊆Xt:
|Xs|≤Xt

∑
ω∈P

|X
t

|
|Xs|

|Xt |∏
i=1:
i/∈ω

∫
xit ∈X

λ(xit )− ∫
x′∈X

λs
(
x′, xit

)
dx′
 dxit

×
|Xs|∏
i=1

∫
x
ωi
t ∈X

λs
(
xs,i, xωit

)
ηt(xs,i)

dxωit

(7.6)
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Chapter 7. The multi target filter

performing the integrals using (7.3) and λ̄ =
∫

x∈X

λ(x) dx;

=
∞∑

|Xt |=0

e−λ̄−η̄tηXtt
|Xt |!

∑
Xs⊆Xt:
|Xs|≤Xt

∑
ω∈P

|X
t

|
|Xs|

|Xt |∏
i=1:
i/∈ω

(
λ̄ − λ̄s

)
×
|Xs|∏
i=1

λs
(
xs,i
)

ηt(xs,i)
(7.7)

inserting the combinatorial constant for the last sum and rewriting the products;

=
∞∑

|Xt |=0

e−λ̄−η̄tηXtt
|Xt |!

∑
Xs⊆Xt:
|Xs|≤Xt

|Xt |!
(|Xt |−|Xs|)

(
λ̄ − λ̄s

)(|Xt |−|X
s|)
(
λs

η

)Xs
(7.8)

interchanging the sums and cancelling |Xt |! ;

= e−λ̄−η̄tηXtt
∑

Xs⊆Xt

(
λs

η

)Xs ∞∑
|Xt |=0

1
(|Xt | − |Xs|)

(
λ̄ − λ̄s

)(|Xt |−|X
s|)

(7.9)

recognising the power series of the exponential function;

= e−λ̄−η̄tηXtt
∑

Xs⊆Xt

(
λs

η

)Xs
eλ̄−λ̄

s

= e−λ̄
s−η̄

t

∑
Xs⊆Xt

η
Xt\X

s

t (λs)X
s

(7.10)

recognizing that this is union of two PPPs, given by (4.14) to be a new PPP;

= e−λ̄
s−η̄

t (λs + ηt)
Xt . (7.11)

This gives us the total predicted distribution to time t for the undetected targets conditioned
on information up t′ < t as

λt | t′(x) = ηt(x) + λst | t′(x) = ηt(x) +
∫

x′∈X

f (x |x′) Ps(x′)λt | t′(x′) dx′. (7.12)

This is the same result as Williams [2015b, (37)] has, and equivalent to the PHD predictor
of Mahler [2007, (16.95) pp.589] without spawning.

Another interpretation on why we get back a PPP and not a PMB, which one might expect
since the multi target transition function indeed is a PMB, is that the Poisson cardinality
can be seen as the limit of the binomial distribution with infinitely many “trials” that give
rise to i.i.d. targets. The i.i.d. MB transition of these targets are essentially just i.i.d. BPP
updates of all the BPPs in the binomial, and hence the limit still applies. Bounds on the
relations between a multi Bernoulli probability mass function1 and the Poisson probability
mass function are given with the original credits to Le Cam [1960], but perhaps simpler
described by for instance Serfling [1978], in which the binomial probability mass function
is of course a special case.

1Not meaning the point process right here, but the distribution over the integers, and better known as Poisson
binomial
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7.1 The birth process and undetected targets

Hybrid state space

Having a hybrid state space in the undetected targets can be dealt with in a straightforward
fashion. Tracking one intensity per discrete state can gained by expanding the transition
and changing an integration to a summation, and gives

λ
l

t | t (x) = η
l
t(x) +

∑
l′∈L

∫
x′∈X

f l(x |x′)πll′(x
′)λl

′

t | t (x′) dx′. (7.13)

One now has to do this for each of the discrete states l. The the number of targets is now
gained by summing over the discrete states and integrating out the continuous state

λ̄t | t =
∑
l∈L

∫
x∈X

λ
l

t | t (x) dx (7.14)

and the discrete state probability as

µ
l,λ

t | t =
∫

x∈X

λ
l

t | t (x)
λ̄t | t

dx. (7.15)

7.1.2 Measurements of the undetected targets

We now want to see what happens to the undetected target SDF when we receive measure-
ments. We know from the previous section that the prediction step keeps the form when it
is a PPP. By this we proceed to assume that the target SDF prior to measurement is a PPP.

To simplify notation through the derivation, we will use the current undetected target in-
tensity

λ(x) = λt | t (x) , (7.16)

the updated undetected target intensity

λ+(x) = λt | t(x) = (1− Pd(x))λ(x) , (7.17)

the joint undetected target and measurement intensity

Λ(z, x) = h(z |x) Pd(x)λ(x) , (7.18)

the undetected target measurement intensity

Λ(z) =
∫

x∈X

Λ(z, x) dx =
∫

x∈X

h(z |x) Pd(x)λ(x) dx (7.19)

the expected number of detections of the undetected targets

Λ̄ =
∫

z∈Z

Λ(z) dz, (7.20)
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and the expected number of undetected targets after update

λ̄
+ =

∫
x∈X

λ+(x) dx =
∫

x∈X

(1− Pd(x))λ(x) dx = λ̄ − Λ̄ . (7.21)

The joint of the undetected target and measurements is given by multiplying the undetected
target SDF, fλ(X ) by the multi target measurement equation (6.11), and is given by

pu(Zt, Xt) = h(Zt |Xt) fλ(Xt) (7.22)

= e−λ̄λXte−µ̄t
∑

ω∈Q
|X
t

|
|Z
t

|

|Zt|∏
j=1:
ωj=0

µt

(
zjt

) |Xt|∏
i=1:
i/∈ω

(
1− Pd

(
xi
t

)) |Zt|∏
j=1:
ωj>0

h
(
zjt |x

ωj
t

)
Pd
(
x
ωj
t

)
,

distributing λXt and
{
µt

(
zjt

)
|ωj = 0

}
into the products;

= e−λ̄ e−µ̄tµZt
∑

bt∈Q
|X
t

|
|Z
t

|

|Xt|∏
i=1:
i/∈ω

(
1− Pd

(
xi
t

))
λ
(
xi
t

) |Zt|∏
j=1:
ωj>0

h
(
zjt |x

ωj
t

)
Pd
(
x
ωj
t

)
λ
(
x
ωj
t

)
µt

(
zjt

) ,

using (7.17) and (7.18);

= e−λ̄ e−µ̄tµZt
∑

bt∈Q
|X
t

|
|Z
t

|

|Xt|∏
i=1:
i/∈bt

λ+(xi
t

) |Zt|∏
j=1:
ωj>0

Λ
(
zjt , x

ωj
t

)
µt

(
zjt

) . (7.23)

In general we are interested in f (X |Z), which needs the invocation of Bayes theorem
along with the marginal of the joint with respect toX . We are going to pursue the marginal,
but will begin first with some notes. The states are i.i.d., so when taking the marginal,
there is no difference in which target the measurement originated from, and the sum over
target permutations can be interchanged with a combinatorial multiplication. This will be
the number of ways to choose target originated measurements, |Zdt | from the targets |Xt|
in order, namely |Xt|!

(|X
tim
|−|Zdt |)!

. With this, the set integral of (7.23) with respect to Xt

becomes

hλ(Zt) =
∫
pu(Zt, Xt) δXt (7.24)

=
∞∑

|Xt|=0

e−λ̄ e−µ̄tµZt
|Xt|!

∑
ω∈Q

|X
t

|
|Z
t

|

|Xt|∏
i=1:
i/∈ω

∫
x∈X

λ+(xi
t

)
dx
|Z |∏
j=1:
ωj>0

∫
x∈X

Λ
(
zjt , x

ωj
t

)
µt

(
zjt

) dx (7.25)

using (7.19) and (7.21) and inserting for the combinatorial for a part of the sum;

=
∞∑

|Xt|=0

e−λ̄ e−µ̄tµZtt
|Xt|!

∑
Zd⊆Z:
|Zd|≤|Xt|

|Xt|!
(|Xt| − |Zdt |)!

(λ̄+)(|Xt|−|Z
d
t |)
(

Λ
µt

)Zdt
(7.26)
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canceling |Xt|! and taking the sum over |Xt|, recognizing the power series for the expo-
nential function;

= e−λ̄ e−µ̄tµZtt
∑

Zdt⊆Zt

eλ̄
+
(

Λ
µt

)Zdt
(7.27)

using the last part of (7.21) and factoring togheter the exponentials in e;

= e−λ̄−µ̄t+λ̄−Λ̄µ
Zt
t

∑
Zdt⊆Zt

(
Λ
µt

)Zdt
= e−µ̄t−Λ̄µ

Zt
t

∑
Zdt⊆Zt

(
Λ
µt

)Zdt
(7.28)

recognizing this as the union of two PPPs to use (4.14) ;

= e−(µ̄t+Λ̄)(µt + Λ)Zt , (7.29)

and we see that the total measurement SDF is a new PPP. This should not come as a
surprise as this is very similar to the setup of the prediction equations where the surviving
targets would take on the role of the measurements and new targets would take the role of
false alarms in measurement space.

Conditioning (7.23) on Zt will now give

fλ(Xt|Zt) =
h(Zt |Xt) fλ(Xt)

hλ(Zt)
(7.30)

= e−λ̄ e−µ̄t
e−(µ̄t+Λ̄)

(
µt

µt + Λ

)Zt∑
ω∈Q

|X
t

|
|Z
t

|

|Xt|∏
i=1:
i/∈ω

λ+(xi
t

) |Zt|∏
j=1:
ωj>0

Λ
(
zjt , x

ωj
t

)
µt

(
zjt

) , (7.31)

simplifying the exponential, expanding the first product and distributing it;

= e−λ̄
+ ∑
ω∈Q

|X
t

|
|Z
t

|

|Zt|∏
j=1:
ωj=0

µt

(
zjt

)
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(
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)
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(
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) |Xt|∏
i=1:
i/∈ω

λ+(xi
t

) |Zt|∏
j=1:
ωj>0

Λ
(
zjt , x

ωj
t

)
µt

(
zjt

)
+ Λ
(
zjt

) ,
(7.32)

this can also be written using σ instead of ω as described earlier ;

= e−λ̄
+ ∑
σ∈Q

|Z
t

|
|X
t

|

|Zt|∏
j=1:
j /∈σ

µt

(
zjt

)
µt (zj) + Λ(zj)

|Xt|∏
i=1:
σi=0

λ+(xi
t

) |Xt|∏
i=1:
σi>0

Λ
(
zσit , x

i
t

)
µt (zσit ) + Λ(zσit ) ,

(7.33)

identifying r(t,σi) from (7.37) and splitting the sum;

= e−λ̄
+ ∑
Xdt ⊆Xt:
|Xdt |≤|Zt|

(λ+)Xt\X
d
t

∑
σ∈P

|Z
t

|

|Xd
t

|

|Zt|∏
j=1:
j /∈σ

(
1− r(t,j)

) |Xt|∏
i=1:
σi>0

r(t,σi)
Λ
(
zσit , x

d,i
t

)
Λ(zσit ) ,

(7.34)
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also identifying f (t,j)(x) in (7.37) ;

= e−λ̄
+ ∑
Xdt ⊆Xt:
|Xdt |≤|Zt|

(λ+)Xt\X
d
t

∑
σ∈P

|Z
t

|

|Xd
t

|

|Zt|∏
j=1:
j /∈σ

(
1− r(t,j)

) |Xt|∏
i=1:
σi>0

r(t,σi)f (t,σi)
(
xd,it

)
,

(7.35)

which should be recognized as a PMB, since the first part is clearly a PPP, the latter a MB
and the first sum corresponds to the set convolution. This shows that having a prior PPP
with intensity λt | t (x) for undetected targets, and then receiving measurements will create
a posterior that is a union of the still undetected targets that follow a PPP with intensity
λt | t(x), and a MB for possible target detections given by

undetected
{
λt | t(x) = λ+(x) = (1− Pd(x))λt | t (x) , (7.36)

detected
hypotheses



f (t,j)(x) =
Λ
(
zjt , x

)
Λ
(
zjt

) =
h
(
zjt |x

)
Pd(x)λt | t (x)∫

x∈X

h
(
zjt |x

)
Pd(x)λt | t (x) dx

,

r(t,j) =
Λ
(
zj
)

µt (zj) + Λ(zj) =

∫
x∈X

h
(
zjt |x

)
Pd(x)λt | t (x) dx

µt

(
zjt

)
+
∫

x∈X

h
(
zjt |x

)
Pd(x)λt | t (x) dx

(7.37)

respectively. This result is the same as Williams [2015b, (42),(56),(57)]. We will later
introduce a better superscript notation to accommodate a growing set of hypotheses and
possible targets. In fact, it will later be shown that we have to consider that every mea-
surement could be a previously undetected target, as well as any of the previously detected
targets.

