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Problem Description 
Medium voltage ac drives based on voltage source inverters are in increasing demand for 

numerous industrial applications. The advancement in power electronics devices like IGBTs has 

allowed to rise the low voltage ac drive to the medium voltage drive system. Medium Voltage 

IGBTs must have low switching frequency. Operation at reduced switching frequency requires 

synchronous modulation techniques because the conventional asynchronous modulation will 

generate too much harmonics.  

 

Programmed modulation is synchronous modulation which pre-calculates optimal switching angles 

within a period of the fundamental period. If those switching angles are calculated by minimizing 

total harmonic contents then it is called Synchronous Optimal Modulation. These switching angles 

are not formed by carrier wave like in conventional way. These optimized PWM strategies are 

extremely difficult to realize with conventional analog circuitry. Therefore, the firmware 

implementation of synchronous optimal modulation in digital circuitry will be created by an 

extremely fast computation microchip called Field-Programmable Gate Array (FPGA).  

 

In this Master thesis a modulator for a 3-level converter should be developed. The modulator 

should be possible to be extended to 9-phase machines .The modulator should give the interrupt to 

the processor routine where the calculation of relative switching instance is executed.  From the 

software point of view the input to the modulator is memory mapped as an array with switching 

instance stored increased order due to time. The tasks to be performed are: 

 

• Work out a specification together with the master student making the control software 

for the modulator. 

• Decide which method to be used for dc-bus balancing for the 3-level converter 

• Implement the modulator in a FPGA 

• Test the modulator in the Lab by help of a 3-level 3-phase inverter operating an 

Induction Machine 

 

Supervisor: Prof. Tore M. Undeland  

Co‐supervisor: Roy Nilsen, Wärtsilä Norway AS 
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ABSTRACT 
The advancement in power electronics devices like Insulated Gate Bipolar Transistors (IGBT) has 

increased the low voltage ac drive to the medium voltage drive system. These IGBTs have higher 

voltage capability. For eliminating the harmonic content three level converters are chosen rather 

than two level converters. But these inverter switches using IGBTs should be operated in low 

switching frequency so that the huge loss associated with switching loss is reduced to large extent. 

When switching frequency is low then conventional asynchronous modulation technique is not 

appropriate because of the formation of sub-harmonic components. Therefore, it is wise to apply 

synchronous modulation technique. Programmed Modulation is one of best synchronous 

modulation technique which pre-calculates the optimum switching angles. If those switching 

angles are calculated by minimizing total harmonic contents then it is called Synchronous Optimal 

Modulation. 

 

 These optimized PWM strategies are extremely difficult to realize with conventional analog 

circuitry, but they can be effectively implemented in field-programmable gate array (FPGA) which 

has extremely fast computation capability and allows a few microseconds real-time computation of 

complex control algorithms. FPGA is a microchip which consists of matrix of configurable logic 

blocks (CLB) made up of flip flops and lookup tables. VHDL is Hardware Descriptive Language 

which is utilized to synthesize hardware designs in FPGA. VHDL creates digital circuitry, which 

performs operations in parallel so FPGA is extremely fast and performs various time critical tasks 

in the system.  

 

The FPGA which is used in this project is Vertex-5 ppc440 FX30T. The digital electronics for 

implementing Synchronous Optimal Modulation are written in Xilinx Embedded System. The 

extremely fast computation power of FPGA finds its application in multiphase machine. Although 

this thesis deals with three phase Induction motor, it can easily be extended up to nine phase 

Machine.  

 

This master thesis implements synchronous optimal modulation in FPGA for Neutral Point 

Clamped inverter feeding Induction machine. The result shows that synchronous optimal 

modulation can be applied for low switching frequency with lower total harmonics distortion. 
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1 Introduction  
In this chapter, the background of this master thesis is presented. In addition to that the 

motivation to this master thesis is discussed. The literatures read during this master thesis are 

reviewed and presented here. Because of the time constraints, this master thesis has scope and 

limitation. These are also given in this chapter.  

1.1 Background 
The power electronic converters decouple three phase mains from the variable speed ac drives so 

the number of phases of ac machine do not have to be limited to three anymore [1]. This led to 

the development of multiphase machine. Even though the concept of multiphase machine was 

emerged some 40 years ago, its interest took new surge in recent years through the advancement 

of power electronics switching devices [2]. The pace of research in the field of multiphase 

machine was even more accelerated from 1990s along with the development of electric ship 

propulsion. Even though there are many other benefits of multiphase machine, they find their 

major application in area of electric ship propulsion [1].  

Electric ship propulsion is beneficial as it provides precise control of the shaft speed, increased 

manoeuvrability, increased fuel efficiency, reduced environmental impact, and quiet operation 

[3]. Multiphase machine drives are preferred to the conventional three phase machine drives in 

electric ship propulsion. It is because the requirements of high power rating, high efficiency, 

reliability and fault tolerant operation of electric drives for ship propulsion can be met by 

multiphase machine drives [4]. 

Medium Voltage ac drives produce greater power than lower voltage drive. They have ability to 

control high rating electric motors that industrial load require. The higher voltage of MV drive 

also indicates the lower loss and use of smaller cables that outputs higher efficiency and lower 

system cost [5]. 
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Wärtsilä, a global leader in ship power technology, has been conducting research on the 

application of multiphase machine and medium voltage drives in electric ship propulsion. This 

Master thesis is also done as the part of the research.  

1.2 Motivation 
The research of multiphase variable speed drives started from 1960s when inverter-fed ac drives 

were in the initial development stage. In six steps mode of three phase inverter operation, there 

was one particular problem with low frequency torque ripple.  “Since the lowest frequency 

torque ripple harmonic in an n-phase machine is caused by the time harmonics of the supply of 

the order 2n ± 1 (its frequency is 2n times higher than the supply frequency), an increase in the 

number of phases of the machine appeared as the best solution to the problem “[1]. 

Previously, Voltage source pulse width modulated inverters use square wave or sinusoidal PWM 

strategies for low voltage ac drives [6]. As industrial load require higher rating ac drives, 

medium voltage ac drives based voltage source inverter are of higher demand [7].  Advancement 

in the development of semiconductor devices with higher voltage capabilities like insulated gate 

bipolar transistors (IGBTs), has allowed increasing the voltage level to medium voltage and 

power rating of the system up to several MVAs. These IGBTs must be operated in lower 

switching frequency to keep the switching loss to tolerable level. Once the switching frequency 

is reduced, appropriate modulation technique is required. The appropriate modulation technique 

is called Synchronous Optimal Modulation [8].  

In order to use IGBTs for Medium Voltage drive, sophisticated technology like Synchronous 

Optimal Modulation (SOM) is the better choice as it minimizes total harmonic contents. This 

optimized PWM technique is extremely difficult to be implied by conventional analog circuitry 

hence they need modern microprocessor or digital hardware like DSP. These sophisticated 

techniques have access to the effective look-up tables on which this modulation technique can be 

implemented effectively[9]. 

Industrial electrical control system has progressed due to technology revolution. The revolution 

has outcome very powerful components to solve extremely complex control algorithm. The most 

recent advancement of extremely fast computing device is called field programmable gate array 
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(FPGA). FPGA allows real time computation of complex control algorithm in a few 

microseconds [10]. 

Therefore, it is of interest to implement this sophisticated modulation strategy like SOM in 

medium voltage drive by using field-programmable gate array (FPGA) components.  

1.3 Literature review 
For the industrial demand of high power, medium voltage drive is used. Medium voltage ac 

machines must be operated at low switching frequency to reduce the switching losses of the 

power semiconductor devices. Once the switching frequency is reduced, appropriate modulation 

technique like program modulation is required. In 1973 Patel and Hoft [11] generalised the 

method for eliminating fixed number of harmonic. They provided the solution for eliminating up 

to five harmonics. While the unlimited higher order harmonics can be attenuated by using filter 

circuits. Buja and Indri [12] in 1977 started to develop optimal PWM for AC motor. They 

developed the analytical procedure to calculate proper choice of commutation angles which 

minimise the rms value of the current harmonics. In 1992, Programmed PWM technique was 

used by Enjeti and Jakkli [13] to eliminate lower harmonics at the output of Neutral point 

clamped inverter topology. In 1994, Holtz [14] employed the method called Synchronous 

optimal pulsewidth modulation(SOM) for medium voltage drives at low switching frequency. 

SOM is type of Program Modulation pattern. 

Murphy, Howard and Hoft[9] came with the idea in 1979 that these optimized PWM strategies 

are extremely difficult to realize with conventional analog circuitry, but they can be effectively 

implemented with using a look-up table accessed by modern microprocessor-based control 

techniques or digital hardware. Recently digital hardware like FPGA is developed which has 

exceptionally fast computation capability hence complex control algorithm can be computed in 

few microseconds. In 2007 Naouar and Monmasson [10] presented the interest of implementing 

digital controllers in AC machine using field-programmable gate array (FPGA) components. 

Numerous experimental results are given in order to illustrate the efficiency of FPGA-based 

solutions to achieve high-performance control of electrical systems. 
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1.4 Thesis Scope and Limitation 
For generating synchronous optimal modulation technique, the optimal angles must be 

calculated. This calculation itself accepts lot of work. Hence such calculation is done in other 

collaborating master thesis. This can be referred from [15]. In this thesis, it is assumed that the 

optimal angles are already provided by the collaborating thesis. The other collaborating thesis is 

termed as software and processor routine in this master thesis. 

Even though this project is meant to produce synchronous optimal modulation technique for 

multiphase machine up to 9 phases, this project generates modulation pulse only for three phases. 

Hence if this project is successful in implementing modulation pulse for three phases, only the 

slight modification can be done to make it appropriate for nine phases.  

1.5 Organization of report 
In Chapter 1, background, motivation, literature review, scope and limitation of the project are 

discussed. The theory behind the generation of Synchronous Optimal Modulation is provided in 

Chapter 2. The type of inverter used is three level Neutral Point Clamped Inverter. Since this 

project is for medium voltage, Insulated Gate Bipolar Transistor is used as switch. The 

implementation of three level modulator is done on extremely fast digital device called Field 

Programmable Gate Array (FPGA). The important portion of the project commence from 

Chapter 3 which introduces FPGA architecture, FPGA control card developed by SINTEF along 

with the description of tool called Xilinx which is used to program FPGA. The methodology 

applied in this project for implementing SOM by using FPGA is presented in Chapter 4 which 

contains the description of Intelligent Properties (IP) and the connection between various IPs 

used in this project. The output of the simulation is also shown in this chapter. This thesis also 

consists of laboratory works for verification of the theories. Therefore Chapter 5 discuss about 

the experimental setup of the project. Finally results, discussion are presented in Chapter 6 to 

verify the validity of digital circuitry created in FPGA to fulfil the objective of the project. At 

last conclusion and further works are presented in the Chapter 7. 

.  
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2 Theory 
In this chapter, multiphase machines are described. In addition inverters and modulators needed 

for feeding the machine are discussed. The converter which is used is Neutral Clamped Three 

Level converter while new modulation technique called Synchronous Optimal Modulation is 

discussed along with its implication in this project. 

2.1 Electric Propulsion  
The shipping industry has advanced from its conventional era. The cost of propulsion has 

reduced significantly without increasing marine pollution [16]. Electrically powered ship 

requires energy source for all the ship’s functions, including propulsion. They are quieter, are 

less susceptible to vibration and are comfortable for everyone on board [17].  

 

Figure 2-1 Overview of electric propulsion. 

The schematic overview of the main electrical and automation components for electric 

propulsion is shown in Figure 2-1. The propeller shaft of the ship is connected to large motors, 

which is A.C driven and are known as propulsion motors. These propulsion motors are fed by 

inverter. Inverters are controlled by Modulator to convert the DC from the DC grid in ships to 

http://marineinsight.com/tech/propeller-types-of-propellers-and-construction-of-propellers/
http://marineinsight.com/tech/construction-and-working-of-3-phase-induction-motor-on-ship/?utm_source=rss&utm_medium=rss&utm_campaign=construction-and-working-of-3-phase-induction-motor-on-ship
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required AC needed by motor. Figure shows three phase propulsion motor. But the intense 

research is going on to replace the three phase motor by multiphase machine.  

2.2 Multiphase Machine 
The power electronic converters decouple three phase mains from the variable speed ac drives so 

the number of phases of ac machine do not have to be limited to three anymore [1]. This led to 

the development of multiphase machine. Even though the concept of multiphase machine was 

emerged some 40 years ago, its interest took new surge in recent years through the advancement 

of power electronics switching devices [2]. The advantage of multiphase machine include high 

power ratings, efficiency, reliability and fault tolerant operation. Its advantages over three phase 

induction machine are listed below.  

 

• The stator copper loss for multiphase machine are less than three phase machine assuming the 

same torque and same speed  [18]. 

• The harmonics of stator current are of higher order and more attenuated than three phase 

machine which will reduce the torque pulsation[18].  

• As the number of inverter switches increases, ratings of inverter switches decrease which helps 

to reduce the cost[3].  

 

Even though this thesis deals with three phase Induction machine, the main motivation of this 

project is to make suitable modulation technique which can be extended up to nine phase 

machine like Nine-phase Synchronous Machine (NPSM). There are not many NPSM in 

industries. But it has many advantages over three phase machine that its research is intensively 

going on. The nine-phase Synchronous Machine can be presented by windings as shown in 

Figure 2-2. 

 

Different winding layouts can be chosen for nine-phase machines. For the physical modelling, 

nine phase synchronous machine with 3 sets of three phase with 200 phase shift is used [19]. The 

modelling of multiphase machine is out of scope of this project. This project deals with 

modulation technique developed for the multiphase machine. 
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Figure 2-2 Nine Phase Synchronous Machine [19]. 

Another kind of multiphase machine can be Six Phase Induction machine (SPIM). It consists of 2 

sets of three phase windings.  They have gathered lot of interest of drive engineers for the 

industrial applications. The  SPIM  can  be  of  two  types,  symmetric  and  asymmetric  

depending  upon  the  winding arrangements as shown in the Figure 2-3, if the axes of the 

individual phase windings are spaced equiangular as shown in (a) then the machine is called  

symmetrical SPIM. In asymmetrical SPIM the winding axes are spaced as shown in the Figure 

2-3(b). 

 
Figure 2-3 Stator winding types [3]. 
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Asymmetrical SPIM is used for the research purpose than symmetrical as it has less 

pulsating torque and less harmonic currents as compared to symmetric SPIM [20]. 

 
Figure 2-4 Six Phase Induction Machine(SPIM) [3]. 

2.2.1 Harmonic Losses in Induction Machine 
Power electronic converter lies between three phase mains and the induction machine. The 

voltage generated by power electronics device to be fed to the induction machine is not pure 

sinusoidal. Fourier Analysis can be done to such non sinusoidal signal which helps to split them 

into harmonic components. The typical definition for a harmonic is “a sinusoidal component of a 

periodic wave or quantity having a frequency that is an integral multiple of the fundamental 

frequency.” Except the fundamental frequency, all other higher harmonic components participate 

in losses of induction machine. Motors are susceptible to harmonic pollution. In a balanced 

system, the fundamental, 4th, 7th and other such types of voltage harmonics are positive sequence 

and they rotate the motor forward. The 2nd, 5th, 8th voltage harmonics are negative sequence, 

which try to rotate motor backward while the 3rd, 6th, 9th voltage harmonics are zero sequence, 

which just heat up the motor[21] . 
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Table 2-1 Harmonics and sequence [21].

