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Problem Description

The purpose of this thesis is to develop a solution method for the Dynamic Electric Vehicle
Relocation Problem (DE-VReP). The DE-VReP is concerned with recharging and relocation of
a fleet of electric cars in a free-floating carsharing system. The main goal of the DE-VReP is to
maximize the customer demand served in a cost-effective way.
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Abstract

Carsharing systems have gained attention and popularity in recent years. Especially urban areas
are embracing the advantages of carsharing such as economic convenience and environmental
benefits. Many of the challenges faced by carsharing organizations can be modeled and solved
using mathematical programming. This makes carsharing systems interesting from an operations
research (OR) perspective. This thesis examines a free-floating electric carsharing system and the
operational challenges associated with such a system. A free-floating carsharing system consists
of a fleet of rental cars managed by a carsharing organization (CSO). Free-floating systems
allow the users to pick-up and drop-off cars at any location within the operating area of the
CSO. Modern technologies play an essential role in the development of new carsharing systems.
Remote tracking, including fuel/battery levels and positions of cars, and mobile applications
are examples of such technologies. Since electric vehicles are environmentally friendly and well
suited for shorter trips, they are commonly used in carsharing systems.

Free-floating carsharing systems are prone to unbalanced distributions of rental cars due to
patterns in customer demand. Therefore, the problem of optimal relocation of rental vehicles
to best meet demand is of particular interest for the CSOs. Efficient relocation is paramount
for the profitability of the CSO. Other operational aspects include refueling/recharging and
maintenance of the car fleet.

A literature review of carsharing systems is conducted. The review focuses on operational prob-
lems and heuristics for solving them. The findings indicate that few of the solution approaches
in the literature include all aspects of a realistic carsharing system. Elements usually excluded
are the recharging/refueling and maintenance of cars.

This thesis presents a solution method for solving the Dynamic Electric Vehicle Relocation
Problem (DE-VReP), adopting a Rolling Horizon framework. The DE-VReP is concerned with
routing a set of service employees, as they relocate and recharge cars, in a free-floating carsharing
system with electric vehicles. The goal of the problem is to maximize the customer demand
served, cost-effectively. In the Rolling Horizon framework, a static sub-problem of the DE-
VReP, denoted the E-VReP, is solved iteratively. An Adaptive Large Neighborhood Search
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(ALNS) heuristic is developed to solve the E-VReP. Solving the DE-VReP yields routes for the
service employees throughout the day.

The solution method for solving the DE-VReP is tested in a simulation model mimicking a
theoretical carsharing system based on the city of Oslo, Norway. All travel times are real travel
information. Performance of the solution method for the DE-VReP is evaluated based on the
amount of customer demand served.

The ALNS heuristic for the E-VReP provides effective relocations and recharging of cars. Basic
maintenance is also incorporated. The heuristic shows promising results in solving the E-VReP,
achieving on average a deviation of 0.5% to best-known solutions on a set of test instances.
Comparably, a greedy approach achieves an average deviation of 45.6%.

The solution method for the DE-VReP provides high-quality solutions in reasonable computation
time for problem instances with over 380 rental cars. The solution method is versatile and
adaptive to fit the preferences of CSOs. Compared to a greedy solution method for the DE-
VReP, the proposed solution method increases demand serves by 7.86 percentage points.
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Sammendrag

Bildelingssystemer har blitt populære i nyere tid. Økonomiske og miljøvennlige fordeler har
gjort bildelingssystemer til et attraktivt alternativ til eie av egen bil, særlig i urbane strøk.
Flere av utfordringene som må løses for å drifte et bildelingssystem kan løses ved hjelp av blan-
det heltalls-optimering. Bildeling er dermed interessant fra et operasjonsanalytisk perspektiv.
Denne masteroppgaven tar for seg de operasjonelle utfordringene ved å drifte et frittflytende
bildelingssystem med elektriske biler. Et slikt system består av en flåte med elektriske biler
driftet av en bildelingsorganisasjon (Carsharing Organization - CSO). I et frittflytende bildel-
ingssystem kan kundene parkere bilene hvor de vil innenfor driftsområdet til bildelingsorgan-
isasjonen. Et driftsområde er vanligvis på størrelse med en by. Moderne teknologi, særlig
mobilteknologi, har vært avgjørende for fremveksten av bildelingssystemer. Bildelingssystemer
med elektriske biler har økt i popularitet, mye fordi elektriske biler er miljøvennlige og godt
egnet til korte kjøreturer i storbyer.

I et frittflytende bildelingssystem kan distribusjonen av biler bli ujevn som en konsekvens av
bruksmønstre. For å dekke mest mulig etterspørsel er det derfor viktig med effektiv reposisjoner-
ing. Effektiv håndtering av bilene er en avgjørende faktor for lønnsomheten til bildelingsorgan-
isasjonene. Andre operasjonelle problemer inkluderer lading og vedlikehold av bilflåten.

En litteraturundersøkelse av bildelingstjenester er gjennomført. Hovedfokuset i litteraturunder-
søkelsen har vært på operasjonelle problemer samt heuristiske løsningsmetoder for disse. Få av
løsningsmetodene avdekket i litteraturundersøkelsen tar høyde for alle aspektene ved et bildel-
ingssystem. Blant annet er lading og vedlikehold av bilflåten ofte utelatt.

Denne masteroppgaven presenterer en løsningsmetode for det Dynamiske Reposisjoneringsprob-
lemet for Elektriske Biler (Dynamic Electric Vehicle Relocation Problem - DE-VReP). En løs-
ning på DE-VReP git ruter for de ansatte. Målet er å finne de rutene som tilfredsstiller mest
mulig kundeetterspørsel på en kostnadseffektiv måte. Den foreslåtte løsningsmetoden bruker
et rullende horisont (Rolling Horizon) rammeverk. Innenfor et slikt rammeverk oppstår det
statiske subproblemer, kalt E-VReP. Et adaptivt, variabelt nabolagssøk (Adaptive Large Neigh-
borhood Search - ALNS) har blitt utviklet for å løse E-VReP. En løsning på DE-VReP inkluderer
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reiseruter for de ansatte i bildelingsorganisjonen i løpet av en arbeidsdag. Rutene indikerer hvor
de ansatte skal reise og hvilke biler de skal reposisjonere og lade.

Løsningsmetoden er testet i et simuleringsrammeverk som etterligner et teoretisk bildelingssys-
tem i byen Oslo, Norge. Alle reisetider er basert på sanntidsinformasjon. Kvaliteten av løs-
ningsmetoden for DE-VReP evalueres etter mengden kunde-etterspørsel tilfredsstilt.

Løsningsmetoden for E-VReP lager effektive reiseruter for de ansatte. Lading og enkel ved-
likehold av bilene er også inkludert i rutene. På et sett av tester oppnår løsningsmetoden et
gjennomsnitt som er 0.5% unna de beste løsningene som noen gang er funnet. En grådig løs-
ningsmetode oppnår derimot løsninger som i gjennomsnitt er 45.6% unna de beste løsningene.

Løsningsmetoden for DE-VReP oppnår også løsninger av høy kvalitet etter kort tid på problemer
med over 380 biler. Løsningsmetoden er lett å tilpasse preferansene til en CSO. Sammenliknet
med en grådig løsningsmetode for DE-VReP, så er den foreslåtte løsningsmetoden 7.86 prosent-
poeng bedre.
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Chapter 1
Introduction

Carsharing systems have existed in various forms for at least 70 years. Recently, carsharing
as means of transportation has gained traction due to larger urban populations and increased
focus on the environment. Furthermore, privately owned cars suffer from low utilization, with an
average usage of one hour a day (Li et al., 2016). Each car in carsharing systems replaces at least
four to eight privately owned cars, consequently reducing the pressure on parking spots in urban
areas (Loose, 2009). Traditional carsharing systems are station-based systems, in which a fleet of
cars is distributed among different stations. The users usually reserve a car before use, and then
pay a time and distance based fee (Shaheen et al., 2015). The majority of carsharing systems
are still station-based. However, the increased demand for flexibility from users has encouraged
the development of free-floating systems. In such modern systems, cars can be picked up and
delivered at any location within a specified area. Demand patterns can lead to unbalanced
distributions of cars, both in station-based and free-floating systems. Hence, owners of these
systems strive to maintain distributions of cars that meet the customers’ demand patterns.

1.1 Purpose of Thesis

The purpose of this thesis is to investigate and solve the Dynamic Electric Vehicle Relocation
Problem (DE-VReP) in free-floating carsharing systems using electric vehicles. The goal of this
operational problem is to maximize demand served, in a cost-effective way, by relocating cars.
Relocation includes recharging and transportation of rental cars to improve the distribution
of cars in the system. Studies have shown that using bikes as mean of travel for the service
employees is an effective strategy for carsharing systems (Bruglieri et al., 2014). When solving
operational problems, it is common to face trade-offs between the system owner’s profits and
customer satisfaction. Higher customer satisfaction would make the system more attractive to
new customers, which again could lead to higher profits.
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Chapter 1. Introduction

The first goal of this thesis is to develop a solution method for realistic instances of the DE-
VReP. The proposed solution method adopts a Rolling Horizon framework, following the most
recent research on dynamic vehicle routing problems. In the Rolling Horizon framework, a static
sub-problem to the DE-VReP, the Electric-vehicle Relocation Problem (E-VReP) is solved at
each decision epoch. The second goal of this thesis is to develop a solution method for the
E-VReP to be used in the Rolling Horizon framework. Both a Mixed Integer Programming
(MIP) model and an Adaptive Large Neighborhood Search (ALNS) are heuristic presented. A
literature review is also conducted.

1.2 Structure of Thesis

This thesis begins with an introduction to the carsharing industry in Chapter 2. A literature
review focusing on the operational and dynamic aspects of carsharing as well as heuristic methods
are presented in Chapter 3. Chapter 4 describes the DE-VReP in detail. Chapter 5 proposes
a solution method for the DE-VReP adopting a Rolling Horizon framework. Chapters 6 and
7 describe and model the E-VReP. An ALNS heuristic for solving the E-VReP is presented in
Chapter 8. Chapter 9 presents a suitable simulation model. Chapter 10 discusses implementation
details of the DE-VReP and the E-VReP, respectively. Chapter 11 presents the results of the
computational study. Finally, Chapter 12 concludes this thesis and presents possibilities of
further research.
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Chapter 2
Background

The world’s population is expected to grow to approximately 10 billion by the year 2050 (UN,
2017). The majority of this growth is anticipated to occur in urban areas. With existing
transport services, a proportional increment in traffic would lead to large increments in pollution.
A significant change to existing transportation systems and infrastructures is needed to cope
with this growth. Carsharing systems are transportation systems which attempt to solve these
problems (Martin and Shaheen, 2016). This chapter introduces the modern carsharing systems
and their origins. Section 2.1 presents the characteristics of carsharing systems. A brief overview
of the history of carsharing is given in Section 2.2.

2.1 Carsharing Systems

Carsharing systems enable customers to rent cars for a short period of time. A carsharing system
is owned and maintained by a Carsharing Organization (CSO). First-time users typically sign
up through a website or a mobile application to get access to the system. Users of the system
can book available rental cars. In contrast to traditional car rentals, users rent cars without
any direct interaction with the CSO. Accessing the rental cars is usually done either through
smartphone applications or electronic keys sent to the customers from the CSO. Station-based
and free-floating systems are the two main categories of carsharing systems.

2.1.1 Types of Carsharing Systems

In station-based systems, the users can only pick up and deliver rental cars at specific stations
owned by the CSO. Station-based systems are either one-way or two-way systems. In one-way
systems, the users can pick up and deliver cars at different locations. In two-way systems, the
users deliver the rental car to the same location as they picked it up.
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Free-floating systems differ from station-based by allowing the customers to pick up and deliver
rental cars at any location within the operating area of the CSO. Compared to station-based
systems, free-floating carsharing systems are more convenient for the customers, as they offer
more flexibility. However, this flexibility comes at a price for the CSO. Free-floating systems
are prone to uneven distributions of rental cars caused by patterns in customer usage. Similar
problems may occur in one-way systems, but not to the same degree as in a free-floating system.
Carsharing systems usually consist of either gasoline or electrical cars. An example of an electric
rental car is shown in Figure 2.1.

Figure 2.1: A electric car owned by BMWs CSO, ReachNow (www.reachnow.com).

2.1.2 Revenues and Costs

CSOs generate revenue by collecting subscription fees from the customers. Most CSOs also
charge a fee dependent on distance driven or time used in a rental car. Costs for the CSOs include
capital costs associated with the rental cars and charging stations as well as operational costs.
Service employees maintain, recharge/refuel and relocate the fleet of rental cars. Operational
costs for the CSOs mainly consists of wear, toll fees, and electricity usage of the cars in use.

2.1.3 Challenges

CSOs face challenges on three levels: strategic, tactical and operational. The strategic level
is concerned with the number of stations and their locations. On the tactical level, the CSOs
wish to find the optimal number of rental cars and service employees needed in the system.
The operational level is concerned with optimizing the day to day operations of the CSOs.
Recharging/refueling and maintaining the cars are operational concerns faced by all CSOs. In
one-way station-based or free-floating systems, the CSOs must also consider whether or not

4
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the relocation of cars is necessary to meet demand. Demand in the different parts of a CSO’s
operating area may change dynamically during a day or a week, and relocation may enable the
CSO to increase its revenues by satisfying more demand. Tasks on the operational level are
performed either by service employees hired by the CSO or by the customers themselves. Some
systems use different reward schemes to incentivize customers to charge/fuel and relocate cars.
Service employees may travel between the rental cars and the stations in several ways, including
public transportation, folding bikes (see Figure 2.2) and shuttle buses carrying several service
employees. This thesis proposes a solution method for the DE-VReP, which is an operational
problem faced by free-floating electric carsharing systems.

Figure 2.2: Folding bike in the trunk of a car (www.decathlon.it).

2.2 Carsharing History

The following section, describing the history of carsharing, is based on Shaheen et al. (1998) and
Shaheen et al. (2015).

The history of carsharing started in Europe in the late 1940s. One of the first known carsharing
systems known as "Sefage" was established in Zurich, Switzerland, in 1948. Carsharing systems
started out as a solution for individuals who could not afford to own a car. From the late 1940s
and until the mid-1980s there were very few successful commercial carsharing ventures. The
primary challenge for carsharing systems in this period was the transition from neighborhood-
based programs to actual business ventures. In 1987, Mobility Carsharing Switzerland was
founded, with a fleet of 1 000 cars. A year later, StattAuto Berlin was founded with around 200
cars. These two companies are regarded as worldwide pioneers within the field of carsharing.
Both companies exist today, and they have seen a steady growth in both fleet size and number
of customers. In total, the carsharing industry has shown increasing growth since the mid-2000s,
see Figure 2.3.

5
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Figure 2.3: Development of carsharing users and number of cars owned by CSOs
globally from year 2006 to 2014 (Frost and Sullivan, 2014).

Modern carsharing systems originated in Europe. Europe is still the continent with the highest
number of customers and rental cars. In recent times, North America, Asia (mostly Japan
and Singapore) and Europe have witnessed growth in the number of carsharing users. Modern
technologies have played a prominent role in this growth. For instance, GPS, mobile applications,
keyless car access and electric cars have all been paramount in modernizing the carsharing
industry. These technologies among others have enabled 24-hour access to rental cars without
forcing CSOs to hire additional service employees.

There still exist a wide range of strategic, tactical and operational problems faced by CSOs.
These problems have gained considerable interest in recent years, especially from the Operation
Research (OR) community. Most research done in the past regarding carsharing systems have
focused on station-based systems. These systems are simpler to operate for the CSOs. Today,
many CSOs focus on free-floating systems as these systems provide more flexibility to the users.
In such systems, finding the optimal ways to relocate the cars to satisfy the most demand is the
main problem.
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Chapter 3
Literature Survey

This chapter discusses recent literature on solution methods to challenges related to carsharing
systems. Section 3.1 discusses the types of optimization decisions faced by CSOs. Section 3.2
discusses different approaches to modeling and solving the DE-VReP and dynamic car routing
problems in general. Section 3.3 introduces heuristic methods applicable to solving the E-VReP.
Finally, Section 3.4 summarizes this survey. For a more extensive literature survey covering
carsharing literature, please see Folkestad and Hansen (2017).

3.1 Optimization in Carsharing Systems

Boyaci and Geroliminis (2015) divide the optimization of carsharing problems into a hierarchy
of three categories; the strategic, the tactical, and the operational level. When optimizing on
one level, the decisions made in the above levels are usually considered fixed. However, some
papers, such as Martinez et al. (2012), solve problems from both the strategic and the tactical
levels simultaneously. Sections 3.1.1, 3.1.2 and 3.1.3 present different challenges in each of the
three categories together with possible solution approaches found in the literature. Figure 3.1
gives an overview of the different challenges in the three categories.

3.1.1 The Strategic Level

Decisions at the strategic level are concerned with the determination of the optimal number, size,
and location of stations in a fixed-station carsharing system. Kathrin S. Kühne and Breitner
(2016) propose a decision support system using Mixed Integer Programming (MIP) to optimize
the location of charging stations for electric cars. Their model considers parameters such as
annual lease payment, expected travel time of customers and charging time of cars. However,
Boyaci and Geroliminis (2015) show that a CSO’s profits are correlated with customer satisfac-
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Strategic

Tactical

Operational

- Number of stations
- Location of stations
- Size of stations
- Business area

- Fleet size
- Booking system
- Number of employees

- Relocation
- Maintenance
- Refueling/Recharging

Figure 3.1: Planning levels for a CSO

tion. Hence, station accessibility as incorporated in the MIP of Correia and Antunes (2012) can
lead to increased profits for the CSO.

In free-floating carsharing systems, the strategic level is concerned with the optimal distribution
of cars in the system to increase the demand met. In the paper by Simone Weikl (2012),
the authors use classification and demand clustering algorithms to determine the optimal car
locations to satisfy the customer demand. They classify the potential parking spots into hot
and cold spots based on identified demand patterns. Such an approach can be done in advance
of the relocations and is relevant for the solution method used in this paper.

3.1.2 The Tactical Level

With the optimal number, size and location of stations decided, the tactical level is concerned
with optimizing the fleet size of rental cars. To optimize the fleet size of an existing carsharing
system George and Xia (2011) and Cepolina and Farina (2012) analyze the demand imbalance
patterns in the operating area. George and Xia (2011) deal with the customer costs of waiting
by using a queuing network model that gives indications of beneficial fleet changes. Cepolina
and Farina (2012) include customer costs that are dependent on their waiting time into the
objective function.

Also, decisions made on the tactical level deal with how customers make their bookings. The
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trip-booking scheme chosen by the CSO has a significant impact on both the usage patterns of
the system as well as the ease of car relocation. For instance, if users are only allowed to book
cars in advance of their trips, the system would be less attractive for impulsive users. However,
bookings in advance make the process of car relocation more efficient, especially if the users also
specify their planned destinations. Both Correia and Atunes (2014) and Kaspi and Tzur (2014)
show that when users allow the CSO to get access to more information, the CSO ends up with
higher profits. Correia and Atunes (2014) use a MIP to demonstrate that a CSO not exploiting
real-time information about the rental cars can have its profits reduced by as much as 80%1.

3.1.3 The Operational Level

The operational level is concerned with optimizing the core business of the CSO which mainly
consists of three operational decisions; car relocation, maintenance, and refueling/recharging.
Relocation done by the CSO, known as employee-based or operator-based relocation, has received
the most attention in the OR carsharing literature. Employee-based relocation is the term used
in this thesis and is elaborated in this section.

Most research on employee-based relocation suggests solution methods using simulation models
or Mixed Integer Programming. In Barth and Todd (1999) the researchers develop a queuing-
based discrete event simulation model for performance analysis of a station-based carsharing
system. Their model determines if the system is in need of relocation or not. Other researchers
combine simulation models with simple rules of thumb for decision making, including Kek et al.
(2006), Kek et al. (2009) and Jorge et al. (2014). Common for these papers is that stations with
lack of cars are filled up with cars from nearby stations with surplus of cars.

Boyaci and Geroliminis (2015) use a multi-objective MIP model to solve the employee-based
relocation problem for a one-way station-based system with electric cars. The model tries to
maximize the profits of the CSO using a weighted sum approach. Boyaci and Geroliminis (2015)
explore the efficient frontier of solutions by varying the weighting of the objectives. Boyaci et al.
(2017) further develop the approach by Boyaci and Geroliminis (2015) by modeling the problem
as a MIP and tests it in a discrete event-simulation framework. Boyaci et al. (2017) iteratively
resolve the MIP to find feasible solutions in an environment with stochastic demand. As was
done by Kek et al. (2009), Boyaci et al. (2017) also include the routing of service employees in
their model and not only the relocation of rental cars.

3.2 Dynamic Vehicle Routing Problems

The DE-VReP shares characteristics with Dynamic Vehicle Routing Problems (DVRP). Vehicle
routing with dynamic customer demand is one of those characteristics. Therefore, it is appro-

1User flexibility with regards to parking policies affects this number.
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priate to include a description of DVRP’s modeling approaches and solution methods. The
interest for DVRPs among operation researchers has increased in the recent years. This interest
is evident in the survey by Psaraftis et al. (2016), where 51 out of 117 DVRP papers cited are
published after 2011. DVRPs do however have a long history in the OR community, with the
first known article on the subject being Wilson and Colvin (1977). Pillac et al. (2011) argue that
the increased interest in DVRPs is a consequence of technological advances in both computer
hardware and software. More efficient hardware has made previously intractable problems solv-
able. Also, the current wave of research in the field of machine learning and predictive analysis
has made forecasting, which often is a crucial part of solving DVRPs, more reliable.

Psaraftis et al. (2016) categorize a vehicle routing problem (VRP) to be either dynamic or static,
and either stochastic or deterministic. Hence, four VRPs are possible as seen in Table 3.1.

Table 3.1: VRP Classification

Static Dynamic

Deterministic

A static VRP is deterministic
if all input is known. Can be
solved before the start of the
planning period.

A VRP where input is revealed
over time. No information
about the input is known.
Solved many times, when new
information is available.

Stochastic

A VRP where input is not
known, but a distribution
for the input is known. The
problem is solved before the
input is known.

A VRP where input is revealed
over time. A probability distri-
bution for the input is known.
Solved many times, when new
information is available.

3.2.1 Modeling DVRPs

Modeling a DVRP is considerably more difficult than modeling its static counterpart. The need
for incorporation of continuous change in the input has forced operation researchers to alter the
way a dynamic problem is modeled, compared to that of a static. Ulmer et al. (2017) present
a Markov Decision Process (MDP) framework for DVRPs. The authors argue that current
DVRP research lacks a connection between solution method and modeling, and that this gap
can be bridged by introducing a MDP framework. Ulmer et al. (2017) show how a route-based
MDP can be used to model a DVRP while at the same time being closely coupled with solution
methods that optimizes iteratively. MDPs have been used as a tool to solve DVRPs before
Ulmer et al. (2017) presented their model. Both Thomas (2007) and Secomandi and Margot
(2009) use Markov Chains to model a DVRP. However, Ulmer et al. (2017) generalize the MDP
framework, making it reusable for a variety of different DVRP problems. The model presented
by Ulmer et al. (2017) extends traditional MDPs by making the current planned route a part of
the MDP framework.
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A conventional MDP models a process over time where a actions occur at different time steps
referred to as decision epochs. At each decision epoch, the process is in a specific state, which
describes all information about the process. The process evolves from one state to the next
during a transition which is caused by a particular action. Each action has a reward associated
with it. A transition may or may not be deterministic. The objective is to maximize or minimize
the sum of all expected rewards over all decision epochs.

3.2.2 DVRP Solution Approaches

In modern research, most solution approaches try to solve a DVRP using periodic re-planning.
This approach, often called a Rolling Horizon approach, has been used with success by Chen and
Xu (2006), Kilby et al. (1998), Yang et al. (2002) and others. In a Rolling Horizon approach, a
static vehicle routing problem (VRP) is defined for the DVRP. The VRP is solved and re-planned
multiple times in succession with updated input to mimic the dynamics of a DVRP.