Also, note that there is an existence probability which is less than unity in the case of false
alarm. This means that the notion of detected targets might give the wrong impression,
since it is only a potential target. We shall therefore call every Bernoulli component of the
detected targets as a track, which potentially could be related to a real target and potentially
be a false target, i.e. clutter. In writing, this distinction might sometimes slip, but the a
Bernoulli component should always be thought of as a potentially erroneous target. Hence,
a true target can be related to any of these tracks, and we only know which probabilistically.
Since we have to consider that each new measurement could be a never target that is never
seen before, a natural indexing of the BPP is to use a linear index over the measurements
ordered in time and according to some, arbitrary but specific, ordering within each scan.
We shall adopt that the Bernoulli component i was created by measurement j at time t
such that

i = j +
t−1∑
τ=0
|Zτ |, (7.38)
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sometimes abbreviated
i = (t, j). (7.39)

A guess now would be that the total target distribution also has this form, a PMB. We will
later see that this is not the case, due to data associations at later sensor scans and the MB
part. Instead of a PMB we will have a PMBM with weights that are given by the data
association probabilities.

Labeling

Like before we can interpret the permutation sums as a marginalization of a latent com-
ponent label and include this into the SDF. Using π as the latent component label, and
the component labeled multi target state as XL

t =
{

(xi
t
, πi)

}
where πi = 0 meaning still

undetected, we can write the component labeled distribution as

fλ
(
XL
t |Zt

)
= e−λ̄

+ (
λ+)XL(0)

t
∏
i

f i
(
X
L(i)
t

)
. (7.40)

Here f i(X ) is the BPP component coming from measurement i = (t, j), and its cardinal-
ity distribution takes care of the zero likelihood case of multiple targets having the same
BPP label. It is important to note that marginalizing out π will give the distribution derived
earlier, as seen by the former actually just being the sum over π.

7.2 Detected targets

The last subsection pointed to that the true distribution of the targets under the current
assumptions is that of a union of a PPP and a MB. To proceed we are going to assume that
we have the more general distribution of a PMBM, which is the union of a PPP and a multi
Bernoulli mixture (MBM). These components will be denoted by

fppp
t | t′ (Xu) = e−λ̄t | t′λ

Xu

t | t′ fmbm
t | t′

(
Xd
)

=
∑
θ∈Θt

w
θ

t | t′f
θ

t | t′
(
Xd
)

(7.41)

respectively, where Θ are the set of hypotheses in the mixture, wθ is the hypothesis prob-
ability, or weight, and fθ

(
Xd
)

is the hypothesis conditioned MB. Note that a MB is a
special case of a MBM with only a single component in the mixture. With this the PMBM
SDF is given as

fpmbm
t | t′ (Xt) =

∑
Xdt ⊆Xt

fppp
t | t′

(
Xt \Xd

t

)
fmbm
t | t′

(
Xd
t

)
. (7.42)

In what follows we are going to see that the prediction and update step will maintain this
form, but have an increase in the number of hypotheses after the update step, and therefore
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Chapter 7. The multi target filter

not be a true conjugate prior1. Nevertheless, having the same form makes algorithm de-
velopment and approximations easier, and it is therefore a remarkable result, even though
it is computationally unfeasible due to the expanding parameter space over longer times
or larger problems.

The BPP in the MB can be thought of as a single track or a potential target, and we will
therefore use the hypothesis conditioned notation of

f
i,θi

t | t′ (x) (7.43)
to denote the existence conditioned state PDF for track/component i, and

r
i,θi

t | t′ (7.44)
for the existence probability of track/component i, such that the BPP SDF becomes

f
i,θi

t | t′ (X ) =


r
i,θi

t | t′f
i,θi

t | t′ (x) , X = {x} ,

1− ri,θ
i

t | t′ , X = ∅,

0, otherwise.

(7.45)

The difference between the BPP and the state distribution is seen by the argument, as the
former takes sets and the latter vectors.

7.2.1 Prediction of the detected targets.

Since the undetected and the detected components are independent in the posterior at t ,
their respective predictions are also independent due to i.i.d. Markovian dynamics. The
prediction of the detected components MBM can therefore be derived independently of the
undetected components PPP. Furthermore, since the joint over two time steps is factored
into the multi target transition PMB and a mixture, it is itself a mixture over the very same
hypotheses. Hence we only have to treat the prediction of a MB in detail, which according
to intuition should be another MB with existence probabilities and state PDFs given by the
intuitive formulas. To see all this we extract a part of the set convolution of the multi target

1A conjugate prior is when one can simply update the parameters of the prior distribution to get the posterior.
Here we need to add new ones, and even though they are of the same form, it does not make a true conjugate
prior.
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transition density and get

fpmbm
t | t (Xt, Xt ) = f (Xt |Xt ) fpmbm

t | t (Xt ) (7.46)

=
∑

Xdt ⊆Xt,
Xdt ⊆Xt

f
(
Xt\Xd

t |Xt \Xd
t

)
fppp
t | t

(
Xt \Xd

t

)
∑
θ∈Θ

wθt f
s
(
Xd
t |Xd

t

)
fθt | t

(
Xd
t

)
(7.47)

,
∑{

Xd
t Xd

t

}
⊆
{
Xt Xt

}fppp
t | t

(
Xt\Xd

t , Xt \Xd
t

)∑
θ∈Θ

wθt f
θ
t | t
(
Xd
t , X

d
t

)
. (7.48)

Here we see that this is the set convolution over the joint multi target state over two consec-
utive time steps. At the same time the prediction is in some sense unaware of the mixture
and predicts it for each component independently. fs(· | ·), with s denoting surviving,
is introduced as the multi target transition function without birth, or η = 0 if you like.
Thus the PPP birth process is just included in the prediction of the undetected targets, as
is appropriate.

In fact, we can do the same exercise for the MB as well since it also is the union of
independent components under the hypothesis. One does the exact same thing as above,
and then only needs to worry about a single BPP prediction. This simplifies to

f i,θ
i

t | t (Xt, Xt ) =

(
1− ri,θ

i

t | t

)
, Xt = Xt = ∅,

(1− Ps(xt )) ri,θ
i

t | t f
i,θi

t | t (xt ) , Xt = {xt } , Xt = ∅

Ps(xt ) f (xt |xt ) ri,θ
i

t | t f
i,θi

t | t (xt ) , Xt = {xt } , Xt = {xt}

0, otherwise.

(7.49)

Marginalizing out Xt using the set integral can be done by first integrating out the state
when Xt = {xt } and then summing over the cardinality. There are only two parts in
this sum, due to the cardinality distribution of the BPP giving zero for any more than one
target. To do this we will use the predicted existence probability which is the marginal of
the joint existence, survival and state distribution

ri,θ
i

t | t =
∫

x∈X

Ps(x) f i,θ
i

t | t (x) ri,θ
i

t | t dx (7.50)
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and the existence conditioned predicted state distribution, given by Bayes theorem and the
joint over the predicted existence and state distribution

f i,θ
i

t | t (xt) =

∫
x∈X

f (xt |x) Ps(x) f i,θ
i

t | t (x) ri,θ
i

t | t dx

ri,θ
i

t | t

=

∫
x∈X

f (xt |x) Ps(x) f i,θ
i

t | t (x) dx

∫
x∈X

Ps(x) f i,θ
i

t | t (x) dx
. (7.51)

With this, we can identify the two first cases in (7.49) are the only cases that can give
Xt = ∅ with nonzero likelihood and have the predicted BPP for the empty set as

f i,θ
i

t | t (Xt = ∅) =
∫
f i,θ

i

t | t (∅, Xt ) δXt ,

inserting the two first cases of (7.49);

=
(

1− ri,θ
i

t | t

)
+
∫

x∈X

(1− Ps(x)) ri,θ
i

t | t f
i,θi

t | t (x) dx,

distributing the PDF, noting that it integrates to unity and inserting (7.50);

= 1− ri,θ
i

t | t + ri,θ
i

t | t − r
i,θi

t | t

= 1− ri,θ
i

t | t . (7.52)

Identifying case 3 in (7.49) as the only case that give nonzero likelihood for Xt = {xt},
we get

f i,θ
i

t | t (Xt = xt) =
∫
f i,θ

i

t | t ({xt} , Xt ) δXt ,

inserting for case 3 in (7.49)

=
∫

x∈X

Ps(x) f (xt |x) ri,θ
i

t | t f
i,θi

t | t (x) dx,

inserting (7.50) and (7.51)

= ri,θ
i

t | t f
i,θi

t | t
(
xt
)
. (7.53)

Since all other cases of Xt give zero likelihood, we are done. This is clearly a new BPP,
and we have that taking the union of all the predicted BPPs for detected and PPP for unde-
tected targets we get back the same form as we started with, also with the same number of
global hypotheses with the same weights. Along with (7.12) this concludes a derivation,
or a proof if you like, of theorem 1 by Williams [2015b], which is the prediction step of
the PMBM filter. Note that we did this first through deriving component independence in
the prediction, such that the multi target state can be seen as consisting of a union of inde-
pendent sets, and then deriving the prediction for the separated components/sets. As such
it is seen that multi target prediction step attains the identities of the sets in the underlying
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7.2 Detected targets

union and hence track continuity of the BPP in the sense that the predicted BPP would be
the same target as it was on the last time step if it actually exists.

Hybrid state

If we were to consider a hybrid state, there is nothing in the preceding derivations that
hinders that to be the case. To be more explicit, discrete states can be treated just in the
same way as continuous states, only that one have to do summations instead of integrals.
As we did in the section on hybrid state spaces we are going to additionally condition
the continuous states on the discrete states while the discrete states are conditioned on the
same variables as the continuous states was for the non hybrid case.