 

However the losses are not divided evenly over the harmonic spectra. The lower harmonic 

components contribute more to losses than the higher harmonic components [22]. The reason is 

lower harmonics indicates lower impedance increasing harmonic current. The higher order 

harmonics produce lower harmonic current and they can be eliminated easily by using filter 

circuits in the output stage of the inverter [11] . The filters to attenuate higher order of harmonic 

components are smaller in size, weight and cost efficient [23]. 

The uneven distribution of loss in the harmonic spectra require appropriate performance 

indicator that weights the lower frequency spectra of harmonic components more dominant than 

the high spectra of the harmonic components [22]. Such indicator is commonly known as 

Weighted Total Harmonic Distortion (WTHD), which can be calculated by normalizing the total 

current harmonic distortion by the maximum inrush current. This theory after simplification 

becomes as equation below[22]. 

𝑊𝑇𝐻𝐷 =
�∑ (𝑈𝑛𝑛 )2∞

𝑛=2

𝑈1
 

Where, n is nth number of harmonic component. From equation it is clear that the lower order 

harmonics participate more due to their high 1/𝑛2 factor compared to that of higher order 

harmonics.  

Harmonic currents also introduce unwanted torque pulsations in induction machines due to the 

interaction of the harmonic currents and the magnetic field of fundamental frequency. This 

would create mechanical oscillations and eventual wear of the machine. 

2.3 Three Level Converter 
The fundamental advantages of the Multilevel Converter topologies are low distorted output 

waveforms and limited voltage stress on the switching devices [24]. In this Project, three level 

converters called Neutral Point Clamped (NPC) is implemented as shown in Figure 2-5. Further, 
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the NPC inverter is particularly suitable in high-voltage applications since it guarantees equal 

voltage sharing of series-connected power devices in each phase [13].The figure is shown for 

three phase induction motor but if the numbers of bridge leg are added then it can be extended to 

any multiphase machine. The working principle of three level converters can be understood by 

analysing single branch as illustrated in Figure 2-6. 

 

Figure 2-5 Three level inverter NPC Technology [24]. 

 

Figure 2-6 Bridge leg of three level converter  [24]. 

Figure 2-6 shows one phase-leg of a three-level, three phase converter. This topology can 

produce three levels at the output with respect to the neutral point n. Table 2-2 indicates the 

possible output voltages for each switching state of device. There are three switching levels or 

states which are +1, 0, -1. 
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Table 2-2 Switching states in three level converter[24]. 

Switching of each IGBT 𝟐𝑼𝒐𝒋
𝑼𝒅𝒄

 

(analog 
switching state) 

Digital 
switching 
state(taking 
T1 and T2) 

Ua0 
T1 T2 T3 T4 

1 1 0 0 +1 11 (3) Udc 
0 1 1 0 0 01 (1) 𝑈𝑑𝑐

2
 

0 0 1 1 -1 00 (0) 0 
 

If the signals to upper two IGBTs are considered for three level converter, then +1 can be 

obtained by giving signal 11 to T1 and T2, while 0 can be obtained by giving signal 01. Similarly 

-1 can be obtained by giving signal 00 to T1 and T2. Hence 11, 01, 00 are the states that can 

define the signal +1, 0, -1 or in decimal, the states are 3,1,0. Here 10 (2) is the forbidden state. 

Signal to T3 and T4 are complementary to T1 and T2 respectively. 

Conventionally, the three level modulating signals for the IGBTs are generated by comparing 

two carrier waves with the sinusoidal wave as shown in Figure 2-7. If sinusoidal wave is greater 

than carrier signal, switch is turned on otherwise turned off. The upper carrier wave decides the 

switching state of T1 while the lower carrier decides the switching state of T2. The two switches 

below, T3 and T4 are complementary to two switches above T1 and T2 respectively. 

 

Figure 2-7 Naturally sampled PWM for 3 level converter [25]. 
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By combining the different states, it is possible to get waveform  close to sinusoidal averaged 

bridge leg output as shown in figure Figure 2-8. There are three states in bridge leg voltage. Line 

to Line voltage is also calculated. The voltage between two phases, the line-to-line voltage can 

achieve five different voltage levels which are +2,+1,0,-1,-2. 

 

 
Figure 2-8 Bridge leg voltage [26]. 

 
Figure 2-9 Line to Line voltage[26]. 

2.3.1 Switching loss in voltage source Inverter 
The switching power loss Psv of a Voltage source Inverter with a sinusoidal ac line current is 

estimated using the following relation [27]: 

𝑃𝑠𝑣 =
6
𝜋

.𝑓𝑠 . �𝐸𝑜𝑛,1 + 𝐸𝑜𝑓𝑓,1 + 𝐸𝑜𝑓𝑓,𝐷 �.
𝑉𝑑𝑐
𝑉𝑟𝑒𝑓

.
𝐼𝐿
𝐼𝑟𝑒𝑓

 

Where 𝑓𝑠 is the switching frequency, 𝐸𝑜𝑛,1 and 𝐸𝑜𝑓𝑓,1 are the turn-on and the turn-off energies of 

the IGBT respectively, 𝐸𝑜𝑓𝑓,𝐷 is the turn-off energy in the power modules’ diode due to reverse 

recovery charge current, 𝑉𝑑𝑐 is the dc link voltage, 𝐼𝐿 is the peak value of the ac line current 

assumed to be sinusoidal and 𝑉𝑟𝑒𝑓 and 𝐼𝑟𝑒𝑓 are the reference voltage and current where the 

switching energies provided by data sheets are given. 

It is seen that switching loss increases with increasing switching frequency and increase in Dc 

link voltage. If Medium voltage is used in order to increase the power rating in drive system then 
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switching loss is also increased along with it. Therefore as the compensation, switching 

frequency can be reduced. For medium voltage and low switching frequency, the perfect choice 

of power conductor device is IGBT. The construction of IGBT is made is such a way that it has 

higher reverse voltage blocking capability being suitable for medium voltage drive and lower 

operating switching frequency which shows its suitability for lower operating frequency. 

However if the switching frequency is low then there will be problem in modulation which will 

be discussed in the remaining sections. 

2.3.2 Harmonic content of voltage source Inverter 
The output of the voltage source converter is not pure sinusoidal wave. Hence it possesses 

certain amount of harmonics at their output due to finite switching frequency. The output voltage 

of the converter can be analyzed by Fourier series. 

𝑉(𝑡) = 𝑉𝑜 + �𝑉ℎ 
∞

ℎ=1

(𝑡) 

The three level voltage source converter is shown in Figure 2-5. 

 If the load is balanced three phase load then some harmonics in line to line voltage will be 

cancelled out even though they exist in bridge leg voltage. Let Ua0, Ub0 and Uc0 are the voltages 

at the phase outputs (or bridge leg) of the inverter with respect to the dc-link then line-to-line 

voltage will be [25]. 

)()()(
)()()(
)()()(

00

00

00

tUtUtU
tUtUtU
tUtUtU

acca

cbbc

baab

−=
−=
−=

 

The neutral voltage 𝑈0 (𝑡) is common in all the bridge leg hence the above equation can be 

further expressed as. 

)t(U)t(U)t(U)t(U
)t(U)t(U)t(U)t(U
)t(U)t(U)t(U)t(U

ac0a0c

cb0c0b

ba0b0a

−=−
−=−
−=−
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In balanced three phase load, phases are 1200 out of phase with each other, so at any instant the 

sum of all the phase voltage sum upto zero. 

𝑈𝑎0 + 𝑈𝑏0 + 𝑈𝑐0 = 0 

𝑈𝑎 − 𝑈0 +  𝑈𝑏 − 𝑈0 + 𝑈𝑐 − 𝑈0 = 0 

The neutral voltage U0 can be expressed as function of the phase voltages of the load as follows: 

3
)()()()(0

tUtUtUtU cba ++
=  

Using this value and inserting in above equations, the following equations can be obtained. 
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The classical dq0-transformation one obtains: 
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The d-axis voltage component is equal to the difference between two line voltages. The q-axis 

voltage component is proportional to the line voltage: 

( ) ( )
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The d-component will have the same harmonics as the difference between two line voltages, 

while the q-component has the same harmonics as one line voltage. As common components in 

all bridge leg voltages will not be present in the load. This indicates that motor as a load will not 
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see the harmonics presented in the bridge leg voltage but it only sees the harmonics presented in 

the line-to-line voltage. Some harmonics in line to line will be cancelled out even though they 

exist in bridge leg voltage. If the PWM patterns of the three bridge legs are 120 degree phase 

shifted, i.e. the pattern is three phase symmetrical so no harmonics of multiple of three, exists in 

the d- and q-axis system even if they exist in the bridge leg voltages. Two important conclusions 

are: 

 Even signals in the bridge leg voltages is cancelled in the line voltages 

 Harmonics multiple with 3 do not exist in the d- and q- voltages.  

2.3.3 DC Bus Balancing 

2.3.3.1 Introduction 
 

In NPC converter as shown in Figure 2-5, there are two capacitors. Depending upon the type of 

neutral point current, the charging of two capacitors may differ creating voltage difference 

between them. This phenomenon can increase the voltage stress in the equipment connected 

across them. In the worst case, all the DC link voltage could be across only one of the capacitors. 

Hence DC Bus balancing is necessary to keep the voltage difference between the two capacitors 

small. The output voltage also does not follow the reference value and increase the harmonic 

distortion in presence of unbalance in capacitor voltages [26]. Space Vector method can be used 

in order to control the voltage across the capacitor. In space vector, Phase R,Y,B are located 1200 

out of phase to each other in vector space. A three level converter has 27 vectors to create the 

desired voltage with 19 different states as shown in Figure 2-10. 

NPC converter has three states namely 0,1,3 where 2 is the forbidden state. In Figure 2-10 MSB 

consists the state of R phase while LSB consist of state of B phase. The currents flowing in 

different states for a bridge leg are given in Figure 2-11. In level 3, the current flows from the 

top, in level 1, there is flow of current from neutral point while in level 0, there is flow of current 

from the bottom. 

 



16 
 

 

Figure 2-10 Space vector diagram for three level converter. 

 

Figure 2-11 Position of current at different level [26]. 

Vectors can be divided into four different groups according to magnitude of the vectors. The 

overview is given in Table 2-3. 
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Table 2-3 Overview of space vectors[26]. 

Zero Vectors Small Vectors Medium Vectors Large Vectors 

(000) (100)(311)(110)(331) (310)(130) (300)(330) 

(111) (131)(010)(011)(133) (031)(013) (030)(033) 

(333) (001)(113)(101)(313) (103)(301) (003)(303) 

The vectors are                 𝑈𝑠 = 1
2
𝑈𝐷𝐶 . 𝑒𝑗𝜃 

𝑈𝑚 =
1
√3

𝑈𝐷𝐶 . 𝑒𝑗𝜃 

𝑈𝑙 =
2
3
𝑈𝐷𝐶 . 𝑒𝑗𝜃 

Where, UDC is DC link voltage. Us, Um, Ul means small, medium, large vectors respectively. 

The neural current determines the charging and discharging of capacitor. A zero vector is when 

all the bridge legs are connected to the same point and all of the line-to-line voltages are zero. 

Hence zero vector does not create voltage difference. The six large vectors also do not affect 

unbalance in voltage in capacitor. It is because the large vector do not have neutral current as it 

does not involve level 1. Therefore only six medium vectors and six pairs (twelve) of small 

vectors influence voltage balance. The overview is given in Table 2-4. The sum of current in 

three phase equal to zero.  The same table shows the neutral current flowing at different vector 

combination.  For instance 100, Ir flows through neutral point in R bridge leg while Iy and Ib 

flows through the bottom of the Y and B bridge leg as shown in Figure 2-11. 

Table 2-4 Overview of relation between space vectors and neutral current [26]. 

Positive small vectors INp Negative small Vectors INp Medium vectors INp 

100 Ir 311 -Ir 310 Iy 

331 Ib 110 -Ib 130 Ir 

010 Iy 131 -Iy 031 Ib 

133 Ir 011 -Ir 013 Iy 

001 Ib 113 -Ib 103 Ir 

313 Iy 101 -Iy 301 Ib 
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Similarly for 311, Ir flows through top of R bridge leg while Iy and Ib flows through the neutral 

point in Y and B bridge leg. But we know, Ir+Iy+Ib=0 and Iy+Ib=-Ir. So it can be said that the 

total neutral current flowing for the state 311 is –Ir as shown in Table 2-4. 

The positive neutral current will charge the upper capacitor while discharge the lower capacitor 

while negative neutral current charges oppositely. It can be seen in Figure 2-12, where the 

direction of current is taken positive. The figure clearly shows how this positive current is 

charging the upper capacitor and discharging the lower capacitor. For the negative current, the 

phenomenon is just opposite. In the Figure 2-10 the belonging phase currents are shown with a 

plus and minus sign. The plus sign is representing a positive vector, while a negative sign is 

representing a negative vector. 

 

Figure 2-12 Charging of upper capacitor and discharging of lower capacitor. 

2.3.3.2 DC balancing  

In order to remove the unbalance in voltage between two capacitors, six small vector pairs are 

controlled. When a small vector pair is involved a total duty cycle of d1 is calculated, where d1 

is a duty cycle of Ttri. This is given in detail in [26].This duty cycle is divided into two for DC 

bus balancing. 

𝑑1 = 𝑑1,𝑝 + 𝑑1,𝑛 

Where 𝑑1,𝑛= duty cycle of negative vector  

𝑑1,𝑝 =duty cycle of positive vector 
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These two duty cycle will be equal in the case of balanced voltage. For unbalanced voltage 

control parameter f1 is introduced to define positive and negative vector. 

𝑑1,𝑝 = 𝑓1.𝑑1 and 𝑑1,𝑛 = (1 − 𝑓1).𝑑1 

The value of f1 must be calculated which depends on phase current and capacitor voltage.   For 

the situation when voltage in upper capacitor is greater than the lower capacitor or Udcu > Udcl, 

such vector which discharge the upper and charge the lower must be selected. That means that 

negative vector must be selected.  It is already defined in above section that negative vector will 

give negative neutral current which discharges the upper capacitor and charge the lower 

capacitor. For the opposite case, positive vector must be selected. The value of f1 should be 0.5 at 

balanced situations and it should be regulated depending on the voltage difference and direction 

of the current. The equation of f1 is as shown below. 

𝑓1 = 0.5 − 𝑘.
𝑎𝑏𝑠(𝑈𝑑𝑐𝑢 − 𝑈𝑑𝑐𝑙)

(𝑈𝑑𝑐𝑢 + 𝑈𝑑𝑐𝑙)
 

K is in this case a constant which has to be given a proper value. As it can be seen from the 

formula, the value of f1 is depending on the difference in capacitor voltage.  