Chen and Xu (2006) solve a DVRP with hard time windows by using a Rolling Horizon approach.
The time between each re-planning is a parameter and does not change over the duration of the
planning period. Kilby et al. (1998) present a different criterion for re-planning. Re-planning
is triggered when new demand arrives. Yang et al. (2002) show how different implementations
of a Rolling Horizon approach can be used to solve a real-time multi-car truckload pick-up and
delivery problem. They show how the approach can be used in combination with a variety of
solution methods for the underlying static VRP, including both heuristics and exact optimization
methods.

3.2.3 Solution Evaluation

When solving a DVRP using a series of static VRPs in a Rolling Horizon framework, one
must keep in mind that short-term objectives do not necessarily yield good long-term solutions.
This trade-off complicates the formulation of the objective function for the short-term static
problem. In a static VRP, the objective function often maximizes profits or customer satisfaction
or minimizes cost or customer dissatisfaction. Using such an objective function in a Rolling
Horizon framework, routes minimizing costs in the short-term could end up being expensive in
the long-term.

3.3 Relevant Heuristics for the E-VReP

Solving the E-VReP in a dynamic setting has similarities with solving the classical VRP prob-
lem. Computation time does, however, play an extra important role in the Rolling Horizon
environment due to the high frequency of re-planning. Exact methods for solving large real-
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world instances are, therefore, often ruled out. Many different heuristics are proposed in the
literature, including various neighborhood searches and evolution-inspired methods. This sec-
tion introduces relevant heuristics for solving the E-VReP. Sections 3.3.1 and 3.3.2 present the
two main categories of search heuristics found in the literature, namely Neighborhood Search
and Evolution-Inspired Search.

3.3.1 Neighborhood Search

The most common neighborhood searches found in the literature related to the E-VReP are
Adaptive Large Neighborhood Search (ALNS) and Tabu Search (TS).

ALNS is based on the Large Neighborhood Search from Shaw (1997) which extends the classic
local search to include larger changes to the solution instead of marginal changes. The set of
marginal changes is referred to as the local neighborhood. The larger changes consist of so-called
destroy and repair heuristics. The destroy heuristics make drastic changes to the solution to
explore new areas of the solution space, while the repair heuristics try to improve the solution
given the result of the destroy methods. These methods enable the search to easier escape local
optima. ALNS includes an adaptive approach in which the neighborhoods are chosen based
on past success in obtaining solution improvements. Ropke and Pisinger (2006) describe these
methods as a fruitful diversification process which increases the probability of finding good
solutions.

TS, on the other hand, exploits only the local neighborhood, but in a sophisticated manner.
In each iteration, the search greedily chooses the marginal change that yields the best solution
improvement. In cases where no solution improvements exist, the TS selects the least worsening
marginal change. TS prohibits recently chosen marginal changes for a given number of iterations,
called the tabu tenure. The tabu tenure prevents the search from getting stuck in local optima.

Adaptive Large Neighborhood Search

The paper Bruglieri et al. (2018) proposes an ALNS for the Electric Vehicle Relocation Problem
(E-VReP) in a one-way station-based carsharing system. Based on the paper Bruglieri et al.
(2014), their model aims to find the optimal set of routes to maximize the number of relocation
requests in a cost-efficient way. These requests are based on customer demand in the different
stations. The relocation requests are considered a priori information in the model. They
compare their heuristic to results from solving a MIP and a TS approach. Tested on real-life
data from Milan, ALNS outperforms both of these models.

A drawback of the model from Bruglieri et al. (2018) is its applicability in a dynamic context.
In the model, the service employees start and stop at a given depot, and the possibility of
re-planning when new data becomes available seems absent. Chen et al. (2018) propose an
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ALNS aimed to solve the static subproblems of a DVRP with heterogeneous vehicles. Similar
to Bruglieri et al. (2018), they introduce several ALNS and TS operators utilizing the structure
of the underlying problem. Both papers also conclude that accepting solutions based on the
criteria from Simulated Annealing is beneficial. In addition, Chen et al. (2018) show that the
performance of the ALNS improves when allowing for infeasible solutions during the search. The
authors conclude that the use of ALNS in a dynamic VRP environment is suitable.

Tabu Search

In the recent paper Ait-Ouahmed et al. (2018), a TS for solving the E-VReP in a one-way,
station-based carsharing system is proposed. Based on a carsharing service in Nice Metropolis,
the model aims to maximize customer demand served. Compared to Bruglieri et al. (2018), Ait-
Ouahmed et al. (2018) present an adaptation of the TS with a two-level architecture, each of them
corresponding to a subproblem. The first subproblem considers only the optimal relocation of
cars in order to meet the demand. The second subproblem consists of assigning service employees
to the relocations found in the first subproblem. This approach speeds up the search for larger
test instances.

Kirchler and Calvo (2013) suggest a way to speed up the TS by proposing a granular TS.
Apart from the standard TS, their heuristic reduces the search space by using a reduction of the
neighborhood, hence the term granular. Relocations unlikely to be part of an optimal solution
are removed when defining the input to the search. The reduction of the search space is useful
in solving very large problem instances. However, similar to that of Ait-Ouahmed et al. (2018),
the simplification may remove the possibility of finding optimum. Kirchler and Calvo (2013)
also incorporate a dynamic variation of the tabu tenure that balances between intensification
and diversification. When solution improvements are found, the search intensifies by reducing
the tabu tenure allowing for more marginal changes. However, with lack of improvements, the
tabu tenure increases to ensure diversification.

3.3.2 Evolution-Inspired Search

Prins (2004) and Nagata and Bräysy (2009) have both proven that evolutionary algorithms, such
as the Genetic Algorithm (GA) from Holland (1975), are efficient at solving VRPs. In brief, the
GA mimics the process of natural evolution where the best solutions from one generation have
a larger probability of surviving.

Prins (2004) was the first to introduce an efficient GA due to a novel solution representation.
The representation consists of an ordered list of all nodes to visit for the service employees, but
without any trip delimiters. Routes for service employees are generated by using a splitting
procedure that runs in polynomial time. The new splitting procedure strengthens the genetic
transmission of information from parents to children, making the search more efficient. The
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solution representation has been adapted to a broad class of VRP problems as described in
Penna et al. (2018).

Based on the promising results of Vidal et al. (2012), Folkestad and Hansen (2017) apply the
Hybrid Genetic Search with Adaptive Diversity Control (HGSADC) to a version of the E-VReP.
The HGSADC of Vidal et al. (2012) incorporates new metaheuristics and population-diversity
management methods. These metaheuristics utilize the breadth of the GA while at the same time
enforcing aggressive improvement strategies. The population-diversity management ensures the
preservation of good solution characteristics while maintaining diversity. In the E-VReP version
of Folkestad and Hansen (2017), the service employees are picked up and dropped off at the
locations and destinations of relocation requests. Herbawi et al. (2016) solved the same version
of E-VReP using an evolutionary algorithm.

3.4 Summary of Literature Review

Recent carsharing research focuses on a variety of problems within the strategic, the tactical
and the operational levels of a carsharing organization. A majority of the reviewed papers
focus on operational problems, emphasizing employee-based relocation. One-way station-based
carsharing systems have received the most attention. From an operational point of view, the
challenges faced in a free-floating system are more difficult to solve than those for a one-way
station-based system. Free-floating systems do, however, offer more flexibility to the users.

A variety of different strategies have been proposed to solve the relocation problem for both
one-way and free-floating systems, including simulation models and MIP models. Most models
do, however, have some shortcomings in modeling all aspects of reality. Mukai and Watanabe
(2005), Kek et al. (2006), Kek et al. (2009), Nair and Miller-Hooks (2011) and Nair and Miller-
Hooks (2011) all ignore routing of service employees. Boyaci and Geroliminis (2015) and Boyaci
et al. (2017) both present models which include routing of service employees. However, they
model the routing of service employees and the routing of rental cars as two separate problems.
This separation may lead to solutions where the total costs and revenues of relocations are not
properly balanced.

General dynamic vehicle routing problems have received increased attention in recent years.
Most recent articles concerned with DVRPs use a Rolling Horizon approach. A variety of
different solution methods for the underlying static vehicle routing problem have been proposed
and tested.

The goal of this thesis is to create a solution method for large-scale versions of the DE-VReP,
in free-floating carsharing systems. For practical use, it is crucial that the proposed solution is
efficient with low computation times. A solution where the members of the service employees
travel by public transport or foldable bikes is proposed. Bikes are used due to the efficiency
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described in Bruglieri et al. (2014).

15



Chapter 4
Problem Description of the DE-VReP

This chapter presents the Dynamic Electric Vehicle Relocation Problem (DE-VReP). The DE-
VReP is a problem on the operational level of free-floating carsharing systems. The main goal
of the problem is to maximize the demand served by the system in a cost-effective way. Section
4.1 gives an overview of the DE-VReP. Section 4.2 defines important terminology and necessary
definitions. Finally, Section 4.3 introduces key considerations with regards to objectives, routing
of service employees and travel times.

4.1 Overview

The DE-VReP is defined as the operational problem of deciding how to route a crew of service
employees in a free-floating electric carsharing system. The service employees perform relocations
of rental cars. Relocation in the DE-VReP denotes either relocation of rental cars between two
locations to better serve demand or to transport a car for recharging. The problem is solved
throughout the whole day, i.e., during the business hours, denoted the planning horizon. The
outcome of the decision problem is routes for the service employees during the planning horizon,
which cars each service employee relocates, and where to relocate each car. Routes consist of
relocations of cars as well as travels without cars. The decision maker is the owner or manager
of the system, usually the CSO. It is in the interest of the CSO that the relocation of the rental
cars is carried out in the most time and cost-effective way possible.

The overall goal of the CSO is to maximize demand served, in a cost-effective way. Customer
demand is served if a user requests a car, and a car is available the desired location. Demand
served constitutes the primary revenue source for the CSO. Service employees relocate cars in
order to better serve demand patterns. To serve demand long-term, the CSO is dependent
on recharging the car fleet. There are several types of costs to consider in the DE-VReP.
At the operational level, each relocation carried out are associated with costs of wear, tolls and
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electricity for the car in use. This cost implies that there is a trade-off between meeting demand,
and accumulated cost for every relocation being carried out. There is also a cost associated with
the recharging of cars, due to the cost of electricity. Nonetheless, this cost is ignored in the
DE-VReP, since the recharging is a necessity for the CSO. Finally, it is assumed that decisions
and costs regarding the number of service employees, the size of the car fleet and the number
of charging stations are fixed. However, these decisions, considered at the strategic and tactical
level, affect the ability of the CSO to serve demand.

In the DE-VReP, supply, demand, and travel times change dynamically. Cars with a remaining
range below a certain threshold, or in need of maintenance, are assumed to be unavailable to
customers. All other cars are available for rental. Customers can book cars that are parked and
not reserved by other customers. In the DE-VReP, customers book cars on-demand. However,
they are not able to reserve cars for future rentals. All bookings are made through the CSOs
website or mobile application, which in real time show the available rental cars, their locations,
and their battery levels.

Service employees travel using folding bikes or public transportation, as assumed in Weikl and
Bogenberger (2015) and Bruglieri et al. (2014).

Figure 4.1 shows an overview of the DE-VReP.

Figure 4.1: Conceptual overview of the DE-VReP. Routes and relocations are de-
termined based on the state of the system. The model receives exoge-
nous information repeatedly. The system state is updated based on
tasks done and exogenous information received.
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4.2 Definitions

As in Weikl and Bogenberger (2015) and Folkestad and Hansen (2017), the geographical locations
of cars are divided into zones. Each zone defines a separate geographical area. A parking zone is
defined to be a zone where rental cars are parked and picked up by the customers. Each parking
zone can contain multiple cars. A parking zone may include a charging station. A charging
zone is defined to be the area of the charging station. Each charging station has a maximum
capacity. Only charging rental cars are present in the charging zones. Charging zones are located
inside parking zones as shown in Figure 4.2. With this approach, the entire operating-area can
be represented as a graph. Each node in the graph corresponds to a zone. Edges are defined
between all pairs of nodes. Rental cars and service employees travel between the nodes along the
edges. The weight of each edge corresponds to the estimated travel time between the associated
nodes. Travel times are not necessarily symmetric between two nodes.

Parking Zone

Charging Zone

Figure 4.2: Location of a charging zone. The charging zone is separate from its
associated parking zone

Figure 4.1 shows an overview of the DE-VReP. The initial state defines the distribution of rental
cars among all nodes, battery levels of all rental cars as well as the starting positions for each
service employee. The problem uses initial knowledge about the distributions of demand and
travel times between the zones. During the planning horizon, the optimization model track the
system state consisting of the current knowledge of the world. Target parameters include benefit
of meeting demand and cost of relocating cars. Exogenous information consists of the trips and
booking request made, the battery levels for all rental cars, and the current capacities of the
charging stations.

4.3 Problem Specification

In the following sections, key concepts concerning the objective, the routing of service employees,
and the time usage in the DE-VReP, are discussed.
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4.3.1 Objective

The first objective of the DE-VReP is to maximize demand served throughout the planning
horizon. This is done by relocating cars to nodes with high demand. Cars are recharged in order
to make them available for future rentals. The benefit accumulated by each action may vary with
time due to fluctuating demand. The second objective is to relocate the cars cost-effectively.
The cost of relocation is similar to the one discussed in Section 4.1. An additional objective
considered is the minimization of the idle time for the service employees. Reducing the idle time
encourages employees to share the work-load.

4.3.2 Routing of Service Employees

The routing of service employees consists of sequences of travels between nodes. The travels
consist of car relocations, travel with folding bikes or by public transport. Service employees
are equipped with folding bikes that fit the trunk of the rental cars. It is assumed that there
are always parking spaces available in parking zones. It is also assumed that service employees
only travel to charging nodes when moving rental cars for recharging. When cars are fully
charged, they are automatically relocated to the surrounding parking node, unassisted by service
employees. Automatic relocation is supported by the fact that if customers demand cars in
parking nodes, they can pick up the car from the associated charging station. The same argument
goes for service employees relocating cars. Consequently, employees only relocate cars from
parking nodes.

Service employees can do to two types of car relocation; either they relocate sufficiently charged
cars between parking nodes, or they recharge cars in need of charging, transporting them to
charging nodes. It is assumed that necessary maintenance is carried out when recharging cars.
Cars in need of charging can only be moved to charging nodes with available capacity.

4.3.3 Travel Times and Time Usage

Real-time traffic data should be used when solving the DE-VReP. Due to changing traffic, the
travel times between zones may vary during the planning horizon. Travel times between zones
are calculated based on their geographical centers. When service employees travel without cars,
they ride a bike, use public transport, or some combination of the two. The time used to relocate
cars to parking nodes includes the additional time required to find an available parking spot.
Similarly, the time to relocate cars to charging stations includes additional time required to
start the charging process. Finally, cars currently charging are assumed to be unavailable for
customers and service employees.
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Chapter 5
Solution Method for the DE-VReP

The DE-VReP shares many characteristics with general dynamic routing problems, as discussed
in Section 3.2. Service employees are routed when they relocate rental cars to serve customer
demand. Information regarding demand and travel times in the system changes dynamically
over the planning horizon, and there exist possibilities to iteratively update routes and relo-
cation decisions based on revealed demand and travel information. Hence, the problem could
be modelled as a route-based Markov decision process, MDP, as introduced by Ulmer et al.
(2017). This model includes all elements of conventional MDP models, and the approach al-
lows a formal dynamic model, that deals with sequential decision making on new information.
States correspond to the current distribution of rental cars, relocation needs, and the previous
route plan, while tasks correspond to the routes available for service employees. On new in-
formation, the problem transitions into a new state. This modeling technique formally links
the DE-VReP to solution methods that statically deals with the optimization of tasks taken in
each state. However, modeling the DE-VReP as a route-based MDP could easily lead to an
uncontrollable number of states, and any realistic version of the problem would not be possible
to solve to optimality within a reasonable amount of time. The Rolling Horizon approach on a
static subproblem is thus deemed a better fit for the problem at hand.

This chapter presents a solution method for the DE-VReP which adopts a Rolling Horizon
framework. Section 5.1 briefly introduces the components constituting the Rolling Horizon
framework as well as the interaction between them. Section 5.2 discusses considerations that
must be taken in the Rolling Horizon Framework, to meet the objectives of the DE-VReP.

5.1 Rolling Horizon Framework

According to Sethi and Sorger (1991), Rolling Horizon decision making is common business
practice for making decisions in stochastic environments. By definition, the method involves

20



Chapter 5. Solution Method for the DE-VReP

making the most immediate decisions based on forecasts of relevant information for a certain
number of periods into the future. When applied to DE-VReP, it means that an E-VReP,
referred to as the static subproblem in this chapter, is solved iteratively as new information
becomes available to the CSO. The time when the static subproblem is solved is called decision
epoch. Each static subproblem is solved over portions of the planning horizon defined in Chapter
4. After solving a subproblem, routes, relocations and customer demand is realized. The state
of the system is updated, and the subproblem is solved over again.

Time

Subproblem 1

Subproblem 2

Subproblem 3

Realized demand

Forecasted

......
Decision epoch

Planning period Look-ahead period

Planning period Look-ahead period

Planning period Look-ahead period

Figure 5.1: The Dynamics of The Rolling Horizon Framework

Figure 5.1 uses the terms planning period and look-ahead period. As described in Chapter 4, the
planning horizon is the business hours of the carsharing system, in which the service employees
relocate or recharge cars. The planning period is a subset of the planning horizon and is much
shorter. The solution to every subproblem, in a Rolling Horizon framework, aims to find optimal
tasks for this shorter period. There is a trade-off between choosing tasks that optimize for the
short-term over the planning period, and long-term over the planning horizon. The look-ahead
period partly represents this trade-off, as it is the additional time in excess of the planning
period used to gather demand forecasts. These forecasts are used as input to the subproblems
indicating how rental cars should be distributed at the end of the planning period. The use of
demand forecasts are further elaborated in Chapter 6.

5.1.1 Components

The Rolling Horizon framework for the DE-VReP consists of the three components; the E-
VReP Solver, the Customer Demand and the Simulation Model. The E-VReP Solver (hereby
the Solver) solves the static subproblem of the DE-VReP, i.e., the E-VReP. The Customer
Demand provides data on both predicted and realized customer demand. The Simulation Model
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simulates the business hours of the CSO by keeping track of information regarding the service
employees, rental cars, and customers. The three components, as well as the basic layout of the
data flow between them, is shown in Figure 5.2.

Customer Demand

Simulation Model

E-VReP Solver

Employee RoutesCurrent State

Demand Forecast

Actual Demand

Figure 5.2: The Rolling Horizon framework components. The Simulation Model
can be exchanged by a component tracking actual events in a real
world scenario.

In Figure 5.2, the Simulation Model feeds the Solver with all information necessary to find
optimal routes for the service employees. This data flow contains the current tasks and locations
of the service employees as well as the battery level and locations of rental cars. The Solver
solves the E-VReP yielding all routes and relocations to be done given the current system state.
The resulting routes for each service employee are fed back to the Simulation Model which
subsequently simulates both the travels of the employees and the realized customer demand.
The Customer Demand delivers demand forecasts to the Solver. In addition, the Customer
Demand provides realized customer demand to the Simulation Model. During the planning
horizon, the Simulation Model tracks predefined performance measures set by the CSO in order
to assess the system’s overall performance at the end of the planning horizon.

There are two E-VReP solvers implemented in this thesis. The first is based upon solving a
Mixed Integer Program (MIP) model. Chapter 7 presents the MIP formulation. The second
is an implementation of an Adaptive Large Neighborhood Search (ALNS) heuristic, presented
in Chapter 8. Chapters 9 and 10 present the Simulation Model and the Customer Demand,
respectively.

5.1.2 Notation

The parameters specific to the Rolling Horizon framework are shown in Table 5.1. Paramters
specific to the Solver are presented in Chapters 6 and 8.
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Table 5.1: Parameters used in The Rolling Horizon framework

Parameters

Tstart Start time planning horizon

Tend End time planning horizon

Tincrement Time increments

T Length of planning period

Tstart and Tend represent the start and end time of the planning horizon of the DE-VReP.
Tincrement represents how often the subproblems are solved, i.e., the time difference between
subsequent decision epochs from Figure 5.1. T represents the planning period. For simplicity,
the time of the look-ahead period is identical to the time of the planning period.

5.1.3 Rolling Horizon Algorithm

To concretize the dynamics of the Rolling Horizon framework and the interaction between the
components, a brief algorithmic model is provided in Algorithm 1. The framework starts with
an initial state as defined in Section 4.2. Initially, the planning horizon is divided into time
steps of length Tincrement. After the initialization, the framework iterates over all of these time
steps. Each time step represents a decision epoch from Figure 5.1. In each time step, lines 4
to 8, demand forecasts of the current planning period and the look-ahead period are fed to the
Solver. The Solver then solves the static subproblem to find the desired tasks to be performed
by the service employees. When the Solver is done, the Simulation Model updates the system
state with the actions done by the service employees and customers.

Algorithm 1: Rolling Horizon

1 State = Initial State
2 t = Tstart

3 while t ≤ Tend do
4 DemandForecast = CustomerDemand.getForecast(t, t+ 2 · T )
5 EmployeeRoutes = Solver.solve(State, DemandForecast)
6 ActualDemand = CustomerDemand.getDemand(t, t+ 2T )

7 State = SimulationModel(t,EmployeeRoutes,ActualDemand)
8 t = t+ Tincrement

9 end
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5.2 Objective Function Considerations

When solving different instances of the E-VReP iteratively in a Rolling Horizon framework, it
is essential that the objectives used in the Solver coincide with the overall objectives of the
DE-VReP, even though they may not be the same. There is no obvious answer to which objec-
tives that approximate the objectives of the DE-VReP. However, obtaining a strong connection
between the components in the Rolling Horizon framework is essential. For instance, for the
Solver to produce routes that in expectation maximize the customer demand served, the Cus-
tomer Demand component must be able to produce accurate ideal states that coincides with the
same goal.
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Problem Description of the E-VReP

This chapter introduces the main characteristics of the Electric Vehicle Relocation Problem (E-
VReP). The E-VReP is solved by the Solver from Chapter 5, at each decision epoch in the
Rolling Horizon framework. A problem overview is given in Section 6.1. Section 6.2 introduces
relevant definitions, before Section 6.3 presents objectives, relocation considerations, and time
usage on a more detailed level. Finally, Section 6.4 shows an example of a solution to the
E-VReP.

6.1 Problem Overview

The E-VReP shares many characteristics with the DE-VReP from Chapter 4. The decision
maker, decisions made, costs, booking scheme, and travel configurations, are all the same. The
main differences to the DE-VReP are concerned with the use of the planning period, how the
problem receives new information, and the objectives used.

The objectives of the E-VReP are closely linked to those of the DE-VReP. The primary objectives
of the E-VReP are to maximize expected demand served and the number of cars recharged, in
a cost-effective way. Expected demand served is maximized by minimizing the deviation from
an estimated optimal car distribution at the end of the planning period. This distribution is
calculated based on the expected demand in the look-ahead period introduced in Chapter 5,
i.e., the planning period of the next subproblem. The actual benefits and costs incurred by the
decisions made can, however, only be approximated. For instance, the benefit of recharging of
cars is only observable after the current planning period. Likewise, the expected demand served
is only approximated. The costs considered in the E-VReP are related to the wear, toll, and
electricity costs of relocating cars. An overview of the E-VReP is given in Figure 6.1.

25



Chapter 6. Problem Description of the E-VReP

Figure 6.1: E-VReP Problem Overview The model receives information before de-
termining relocation routes for the following planning period. The
ideal state is given as input. The ideal state is calculated based on the
expected demand of the next planning period.