Writing out the state distribution including discrete states in the above, we get the existence
probability conditioned on the global hypothesis, θi, to be

r
i,θi

t | t =
∑
lt ∈L

∫
xt ∈X

Pl
i
t
s (xt ) f i,l

i
t ,θ

i

t | t (xt )µi,l
i
t ,θ

i

t | t r
i,θi

t | t dxt , (7.54)

the existence conditioned discrete-state probability

µ
i,lit,θ

i

t | t =

∑
lt ∈L

∫
xt ∈X

π
lit
lit

(xt ) Pl
i
t
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i
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i
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i
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i
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r
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t | t

=
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i
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i
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i
t ,θ

i

t | t (xt )µi,l
i
t ,θ

i

t | t dxt
, (7.55)

the existence and predicted discrete-state conditioned mixing distribution

f
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t | t
(
xt | lit

)
=
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π
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i
t ,θ

i

t | t (xt )µi,l
i
t ,θ

i

t | t∑
lt ∈L

∫
xt ∈X
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i
t
s (xt ) f i,l

i
t ,θ

i

t | t (xt )µi,l
i
t ,θ

i

t | t dxt
, (7.56)

and at last the existence and predicted discrete-state conditioned predicted countinuous-
state distribution

f
i,lit,θ

i

t | t (xt) =
∫

xt ∈X

f l
i
t(xt |xt ) f i,θ

i

t | t
(
xt | lit

)
dxt . (7.57)

The discrete state conditioned survival probability, Pls (x), has been introduced to include
the possibility for modeling target survival as discrete state dependent. These equations
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are completely analogous to the equations derived in the section on hybrid state in the
Bayesian estimation chapter. The exception is the inclusion of existence probability and
survival probability. The existence probability is seen to disappear in state updates as are
only target related so these equations are only differing in that they have survival prob-
ability. The survival probability is also in some sorts a discrete state transition and can
therefore be combined with the discrete transition function in all the state update equa-
tions. If the survival and transition probability is modeled to be consisting of a uniform
component and weighted Gaussian components they can be combined into a single transi-
tion by combining Gaussian components.

The author again suggests that hypothesis reduction within the single target PDF should be
done in the mixing distribution, right before the last step above, or as a part of combining
the last two steps if the distributions used allows for simplifications through doing that.

This is in fact a generalization of the prediction step of the IMM-joint integrated proba-
bilistic data association (JIPDA) of Musicki and Suvorova [2008], in the sense that if we let
Pls (x) be constant, πltlt (x) = π

lt
lt

, and f (xt |xt ) and f i,θ
πi
t

t | t (xt | lt) be approximated by

Gaussians, we get the exact same prdiction algorithm. If πltlt (x) = π
lt
lt

, making it equiv-
alent to the first line of [(9)]1, (7.54) becomes [(10)]1 with Π21 = 02 and the existence
probability ψ in their notation equivalent to r in ours. Similarly, with the given assump-
tions, (7.55) and (7.56) are equivalent to [(21)-(24)]1 and (7.57) equivalent to [(25)]1 under
the Gaussian assumption.

Labeling

An important thing to notice is that the predicted distribution consists of the same BPPs
in the sense that they keep their identity, while they change the existence probability and
existence conditioned state distribution. Using component labeling will therefore keep
the same labeling as before the prediction step, and this can therefore also be seen as a
derivation of the LMB prediction step as well. The MB is in some sense already labeled,
in that its individual BPP models an independent individual target.

7.2.2 Detection of all targets

Similar to the joint over time steps in the prediction, the joint over measurements and
targets can be split up since the components are all independent. However, since we are
conditioning on the measurements in the end, we cannot simply take the union of all the
individual components updated. We will see this later. It will anyway simplify things later
if we take a look at what happens to a single BPP without any clutter in an update.

1[·] Referring to content by Musicki and Suvorova [2008]
2Π21 = 0 signifies no reentry here which was allowed by Musicki and Suvorova [2008], and is modeled by

the PPP birth process here giving reentering targets “a new identity” or by letting the scene go beyond our field
of view to not treat those targets as dead, but simply having no detection probability.
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Update of a BPP

The joint over the i’th BPP component and its corresponding BPP measurement condi-
tioned on the global hypothesis θ can be written as

p
(
Zt, X

i
t

)
=



1− ri,θ
i

t | t , Xi
t = Zt = ∅,(

1− Pd
(
xi
t

))
f
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(
xi
t

)
r
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t | t , Xi
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{
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t

}
, Zt = ∅,

h
(
z |xi

t

)
Pd
(
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t

)
f
i,θi

t | t
(
xi
t

)
r
i,θi

t | t , Xi
t =

{
xi
t

}
, Zt = {z} ,

0, otherwise.

(7.58)

There are two cases that correspond to no detection; either the target does not exist, or it
was not detected. The marginal for Zt = ∅ is given by the set integral, and is the sum of
the first two cases where the state is marginalized out in the second case;

h(Zt = ∅) =
∫
p
(
∅, Xi

t

)
δXt (7.59)
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∫
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t | t dxi
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(7.60)
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(7.61)

= 1− ri,θ
i
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∫
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∈X
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(
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(
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)
dxi

t
. (7.62)

Case three is the only case corresponding to detection, so the marginal is just the integral
with respect to xi

t

h(Zt = {z}) =
∫
p
(
{z} , Xi

t

)
δXt (7.63)
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t | t dxi
t
. (7.64)
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We now condition the target BPP on the corresponding measurements
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0, otherwise.
(7.65)

We have to work a bit more on case 2 to get it into a form with a state distribution and a
probability of existence;(
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In the above we can identify the updated existence probability when no detection occurred
as (also seen by taking 1 minus case one)
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(7.67a)

and the updated existence conditioned state distribution when no detection occured as

f
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(7.67b)
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and in the case of detections, we get the existence probability and existence conditioned
state distribution as

r
i,θ̂i

t | t = 1, (7.67c)
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, (7.67d)

respectively. With this we have that the updated distribution is also a BPP, although a
degenerate one in the case of detection since probability of existence is one. The bar over
θi is introduced temporarily to mean undetected, while the hat means detected hypothesis.
It is encouraging to see that the existence probabilities sum to one for the two cases.

Update of the joint multi target

We will now proceed to see what having multiple targets and multiple measurements to-
gether will add in complexity over the single BPP case. The joint SDF over the multi
target state and the measurements is given by the multiplication of the PMBM and the
multi target measurement function (Nt | t denotes the number of BPP components in the
MBM)

pt | t (Xt, Zt) = h(Zt |Xt) f
pmbm
t | t (Xt) (7.68)
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Combining products over the same range;
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Here, the updated undetected targets given by (7.36) can be found as the first product on
the second line, the scaled versions of the newly detected BPP components in (7.37) can
be identified as the last product on the second line, and scaled versions of (7.67) as the
product over the non-existent components on the first line as well as the two products over
undetected but existent and detected components on third line. Since we see the BPPs for
new tracks, we claim that the amount of components in the MB will increase by |Zt| such
that the updated number of BPP components will be Nt | t = Nt | t + |Zt|.

One can also see that σ equivalently can be seen to hypothesize to update the BPP com-
ponents or the PPP component directly instead of specific target states. This is especially
so, since a single target does not have a particular distribution in the RFS framework1, and
it is then rather more correctly the track/components in the multi target distribution that
get updated under some hypothesis instead of the target states. To accommodate the more
correct update hypothesis, we introduce the track to measurement association variable (or
measurement pointer if you want) for already existing components (previously detected
target hypotheses);

at =
{
ait ∈ [0 : |Zt|]

∣∣∣ait = j > 0 =⇒ ai
′

t 6= j, i 6= i′, ∀ i, i′ ∈
[
1 : Nt | t

]}
(7.71)

where, in the same way as the target to measurement pointer, it has ait = j > 0 for com-
ponent i giving rise to measurement j, and ait = 0 for not giving rise to any measurement.

Note that in the above, there are two {σi′ , πi′} combined hypotheses that correspond to
ait = 0, namely the track hypothesis {i′ /∈ π} and the target hypothesis {πi′ = i, σi′ = 0}.
All other {σi′ = j, πi′ = i} target hypotheses are equivalently described by by the track
to measurement hypothesis at, along with an updated target to component hypothesis,

π̄ ∈ R
Nt | t
|Xt|

(at, Nt | t ) =
{
π ∈ Q

Nt | t
|Xt|

= Q
(Nt | t +|Zt|)
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∣∣∣j ∈ at =⇒ Nt | t+ j /∈ π
}

(7.72)

1Targets are elements of a set, and as such have no specific description other than having a state described
by the distribution over the set of targets
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that incorporates the components of possible detections of never before detected targets
when the measurement is not hypothesized to be associated with an already existing com-
ponent.

With this we rewrite the joint multi target and measurement equation in terms of the pre-
viously derived update equations
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(7.74)

It should be made clear that this is just a rewriting of the previous equation where it is
just multiplied and divided by the same number and restructured. If one multiplies out the
fractions and inserts the old permutation variables, one obtains the exact same equation as
the previous.

We see in the two last products that there is only one hypothesis corresponding to the bar
hypothesis in the single component update of (7.67) but several that correspond to the hat
hypothesis. We want to include this into the global hypothesis structure Θt such that we
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can update Θt to Θt by incorporating at as well. We do this by letting θit = (θit , ait) for
previously detected tracks that have nonzero existence probability, θit = (θit , ∅) for tracks
that have zero existence probability, and θit = j for new tracks when the measurements are
available for it. The new set of global hypotheses then becomes

Θt =
⋃

θt ∈Θt ,
at∈At

(θit)
Nt
i=1, (7.75)

with the single component hypotheses defined as
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(7.76)

(7.77)

The two first lines are the new track hypotheses for existing tracks, while the two last lines
are for new tracks where we include hypotheses for having zero existence probability from
the beginning, if the measurement it belongs to is used by another component.

The BPP components are scaled in the above compared to what was derived earlier in
(7.37) and (7.67). To accommodate this, we are going to introduce variables, wi,a

i
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represent this scaling. The scaling variables needed are seen to be
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(7.78)

The first case in the above, corresponds to no detection of already established tracks, the
second to detection of already established tracks, the fourth to new tracks and the third to
this tracks being non-existent due to the measurement being associated with another com-
ponent. Case three has a BPP with an existence probability of zero due to assumption A-8,
and the existence conditioned state distribution for a zero existence probability component
has no effect, so we therefore do not need to consider it. This component does not show up
directly in the derivation and denotes a degenerate BPP, but it is included to make notation
consistent and also for letting us keep the structure of the problem as will be seen in the
upcoming result.
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Writing the joint in terms of the scaling and (7.36), (7.37) and (7.67) with the new hypoth-
esis structure simplifies it to 1
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extracting the weights out of the products into a new product
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(7.80)

The last line should be recognized as an non-normalized PMBM. Knowing that using
Bayes’ theorem on this is simply a scaling by a constant (dependent on Zt) and that the
distributions involved were normalized before, we have our desired result by normalizing
the new weights.

The normalization constant is given by the likelihood of the measurements, which again is
given by the marginalization with respect to Xt. Taking the set integral of the joint gives
us
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To get this we have simply used the fact that under a given hypothesis it is a scaled PMB
where the MB are scaled by the weights and the normalization constant is missing for
the PPP, The calculations of these sums have exponential complexity, as they are over all

1ai
t does not exist and is arbitrary for i > Nt since it can only be updated by one measurement, and is only

in the equation to simplify notation in calculation towards the final result
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feasible associations, and hence not a tractable calculation. Nevertheless, we have that the
the multi target state distribution conditioned on the last measurement set can with this be
written as

fpmbm
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The (normalized) single component hypothesis weights can be combined to into one weight
to form a global hypothesis probability for the association at this time step. It can also be
included into the global hypothesis weight to make just one single hypothesis probability
for each global hypothesis. That is, we can write the updated hypothesis weight/probabil-
ity as
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Inserting this into the above gives us the final result
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(7.87)

With this we have derived the normalized version of theorem 2 by Williams [2015b] with-
out going through the more abstract derivation using probability generating functionals as
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he did, and which is also a slightly different approach to the recently direct derivation by
Garcia-Fernandez et al. [2018]. An implementation can use a non normalized distribution
since the weights have the appropriate relative magnitude, and hence avoid calculating the
normalizing constant.