2.4 Modulation Strategy 
At present, voltage source converters are mostly used in electrical drives. These converters 

utilize capacitors in the DC-link to store temporarily electrical energy. Switching the power 

electronic devices allows the DC voltage to be modulated which can result in a variable voltage 

and frequency waveform. The purpose of the modulator is to generate the required switching 

signals for these switching devices. 

There are various ways of modulation. The overview of a modulation method is listed in Figure 

2-13. Multilevel Modulation strategies are mainly divided into Synchronous and Asynchronous 

Modulation[25]. The division is based on the value of index called frequency modulation index. 

𝑚𝑓 = 𝑓𝑐
𝑓𝑠

 . Here 𝑚𝑓 is called frequency modulation index, 𝑓𝑐 is called carrier frequency and 𝑓𝑠 

is called reference fundamental frequency or stator frequency.   
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Figure 2-13 Modulation strategies[24]. 

The modulation strategies are as shown in  Figure 2-13. Modulation strategies are divided into 

two major areas which are as follows:  

a) Asynchronous Modulation:  

 When stator frequency is very low, it impacts frequency modulation to be greater than 20. There 

will be high pulse number. In such scenario, zero crossing between carrier wave and reference 

signal is not synchronized even if it results in unequal number of pulses in positive and negative 

half cycle. For such high pulse number, difference of few pulse numbers between positive and 

negative half cycle does not make huge impact hence the effect of sub-harmonic component is 

minimal.  Such kind of modulation in which zero crossings between the carrier wave and 

reference signal are not synchronized is called asynchronous modulation. 

There are two types of asynchronous modulation. 

i) Space Vector PWM 

ii) Carrier Based PWM  

Among these two type Carrier Based is discussed here.  

• Carrier Based PWM : 

In Carrier Based PWM, generally there is reference wave which is compared with carrier wave. 

The switching pulses are determined by the result of the comparison. If reference wave is greater 

in magnitude than the carrier wave then pulse is ON otherwise OFF. Carrier Based PWM is 

further divided according to the sampling of the reference wave. They are 

a) Naturally sampled PWM 

b) Regularly Sampled PWM 
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 Naturally sampled Pulse Width Modulation: 

 This is the classical method where analog circuitry like amplifier is used for comparison of 

carrier wave and reference wave. The reference voltage then change continuously within the 

triangular period (carrier wave) as in Figure 2-14. If continuously changing reference wave is 

greater than triangular wave, the switching pulse is ON otherwise OFF. 

 
Figure 2-14 Naturally sampled PWM[23]. 

 Regular sampled Pulse Width Modulation:  

A method which is easier to implement in digital form is the regular sampled PWM. In this case 

the reference voltage is sampled at top and bottom of the triangular wave and then kept constant 

until next sample. This sampled reference wave is compared with the magnitude of triangular 

wave and switching occurs. Similar to Naturally Sampled PWM, the pulse is ON if sampled 

reference wave is greater than triangular wave and OFF for the opposite case. This method is 

further divided into: 

• Symmetrical Regular sampled PWM 

• Asymmetrical Regular sampled PWM 
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• Symmetrical Regular sampled PWM: The reference voltage is only sampled at the top 

of the triangular wave and kept constant within the complete triangular period.  

• Asymmetrical Regular sampled PWM: The reference voltage is sampled both at the top 

and bottom of the triangular wave and kept constant within half the triangular period.  

 
 

Figure 2-15 Symmetric and asymmetric regular sampled PWM. 

The reference wave is stator frequency, which keep on changing. There will be change in the 

carrier wave as well if frequency modulation is kept constant. As we know the formula for the 

frequency modulation,  

𝑚𝑓 = 𝑓𝑐
𝑓𝑠

   

where 𝑚𝑓 is called frequency modulation index, 𝑓𝑐 is called carrier frequency (or switching 

frequency) and 𝑓𝑠 is called reference fundamental frequency.  

 𝑓𝑐 = 𝑚𝑓 ∗  𝑓𝑠 

For, the application in motor, for the variable speed drive, the stator frequency (or fundamental 

frequency 𝑓𝑠 ) may vary. For particular mf, 𝑓𝑐  varies proportional to 𝑓𝑠. However to keep the 

carrier frequency constant, close to its maximum value, frequency modulation index must 
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decrease when stator frequency is increased or vice versa  as seen in Figure 2-16. In order to 

keep carrier frequency constant, there is change in the ratio (mf) in the different ranges of fc. 

 
Figure 2-16 Carrier based PWM [23]. 

b) Synchronous Modulation: 

 For small values of frequency modulation (20 or less), the number of pulse are lower hence 

even the difference in pulse number in positive and negative half cycle by one unit will 

generate sub harmonics. To prevent from such scenario, the carrier waveform signal and the 

control signal should be synchronized to each other. That means the zero crossing of carrier 

wave (triangular) and reference wave (sinusoidal) should coincide in order to prevent from 

sub harmonic. This type of modulation is called synchronous modulation. As a result of this, 

number of pulses in positive half cycle is equal to that in negative half cycle. The average 

switching frequency is fc /2. This type of modulation is important for low pulse number 

whose violation can result in sub-harmonics in motor voltage. Synchronous Modulation is 

further divided into two parts called fundamental frequency synchronous PWM and Program 

PWM.  

i) Fundamental frequency Synchronous PWM:  

ii) Program Modulation PWM:  

 

Among these two, this thesis deals with the second type. 

• Program Modulation PWM 

This method pre-calculates optimal switching angles within a period of the fundamental period 

1/fs to minimize the harmonic distortion. But these switching angles are not formed by carrier 

wave like in conventional way. This pattern or angles are programmed, or stored, as look-up 
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tables in hardware. This type of modulation is termed as Program Modulation. Since this is also 

synchronous modulation the number of pulses in positive and negative half cycle are equal. This 

is explained in detail in section below. 

2.5 Program Modulation Technique   

2.5.1 Background 
BJT and MOSFET have characteristic that complement each other. BJT have lower conduction 

losses in the on state, especially in devices with larger blocking voltages, but have low operating 

frequency. MOSFETs can be turned on and off much faster but their on state conduction losses 

are larger, especially in devices rated for higher blocking voltages. Hence device is made whose 

performance is midway between BJT and MOSFET called Insulated Gate Bipolar Transistor 

(IGBT). Its switching frequency is higher than a comparable BJT but lower than MOSFET 

whereas the on state losses are smaller than MOSFET and are comparable with those of BJT for 

larger blocking voltage [23]. 

 

It is shown in section 2.3.1, switching loss increases with increasing switching frequency and 

increase in Dc link voltage. If Medium voltage is used in order to increase the power rating in 

drive system then switching loss is also increased along with it. Therefore as the compensation, 

switching frequency can be reduced. For medium voltage and low switching frequency, the 

perfect choice of power conductor device is IGBT. The construction of IGBT is made is such a 

way that it has higher reverse voltage blocking capability and lower operating switching 

frequency. 

 

For the medium voltage drive, the inverter will be designed for a 6.6 kV output voltage, which 

means a dc-link voltage of approximately 10 kV. The most realistic choice of IGBTs are those 

with a blocking voltage of 4.5 kV [25]. Hence series connection of devices is required in a three 

Level inverter. In these devices the switching loss is a quite large part of the total losses. Hence 

the switching frequency of IGBT must be lower, in the range of 200-1000Hz.  

 

In the equation, 𝑚𝑓 = 𝑓𝑐
𝑓𝑠

  , fs=stator frequency and fc=carrier frequency or switching frequency 
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mf= frequency modulation index. For lower frequency, the value of frequency modulation is low 

(20 or less). Lower carrier frequency results in lower pulse number hence even the difference of 

pulse in positive and negative cycle by one unit will make huge difference. However such kind 

of equalization is not necessary in higher carrier frequency.  

 

Hence, the lower carrier/switching frequency demand synchronized modulation. Among two 

types of synchronous modulation, Programmed Modulation is introduced here. Program 

Modulation pre-calculates optimal switching angles within a period of the fundamental period 

1/fs. These patterns or angles are programmed, or stored, as look-up tables in hardware [25]. 

2.5.2 Program Modulation 
 Programmed Modulation is a synchronous modulation technique. In Programmed Modulation 

switching events can take place freely over the fundamental period as indicated in Figure 2-17. 

However, these switching instances are not given by a carrier signal. These switching instances 

are pre-calculated by some software program. The Figure 2-17 is the output for the program 

modulation for three level converter for one phase. This method is described initially in [13] and 

revised in [22] and [25]. For two level converter this method is initially studied in [11]. This type 

of modulation signal is generated by software program. 

 
Figure 2-17  Programmed PWM pattern (M=N)[22]. 

In Figure 2-17, Instead of M, N will be used in this thesis. There are some parameters which 

characterize this signal which are number of pulses in a half period (N), fundamental frequency 

or stator frequency (fs) and switching frequency of IGBT (fsw). 
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N is number of pulses per half period. In addition, the number of turn-on of upper switch is N 

and number of turn-off is N as well in one half period. The total number of commutations is thus 

2*N per half period and 4*N per period.  In a complete three-phase inverter this becomes 12*N 

switching. The average switching frequency over one period for the upper switch is thus: 

savgsw fNf ⋅=,1  where fs is stator frequency.  

If this is compared with a carrier based PWM, with the same number of pulses N per half period 

the equivalent ratio mf becomes: 
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Program Modulation technique is synchronous modulation. Hence at first it is needed to check if 

synchronous or asynchronous modulation has to be applied. At low speed and thus frequency fs, 

asynchronous modulation can be used with a fixed switching frequency of 200 Hz. For 200 Hz 

max switching frequency this gives a max motor frequency fs, with N=10 (even): 
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Above this stator frequency, synchronous modulation is chosen. This also means below N=10 

(below𝑚𝑓 = 21), synchronous modulation is chosen. 

For synchronous modulation in motor drives using Program Modulation, the number N has to be 

selected to give a proper curve similar to Figure 2-16, but with N as parameter instead of mf and 

fsw instead of fc, where fsw is called switching frequency while fc is called carrier frequency. The 

Figure 2-16 is modified for program modulation and it looks like Figure 2-18 



27 
 

 

Figure 2-18 Programmed PWM. 

Switching frequency increases with increase in stator frequency for constant N. However the 

maximum operating frequency for IGBT is 300 Hz. In this process, if switching frequency 

becomes more than 300Hz then N is decreased as stator frequency increases. 

2.6 Synchronous Optimal Modulation 
In Program Modulation, these switching instances are pre-calculated by some software program, 

in order to achieve a purpose by applying some kind of constraint in Fourier series of the 

fundamental frequency. Usually these methods are divided into Harmonic Elimination PWM 

and Minimum-loss PWM methods. Harmonic Elimination PWM is used for the active rectifier 

which is out of scope of this thesis. For motor drive application Minimum-loss Program 

Modulation method can be used. This kind of modulation technique is called Synchronous 

Optimal Modulation (SOM). In SOM pattern, switching events are determined by software in a 

way that reduces the harmonic content in the current, also reducing losses due to harmonic 

distortion in the controlled induction machine [28]. 

Losses in an induction machine due to presence of harmonic components of higher order than the 

fundamental component, is not divided evenly over the harmonic spectra. The lower harmonic 

components contribute more to losses than the higher harmonic components. The low harmonic 

components produce lower impedance resulting in higher harmonic current. The uneven 

distribution of loss in the harmonic spectra require appropriate performance indicator that 

weights the lower frequency spectra of harmonic components more heavily than the high spectra 
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of the harmonic components [22]. Such indicator is commonly known as Weighted Total 

Harmonic Distortion (WTHD). 

In drives applications the motor leakage inductance is limiting the harmonic currents. The 

weighted total harmonic distortion factor for current is then [22]: 
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The SOM pulse patterns for a Three-Level NPC converter is as shown in Figure 2-17. In the 

figure, Instead of M , N will be used in this paper. N stands for number of pulses in a half period 

or number of transitions in quarter wave.  Here +1 actually means Udc1 and -1 is equal –Udc2   

and  zero potential is the Neutral Point (NP) in the three level inverter. The total dc-link voltage 

Udc is equal: 

21 dcdcdc UUU +=                     
22121
dc

dcdcdcdc
UUUUU ==⇒=  

The Fourier series coefficients do only have sine-term and odd number of harmonics due to Half 

Wave Symmetry (HWS) and the Quarter Wave Symmetry (QWS). The peak value of the hth 

harmonic becomes  [22]: 
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At this point, another modulation index called amplitude modulation index (ust or m) is 

introduced. Amplitude Modulation index is proportional to fundamental voltage component [29] 

amplitude modulation, 𝑚 𝑜𝑟 𝑢𝑠𝑡 = 𝑢
𝑢𝑑𝑐

, u is rms voltage of the modulated signal, udc is dc link 

voltage. The modulation index is 
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Hence the objective function is to minimize the following WHTD expression 
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The optimization task is then, for each modulation index, to find the set of N angles from α1 , …, 

αN  of equation (2), to minimize the function of WTHD of equation (3). 

Algorithm is developed by Roy Nilsen at Wartsila Norway [25] to find the required switching 

angles for given amplitude modulation index to minimize the total harmonic distortion. The 

example is shown in Figure 2-19 for N (no. of switching transitions in quarter wave)=4. 

Whenever the value of modulation index varies, the switching angles are changed in order to 

minimize the harmonic loss. The angles are only shown for quarter wave but the angles for rest 

of the period can easily be predicted as will be mentioned in section 2.7. Table 2-5 has tabulated 

the angles for five amplitude modulation index. As the modulation index change, the angles also 

change. Similarly there are other SOM patterns for different values of N. The example is shown 

for N=8 in the Appendix A. It means that for one particular value of (m,N) there is one particular 

type of switching signals. The harmonics as the function of modulation index is given in Figure 

2-20. 

 
Figure 2-19 SOM pattern for N=4 [25]. 
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Table 2-5 Switching angles for different modulation index 

ust α1  α2  α3  α4 

0.2 53 58 76 82 

0.4 52 59 73 86 

0.6 51 60 69 89 

0.8 18 42 55 80 

1 19 46 52 86 

 

 
Figure 2-20 Harmonics for N=4 [25]. 

Using Figure 2-19, the different switching pulse can be generated for different modulation index. 

The switching pulse for modulation index ust(m)=0.4 for quarter wave is shown in Figure 2-21.   

 
Figure 2-21 Pulse generated from SOM pattern. 
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2.7 Open Loop Method  
When there is change in magnetic flux then voltage is induced. So there is relation 

𝑢 = 𝑓𝑠  𝜓 

Where u is the applied stator voltage, fs is stator frequency, 𝜓 is stator flux.  

𝜓 = 𝑢
𝑓𝑠

= 𝑢𝑑𝑐  .𝑚
𝑓𝑠

 , m is amplitude modulation, 𝑚 = 𝑢
𝑢𝑑𝑐

 

After rearranging,  

𝑓𝑠 =
𝑢𝑑𝑐
𝜓

 𝑚 = 𝑘.𝑚 

k is constant if flux 𝜓 is kept constant. Hence if m(proportional to output voltage) change then 

stator frequency should also change in order to make k constant( or flux constant). Such kind of 

control is called u/f control. In many industries, the induction motors are controlled by variable 

frequency drives with the Volts/Hertz (U/f) control; this strategy intends to keep a constant flux, 

imposing a constant volts/hertz ratio. Whenever m has to be changed then fs is also changed for 

keeping flux constant.  