6.2 Definitions

The initial state of the problem defines the distribution of rental cars among all nodes. It also
gives information about the position, destination, current task, and remaining travel time for
all service employees. Service employees may, at the beginning of a planning period, be in the
process of relocating a rental car as a result of unfinished assignments. Exogenous information
includes battery levels for all rental cars, capacities of charging nodes and time remaining for
the cars currently being charged.

The ideal state refers to the estimated optimal distribution of rental cars in the parking nodes at
the end of the planning period. The deviation from the ideal state is the distribution of rental
cars at the end of the planning period versus the ideal state. This deviation is calculated from
the initial state, adjusted by the relocation done, and compared with the ideal state.

6.3 Problem Specification

This section introduces the objective function, the routing of service employees, the possible
types of relocation and time usage in the E-VReP. Information already introduced in Chapter
4 is excluded in this section.
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6.3.1 Objective

The objective of the E-VReP is to maximize expected demand served, and the number of cars
recharged. This should be done cost-effectively. The objectives are designed to encourage
behavior that is beneficial for periods beyond the current planning period. A surplus of cars in
a node, compared to the ideal state, is not considered beneficial. Cars are likely to be picked
up from surplus nodes in order to meet the ideal state in other nodes. The cost of negative
deviation from the ideal state reflects the loss of demand incurred by having too few cars in a
node. Relocation costs are equivalent to those discussed in Section 4.1. Time usage outside the
planning period is allowed to some extent. However, the time used outside the planning period
by service employees is penalized proportionally to the excess time. Additionally, a possible
objective is to minimize the total time used by each service employee. This objective encourages
service employees to share their workload.

In summary, the primary objectives of the E-VReP are to maximize expected demand served,
and the number of cars recharged.

6.3.2 Routing

Routing in the E-VReP adheres to the rules as those from Section 4.3.

6.3.3 Relocation of Rental Cars

As for DE-VReP, the E-VReP deals with two types of assignments. Service employees may relo-
cate cars between parking nodes, or from parking nodes to charging nodes. Basic maintenance
is performed while relocating to charging nodes. When rental cars charge, they are considered
unavailable for the rest of the planning period.

6.3.4 Travel Times and Time Usage

When deciding the length of the planning period, several aspects are taken into consideration.
The time period must be long enough to permit several relocations for each service employee.
However, the time should not be too long as the relocations can become aggravating due to
unforeseen events during the planning period. All service employees have a remaining travel time
associated with them, due to the fact that they may initially be traveling. Service employees are
considered unavailable until they finish their current task. The remaining time before a service
employee reaches the first node is known in advance of solving the E-VReP.

There is also a remaining charging time for the rental cars that will be fully charged during the
planning period. These fully charged rental cars will be available for both customers and service
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employees when fully charged.

6.4 Solution Example to the E-VReP

This section presents a solution example to the E-VReP. A summary of the solution example
can be found in Appendix C.

Figure 6.2 shows the initial state. For simplicity, each node is represented in the Cartesian plane
with Euclidean distances between them. Traveling using a rental car is twice as fast as using
a bike in this example. There are six parking nodes numbered 1, 2, 3, 4, 5 and 6. Nodes 7
and 8 are charging nodes located within parking nodes 1 and 6 respectively. Each parking node
has an ideal state of sufficiently charged rental cars indicated in the upper right corner of each
node. Nodes containing a charging station does also have a capacity, indicated in the upper
right corner. The capacity indicates the maximum number of cars that can charge at the same
time. Orange, red and green cars in the bottom of the nodes indicate cars charging, cars in need
of charging and sufficiently charged cars, respectively.

Service employees are illustrated using black cars, bikes and person figures. A unique number
above their icon identifies employees. The employees might be in-between two nodes at time
step 0. This is due to unfinished tasks from the previous subproblem.

In Figure 6.2 employee 1 is traveling to parking node 5 with a car. The other two employees are
idle in parking nodes 1 and 3 respectively.
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Figure 6.2: Initial state
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Figure 6.3: Intermediate state 1

In Figure 6.3 employee 1 has arrived in node 5 with a car which is indicated by the
extra green car in node 5. Employee 2 is biking from node 1 to node 4 while employee 3
relocates a car from node 3 to node 2.
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Figure 6.4: Intermediate state 2

Figure 6.4 illustrates the situation after 28 time-steps. Employee 1 is biking between
parking node 5 and 4. Employee 2 has, since the last snapshot, reached node 4, and
started to relocate a car in need of charging to the charging node inside parking node 1.
Employee 3 has delivered a car in parking node 2 and is traveling to parking node 3 to
relocate a car from node 3.
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Figure 6.5: Intermediate state 3
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In Figure 6.5 employees 1 and 3 relocate cars from node 4 to node 2 and from node 3 to
node 6, respectively. Employee 2 has delivered a car for charging in the charging node
inside parking node 1.
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Figure 6.6: Intermediate state 4

Both employee 1 and 3 have reached their destinations in Figure 6.6. Employee 2 relocates
a car from node 1 to node 2.
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Figure 6.7: Intermediate state 5
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In Figure 6.7 both employees 2 and 3 are idle. Employee 1 is moving a car in need of
charging from parking node 2 to the charging node associated with parking node 1.
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Figure 6.8: Final state

Figure 6.8 shows the final state of the system. There are no cars in need of charging,
and all ideal states have been met in all parking nodes.

Figure 6.9 provides an overview of the routes traveled by the three employees. The text
above the arcs indicates means of transportation. Since employee 1 initially is between
two nodes, the first node on the route of employee 1 is indicated by a question mark.
This implies that we do not know where the employee is coming from, just where the
employee is going . The location where the employees come from is not valuable in order
to find the next set of optimal routes for the employees.

5? 4 2 1
car bike car car

1 4 1 2
bike car car

3 2 3 1
car bike car

Employee 1

Employee 2

Employee 3

Figure 6.9: Routes traveled by the service employees. Any visit to a charg-
ing node ha been exchanged with the associated parking node
number.
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Chapter 7
A MIP Model for the E-VReP

This chapter formulates a Mixed Integer Program (MIP) for the E-VReP. The E-VReP combines
features of the VRP and the pickup and delivery problem, and involves routing of service em-
ployees traveling by car, bike or public transport. The service employees pick up and deliver cars
to relocate them between locations in the operating area. The problem is open-ended because
service employees may individually start and end at different locations. Each location may also
be visited several times, making the E-VReP similar to a pickup and delivery problem with split
deliveries.

Section 7.1 discusses the MIP design choices. Section 7.2 presents additional assumptions for the
MIP that were not introduced in Chapter 6. Section 7.3 defines the notation used, and Section
7.4 presents the mathematical formulation of the problem.

7.1 MIP Design Considerations

There exists an important simplification to the E-VReP; each service employee can only move
one car at a time. Hence, a possible modeling approach is to treat each combination of pickup
and delivery nodes as individual tasks referred to as car-moves. Service employees should only
consider car-moves that are beneficial in terms of meeting demand or charging cars. An approach
is, therefore, to only include car-moves which contribute to meeting these objectives. In other
words, only car-moves from pickup to delivery nodes are considered. This results in at most
O(|N |2) car-moves, where N is the set of all nodes. The set of car-moves is denoted R. The goal
of the MIP is to decide the optimal subset of car-moves, and how to distribute and order them
among the service employees. Using this concept of car-moves, two MIP models are considered.

The first MIP is an arc-flow model, referred to as the Flow-based MIP, commonly used to solve
VRPs. Arcs are defined between all pairs of car-moves. The goal is to decide the optimal flow
over all arcs while making sure that each car-move only is included once. The decision variables
in this MIP, defined as xrvk, indicate travel by service employee k ∈ K from car-move r ∈ R to
car-move v ∈ R. The total number of variables would be in the order of O(|K| · |R|2).

The second MIP, referred to as the Task-based MIP, assigns car-moves to service employees and
decides the order in which they are carried out. Each employee has a set of tasksM which can be
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assigned to car-moves. Each task has a number indicating precedence, and tasks are performed
in ascending order. Hence, the decision variables in this MIP, defined as xkrm, indicate if a
service employee k ∈ K relocates car-move r ∈ R as task number m ∈ M. With a maximum
number of tasks that can be done during a planning period, the total number of variables equals
O(|K| · |R|).

Chapter 11 compares the performance of both MIP models. In terms of solution quality and
computation time required, the Task-based model outperforms the Flow-based model. Therefore,
the Task-based model is presented in this chapter. The Flow-based MIP formulation is presented
in Appendix B.

7.2 Assumptions

This section presents key assumptions not introduced in Chapter 6. The assumptions are divided
into three parts; nodes and states, routing and relocation, and time usage.

7.2.1 Nodes and States

The problem formulation includes a set of charging nodes and a set of parking nodes. Each
charging node has a maximum capacity of cars. Each parking node is associated with an ideal
number of parked cars, referred to as the ideal state. Each parking node may be a surplus
or a deficit node, determined by its number of available rental cars compared to the ideal
state. Service employees relocate cars from surplus nodes to deficit nodes. In addition, service
employees relocate cars in need of charging from parking to charging nodes.

7.2.2 Service Employees

The number of service employees is considered fixed, and the service employees are considered
homogeneous. Car-moves assigned to service employees are always completed and not canceled
midway.

7.2.3 Time Use

Time is continuous and monotonically increasing for every task done by the service employees.
Employees are assumed to use the fastest means of transport available, either folding bikes or
public transport, when traveling between car relocations.

7.3 Notation

This section introduces all sets, indices, parameters and variables used in the mathematical
formulation. A summary can be found in Tables A.1, A.2, A.3 and A.4. Sets and indices are
introduced in Section 7.3.1, parameters in Section 7.3.2 and variables in Section 7.3.3
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7.3.1 Sets and Indices

The following section introduces set and indices for nodes, car-moves, and service employees
used in the mathematical formulation.

Nodes

The operating area of the CSO is divided into non-overlapping zones represented as nodes. The
set of all nodes used in the mathematical formulation is denoted N , referenced by the indices
i, j. N is divided into two disjoint subsets; the set of charging nodes NC and the set of parking
nodes NP . Nodes in NC corresponds to charging stations, while the nodes in NP are disjoint
areas available for parking. The parking nodes are divided into two categories; the surplus nodes
NP+ and the deficit nodes NP−. The surplus and deficit nodes have a positive and negative
deviation from the ideal state, respectively. There is also an additional set, NPC , which contains
the parking nodes with cars in need of charging. Note that NPC may be disjoint from both
NP+ and NP− if the node satisfies the ideal state. See Figure 7.1 for an illustration.

Parking Nodes Charging Nodes

N P− N PC N P+ NC

Figure 7.1: Parking and charging nodes

Car-Moves

For sufficiently charged cars, car-moves are defined from surplus nodes in NP+ to deficit nodes in
NP−. For cars in need of charging, car-moves are defined from parking nodes inNPC to charging
nodes in NC . For simplicity, car-moves to parking and charging nodes are called parking-moves
and charging-moves, respectively. Parking-moves and charging-moves are illustrated in Figure
7.2. The set of all car-moves is denoted R, indexed by both r and v. The origin node o(r) of a
car-move r ∈ R is always a parking node. The destination node d(r) is either a parking node or
a charging node.

NPC NC

d(r)o(r)

Charging-move r

NP− NP+

d(r)o(r)

Parking-move r

Figure 7.2: Car-moves divided into parking-moves and charging-moves
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A car-move r is associated with a car c among the set of cars C subject to relocation during the
planning period. Cars subject to relocation are those currently in surplus nodes or those in need
of charging. Incoming cars to surplus nodes are also subject to relocation. However, it is not
necessary to include car-moves for more cars than the number of cars in excess of the ideal state.
In other words, if a node has a surplus of one car, it is sufficient to define car-moves for only
one car from that node. In addition, according to Proposition 1, defining car-moves from other
nodes than the cars’ origin nodes, cannot improve the solution quality. Hence, it is sufficient to
only define car-moves from cars’ origin nodes.

Proposition 1. In a given decision epoch, relocating sufficiently charged cars more than once
cannot improve the solution quality 1

Proof. The proof considers the simplest cases of relocating cars multiple times; using one and two
service employees. The cases using more than two employees can be constructed combining the
cases of one and two service employees. Each case presents a way of relocating more efficiently
than relocating a car multiple times while achieving the same number of relocations. The proof
is based on the triangular inequality and that travel times Tij represent the shortest possible
travel time between nodes i, j ∈ N .

1. Single employee. A service employee relocates car c1 from node 1 to node 2, before relo-
cating a second car c2 from node 2 to node 4. The employee then returns to node 2 to
relocate the car c1 to node 3. Due to the triangular inequality and that travel times Tij
represent shortest paths, the following will always hold:

T12 + T24 + T42 ≥ T14 + T42 (7.1)

This implies that relocating the first car directly to node 4 and relocating the second
car from 2 to 3 dominates relocating a car twice. The same argument holds if node 4 is
replaced with a series of relocations. See Figure 7.3 for an illustration.

2. Two employees. A service employee relocates car c1 from node 5 to node 3 and bicycles
to node 1. Another service employee bicycles from node 4 to node 3, before relocating the
car c1 to node 2. According to the triangular inequality, it will always be beneficial for
the first service employee to relocate the car directly to node 2, and for the second service
employee to bicycle directly to node 1. See Figure 7.4 for an illustration.

In each of the cases above, relocating cars more than once achieved the same number of reloca-
tions, but slower. Hence, relocating cars multiple times is not beneficial. �

1 2 3

4

c1 c1

c2

(a) Relocating cars more than once

1 2 3

4

c1

c2

(b) Relocating cars once

Figure 7.3: Single service employee

1This does not necessarily hold for cars in need of charging. However, it is assumed that cars in need of
charging are moved directly to charging nodes.
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3

21

54

c1

c1

(a) Relocating cars more than once

3

21

54

c1

(b) Relocating cars once

Figure 7.4: Two service employees

Additional sets related to car-moves are defined to simplify the formulation. For every deficit
node i ∈ NP−, there is a set of car-moves that have that node as its destination d(r). This set
is denoted RDi . Similarly, sets of car-moves RCi , that originates in node i ∈ NPC and ends in
node j ∈ NC , are defined. Finally, a set of car-moves which has a charging node as destination
node are defined RDCi for all i ∈ NC .

Service Employees and Tasks

Each service employee k ∈ K has a set of possible tasksM which can be assigned to car-moves.
The task number indicates precedence, in ascending order, i.e, task number one is assigned
before task number two. Not all tasks need to be assigned car-moves. The cardinality of M
decides the maximum number of car-moves service employees can do. If a service employee
k ∈ K relocates a car to the destination specified by a car-move r ∈ R, the employee k is said
to relocate the car-move r for simplicity. Service employees’ individual start nodes are denoted
o(k) for all k ∈ K.

7.3.2 Parameters

The following section introduces parameters for the objective, time and states used in the MIP
model.

Objective Function Parameters

The objective functions seek to maximize benefit. There are five parameters. CD is the benefit
per unit of ideal state met for nodes i ∈ N P− at the end of the planning period. CCh is the
benefit per car charged. CET is the cost per time unit used to relocate cars outside the planning
period. The cost of relocation is proportional to the relocation time of the car-moves, penalized
at a rate of CR per time unit. This cost is introduced to reduce the wear, toll and electricity
use, caused by the relocations. Finally, the cost of time CT is introduced, to reduce the idle
time of the service employees.
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Time Usage

The relocation time needed to perform car-move r ∈ R is denoted THr . This time includes
transport and parking time, as well as time for basic maintenance. Since cars may be in transit
at the beginning of the planning period, each car-move r is associated with TSr indicating the
earliest time a car-move can be performed. The same case applies to the service employees. The
earliest start time for a service employee k ∈ K is denoted TSk .

Travel times between all nodes i, j ∈ N , using public transport or bicycle, are represented by Tij .
Service employees will use these means when traveling between car-moves r, v ∈ R, i.e., between
d(r) and o(v). All tasks performed by the service employees should be carried out during the
planning period, T . However, some overtime is allowed. This additional time is denoted TL.

States and Capacities

One of the objectives of the MIP model is to approach the ideal state in the parking nodes at
the end of the planning period. Thus, the initial deficit of cars in every parking node i ∈ NP−,
compared to the ideal state, is denoted by S0−

i . Calculation of S0−
i takes the expected demand

of the current planning period into account. The second objective is to charge cars in need of
charging. For parking nodes i ∈ NPC , SCi denotes the initial number of cars in node i that
requires charging. Every charging node i ∈ NC has an available capacity of NCS

i .

7.3.3 Variables

The following sections introduce the variables used in the formulation of the MIP model. The
variables are divided into three categories; relocation, time tracking and state variables.

Relocation Variables

The variables xkrm indicate that a service employee k ∈ K, relocates car-move r ∈ R, as its task
number m ∈ M. The route of the service employee is derived by looking at each task in order.
A service employee performing car-moves 1, 2, 3 is illustrated in Figure 7.5.

Time Variables

Time at the beginning of each task m ∈ M, for every service employee k ∈ K, is tracked by
the continuous variables tkm. Since overtime is allowed, the total deviation from the planning
period T is tracked by the continuous variables t+k and t−k . t

+
k and t−k track the time used in

excess and in short of T , respectively.
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o(1)o(k)

d(1)

d(2)

d(3)

x
k11

xk22

xk3
3

Figure 7.5: Service employee k traveling from origin node o(k) and relocate car-
moves 1, 2, 3 in ascending order. Note that d(1) = o(2) = o(3). The
service employee bicycles from o(k) to o(1) and from d(2) to d(1),
indicated by the dashed lines.

State Variables

To track the number of deficit cars in a parking node i ∈ NP− at the end of the planning period,
the variables s−i are introduced. Similarly, the variables sCi track the remaining cars in need of
charging in node i ∈ NPC .

7.4 Formulation

This section formulates the E-VReP as a Mixed Integer Program (MIP). A summary of the
introduced MIP can be found in Appendix A. The objective function is introduced in Section
7.4.1. Sections 7.4.2 - 7.4.5 introduce the linear constraints of the MIP as well as the domain
definitions for the variables.

7.4.1 Objective Function

The Objective Function (7.2) seeks to maximize the sum of five terms. The first term is the
benefit of meeting the ideal state. This is equivalent to minimizing the deviation from the ideal
state. The second term is the benefit of charging cars. The third term minimizes total time used
by service employees to reduce the idle time between relocations. The fourth term penalizes
each time unit used outside the planning period. Finally, the fifth term penalizes relocations
according to travel time used.

max z =
∑

i∈NP−

CD(S0−
i − s

−
i ) +

∑
i∈NPC

CCh(SCi − sCi )−
∑
k∈K

CT tk|M |

−
∑
k∈K

CET t+k −
∑
k∈K

∑
r∈R

∑
m∈M

CRTHr xkrm (7.2)
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7.4.2 Relocation of Rental Vehicles

Constraints (7.3) ensure that each car is moved at most once. Constraints (7.4) ensure that
tasks can at most be assigned one car-move. Finally, constraints (7.5) are introduced so that
each task is performed in ascending order.

∑
k∈K

∑
r∈Rc

∑
m∈M

xkrm ≤ 1 c ∈ C (7.3)

∑
r∈R

xkrm ≤ 1 k ∈ K,m ∈M (7.4)

∑
r∈R

xkr(m+1) ≤
∑
r∈R

xkrm k ∈ K,m ∈M \ {|M|} (7.5)

7.4.3 Node State Balancing

The following section introduces constraints regarding changes to the state of parking nodes and
charging nodes, respectively.

State Balance in Parking Nodes for Sufficiently Charged Rental Cars

Constraints (7.6) track the total number of cars relocated to each deficit parking node. They
also ensure that the maximum number of cars relocated to a deficit node i ∈ NP−, is the total
deficit.

∑
k∈K

∑
r∈RD

i

∑
m∈M

xkrm + s−i = S0−
i i ∈ NP− (7.6)

State Balance in Parking Nodes for Cars in Need of Charging

Constraints (7.7) calculate the remaining cars in a parking node, in need of charging, at the end
of the planning period.

∑
k∈K

∑
r∈RC

i

∑
m∈M

xkrm + sCi = SCi i ∈ NPC (7.7)

(7.8)
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State Balance in Charging Nodes

Constraints (7.9) ensure that the charging station capacities are not broken during the planning
period.

∑
k∈K

∑
r∈RDC

i

∑
m∈M

xkrm ≤ NCS
i i ∈ NC (7.9)

7.4.4 Time Tracking of Node Visits

The following sections define constraints concerned with time usage of the service employees.

Time Usage for Routing of Service Employees

Constraints (7.10) ensure that time increases for each task carried out, based on the relocation
time of the previous task and the travel time to the next pickup. Constraints (7.11) enforce
that no task can be done before a task with a lower number. Constraints (7.12) ensure that no
car-move is carried out before its earliest start time. Constraints (7.13) force employees’ first
task to begin after each service employee’s start time.

tkm + THr xkrm +
∑
v∈R

Td(r)o(v)xkv(m+1)

−Mr(1− xkrm) ≤ tk(m+1) k ∈ K, r ∈ R,m ∈M \ {|M|} (7.10)

tkm ≤ tk(m+1) k ∈ K,m ∈M \ {|M|} (7.11)

TSr xkrm ≤ tkm k ∈ K, r ∈ R,m ∈M (7.12)

(TSp + To(k)o(r))xkr1 ≤ tk1 k ∈ K, r ∈ R (7.13)

Time Usage Outside Planning Period

Constraints (7.14) track positive and negative time deviations from the planning period for each
service employee. Constraints (7.15) ensure that service employees finish their tasks within the
planning period T , allowing an extra time of TL.
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tk|M| +
∑
r∈R

THr xkr|M| + t−p − t+k = T k ∈ K (7.14)

tk|M| +
∑
r∈R

THr xkr|M| ≤ T + T
L

k ∈ K (7.15)

7.4.5 Binary, Non-negativity and Integer Definitions

xkrm ∈ {0, 1} k ∈ K, r ∈ R,m ∈M (7.16)

tkm ≥ 0 k ∈ K,m ∈M (7.17)

t+k ≥ 0 k ∈ K (7.18)

t−k ≥ 0 k ∈ K (7.19)

s−i ∈ Z+ i ∈ NP− (7.20)

sCi ∈ Z+ i ∈ NPC (7.21)

7.4.6 Big-M Calculation

To make the formulation tight, the big-M should be as small as possible. Constraint (7.10)
uses Mr as big-M. Equations (7.22) show the calculation of the smallest Mr for all r ∈ R.
The equation takes into account the largest possible time difference accumulated by Constraints
(7.10), if xkrm = 0.

Mr = max
v∈R, i∈NP \NP−

Td(r)i − (THv + Td(v)i) r ∈ R (7.22)

(7.23)
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Chapter 8
An ALNS Heuristic for the E-VReP

This chapter introduces an Adaptive Large Neighborhood Search (ALNS) heuristic for solving
the Electric Vehicle Relocation Problem (E-VReP). The heuristic is based on the ALNS intro-
duced by Ropke and Pisinger (2006). ALNS, in general, has proved efficient in solving large-scale
VRPs. In addition, the use of ALNS in a dynamic VRP environment has produced good results
in the benchmark comparison of Chen et al. (2018).

The ALNS heuristic from Ropke and Pisinger (2006) is adapted in several ways. The overall
solution representation is now based upon finding an optimal set of car-moves, identical to what
was done in Chapter 7. Instead of using Simulated Annealing (SA) as the local search strategy,
a Tabu Search (TS) is adopted. Finally, similarly to Ropke and Pisinger (2006), LNS heuristics
like Shaw removal and k-regret are utilized. These heuristics are modified to be applicable, given
the chosen solution representation.

Section 8.1 gives a detailed overview of the ALNS. Section 8.2 describes the solution represen-
tation. Section 8.3 introduces the calculation of the objective function used to asses the quality
of the solution. The construction of the initial solution is described in Section 8.4. The local
and large neighborhood searches are presented in Sections 8.5 and 8.6, respectively. Finally, the
technique that makes the search strategies adaptable is presented in Section 8.7.