Hybrid state update

The hybrid states are independent across targets and can be conditioned on the global
hypothesis in the update so that one do not need to consider the discrete states, or the
continuous states, in the measurement association across targets. If the state is indeed
hybrid, the predicted state PDF is written as
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and therefore (7.67) for the full joint hybrid state and existence update for detections be-
comes
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and for undetected target it becomes
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under the new global hypothesis θt. It should be noted, that it is just to multiply out the
fractions to get the original fraction. In the above we can now identify the update equation
for the existence probability, in case of a component detection, as

r
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t | t = 1, (7.95)
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and, by using this, the continuous-state distribution conditioned on a global hypothesis,
existence and the discrete-state, as
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For the undetected component hypothesis, we get the update for the existence probability
to be

r
i,θit
t | t =

r
i,θit
t | t

∑
l′∈L

µ
i,l′,θit
t | t

∫
x′∈X

(
1− Pl

′

d (x′)
)
f
i,l′,θit
t | t (x′) dx′

1− ri,θ
i
t

t | t
∑
l′∈L

µ
i,l′,θit
t | t

∫
x′∈X

Pl
′

d (x′) f i,θ
i
t

t | t (x′) dx′
, (7.98)

the discrete-state probability conditioned on a global hypothesis and existence, as

µ
i,lit,θ

i
t

t | t =

µ
i,l,θit
t | t

∫
x′∈X

(
1− Pld (x′)

)
f
i,l,θit
t | t (x′) dx′

∑
l′∈L

µ
i,l′,θit
t | t

∫
x′∈X

(
1− Pl

′

d (x′)
)
f
i,l′,θit
t | t (x′) dx′

(7.99)

and, by using this, the continuous-state distribution conditioned on a global hypothesis,
existence and the discrete-state, as
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(7.100)

In the above we have used the notion that there is no special difference in how to handle
discrete states in contrast to continuous states in theory, and then just used (7.67) with
discrete probabilities as well. We then proceeded by restructuring to find a structure that
is more practical in the hybrid case.

The measurement hypothesis weights were a marginalization over the continuous states,
but as there is in principle not any difference in the discrete states, the integrals simply
become sums in the case of discrete states. This lets us write the weights for detection
hypotheses as

w
i,θit
t = r

i,θit
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,
∑
l∈L

w
i,l,θit
t , (7.102)
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and undetected hypotheses as
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,
∑
l∈L

w
i,l,θit
t , (7.105)

where we have defined wi,l,a
i
t

t as the summand in the two different cases. Using this we
can also write the discrete-state probability update for detections as

µ
i,lit,θ

i
t

t | t = w
i,l,θit
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. (7.106)

From this we see, in the same way as for the continuous states, that the weights do not
carry any explicit information regarding the discrete states. However, the discrete-state
distribution give higher weights for measurements that are likely according the discrete-
state hypothesis in the exact same way as the continuous-states distribution does, and the
weights therefore carry information from the full hybrid state needed to distinguish which
target is likely to have given rise to which measurement. It is therefore not necessary
to include the discrete states in the data association as some authors, such as Chen and
Tugnait [2001] and myself [Tokle, 2017], have done previously. Other authors have un-
derstood this before, where for instance Musicki and Suvorova [2008, appendix B] derive
the IMM-JIPDA using this type of conditioning, while it is a bit more unclear how de Feo
et al. [1997] or Bar-Shalom et al. [1991], for instance, have treated this.

Labeling

A key thing to note here is that the update step under an association hypothesis essentially
is a union of independent updates of the components. The measurement origin ambigu-
ity and the need to handle data association then shows up as a result of the targets and
measurements being sets, and hence unordered. Since the sets are unions of independent
objects, the set convolution has to be performed in the joint SDF. These convolutions
can be seen as the marginalization over association hypotheses for the measurements, and
marginalization over component origin hypotheses for the targets.

As seen here, all BPP components have their origin in in a certain measurement associated
with a potential target that has never been detected. This track, conditioned on a measure-
ment association hypothesis, is then independently predicted and updated through time.
As such, each BPP in the MB can be seen as a potential target track that started at some
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measurement,

i = j +
τ−1∑
τ ′=0
|Zτ ′ |, τ ∈ [0 : t], j ∈ [1 : |Zt|],

where the predicted and updated track existence is given by ri,θ
i

t | t′ . Williams [2015b] made
the same type of note, but phrased it differently, and maybe hard for a reader to understand
through the derivation using probability generating functionals.

The component labeling approach can still be applied as the tracks can still be seen as
independent sets. This is the same procedure Meyer et al. [2018] proposes for labeling in
the 2nd paragraph in section XI, whereas they use the equivalent but perhaps intuitively
different labeling of the LMB. This is also the same notion of labeling used in the classical
algorithms, such as JPDA and MHT [Bar-Shalom et al., 2011], and hence provides target
identification in a “classical sense”. This is in contrast to for instance Vo et al. [2014],
where targets are labeled already at possible arrival. Since the arrival of these targets
are probabilistic, one needs to label non-existing and never detected targets as well in
this setup. This may or may not be what one actually wants in a given application. The
author would argue that deferring identification until one has target-specific information
is preferable in most cases. In some applications one might have information regarding
target identity already at possible arrival, and then labeling the birth process can of course
be a good approach. Otherwise, the target identification done here is probably preferable,
if one needs to assign target identities. The component labeling also lends itself to for
instance labeling different birth PPP components such that one can do inference on the
target origin and so on.

There are several reasons to stress this. One is that the BPP track existence is only known
probabilistically. For instance if one wants to see if there is safe passage for an autonomous
ship in a region, one needs to know if there are targets in that region. The targets can come
from any of the BPP tracks or still be undetected, and hence one has to marginalize over the
component origin of the targets to get the full likelihood for having a set of targets, i.e. no
labels. On the other hand, if one is interested to see what the targets are doing through time,
one is essentially interested in what is going on with specific BPP tracks. Another reason
is that labeling can in some cases cause unnecessarily higher computational loads, as for
instance pointed out by Garcia-Fernandez et al. [2018, sec. IV] regarding the generalized
LMB [Vo et al., 2014] just being a different and less efficient parameterization of the MBM
than the parameterization discussed here.

7.3 The multi target initial distribution

We have now discussed how the prediction step and the update step are affecting the dis-
tribution of targets in the RFS multi target state space. If it is a PMBM, both the prediction
step and the update step will maintain a form such that we still have a PMBM afterwards.
One question remains, how should we set the initial distribution? We hinted at this in the
beginning of section 7.1.1 where we discussed the need to predict targets that we have no
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measurements of. What happens to this distribution if we do not measure anything, i.e.
setting Pd(x) = 0 and µt (z) = 0 in the update equations?

With no measurements, there will be no update, and the distribution remains the same
as the prior. However, we clearly have to update our beliefs about the target distribution
in the prediction anyway, even if we are not measuring anything. In reality, there are
probably targets moving around in the scene, even if we are not watching. Presumably
our probabilistic model of births and deaths should also be valid for that time. Say we
assume the targets have been going about their business without us watching, for a long
time before we started taking measurements. Then we should probably consider that we
should apply the prediction step for that time period as well.

If one has modeled this correctly, it will not diverge, as that would mean one expects to
find an infinite amount of targets in the scene, which does not make much sense in real
life. Ps(x) can be seen to act as a sink, and ηt(x) as a source. If these are stationary, this
will in fact converge to a stationary intensity. This intensity, or an approximation thereof,
is the intensity of the initial distribution one should use when one does not have any other
information available.

By this argument we may say that our initial distribution is the PPP predicted for an infinite
time (or long enough to be a good approximation). So our initial distribution should be
such that the PPP intensity is given by

λ0 | 0(x) = ηt(x) +
∫

x′∈X

f (x |x′) Ps(x′)λ0 | 0(x′) dx′, (7.107)

which can be solved numerically in general, or explicitly for some special models, when
the model is stationary. The initial multi target SDF is thus given by

f0 | 0(X0) = e−λ̄0 | 0λ
X0
0 | 0. (7.108)
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8 Relation of PMBM to other filters

8.1 The total target information distribution

We have seen that the PMBM filter can look quite complex and it can be a bit hard to
grasp what is really going on. In this chapter we will present a new, possibly uglier but
hopefully more transparent, distribution of the problem. This involves forming the joint
over all variables at all time steps. At the same time, we will extend the birth process to
consist of several components. However, we will begin with some interpretations.

Both aτ and bτ describe hypotheses between different measurements at different time
steps. Specific at and bt can be seen as describing tracks in measurement space that
relate old and new measurements through time. Where aiτ ′ = j′ > 0 can be seen as
measurement i = (τ, j), with τ < τ ′, hypothesizing that measurement i′ = (τ ′, j′),
originates from the same target as i. While bj

′

τ ′ = i > 0 can be seen as measurement
i′ = (τ ′, j′) hypothesizing that measurement i = (τ, j) originated from the same target as
i′. That is, aτ are hypotheses of old measurements being associated with the same targets
as a new measurement, while bτ are hypotheses of new measurements being associated
with the same target as an old measurement. I.e. they point to data forward or backward
in time respectively.

Furthermore, πk = i > 0 indicates that the k’th target state-trajectory, (xk[tk0 :tk], l
k
[tk0 :tk]),

was first detected by measurement i = (τ, j), and therefore the measurement track that
starts at measurement (τ, j). πk = 0 denotes that the target has never been detected. This
is exactly the labeling we have been discussing in previous chapters.

Target related variables of interest include;

• the initial time the target came into the scene, ti0,

• the time it was last believed to be in the scene, tk,

• the birth component it came from, αk,

• the hybrid state-trajectory, (xkτ , lkτ ) ∈ X × L, τ ∈ [tk0 : tk],
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• the measurement track it is associated with, πk,

• all the measurements included in a track i = (τ, j), indexed using θiti = (ai
ti0
, . . . , aiti),

• all measurements, Zτ , and

• each of their measurement-track origins, bjτ .

To include measurements to track variables, as well as track to measurement variables, is
an over parameterization and not needed. Nevertheless, we will include it here as it can be
useful to show how some algorithms came about.

We will model that component α ∈ A gives rise to new targets according to a PPP with
intensity ηατ (x), where we will also use ητ (x) =

∑
α∈A η

α
τ (x). Other birth processes,

such as a LMB [Vo et al., 2014] can also be considered, but they are not treated here.

To form the joint, we also need a consistency factor so that we ensure that existence hy-
potheses, and measurement association hypotheses, are compatible with each other. This
factor is given by

γ(aτ , bτ , π, t
[1:n]
0 , t[1:n]) = 1


πk∈
[
0:
∑t

τ=1
|Zτ |
]

aiτ=j>0⇐⇒ bjτ=i>0,
bjτ∈π∪{0},

πk=i>0: i=(t,j) =⇒ tk0≤t≤t
k

aπ
k

t =0 ∀ t>tk,πk>0

 . (8.1)

The first constraint says that the target has to be related to either one of the measuement
tracks, or none. The second, that the measurement track has to be consistent. Third, new
measurements can only be related to tracks that come from targets, and implicitly also that
π is the hypothesis over which measurements are related to “new” targets. The fourth line
says that if target k is related to measurement i then it has to have existed at that time. The
fifth line says that a target that is dead, can not have any measurements associated with it,
and this is also an implicit limitation on bjτ through line 2.