In other to apply u/f control in Synchronous Optimal Modulation technique, there is a relation, 

𝑓𝑠𝑤,𝑎𝑣𝑔 = 𝑁. 𝑓𝑠=N.k.m 

Here, N is number of switching angles or transitions in one quarter wave. In this, whenever m 

changes, fs must change to keep flux constant. However if fs change 𝑓𝑠𝑤,𝑎𝑣𝑔  changes 

proportionaly but if 𝑓𝑠𝑤,𝑎𝑣𝑔 is greater than 300Hz, then N is decreased as shown in Figure 2-18. 

Synchronous Optimal Modulation pre calculates switching angles for particular value of (m,N) 

from algorithm as said in  section 2.6 and store in a memory table pattern  as P(m, N). Hence for 

the set of one m and N, there is set of switching angles stored in memory table which generate 

the pulse. For instance, for (m=0.4, N=4), the switching patterns for quarter wave is shown in 

Figure 2-21. The switching angles calculated in this way, is only for quarter wave. However, it is 

easy to predict the angle for rest of the period. Prediction is based on the fact that the signal has 

quarter wave symmetry and half wave symmetry. It uses the following rule:  

In interval I, 0 ≤ α ≤ π/2 : uss(α) = f {P(m,N)}  
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The remaining portions of a full fundamental cycle are determined using the conditions for 

quarter-wave symmetry and half wave symmetry.  

In interval II, π≤ α ≤ π : uss(α) = uss(π − α)  

According to half-wave symmetry  

In interval III, π≤ α ≤ 2π : uss (α) = uss (2π − α) [29] 

After using this prediction to Figure 2-21 , the switching pulse for one fundamental period is 

shown in Figure 2-22. 

 

Figure 2-22 Switching Pulse in one fundamental frequency. 

 

2.8 Synchronous Optimal Modulation signal flow graph 

 
Figure 2-23 Synchronous Optimal Modulation signal flow graph  [29]. 
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The Figure 2-23 shows the signal flow graph of the project for open loop system. The input to 

the system is the fundamental frequency and reference voltage vector u*. The modulation index 

m is proportional to the magnitude of the reference voltage vector u*. There is  relation 

𝑓𝑠𝑤,𝑎𝑣𝑔 = 𝑁.𝑓𝑠 

The value of N can be calculated using the graph Figure 2-18 for keeping the maximum 

switching frequency of IGBT as 300Hz. And m depends on u* and N depends on fundamental 

frequency. Once m and N are calculated, for patterns as P(m,N), the optimal switching angles 

can be calculated as described in section 2.6. The patterns are functions of the modulation index 

m and the pulse number N. A parameter pair (m, N) selects the corresponding pulse pattern from 

pattern selector. This pattern is fed to the modulator. The modulator converts the switching 

angles αi defined by P(m, N) to switching times. The fundamental frequency signal f1 translates 

the resulting switching angles αi to switching time ti = αi /(2πf1 ). The modulator thus creates the 

sequence of switching state at various switching time needed for each IGBTs of inverter to 

obtain desired synchronous optimal modulation pattern as prescribed by the optimal pattern P(m, 

N).  The modulator is designed in FPGA. The FPGA control card is programmed accordingly for 

firmware implementation of synchronous optimal modulation. In the chapter 3 below, there is 

detail explanation of application of FPGA in this project. 
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3 Introduction to FPGA and Xilinx EDK 
The implementation of three level modulator is done on extremely fast digital device called Field 

Programmable Gate Array (FPGA). The important portion of the project commence from 

chapter 3 which introduces FPGA architecture, FPGA control card developed by SINTEF along 

with the description of tool called Xilinx which is used to program FPGA. 

3.1 Background 
The reliability and performance of digital technologies have been improving consistently. With 

this growth, digital control has replaced analog counterpart because they are flexible to modify  

the control schemes, they can adapt to different systems and operating conditions. Other benefits 

of digital control system are immunity to noise and insensitivity to component variation. These 

digital control systems are implied on microcontrollers or digital signal processors (DSPs) due to 

their software flexibility and low cost. These components have arithmetic logic, analog to digital 

converters, timers for solving real time operation. Nevertheless, some of the   benefits of analog 

control like accuracy, absence of feedback loop delays etc are very difficult to be replaced by 

these microcontrollers and DSPs. However high performance DSP can provide such benefits but 

they are limited to complex algorithm. The cost of such DSPs can exceed the benefits they bring  

[30]. 

After the development of field-programmable gate array (FPGA), the gap between the analog 

and digital world is reduced. FPGA has exceptionally fast computation capability hence complex 

control algorithm can be computed in few microseconds and they are cost efficient as well. They 

are adapted in electrical drive application. They are successfully applied in control of pulse 

width-modulation (PWM) converters, machine drives and multiphase machine control system 

[30].  
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3.2 General Architecture of FPGA 
“A Field Programmable Gate Array (FPGA) is a microchip. FPGA consists of matrix of 

configurable logic blocks (CLB) made up of flip flops and lookup tables, which can be used 

along with the configurable input output blocks and interconnection programmable network to 

make a programmable hardware circuit known as Intellectual Property (IP)”[31]. IP are meant 

to perform certain time critical task. One of the important specification of FPGA is matrix size, 

the bigger it is, more IPs it can have. The structures of CLB include two, four, or more logic 

cells, also called logic elements, which are the basic grains of the FPGA [31]. It is illustrated in 

Figure 3-3. 

 

Even by changing the configuration of the switch matrix, the functionality of FPGA can be 

modified hence it is a flexible chip. Such flexibility helps the user to create their own hardware 

design according to their specification. This obviously contrasts the conventional micro 

controller where pin configuration are fixed during manufacture  [32]. 

 

 
Figure 3-1 General architecture of FPGA [31]. 

 
Figure 3-2 Interconnection programmable network. 
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Figure 3-3  Inside logic block [31]. 

Even though FPGA has such immense benefits, the design process is extremely complex. All the 

hardware components have to be designed by users themselves, so the amount of programming 

is huge. For designing such chips, special hardware description language called VHDL or 

Verilog has to be applied. In this thesis VHDL is used. This HDL is different from other 

programming language. It is because the statements in HDL create digital circuitry which 

performs operation in parallel. Other programming languages like C create processor instructions 

which are executed sequential. FPGA really is a digital circuit. The syntax is also different from 

C [32]. VHDL stands for VHSIC hardware Description Language. VHSIC is itself an 

abbreviation for Very High Speed Integrated Circuits. These HDL are executed parallel on 

contrary to other computer program which are executed sequentially [33]. 

3.3 Embedded System Development  
FPGA is operated in parallel so it is dramatically fast and can be used for time critical 

application. The whole control system for a motor drive converter could be placed in an FPGA in 

order to achieve high speed operations. However this would demand a very large FPGA with 

complicated design structure. In addition, every function of the whole system are not time 

critical.  Electric Drive control system generally has slow outer loop and fast inner loop. 

Moreover the speed/power/frequency control of a converter is slower process than modulation 

process. Hence there is no point of implementing such relatively slower process on FPGA. The 

cost and complexity of using large FPGA would be extremely high if whole control system is 

implemented [32].  

Advanced FPGA are manufactured with processor inside it. This kind of system is called 

embedded system. This is the good solution to deal problems described in above paragraph. 
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Embedded FPGA helps to split the design procedure in two: hardware part (for FPGA) and 

software part (processor). This makes it possible to take advantage of both sector but still use one 

single chip. The advantage of FPGA is exceptional speed gain and that of processor is the 

implementation of simple and versatile software programming [32]. The processes which are 

relatively slow and which is seeking complex design are programmed in software. And faster 

processes are programmed in hardware. 

The concept of System on Chip (SOC) is based on integration of a variety of features combining 

digital and analog part, hardware and software, equipped with a communication infrastructure. 

As system on-chip architectures continue to receive more and more attention from the embedded 

systems community, FPGA manufacturers such as Xilinx are responding with a new generation 

of FPGA architectures that contain a variety of embedded resources. One of new generation 

FPGA is Vertex-5 ppc440 FX30T which has Embedded PowerPC440 Processor Core. This type 

of Soc based on platform FPGA is device which integrates field programmable logic cells with 

predetermined collection of resources such as embedded CPUs, SRAM, versatile general 

purpose IO ports, high speed, serial links, various standard peripherals and others [34]. 

3.4 Xilinx Board  
Xilinx Board used for this project is Xilinx Virtex FX30T which is built by SINTEF to suit the 

various requirements for different power electronic control applications. In this Xilinx board, the 

Embedded Development Kit (EDK) tools can be used to design a full featured embedded system 

consisting of hardware and software. The control card outline with the chip and other important 

peripherals is as shown in the Figure 3-4.The important components of the control cards apart 

from FPGA are mentioned below [35], [3].  

3.4.1 Communication Port 
The card is having RS232 serial port connected with a male 9 pol D‐sub connector. The serial 

port is not isolated.  

Ethernet port for 10MB/sec and 100 MB/sec connection is available on board. The port is based 

on the MAC block which is embedded in the Virtex 5 chip. The standard physical interface is 

located on the separate chip (National Semiconductor DP83848) outside FPGA on the board. 

The board is also having the high speed V.2 USB port with the separate controller NXP ISP1582 

available on board outside FPGA.  
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CAN controller IC, Microchip MCP2515, is available on card for the with the other control cards  

3.4.2 memory 
Card is having ample amount of memory as summarized below.  

• DDR2 DRAM ‐Micron MT74H64M16HR‐3E in 1GB, 16x64Mbit 333MHz clock frequency.  

• EROM‐Renesas HN58V257A. 32k x 8 bits.  

• FLASH‐Spansion S29GL512P is 512 Mbit flash chip, 32Mx16 64Mx8.  

3.4.3 clock 
The FPGA is supplied with the 40 MHz clock on the card. FPGA generates different clock 

frequencies inside which are used by various components are as listed below.  

• AD‐converter is operated with a differential 40 MHz clock.  

• AD converter generates a 240 MHz clock. This drives the transfer of data from the AD  

 

 
Figure 3-4 FPGA control card[35]. 

3.4.4 Converter 
• USB controller is powered with a 12 MHz clock.  

• CAN controller is driven by a clock of 20 MHZ.  



39 
 

• Ethernet PHY circuit is run a 25 MHZ clock.  

• The RISC processor is powered by a 300 MHz (PowerPC) or 100 MHz (Micro Blaze) clock.  

• Processor bus powered by a 100 MHz clock.  

• DDR2 DRAM chips driven by a differential clock of 200 MHz.  

• Transport correction (IDELAYCTRL) for DDR2 DRAM is run by a 200MHz clock.  

3.4.5 Pulse Encoder:  
Card has input for connecting a two‐phase encoder with a reference signal. The signals are 

adapted to a Heidenhain ROD 420 pulse encoder, which has balanced signals with RS422 signal 

levels. Pin numbering is the same pin numbers on the Round 12 pole connector ROD420. 

Receiver circuit MAX3097 detects signal on lines. Three green LEDs at the connector can be 

used to indicate the signal levels from the pulse sensor, while a red LED can be used to indicate 

errors.  

3.4.6  Relay drivers.  
Card is equipped with four relay driver. The output voltage is 5V. This is sufficient to run many 

types of relays with coil voltages 6V. Small cooling fans can be operated with this. An LED 

lluminates when a relay driver is turned on.  

3.4.7  LVDS:  
The card is having contacts for high speed serial communication with LVDS signals having 600 

Mbit/sec. transfer rate. LVDS transmission line has 100 Ω differential line impedance. The line 

pair is terminated on FPGA with 100 Ω resistance between lines.  

3.4.8  Signal Inputs:  
The card is having six general purpose signal inputs either analog or digital .The analog signals 

are read through the voltage divider network and with low pass filter with 30 μ sec time constant 

signal level for the analog signal is 0‐5 V. Digital signals are inputted through the low pass filter 

with 1 μ sec time constant, the signal level being 5 V CMOS.  

3.4.9  AD Converter:  
The card is equipped with an Analog Devices AD9222, 8‐channel 12‐bit AD converter. Each 

channel has its own AD converter that works with 40 MSPS. The channels thus sampled 
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synchronously. Data is transferred to the FPGA in a serial form, the baud rate is 12BIT x 40 

MSPS = 480 Mbit/ sec rates. 

3.4.10  Digital Input Output port:  
There are three channels on card with 16 bit digital IO ports. The signal level is the 0‐3V. This 

can drive 5V TTL inputs; however, as the FPGA block is fed with the 3 volts so voltage is 

clipped before entering into FPGA. 

3.5  Xilinx Embedded Development Kit 

3.5.1 Introduction 
Xilinx FPGAs provide customizable silicon on top of which different kinds of hardware can be 

created. The Xilinx Embedded Development Kit (EDK) provides tools to create custom 

embedded hardware on Xilinx FPGAs. EDK is a series of software products developed to extend 

the Xilinx Integration Software Environment (ISE) into the realm of system level design. The 

Embedded Development Kit, EDK, produced by Xilinx, provides an entry point for both 

embedded software and hardware designers who want to design with the PowerPC processors 

embedded into the Vertex-5 ppc440 FX30T[36].  

The programming environment developed by Xilinx is called Xilinx Integrated Software 

Environment (Xilinx ISE). It consists of many different programs, but three of them are more 

important for embedded system.  

i) ISE Project Navigator 

ii) Xilinx Platform Studio(XPS) 

iii) Software Development Kit. (SDK).  

The design environment employed for this thesis is shown in Figure 3-5 

 

Figure 3-5 FPGA design flow adopted in this work. 
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XPS and SDK together are known as Xilinx Embedded Development Kit. When working with 

the design of an embedded system built around an FPGA‐chip, four different abstraction levels 

to work on can be assumed. They are  

i) Physical description level 

ii) Behavior Level 

iii) Module Interaction level 

iv) Software Level 

3.5.2 Different Abstraction Level 
Each program (ISE Project Navigator, XPS, SDK) is working on one specific level of the 

abstraction layers. Below is given brief introduction of the abstraction level with Xilinx program 

used in each level. This section is taken from ref [32]. 

 

i) Physical description level  

The lowest level is normally the result of an automatic process performed in the programming 

suite, i.e. the synthesis. The synthesis tool takes the description created during the programming 

phase (written in a hardware description language), and translates it to a list with the signal 

routing and placement of the different ports and logic circuits. 

ii)  Behaviour Level  

In behaviour level digital circuits are described by writing codes in hardware descriptive 

language, VHDL. ISE Project Navigator is utilized when working on the behavioral level. It is 

typically utilized when developing new sub modules, but also entire FPGA‐configurations can be 

created here. The designer needs to specify the input and output ports for the circuit, the signal 

routing and the tasks, the circuit is supposed to perform. Since the circuit is a physical circuit, all 

actions which are described by the designer are performed in parallel. A module is a digital 

circuit designed to perform a specific task within a larger system.  

iii) Module Interaction level  

In behavior level, new programmable hardware circuit known as Intellectual Property (IP) are 

written using VHDL. Drive control applications seek complex algorithm structure. In order to 

make the design of control algorithms more manageable and less intuitive, reusability of already 
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made IP can be done. These kinds of interaction of different modules are done in this level for 

complex system [31]. The Xilinx Platform Studio (XPS) program is especially dedicated for this 

level.  