8.1 Overview of the ALNS Heuristic

The ALNS heuristic is divided into two recurring processes: the Tabu Search (TS) component,
and the Large Neighborhood (LNS) component. The initial solution is fed to the TS which
locally searches for better solutions in a greedy manner. The local search continues as long as
better solutions consistently are found. If Ides iterations are run without improvement to the
global best, the LNS component is activated. The LNS component destroys and repairs the
current solution, guiding the search into a new area of the search space. The TS is reactivated
in the new neighborhood. This process is repeated until one of two termination criteria are met.
The algorithm either terminates after Tmax seconds or after IR iterations without improvement
to the global best solution. The ALNS process is illustrated in Figure 8.1.
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TS

initialize

terminate?

improving?

LNS

done

no

yes

no

yes

Figure 8.1: ALNS flow chart

A brief algorithmic model of the ALNS heuristic is provided in Algorithm 2. A set of available
car-moves is initially provided to the model. This input is presented in Section 8.2. The goal
of the heuristic is to find the best allocation and order of car-moves for each service employee
k ∈ K according to the objective function described in Section 8.3.

Algorithm 2: Adaptive Large Neighborhood Search Heuristic
Input: R Set of car-moves
Output: Ordered list of car-moves for each service employee k ∈ K

1 Solution s = ConstructionHeuristic(R) Section 8.4
2 Best solution sbest = s

3 Iteration I = 0

4 while stopping criteria not met do
5 M = FindLocalNeighborhood(s) Section 8.5
6 mbest = arg maxm∈M f(m(s))

7 s = mbest(s)

8 if f(s) > f(sbest) then
9 sbest = s

10 end
11 else if non-improving iterations ≥ Ides then
12 s = LargeNeighborhoodSearch(s) Section 8.6
13 UpdateWeights() Section 8.7
14 I = I + 1

15 end

Given the available car-moves, an initial solution is produced by the function Construction-
Heuristic from Section 8.4. From line 3, the heuristic starts the recurring process illustrated
in Figure 8.1. In each iteration, the function FindLocalNeighborhood from the TS component
provides a setM of possible local search operators (LSOs). An LSO causes a marginal change to
the current solution. The heuristic chooses the LSO that results in the greatest improvement to
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the objective value, mbest, or the LSO that results in the least reduction if no improvements are
found. Alternatively the ALNS may be tuned to choose the first improving LSO. f(s) denotes
the objective function value of solution s. The marginal change, caused by the selected LSO, to
the current solution s is performed in line 6.

If Ides non-improving iterations subsequently occur, the destroy and repair heuristics are evoked.
A detailed description of these heuristics is provided in Section 8.6.

8.2 Solution Representation

This section re-introduces the concept of car-moves and introduces the solution representation
used in the ALNS heuristic. The description adheres to all notation introduced in Chapter 7
unless stated otherwise.

Chapter 7 introduced the novel concept of car-moves, which consists of a car, an origin, and a
destination. Given the problem instance, a set of possible car-moves for every car c ∈ C is fed as
input to the heuristic. This set is created based on the current state of the carsharing system.
In this chapter, car-moves are denoted ric, where c denotes the car and i denotes the destination
node.

A solution s consists of γ and β. γ consists of routes γk for each service employee k ∈ K. γk
is an ordered list of car-moves which employee k is going to carry out. β contains the unused
car-moves, not present in γ. The two data structures are shown in Figure 8.2. By iteratively
visiting the origin and destination of each car-move ric ∈ γk for employee k ∈ K, the route and
total travel time for all service employees are derived. The lth positioned car-move in γk is
indexed by γkl.

1
: r2

1 → r3
2 → r5

3

2
: r2

4 → r5
5

γ1 :

γ2 : Unused move

s

r3
1r2

2 r3
4β :

Figure 8.2: Solution representation. γk denotes the set of car-moves, in order,
relocated by service employee k. β denotes the set of unused car-
moves.

At most one car-move for each car may be present in γ, as each car may only be moved once
during the planning period. β maintains a list of all car-moves not present in γ. Several search
techniques are utilized to create interaction between γ and β as the algorithm progresses. These
techniques are described in Section 8.5 and 8.6.

8.3 Feasibility and Objective Function

This section discusses how the ALNS handles infeasible solutions, and how a solution s is eval-
uated according to the objective function f(s).
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8.3.1 Feasibility

The ALNS allows infeasible solutions during the search to widen the search space. There are two
feasibility criteria which may be broken. The first criteria is that each service employee k ∈ K
can relocate all the assigned car-moves in γk within the planning period. An infeasible solution
has car-moves in γk that are in excess due to the time available. The number of car-moves in
γ outside the planning period T is calculated in Equation (8.6). Solutions are punished at a
cost CL for each car-move that exceeds the planning period. γk can easily be made feasible by
moving the car-moves outside the planning period from γk to β. The second criteria state that
γ must adhere to the maximum capacity constraints of the charging stations. Contrary to the
time criteria, the capacity criteria consider all service employees k ∈ K instead of each employee
individually. The number of violations is punished at a cost CI per excess car. The criteria is
mathematically defined in Equations (8.3) and (8.5).

8.3.2 Objective Value Calculation

The objective value is calculated in a bottom-up fashion by the objective function in Equation
(8.7). The relocations that are carried out, and the time usage of every service employee k, are
derived from γk.

Time Usage

The total time used by service employee k after relocating the lth car-move is denoted tkl. tkl is
mathematically defined in Equation (8.1). Note that o(γkl) and d(γkl) refers to the origin and
destination node of the lth car-move in γk. |γkl| is the number of car-moves currently in γkl.

tkl = tk(l−1) + Td(γk(l−1))o(γkl) + THγkl ∀l ∈ {1, . . . , |γk|}

tk0 = TSk

(8.1)

To track the total time used by employee k ∈ K within the planning period (adjusted for extra
time), tk is introduced in Equation (8.2).

tk = max
l∈{0,...,|γkl|}

{tkl : tkl ≤ T + T
L} (8.2)

Relocation and Capacity Constraints

Car-moves in γk may be both parking-moves and charging-moves. The number of cars relocated
to node i ∈ N within the planning period is denoted φi. φi is calculated in Equation (8.3).

φi =
∑
k∈K

|γk|∑
l=1

1, if tkl ≤ T + T
L
, d(γkl) = i

0, otherwise
(8.3)
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The deviation from the ideal state and violations of charging capacities can be derived from
φi. It is possible to relocate more cars to a deficit node, than the total deficit, but this is not
rewarded nor penalized. The number of parking-moves that are rewarded is denoted τPi . τPi is
calculated in Equation (8.4). The capacity violation in charging node i ∈ N C is denoted τCi . τCi
is calculated using Equation (8.5).

τPi = min{S0−
i , φi} (8.4)

τCi = max{φi −NCS
i , 0} (8.5)

Car-Moves Outside the Planning Period

µkl tracks if the l’th car-move in γk is in excess. µkl is calculated in Equation (8.6). Note that
a solution with any µkl > 0 is considered infeasible. However, a feasible solution may easily be
extracted by removing excess car-moves.

µkl =

1, if tkl ≥ T + T
L

0, otherwise
(8.6)

Objective Function

The objective function value f(s) of a solution s is calculated in Equation (8.7). The ALNS
heuristic seeks to maximize f(s). Given feasible solutions, the objective function is equivalent
to the objective function of the MIP model introduced in Chapter 7.

f(s) =
∑

i∈NP−

CDτPi +
∑
i∈NC

CChφi −
∑
k∈K

CT tk −
∑
k∈K

CET (tk − T )

−
∑
k∈K

|γk|∑
l=1

CRTHγkl(1− µkl)−
∑
n∈NC

CIτCi −
∑
k∈K

|γk|∑
l=1

CLµkl (8.7)

An objective not considered in the MIP formulation is the time of arrival in charging nodes
when relocating cars for charging. Early arrivals may be beneficial in a dynamic setting to
reduce the number of cars unavailable due to low battery levels. Hence, an additional term in
the objective function (8.7) is presented in Equations (8.8) and (8.9). σkl indicates if car-move
γkl is a charging-move, and performed within the planning period. RDC is the set of all charging
moves. CChE is the reward per time unit of charging cars early in the planning period T .

σkl =

1, if tkl ≤ T , γkl ∈ RDC

0, otherwise
(8.8)
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∑
k∈K

|γk|∑
l=1

CChEσkl(T − tkl) (8.9)

8.4 Construction of the Initial Solution

The initial solution is created by the construction heuristic outlined in Algorithm 3. The con-
struction heuristic is greedy, resulting in low run-times. The heuristic tries to identify a fair
distribution of car-moves among the service employees with respect to the objective function.

The construction heuristic derives solution s, γ, and β in one integrated greedy approach. Ini-
tially, β contains all car-moves and γ is empty. The heuristic will sequentially, for each service
employee k ∈ K, iterate through all cars that do not have a car-move present in γ. For each
car, c ∈ C, the car-moves belonging to the car in β are evaluated. The objective value, from
inserting either of the car-moves at the end of γk is denoted f(s+ric). The car-move, yielding the
best results according to Equation (8.10), is chosen for insertion.

arg max
ric∈β

f(s+ric)− f(s) (8.10)

The heuristic terminates when all cars have a car-move present in γ.

Algorithm 3: Construction Heuristic
Input: R Set of car-moves, C Set of cars
Output: γ, β

1 Add all car-moves in R to β
2 while C 6= ∅ do
3 for k ∈ K do
4 ric = arg maxric∈β|c∈C f(s+r)− f(s)

5 Add ric to the end of γk
6 Remove c from C
7 Remove ric from β

8 end

9 end

8.5 Local Neighborhood Search

This section introduces the details of the local neighborhood search used in the ALNS heuristic.
Tabu Search (TS) is the overall search strategy. The TS proceeds by generating a local neigh-
borhood, M, consisting of local search operators (LSOs). LSOs are categorized into LSO types.
Section 8.5.1 presents the different LSO types. The different ways to generate the neighborhood
M are presented in Section 8.5.2. Section 8.5.3 introduces the tabu list. Finally, Section 8.5.4
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shows the techniques for selecting an LSO in the generated neighborhood.

8.5.1 Local Search Operators

The TS proceeds by applying local search operators (LSOs) that marginally changes the current
solution. This section describes the set of LSO types, Q. Q is divided into two subsets, basic
LSO types, QB and ejection LSO types QE , each consisting of four different LSO types. The
basic LSO types are inspired by the heuristics introduced by Gendreau et al. (1992). The basic
LSO types are Intra Move, Inter Move, Inter-2 Move, and Inter Swap. The ejection LSO types
swap car-moves between γ and β. The ejection LSO types are Ejection Insert, Ejection Remove,
Ejection Replace and Ejection Swap.

Intra Move

An Intra Move LSO moves a car-move within the list of car-moves for one service employee. See
Figure 8.3 for an example.

: r2
1 → r3

2 → r5
3r
5
3r
5
3 : r2

1 → r5
3r
5
3r
5
3 → r3

21 1

Figure 8.3: Intra Move example. One car-move is moved within γ for a single
service employee.

Inter Move

An Inter Move LSO moves a car-move from one service employee to another. See Figure 8.4 for
an example.

1
: r2

1 → r3
2 → r5

3r
5
3r
5
3

2
: r1

4 → r8
5

1
: r2

1 → r3
2

2
: r1

4 → r5
3r
5
3r
5
3 → r8

5

Figure 8.4: Inter move example. A car-move, r5
3 is moved from γ1 to γ2.

Inter 2-Move

An Inter 2-Move LSO moves two consecutive car-moves from one employee to another employee.
See Figure 8.5 for an example.
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1
: r2

1r
2
1r
2
1 →→→ r3

2r
3
2r
3
2 → r5

3 → r2
6

2
: r1

4 → r8
5

1
: r5

3 → r2
6

2
: r1

4 → r2
1r
2
1r
2
1 →→→ r3

2r
3
2r
3
2 → r8

5

Figure 8.5: Inter 2-move example. Two consecutive car-moves, r2
1 and r3

2, are
moved from γ1 to γ2.

Inter Swap

An Inter Swap LSO swaps two car-moves between two service employees. See Figure 8.6 for an
example.

1
: r2

1 → r3
2r
3
2r
3
2 → r5

3

2
: r1

4r
1
4r
1
4 → r8

5

1
: r2

1 → r1
4r
1
4r
1
4 → r5

3

2
: r3

2r
3
2r
3
2 → r8

5

Figure 8.6: Inter Swap example. Two car-moves, r3
2 and r1

4, are swapped between
γ1 and γ2.

Ejection Insert

An Ejection Insert LSO picks a car-move from β, and randomly inserts it into γ. See Figure 8.7
for an example.

: r2
1 → r3

2 → r5
3 : r2

1 → r3
2 → r1

4r
1
4r
1
4 → r5

3

Unused move

s

r1
4r
1
4r
1
4r8

5 r2
6

Unused move

s

r8
5 r2

6

1 1

Figure 8.7: Ejection Insert example. Car-move r1
4 is moved from the pool of unused

car-moves into γ1.

Ejection Remove

An Ejection Remove LSO removes a car-move from γ and place it into the pool of unused
car-moves β. See Figure 8.8 for an example.
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: r2
1 → r3

2 → r1
4r
1
4r
1
4 → r5

3 : r2
1 → r3

2 → r5
3

Unused move

s

r8
5 r2

6

Unused move

s

r1
4r
1
4r
1
4r8

5 r2
6

1 1

Figure 8.8: Ejection Remove example. Car-move r1
4 is moved from γ1 to the pool

of unused car-moves.

Ejection Replace

An Ejection Replace LSO swaps a car-move from γ with a car-move from β associated with the
same car. In other words, the destinations of a car-move in γ is changed. See Figure 8.9 for an
example.

: r2
1 → r3

2 → r5
4r
5
4r
5
4 : r2

1 → r3
2 → r1

4r
1
4r
1
4

Unused move

s

r1
4r
1
4r
1
4r8

5 r2
6

Unused move

s

r5
4r
5
4r
5
4r8

5 r2
6

1 1

Figure 8.9: Ejection Replace example. Car-move r5
4 is swapped with r1

4. r5
4 is

taken from γ1 and r1
4 is taken from the pool of unused car-moves.

Ejection Swap

An Ejection Swap LSO swaps a car-move from γ with a car-move from β, associated with
different cars. An Ejection Swap differs from an Ejection Replace by swapping cars, while an
Ejection Replace only replace a car-move with another car-move for the same car. See Figure
8.10 for an example.

: r2
1 → r3

2 → r5
4r
5
4r
5
4 : r2

1 → r3
2 → r7

3r
7
3r
7
3

Unused move

s

r7
3r
7
3r
7
3r8

5 r2
6

Unused move

s

r5
4r
5
4r
5
4r8

5 r2
6

1 1

Figure 8.10: Ejection Swap example. Two cars, represented by car-moves r5
4 and

r7
3, are swapped. r5

4 is taken from γ1 and r7
3 is taken from the pool of

unused car-moves.
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8.5.2 Construction of the Local Neighborhood

There are three different strategies for constructing the local neighborhood M; Full Enumera-
tion, Random Generation of one LSO Type (denoted Random Weighted Enumeration), and Full
Enumeration of one LSO Type (denoted Full Weighted Enumeration). The three approaches are
described in the following sections.

Full Enumeration

Full enumeration creates a neighborhood that consists of all possible LSOs of all LSO types
q ∈ Q. Full enumeration can potentially generate a substantial number of neighboring solutions,
depending on the size of the problem. When enumerating all possible LSOs, there is a risk of
getting stuck in local optima. This is because the search may get trapped in repeating sequences
of LSOs. Local optima can be avoided using a tabu list. However, the length of the tabu list
only restricts the minimum size of such a repeating sequence. Section 8.5.3 explains the details
of the tabu list.

Random Weighted Enumeration

Random weighted enumeration starts by selecting one LSO type q ∈ Q. The LSO type is selected
in a roulette wheel fashion, based on adaptive weights from Section 8.7. The neighborhood is
created by generatingMmax LSOs of the selected LSO type. The LSOs are generated randomly.
The random nature of the generation means that not necessarily all possible LSOs of the selected
type will be generated. One advantage of the random generation is that it has a low probability
of generating the same neighborhood twice. It is therefore unlikely for repeating sequences
of neighborhoods to occur. Repeating sequences are often associated with local optima. A
drawback with the random neighborhood generation is that the most favorable LSOs of the
chosen LSO type may not be generated.

Full Enumeration of one LSO type

Full enumeration of one LSO Type is similar to random weighted enumeration. However, in
full enumeration all possible LSOs of the selected LSO type is generated when creating the
neighborhood. Compared to full enumeration, there may be a lower chance of getting stuck in
local optima, due to the randomness involved when selecting the LSO type.

8.5.3 Tabu List

To further prevent the local search algorithm from getting stuck in local optima, a tabu list is
introduced. The tabu list ensures that recently applied LSOs are left out of the neighborhood.
The tabu list is adaptive, i.e., its size changes depending on how the search proceeds. If the last
IB iterations have been unsuccessful in finding a local improvement, the length of the tabu list
is doubled. Likewise, if the previous IS iterations have been successful, the length of the tabu
list is halved. A lower and upper threshold limits the length of the tabu list.
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8.5.4 Neighbor Selection

After the neighborhood M is constructed, a single neighbor mbest ∈ M is chosen. There are
two strategies for choosing the neighbor. The best neighbor criteria picks the neighbor with the
greatest objective value improvement. If no neighbor improves the current solution, the neighbor
that reduces the objective value the least is chosen. The first improvement criteria iterates over
the neighborhood and picks the first neighbor that improves the objective value of the current
solution. If there does not exist a neighbor which improves the objective value of the current
solution, the best neighbor is chosen.

8.6 Large Neighborhood Search

When the ALNS detects that the search is trapped in a local optima, the neighborhood of a
solution s is enlarged to explore new areas of the solution space. This happens if no global
improvements have been made during the last Ides iterations. The large neighborhood consists
of combinations of destroy and repair heuristics. The destroy heuristics remove car-moves from
γ. Subsequently, a repair heuristic inserts car-moves into γ from the set of unused car-moves β.
The degree in which a current solution is destroyed and repaired is denoted as Γ. This means
that a proportion Γ of the car-moves present in γ is removed and replaced. One destroy heuristic
and one repair heuristic are chosen each time a LNS is executed. A roulette wheel based on
adaptive weights is used to choose the heuristics.

8.6.1 Destroy Heuristics

This section presents the various destroy heuristics used in the ALNS heuristic.

Random Removal

Random Removal sequentially removes car-moves randomly and uniformly from γ. As promising
parts of the solution may be removed, the effect is increased diversification in the search.

Worst Removal

Worst Removal greedily removes the seemingly worst parts of the current solution s. Combined
with a repair heuristic, the intention is that more beneficial car-moves replace the car-moves
causing the highest costs. In other words, the car-move reducing the objective function value
the most is chosen. Mathematically defined, the following car-move is removed:

arg max
ric∈γ

f(s−r
i
c)− f(s) (8.11)

f(s−r
i
c) is defined as the total objective function value of solution s when car-move ric is removed

from γ.
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Related Removal

As first introduced by Shaw (1997), the Related Removal (also called Shaw Removal) removes
related car-moves. Shaw (1997) observed that local search heuristics have tendencies to prefer
shuffling similar objects in a solution. Hence, he proposed a technique which increases the
number of unique objects. A relatedness measure R(a, b) between car-moves a and b is, therefore,
introduced. The proposed relatedness measure is based on Shaw (1997), but modified to fit the
E-VReP.

R(a, b) =ω1|o(a)− o(b)|+ ω2|d(a)− d(b)|+ ω3|c(a)− c(b)|

+ ω4|THa − THb |+ ω5|TSa − TSb | (8.12)

The first and second terms consider the origin and destination nodes of the car-moves, respec-
tively. Nodes that are geographically closer are more related. The third term checks if both
car-moves are either parking- or charging-moves. c(r) returns one if the car-move’s destination
is a charging node. The fourth term compares the travel THr time of the car-moves. The fifth
term compares the start time TSr of the car-moves. The lower the values of R(a, b), the more
related the two car-moves are. The parameters ω1 . . . ω5 weight the importance of each of the
five measures.

Algorithm 4 shows the steps of Related Removal. Initially, a random car-move is chosen from γ,
and inserted into D. While keeping track of the car-moves already removed, a random car-move
a from D is chosen. a’s most similar car-move b ∈ γ is ejected and placed in D. The process
repeats until a proportion Γ of the car-moves in γ is removed.

Algorithm 4: Related Removal
1 Removed car-moves D = {}
2 D = D ∪ {Random car-move from γ}
3 while |D| < Γ · |γ| do
4 Car-move a = Random car-move from D
5 Car-move b = arg maxb∈γ R(a, b)

6 EjectionRemove(b)
7 D = D ∪ {b}
8 end

8.6.2 Repair Heuristics

This section presents the repair heuristics used in the ALNS framework. The repair heuristics
iteratively insert car-moves from β into γ, repairing the routes dismantled by the destroy heuris-
tic. The car-moves that are chosen are based on an insertion measure. This measure should give
an indication of which moves that are beneficial to include in γ. The same number of car-moves
that was removed in the destroy heuristic is inserted during the repair heuristic.
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Greedy Insertion

The Greedy Insertion heuristic greedily inserts car-moves yielding the greatest improvement to
the objective function value. This is done in the same manner as in Equation (8.10).

Regret Insertion

The Regret Insertion heuristic considers the alternative costs of inserting a car-move into γ. The
basic 2-Regret considers the difference between the second best insertion and the best insertion
of a car-move. The general k-Regret compares the k best alternatives to the best insertion. The
car-move with the best 2-Regret value is given below:

arg max
ric∈β

k∑
h=2

(fh(s+ric)− f1(s+ric)) (8.13)

The ALNS utilizes both the 2-Regret and the 3-Regret Insertion heuristics.

8.7 Adaptive Weights Adjustments

Adaptive weights, w, are used to guide both the local and large neighborhood search. Each LSO
type, destroy heuristic and repair heuristic have weights associated with them. The weights
are updated once in every segment of iterations. A segment for the LSO types consists of
IW consecutive iterations. Similarly, a segment for the destroy and repair heuristics consist of
Ides iterations, without global improvements. A roulette wheel approach based on the assigned
weights is used to decide which LSO types, destroy, and repair heuristics to use.

For simplicity, the roulette wheel and weight update procedures are only described for LSO types.
The procedure is equivalent for destroy and repair heuristics. When applying the roulette wheel,
the probability of choosing a specific LSO type is given in Equation (8.14).

wq∑
q̂∈Qwq̂

(8.14)

wq is the weight associated with LSO type q. All weights are initialized to 1. A lower threshold
is set for all weights in order to ensure that no weight is assigned the value zero. The associated
LSO would never get chosen in the roulette wheel if this were to happen. The weight of each
LSO type is updated based on its performance. Each LSO type is given a score, µq, q ∈ Q,
depending on three factors presented in Table 8.1. The scoring criteria are inspired by the ALNS
heuristic developed by Ropke and Pisinger (2006).
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Table 8.1: Scoring criteria and their associated values for LSO

Score criterion LSO score value

Global improvement RGQ

New solution, local improvement RLQ

New solution RNQ

Successful LSO types achieve higher scores compared to unsuccessful ones. Those LSOs able to
satisfy any of the score criteria from Table 8.1 are rewarded based on the LSO score values. The
inequalities in (8.15) hold for the score values.