With these constraints, we now state the full PDF of the joint of all these variables, not-
ing that the measurements are now ordered in relation to each other, and hence are not
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necessarily permutation invariant anymore;
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(8.2)

The first line corresponds to the likelihoods of arriving targets and leaving targets (births
and deaths). The very first part should be identified as a PPP at every time step, for every
birth component. The last part of the the first line is the probabilities that targets left
the scene between time step ti and ti+ being in continuous and discrete state xiti and liti ,
respectively.

The second line, describes the likelihoods and probabilities that the targets first survive
in state (xiτ , liτ ), the discrete state, conditioned on survival, updates to liτ and then the
continuous state updates to xiτ , conditioned on survival and the discrete state.

The two last lines describe the measurements conditioned on a given association hypoth-
esis. The first of which, has the consistency factor γ so that only consistent association
and existence events are given nonzero likelihood, and also the likelihood for the false
measurements through its PPP. The final line, describes the probability of the given asso-
ciation between targets and measurements, while also giving the likelihood of the locations
in measurement-space and state-space under this hypothesis.
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The above distribution is what the author would call total target information, as this is the
distribution over all targets that could have been in the scene between time 0 and t, and is
over all variables that are related to the targets in some way. All algorithms that are based
on assumption A and have hybrid state space, work with this distribution in one way or
another. It may be seen as an extension of the PGM formulation of Meyer et al. [2018], al-
though it is not obvious how to extend a PGM to incorporate the inference of a PPP, which
in some way is needed for considering target trajectories that is undetected. Nevertheless,
PGMs formulations lend themselves to the investigation of approximations by applying
some form of KL-divergence and/or BP Koller and Friedman [2009], and can as such be
a way of looking for new algorithms. Chow-Liu trees, local linearization, marginalization
and key-frames might be schemes of interest when looking into this possibility.

8.1.1 Total target information in relation to RFS of trajectories and label-
ing

Similar thoughts as the total target information given above have been made by other
authors such as Granström et al. [2018] and Garcı́a-Fernández et al. [2016] considering
RFSs of trajectories, where the set elements are target trajectories instead of target states.
One of their goal is to show that the PMBM filter actually do create tracks such that the
components can be thought of as being the same through time.

However, these authors seems to dislike the use of association variables and labels as part
of their distribution. This may be appropriate of them, but the thoughts presented here
does seem to show that we can consider the set convolution as a marginalization of a
latent variable relating targets to tracks, and association variables essentially are between
measurements at different time steps.

This is in no way claiming a rigorous proof of this, but the thought is intriguing, and
in some way seems intuitive. Observed measurements does come from targets that are
moving around, and they do in reality form tracks of measurements from these specific
targets, even though we do not observe this directly. It does therefore seem that one should
be able to extract these as latent hypothesis variables as done here and have probabilities of
these being real tracks or not. In the above we have essentially split this into two separate
hypotheses; one making tracks using ait and bjt , and the other on which of these are true
and which of these are false using the target to track/component label π.

It does also seem intuitive as all the components of the PMBM is predicted and updated
independently if the association hypothesis is given, and can then be treated as the individ-
ual sets they in reality are. Also keeping the undetected targets unlabeled makes intuitive
sense. If one were to consider a region in the nearest ocean right here and now without
looking, one might be able to picture a likelihood of where one expects to find boats and
how many, but starting to identify them with labels without observing them does not seem
like an intuitive task.
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8.1.2 Total target information in relation to PMBM

The previously derived, so called PMBM filter, is just a marginalization within this distri-
bution, over; the earlier states, birth component (including time of birth), time of death,
data association and first detection hypotheses. As such the PMBM filter does not con-
sider, at the last time step, targets that might previously have been there, but are now gone.
Rather, they are marginalized out. Note that it was slightly arbitrary that we considered
track to measurement variables, and not measurement to track variables, to form associa-
tion hypotheses in the PMBM. Since they are equivalent, we could just as well formulate
the hypotheses in the PMBM using the measurement to target variables instead, and then
make a global hypothesis structure on them.

8.2 Relationship to MHT

The MHT of Reid [1979] can similarly be seen to be a marginalization over some of the
variables, while also adding some assumptions. Reid [1979] does not explicitly state how
to handle the birth process, but uses a new-target intensity that can be interpreted as the
undetected target intensity, and the original MHT therefore only deals with what we have
called detected targets. He also does not consider target death, and considers the targets to
follow a Gaussian linear assumption. The relationship between MHT and FISST/PMBM
is more rigorously studied by Brekke and Chitre [2018, 2017].

The variables that are marginalized out in Reid’s MHT are the previous states, birth com-
ponent, birth time, and the track to measurement association variables, while the target
death is treated to never occur, i.e. Ps(x) = 1. The original hypotheses of MHT can thus
be seen to make hypotheses over bjt and π, relating measurements to components/tracks
and targets to tracks. The hypothesis tree described by Reid [1979] is exactly that of bjt
“augmented” by π, such that bjt = i > 0 relates measurement j at time t to the track i,
and bjt = 0 along with some (j, t) = i′ ∈ π or (j, t) = i′ /∈ π describing the hypothesis
of new track or clutter, respectively. But as such, it is under some assumptions equivalent
to the labeled PMBM we described earlier, where the hypothesis structure is taken as the
alternative equivalent hypothesis structure, of measurement to tracks, than we used in the
derivations, being tracks to measurements.

A difference is of course that one usually seeks the most probable association hypothesis
in MHT, instead of marginalizing it out as in PMBM. What one should seek, is of course,
a matter of application. If one is interested in the association itself, one might want to take
the most probable hypothesis. Whereas if one is interested in target location, marginaliza-
tion might be better, as this takes all known information into consideration.
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8.3 Relationship to TOMHT

We can also take a look at the track oriented multiple hypotheses tracker (TOMHT) of
Kurien [1990] within this framework. As is stated in its name, the TOMHT formulates the
global hypotheses using the track to measurement variables ait. The association hypotheses
are also exactly the same as in the PMBM we used in the derivation, but also including π
to label the track and specify explicit existence hypotheses of the tracks. This relation is
originally described by Williams [2015b]. Again, as with MHT, the difference is that one
typically seeks the most probable hypothesis.

8.4 Relationship to TOMB/P

With component labels, the PMBM can be written as

fLpmbm
t | t′
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)
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w
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)
, (8.3)

where fλt | t′(X ) is the undetected target PPP at time t after the measurement scan at time t′

is taken into consideration, and f i,θ
i

t | t′ (X ) is the i’th Bernoulli component under hypothesis
θi.

The only thing making the Bernoulli components coupled is the marginalization over the
hypotheses. The global hypotheses make the distribution hard to handle as there is a
combinatorial number of them, in the number of tracks and measurements, and are hence
intractable. One way to increase tractability is to approximate the distribution as factored
into independent components and then only have single track hypotheses to deal with. To
do this, we can consider a minimization of the KL-divergence between the component
labeled PMBM, and a component labeled PMB. The approximation SDF will be given by
a component labeled PMB

fTOMBP
t | t′
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t

)
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λ

t | t′
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L(0)
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)Nt | t′∏
i=1

f it | t′
(
X
L(i)
t

)
, (8.4)

where f it | t′(Xt) is the i’th marginal Bernoulli component of the PMBM. This follows from
the derivations of section 5.4, which are also valid for RFS, and states that the approxima-
tion of a distribution by a fully factored distribution is the product of its marginals. Since
we have labeled the components they can be seen as different set variables, and hence
we can marginalize with respect to them. Under the current labeling system, this is the
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marginal for each component. That is

fTOMBP
t | t′
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XL
t

)
= arg min

q
DKL

(
fpmbm(·) || q

)
, (8.5)

s.t. q(XL) = e−λ̄λX
L(0)

N
t | t′∏
i=0

qi(XL(i)),∫
qi(X)δX = 1.

(8.6)

In words; the component labeled SDF constrained to be fully factored into valid SDFs
attains the minimum of the KL-divergence when its factors are the marginal for the labeled
components. This also applies if the distribution consists of other types of components
than PPPs and BPPs as well, but we will not go further into that.

The PPP is already a factor in the PMBM, so that will simply remain after the approxi-
mation. The BPPs are just coupled through the associations, as previously stated, so the
marginalization is in fact only needed to be carried out over the association hypotheses (the
existence probability and state PDF are both conditioned on the association hypothesis).
This is therefore also equivalent to just approximating the association probabilities to be
factored, as done recursively by Williams [2015b] to arrive at his track-oriented marginal
MeMBer-Poisson (TOMB/P). As such, the TOMB/P can be seen as labeling the compo-
nents and then approximating the labeled SDF as factored using the KL-divergence after
each measurement scan. Williams [2015a, sec.II.B] also states this implicitly, but in re-
lation to the JPDA, which is again an approximation of the TOMB/P into that of a single
Gassian.

A similar analysis can be done with the measurement-oriented marginal MeMBer-Poisson
(MOMB/P) of Williams [2015b], where the component labels point to the last measure-
ment that it is related to, instead of its first measurement, and then proceeds to approximate
this distribution by fully factorizing over the labeled components. This change can be seen
as changing the association parameterization in the PMBM from using ait to bjt .

Williams [2015a] has also been working on approximating the unlabeled distribution di-
rectly, but the set convolution (marginalization of component labels) is seen to be a largely
complicating factor as several BPPs in the original distribution can be be a weighted part
of several BPPs in the approximate. He interprets the labels as missing data and uses ex-
pectation maximization to find these weights. This gives an additional layer of complexity,
that is alleviated by minimizing an upper bound instead.
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The marginal BPP can be found by using the set integral, and is shown as

f it | t′({x}) =
∫

(x,i)∈XL
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for existence, and similarly for non-existence. If this has been done recursively, and the
association hypotheses are only summed over one time step, the bracketed term should
be recognized as the marginal association probabilities of JPDA [Bar-Shalom et al., 2011,
sec.6.2]. If hypotheses are summed over several time steps, it becomes the marginal track
association hypothesis in the TOMHT.

We let
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denote the marginal hypothesis probability of hypothesis θi for track i. Having calculated
this we can see that the marginal BPP is given by
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(8.11)

Fortunately, this is again a BPP, with state distribution given by a mixture. The mixture
weights are the hypothesis-probabilities weighted by the existence-probabilities and then
normalized, with the hypothesis-conditioned distributions as the corresponding distribu-
tions in the mixture. The existence-probabilities, are quite naturally, given by hypothesis-
weighted averaged existence-probability.
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8.4 Relationship to TOMB/P

The TOMB/P is therefore still a mixture, but forgoes the need to consider global hypothe-
ses after the approximation has been made. This mixture will also increase as the compo-
nents gets updated through time, and there will be a need for mixture reduction within the
single track mixtures as well.