 

This program is utilized when synthesizing an FPGA‐system from existing IP‐modules (either 

from a local library, or from the included Xilinx blocks) and connecting signals between these. 

The platform is built around the PowerPC‐processor and its processor bus. In addition to the 

information on the processor, XPS also needs a User Constraint File (UCF), which contains the 

description of all the input and output ports of the FPGA. The different IP‐blocks are added to 

the design from the IP‐catalogue. Connections to the I/O‐ports, the processor bus or other FPGA‐

blocks are also created here. The communication between the processor and the hardware 

modules is performed by a processor bus. The output of XPS is a hardware platform which can 

be exported to the Software level to be discussed below. Such a platform contains information 

about the FPGA configuration, necessary driver files and address specifications.  

iv) Software Level  

From the earlier section, it is clear that FPGA programming is done in two part: hardware part 

and Software part. Hardware part is considered in behaviour level and module interaction level 

while software part is considered in this level of abstraction. Xilinx Software Development Kit 

(SDK) program is used here. The output of XPS is a hardware platform which can be exported to 

the Software Development Kit. The interaction with the hardware is through a processor bus, 

which transfers input data to the processor, and takes the output back to the FPGA. At this level, 

programming the FPGA is done in either C or C++.  

3.5.3  Xilinx ISE overview 
Xilinx ISE system is an integrated design environment that consists of a set of programs to create 

(capture), simulate and implement digital designs in a FPGA target device [37]. It is used in first 

two abstraction level of design in Physical Description Level and Behaviour Level. The design 

flow is shown in Figure 3-6. These steps are involved in the realization of a digital system using 

Xilinx FPGA. 
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Figure 3-6 Overview of various steps in design flow of digital system. 

Design Entry 

The first step is to enter the design. This can be done by creating “Source” files. Source files can 

be created in Hardware Description Language (HDL) such as VHDL, Verilog.  

Synthesis  

• Breaks down the VHDL design into logic elements.  

• Recognizes common elements as counters, multiplexers.  

• Generates a logic circuit of the design.  

 

 Implementation  

• Builds FPGA circuitry representing the logic elements  

• Places the logic elements onto the FPGA structure  

• Routes connections between the elements  

• Calculates signal delay through connections and logic.  

• Rearranges the layout in order to improve timing.  

• Result: A BIT file, containing binary configuration data for the FPGA  

 

Downloading  

• Straight to the FPGA, for test and debug.  

• To configuration flash memory. Loaded into FPGA at power up.  
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Project Navigator Window 

The above steps are managed through a central ISE Project Navigator window, shown below. 

 

Figure 3-7 ISE windows. 

Hierarchy Window 

This window contains the design source files for a project. These are the source files that is 

created or added to the project. It also consist of the UCF (User Constraint File) which contains 

the description of all the input and output ports of the FPGA. 
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Processes Window 

The processes windows list the available processes (corresponding to the process selected in the 

processes window). Typically a particular process to perform on the selected source file is 

available here. This can include a simulation, implementation, etc. To run a process one need to 

double click on the process. When a process has been successfully executed a green tick-off icon 

appears. When a high-level process is clicked, the Project Navigator will automatically run all 

the associated lower-level processes. 

3.5.4 Xilinx platform studio overview 
XPS is used in module interaction level. Intellectual Properties (IPs) are made by users and can 

be reused by other users in order to make the design of control algorithms more manageable and 

less intuitive. Interaction of various modules is done in this platform. Some of the basic modules 

like Processor, timer, memory block are already provided by Xilinx. Other modules like Digital 

to Analog conversion, Inverter, Driver Interface which are used in this project are created by 

Kjell Ljøkelsøy from SINTEF [35]. User IPs which are convenient to this project are also created 

and added to the processor bus along with all other modules. The window of XPS is shown in 

Figure 3-8. 

 

The IP catalog window consists of library of available IPs. Some IPs are directly available from 

Xilinx, some IP modules are taken from Kjell Ljøkelsøy from SINTEF. While some of the IP are 

user IPs. 

The Bus Interface window consists of all the IP modules necessary for this project. Along that 

window there is graphical connection showing the connections of the modules to the PLB ( 

Processor Local Bus). 

There is also Port window where different IPs are connected through the common signal name. 

There is address assigned to every address. The address is available in the Address window. 

The VHDL description of an IP is not only enough to interface with the PLB hence an 

intermediate representation layer, the Microprocessor Peripheral Description (MPD) file are also 

needed which looks as shown in Figure 3-9. The MPD file contains basic information of 
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underlying IP VHDL/Verilog implementation (generics, ports), adding flow dependent attributes, 

used for configuration.  

 

Figure 3-8 XPS windows. 

 

Figure 3-9 Microprocessor Peripheral Description (MPD) file. 
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The IP implementations abstracted by the MPD files need to be parameterized at a higher level; 

this is done through the components instantiation in the Microprocessor Hardware Specification 

(MHS) file. As shown in Figure 3-10, Platgen (a Xilinx tool) reads a MHS as its primary design 

input. The tool also reads various hardware Microprocessor Peripheral Description (MPD) files 

from the EDK library. Platgen produces the top-level HDL design file for the embedded system 

that stitches together all the instances of parameterized IP blocks contained in the system. In the 

process, it resolves all the high-level bus connections in the MHS into the actual signals required 

to interconnect the processors, peripherals and on-chip memories. The EDK intermediate 

description, based in the MHS and MPD file (among others), represents an improvement over a 

purely VHDL description[38]. 

 

Figure 3-10 Xilinx EDK flow for processor based design. 

3.5.5 Xilinx Software Development Kit overview 
The Xilinx Software Development Kit (SDK) provides an environment for creating software 

platforms and applications targeted for Xilinx embedded processors. SDK works with hardware 

designs created with the Xilinx Platform Studio (XPS) embedded development tools[39]. 

The hardware specification captures all necessary information and files from a Xilinx Embedded 

Development Kit (EDK) hardware design that are required for a software developer to develop, 

debug, and deploy software applications for that hardware [39]. Typically, a hardware designer 

who develops hardware using Xilinx Platform Studio (XPS) exports this specification file to a 

directory. The software developer then imports this file using the Xilinx Software Development 
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Kit (SDK). SDK is based on the Eclipse open source standard. SDK features include feature-rich 

C/C++ code editor and compilation environment. The SDK windows is shown in Figure 3-11 

 

Figure 3-11 SDK windows. 

The Project Explorer window consists of hardware platform (filename_hw_platform) which is 

exported from Xilinx Platform studio. This window also consists of Board Support Package file 

(filename_BSP). In embedded system, BSP is implementation specific support software for the 

specific hardware. In this case the specific hardware is the one which is developed in XPS and 

exported to the SDK. A board support package is software that implements and supports an 

operating system on hardware like a development board. Usually built with a bootloader, a BSP 

contains the minimal device support to load the OS and device drivers for all the devices on the 

board[40]. for example it consists of address of all the modules in the hardware. 

On this hardware the software application is developed. The codes are written in C++ format. 

Using the features of C++, complex software needed for the project is developed here. The 
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output of the software is placed into the Processor local Bus which is common between SDK and 

XPS. Data placed in PLB is retrieved by XPS and implement it into FPGA. The Figure 3-12 

shows the way, how FPGA is programmed from SDK. 

 

Figure 3-12 Program FPGA. 

Once Program FPGA command is given in SDK, the software level put the data in the PLB and 

the command is given to the hardware on XPS to operate. Then synthesis, implementation occurs 

and bitfile is downloaded to the real FPGA and hence FPGA functions as the commanded by the 

software. In this way embedded system works. 
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The methodology applied in this project for implementing SOM by using FPGA is presented in 

chapter 4 which contains the description of Intelligent Properties (IP) and the connection 

between various IPs used in this project.

4 Firmware Implementation of SOM in FPGA 
Intellectual Properties (IPs) are key building blocks of Xilinx Targeted Design Platforms [41]. IP 

performs one particular task. IPs are programmable hardware circuits.  New Intellectual 

Properties(IPs) are written using VHDL. Intellectual Properties (IPs) are made by users and can 

be reused by other users in order to make the design of control algorithms more manageable and 

less intuitive. The interaction of different IPs is done in Module Interaction level in one of the 

software package from Xilinx EDK called Xilinx Platform Studio. The IPs which are used in this 

thesis are named in Figure 4-1. Some of the IPs are som_phase_ip, DIG_IO1_GPIO, 

vekselretter_tikobling etc . MHS file of the whole project is presented in  Appendix B 

 

Figure 4-1 List of IPs used in the project. 

All these IPs are connected to the Processor Local Bus (PLB). Plb_v46 is the type of Processor 

local bus used in this hardware. The communication between the processor PowerPc (ppc440)  

and other hardware (IPs) is done by PLB. Through PLB, parameters and variables are transferred 

to and from the program running in the processor. When IPs are connected to the PLB, base 

address is assigned to them which makes processor easy to access any register by pointers to the 

specific address. Figure 4-2 shows the block diagram of hardware built in FPGA. It has got 
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processor at the top and all the Intelligent Properties (IPs) that are developed by user at the 

bottom. Processor communicates to IPs by Processor Local Bus (Plb_v46). 

 

Figure 4-2 Block diagram. 
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 There are three kinds of IPs used here. These are categorized as  

1) EDK install 

2) Project Local Pcores (user) 

3) Global Peripheral Repository (user) 

4.1 EDK install 
Some of the IPs are provided by EDK itself. These are the commonly used IP blocks. They are 

described briefly [42]. 

a) ppc440: This IP is included to use Power PC 440 virtex 5 is the processor that is 

embedded in FPGA. Its features are 

• PowerPC 440x5 dual-issue, superscalar 32-bit embedded processor developed by IBM 

• 32 KB instruction cache, 32 KB data cache 

• 128-bit Processor Local Bus (PLB) version 4.6 interfaces 
  

b) XPS bram:: This IP is named IP Processor Block RAM. The BRAM Block structural 

HDL is generated by the EDK design tools based on the configuration of the BRAM 

interface controller IP.BRAM block is configurable memory module. All BRAM Block 

parameters are automatically calculated and assigned by the Platgen and Simgen EDK 

tools. 

 

c) XPS_intc: This is interrupt controller IP available in XPS. It contains multiple interrupt 

inputs from peripheral device to single interrupt output to the system processor. It 

connects as a 32 bit slave on processor local bus. To provide additional interrupt they can 

easily be cascaded and prioritized. The interrupt can be edge triggered or level triggered.  

 

d) Jtagppc_cntrl_inst: JTAGPPC Controller IP helps to connect the JTAG chain of FPGA 

with the PowerPC processor 

 

e) Proc_sys_reset: This Xilinx Processor System Reset Module design allows user to set 

certain parameters to enable/disable features. 

f) DIG_IO_GPIO: It stands for General Purpose input output port. It also connects as 32 bit 

slave on PLB. It is configured as single or dual GPIO channels. The number of GPIO bits 
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can be configured from 1 to 32 bit. The width of each of the channel can be individually 

configured. The ports can be configured dynamically for input or output by enabling or 

disabling the 3-state buffer. 

 

g)  Xps_timer:  The XPS Timer/Counter is a 32 bit timer module that is attached as 32 bit 

slave on PLB. It has configurable counter width.  

4.2 Project Local Pcores (user) 
FPGA can be used in numerous applications. Every application has its own specific hardware 

requirement. The intellectual properties developed for application specific need are categorized 

as project local Pcores. These user developed IP cores can even be transferred to other user. For 

the implementation of Synchronous Optimal Modulation technique, the IP called 

SOM_PHASE_IP and SOM_spacevector_IP are developed in this master thesis. These are two 

ways by which synchronous optimal modulation can be generated. 

For generating synchronous optimal modulation, the optimal angles must be calculated. This 

calculation itself accepts lot of work. Hence such calculation is done in other collaborating 

master thesis. This can be referred from [15]. The collaborating project is termed as processor 

routine or software while this project is termed as hardware in this report. The processor routine 

can perform the task by phase to phase implementation or by space vector implementation. In 

phase to phase implementation the processor routine deals with different phases independently 

while in space vector implementation, all the phases are considered together.  

If the processor routine performs phase to phase implementation then SOM_PHASE_IP is used 

in the hardware while SOM_spacevector_IP is used for space vector implementation. 

4.2.1 Phase to Phase Vs Space vector Implementation 
In Figure 4-3, the numbers of switching instances are shown for three different phases for one 

sampling period. There are total of seven switching instances in all the phases among which 2 

lies in R phase, 3 lies in Y phase and remaining three lies in B phase. In phase by phase 

implementation, the switching time and state for different phases are calculated separately in 

software and kept separately in register as shown Figure 4-4. Even though the numbers of 

switching instances in R and B phases are two, three registers are used. Registers are predefined 
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assuming that total number of switching instances that may occur in one sampling period is three 

in this case. Hence for the remaining portion, the last value must be repeated. While in this thesis 

for phase to phase implementation, five registers are dedicated to each phase. However in space 

vector, if switching occurs even in any one phase, Time register consists the switching time and 

the state register consists of the states of all the phases at that time as shown in Figure 4-5 .  

For software, it can be seen that if phase to phase implementation is done, the calculation time 

for the optimal angle is lesser than the space vector implementation. It is because there is no 

unnecessary calculation of states of other phases where switching does not occur. This will help 

to choose lesser sampling time or higher sampling frequency. Higher the sampling frequencies 

help to get better output signals according to Nyquist Sampling theory. This is the benefit of 

using phase to phase implementation over Spacevector implementation. 

Even at the cost of longer calculation time, from section 2.3.3.2 it is known that DC bus 

balancing can be applied easily using space vector implementation. This is benefit of using space 

vector over phase to phase implementation.   

 

Figure 4-3 Switchings in three phase for one sampling period. 
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Figure 4-4 Register used for phase to phase implementation. 

Time (StateR,StateY,StateB) 
1 010011 
 2 110011 
3 110001 
4 110101 
5 010101 
6 010100 
7 011100 

Figure 4-5 Register used for spacevector implementation. 

In the section below the two IPs namely SOM_PHASE_IP and SOM_spacevector_IP are 

discussed in detail for the generation of synchronous optimal signal. 

4.2.2 SOM_PHASE IP 
The IP module for generating synchronous optimal modulation using phase to phase 

implementation is called SOM_PHASE_IP. Its input and output ports are shown in Figure 4-6. 

 

Figure 4-6 Input and output for SOM_PHASE_IP. 
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4.2.2.1 BACKGROUND 

The Synchronous Optimal Modulation pattern for three level converter is illustrated in 

Figure 4-7 for one phase. There are various numbers of switching instances in one 

fundamental period. Since this SOM pattern is for three level converter, there are three levels 

(states) +1, 0, -1. At each switching time, the signal changes its state. In the same figure, the 

triangle indicates one sampling period. As clearly seen, Sample 1 has three switching 

instances. Similarly, Sample 2, Sample 3, Sample 4 consists of one, one, two switching 

instances respectively.  Among three switching instances in Sample 1, at first switching 

instance, the state is changed from 0 to +1, in second switching instance, state is changed 

from +1 to 0 while in third switching instance, state is change from 0 to  +1. 