RGQ > RLQ > RNQ (8.15)

After a segment of iterations, the weights are updated according to their performance. The
weights wq for all LSO types q ∈ Q are updated using Equation (8.16). µq is the accumulated
score in the current segment. In each iteration of the local search, the LSO type of the selected
neighbor is given a score which is added to µq. RNQ is awarded if the selected neighbor is a
solution that has not been found earlier in the search. Similarly RLQ is awarded if the neighbor
has a better objective function value than the current solution, and the solution has not been
found before. Finally, RGQ is awarded if the neighbor has a better objective function value than
the best solution seen so far. µq is reset to zero after each segment of iterations.

wq = wq(1− α) + α
µq
θq

(8.16)

θq is the number of times LSOs of type q have been used in the last segment. wq, µq and θq are
set to zero at the beginning of each segment. In the special case where µq and θq are both zero
in the last iteration of a segment, the fraction µq

θq
is set to zero. α is a factor determining the

responsiveness of weight updates. If α = 0, no weights are updated. If α = 1, the weights equal
the last segment’s scores.
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Chapter 9
Simulation Model

This chapter presents the implementation of the Simulation Model used in the Rolling Horizon
framework. Section 9.1 gives a high-level description of the Simulation Model. Section 9.2 de-
scribes the assumptions used in the Simulation Model. Section 9.3 introduces notation. Section
9.4 presents the implementation of the Simulation Model in more detail.

9.1 Introduction of the Simulation Model

The Simulation Model simulates the planning horizon of an artificial CSO delivering an electric
and free-floating carsharing service. The Simulation Model is able to simulate the effects of
relocation done by service employees and customers, imitating a real-world CSO as accurately
as possible. To do so, information about all aspects of the system is tracked by the Simulation
Model at all times. In a given time step, this information is referred to as the system state. The
system state mainly consists of information regarding the entities shown in Figure 9.1. This
includes the state of all nodes in the system, the state of the service employees, and the state
of rental cars. The state of parking nodes consists of the number of cars parked. The state of
charging nodes consists of the number of cars charging and the available charging slots. For the
service employees, information such as location, their current task and where they are headed
constitute the state. The state of a rental car contains information regarding its location, the
battery level, and its availability to customers. When solving the E-VReP, information regarding
the system state is needed.

Nodes Service
employees

Rental cars

Figure 9.1: Entities in the Simulation Model

57



Chapter 9. Simulation Model

9.2 Simulation Model Assumptions

In addition to the assumptions introduced in Chapter 4, additional assumptions have been made
in the creation of the Simulation Model. The assumptions are mostly related to the tasks of the
service employees.

To naturally reduce the number of cars in the system that are not available for customers,
the service employees prioritize rental cars with lower battery levels when choosing between
which cars to charge. When relocating cars to satisfy expected demand, the cars are considered
homogeneous.

9.3 Notation

This section introduces the parameters shown in Table 9.1. Tcharge specify the number of minutes
it takes to fully charge a rental car with zero battery. Trange is the total time a fully charged
rental car can drive in normal city traffic.

Cars are divided into two categories; those in need of charging and those sufficiently charged.
The cars with battery levels above the threshold ξupper are considered adequately charged. Only
rental cars below the threshold are considered when employees choose cars for recharging. Cus-
tomers can still rent cars with battery levels between ξupper and ξlower as the battery level is
sufficient for shorter trips. Rental cars with battery levels below ξlower are not available to
customers.

Table 9.1: Parameters used in the Simulation Model

Parameters

Tcharge Time to charge battery

Trange Car range

ξupper Upper battery threshold

ξlower Lower battery threshold

9.4 Implementation

The Simulation Model has been implemented in Java 8.0. Section 9.4.1 provides a brief algo-
rithmic model of the Simulation Model implemented. Section 9.4.2 explains the processing of
tasks in more detail.

9.4.1 Simulation Model Algorithm

Pseudocode for the Simulation Model is shown in Algorithm 5. The algorithm is run after every
decision epoch in the Rolling Horizon framework. Variables such as Tstart and Tincrement are fed
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to the Simulation Model specifying the start and the duration of the period to simulate.

The Simulation Model divides events into departures and arrivals. Departures consists of poten-
tial relocations and customer requests, while arrivals consists of soon to be completed relocations
and customer rentals. Arrivals contain information about the destination nodes and the arrival
times. When relocations and customer requests are allowed to start, they are converted to
arrivals. The event controller verifies that potential relocations and customer requests do not
violate any of the assumptions made. The event controller is detailed in Section 9.4.2.

Lines 4-9 in Algorithm 5 show the simulation of tasks from Tstart until the end of the simulation
period, Tstart + Tincrement. The variable t is used to track the start time of the previous event.
Repeatedly, the Simulation Model finds the next event to happen after the time t. This is a
simple process of finding the earliest arrival or departure of service employees and customers.
Another event which may occur is that a rental car finishes charging. In this case, the fully
charged car is moved from its charging node to the associated parking node. Every time a new
task is approved, the battery levels of the cars are updated in line 7.

Algorithm 5: Simulation Model
Input: Tstart, Tincrement, CustomerArrivals, EmployeeArrivals, EmployeeRoutes
Output: System state

1 CustomerRequests = CustomerDemand.getActualDemand(Tstart, Tstart + Tincrement)
2 NextEvent = findNextEvent()
3 t← NextEvent.getTime()
4 while t < Tstart + Tincrement do
5 System state, CustomerArrivals, EmployeeArrivals = doEvent(NextEvent)
6 NextEvent← findNextEventAfter(t)
7 updateBatteryLevels(t, min(NextEvent.getTime(), Tstart + Tincrement))
8 t← NextEvent.getTime()
9 end

9.4.2 Event Controller

The event controller performs the actions of the service employees, the customers, and the rental
cars. However, due to multiple restrictions regarding each action, the event controller is also
responsible for checking the validity of each action.

The actions in the Simulation Model utilize a Discrete Event System (DES) similarly to that
of Febbraro et al. (2012) for free-floating carsharing systems. In a DES, the evolution of states
depends on the customer demand and the relocations. However, for large-scale carsharing sys-
tems, the evolution of states would happen almost continuously. To solve this issue, DES utilizes
simpler representation of the events happening in the system; it is sufficient to only track the
start and end of actions while ignoring the intermediate states in between. For instance, the
state representing the battery level of a car is only updated when the specific rental car is picked
up or delivered to a node.

The verification of the actions ensures that the system state remains consistent with the restric-
tions. When customers request a rental car in a node, the event controller checks if there are
any available cars in the node. If so, the car is removed, and a customer arrival with information
regarding the rental is added to the list of customer arrivals. When a customer arrives in its
destination node, the used car is parked. If the car is in need of charging, the customer sets
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the car to charging based on some probability measure. When the service employees relocate
cars, cars are removed from their current node, and employee arrivals are added to the list of
employee arrivals.
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Chapter 10
Implementation and Test Instances

The ALNS heuristic introduced in Chapter 8 has been implemented in Java 8.0, together with
the Simulation Model described in Chapter 9. The Mixed Integer Program (MIP) models,
formulated in Chapter 7 and Appendix B, have been implemented using Xpress IVE version
1.24.18.

This chapter defines the key components used to create test instances. Section 10.1 describes
the geographical layout and creation of test instances. This includes a brief description of test
instances for the E-VReP and DE-VReP. Section 10.2 describes the initialization of the Customer
Demand component in the Rolling Horizon framework. Finally, Section 10.3 discusses problem
parameter values regarding travel times and the objective.

10.1 Test Instances

The geographical layout of all test instances is based on the city of Oslo, including the city
center and surrounding suburban areas. The nodes are created using an overlying grid, defining
each node as a square. Each node represents a parking node as described in Section 4.2. All
test instances consists of different subsets of the 225 nodes shown in Figure 10.1. Travel data
for the car, bike or public transport are fetched from Google maps.

Test instances are created by a generator developed in Python 3.3.6. Problem parameters, such
as the number of nodes, number of charging stations, charging station capacities, and the number
of service employees are given as inputs to the generator. The location of each node is drawn
at random, with one constraint; To create realistic test instances, the nodes in Figure 10.1 are
divided into three separate regions. When selecting nodes for a problem instance, all regions are
included equally.

Sections 10.1.1 and 10.1.2 give a short description of the specifics of test instances for the E-VReP
and DE-VReP, respectively.
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Figure 10.1: Nodes in the city of Oslo. Used as a basis for all test instances created

10.1.1 Test Instances for the E-VReP

The solution methods for the E-VReP are tested on a set of test instances. Testing is done to
asses the performance of each of the introduced MIP models and to calibrate the parameters of
the ALNS heuristic. Assessing the performance of the heuristic, on varying input parameters,
may also provide feedback on how to tune the Rolling Horizon framework to ensure the best
performance.

Initial State, Ideal State and Car-Moves

The generator takes the total number of needed relocations as input in order to control the
difficulty of each instance it generates. Sequentially, the initial state, demand and ideal state in
each node are initiated at random, constrained by the intended difficulty. Finally, car-moves are
created based on the state of each node, following the process outlined in Chapter 7. It is not
given that the ideal state is achievable within the planning period.

Test Instances

An overview of each test instance and their problem parameters can be seen in Table 10.1. Each
test instance is categorized as small, medium, or large according to the size of the instance. All
test instances have a planning period T of 60 minutes, and no overtime TL is allowed. The
letters a, b, and c will be used to distinguish between test instances of equal size.
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Table 10.1: Test instances for the E-VReP

Instance Nodes Car-Moves Cars To Relocate Cars To Charge Charging Stations Service Employees Size

6-3-3 6 12 3 3 2 3

small
8-4-3 8 18 4 3 2 3
10-7-3 10 34 7 3 2 3
15-9-3 15 60 9 3 2 3
15-12-5 15 87 12 5 3 5

medium
20-13-5 20 132 13 5 3 5
25-15-5 25 165 15 5 3 5
30-18-5 30 177 18 5 3 5
50-25-10 50 450 25 10 5 7

large
100-27-10 100 509 27 10 5 7
125-30-10 125 650 30 10 5 7
150-33-10 150 908 33 10 5 7

10.1.2 Test Instances for the DE-VReP

The test instances for the DE-VReP, used in the Rolling Horizon framework, are built similarly
to test instances for the E-VReP. However, each test instance is only a starting point, defining
the carsharing system that will be simulated. A new problem instance is subsequently generated
at every decision epoch, based on the new state of the system.

Three test instances are created by the same Python model from Section 10.1.1. The test
instances are shown in Table 10.2. There are six charging stations per charging node for each
test instances. The level of expected stress in the test instances is dependent on the relationship
between the number of nodes, the number of cars and the available employees to relocate the
cars. The three instances have different settings of these parameters. However, the relationship
between the settings is similar; there are approximately three times as many cars as nodes.

Table 10.2: Set sizes and constant parameters used when generating instances for
testing in the Rolling Horizon framework.

Test Instance Nodes Cars Service Employees Charging nodes

D-20-65-5-6 20 65 5 3
D-50-170-12-12 50 170 12 6
D-120-380-24-24 120 380 24 12

Parameters related to both the dynamic problem instances and the Simulation Model are shown
in Table 10.3. At Tstart = 6 AM, it is assumed that the distribution of available rental cars is
close to the ideal state. The calculation of the ideal state is explained in Section 10.2.2.
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Table 10.3: Set sizes and constant parameters used when generating instances for
testing in the Rolling Horizon framework.

Notation Value

Start time business hours Tstart 6 AM

End time business hours Tend 6 PM

Time increments Tincrement 15 min

Planning period T 60 min

Overtime T
L 10 min

Charging time Tcharge 210 min

Car range Trange 120 min

Upper battery threshold ξupper 40%

Lower battery threshold ξlower 20%

10.2 The Customer Demand Component

This section describes the implementation of the Customer Demand component from the Rolling
Horizon framework, as well as the estimation of the ideal state. Section 10.2.1 explains how the
customer demand is generated. Section 10.2.2 presents the calculation of the ideal state.

10.2.1 Generation of Customer Demand

Customer demand is generated based on the traffic flow patterns observed in the city of Oslo
using Google Maps. In the morning, traffic flows from the suburban areas into the city center.
These flows decrease towards noon. From noon until 3-4 PM, the traffic from the city center
to the suburban areas gradually increases with a rush hour peak around 4 PM. These findings
led to the simple three-folded categorization of nodes; nodes with morning rush and lower
demand in the afternoon, nodes with a steady and moderate level of demand during the entire
planning horizon, and nodes with low morning demand but high afternoon demand. Nodes are
individually associated with a demand scenario s. The scenario describes the expected number
of cars that will be requested during the next hour, as indicated by λs. Nodes currently in a
scenario of high demand are classified by s = H. Equivalently, nodes in scenarios with medium
and low demand are associated with scenarios s = M and s = L, respectively. Hence, λs is
defined for all s ∈ {H,M,L}.

The demand in each node is assumed to follow a Poisson process where the arrival rate changes
during the day. Given the expected number of arrivals, the timings of the arrivals appear
approximately at random. The demand rates used, which evolve during the day, are given in
Table 10.4. For instance, this means that nodes with morning rush have a rate of λH in the
morning which linearly decreases towards λL in the afternoon.
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Table 10.4: Expected number of cars requested for the three scenarios used in the
Poisson process.

Notation Number of cars demanded/hour

High demand λH 4

Medium demand λM 1

Low demand λL 0.3

Customers renting cars are most likely to follow the traffic flow pattern (e.g., travel from a node
in outer Oslo to a node in the city center in the morning). Otherwise, the choice of destination
node is made uniformly at random. The travel times of customers travels are also stochastic.
For simplicity, we have assumed that customers who are renting cars always travel at least for
ten minutes. In addition, travel times between departure and destination nodes are added. Since
customers may have errands to run, each travel time of customers is adjusted by a factor drawn
from a uniform distribution U ∼ unif(1, 1.4).

10.2.2 Calculation of Ideal State

The ideal state is the estimated optimal distribution of cars at the end of the current planning
period. This distribution should reflect the distribution of the expected number of cars in each
node in the look-ahead period, adjusted by the number of cars currently available for rental in
the system. Hence, if this distribution of cars is met at the end of the planning period, the CSO
will most likely meet the demand in the next planning period.

10.3 Problem Parameters

The problem parameters presented in this section are used for both dynamic and static test
instances.

10.3.1 Time

Travel times between all parking nodes with different means of transportation are fetched from
the Google Maps API. The center coordinates of each node are used as the reference point. The
relocation time of each car-move, THr is composed of the travel time by car between its origin
and destination, plus the associated parking or maintenance time. Travel time between nodes
denoted Tij , is the shortest travel time when comparing travel time by bike and travel time by
public transport. Charging nodes are assumed to share the same coordinates as their associated
parking node.

All car-moves that goes to a charging node has an associated processing time of five minutes,
to do necessary maintenance and start the recharging process. To parking nodes, the associated
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parking time is assumed to be four minutes, due to the time used to locate a suitable parking
spot. All relocation times are assumed to be constant.

10.3.2 Objective Parameters in the E-VReP

The objective parameters introduced in Chapter 7 are CCh, CD, CET , CR and CT . CD and CCh

represents benefits, but are referred to as cost in this section, for simplicity. Cost parameters are
semi-artificial, meaning that they partly reflect their assumed real economic value. However, no
study has been conducted to confirm the cost assumptions made. Costs are approximated and
determined based on two main principles. First, the relative size of each cost component should
reflect the importance of each cost. Secondly, each cost should incorporate its value in a dynamic
environment, e.g., the benefit of charging a car is not observable directly, but is beneficial when
simulating an entire day. The choice of approximated costs is shown in Table 10.5.

Table 10.5: The value of objective parameters

Cost component Value

CPC 30

CD 10

CET 0.5

CH 0.2

CT 0.01

If cars are not recharged, two main outcomes may be observed. First of all, the point in time
where the car is available to customers again is postponed, which may lead to a loss of profits.
Secondly, it may lower customer satisfaction as the customers observe that too few cars are
available in the system. Thus the benefit of recharging a rental car CCh is 30 per car charged.
This encourages service employees to prioritize charging cars, which has proven a beneficial
strategy in preliminary simulations. The benefit of approaching the ideal state, CD, is 10 per
unit improved. This estimate agrees with the estimated profits, found by Folkestad and Hansen
(2017), when deviating from the ideal state. It is assumed that this cost is equal for all nodes.
The cost per unit of overtime, CET , is 0.5. With this value, car-moves that are relocated in the
last half of the planning period are always profitable to complete, even if overtime is used. The
cost of relocation, CR, is 0.2. This semi-artificial cost encourages service employees to relocate
cars locally, to reduce the wear of the car park. However, any car-move with relocation time
less than 50 minutes, is still profitable to relocate. Finally, the cost of time CT is 0.01. This
encourages the service employees to finish their tasks as early as possible.

Chapter 8 introduced three additional objective parameters; CI , CL and CChE . CI is the cost
of breaking the capacity of charging stations, per unit in excess. This cost is 100. CL is the cost
of having car-moves in excess in the solution. The cost is 10 per car-move. Finally CChE is the
potential benefit of charging early. This parameter is 0.1.
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This chapter presents the computational study of the proposed solution methods for the DE-
VReP and the associated E-VReP. Section 11.1 describes the test environment. Section 11.2
presents the computational study of the Mixed Integer Program (MIP) models for the E-VReP.
Similarly, the calibration of the ALNS heuristic for the E-VReP is presented in Section 11.3.
Section 11.4 presents and discusses the computational study of the solution method for the
DE-VReP. Finally, Section 11.5 presents a selection of practical insights for real-life CSOs.

11.1 Test Environment

The software and hardware used to implement and test the MIP models and the ALNS heuristic,
are presented in Table 11.1.

Table 11.1: Hardware and software used in testing

Processor 3,4GHz Intel E5
Memory 512GB RAM
Operating System CentOS 7.4
Xpress-IVE version 1.24.18
Xpress optimizer version 29.01.10
Mosel version 4.0.3
Java version 9.0.4

Due to testing purposes, two hours of computation time is allowed to solve the E-VReP in the
computational study of the MIP models. This is done to create optimal or near optimal solution
benchmarks for the calibration of the ALNS heuristic on E-VReP instances. The ALNS runs
until termination. Results measured for each test instance include computation time and a
optimality gap. The optimality gap is defined as the percentage difference between the current
objective value and the best-known objective value.
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The DE-VReP is solved by iteratively solving a subproblem at each decision epoch. Each
subproblem is an instance of the E-VReP. The computation time used to solve each E-VReP is
regarded as the most crucial factor if the proposed ALNS heuristic is to be of use in a dynamic
real-world scenario. In a dynamic setting, tasks appearing optimal at one moment of time
may be aggravated in the next. Hence, the longest acceptable computation time to solve each
E-VReP in a dynamic environment is assumed to be three minutes.

11.2 Comparison of the Mixed Integer Programs

Chapter 7 introduced two possible MIP models for the E-VReP. The first and current design
denoted the Task-based MIP, is formulated in Chapter 7. This formulation gives each employee
a set of task, which they can assign to car-moves. The second, denoted the Flow-based MIP,
is an alternative design, formulated in Appendix B. The Flow-based MIP is a classical arc-flow
model, and uses variables to indicate that an employee travels between relocating two car-moves.
Both models are tested to confirm the strength of the current design. The active constraints for
each MIP are presented in Table 11.2.

Table 11.2: Active constraints for the Task-based and Flow-based MIP

Model Constraints

Task-based E-VReP MIP (7.3) - (7.15)

Flow-based E-VReP MIP (B.2) - (B.14)

The Task-based and Flow-based MIP models are solved by Xpress and tested on the test in-
stances categorized as small (6-15 nodes) or medium (15-30 nodes) in size, introduced in Section
10.1.1. Large test instances are excluded, as preliminary testing has indicated that Xpress is
not able to solve such IP models in reasonable time.

Table 11.3 shows the test results, from solving the small test instances. Tests results for all
medium test instances can be found in D.2.

The Task-based MIP model outperforms the Flow-based MIP model. Optimal values are found
for all small instances, with less than 15 nodes, within the allowed two hours of computation
time. When solving the Task-based model, Xpress finds acceptable solutions for all test instances
of medium size, with gaps ranging from 3.9% to 31.5%.

As highlighted in Chapter 7, there are several arguments explaining the performance gap between
the two models. The Flow-based has a large number of variables used to indicate travel flow
between car-moves. Many of these variables can be considered redundant for two reasons: only
a few variables will be non-zero in an optimal solution, and many are mutually exclusive. The
Task-based model, on the other hand, was designed with this in mind, containing fewer variables.
Hence, the Task-Based MIP is the model of choice.

In terms of real life-value, Xpress is not able to solve the MIP models for medium test instances
within what can be considered an acceptable time in a dynamic environment. A key finding
in Hellem et al. (2017) was that the difficulty of each static sub-problem, in a Rolling Horizon
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Table 11.3: Results from testing the task-based and flow-based MIP on the small
test instances. Computational time and % gap is reported by Mosel.

Instance Task-based MIP Flow-based MIP

Comp.
time (s) Gap % Comp.

time (s) Gap %

6-3-3_a 0.68 0.0 4.28 0.0
6-3-3_b 0.76 0.0 4.02 0.0
6-3-3_c 1.66 0.0 16.24 0.0

Average 1.03 0.0 8.18 0.0

8-4-3_a 4.23 0.0 53.98 0.0
8-4-3_b 5 0.0 46.43 0.0
8-4-3_c 4.67 0.0 38.60 0.0

Average 4.63 0.0 46.34 0.0

10-7-3_a 250.22 0.0 7200 27.7
10-7-3_b 557.93 0.0 7200 N/A
10-7-3_c 703.68 0.0 7200 N/A

Average 503.94 0.0 7200 N/A

15-9-3_a 3201.99 0.0 7200 N/A
15-9-3_b 5730.11 0.0 7200 1004.6
15-9-3_c 7200 13.9 7200 N/A

Average 5377.40 4.6 7200 N/A

Green cells indicate best average values

framework, may vary between decision epochs. An originally easy test instance could transition
into a medium or hard one. In these cases, reasonable solutions might not be found. Thus, the
Task-based MIP is only used as a tool to benchmark the performance of the ALNS, on the test
instances for the E-VReP.

11.3 Configuration of the ALNS

Chapter 8 introduced several parameters used by the ALNS. It also discussed possible strate-
gies the ALNS could use for neighborhood generation and neighborhood selection. This section
determines which strategies to select and describes the calibration of the parameters settings.
Section 11.3.1 discusses the test methodology. Section 11.3.2 presents results for the different
strategies, and determines the termination criteria. Section 11.3.3 discusses calibration of pa-
rameters that depends on the problem size. The remaining parameters, are calibrated in Section
11.3.4. Finally, Section 11.3.5 gives concluding remarks on the ALNS calibration.

11.3.1 ALNS Parameter Calibration Methodology

The ALNS is calibrated on all test instances introduced in Section 10.1.1. An overview of the
ALNS parameters is given in Table 11.4. The following strategy is used for calibration: First,
an initial value for every parameter is decided. This is done based on the results from Ropke
and Pisinger (2006) and an extensive ad hoc, trial-and-error phase denoted preliminary testing.
Secondly, calibration is done incrementally for each parameter. Each parameter is given a set
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of possible values, keeping the other parameters fixed. Once a parameter has been calibrated,
it retains that value in further testing. The order of testing is done according to an estimate
of each parameter’s relative importance and will be presented in that order. Each parameter
is calibrated based on objective value, introduced in Section 8.3, indirectly through the gap
from the best-known solutions. For the small test instances, the optimal solution is known as
found by the Task-based MIP. For problem instances where the MIP was unable to find the
optimal solution, the gap is calculated based on the best-known solution found by the ALNS
algorithm. Good performance on the larger test instances is credited the most, when calibrating
each parameter, due to closer resemblance to real-life scenarios. Note, that all test results tables
from the calibration can be found in Appendix D.

Table 11.4: Initial ALNS parameter values. These are the base values, which are
to be calibrated.