8.4.1 Mixture reduction in GM-MM-TOMPB/P

After approximating the true multi target distribution by a component-labeled factored
one, we have a single target distribution that is a mixture. If we now assume that this is
a Gaussian mixture, or at least has been approximated to be one, we can use Runnall’s
distance described in section 5.3.3, to reduce this mixture down to a certain number of
components, or until some maximum cumulative divergence has been reached. This is
done by finding the pairwise distance between all components in the mixture, selecting the
two components that give the smallest distance and merging them by moment matching.
Moment matching is described in section 5.3.2. This is then done recursively until a certain
number in the mixture is reached or the cumulative distance will go over a given threshold
if further reduced.

The first use of Gassian mixture for target tracking using mixture reduction algorithms is
often attributed Salmond [1990, 2009] in the single target case and Pao [1994] in the multi
target case, where probabilistic data association (PDA) and JPDA probabilities were used,
respectively.

If a hybrid state space is used, such as for multiple models, multiple target identities,
detection levels and so on, one does this procedure for each of the discrete states in the
discrete state space.

Whether if there is a hybrid state space or not, this should be applied right before the
prediction step to get as good an approximation as possible when the mixture is reduced.
For a hybrid state space, this is therefore done after the mixing step (prediction of discrete
states) so that the weight change and new components are considered in the reduction. If
there is no discrete state, right after measurements will be the same time as right before
prediction, as there are usually no other steps, other than maybe computing an estimate for
an operator.

8.4.2 JIPDA, JPDA, IPDA and PDA

If the mixture in the preceding subsection is reduced down to a single Gaussian, i.e. mo-
ment matching the entire distribution, one effectively gets a JIPDA filter of Mušicki and
Evans [2002]. However one also tracks the undetected target quantity that the update
equations of JIPDA neglects [Williams, 2015b]. If the target existence is known, i.e.
the existence probability is one or zero and no births or undetected target quantities are
present: JIPDA reduces to JPDA. Hence JIPDA can be seen as an extension of the JPDA
filter of Fortmann et al. [1983] to incorporate uncertain target existence. If target existence
is unknown, but there is at most one target in the scene, JIPDA reduces to the integrated
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Chapter 8. Relation of PMBM to other filters

probabilistic data association (IPDA) filter of Musicki et al. [1994]. This again reduces to
the PDA filter of Bar-Shalom and Tse [1975] if there is known to be one, and only one,
target in the scene. JPDA and PDA are more recently and perhaps better explained by
Bar-Shalom et al. [2011].

In case of a hybrid state space, if one reduces the mixture down to one component for
each discrete hypothesis, the algorithm reduces to IMM-JIPDA, IMM-JPDA, IMM-IPDA
and IMM-PDA, which are described by Musicki and Suvorova [2008], Chen and Tugnait
[2001], Musicki and Suvorova [2008], and Houles and Bar-Shalom [1989], respectively.

With this we have seen how several of the key filters, that marginalize over the measure-
ment hypothesis and treat targets as independent, can be derived from the true component
labeled PMBM. This involved applying the appropriate assumptions and using the mo-
ment projection of the KL-divergence onto a factored distribution. Individual distributions
consisted of the discrete state distribution and one Gaussian for each discrete state. This
can in some way be seen as a type of verification of these algorithms, but it also implies
which directions one should go, if one of these simpler algorithms should be insufficient
in some aspects.

For instance, if one is using a JPDA but struggling with many appearing and disappearing
targets, one can look toward the JIPDA along with an appropriate modeling of the birth
intensity, ηt(x), and survival probability, Ps(x). If on the other hand, the issue is in too
much coalescence, one can look at having a Gaussian mixture instead, so that later mea-
surements hopefully will decrease the weights of the components that cause coalescence.
The coalescence phenomena is treated to some degree by Blom and Bloem [2000, 2002],
but their approach is not robust to track-switching as they prune association hypotheses.
Keeping the associations, but merging similar components, might be a way to avoid a bit
of both track coalescence and track switching.

8.5 Relationship to CPHD and PHD

The cardinalized probability hypothesis density (CPHD) and PHD filter [Mahler, 2007,
ch.16] can also be seen as a KL-divergence approximation to the PMBM filter [Williams,
2015a]. One can get the CPHD filter by approximating the unlabeled PMBM posterior
recursively by an i.i.d. target state distribution along with the cardinality distribution
[Williams, 2015a, appendix A.A]. The PHD filter takes this one step further and approxi-
mates the cardinality distribution to be Poisson.

Section 5.5 showed that the i.i.d. SDF moment projection indeed uses the normalized
PHD as its distribution. Thus we have already shown that approximating any SDF by
an i.i.d. SDF with an unconstrained cardinality distribution, one gets the CPHD. The
PHD filter is achieved if one approximates the cardinality distribution to be Poisson. The
cardinality distribution can be handled separately from the spatial distribution, as we saw
in section 5.5, so for the Poisson approximation it is just to find the expected number of
targets, as we saw in section 5.3.4, with the distribution being given by the PHD. Since
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the PHD integrates to the expected number of targets, we have that the PHD is in fact the
same as the PPP intensity.

What remains to be seen is if the filter has the same prediction and update equations as the
moment projection gives. The PHD is given by

D(x) =
∫
p(X ∪ {x}) δX. (8.12)

We know that p contains a permutation in some way or another. In the case where p is a
PMBM the only permutation is over the components, i.e. the PPP and the different BPPs.
We then know that x is going to be permuted between the components, and can hold it
fixed in one component when we do the integral over the others, and then sum over the
permutation of x afterwards. The MBs integrates to one when x is not fixed to it, and so
does the PPP. Fixing x to one BPP enables us to take that out of the set integral, and the
integral is therefore over a PMB which integrates to unity. The same can be said about the
PPP where we then take the intensity out of the integral. One might be skeptic about the
n! and that the cardinality will be erroneous when taking a BPP or an intensity out of the
integral, but note that the integral is taken over X only, and the cardinality of X ∪ {x} is
|X|+ 1, so it is all fine.

Taking the permutation after the integration, the PHD of a PMB with n BPP components
is the sum of the PPP intensity and all the BPP with the case of existence;

D(x) = λ(x) +
n∑
i=1

rif i(x). (8.13)

Using this on (7.37) the multi target update step shown in section 7.1.2, will then be ex-
actly equivalent to (16.108)-(16.109) by Mahler [2007], where Dk+1|k+1(x) = λt | t(x),
Dk+1|k(x) = λt | t (x), Lz(x) = h(z |x) and pD(x) = Pd(x). Since we have already
shown that the prediction steps of a PPP is equivalent to the prediction step of the PHD
filter in section 7.1.1, the PHD filter can be seen as a recursive moment projection of the
true multi target filter onto a PPP, after each update step.

In the time of writing it is not obvious to the author if the CPHD filter, as for instance
shown in section 16.7 of Mahler [2007], is also equivalent to the KL-divergence of the
true prediction and update steps, but that should be the case since it should be the true
cardinality distribution and PHD.

8.6 Are there ways to combine MHT and JPDA?

We have seen that both MHT and JPDA are closely related to the true multi target distri-
bution. We have also seen that marginalizing the joint association in a JPDA fashion, but
keeping the mixture will end up as a Gaussian mixture, which in many ways can be seen
as a single target TOMHT. A question that is still unanswered is if we can combine some
of the global hypothesis structure of MHT with some marginalization along the lines of
JPDA, while maybe also keeping the single target mixtures.
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One approach to this might be to see if there are some associations that have less ambiguity
and marginalize those out, while keeping the ones with higher ambiguity still inside the
global hypothesis tree of the MHT. One would probably have to condition the marginals on
the different global hypotheses that are remaining in the tree, and hence having to perform
several marginalizations. There might be a lot of redundancy in these marginalizations
so that there exists shortcuts instead of starting from scratch when conditioning on a new
hypothesis. This approach can probably be simplified if analyzed along the lines of the
efficient hypothesis management 2 of Horridge and Maskell [2006] which is an enhance-
ment of an algorithm of Maskell et al. [2004]. The algorithm uses the mutual exclusion
principle to make computational graphs that can be seen to be an instance of BP in an
appropriate PGM and association related variables.

Unfortunately this idea is not appropriately developed, and will not be investigated further
here due to time limits. It will however remain a topic of future investigation.
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9 LBP association

The calculation of the JPDA quantity is still combinatorial in the number of targets and
measurements, which has led to several approximations [Romeo et al., 2010; Maskell et al.,
2004; Williams and Roslyn, 2014]. A part of the problem is that one actually have to track
and consider associations on false track as well as true tracks. The more ambiguous the
measurements are, in terms on low detection probability and high clutter intensity, the
more false tracks one have to track for a longer time to get a sense on which of them are
true or false. Since the marginal association probabilities are combinatorial the number of
operations needed, one therefore quickly run into trouble. We are here going to look at a
recently developed approximation based on LBP by Williams and Roslyn [2014].

This chapter is largely taken from Tokle [2017]. However, the LBP model incorporating
multiple models, or more generally discrete states, has been shown here to be an unnec-
essary complication, as the discrete states can be correctly conditioned on the association
prior to marginalization. As such the problems found by Tokle [2017] regarding the LBP
algorithm giving results similar to that of a MAP estimate is circumvented, and the LBP
algorithm should be just as good to use with a hybrid state space as with only a continuous
state space.

9.1 The joint association probability and its factors

Finding the marginal association probabilities between two sets, e.g. targets and measure-
ments, can be represented as inference on a graph, were the nodes are latent association
variables. One way to do this is by using BP on the graph. There are several parameteri-
zations of the association, and hence there are also several ways of making the graph. Fol-
lowing Williams and Roslyn [2014] we will over-parameterize this by using both target to
measurement probabilities ait and measurement to target probabilities bjt with constraints
to make the association consistent.

The joint posterior after measurement over the association variables are given by the prod-
uct of the single target hypothesis weights by the assumption that the targets are indepen-
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dent according to
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nt
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t , . . . , b
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t |Zt) ∝ γ(at, bt)

nt∏
i=1

w
i,ait
t | t

∏
j|bj=0

wnt+j,1t | t (9.1)

∝
nt∏
i=1

ψi(ait) mt∏
j=1

ψi,j(ait, b
j
t )

 mt∏
j=1

ψj(bjt ), (9.2)

where the notation used is given by

ψi(ait) = w
i,ait
t | t , (9.3)

γ(at, bt) =
mt∏
j=1

ψi,j(ait, b
j
t ), (9.4)

ψi,j(ait, b
j
t ) =

{
0, ait = j > 0 6⇐⇒ bjt = i > 0
1, otherwise

, (9.5)

ψj(bjt ) =
{

1, bjt > 0
wnt+j,1t | t , bjt = 0

. (9.6)

Here the factor γ(at, bt) ∈ {0, 1} assures a consistent association, i.e. ait = j ⇐⇒
bjt = i, and is factorized by ψi,j . From (9.2) it is evident that the joint distribution of
the association variables factorizes into factors of at most two components, and that these
factors can be used in a factor graph.