 

There is assumption of maximum number of switching instances that can occur in one sample. 

For example, it is assumed that maximum number of switching events that can occur in one 

sample is three. Then three pairs of registers are allocated individually for all the phases as 

shown in Figure 4-8. Even though the number of switching events are less than three, the 

remaining portion are repeated by the last switching time and switching state as shown in 

Figure 4-4.   

 

Figure 4-7 Program Modulation with sampling period. 
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The generation of synchronous optimal modulation pattern occurs in PowerPC processor. For 

every sampling period, the switching time and the state of all the phases are calculated 

independently and are stored in register independently as shown in Figure 4-8 This is the 

responsibility of other collaborating project [15].  While  this  project  only  pays attention to  

the processor bus or register where switching state for particular switching time for one 

sample are stored in register as shown in Figure 4-8. These are the input to the IP as shown in 

Figure 4-6 

 

 
 

Figure 4-8 Register for phase to phase implementation. 
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4.2.2.2 Methodology 

This section defines how three phase Synchronous Optimal Modulation circuit is implanted as 

digital circuit in FPGA. From Power PC processor, time and state for one sampling period for 

all the phases are kept in Processor Local Bus in ascending order of switching time.  It is seen 

from Figure 4-9, there are separate circuit for every phase which are operating in parallel. This 

kind of parallel processing is possible in hardware part of FPGA. The codes written in VHDL 

actually generate the digital circuits. These parallel circuits are synchronised by one single 

clock. The clock generates the up counter signal which counts from zero to uppermost value 

and settles down to zero. The counting signal is represented by the right angle triangle. Up 

counter continues to generate this signal. The time period of the up counting signal is equal 

to the length of one sampling period. Since the digital circuits are identical in all the phases, 

only one phase is discussed.  

 

At the beginning of each sampling time or when counter starts from zero, registers are stored 

with all switching times and states. The switching times and switching states of all the phases 

stored in the registers are transferred to the local arrays. Switching time which is stored in array 

is compared with counter. The pointer called I is pointing to the first switching event. Whenever 

counter equals the switching time pointed by I then output of the comparator is high. As the 

rising edge of the pulse is seen, state for the switching time pointed by I is latched. This means 

that inverter is switched to the given state for the given switching time. The rising edge of pulse 

will also trigger the edge trigger block to increment the value of I and points to the next 

switching time and next switching state.  The new switching time is not equal to counter value so 

the comparator will again give low pulse. The comparator will wait till counter equals to next 

switching time for the output to be high. Then the process continues by incrementing counter 

and comparing to the second switching time. By the end of one sampling period, all the 

switching states in one sample are latched. Counter reaches the maximum value and resets to 

zero. This is beginning of another sample and all the process repeats. 

The method is same for all the phases. The R phase digital circuit latches the switching states of  

R phase and similarly other phases latch switching states of their own states. The latched value is 

taken to the inverter for switching.  
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Figure 4-9 Function of SOM_PHASE_IP [43]. 
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Since the parallel processing of different phases are possible at the same time, this indicates the 

possibility of extension of this firmware to the multiphase machine. By incrementing number of 

phases also, the executing time for the modulation process is also extremely fast because all the 

phases are processed parallel. However this kind of parallel processing is not available in 

conventional programming language like C, C++ etc. 

The method is also understood from the flowchart given in Figure 4-10. The flowchart is given 

for R phase only. However the method is all same for all the phase.  

 

Figure 4-10 Flowchart for SOM_PHASE_IP. 
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At the start of every sampling, up counter, variable I starts from zero. The switching times and 

switching states of all the phases stored in the registers are transferred to the local arrays. 

Switching times are stored in local array called Memory_time while switching states are stored 

in local array called Memory_state. The maximum value of counter is called Cmax. The 

constraint for this IP is that software must put the switching times and switching states in 

registers in the ascending order of switching time. 

 

When counter increments by one value, then it is compared with the first value of 

Memory_time(I), counter keeps on incrementing its value until the counter equals to the first 

switching time. Once it equals the first switching time, R phase would be latched to the first 

switching state stored in the array Memory_state(I). After latching, value of I is incremented. 

 

Then the process continues by incrementing counter and comparing to the second switching 

time. By the end of one sampling period, all the switching states in one sample are latched. 

Counter reaches the maximum value and resets to zero which is the beginning of new sample 

and all the process repeats. VHDL codes for SOM_PHASE_IP is shown in  Appendix C. 

4.2.3 SOM_spacevector_IP 
This IP also generates the synchronous optimal modulation for three phases. However the 

methodology of generation is slightly different from that defined in SOM_PHASE_IP. In the 

SOM_PHASE_IP, the states in each phase are treated separately while in this section all the 

states of all the phases are taken into consideration at once. But input and output signals are same 

as that of SOM_PHASE_IP seen from Figure 4-11. 

 

Figure 4-11 Input and output of SOM_spacevector_IP. 
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4.2.3.1 Background 

The switching instances in all the phases (RYB) of one sampling period are given in the Figure 

4-3. The total numbers of switching states in all the phases are seven. In SOM_spacevector_IP 

the states of all the phases are accumulated and placed in one register.  

 
Figure 4-12 Register used for SOM_spacevector_IP. 

Time registers consist the switching time of any phase and the state registers consist of the states 

of all the phases at that time. Even though the state of only one phase changes, state registers also 

consist of states of other two remaining phases. The state registers consist of vector of states of R 

phase, Y phase and B phase respectively. In this way, the numbers of registers are also 

decreased. This kind of space vector implementation also helps in DC bus balancing in NPC 

inverter. 

4.2.3.2 Methodology 

The registers store the switching times and switching states in ascending order of switching 

time. The state indicated in this section is the vector consisting states of all the three phases. 

According to Figure 4-13, counter generates up counter signal which counts from 0 to 

maximum value and resets again to 0. The counting signal is represented by the right angle 

triangle. Up counter continues to generate this signal. The time period of the up counting 

signal is equal to the length of one sampling period. 

 

 At the beginning of each sampling time, registers are stored with all switching times and states. 

The switching times and switching states of all the phases stored in the registers are transferred 

to the local arrays. Switching time which is stored in array is compared with counter. The pointer 

called I is pointing to the first switching time. Whenever Counter equals the switching time 

pointed by I then output of the comparator is high. As the rising edge of the pulse is seen, state 
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vector for the switching event pointed by I is latched. This means that inverter is switched to the 

given state vector for the given switching time. The rising edge of pulse will also trigger the 

edge trigger block to increment the value of I and points to the next switching time and next 

switching state vector.  The new switching time is not equal to Counter value so the comparator 

will again give low pulse. The comparator will wait till Counter equals to next switching time 

for the output to be high. Then the process continues by incrementing counter and comparing to 

the second switching time. By the end of one sampling period, all the switching states in one 

sample are latched. Counter reaches the maximum value and resets to zero which is the 

beginning of new sample and all the process repeats. 

It is seen the methodology is almost same like that described for SOM_PHASE_IP. The only 

difference is the placement of state vectors in the state register. This method can also be 

implemented for multiphase machine. The state vector length would be increased and number of 

switching per sampling would be increased when implemented on multiphase system. Hence this 

IP can easily be extended for multiphase machine too.  

 
Figure 4-13 Function of SOM_spacevector_IP[43]. 

The flowchart for SOM_spacevector_IP is shown in Figure 4-14. At the start of every 

sampling period, Up counter, variable I starts from zero. The switching times and switching 
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states of all the phases stored in the registered is transferred to the local arrays. Switching times 

are stored in local array called Memory_time while switching states are stored in local array 

called Memory_state. The maximum value of counter is called Cmax. The constraint for this IP 

is that software must put the switching times and switching states in registers in the ascending 

order of switching time. 

 

When counter increment by one value, then it is compared with the first value of 

Memory_time(I), counter keeps on incrementing its value until the counter equals to the first 

switching time. Once it equals the switching time, all the vectors would be latched to the 

switching vector stored in the array Memory_state(I). After latching, value of I is incremented.  

 

Then the process continues by incrementing counter and comparing to the second switching 

time. By the end of one sampling period, all the switching states in one sample are latched. 

Counter reaches the maximum value and resets to zero which is the beginning of new sample 

and the process repeats.  VHDL codes for SOM_spacevector_IP is shown in  Appendix D. 

 
Figure 4-14 Flowchart for SOM_spacevector_IP. 
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4.3 Global Peripheral Repository (user) 
Drive control applications seek complex algorithm structure. In order to make the design of 

control algorithms more manageable and less intuitive, reusability of already made IP can be 

done. Some of the IPs are already created by Kjell Ljøkelsøy of SINTEF. The IPs which are 

taken from his library source are described briefly below. 

4.3.1.1 Vekselretter tilkobling (Inverter Connection):  
 

Vekselretter tilkobling is the Norwegian word for Inverter Connection. The input and output 

signal for this IP is shown in Figure 4-15 .  

 
Figure 4-15 Input and output Vekslretter Tilkobling. 

This IP is only applied for two level, three phase converter as shown in Figure 4-16. The upper 

switches are TA+ , TB+ , TC+  while the lower switches are TA- , TB- , TC- . The signal to the lower 

switch is complementary to the signal to the upper switch. Only the signal for the upper switch is 

given as input (Driversignal_inn) to Vekselretter tilkobling. It does some operation to produce 

the signal for upper as well as lower switch. The output Driver Signaler consist the signal for all 

the switch of the two level inverter. 

 
Figure 4-16 Two Level three phase converter. 
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The Figure 4-17 shows the function of IP. Driversignal_inn gives the signal to the upper switch 

while driversignal_inn_L gives the signal to the lower switch. These two signals can be 

separately given. Another choice is giving only the upper signal so that lower signal can be 

dependent on the upper signal. Such choice is handled by 

NEDRE_DRIVER_SEPARAT_KILDE. This is the Norwegian form of  

lower_driver_separate_source. There are four choices for getting the output, driver_ut_H and 

driver_ut_L controlled by signal called funksjon_H and funksjon_L respectively. The output can 

be permanently off (0), invertered driversignal_inn , same signal as driversignal_inn or 

permanently on(1).  

 
Figure 4-17 Function of Vekslretter Tilkobling[42]. 

In this project work, NEDRE_DRIVER_SEPARAT_KILDE signal is made zero meaning there 

are no separate lower driver signal. Only upper driver signal is used and lower signal depends on 

upper signal. The output of the driver_ut_H is the signal driversignal_inn itself while the output 

of the driver_ut_L is inverted driversignal_inn. It is because signals to the lower switches are 

complementary to the upper switches drive signal. driver_ut_H, driver_ut_L is collectively 

called Driver Signaler which is the output of the Vekselretter tilkobling IP. 

4.3.1.2 Inverter for three level converter 
Neutral Point clamped (NPC) converter is used for three level converter as shown in Figure 4-18.  

NPC converter is combination of two, 2 level converter. T1 and T3 are one set of two level 

converter where T3 is the complement of T1. Similarly T2 and T4 are another set of two level 

converter. Hence for the application of three level converter, two Vekselretter tilkobling IPs must 

be used as shown in Figure 4-19. Vekselretter tilkobling 1 must feed to the one set of two level 
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converter (T1,T3) by  Driver signaler1 while Vekselretter tilkobling2 must feed to another set of 

two level converter (T2, T4) by Driver signaler 2 as shown in Figure 4-18 and Figure 4-19. 

 

Figure 4-18 Neutral Point Clamped Converter. 

 

Figure 4-19 Use of two Vekselretter tilkobling for three level converter. 
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There are three levels in three level converter which are +1 , 0 , -1. In the section 2.3 it is defined 

that if only signals to upper two IGBT are considered then  +1 can be obtained by giving signal 

11 to T1 and T2, while 0 can be obtained by giving signal 01 to T1 and T2. Similarly -1 can be 

obtained by giving signal 00 to T1 and T2. The signals to the lower drives are the complementary 

to the upper drive signals. Hence 11, 01 , 00 are the states that can define the level +1, 0, -1.  

SOM_PHASE_IP or SOM_spacevector_IP gives the state of three phases as the output. The 

output is six bitstream binary value. Suppose the output of the SOM_PHASE_IP is 110001 as 

shown in example shown in Figure 4-20. That means R phase, Y phase, B phase should be 

switched to +1,-1,0 analog switching states respectively because Bit5 and bit4 indicate the state 

for R phase. Bit3 and bit2 is the state for Y phase and remaining bit1 and bit0 is the state for B 

phase. These two bit per phase must be the input to the upper two IGBTs i.e T1 and T2. T1 with 

T3 makes one 2 level converter while T2 with T4 makes another 2 level converter. Hence the 

first bit must be given to Inverter1 (T1, T3) while second bit must be given to Inverter2 (T2, T4). 

 

Figure 4-20 Example. 
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These states are two bit for each phase. The collection of first bit of states of all the phase should 

be given to T1 and collection of second bit of state of all the phase should be given to T2 in order 

to generate the required analog signal from the digital states. The output states of 

SOM_PHASE_IP or SOM_spacevector_IP should be split and given separately to two  

Vekselretter tilkobling IPs.   

Figure 4-19 illustrates how output of SOM_IP is splitted into two. One of the set called 

pwm_ut_T1 goes to Vekselretter tilkobling1 which produce the signal called Driversignaler1 for 

T1 and T3 for all the three phases RYB. Similarly, another set ( pwm_ut_T2) goes to Vekselretter 

tilkobling2 to produce the signal called Driversignaler2 for T2 and T4 for all the three phases 

RYB. The input to the Vekselretter tilkobling is just the signal for the upper switch of the two 

level converter while the output of Vekselretter tilkobling is Driversignal which produce the 

signal for the upper and lower switch. It has been mentioned lot of time that the lower signal is 

the complementary of upper signal. 

4.3.2 Driver Interface via dig_io_connection 
 

It can be seen from Figure 3-4 that FPGA card used in this thesis has only one converter driver 

interface port from which driver signals are given to the converter. The output of Vekselretter 

tilkobling is connected to such driver interface port. But this project deals with three level 

converter so there is one extra Vekselretter tilkobling which also seek another converter driver 

interface port. Therefore this IP called Driver Interface via dig_io_connection is created. This 

would direct the output of Vekselretter tilkobling2 to General Purpose Input Output (GPIO) port 

through DIG_IO signal as shown in Figure 4-21. One additional card called buffer card is 

connected to that GPIO. The input terminal of Buffer card is connected to GPIO and at the 

output, there is converter driver interface port which is required by Vekselretter tilkobling2  to 

send the driver signals to converter. DIG_IO is the name of signal to GPIO. Hence it is clear 

from the name of IP itself that driver interface port is connected to Vekselretter tilkobling via 

dig_io. This is illustrated in Figure 4-21 and Figure 4-22 . 
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Figure 4-21 Use of Driver Interface via Dig_IO_Connection. 