Parameter Value Description

Tmax 3 600/180 Max running time (seconds)
Binit 2 Initial tabu list size
Bmin 2 Minimal tabu list size
Bmax 1 024 Maximal tabu list size
IR 100 000 Max number of iteration without improvement
IW 100 The number of iterations before the LSO weights are updated
Ides 500 Iterations without global improvement before destroy and repair
IB 4 Iterations without local improvement before increasing the tabu list size
IS 2 Iterations with local improvements before decreasing the tabu list size
Mmax 100 Neighborhood size
Γ 0.4 The destroy/repair factor
RNQ 1 LSO score for finding a new local solution
RGQ 33 LSO score for finding a new global best solution
RLQ 13 LSO score for finding a new better local solution
RGU 33 Destroy and repair score for finding a better global solution
RLU 13 Destroy and repair score for finding a new and better local solution
α 0.1 Update factor for both LSO and destroy and repair weights
ω1 . . . ω5 0.315, 0.315, 0.315, 0.005, 0.05 Weights for Shaw Removal

The initial value of each parameter can be seen in Table 11.4. Binit, Bmin and Bmax are
parameters that limit the tabu list size. Their values, derived from preliminary testing, are
considered appropriate, and small changes to these parameters are considered not to affect the
ALNS. Thus, no further calibration is done on their values. This is also the case for ω1 . . . ω5,
parameters which have also been determined based on knowledge of the problem structure. The
remaining parameters are all calibrated. IB, IW , Ides, IB, IS , Mmax, RNQ have initial values
derived from preliminary testing, while Γ, RGQ, R

L
Q, R

G
U , R

L
U are based on values from Ropke

and Pisinger (2006). Finally, the Tmax for all test cases is three minutes, as described in Section
11.1. Additionally, when calibrating for neighborhood generation and neighbor selection, all test
instances are solved with Tmax equal to one hour. This is done to observe how the possible
strategies affect performance when the ALNS is run for an equal number of iterations.

11.3.2 Algorithmic Configuration

The three approaches to neighborhood generation introduced in Section 8.5.2 are evaluated. Ta-
ble 11.5 shows the performance of each strategy on all test instances. Several observations can be
made: full enumeration of all LSOs of all types is naturally the most time-consuming approach.
Notably, this approach also has the worst performance overall. A reasonable explanation is the
increased risk of getting stuck in local optima, due to the to the many LSOs available. The
goal of the tabu list is to restrict the search from going back the same path it originated from.
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Full neighborhood enumeration may allow the ALNS to counter this restriction, by finding an
equivalent set of LSOs, leaving the algorithm stuck locally. The same argument may be applied
to explain the difference in performance between the full weighted and random weighted ap-
proaches. As described in Section 8.5.2, both strategies generate a neighborhood M of one LSO
type, chosen in a roulette wheel fashion. The results indicate that having a fully enumerated
neighborhood of one LSO type in every iteration may increase the risk of getting stuck in local
optima. In these cases, randomness may reduce this risk and may assist in further exploration of
the search space. Overall, the results show that the randomness embedded in random weighted
neighborhood generation is beneficial for solving the E-VReP, and this is the selected approach
used in further testing. This same observation is made when the ALNS run both 3600 seconds
and 180 seconds.

Table 11.5: Average computational time and gap from best-known objective value
for the three approaches to neighborhood generation, when running the
ALNS with Tmax = 3 600s/180s respectively. All results are averages
over five runs. Gap is calculated as the difference between the best-
known objective value, and the average objective value. A negative gap
versus MIP, indicates an improvement to the objective value reported
in Tables 11.3 and D.2.

Instance Full Full Weighted Random Weighted

Comp.
time (s)

Gap %
(3 600s)

Gap %
(180s)

Gap %
MIP

Comp.
time (s)

Gap %
(3 600s)

Gap %
(180s)

Gap %
MIP

Comp.
time (s)

Gap %
(3 600s)

Gap %
(180s)

Gap %
MIP

6-3-3 6 0.0 0.0 0.0 1 0.0 0.0 0.0 3.2 0.0 0.0 0.0
8-4-3 18.8 0.0 0.0 0.0 1.8 0.0 0.0 0.0 3.6 0.0 0.0 0.0
10-7-3 33.6 3.3 3.3 3.3 3.8 2.6 2.6 2.6 5.6 2.0 2.0 2.0
15-9-3 53.2 0.6 0.6 0.6 7.4 0.3 0.3 0.3 9.4 0.0 0.0 0.0
15-12-5 140.6 1.0 1.0 -3.0 19.8 2.1 2.1 -1.8 14.2 0.9 0.9 -3.1
20-13-5 197.6 0.2 1.5 -3.7 25.2 0.5 0.5 -3.5 20.2 0.1 0.1 -3.9
25-15-5 236 1.5 0.9 -16.6 33.8 1.0 1.0 -17.2 23.6 0.4 0.4 -17.9
30-18-5 315.2 0.7 2.5 -12.1 44.2 0.4 0.4 -12.5 30.6 0.3 0.3 -12.6
50-25-10 1 464 2.8 5.9 194.4 2.4 2.4 89.6 1.5 1.5
100-27-10 2 123.6 4.4 6.5 405 1.7 1.7 161.6 1.5 1.7
120-30-10 2 719 7.4 9.0 577.4 3.0 3.7 294.8 1.7 2.5
150-33-10 3 334 6.2 10.2 874 2.2 3.2 497.8 2.4 3.6

Average 886.8 2.3 3.5 -4.0 182.3 1.3 1.4 -4.0 96.2 0.9 1.1 -4.4
Green cells indicate best average values

When the neighborhood M is generated, the ALNS picks one LSO from the neighborhood.
Section 8.5.4 presented two strategies for neighbor selection. In each iteration, the ALNS may
search through the entire neighborhoodM, and pick the best LSO. Alternatively, if the algorithm
encounters an LSO that increases the current objective value, this operator is picked without
evaluating the remaining neighborhood. The last strategy is called first improvement. Both
strategies are tested, and the results are shown Appendix D, Table D.4. The results indicate
that the best neighbor strategy performs best, and is used in the final implementation of the
ALNS.

Finally, Section 8.1 introduced two termination criteria for the ALNS. Tmax is constant, but IR

is calibrated. Reducing IR reduces computational time, but may also deteriorate the objective
function value, due to the non-deterministic nature of the ALNS. This creates a trade-off between
computational time and objective value. Since Tmax = 180s, this trade-off is more applicable
to smaller test instances. IR is tested for values ranging from 75 000 to 150 000, and test
results can be seen in Appendix D, Table D.5. Overall, setting IR = 125 000 shows the greatest
performance in terms of objective value. The increase in computational time is also well within
what is acceptable, compared to the relative increase in the objective value. Figure 11.1 shows
the development in the gap from best-known solution, for a typical run of the ALNS.
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Figure 11.1: Gap % from best-known solution development during a run of 120-
30-10.

11.3.3 Scaling Parameters Configuration

Preliminary testing indicates that the ideal values forMmax, Ides and IW depend on the problem
size. This is expected due to the fact that the neighborhood sizes of the LSO types and LNS
heuristics increase with the number of car-moves and service employees. Thus, a good indication
of the problem size is the number of car-moves in a problem, which increases polynomially with
the number of cars to relocate. Interestingly, the number of car-moves present in solution γ
does not necessarily increase with the number of car-moves in the instance, since the number
of car-moves each employee can relocate is limited. Linearly scaling the parameters with the
number of car-moves is observed to negatively impact the computational time and the objective
value found. Thus, a scale based upon logarithmic growth is adopted. The scaling of each
parameter is presented in Equations (11.1), (11.2) and (11.3). Figures that show the growth
rate for different scaling values can be seen in Figures D.1, D.2 and D.3 in Appendix D.

MS = ι ln(C) (11.1)

Ides = υ ln(C) (11.2)

IW = η ln(C) (11.3)

The maximal neighborhood size, Mmax, is a parameter used by the random weighted neigh-
borhood generation. For Mmax iterations, the ALNS creates another LSO at random. A large
Mmax is beneficial when test instances grow, due to larger neighborhoods. Simultaneously, a
larger Mmax requires more computational resources. If Mmax is too large, the ALNS could face
similar issues as encountered in the full weighted neighborhood generation, since the randomness
becomes somewhat limited. Test results for different values of ι are shown in Table D.6. Overall,
ι = 25 shows the most promising results.

Ides determines how often LNS is used in the ALNS. When no global improvement has been made
for the last Ides iterations, the LNS is performed. The overall goal is to do LNS when the local
neighborhood has been exhausted. The search space of the local neighborhood greatly varies
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with problem size. A large Ides gives the ALNS more iterations to search locally, which may
be beneficial when the size of the local neighborhood increases. Additionally, every time LNS is
executed, the weight of each destroy and repair heuristics is updated based on performance since
the last execution. Larger values of Ides would make the algorithm less adaptable, since one
heuristic may have time to dominate the others. The results in Appendix D, Table D.7, indicate
that the highest values for υ perform better on larger test instances, giving the algorithm more
time to perform local search. The final value for υ is 120. Using υ = 120, Figure 11.2 shows how
the weight of each destroy and repair heuristic develops during 150 000 iterations of the ALNS.
The figure indicates that the algorithm adapts to which heuristics to use.
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Figure 11.2: Values of the weights for the different LNS heuristics during 150 000
iterations on 120-30-10. Values are sampled at every weight update.
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Figure 11.3: Values of the weights for the different LSO types during 100 000 itera-
tions on 10-7-3. Values are sampled every 2 000 iterations, to improve
visibility. and the volatility of each weight is higher in reality

Finally, IW controls how often the weights for the different LSO types are updated. A small
value for IW makes the ALNS adaptable to immediate changes in the scores of the different LSO
types. Figure 11.3 shows how the weights vary during a run of the ALNS. Table 11.6 showcases
the results when ι = 25 and υ = 120 for different values of η. η = 5 shows the best performance.
A reasonable explanation is that the ALNS needs to be very adaptable due to the large number
of car-moves and LSO types. The algorithm continuously shuffles car-moves between γ and β,
and thus benefits from changing weights values quickly as the solution develops. Figure 11.3
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illustrates the volatility of the weights, when η = 5, moving from large values down to zero
several times during a run. Some LSO types dominate others during the search. However, due
to quick adaptation the other types are able to increase their weights quickly should new or
better solutions be found. Overall, the trendlines for all LSO weights are going downward, as
the possible search space becomes exhausted.

Table 11.6: Average computational time and gap from best-known objective value
when running the ALNS with scaling values η = 1/5/10/15 for IW . All
results are averages over five runs. Gap is calculated as the difference
between the best-known objective value, and the average objective
value.

Instance η = 1 η = 5 η = 10 η = 15

Comp.
time (s)

Gap %
Comp.
time (s)

Gap %
Comp.
time (s)

Gap %
Comp.
time (s)

Gap %

6-3-3 5.6 0.0 2.8 0.0 2.6 0.0 2.6 0.0
8-4-3 5.8 0.0 3.8 0.0 3.6 0.0 3.4 0.0
10-7-3 10.6 0.0 7.4 0.0 6.4 0.7 6.6 0.7
15-9-3 15.8 0.0 8.4 0.0 9.0 0.0 8.8 0.0
15-12-5 32.7 1.7 18.6 0.5 16.6 1.3 16.6 1.1
20-13-5 35.8 0.5 24.6 0.3 23.6 0.1 23.6 0.1
25-15-5 47.2 0.5 25.2 0.5 31.4 0.2 26.8 0.3
30-18-5 62.2 0.5 39.8 0.2 39.8 0.3 39 0.1
50-25-10 178.4 1.5 108.0 1.8 122.8 1.2 111.8 1.7
100-27-10 180 1.5 171.4 0.6 167.2 1.0 172.8 0.7
120-30-10 180 1.7 180 1.7 180 1.9 180 1.8
150-33-10 181.2 2.5 180 2.2 180 2.3 180 2.3

Average 77.9 0.9 64.2 0.6 65.3 0.7 64.4 0.7

Green cells indicate best average values

11.3.4 General Configuration

The remaining parameters are calibrated in order, using ι = 25, υ = 120 and η = 5. As described
in Section 8.5.3, IB is the number of iterations without local improvement before the tabu list
is doubled in size. Accordingly, IS is the number of iterations with local improvements before
the tabu list is halved. Preliminary testing indicated that having IB twice the size of IS is a
good fit for the ALNS. This allows the algorithm to search extensively away from local optima
before the adaptive length of the tabu list restricts the search. The ALNS is tested with IB =
2/4/6/8 and IS = 1/2/3/4. All test results can be seen in Table D.9. The results indicate that
having IB = 6 and IS = 3 is a good configuration. These are the final values for IB and IS .

Γ indicates the proportion of γ that is destroyed and repaired in a LNS. Unlike the approach
in Ropke and Pisinger (2006), the ALNS removes a constant proportion of the current solution
every time LNS is performed. Randomness is instead embedded in the size of γ, which greatly
fluctuate during the search. However, a too small Γ can cause the ALNS to be stuck in local
neighborhoods, and a too large Γ impacts the computational time, due to the resources required
to do destroy and repair. The results in Table D.9, indicates that Γ = 0.4 is a good fit for the
ALNS.

Finally, RNQ , R
G
Q, R

L
Q, R

G
U , R

L
U and α are parameters that the ALNS uses when updating the
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weights for the different LSO types, and LNS heuristics. Test results from calibration are shown
in Tables D.11 and D.12. Based on the results, the final values are as follows: RNQ = 1, RGQ =
23, RLQ = 13, RGU = 23, RLU = 13 and α = 0.1.

11.3.5 Final Remarks on the ALNS Calibration

The final values for all parameters can be seen in Table D.13. To showcase the performance
of the algorithm in solving the E-VReP, final tests are run to compare the results of the fully
calibrated ALNS to the solutions found by the construction heuristic. The results in Table 11.7
shows a performance increase of 45.1 percentage points (pp), on average, compared to a greedy
approach.

Table 11.7: Average computational time and gap from the best-known objective
value when running the calibrated ALNS against the construction
heuristic.

Instance Calibrated ALNS Construction Heuristic

Comp.
time (s)

Gap %
Comp.
time (s)

Gap %

6-3-3 2 0.0 0 24.1
8-4-3 3.2 0.0 0 10.0
10-7-3 6.4 0.0 0 43.7
15-9-3 7.8 0.0 0 46.8
15-12-5 17.2 0.5 0 26.5
20-13-5 22.2 0.1 0 28.1
25-15-5 25 0.4 0 58.3
30-18-5 36.2 0.1 0 56.7
50-25-10 93.8 1.6 0 43.4
100-27-10 178.6 0.4 0 58.7
120-30-10 180 0.8 0 83.5
150-33-10 180 2.0 0 66.9

Average 62.7 0.5 0.0 45.6

Green cells indicate best average values

11.4 Configuration of the Solution Method for DE-VReP

This section tests the proposed solution method for the DE-VReP, introduced in Chapter 5.
The implementation of the Simulation Model and the Customer Demand used in the solution
method are the ones presented in Chapters 9 and 10, respectively. The E-VReP Solver in the
Rolling Horizon framework is the fully calibrated ALNS assessed in Section 11.3.

The evaluation of the solution method is based on the objectives of the CSO presented in
Chapter 4. The degree of demand served during the business hours is the most important key
performance indicators of this section. The percentage demand served is referred to as DS.
The number of rental cars charged by the service employees during the business hours is also
presented. Section 11.4.1 describes the test instances used in more detail.

To calibrate the solution method, two tests are considered; Section 11.4.2 tests the length of the
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planning period, while Section 11.4.3 tests the re-planning frequency. Each test is run over ten
days with different realizations of customer requests. The average scores over all days are used
as a basis for comparison. To reduce the variance of the results, all models are run on the same
set of realized customer requests.

11.4.1 Test Instance Considerations

The tests generated for the DE-VReP are designed to be stressful for the CSO. With the given
number of cars in the system for each test instance and the expected demand in each node, the
service employees are exposed to large workloads. On average, 22.5 cars are requested in each
node during a twelve hour period. For each of the three test instances, this implies that there
are 6-7 times more customer requests than cars in the system. Hence, even a 5 pp improvement
in DS is approximately 135 more customers served in the case of 120 nodes.

Most cars are fully charged at the beginning of the planning horizon. However, the large number
of customer rentals causes many cars to become in need of charging almost simultaneously after
a given number of decision epochs. This wave of cars in need of charging is shown in Figure 11.4.
In addition, there is a considerable amount of uncertainty to when and where rental cars are
delivered by the customers. Hence, even though the service employees would perform optimal
tasks at all times, achieving large degrees of DS in the DE-VReP is not likely.
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Figure 11.4: New cars in need of charging in every decision epoch for D-50-170-
12-12

11.4.2 Planning Period

This test explores the effects of changing the length of the planning period T . The length of
the planning period restricts the number of relocations that the ALNS outputs for the service
employees. Ideally, the static model would consider the whole planning horizon. However, there
are three main arguments against such long planning periods. First, using longer planning
periods increases the search space due to the increased number of possible routes for the service
employees. A larger search space may increase the computation time needed for the ALNS
to find good solutions. Second, the future states of the system are stochastic due to varying
customer demand and travel times. Hence, longer planning periods come at the cost of more
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uncertainty. This implies that a solution looking optimal at the moment, may not even be
feasible after the next couple of minutes due to unforeseen events. Finally, since the solution
method for the DE-VReP re-plans sequentially, the actions done by the service employees are
usually only the first couple of actions provided by the ALNS. Hence, the use of longer planning
periods involves more calculations of needless actions that may are not likely to be performed.
Table 11.8 substantiates these arguments.

Table 11.8: Demand served and cars charged for different planning periods

Instance T = 40min T = 60min T = 80min T = 100min T = 120min

DS %
Cars

charged
DS %

Cars
charged

DS %
Cars

charged
DS %

Cars
charged

DS %
Cars

charged

D-20-65-5-6 58.35 53 64.10 58 60.48 53 59.48 60 58.98 53
D-50-170-12-12 60.36 139 63.74 136 62.81 131 61.31 129 61.77 124
D-120-380-24-24 57.51 279 58.31 285 57.37 266 58.41 255 56.19 251

Average 58.74 157 62.05 160 60.22 150 59.30 146 58.98 144

Green cells indicate best values for each test instance

Using a planning period of 60 minutes slightly outperforms the alternatives. There are three
significant findings. First, the demand served reduces with longer planning periods. This is most
likely due to increased search space making it more difficult for the ALNS to find good solutions
within the three minutes. Second, if the planning period is too short, the solutions provided by
the ALNS becomes more similar to a greedy approach. This explains the low demand served
when using a planning period of 40 minutes. Third, fewer cars are charged when using longer
planning periods. In these tests, there are no incentives for service employees to recharge rental
cars early in the planning period. Thus, charging-moves are prone to the risk of being postponed
iteratively, due to re-planning. However, reducing the planning period, charging-moves are more
likely to be among the first and, therefore, more likely to be performed.

11.4.3 Frequency of re-planning

This test explores the effects of changing the re-planning frequency Tincrement. The re-planning
frequency determines the rate at which an E-VReP is solved in the Rolling Horizon framework.
Given the result from Section 11.4.2, all tests use a planning period of 60 minutes. The results
of three different re-planning frequencies are presented in Table 11.9.

From Table 11.9, it is evident that a re-planning frequency of 15 minutes slightly outperforms
re-planning frequencies of 10 and 20 minutes. Re-planning more often should, intuitively, do
no worse than re-planning more seldom. This explains why re-planning every 20 minutes has
the worst performance. However, it is noteworthy that optimizing too often may have negative
effects. One possible explanation is the current implementation of the ALNS. Since the ALNS
is non-deterministic, the quality of the solutions, i.e., routes, between decision epochs may vary.
Hence, when re-planning more frequently, the probability of finding less effective routes increases.
If high-quality sub-routes were preserved between decision epochs, less effective solutions could
be easier to avoid. Additionally, when the re-planning frequency is high, there are only small
changes to the system’s state in between decision epochs. Hence, re-planning too often might
diminish the possible long-term benefit of the routes.
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Table 11.9: Demand served and cars charged for different re-planning frequencies

Instance Tincrement = 10min Tincrement = 15min Tincrement = 20min

DS %
Cars

charged
DS %

Cars
charged

DS %
Cars

charged

D-20-65-5-6 59.96 59 64.10 58 63.06 58
D-50-170-12-12 63.47 144 63.74 136 63.52 140
D-120-380-24-24 56.61 279 58.31 285 58.40 279

Average 60.01 161 62.05 160 61.66 159

Green cells indicate best values for each test instance

Another finding is that re-planning more often tends to increase the number of cars charged.
The most likely explanation is that information regarding the battery levels is updated earlier
in the Simulation Model. In addition, frequent re-planning increases the probability of charging
rental cars. The probability increases because the ALNS has the option to charge cars early
more frequently.

11.4.4 Comparison to Greedy Construction Heuristic

Section 11.3.5 showed that the ALNS had a performance increase of 45.1 pp compared to the
construction heuristic. Table 11.10 shows the results from testing the construction heuristic in
the Rolling Horizon framework. Interestingly, when solving the DE-VReP, the difference in DS
is only 7.86 pp. This implies that the uncertainty faced when solving the DE-VReP reduces the
performance gap between the two approaches. However, a difference of 7.86 pp in DS equals
an additional 175 customers served throughout a twelve hour period. 175 additional customers
represent a significant revenue increase, supporting the value of the proposed solution method.

Table 11.10: Comparing the calibrated solution method to the Construction
Heuristic

Instance Construction Heuristic

DS % Cars
charged

D-20-65-5-6 54.73 47
D-50-170-12-12 55.5 112
D-120-380-24-24 52.33 229

Average 54.19 129
∆ to ALNS -7.86 pp -31

When comparing the number of cars charged, the construction heuristic charges fewer cars.
The likely explanation is that the ALNS provides routes with more efficient relocations of cars.
Hence, in total, the service employees relocate more cars during the same time period, both to
charging and parking nodes.
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11.5 Practical Insights

This section discusses the practical use of the solution method for a real-life CSO. As introduced
in Chapter 4, strategic and tactical decisions greatly affect the ability of the CSO to serve
demand. Hence, in addition to the operational level, the proposed solution method may also be
used as a decision support tool for both the strategic and the tactical levels. Hence, this section
is divided into operational, tactical and strategic insights. The tests in this section are run
similarly to those in Section 11.4, but only on test instance D-50-170-12-12. The fully calibrated
solution method from Section 11.4 is referred to as the standard solution method.

11.5.1 Operational Insights

This section presents three operational insights; benefits of charging cars early, which destina-
tions to consider for relocation, and the use of a uniform ideal state.

Benefits of Charging Cars Early

One objective of the proposed solution method is to charge cars in need of charging. Hence,
charging-moves in the solution is rewarded. However, there is no guarantee that these relocations
are ever done by the service employees if they are not among the first relocations in the solutions.
Naturally, cars need to be charged in order to meet future demand. Hence, prioritizing early
charging of cars seems beneficial. This test explores to what extent early charging should be
prioritized. The reward for early charging is set to 0.1 per time unit, i.e., including and adjusting
the CChE from Chapter 7.

Over a twelve hour period, rewards for early charging result in lower demand served. With
CChE = 0.1 the standard solution method slightly outperforms early charging by approximately
1 pp. However, the number of cars charged when rewarding early charging is significantly greater.
It is, therefore, interesting to test how these alternatives perform over a twenty hour period. In
twenty hour periods, rewarding early charging improves the demand served by approximately 4
pp. The reason for this improvement can be deduced from Figure 11.5. When rewarding early
charging of cars, the number of cars in need of charging is kept at a more steady level than
when using the standard solution method. With the standard solution method, the system over
time tends to become overloaded with cars in need of charging. The overload of unavailable cars
forces the service employees to give less priority to relocations intended to satisfy the short-term
demand of customers.
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Figure 11.5: Development of cars in need of charging for D-50-170-12-12

Figure 11.5 shows the importance of a proper balance between the short-term and long-term
considerations of satisfying customer demand. When charging cars early, the short-term demand
served is slightly decreased. However, it is evident that the long-term costs of not meeting future
demand are most likely higher than the short-term losses.

The benefit of charging early boils down to the preferences and opening hours of the CSO. For
instance, if a CSO only allows car rentals during the daytime, it seems beneficial to prioritize
serving demand short-term and do most of the recharging of cars during the night. However,
charging all cars during the night requires a sufficient number of service employees to work
the night shift. For instance, simple calculations show that for test instance D-50-170-12-12,
charging all cars would require 12 hours of work. To prevent too much work at night, it is
advisable to use strategies like early charging.