9.2 The PGM and messages of the association distribution

The MRF and the factor graph for this factorization is a bipartite graph between the target
to measurement and the measurement to target variables as shown in Figure 9.1a and
Figure 9.1b respectively. The messages in the factor graph (Figure 9.1b) can be formulated
as

µψi→ait(a
i
t) = ψi(ait), (9.7)

µψi,j→ait(a
i
t) =

∑
bjt

ψi,j(ait, b
j
t )µbjt→ψi,j (b

j
t ), (9.8)

µait→ψi,j (a
i
t) = µψi→ait(a

i
t)
∏
j′ 6=j

µψi,j′→ait(a
i
t), (9.9)

µψj→bjt
(bjt ) = ψj(bjt ), (9.10)

µbjt→ψi,j
(bjt ) = µψj→bjt

(bjt )
∏
i′ 6=i

µψi,j→bjt
(bjt ), (9.11)

µψi,j→bjt
(bjt ) =

∑
ait

ψi,j(ait, b
j
t )µait→ψi,j (a

i
t). (9.12)
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Figure 9.1: Graphs of the overparameterized association

This set of messages is written very explicitly and it is seen that no factor has more than
two variables, and hence the factor to variable message is only the marginalization of the
factor multiplied with the incoming message. We can therefore pass the messages through
the factors and just consider the messages as going between the variables, that is, simply
following the edges in Figure 9.1a.
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∑
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t) (9.13)
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t) (9.14)
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µbjt→ait
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∑
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ψi,j(ait, b
j
t )µbjt→ψi,j (b

j
t ) (9.16)

=
∑
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j
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j
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∏
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(bjt ) (9.17)

=
∑
bjt

ψi,j(ait, b
j
t )ψj(b

j
t )
∏
i′ 6=i

µai′t →b
j
t
(bjt ). (9.18)

These equations only give two different types of message, namely from targets to mea-
surements, and measurements to targets. Again, following Williams and Roslyn [2014]
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these messages can be rewritten into two different cases due to the consistency factors;
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∏
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. (9.22)

9.3 Simpliying the messages by scaling

Notice that there are only two separate values that the messages between the target to
measurement pairs can take. As the messages are not normalized, they can be scaled at
each iteration. Scaling by dividing by µait→bjt (b

j
t 6= i) and µbjt→ait(a

i
t 6= j) respectively

will now leave us with many messages that are unity, and only one that is non-unity per
edge;

µait→b
j
t
(bjt ) =



ψi(j)
∏
j′ 6=j

µ
bj
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(j)∑
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(9.23)
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∏
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ψj(ajt )
∏
i′ 6=i

µai′t →b
j
t
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= 1∑
bjt=i′ 6=i

ψj(ajt )µai′t →bjt (i
′)
, ait = j

1, ait 6= j

(9.24)

We have now essentially reduced the equations to only send messages between the con-
sistent association pairs, and neglect the messages without real information (it is not use-
ful information what a variable does if the listening variable does not receive this). The
marginal probabilities of the variables can again be found by multiplying all the incoming
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factors (mostly unity due to the scaling) and normalizing

p(ait = j |Zt) =
ψi(j)µbjt→ait(j)∑nt
i′=0 ψi(j)µbjt→ait(j)

, (9.25)

p(bjt = i |Zt) =
ψj(i)µait→bjt (i)∑mt
j′=0 µait→b

j
t
(i)
. (9.26)

9.4 Remarks

Williams and Roslyn [2014] also show that iterating these two sets of messages converges
and they also give a convergence criterion that gives bounds on the distance from the true
converged values. They also pointed to the fact that it will converge to a valid PDF over
the variables, but not necessarily the correct one.

This procedure can be seen to solve a constrained optimization problem and minimizes
something called the Bethe free energy while being constrained to be a valid distribution
[Williams and Lau, 2018]. The clutter and non detection cases can be seen to help conver-
gence of the LBP algorithm through both the Bethe free energy and experimental results.
Williams and Lau [2018] has now extended this method to handle multi scan problems
using something called fractional free energy, where one scales a part of the objective in
the Bethe free energy, and choosing the correct but yet unknown scaling is proven to give
the correct result. The resulting procedure is shown to outperform other BP based multi
scan procedures on a limited set of experiments. A more thorough look into this approach
is another future research topic.

The LBP scheme shown here provides a good way to overcome the combinatorial com-
plexity of calculating these marginal association probabilities. However, as pointed out by
Williams and Roslyn [2014], it is still unknown how this compares to the efficient hypoth-
esis management 2 of Horridge and Maskell [2006] that provides the exact probabilities
rather than approximations. The latter relies on the problem being sparse, while the LBP
does not, so it is believed that the two algorithms will be appropriate for complementary
situations.
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10 Some aspects of the undetected target intensity

10.1 Implications of not estimating undetected targets

If the modeling assumptions are done correctly, and in addition the birth intensity is sta-
tionary, the undetected target intensity will converge with time, but possibly stay nonuni-
form in space. One might therefore be tempted to approximate this as constant, especially
after a while. We will therefore take a look at what are the implications are on the birth
intensity when assuming either the existence probability or expected number of undetected
targets have a specific value. In this section we will use r0 to denote the initial existence
probability.

The use of other initialization procedures, for instance cascaded logic track formation such
as M1/N1&M2/N2 section 3.3 & 7.3 of Bar-Shalom et al. [2011], probably both can and
should be considered in this framework as well, so that one can infer what it assumes on the
relation between the birth process and target existence probability acceptance threshold.

10.1.1 Birth process when assuming a constant expected number for the
undetected targets

We shall now express λ̄t | t in terms of a stationary birth process, η̄t−1 = η̄ , assuming
that the estimation procedure has been going on for a long time so that λ has converged
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and that we have λ∞t | t , λt | t = λt | t 2
. We can write a full time update as

λ∞t | t (xt) = η(xt) +
∫

x∈X

f (xt |x) Ps(x) (1− Pd(x))λ∞t | t (x) dx, (10.1)

λ̄
∞
t | t f

λ

t | t (xt) = η̄ fη (xt) + λ̄
∞
t | t

∫
x∈X

f (xt |x) Ps(x) (1− Pd(x)) fλt | t (x) dx, (10.2)

= η̄ fη (xt) + (1− P̄λd )λ̄∞t | t
∫

x∈X

f (xt |x) Ps(x) fλt | t(x) dx, (10.3)

= η̄ fη (xt) + P̄λs (1− P̄λd )λ̄∞t | t
∫

x∈X

f (xt |x) fλ,st | t (x) dx, (10.4)

where“s” reads surviving, and the average detection probability of the undetected targets
is given by

P̄λd =
∫

x∈X

Pd(x) fλt | t (x) dx, (10.5)

the average survival probability of the undetected targets as

P̄λs =
∫

x∈X

Ps(x) fλt | t(x) dx, (10.6)

and the state distribution of undetected surviving targets as

f
λ,s
t | t (x) =

Ps(x) fλt | t(x)

P̄λs
=

Ps(x) (1− Pd(x)) fλt | t (x)

P̄λs (1− P̄λd )

=
Ps(x) (1− Pd(x))λ∞t | t (x)

P̄λs (1− P̄λd )λ̄∞t | t

. (10.7)

Integrating with respect to xt and rearranging gives the expected converged number of
undetected targets as a function of the expected number of born targets

λ̄t | t = η̄ + P̄λs (1− P̄λd )λ̄t | t = η̄

1− P̄λs (1− P̄λd )
, (10.8)

rearranging again to end up at the number of born targets as a function of the number of
undetected targets

η̄ =
(

1− P̄λs (1− P̄λd )
)
λ̄
∞
t | t ≤ λ̄

∞
t | t. (10.9)

These functions are presented in Figure 10.1. For P̄λd close to unity or P̄λs close to zero we
get that λ̄t | t ≈ η̄ , and even more so if both occur. This is also intuitive, as low probability
of survival means that the targets in the scene previously, are more likely to have left, and
high detectability means that the targets previously in the scene are very likely to have
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Figure 10.1: The relationship between the converged expected number of undetected targets and the
expected number of arriving targets, as a function of detection probability and survival probability.

already been detected, so almost all undetected targets are the newly born ones. This, of
course, also goes the other way around.

As λ̄t | t converges after some time for proper modeling, with stationary birth process and
non-moving sensor, we can model it as constant. For high detectability and/or low survival
we even have λ̄t | t ≈ η̄ , but one makes a mistake by assuming this if these conditions
do not apply, although the error may be small. One important thing to consider is that the
actual number of born targets is always less than the number of undetected targets, which
should also be evident since there are some surviving in addition to the newly born ones.
If one approximates λ̄t | t = η̄ and models η̄ directly to use in an algorithm, λ̄t | t is in
fact always an underestimation of what one believes. It is therefore probably better to use
the relation shown above and get the appropriate approximation of λ̄t | t according to ones
assumptions.

Note that this does not make any claims on the distribution of the undetected targets, only
on the number. For a non-uniform birth and death process, which one in general should
at least consider, there will naturally be a gradient in λ(x) towards places of higher birth
intensity from high detectability and low survival places. For moving sensors this becomes
more complicated, as shown by Williams [2012].

Also note that the proper initial distribution, discussed earlier, corresponds to setting P̄d =
0 since that is the same as having no sensor. If the survival probability is high, say for
instance P̄λs = 0.95, the initial expected number will be 20η̄ , a much larger number than
if one assumes the converged number. However, this will quite quickly reduce as one can
se from the fact that this converges with a discrete time eigenvalue of P̄λs

(
1− P̄λd

)
which

in the case of P̄λd = 0.95 is less than 0.05. This means that after just a few scans one can
reasonably approximate a constant number of undetected targets, but one should be a bit
more cautious when the detection probability is low and survival probability is high.
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10.1.2 The birth process when one assumes a constant initial existence prob-
ability

An even simpler approximation is to use a constant initial existence probability. From
(7.37) we have

r0 =

∫
x∈X

h(z |x) Pd(x)λt | t (x) dx

∫
x∈X

h(z |x) Pd(x)λt | t (x) dx+ µt (z)
(10.10)

=
h
λ

t | t (z) P̄λd λ̄t | t
h
λ

t | t (z) P̄λd λ̄t | t + µ̄th
µ
t (z)

, (10.11)

with

h
λ

t | t (z) =
∫

x∈X

h(z |x)
Pd(x)λt | t (x)

P̄λd λ̄t | t
dx =

∫
x∈X

h(z |x) fλ,dt | t (x) dx, (10.12)

and can get λ̄ in terms of an assumed constant r0,

λ̄t | t = r0
1− r0

µ̄th
fa(z)

h
λ

t | t (z) Pλd
= r0

1− r0

µ̄t

Pλd
. (10.13)

The last equality follows from λ̄t | t not depending on z and h·(·) are valid PDFs. Assum-

ing a constant r0 thus also assumes hλt | t (z) = h
µ
t (z), which of course is generally not

the case, and shows that this should probably not be done, or at least should only be done
with great care in considering the implications on the tracking algorithm. For instance, the
uniform clutter model hµt (z) = V −1

Z , almost certainly implies fλt | t (x) = V −1
X (at least

for the states that are directly related to the measurement), and therefore almost certainly
also implies fηt | t (x) = V −1

X , which, as previously stated, one should probably not have
in most applications.

Furthermore, inserting (10.9) into (10.13) and rearranging we arrive at

η̄ = r0
1− r0

1− P̄λs (1− P̄λd )
P̄λd

µ̄t = r0
1− r0

(
1 +

(1− P̄λs )(1− P̄λd )
P̄λd

)
µ̄t (10.14)

≥ r0
1− r0

µ̄t, ∀ P̄λs , P̄λd ∈ [0, 1], (10.15)

and see that assuming the value of r0 also assumes a birthrate after steady state has been
reached. Since this relation is there implicitly in choosing r0, one is probably better off by
making it explicit by seeing if this η̄ is reasonable for the application.
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10.2 Some potentials in the undetected target intensities

Williams [2012] pointed out the potential gain of tracking this the undetected targets,
and implemented a grid based approximation of λ(x) which he updated through time.
He showed with this, especially for sensors with varying field of view, that this gave an
overall increase in tracking performance. Horridge and Maskell [2011] also did similar
experiments with a particle approximation. Both of the latter seem to be incorporating
a relatively large value on uniform distribution for birth, which is often not the case in
many real scenarios where targets typically arrive at the border of the surveillance region,
whereas for example Mori et al. [1986] seems to have done this.