 

Figure 4-22 FPGA card with buffer card. 
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4.4 Driver circuit 
From above section it is found that the output of Vekselretter tilkobling is the driver signal 

circuit for two level, three phase converter. Hence two Vekselretter tilkobling IP is used in this 

project because this project deals with three level, three phase converter. But keeping aside this 

fact, only one Vekselretter tilkobling is considered in this section to find out how the signals 

generated are given to IGBT switch through the driver circuit. 

 
Figure 4-23 Driver Circuit[42]. 

The Figure 4-23 shows how the signals from modulator are connected to the IGBTs. The output 

signals of Vekselretter tilkobling are Driver signaler which contains the signals for upper and 

lower switch of two level, three phase converter. The upper and lower switch of one bridge leg 
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should not be ON at the same time which will short the dc bus. There must be some delay 

between turning ON of two switches in one bridge leg. This delay time is included in this circuit. 

Whenever any fault occurs in power circuit or power transition then they must not affect the 

FPGA control card which is operating in very low voltage than the power circuits. Hence 

galvanic separation is done to isolate the power circuit from logic circuit or FPGA control card. 

4.5 Communication with other collaborating project 
 

In chapter 2, it is already mentioned that in SOM pattern, switching events are determined in a 

way that reduces the harmonic content in the current, also reducing losses due to harmonic 

distortion in the controlled induction machine. Calculation of such switching events is done in 

the other collaboration project using Software Development Kit. In the following text, the terms 

like software, processor routine and SDK refer to the other collaborating project while the terms 

like XPS, hardware refer to this project. 

Digital control signals are carried out by dividing signals into sampling intervals. The hardware 

consists of up counter which starts from zero to maximum value and settle down to zero again. 

Sampling period is equal to the length of counter. The sampling intervals are shown in Figure 

4-24. 

 

Figure 4-24 Samples N and N+1. 

In sampling interval N, the switching times and states of SOM for next sampling interval (N+1) 

are calculated in software and place in register which is accessible by hardware. The time of 
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calculation and placing in register is less than the sampling period. Software waits until the 

current sampling period is finished. As the up counter settles from maximum value to zero, the 

hardware sends interrupt to the software. Once Software gets interrupt, it again starts to calculate 

the switching time and states for next sample (N+2). 

 

 After giving interrupt to software, the up counter in hardware starts from zero in N+1 Sample. 

The switching times and states needed for N+1 Sample is already stored in register by Software. 

Hardware reads the switching times and states from the registers only once and copies into its 

own arrays in order to free the registers so that software can use them to calculate values for N+2 

Sample. During N+1 Sampling period, hardware switch IGBTs to given state at the given time.   

 

During Phase to Phase implementation, software places switching time and switching state of 

each phase independently. And in Space Vector implementation, software places the switching 

times and states of all the phases together as explained in section 4.2.1.  

4.6 Challenges faced  
 

The processor routine calculates the optimal angles for generating synchronous optimal 

modulation. Such calculation should be less than sampling time as described in section 4.5. 

Initially, it was assumed that the sampling time is 1ms. As the project was carried out, it was 

realized that the time for calculation of optimal angles exceed 1ms, to almost 1.5ms.  In order to 

calculate optimum angle software needs to handle floating point unit. Power PC takes very long 

time to handle floating point unit. It takes longer time for the calculation which can be longer 

than sampling period. But it is not accepted.  

In order to solve this problem, the floating point processor is included along with Power PC 

processor. This is added as separate auxiliary processor which is used only to handle the floating 

point unit. This will decrease the calculation time, lesser than the sampling time. After adding 

floating point unit, Figure 4-2 would have addition of apu_fpu_virtex5 as shown in Figure 4-25. 
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Figure 4-25 Floating Point Unit processor and additional memory. 

Program Modulation technique is based on storing the optimum angles. Since this project deals 

with three phase modulation circuit, more memory is required, hence additional memory is 

added as seen in the same figure. After these modification the overall block diagram of hardware 

is shown in  Appendix E. 

4.7 Simulation 
The project is divided into two parts. In this part implementation of three level converter in 

FPGA is done. Once the implementation is finished, this project must be exported to the other 

project. The combination of both of the project will create the synchronous optimal modulation 

for medium voltage multiphase machine. Before exporting to the other project, some of the test 

has to be performed to see if this project successfully achieved its objective. Two method of 

generating PWM signal are discussed in above sections. Therefore both of them are tested. 
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4.7.1 SOM_PHASE_IP 
Suppose the generated signals for three phases from the processor routine (software) are as 

shown in Figure 4-26. It is just the assumption for the test signals.  

 
Figure 4-26 Test signals. 

Digital control signals are sampled. The sampling period is taken to be 500us (sampling 

frequency= 2Khz) for testing while for the project sampling period is 1ms (sampling frequency= 

1Khz). The sampled value for R, Y, B phase are shown in Figure 4-27,Figure 4-28 and Figure 

4-29. It is seen that Sample 1 has three switching instances in all the phases. Similarly, Sample 2, 

Sample 3, Sample 4 has two, one and zero switching instances in all the phases. The meaning of 

zero switching instances in Sample 4 means the states of previous sample is continued in this 

sample. 

 
Figure 4-27 R phase. 
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Figure 4-28 Y phase. 

 
Figure 4-29 B phase. 

This is SOM_PHASE_IP. Hence from the section 4.2.1 it is known that switching times and 

switching states of all the phases are calculated independently and put in the register separately. 

The values of R phase, Y phase and B phase are kept respectively in the register as shown in 

Table 4-1. 

The switching time is converted into relative numbers.  

Frequency of clock in FPGA =40 Mhz     

Time period = 25 ns 

Sampling rate frequency=2 Khz 

Number of counter in one sampling period=40Mhz/2Khz =20000 
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Hence 20000 counting number=500µs  

The sampling period is taken to be 500µs or relatively presented by number 20,000. The time 

must be converted to relative number and placed in register along with its switching state as 

shown in Table 4-1. 
Table 4-1 Placement of Switching Time and State by Software 

Number 
of  
sample 

Phase 
where 
switching 
occurs 

Switching 
Time 
µs 

Switching  
Time 
numbers 

Switching 
State 

Sample1 R 125 5000 11 
 R 200 8000 01 
 R 325 13000 00 
 Y 150 6000 01 
 Y 225 9000 00 
 Y 350 14000 01 
 B 75 3000 00 
 B 175 7000 01 
 B 300 12000 11 
Sample2 R 125 5000 01 
 R 200 8000 11 
 Y 150 6000 11 
 Y 225 9000 01 
 B 75 3000 01 
 B 175 7000 00 
Sample3 R 125 5000 01 
 Y 150 6000 00 
 B 75 3000 01 
Sample4 R   01 
 Y   00 
 B   01 

 

There is one simulation tool called ISIM in Xilinx tool which displays the result before it is 

downloaded into the FPGA card. Register stored as in Table 4-1 is the input to the 

SOM_PHASE_IP. This IP takes the input as the value stored in register and  does its function 

and the result is shown as six bit stream as shown in Figure 4-30. The bit5 and bit 4 shows the 

state of R phase, bit 3 and bit 2 shows the state of Y phase while bit 1 and bit 0 shows the state of 
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B phase. These states are taken to the inverter for switching to the desired state at the desired 

time. 

The simulation is done in Xilinx project Navigator by ISIM tool. 

 The simulation frequency is 500 Ghz. (i.e T=2 ps). 

The upcounter counts from 0 to 20,000.  

For FPGA, frequency of clock=40 Mhz  i.e time period=25 ns 

Therefore, 20000=20000*25 ns=500 us is the Sampling time when implementing on FPGA 

But, For simulation, frequency of clock=500 Ghz i.e time period= 2 ps 

Therefore, 20000= 20000*2 ps=40ns is the sampling time when simulation in ISIM.  
 

 
Figure 4-30 Output of SOM_PHASE_IP in ISIM. 
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 The initial values of the states are 011101. From the section 4.2.2 it is known that the switching 

is done according to the ascending order of switching time in SOM_PHASE_IP. Hence from the 

register in Table 4-1, the desired switching time for desired phase to the desired state are given in 

Table 4-2. In the same table the result of the simulation is also tabulated from the Figure 4-30. 

And the obtained switching time match with the desired switching time. The required phase is 

switched to required switching state which is illustrated  Figure 4-30 and Table 4-2. The phase in 

which switching occurs is shown in bold letter in Table 4-2 . The remaining two phases continue 

its previous state. 
Table 4-2 result of the simulation. 

Number 
of sample 

Desired 
Switching time in 
FPGA (with 
500µs sampling 
time) µs 

Sampling 
period 
Number 
 

Phase 
where 
switching 
occurs 

Desired 
Switching 
time in 
ISIM (with 
40ns as 
sampling 
time) ns 

Desired 
Switching 
state for the 
phase 

Simulation 
output in 
ISIM 
Switching 
time  
ns 

Obtained State in 
ISIM for all the 
phases 
 
 
 
R          Y        B 

Initial 0 0  0  0 01 11  01 
Sample 1 75 3000 B 6 00 6 01 11 00 
 125 5000 R 10 11 10 11 11 00 
 150 6000 Y 12 01 12 11 01 00 
 175 7000 B 14 01 14 11 01 01 
 200 8000 R 16 01 16 01 01 01 
 225 9000 Y 18 00 18 01 00 01 
 300 12000 B 24 11 24 01 00 11 
 325 13000 R 26 00 26 00 00 11 
 350 14000 Y 28 01 28 00 01 11 
Sample 2 75+500=575 3000 B 46 01 46 00 01 01 
 125+500=625 5000 R 50 01 50 01 01 01 
 150+500=650 6000 Y 52 11 52 01 11 01 
 175+500=675 7000 B 54 00 54 01 11 00 
 200+500=700 8000 R 56 11 56 11 11 00 
 225+500=725 9000 Y 58 01 58 11 01 00 
Sample 3 75+1000=1075 3000 B 86 01 86 11 01 01 
 125+1000=1125 5000 R 90 01 90 01 01 01 
 150+1000=1150 6000 Y 92 00 92 01 00 01 
Sample 4 0+1500=1500 0  120  120 01 00 01 

 

After the successful simulation, experiment is carried out in actual FPGA control card as 

shown Figure 4-31 . The output is displayed in the oscilloscope. The switching states of three 

phases are displayed in six leds. Using digital probe, the datas in the leds are fed to the digital 

oscilloscope. The output of the digital oscilloscope is shown in Figure 4-32. There are 6 

signals named as R1, R0, Y1, Y0, B1, B0 pointing the output in led5 to led0 respectively. In 

this experiment, the switching time between two states are observed from graphical way. For 
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example as shown in Figure 4-32, the switching time between state 010101 and 011101 is 

25µs as presented in upper right corner in the graph. 

 

 
Figure 4-31 Testing in FPGA card. 

 
Figure 4-32 Graphical output of states in oscilloscope. 
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In First state 010101 and second state 011101, there is only change in state of Y phase. The 

time required to obtained 010101 state is 625us while the time required to obtained 

011101 is 650us from Table 4-2. This means that the desired switching time between these 

two states is 25us. And the obtained value is also same. 

The experiment is carried out to see the switching time between all states. The result of the 

experiment is presented in tabular form below: 
Table 4-3 Test result. 

State 1 
R Y B 

Switching 
time 1 
(µs) 

State 2 
 

R Y B 

Switching 
time 2 
(µs) 

Desired Time 
Difference 
(µs) 

Observed time 
difference (µs) 

01 11  01 0 01 11 00 75 75 74 
01 11 00 75 11 11 00 125 50 49.8 
11 11 00 125 11 01 00 150 25 24 
11 01 00 150 11 01 01 175 25 24.6 
11 01 01 175 01 01 01 200 25 24.8 
01 01 01 200 01 00 01 225 25 24 
01 00 01 225 01 00 11 300 75 76 
01 00 11 300 00 00 11 325 25 24 
00 00 11 325 00 01 11 350 25 24 
00 01 11 350 00 01 01 575 225 223 
00 01 01 575 01 01 01 625 50 51 
01 01 01 625 01 11 01 650 25 25 
01 11 01 650 01 11 00 675 25 24 
01 11 00 675 11 11 00 700 25 24.8 
11 11 00 700 11 01 00 725 25 24.8 
11 01 00 725 11 01 01 1075 350 349 
11 01 01 1075 01 01 01 1125 50 51 
01 01 01 1125 01 00 01 1150 25 24.8 
01 00 01 1150 01 00 01 1500 350 351 

 

It is seen from the table that observed time difference match with the desired time difference 

except for very small errors. This concludes that it is possible to switch to the desired state at 

the desired switching time for the all three phases. This verifies that codes written are valid for 

implementing synchronous optimal modulation through FPGA. 

4.7.2 SOM_spacevector_IP 
It is assumed that the input signal for SOM_spacevector_IP is also same as for SOM_PHASE_IP 

as shown as in Figure 4-26. They are also sampled as Figure 4-27, Figure 4-28 and Figure 4-29  

According to SOM_spacevector_IP, all the phases are analysed together. Whenever there is 
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switching in one of the phase, then states of all other phases must be placed in register. In this IP, 

software has to place switching time and states in the ascending order of time. Assuming 

Sampling period and all other condition same like in section 4.7.1, the input register to 

SOM_spacevector_IP is shown Table 4-4. 

Table 4-4 Placement of state vector in SOM_spacevector_IP. 

Number of sample Switching_time 
us 

Phase 
where 
switching 
occurs 

State 
 

Initial 0  0111 01 
Sample 1 75 B 011100 
 125 R 111100 
 150 Y 110100 
 175 B 110101 
 200 R 010101 
 225 Y 010001 
 300 B 010011 
 325 R 000011 
 350 Y 000111 
Sample 2 75 B 000101 
 125 R 010101 
 150 Y 011101 
 175 B 011100 
 200 R 111100 
 225 Y 110100 
Sample 3 75 B 110101 
 125 R 010101 
 150 Y 010001 
Sample 4 0  010001 

 

The simulation output in ISIM is exactly same as Figure 4-30 and Table 4-2. In addition the test 

is done on FPGA whose output is also same like Figure 4-32 and Table 4-3.This is expected 

because the input signals are same. Only, the way of giving input and methodology of 

functioning are different in SOM_PHASE_IP and SOM_spacevector_IP. If the input to both of 

them are same, the output is expected to be same. 

From these test it is proved FPGA is able to switch to desired state in desired time. It can be 

exported to the other collaborating project for generating synchronous optimal modulation 

pattern. Due to the time constraint for the collaborating project only SOM_PHASE_IP is used by 

it.  
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5 Experiment Setup 
This thesis also consists of laboratory works for verification of theories. This chapter discuss 

about the experimental setup of the project. The high level schematic laboratory setup is shown 

along with the software development and real time interaction tool. 

5.1 Hardware Setup 
The experiment setup consists of hardware and software components. The hardware component 

is described in this section. 

5.1.1 Setup Overview 
This thesis is meant for the multiphase machine. Hence Six Phase Induction Motor(SPIM) is 

used. As shown in section 2.2, SPIM consists of two set of three phase winding separated by 

some angle. However in this thesis only one set of three phase winding is used as shown in 

Figure 5-1. The load for the motor is DC machine connected to load resistors. SPIM is supplied 

by three level, three phase inverter which is modulated by modulating circuit embedded in FPGA 

board. FPGA is controlled by PC.  