Destinations to Consider for Relocation

Chapter 7 introduced the possible destinations each car can be relocated to, identifying the set
of car-moves. The search space of the ALNS solving the E-VReP consists of all these car-moves.
Similar to the approach in Kirchler and Calvo (2013) for the Dial-a-Ride problem, it is possible
to reduce the search space by removing car-moves not likely to be part of good solutions. This
would simplify the solving of the E-VReP. Also, with a smaller search space, the runtime of
the ALNS improves. However, this speed improvement may come at the cost of removing good
solutions. This test explores the removal of car-moves from the search space.

The DE-VReP is solved in the Rolling Horizon framework over a day. In each run of the ALNS
heuristic, the entire set of car-moves and the car-moves present in the best solution are saved.
Figure 11.6 shows the distributions of all saved car-moves. The distribution is calculated by
comparing the car-moves to the longest available travel time present in the test instance, i.e.,
travel times of car-moves are divided by the longest available travel time. Parking-moves and
charging-moves are those present in the best solutions found by the ALNS.
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Figure 11.6: Distributions of car-moves for test instance D-50-170-12-12. Parking-
moves and charging-moves are the distributions for car-moves present
in best-found solutions. All available car-moves are the distribution
for all car-moves identified.

Figure 11.6 shows that the car-moves used in the solutions of ALNS are among the shorter ones.
The mean of parking-moves used by the ALNS is 0.15, while the mean of charging-moves is
slightly higher at 0.17. Charging-moves may have a larger average simply because there are
fewer charging nodes than parking nodes in a test instance. The mean of all available car-moves
is 0.36. The average variance of parking and charging-moves is 0.05, while the variance of all
car-moves is 0.12. These findings indicate that it may be possible to at least half the search
space without degrading the quality of the solutions found by the ALNS, with the current
configuration. This implies that cars should in most cases be relocated locally, a finding which
considerably simplifies the operational problem faced by a CSO. Testing indicates that these
findings also hold for instances D-20-65-5-6 and D-120-380-24-24.
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Figure 11.7: Gap (%) from best-known solution and computation time used when
solving test instance 50-25-10 for the E-VReP. Different cutoffs for
car-moves are used to indicate how the ALNS performs given the
different sets of car-moves.

To test this finding, Figure 11.7 shows the result from removing car-moves above certain travel
time thresholds for test instance 50-25-10. Interestingly, the ALNS manages to find the best-
known solutions within the time limit with a threshold of 0.4. With lower thresholds than 0.4,
car-moves that are part of the best-known solution are removed. Finding the optimal threshold
for a CSO can impact both the speed and the quality of the solutions found. Hence, reducing
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the search space seems highly beneficial for real-life CSOs.

Using a Uniform Ideal State

The solutions provided by the ALNS are very much dependent on the given ideal state. In the
Rolling Horizon framework, the calculation of the ideal state is the one described in Chapter 10.
The ideal state reflects the expected number of cars demanded by customers, adjusted for the
number of sufficiently charged cars in the system. Some nodes may have an ideal state of zero
cars. However, even though the ideal state is zero, the uncertainty in the system may result in
a demand requests in the empty node.

One approach to make the solution method more robust with regards to unforeseen demand
requests is to strive for a uniform distribution of cars in all nodes. The new ideal state is
calculated as follows; start by distributing an equal number of cars to all nodes. The remaining
cars after this initial distribution are greedily distributed among the nodes with the greatest
expected demand. The intention behind this strategy is to prevent nodes from being empty, while
at the same time incorporating some of the forecasted demand. An example of the difference
between the ideal states is shown in Figure 11.8.
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Figure 11.8: Ideal state of cars based on expected and uniform distribution. The
two first nodes are exposed to morning rush. There are 16 cars avail-
able in the system. The uniform ideal state assigns three cars to each
node. The last car is assigned to either node 1 or 2, in this case, node
1.

Testing shows that the uniform state on average performs 3 pp worse than the original ideal
state. This result supports the importance of making ideal states that coincide with the demand
patterns of customers. Hence, given that the CSO has accurate predictions of the expected
demand, it seems beneficial to utilize these forecasts in the ideal state. If the demand predictions
are inaccurate, a uniform ideal state is recommended.

11.5.2 Tactical and Strategic Insights

This section presents one tactical and one strategic insight; how the number of service employees
and charging stations affects the demand served. Decisions regarding these numbers greatly
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affect the demand served by the system, as discussed in Chapter 4. The proposed solution
method can provide decision support for other tactical and strategic aspects such as the number
of cars, the cars’ range and charging time, and the locations of the parking and charging zones.
However, these tests are not included.

Number of Service Employees

The optimal number of service employees used in a carsharing system is dependent on the
problem instance as well as the CSO’s preference regarding the trade-off between costs and
customer satisfaction. Intuitively, increasing the number of service employees strictly improves
the performance of the system and vice versa. However, there is a trade-off between the marginal
revenue gained by adding one more service employee and the marginal cost of employment. To
illustrate this trade-off, tests where only the number of employees vary are performed. The
results are shown in Figure 11.9.
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Figure 11.9: Percentage point difference in demand served when varying the num-
ber of service employees. The difference is compared to using 12
employees from the original test instance D-50-170-12-12.

It is evident from Figure 11.9 that the marginal value of additional service employees is dimin-
ishing. Too few service employees are punished by low degrees of demand served, while too many
service employees yield no significant improvement in demand served. Based on the specific cost
and revenue values of the CSOs, it is possible to optimize the number of service employees given
the operating system. The optimal number of employees should be chosen where the marginal
revenue of an additional employee is most similar to the marginal cost of employment, preferably
equal.

Number of Charging Stations

For the rental cars to be available for customers during the operating hours, charging of cars is
crucial. However‚ the number of cars that can be charged is restricted by the number of available
charging stations. Due to capital costs associated with charging stations, this test explores the
importance of a sufficient number of charging stations in the carsharing system. Based on the
test instance D-50-170-12-12, two additional test instances are generated; one with 6 charging
stations and one with 24 charging stations. For the three test instances, the charging stations
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are spread uniformly in the operating area. For more significant changes in the result, a planning
horizon of twenty hours is used. In addition, charging of cars is prioritized as in Section 11.5.1.

Figure 11.10 shows the development in the number of cars in need of charging over the planning
horizon for each of the three test instances. Naturally, keeping the number of cars in need of
charging at lower levels results in more cars available for customers in future periods, which
affects the demand served. Using this fact, Figure 11.10 shows that for the test instance used,
halving the number of charging stations results in fewer cars available for customers. Figure
11.10 shows that DS reduces by 3.76 pp. When doubling the number of charging stations, the
demand served increases by 1.87 pp. However, the increase in demand served diminishes when
doubling the number of charging stations. Similar to the case of service employees, the number
of charging stations should be chosen such that the marginal revenue from adding a charging
station equals the marginal cost.
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Instance ∆ DS% ∆ Cars Charged

6 charging stations -3.76 -27
24 charging stations +1.87 +39

Figure 11.10: Development of cars in need of charging over the planning horizon
for instances with a different number of charging stations. The
percentage point differences in demand served and difference in cars
charged compared to 12 charging nodes are also presented.
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Chapter 12
Concluding Remarks

This chapter concludes this thesis and outlines future research opportunities. Section 12.1
presents the conclusion, and Section 12.2 discusses the research opportunities.

12.1 Conclusion

This thesis presents a solution method for the Dynamic Electric Vehicle Relocation Problem
(DE-VReP). The DE-VReP is concerned with routing of service employees and relocation of
electrical cars in a free-floating carsharing system, solved in a dynamic environment during the
opening hours of a carsharing organisation (CSO). The goal of the DE-VReP is to maximize the
customer demand served, cost-effectively. Relocation includes recharging and transportation of
rental cars to improve the distributions of cars in the system. Studies show that free-floating
carsharing systems are prone to unbalanced distributions, and relocating vehicles can improve
the their economic viability. Relocation is performed by service employees. When not relocating
cars, the service employees can travel using folding bikes or public transportation. The solution
method adopts a Rolling Horizon framework, solving static subproblems (E-VRePs) of the DE-
VReP at different decision epochs. Between decision epochs, the state of the carsharing system
is updated to incorporate newly available information.

Two solution methods to solve the E-VReP are proposed; a Mixed Integer Program (MIP)
model, and an Adaptive Large Neighborhood Search (ALNS) heuristic based on Ropke and
Pisinger (2006). The objective of each method is to maximize the number of cars charged and
minimize deviation from an expected ideal distribution of rental vehicles. Since relocations are
associated with a cost, the relocations should be done in a cost-effective way. A solution consists
of routes for each service employee, which cars to relocate, and where to relocate them. The
solution methods allow solutions where service employees originate and end at all locations in
the operating area. Thus, the methods are capable of solving the E-VReP that arises in free-
floating carsharing systems with electric vehicles, at any point in time. This feature makes them
appropriate in a Rolling Horizon framework.

The E-VReP is a variation of classical vehicle routing and pickup and delivery problems. The
problem structure of the E-VReP allows identification of the minimal set of possible relocation
destinations for each car. Each element in this set is denoted a car-move. The proposed solution
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methods for solving the E-VReP utilize car-moves. The use of car-moves is a novelty which
significantly simplifies the pickup and delivery aspect of the E-VReP, reducing the complexity
of the problem.

The MIP model can be solved for small instances of the E-VReP. However, when solving realistic
instances of the problem in the Rolling Horizon framework, the computation time required to
solve the MIP model is not acceptable. The ALNS heuristic, on the other hand, can achieve
satisfactory results for realistic instances of the E-VReP in less than 180 seconds. The heuristic
finds the optimal solution for all test instances solvable by the MIP within less than 10 seconds.
Additionally, the ALNS shows great stability when solving realistic problem instances, with an
average gap of 0.5% to the best-known solution. The quality and efficiency of the ALNS heuristic
enables it to solve realistic instances of E-VReP subproblems that arises in the solution of the
DE-VReP. Hence, the ALNS heuristic is proposed as the solution method in the Rolling Horizon
framework for the DE-VReP.

A simulation model is developed to test the proposed solution method on problem instances for
the DE-VReP. The simulation model mimics the work day of an artificial CSO. The solution
method is able to provide efficient solutions for test instances of at least 120 nodes and 380 rental
cars. When stress-testing the solution method, it serves 62% of customers on average during a
period of 12 hours. This equals 1 674 customer rentals served. Compared to a greedy approach,
an additional 200 customers are served using the proposed solution method.

There are several benefits for CSOs using the proposed solution method. First, the solution
method is capable of producing effective routes for service employees during a work day. The
routes include relocations for all service employees to better serve demand while charging cars
with low battery levels. This procedure is considered a vital task in maintaining a functional
carsharing service. Second, the proposed solution method is flexible in terms of how each
objective is weighted. This flexibility provides a CSO an opportunity to align the proposed
solution method with their priorities. Finally, test results indicate that the solution method
using the ALNS can provide insights to decision-making on other planning levels than the
operational, e.g., determining the number and the location of charging stations, or the number
of service employees and rental cars.

In conclusion, solving the DE-VReP with the proposed solution method provides high-quality
solutions in reasonable computation time for realistic problem instances. Novel search methods
has been introduced that effectively deal with the large search space of the problem. The
solution method is versatile and adaptive to fit the preferences of CSOs. In total, we consider
the proposed solution method a significant contribution to the creation of efficient, and lasting
carsharing systems.

12.2 Future Research Opportunities

Future research opportunities are discussed in the following sections. Section 12.2.1 presents
potential extensions on the strategic and tactical levels. Section 12.2.2 addresses a possible
transition from the current solution method to a commercial product. Section 12.2.3 discusses
how more realistic test data can be used to validate the value of the proposed solution method
further. Finally, Section 12.2.4 discusses how autonomous vehicles can impact the carsharing
systems of the future.
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12.2.1 Decision Support on the Strategic and Tactical Levels

The proposed solution method, in combination with the simulation model, can provide decision
support on both the strategic and tactical levels of carsharing. On the strategic level, further
studies may be conducted on how CSOs should organize charging stations in their systems.
The total number, locations, and capacity are key questions to consider. Decision support
can be provided by iteratively simulating different charging station configurations, observing its
impact on the operational level. On the tactical level, the booking and incentive schemes are
of particular interest. Tuning the simulation model allows direct observation on how different
schemes affect the operational performance. Booking schemes where the customer must book
cars in advance would allow more predictability and is hypothesized to improve the performance
of the proposed solution method.

12.2.2 Extensions to the Solution Method

The current simulation model is designed for solving the DE-VReP over a single day. The
relocations carried out in the final hours of the working day, does not necessarily reflect the op-
timal distribution for the day to come. Neither does the trade-offs between different objectives
while the system is in operation, as discussed in Section 11.5. Support for multi-day simula-
tion should be implemented to further increase the potential commercial value of the proposed
solution method. A multi-day simulation would involve further study into a realistic demand
component, which takes into account day-to-day operations. Key considerations are optimal
distributions at the end of each working day, and how to organize the service employees for
potential work at night.

The weighting of each objective in the implemented solution method is assumed to be constant
is this thesis. This assumption may not hold at any point in time in a dynamic environment.
There are several possibilities for research concerning short and long-term considerations. In the
short-term, each objective may be weighted, given the current state of the system. This may
make the proposed solution method more adaptable. In the long-term, the objectives may be
weighted based on trade-offs between the current state, a steady-state or a future state that a
CSO strives to achieve. This could make the proposed solution method more stable.

Finally, there are possibilities to test alternative implementations of the large neighborhood
search heuristics. Heuristics to explore would be the most time-consuming ones in the current
implementation. In large test instances for the DE-VReP, the number of car-moves in the
resulting E-VRePs has been observed to be high; up to 5 000 has been observed. The increased
search space, especially for the k-regret and best-insertion repair heuristics, has a significant
impact on the computation time required. An alternative approach is to consider a subset of the
total available car-moves, chosen at random. Further testing needs to be done on the viability
of this alternative.

12.2.3 Validation of the Solution Method

The current test data is generated based on the city of Oslo. However, there does currently not
exist any electrical vehicle carsharing systems in Oslo. The DE-VReP solution method should
be tested in a real-world carsharing system to verify its potential. If real-world test data were
to become available, it would be easy to incorporate it into the current solution method.
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12.2.4 Autonomous Vehicles

Many car companies and on-demand car companies, such as Uber and Lyft, are developing au-
tonomous vehicles. Driverless cars are expected to be available for the public sometime between
2020 and 2030 (Autonomous cars, 2018). Driverless cars are going to impact the carsharing
industry in significant ways. With autonomous vehicles, the DE-VReP will be altered, and most
likely become a simpler problem due to fewer employees needed for the relocations. The solution
method developed in this thesis would have to be slightly altered to the new problem. If the
new problem turns out to be a simpler one, a modified version of the developed solution method
should be able to solve this problem at least as well as the current version of the DE-VReP.
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Appendix A
Task-Based Formulation

Table A.1: Sets used in the mathematical formulation

Sets

N Set of nodes

NC Set of charging nodes, NC ⊂ N

NP Set of parking nodes, NP ⊂ N

NP− Set of deficit parking nodes, NP− ⊂ NP

NPC Set of parking nodes that has cars for charging, NPC ⊂ NP

R Set of car-moves

Rc Set of car-moves for car c ∈ C

RDi Set of car-moves that ends in parking node i ∈ NP

RCi Set of car-moves that ends in a charging station and begins in node i ∈ NP

RDCi Set of car-moves that ends in charging node i ∈ NC

P Set of service operators

M Set of possible tasks

C Set of cars
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Table A.2: Indices used in the mathematical formulation

Indices

i, j Node i, j ∈ N

k Operator k ∈ K

m Task number m ∈M

c Cars c ∈ C

r, v Car-move r, v ∈ R

o(k) Origin node o(k) ∈ N for operator k ∈ K

o(r), d(r) Origin node o(r) ∈ NP and destination node d(r) ∈ N for move r ∈ R

Table A.3: Parameters used in the mathematical formulation

Parameters

CD Benefit of reducing the deviation from ideal state by 1

CCh Benefit of charging a car

CET Cost of additional time used outside of planning period

CR Cost of handling

CT Cost of time use

THr Handling time for car-move r ∈ R

TSr Earliest start time for car-move r ∈ R

TSk Start time for operator k ∈ K

Tij Travel time between node i ∈ N to node j ∈ N

T Length of planning period

T
L Maximum additional time allowed for last visit

S0−
i Initial deficit of rental cars in parking node i ∈ NP−

SCi Initial number of insufficiently charged rental cars in parking node i ∈ NP

NCS
i Number of charging slots available in charging node i ∈ NC
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Table A.4: Variables used in the mathematical formulation

Variables

xkrm 1 if service operator k ∈ K performs move r ∈ R as task m ∈M

tkm Start time for operator k ∈ K on task m ∈M

t+k Positive deviation from time limit for operator k ∈ K

t−k Negative deviation from time limit for operator k ∈ K at

the end of planning period

s−i Negative deviation from ideal state in parking node i ∈ NP at

the end of planning period

sCi Number of insufficiently charged cars in parking node i ∈ NP at

the end of planning period

A.1 Objective Function

max z =
∑

i∈NP−

CD(S0−
i − s

−
i ) +

∑
i∈NPC

CPC(SCi − sCi )−
∑
k∈K

CT tk|M |

−
∑
k∈K

CET t+k −
∑
k∈K

∑
r∈R

∑
m∈M

CHTHr xkrm

(A.1)

A.2 Constraints

A.2.1 Relocation of Rental Vehicles

∑
k∈K

∑
r∈Rc

∑
m∈M

xkrm ≤ 1 c ∈ C (A.2)

∑
r∈R

xkrm ≤ 1 k ∈ K,m ∈M (A.3)

∑
r∈R

xkr(m+1) ≤
∑
r∈R

xkrm k ∈ K,m ∈M \ {|M|} (A.4)

A.2.2 Node State Balancing

∑
k∈K

∑
r∈RD

i

∑
m∈M

xkrm + s−i = S0−
i i ∈ NP− (A.5)
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∑
k∈K

∑
r∈RC

i

∑
m∈M

xkrm + sCi = SCi i ∈ NPC (A.6)

∑
k∈K

∑
r∈RDC

i

∑
m∈M

xkrm ≤ NCS
i i ∈ NC (A.7)

A.2.3 Time Tracking of Node Visits

tkm + THr xkrm +
∑
v∈R

Td(r)o(v)xkv(m+1)

−Mr(1− xkrm) ≤ tk(m+1) k ∈ K, r ∈ R,m ∈M \ {|M|} (A.8)

tkm ≤ tk(m+1) k ∈ K,m ∈M \ {|M|} (A.9)

TSr xkrm ≤ tkm k ∈ K, r ∈ R,m ∈M (A.10)

(TSp + To(k)o(r))xkr1 ≤ tk1 k ∈ K, r ∈ R (A.11)

tk|M| +
∑
r∈R

THr xkr|M| + t−p − t+k = T k ∈ K (A.12)

tk|M| +
∑
r∈R

THr xkr|M| ≤ T + T
L

k ∈ K (A.13)

A.2.4 Binary, Non-negativity and Integer Definitions

xkrm ∈ {0, 1} k ∈ K, r ∈ R,m ∈M (A.14)

tkm ≥ 0 k ∈ K,m ∈M (A.15)

t+k ≥ 0 k ∈ K (A.16)

t−k ≥ 0 k ∈ K (A.17)

s−i ∈ Z+ i ∈ NP− (A.18)

sCi ∈ Z+ i ∈ NPC (A.19)
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A.2.5 Big-M Calculation

Mr = max
v∈R, i∈NP \NP−

Td(r)i − (THv + Td(v)i) r ∈ R (A.20)

(A.21)
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Appendix B
Flow-Based Model Formulation

B.1 Formulation

Table B.1: Sets used in the mathematical formulation

Sets

N Set of nodes

NC Set of charging nodes, NC ⊂ N

NP Set of parking nodes, NP ⊂ N

NP− Set of deficit parking nodes, NP− ⊂ NP

K Set of operators

C Set of cars

R Set of car-moves

Rc Set of car-moves for car c ∈ C, Rc ⊂ R

RA Set of car-moves that are origin and final destination for k ∈ K, RA ⊂ R

RDi Set of car-moves that ends in parking node i ∈ NP , RDi ⊂ R

RCi Set of car-moves that ends in j ∈ NC and begins in node i ∈ NP , RCi ⊂ R

RDCi Set of car-moves that ends in charging node i ∈ NC , RDCi ⊂ R
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Table B.2: Indices used in the mathematical formulation

Indices

i, j Node i, j ∈ N

k Operator k ∈ K

c Cars c ∈ C

r, v Car-move r, v ∈ R

o(k), d(k) Origin, and destination car-move o(k), d(k) ∈ R for operator k ∈ K

o(r), d(r), Origin node o(r) ∈ NP and

destination node d(r) ∈ N for car-move r ∈ R

Table B.3: Parameters used in the mathematical formulation

Parameters

CD Benefit of reducing the deviation from ideal state

CCh Benefit of charging a car

CET Cost of additional time used outside of planning period

CR Cost of handling

CT Cost of time use

TSk Start time for operator k ∈ K

Tij Travel time between node i ∈ N to node j ∈ N

TSr Earliest start time for car-move r ∈ R

THr Handling time for car-move r ∈ R

T Length of planning period

T
L Maximum additional time allowed for last visit

S0−
i Initial deficit of rental cars in parking node i ∈ NP−

SCi Initial number of insufficiently charged rental cars in parking node i ∈ NP

NCS
i Number of charging slots available in charging node i ∈ NC
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Table B.4: Variables used in the mathematical formulation

Variables

xrvk 1 if service operator k ∈ K travels directly from car-move r ∈ R to v ∈ R

tr Start time of car-move r ∈ R

t+k Positive deviation from time limit for operator k ∈ K

t−k Negative deviation from time limit for operator k ∈ K at

the end of planning period

s−i Negative deviation from ideal state in parking node i ∈ NP at

the end of planning period

sCi Number of insufficiently charged cars in parking node i ∈ NP at

the end of planning period

B.1.1 Objective Function

max z =
∑

i∈NP−

CD(S0−
i − s

−
i ) +

∑
i∈NPC

CPC(SCi − sCi )−
∑
k∈K

CT td(k)

−
∑
k∈K

CET t+k −
∑
r∈R

∑
v∈R

∑
k∈K

CHTHr xrvk

(B.1)

B.1.2 Relocation of Rental Vehicles

∑
r∈Rc

∑
v∈R

∑
k∈K

xrvk ≤ 1 c ∈ C (B.2)

∑
v∈R

xrvk −
∑
v∈R

xvrk = 0 r ∈ R \ RA, k ∈ K (B.3)

∑
v∈R

∑
k∈K

xrvk ≤ 1 r ∈ R (B.4)

∑
r∈R

xrd(k)k = 1 k ∈ K (B.5)

∑
r∈R

xo(k)rk = 1 k ∈ K (B.6)
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B.1.3 Node State Balancing

State Balance in Parking Nodes for Sufficiently Charged Rental Cars

∑
r∈RD

i

∑
v∈R

∑
k∈K

xrvk + s−i = S0−
i i ∈ NP (B.7)

State Balance in Parking Nodes for Cars in Need of Charging

∑
r∈RC

i

∑
v∈R

∑
k∈K

xrvk + sCi = SCi i ∈ NP (B.8)

State Balance in Charging Nodes

∑
r∈RDC

i

∑
v∈R

∑
k∈K

xrvk ≤ NCS
i i ∈ NC (B.9)

B.1.4 Time Tracking of Node Visits

Time Usage for Routing of Service Operators

tr + (THr + Td(r)o(v))xrvk ≤ tv + (T + T
L

)(1− xrvk) r ∈ R, v ∈ R, k ∈ K (B.10)

TSr ≤ tr r ∈ R (B.11)

TSk ≤ to(k) k ∈ K (B.12)

Time Usage Outside Planning Period

td(k) + t−k − t
+
k = T + T

L
k ∈ K (B.13)

td(k) ≤ T k ∈ K (B.14)

(B.15)
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B.1.5 Binary, Non-negativity and Integer Definitions

xrvk ∈ {0, 1} r ∈ R, v ∈ R, k ∈ K (B.16)

tr ≥ 0 r ∈ R (B.17)

t+k ≥ 0 k ∈ K (B.18)

t−k ≥ 0 k ∈ K (B.19)

s−i ∈ Z+ i ∈ NP− (B.20)

sCi ∈ Z+ i ∈ NPC (B.21)
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Appendix C
Solution Example to the E-VReP
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1

Figure C.1: Initial state
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Ideal: 2
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Figure C.2: Intermediate state 1
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Figure C.3: Intermediate state 2
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Figure C.4: Intermediate state 3

Ideal: 2

1

Ideal: 4

2

Ideal: 0

3

Ideal: 1

4

Ideal: 2

5

Ideal: 3

6

Capacity: 3

Capacity: 2

Cars above battery threshold

Cars currently charging

Cars below battery threshold

Employee in rental vehicle

Employee on bike/public transport

Idle employee

Parking node

Charging node

time step: 16/60

1

2

3

Figure C.5: Intermediate state 4
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Figure C.6: Intermediate state 5
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Figure C.7: Intermediate state 6
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Figure C.8: Intermediate state 7
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Figure C.9: Intermediate state 8
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Figure C.10: Intermediate state 9
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Figure C.11: Intermediate state 10
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Figure C.12: Intermediate state 11
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Figure C.13: Intermediate state 12
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Figure C.14: Intermediate state 13
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Figure C.15: Intermediate state 14
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Appendix D
Computational Study

D.1 Comparison of the Mathematical Models

Table D.1: Results of testing the task-based and flow-based MIP on the small test in-
stances. Computational time and % gap is reported by Mosel.