It was also mentioned the possibility to consider the birth intensity as a union of PPPs,
ηt(x) =

∑
α∈A η

α
t (x). Having it as a union, we can extract the latent birth component

variable α and consider where the target came from. Tracking that distribution through
time can be done by having separate λα(x)’s. Why would one do this, one might ask.
The answer is application dependent, but one could for instance have birth components at
different spatial locations, and one might be interested in where the targets originated, or
one might model different birth densities for different “types” of targets. The latter can be
done by augmenting the state with another discrete variable that does not change through
time and then estimate this. Tracking discrete states in the PPP can, as has been pointed
out earlier, be done by tracking one intensity per discrete state.

The undetected target intensity and the false alarm intensity, naturally have a tight rela-
tionship when it comes to the initial track existence. This relationship is point-wise in
measurement space. Having a locally too high or too low ratio between the undetected
target measurement intensity and false alarm intensity will over estimate or under estimate
the initial existence probability, respectively. If one then think of false tracks as erroneous
tracks with an existence probability greater than a given threshold and missed tracks as
true tracks having existence probability lower than a given threshold, one would likely
create more of the former by over estimating and the latter by under estimating the initial
existence probability, and hence by having too high or too low ratio, respectively.
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11.1 Summary

In part I, this report first introduced PGMs and the related BP concept. It then provided an
outline of Bayesian state estimation. A novel derivation of the KF equation was provided
through considering the special case of a Gaussian linear model, where it was shown that
one only needs to handle the quadratic form in the exponential when deriving the Gaussian
product identity. Description of how to handle a hybrid state space was provided, showing
that it is analogous to having only continuous states, and conditioning these on the discrete
states, in a manner similar to that of the IMM. The IMM was seen to be a special case of
this when applying the appropriate assumptions. Next, a brief introduction to RFS was
provided describing the inherent notions. The novel way of seeing the set convolution as a
marginalization provided a way of intuitively extracting what the author called component
labels, in order to infer which underlying set a specific element came from. The last part of
the theory background was the chapter on the KL-divergence. This described some stan-
dard results on how one distribution can be approximated by another, with some concrete
examples.

Part II first provided the assumptions of the standard model of multi target tracking, and
how these are translated into the RFS framework. Then the derivation of the PMBM filter
followed with the inclusion of hybrid state space and component labeling.

Part III then introduced the total target information filter, along with an interpretation of
the association hypotheses and component labeling. It was seen that the associations could
be viewed as being between measurements at different time steps, and therefore make
what we called measurement-tracks. The component labeling was seen to indicate which
of these measurement-tracks a target belonged to and could therefore also be considered
to form a track existence hypothesis. It was also pointed out how the PMBM filter was
a marginalization within this distribution. Further, it was shown that it was related to the
random finite set of trajectory, as for instance given by Granström et al. [2018] and Garcı́a-
Fernández et al. [2016]. Garcia-Fernandez et al. [2018] pointed out how the generalized
LMB filter of Vo and Vo [2011] was a less efficient parameterization of the same events
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as in the labeled PMBM, which is very similar to the component labeled PMBM we have
discussed here. The same reasoning of measurement-tracks and existence hypothesis also
applies to the component labeled PMBM.

Next the relationship between PMBM and MHT was discussed, where we demonstrated
that our component labeling along with the measurement-tracks created the same hypothe-
ses as Reid [1979]. The same type of reasoning lead us to the TOMHT of Kurien [1990].
Furthermore, we moment projected the PMBM onto a distribution, factored according to
the component labels, and naturally arrived at the TOMB/P of Williams [2015b]. A proce-
dure for mixture reduction within the single track state space by using Gaussian mixtures
was described, namely Runnalls [2007] algorithm for merging components using moment
matching. It was pointed out how reducing this down to one Gaussian per discrete state
would result in (a corrected version of) IMM-JIPDA and its degenerate cases, by applying
assumptions. Using the i.i.d. target assumption was also looked into, and it was seen that
the PHD filter CPHD filter could also be seen as a recursive moment projection of the unla-
beled PMBM onto an i.i.d. SDF with Poisson and unconstrained cardinality, respectively.
A slightly crude approach to combining JPDA and MHT was lastly described.

We then tackled the combinatorial complexity of calculating the marginal association
probabilities by using LBP on the over-parameterized association distribution. The dis-
crete states could be seen as states and hence conditioned on the association before the
association probabilities were calculated. This was in contrast to what Tokle [2017] was
considering, and his (or my if you like) problems with having erroneous marginals by
forcing the discrete states to be a part of LBP was circumvented.

Finally, we looked at the undetected target intensity and saw what different approximations
would mean in terms of birth intensity, and when one should be cautious. We have also
seen that the relative size of the undetected target intensity to false alarm intensity is the
initial existence probability and point-wise erroneous modeling of this relationship could
therefore cause too many false tracks or miss too many true tracks, in terms of a given
existence threshold, if too high or too low, respectively.

11.2 Concluding remarks

This study provided a thorough investigation into the theoretical framework and back-
ground around the standard model used in MTT, which served as a foundation for de-
veloping novel derivations of the PMBM filter and how to include a hybrid state space.
Through the derivations it was seen that the components, i.e. the underlying sets in the
union, could be handled independently through the prediction and update step under a
given association to provide track continuity, and hence the possibility for track labeling.
Additionally, track labeling could be seen as being a latent variable pointing to individual
sets, being either a single track or the undetected targets, in the union of targets and will
follow a specific track after detection and hence in a manner provide target identities. A
total target information distribution was stated as a way of considering the problem, and
further giving insight into identities and tracks. Furthermore, the relationship to most of
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the well known MTT filters were provided, recognizing them as an approximation of the
PMBM or as attaining association variables within their distribution. Lastly, ways of ap-
proximating the association probabilities or the undetected target quantity were provided.

The results presented here is limited by the assumptions of the standard model. Many ap-
plications can have multiple measurements per target Granstrom et al. [2016], some might
have targets with coordinated motion where targets are avoiding each other or moving
together, some might have different birth processes and some might have measurements
coming from more than one targets. These are not covered by the standard model and
therefore also not by our derivations. One can use the same principles as discussed here,
but one needs to incorporate appropriate modeling and re-derive at least parts of what is
presented here if these assumptions are not met.

Viewing multiple models of IMM as being a discrete state allows one to treat them in a
similar manner to the continuous states. This enables appropriate conditioning and thus
possible to avoid the increase in computational complexity of having them in the asso-
ciation in a similar manner as Musicki and Suvorova [2008] did. It also provides ways
to treat for instance varying detectability [Mušicki and Evans, 2002] as this also can be
seen as being a discrete state and hence provide a different measurement model instead of
dynamic model. Treating these together simplifies derivations to the same framework, but
how to efficiently treat this in an implementation was not investigated here. Using IMM
along with JPDA type algorithms is not straight forward, as different authors have done it
in different ways. Some have included the models in the association [Chen and Tugnait,
2001; Blom and Bloem, 2002; Tokle, 2017], whereas others have not [de Feo et al., 1997;
Musicki and Suvorova, 2008].

The possibility to handle the independent sets, being the components of the MTT SDF,
independently through the prediction and update step provides a new way to establish
track to establish track continuity and as such gain the possibility of labeling the track
sets. To properly identify tracks and establish track continuity, may seem like a trivial and
self explaining task. However, when for instance Mahler [2007], one of the founders or
inventors of RFS for MTT, claims that labeling will make the estimation more complex,
whereas Vo et al. [2014], another significant contributer to the field, claims that it makes
it simpler, caution is needed. Hence, the insight that is given here, that goes in the same
direction as Granström et al. [2018] and Garcı́a-Fernández et al. [2016] although with
another interpretation, can hopefully be of value towards the goal of understanding this.

The labeling interpretation given here can be phrased as: a union of independent target
sets will forever be a union of independent targets sets when the sets move and give mea-
surements independently. Hence, we can do inference regarding which is which, thereby
also providing a way of doing inference in the individual independent sets. Detected track
sets were seen as singleton sets following BPPs, whereas the still undetected target set was
seen as a union of one or several undetected target sets coming from different birth pro-
cesses following PPPs. Labeling the individual sets in the unuonized target set instead of
the set elements differs from how others do it [Vo and Vo, 2011]. It is also intriguing when
seeing the little extra notation needed, as one simply extracts the subset that is labeled ac-
cording to the given component without changing anything withing the component. This
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is in contrast to having to introduce delta functions and indicator functions as in the LMB
Vo and Vo [2011].

The total target information distribution provides a compact way of viewing the complete
picture within MTT, although admittedly looking a bit nasty to handle. It could be seen as
and extension of the PGM formulation of Meyer et al. [2018], although in a non obvious
manner, but might nevertheless lend itself as a framework for studies of new approxima-
tive algorithms. Showing the relationship between PMBM, MHT, TOMB/P, JIPDA with
its degenerate cases and PHD through statistical divergences clearly shows what type of
information there is to gain or lose if opting for a different algorithm. This type of in-
sight is good to have when performing the art of engineering and follows the principle
“Everything should be made as simple as possible, but not simpler”.

Similarly, having good knowledge on how to simplify the marginalization when calcu-
lating the JPDA probabilities is valuable when ones’ problem gets too big to solve using
exact methods. The simplifying assumption of stationary undetected target intensity or
initial existence probability and its relation the the birth intensity under ones’ modeling
parameters is also a good tool for a practical engineer.

All this provides a good theoretical foundation for MTT. Derivations and descriptions of
the RFS filter incorporating hybrid state space and how to extract target identities from
it provides a good insight into the problem at hand. Also the expansion into the full
total target information distribution may provide future insight into new approaches to
solving the MTT problem. Giving the relationship between this and several well-known
algorithms can hopefully be of help when deciding on which algorithm to use and what
approximations to apply in a given application.

11.3 Topics of future work

There are multiple paths of future work leading from this. One theoretical path is to look
more rigorously into the labeling provided here, and see if there is an appropriate mathe-
matical foothold to define it formally. A practical path using this type of labeling, could
be an attempt at applying it in a PHD filter fashion, and attempt to establish a connection
to the linear multi target IPDA [Musicki and La Scala, 2008], which treats other targets as
clutter through the false alarm intensity.

Another practical path is to look into new approximation schemes on a PGM formula-
tion of the total target information, using appropriate graph-techniques, free energy tech-
niques and/or variational inference. Where the association is a subproblem remaining after
marginalization of all the other variables and therefore also has the multi/single scan BP
and free energy association techniques [Williams and Lau, 2018] as subproblems. Addi-
tionally, one could look into the efficient hypotheses management [Horridge and Maskell,
2006] as an instance of BP, and see firstly how this performs computationally compared
to the LBP approach given here. Secondly, to look into possible ways of extending this to
multi scan problems or to the measurement to track formulation. As previously pointed
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out, seeing if these algorithms can provide insight into combining notions from MHT and
JPDA is also topic of future interest.

An even more practical path is that of evaluating an implementation of the Gaussian mix-
ture IMM-JPDA and comparing performance gains in different types of scenarios. Also,
investigating if the number of components in the mixture can be adapted automatically to
deal with varying scenarios.
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