Instance Task-based MIP Flow-based MIP

Comp.
time (s)

Gap %
Comp.
time (s)

Gap %

6-3-3_a 0.68 0.0 4.28 0.0
6-3-3_b 0.76 0.0 4.02 0.0
6-3-3_c 1.66 0.0 16.24 0.0

Average 1.03 0.0 8.18 0.0

8-4-3_a 4.23 0.0 53.98 0.0
8-4-3_b 5 0.0 46.43 0.0
8-4-3_c 4.67 0.0 38.60 0.0

Average 4.63 0.0 46.34 0.0

10-7-3_a 250.22 0.0 7200 27.7
10-7-3_b 557.93 0.0 7200 N/A
10-7-3_c 703.68 0.0 7200 N/A

Average 503.94 0.0 7200 N/A

15-9-3_a 3201.99 0.0 7200 N/A
15-9-3_b 5730.11 0.0 7200 1004.6
15-9-3_c 7200 13.9 7200 N/A

Average 5377.40 4.6 7200 N/A

Green cells indicate best average values
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Appendix D. Computational Study

Table D.2: Results of testing the task-based and flow-based MIP on the medium test
instances. Computational time and % gap is reported by Mosel.

Instance Main Model Alternative Model

Comp.
time (s)

Gap %
Comp.
time (s)

Gap %

15-12-5_a 7200 3.9 7200 N/A
15-12-5_b 7200 13.9 7200 120.0
15-12-5_c 7200 8.0 7200 157.1

Average 7200 8.6 7200 N/A

20-13-5_a 7200 19.3 7200 N/A
20-13-5_b 7200 13.7 7200 126.4
20-13-5_c 7200 10.2 7200 1004.6

Average 7200 14.4 7200 N/A

25-15-5_a 7200 18.5 7200 N/A
25-15-5_b 7200 20.3 7200 N/A
25-15-5_c 7200 39.3 7200 404.7

Average 7200 26.0 7200 N/A

30-18-5_a 7200 28.5 7200 695.8
30-18-5_b 7200 31.5 7200 N/A
30-18-5_c 7200 20.1 7200 N/A

Average 7200 26.7 7200 N/A

Green cells indicate best average values
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Appendix D. Computational Study

D.2 Calibration of the ALNS

D.2.1 Calibrating the LST Generation

Table D.3: Average computational time and gap from best-known objective value for the
three approaches to neighborhood generation, when running the ALNS with
TMAX = 3600s/180s respectively. All results are averages over five runs.
Gap is calculated as the difference between the best-known objective value,
and the average objective value. A negative gap versus MIP, indicates an
improvement to the objective value reported in Tables D.1 and D.2.

Instance Full Full Weighted Random Weighted

Comp.
time (s)

Gap %
(3600s)

Gap %
(180s)

Gap %
MIP

Comp.
time (s)

Gap %
(3600s)

Gap %
(180s)

Gap %
MIP

Comp.
time (s)

Gap %
(3600s)

Gap %
(180s)

Gap %
MIP

6-3-3 6 0.0 0.0 0.0 1 0.0 0.0 0.0 3.2 0.0 0.0 0.0
8-4-3 18.8 0.0 0.0 0.0 1.8 0.0 0.0 0.0 3.6 0.0 0.0 0.0
10-7-3 33.6 3.3 3.3 3.3 3.8 2.6 2.6 2.6 5.6 2.0 2.0 2.0
15-9-3 53.2 0.6 0.6 0.6 7.4 0.3 0.3 0.3 9.4 0.0 0.0 0.0
15-12-5 140.6 1.0 1.0 -3.0 19.8 2.1 2.1 -1.8 14.2 0.9 0.9 -3.1
20-13-5 197.6 0.2 1.5 -3.7 25.2 0.5 0.5 -3.5 20.2 0.1 0.1 -3.9
25-15-5 236 1.5 0.9 -16.6 33.8 1.0 1.0 -17.2 23.6 0.4 0.4 -17.9
30-18-5 315.2 0.7 2.5 -12.1 44.2 0.4 0.4 -12.5 30.6 0.3 0.3 -12.6
50-25-10 1464 2.8 5.9 194.4 2.4 2.4 89.6 1.5 1.5
100-27-10 2123.6 4.4 6.5 405 1.7 1.7 161.6 1.5 1.7
120-30-10 2719 7.4 9.0 577.4 3.0 3.7 294.8 1.7 2.5
150-33-10 3334 6.2 10.2 874 2.2 3.2 497.8 2.4 3.6

Average 886.8 2.3 3.5 -4.0 182.3 1.3 1.4 -4.0 96.2 0.9 1.1 -4.4

Green cells indicate best average values
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Appendix D. Computational Study

D.2.2 Calibrating the LST Selection Criteria

Table D.4: Average computational time and gap from best-known objective value for the
first improvement and best neighbor strategies, when running the ALNS with
TMAX = 3600s/180s respectively. All results are averages over five runs. Gap
is calculated as the difference between the best-known objective value, and
the average objective value.

Instance First improvement Best neighbor

Comp.
time (s)

Gap %
(3600s)

Gap %
(180s)

Comp.
time (s)

Gap %
(3600s)

Gap %
(180s)

6-3-3 2.6 0.0 0.0 3.2 0.0 0.0
8-4-3 3.6 0.0 0.0 3.6 0.0 0.0
10-7-3 5.2 1.3 1.3 5.6 2.0 2.0
15-9-3 6.4 0.0 0.0 9.4 0.0 0.0
15-12-5 9.6 1.9 1.9 14.2 0.9 0.9
20-13-5 15.2 0.4 0.4 20.2 0.1 0.1
25-15-5 17.8 0.5 0.5 23.6 0.4 0.4
30-18-5 25.6 0.6 0.6 30.6 0.3 0.3
50-25-10 102.8 2.0 2.0 89.6 1.5 1.5
100-27-10 131.8 2.7 2.7 161.6 1.5 1.7
120-30-10 185.6 2.7 3.6 294.8 1.7 2.5
150-33-10 433.4 3.5 3.5 497.8 2.4 3.6

Average 78.3 1.3 1.4 96.2 0.9 1.1

Green cells indicate best average values
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Appendix D. Computational Study

D.2.3 Calibrating the Termination Criteria

Table D.5: Average computational time and gap from best-known objective value when
running the ALNS with IR = 75/100/125/150(000). All results are averages
over five runs, and all runs are independent from one another. Gap is cal-
culated as the difference between the best-known objective value, and the
average objective value.

Instance IR = 75000 IR = 100000 IR = 125000 IR = 150000

Comp.
time (s)

Gap %
Comp.
time (s)

Gap %
Comp.
time (s)

Gap %
Comp.
time (s)

Gap %

6-3-3 2.6 0.0 3.2 0.0 3.4 0.0 4.2 0.0
8-4-3 3.6 0.0 3.6 0.0 4.8 0.0 5.6 0.0
10-7-3 5.8 2.0 5.6 2.0 8.2 0.7 8.6 1.3
15-9-3 10.2 0.0 9.4 0.0 10.6 0.0 12.2 0.0
15-12-5 13 1.7 14.2 0.9 15.6 1.3 19.2 1.1
20-13-5 14.4 0.2 20.2 0.1 20.4 0.1 23.6 0.1
25-15-5 19.2 0.4 23.6 0.4 20.8 0.3 28.4 0.4
30-18-5 27 0.9 30.6 0.3 33.4 0.4 36 0.7
50-25-10 94 1.9 89.6 1.5 106.6 1.9 104.4 1.9
100-27-10 150 1.9 164.2 1.7 180 1.5 176.8 1.5
120-30-10 163.8 2.2 173.2 2.5 173.4 2.1 180 2.1
150-33-10 171.6 3.7 180 3.6 180 3.4 180 3.4

Average 56.3 1.2 59.8 1.1 63.1 1.0 65 1.0

Green cells indicate best average values

D.2.4 Calibrating the Neighborhood Size

0 500 1000 1500 2000
0

100

200

300

400

Number of Car-Moves

It
er

at
io

ns

ι = 30

ι = 25

ι = 20

ι = 15

Figure D.1: Calibration of MMAX : An illustration on how MMAX increases with the
problem size for different values of ι.
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Table D.6: Average computational time and gap from best-known objective value when
running the ALNS with scaling values ι= 15/20/25/30 forMMAX . All results
are averages over five runs. Gap is calculated as the difference between the
best-known objective value, and the average objective value.

Instance ι = 15 ι = 20 ι = 25 ι = 30

Comp.
time (s)

Gap %
Comp.
time (s)

Gap %
Comp.
time (s)

Gap %
Comp.
time (s)

Gap %

6-3-3 2.2 0.0 3.2 0.0 3.2 0.0 4 0.0
8-4-3 3.2 0.0 4.2 0.0 4.4 0.0 5 0.0
10-7-3 5.4 2.0 7.4 2.6 6.6 0.7 8.8 2.0
15-9-3 9 0.0 10.8 0.0 9.8 0.0 11.4 0.0
15-12-5 14 1.3 19 0.5 19 0.9 26.4 1.0
20-13-5 20.8 0.2 26.6 0.2 23.4 0.1 32.8 0.1
25-15-5 26 0.3 30 0.5 28.6 0.4 42.8 0.2
30-18-5 29.8 0.6 39.8 0.2 37.4 0.4 53.4 0.3
50-25-10 99.4 1.9 143 1.7 130 1.8 165.2 1.5
100-27-10 179.2 1.4 180 1.0 180 1.0 180 1.1
120-30-10 180 2.6 180 2.8 180 2.1 180 2.1
150-33-10 180 3.1 180 2.9 180 3.1 180 3.3

Average 62.4 1.1 68.7 1.0 66.9 0.9 74.2 1.0

Green cells indicate best average values

D.2.5 Calibrating the LNS Criteria
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Figure D.2: An illustration on how IDes may increase with the problem size based on
different value of υ.
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Table D.7: Average computational time and gap from best-known objective value when
running the ALNS with scaling values υ = 80/100/120/140 for IR. All results
are averages over five runs. Gap is calculated as the difference between the
best-known objective value, and the average objective value.

Instance υ = 80 υ = 100 υ = 120 υ = 140

Comp.
time (s)

Gap %
Comp.
time (s)

Gap %
Comp.
time (s)

Gap %
Comp.
time (s)

Gap %

6-3-3 3.4 0.0 3.6 0.0 2.8 0.0 3 0.0
8-4-3 4.4 0.0 5 0.0 4 0.0 4.6 0.0
10-7-3 6.8 1.3 7.8 1.3 6.6 0.7 7.8 2.0
15-9-3 10.4 0.0 10.6 0.0 10.2 0.0 11 0.0
15-12-5 16.6 1.3 20.8 1.0 19.2 0.8 21 0.9
20-13-5 26.4 0.1 29 0.1 25 0.1 29.4 0.2
25-15-5 28.4 0.4 35.8 0.4 26.8 0.4 33.4 0.5
30-18-5 36.4 0.1 44 0.3 36.6 0.3 40.2 0.3
50-25-10 152.8 1.7 148.8 1.8 128.4 1.8 152.2 1.8
100-27-10 180 1.5 180 1.8 179.8 1.3 180 0.9
120-30-10 180 2.0 180.2 1.9 179.2 1.8 180 2.2
150-33-10 180.6 2.2 180.2 2.6 180.4 2.2 180 2.0

Average 68.9 0.9 70.5 0.9 66.6 0.8 70.2 0.9

Green cells indicate best average values

D.2.6 Calibrating the Weight Update Criteria
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Figure D.3: Calibration of the Weight Update Criteria: An illustration on how IW may
increase with the problem size based on different values of η.
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Table D.8: Average computational time and gap from best-known objective value when
running the ALNS with scaling values η = 1/5/10/15 for IW . All results
are averages over five runs. Gap is calculated as the difference between the
best-known objective value, and the average objective value.

Instance η = 1 η = 5 η = 10 η = 15

Comp.
time (s)

Gap %
Comp.
time (s)

Gap %
Comp.
time (s)

Gap %
Comp.
time (s)

Gap %

6-3-3 5.6 0.0 2.8 0.0 2.6 0.0 2.6 0.0
8-4-3 5.8 0.0 3.8 0.0 3.6 0.0 3.4 0.0
10-7-3 10.6 0.0 7.4 0.0 6.4 0.7 6.6 0.7
15-9-3 15.8 0.0 8.4 0.0 9.0 0.0 8.8 0.0
15-12-5 32.7 1.7 18.6 0.5 16.6 1.3 16.6 1.1
20-13-5 35.8 0.5 24.6 0.3 23.6 0.1 23.6 0.1
25-15-5 47.2 0.5 25.2 0.5 31.4 0.2 26.8 0.3
30-18-5 62.2 0.5 39.8 0.2 39.8 0.3 39 0.1
50-25-10 178.4 1.5 108.0 1.8 122.8 1.2 111.8 1.7
100-27-10 180 1.5 171.4 0.6 167.2 1.0 172.8 0.7
120-30-10 180 1.7 180 1.7 180 1.9 180 1.8
150-33-10 181.2 2.5 180 2.2 180 2.3 180 2.3

Average 77.9 0.9 64.2 0.6 65.3 0.7 64.4 0.7

Green cells indicate best average values

D.2.7 Calibrating the Tabu List

Table D.9: Average computational time and gap from best-known objective value when
running the ALNS with different values for IB and IS . All results are averages
over five runs. Gap is calculated as the difference between the best-known
objective value, and the average objective value.

Instance IS = 1, IB = 2 IS = 2, IB = 4 IS = 3, IB = 6 IS = 4, IB = 8

Comp.
time (s)

Gap %
Comp.
time (s)

Gap %
Comp.
time (s)

Gap %
Comp.
time (s)

Gap %

6-3-3 2.4 0.0 2.8 0.0 2.6 0.0 2.4 0.0
8-4-3 3.2 0.0 3.8 0.0 4 0.0 3.8 0.0
10-7-3 6.4 0.7 7.4 0.0 8.6 0.0 6.6 1.3
15-9-3 9.6 0.0 8.4 0.0 9.6 0.0 9.6 0.0
15-12-5 17.6 1.8 18.6 0.5 20.2 0.9 17 1.0
20-13-5 24 0.1 24.6 0.3 29 0.1 22.4 0.1
25-15-5 27.4 0.3 25.2 0.5 29.4 0.3 30.8 0.2
30-18-5 39.6 0.2 39.8 0.2 43.4 0.2 38.6 0.2
50-25-10 131.4 1.8 108 1.8 117.6 1.0 110.6 1.7
100-27-10 168.4 0.9 171.4 0.6 175.6 0.9 161.8 1.0
120-30-10 180 1.9 180 1.7 180 1.4 180 1.8
150-33-10 180 2.2 180 2.2 180 2.1 180 2.2

Average 65.9 0.8 64.2 0.6 66.6 0.6 63.7 0.8

Green cells indicate best average values
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D.2.8 Calibrating the LNS Size

Table D.10: LNS factor calibration. Average computational time and gap from best-
known objective value when running the ALNS with different values for Γ.
All results are averages over five runs. Gap is calculated as the difference
between the best-known objective value, and the average objective value.

Instance Γ = 0.2 Γ = 0.4 Γ = 0.6

Comp.
time (s)

Gap %
Comp.
time (s)

Gap %
Comp.
time (s)

Gap %

6-3-3 2.8 0.0 2.6 0.0 2.6 0.0
8-4-3 4 0.0 4.4 0.0 3.4 0.0
10-7-3 6.6 1.3 8.6 0.0 8 0.7
15-9-3 11.2 0.0 9.6 0.0 9.2 0.0
15-12-5 18.2 0.8 20.2 0.9 18.6 1.1
20-13-5 24.4 0.1 29 0.1 25.8 0.1
25-15-5 27.4 0.3 29.4 0.3 30 0.3
30-18-5 36.2 0.1 43.4 0.2 44.4 0.1
50-25-10 111.8 1.4 117.6 1.0 137.6 1.7
100-27-10 156.8 1.1 175.6 0.9 180 1.9
120-30-10 173.6 1.7 180 1.4 180 1.7
150-33-10 180 2.7 180 2.1 180 2.7

Average 62.8 0.8 66.6 0.6 68.3 0.9

Green cells indicate best average values
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D.2.9 Calibrating the Weight Update Parameters

Table D.11: Weights update factors calibration. Average computational time and gap
from best-known objective value when running the ALNS with different
configurations for α, RGQ and RGU . All results are averages over five runs.
Gap is calculated as the difference between the best-known objective value,
and the average objective value.

Instance α = 0.1 α = 0.2

RGQ, R
G
U = 13 RGQ, R

G
U = 23 RGQ, R

G
U = 33 RGQ, R

G
U = 13 RGQ, R

G
U = 23 RGQ, R

G
U = 33

Comp.
time (s)

Gap %
Comp.
time (s)

Gap %
Comp.
time (s)

Gap %
Comp.
time (s)

Gap %
Comp.
time (s)

Gap %
Comp.
time (s)

Gap %

6-3-3 3 0.0 2 0.0 2.6 0.0 3 0.0 3.8 0.0 3.4 0.0
8-4-3 4 0.0 3.2 0.0 4 0.0 4 0.0 4.6 0.0 4.6 0.0
10-7-3 6.6 1.3 6.4 0.0 8.6 0.0 6.6 0.7 8.4 2.0 7.8 2.0
15-9-3 8.8 0.0 7.8 0.0 9.6 0.0 8.8 0.0 10.8 0.0 9.8 0.0
15-12-5 21.4 1.0 17.2 0.5 20.2 0.9 21.4 1.0 23 0.6 24 0.8
20-13-5 29.4 0.1 22.2 0.1 29 0.1 29.4 0.1 29.2 0.1 33.6 0.3
25-15-5 30.2 0.3 25 0.4 29.4 0.3 30.2 0.3 39.2 0.4 38.2 0.3
30-18-5 39.8 0.2 36.2 0.1 43.4 0.2 39.8 0.2 49.6 0.2 46.8 0.3
50-25-10 122.2 1.4 93.8 1.6 117.6 1.0 122.2 1.4 144.4 1.7 128 1.5
100-27-10 159.4 1.1 178.6 0.4 175.6 0.9 159.4 1.1 180 0.7 177.2 1.3
120-30-10 180 1.8 180 0.8 180 1.4 180 1.8 180 1.8 180 1.6
150-33-10 180 2.9 180 2.0 180 2.1 180 2.9 180 2.3 180 2.3

Average 65.2 0.9 62.7 0.5 66.7 0.6 65.4 0.8 71.1 0.8 69.5 0.9

Green cells indicate best average values

Table D.12: Weights update factors calibration. Average computational time and gap
from best-known objective value when running the ALNS with different
configurations for RNQ , R

L
Q and RLU . All results are averages over five runs.

Gap is calculated as the difference between the best-known objective value,
and the average objective value.

Instance RLQ, R
L
U = 8 RLQ, R

L
U = 13 RLQ, R

L
U = 18

RNQ = 1 RNQ = 2 RNQ = 1 RNQ = 2 RNQ = 1 RNQ = 2

Comp.
time (s)

Gap %
Comp.
time (s)

Gap %
Comp.
time (s)

Gap %
Comp.
time (s)

Gap %
Comp.
time (s)

Gap %
Comp.
time (s)

Gap %

6-3-3 3 0.0 3 0.0 2 0.0 3 0.0 3 0.0 3 0.0
8-4-3 3.4 0.0 4.2 0.0 3.2 0.0 4.4 0.0 4 0.0 4.2 0.0
10-7-3 7.4 0.7 8.8 0.7 6.4 0.0 8.8 0.7 7.4 1.3 7.2 0.7
15-9-3 8.8 0.0 9.8 0.0 7.8 0.0 11 0.0 8.6 0.0 9.4 0.0
15-12-5 19.6 1.5 23 1.8 17.2 0.5 25 0.7 20.6 0.8 23.6 1.0
20-13-5 27.8 0.1 25.4 0.2 22.2 0.1 31.6 0.3 27 0.3 28.8 0.1
25-15-5 33.8 0.4 34.2 0.4 25 0.4 38.2 0.4 30.8 0.5 30.6 0.3
30-18-5 41.2 0.2 46.6 0.3 36.2 0.1 52.6 0.1 41.8 0.1 41.4 0.3
50-25-10 102.8 1.7 130.8 1.6 93.8 1.6 133.4 1.5 116.2 1.4 129.8 1.8
100-27-10 168 0.7 180 1.2 178.6 0.4 180 0.9 171.8 0.5 180 0.6
120-30-10 180 1.4 180 1.8 180 0.8 180 1.6 176.6 1.7 180 1.3
150-33-10 180.2 2.3 180.2 2.4 180 2.0 180 2.8 180.2 1.9 180 2.3

Average 64.7 0.7 68.8 0.9 62.7 0.5 70.7 0.7 65.7 0.7 68.2 0.7

Green cells indicate best average values
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Appendix D. Computational Study

D.2.10 Final Remarks

Table D.13: ALNS: Final Parameter Values

Parameter Value Description

TMAX 180 Max running time (seconds)
BINIT 2 Initial tabu list size
BMIN 2 Minimal tabu list size
BMAX 1024 Maximal tabu list size
IR 125000 Max number of iteration without improvement
IW 5 ln |C| The number of iterations before the LSO weights are updated
IDES 120 ln |C| Iterations without global improvement before destroy and repair
IB 6 Iterations without local improvement before increasing the tabu list size
IS 3 Iterations with local improvements before decreasing the tabu list size
MMAX 25 ln |C| Neighborhood size
Γ 0.4 The destroy/repair factor
RNQ 1 LSO score for finding a new local solution
RGQ 23 LSO score for finding a new global best solution
RLQ 13 LSO score for finding a new better local solution
RGU 23 Destroy and repair score for finding a better global solution
RLU 13 Destroy and repair score for finding a new and better local solution
α 0.1 Update factor for both LSO and repair and destroy weights
ω1 . . . ω5 0.315, 0.315, 0.315, 0.005, 0.05 Weights for Shaw Removal
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