 

Figure 5-1 Overview of experimental setup. 



84 
 

The DC link voltage is obtained by rectifier. The AC input to the rectifiers can be varied using 

the three phase auto transformer which helps to vary DC link voltage as required. Real time 

monitoring is also done using software in PC. The assembled drive is shown in Figure 5-2. 

 

Figure 5-2 Assembly of Six phase machine drives. 

5.1.2 Six-Phase Induction Machine 
The six-phase induction machine used in the experiment has two 3-phase stator winding 

groups, separated by 30 electrical degrees in space. The machine has a squirrel-cage rotor. 

Figure 5-3 and Figure 5-4 shows the external view and terminals of the machine. 

 

Figure 5-3 Six Phase Induction machine (external overview). 
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Figure 5-4 Six Phase Induction Machine, stator terminal. 

The rated power output of the machine is 11.7 kW. The nameplate data and parameters of the 

machine are given in Appendix A. 

5.1.3 DC Machine 
DC machine is separately excited. It is mounted on the same shaft as six phase induction 

machine as load. The armature of the DC machine is connected to load resistors. The load can be 

varied either by changing the value of the load resistors or by varying the field voltage 

(excitation) of the DC machine. The six-phase induction machine is operated as a motor, and acts 

as prime mover as viewed from the DC machine. 

5.1.4 Converter 
Three-phase diode rectifiers are used to convert the AC line voltage into DC. The rectifiers can 

take voltage input of 0 – 400 V rms. The current rating is 63 A. The DC voltage output range is 0 

– 540 V. The front view of one rectifier is shown in Figure 5-5. 
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Figure 5-5 Rectifier used in the lab. 

Three phase three level Neutral Point Clamped Inverter is used as inverter to supply Motor. The 

switch used in the inverter is IGBTs. The inverter is shown in Figure 5-6. This NPC is rated to be 

40KW with dc link voltage of 2x315V. IGBTs are 1200V, 200A rated. 

 

Figure 5-6 Three Level Inverter. 
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5.1.5 FPGA control card 
FPGA used for this project is Xilinx Virtex FX30T. The control card outline with the chip and 

other important peripherals are as shown in Figure 3-4. The modulator signal is designed in 

FPGA control card. The use of FPGA in this thesis is shown in Figure 5-7. 

 

Figure 5-7 Use of FPGA in experiment. 
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5.1.6 Current Measurements 
LEM Current Transducer LA 205-S. is used for stator current measurement. It has a primary 

nominal rms current of 200 A and current transformation ratio is 1:2000. The secondary nominal 

current is 100mA. 

 
Figure 5-8 Current sensor. 

5.2 Software Implementation 
In this section, softwares used to control the motor drives are described. 

5.2.1 Software Environment 
The Xilinx Software Development Kit (SDK) provides an environment for creating software 

platforms and applications targeted for Xilinx embedded processors. SDK features include 

feature-rich C/C++ code editor and compilation environment. The SDK windows looks as shown 

in Figure 3-11. 

The processes which are relatively slow and which are seeking complex design are programmed 

in software. And faster processes are programmed in hardware using IP module which are 

explained in section 3.3. The control code together with the library of IP modules are 

programmed from the PC into the FPGA using a USB connection. The modulating signal for the 

inverter is generated by FPGA.  

Real time monitoring of the drive system can be done using ActiveDSP software on the PC as 

shown in Figure 5-9. The communication is done through the RS232 serial cable connected to 

the computer. Two way communications are possible using Active DSP. It can give input to and 
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output from FPGA. The software enables the real-time logging of data. This data can be saved 

and processed using other software tools such as Matlab. 

 

Figure 5-9 Active DSP for real time monitoring. 

5.2.2 Program Structure 
The program flow and interrupt routines of the drive control system are shown in Figure 5-10. 

The start routine initializes the system and sets up the interrupt mechanisms. The service routine 

consists of the main function of program.  

 

From section 4.5 it is known that the calculation of switching times and states for Nth sample is 

done in N-1 th sample. As the interrupt comes from the hardware for Nth sample, the first task of 

the software would be to place those switching time and states of Nth Sample to the register so 

that hardware can performs its task. Then after placing them in the register, software calculates 

the switching times and states for N+1th sample. Then program returns to Background routine 
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and checks if the program is running or not. If it is running the process continues. If not then stop 

routine is executed which will stop PWM interrupt, timer interrupts etc. 

 

 

 

Figure 5-10 Program flow and interrupt. 
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6 Experimental Results and Discussion 
Processor routine generates the SOM pattern as indicated by chapter 2. It generates optimal 

angles and states acquired at that time and place in register. On the other hand, FPGA switch 

the IGBT to the given switching states at the given optimal angles. 

6.1 Driver, Voltage and Current signal  

6.1.1 Driver signal 
From section 2.6, it is known that for particular value of amplitude modulation index (m) and 

number of pulse per half cycle (N), there is algorithm which gives the optimal angles to 

minimize the total harmonic distortion. These optimal angles are generated in processor routine 

which place these optimal angles and states in register for each sampling period. These register 

are read by FPGA and SOM patterns are generated as shown in figure 6-1. In the figure, 15th and 

14th digital signals are the switching signals for R bridge leg, 13th and 12th gives the signals of Y 

bridge leg while 11th and 10th gives the switching signals for B bridge leg.  

 
Figure 6-1 Driver Signals For Three phase, Three level Converter (for m=1, N=5). 
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Switching states are defined by two bits per phase. These two bits can be combined in four 

different ways among which only three of them are used. They are 11(+1), 01(0) and 00(-1) 

where 10 is the forbidden state. In this thesis three level modulator for three phase is designed in 

FPGA. These digital signals are sent to the 3 level, 3 phase converter( NPC inverter). As 

mentioned in section 2.7, switching waveform has quarter wave symmetry and half wave 

symmetry. This figure shows the switching pulse for three phases. These phases are 1200 out of 

phase with each other. It is seen that number of Pulse per half wave (N) is 5. 

6.1.2 Voltage waveform 
 

The driver signals defined in section 6.1 are given to three phase, three level converter. The state 

represented by these driver signals are two bits. According to Figure 4-18 and Figure 4-20  the 

first bit is given to T1 while second bit is given to T2. The signals to T3 and T4 are 

complementary to T1 and T2 respectively. It has been mentioned many times that driver signal 

11 gives +1(+Vd/2 ) analog state, 01 gives 0 (0 V) analog state while 00 gives -1(–Vd/2) analog 

state. Here Vd is dc link voltage which is given as 50V.  

 

Figure 6-2 Voltage generated by Three phase, Three level Converter (for m=1, N=5). 
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Even though dc link voltage is given 50V in lab, this can be extended for medium voltage 

because IGBT with blocking voltage of 4.5KV is available.  It is interesting to see if the driver 

signals generated by FPGA would be able to switch the IGBT in right manner. Digital signals 

generated by FPGA are given by Figure 6-1. This signal is given to three phase, three level 

converter. The output is shown in Figure 6-2. First waveform is for R phase and other two is for 

Y and B phase respectively. RYB phases are 1200 out of phase with each other.  It is seen that 

there are three voltage levels: +25V(+Vd/2), 0V(0V), -25V(-Vd/2). If these two figures are 

noticed carefully then it is seen than +Vd/2 is result of digital signal 11, 0V is result of digital 

signal 01 while –Vd/2 is formed by digital signal 00. 

6.1.3 Current Waveform 
 

The three phase, three level converter acts like voltage source converter and it is connected to 

induction machine whose rating is shown in Appendix A. The voltage generated by synchronous 

optimal modulation is shown in section 6.1.2. For the same modulation index and number of 

pulse per half cycle(m=1, N=5) the current waveform is inspected.   

 
Figure 6-3 Current given to load (for m=1, N=5). 
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First waveform is for R phase and other two is for Y and B phase respectively. RYB phases are 

1200 out of phase with each other. The current waveform is nearly perfectly sinusoidal without 

ripples for this case. The driver signal, voltage signal and current signal for m=0.3,N=4 and 

m=0.87, N=3 are given in  Appendix F and Appendix G respectively. 

6.1.4 Digital, Voltage, Current signal 
 

To summarize, per phase digital signal, voltage signal and current signal are shown in the same 

frame as shown in Figure 6-4 for m=1, N=5. The lower most waveform is digital signal which 

produce voltage signal in the middle portion. The voltage generated by inverter produce the 

current signal (upper most) to the induction machine. As expected, current is lagging voltage. 

The dc link voltage is given as 50V. It is seen very clearly here that 11 digital signal produce 

+Vd/2 (+25V), 01 produce 0V while 00 digital signal produce –Vd/2(-25V). 

 
Figure 6-4 Digital, Voltage, Current signal per phase for m=1, N=5. 
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6.2 Variation of N with Stator frequency 
Section2.5.2 also indicates that for constant N, switching frequency increase with increased 

stator frequency but when switching frequency is greater than 300Hz then N is decreased as 

stator frequency is increased so that the switching frequency of IGBTs does not exceed 300Hz.  

To verify this, experiment was done. From section 2.8 it is known that (m,N) are the input to the 

modulator, where N is decided by value of stator frequency of induction machine as shown in 

Figure 2-18. Induction machine is the load for voltage source converter. For one particular value 

of m, stator frequency is varied.  Experiment is done to see if N is maintained with changed in 

stator frequency so that switching frequency does not exceed 300Hz.  

savgsw fNf ⋅=,1  where fsw is switching frequency of IGBT and fs is stator frequency.   

The experiment was conducted for m=0.5 and frequency is varied. The following figures from 

Figure 6-5 to Figure 6-8 was obtained for frequency 45 Hz, 55Hz , 65Hz and 80 Hz respectively 

and result is tabulated in Table 6-1. 

 
Figure 6-5 For m=0.5, fs=45Hz, N=6. 
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Figure 6-6 For m=0.5, fs=55Hz, N=5. 

 

Figure 6-7  For m=0.5, fs=65Hz, N=4. 
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Figure 6-8 For m=0.5, fs=80Hz, N=3. 

Table 6-1 variation of N for different fs (m=0.5). 

fs (Hz) N fsw=N.fs (Hz) 
45 6 270 
55 5 275 
65 4 260 
80 3 240 

The results verify that when stator frequency is increased, number of pulse per half period is 

decreased in order to maintain switching frequency of IGBT less than 300Hz.  

It is noticed in Figure 6-6 that the positive pulse and negative pulse are not equal. This problem 

has occurred due to lack of DC bus balancing in this system. The three level converter consists of 

two capacitor which are not equally charged. It seems that lower capacitor is more charged than 

the upper capacitor because negative pulse is higher than positive. From section 2.3.3 the reason 

behind this imbalance is mentioned to be the generation of negative current from neutral point 

which is charging the lower capacitor and discharging the upper capacitor. Hence positive vector 

must be used which charge the upper capacitor and discharge the lower capacitor to balance 

voltage in two capacitor.   
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6.3 Total harmonic distortion 

6.3.1 Line-Line Voltage  
It is shown in Figure 2-9 that line to line voltage of three level converter has five different levels. 

They are +2(+Vd), +1(+Vd/2), 0,-1(-Vd/2),-2(-Vd). The dc link voltage (Vd) is given as 50V. 

The output of three level converter for this thesis for m=0.87, fs=45 is shown in Figure 6-9. It is 

also able to achieve five states as 50V, 25V, 0V, -25V, -50V. The three level converter feeds the 

induction motor.  

From section 2.3.2, it is known that it is the harmonics of line-line voltage that would affect the 

machine. Even if the harmonics occurs in bridge leg voltage, they might not appear in line-line 

voltage and do not affect the machine. Since the line-line voltage has five levels, the harmonics 

are reduced significantly because the multilevel output voltage waveforms have less distorted 

output and are close to sinusoidal waveforms. 

 

 
Figure 6-9 For m= 0.87, fs=45 Hz. 
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6.3.2 Measurement of THD 
The total harmonic distortion for line-line voltage and line current are analyzed at 45 Hz, 50 Hz 

and 55 Hz by increasing the amplitude modulation index. The result of THD for line-line voltage 

is tabulated in Table 6-2. THD is taken as percentage of DC link voltage. The DC link voltage is 

50V. 
Table 6-2 THD (Line Voltage) for different modulation index (m). 

m THD(%) 
fs=45 Hz 

THD(%) 
fs=50 Hz 

THD(%) 
fs=55 Hz 

0.3 42 40.95 44.25 
0.5 38.3 44.2 43 
0.8 29.84 26.96 26.8 
1 27.7 29.96 29.96 

 

THD for line-line voltage is analysed by using Power analyser The example is shown for m=1, 

f=45Hz in Figure 6-10. The result of THD for line current is tabulated in Table 6-3. THD is 

taken as percentage of fundamental current component at m=1 for particular frequency. 

 

 

Figure 6-10 THD for line voltage for m=1, 45 Hz. 
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Table 6-3 THD(Line current) for different modulation index (m). 

m THD(%) 
fs=45 Hz 

THD(%) 
fs=50 Hz 

THD(%) 
fs=55 Hz 

0.3 3.9 5.9 4.59 
0.5 4.4 6.2 6.2 
0.8 2.24 2 1.9 
1 1.9 2.5 2.5 

THD for line current is analysed by using Power analyser The example is shown for m=1, 

f=50Hz in Figure 6-11. 

 
Figure 6-11 THD for line current for m=1, 50 Hz. 

 

 

6.3.3 Analysis 
It is seen from Table 6-2 and Table 6-3 that lower modulation index has higher total harmonic 

distortion. Normally machines do not perform smoothly due to large amount of %THD, which 

causes noise, vibration and heating in machines [44]. For analyzing, per phase voltage and 

current waveform is inspected at different modulation index for particular frequency. The 

following four figures from Figure 6-12 to Figure 6-15 shows per phase voltage and current for 

different modulation index for stator frequency 45Hz. In all these figures, upper figure indicates 

the voltage waveform and lower indicate the current waveform for one phase. 
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Figure 6-12 Current and Voltage for m=0.3, f=45Hz, N=6. 

 

 
Figure 6-13 Current and Voltage for m=0.5, f=45Hz, N=6. 
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Figure 6-14 Current and Voltage for m=0.8, f=45Hz, N=6. 

 

 

Figure 6-15 Current and Voltage for m=1, f=45Hz, N=6. 
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Similarly, the four figures from Figure 16-1 and Figure 16-4 in Appendix H shows per phase 

voltage and current for different modulation index for stator frequency 55Hz. In these figures, 

the upper figures are voltage signals. From these figures it is noticed that lower modulation has 

longer gaps between the voltage pulse or more zero voltage pulse than positive or negative 

voltage, so it is obvious that it is more deviated than the fundamental sinusoidal components and 

has higher THD. These voltage signals generated by lower modulation index has lower order 

harmonic component which could not be even filtered by inductance of induction motor so it is 

seen that current signal has more ripples and more THD than those generated by high modulation 

index. Since DC bus balancing algorithm is not included in this system, it can also increase the 

harmonics in the system. 

In [28], there is graph between normalized weighted total harmonic distortion(WTHD0) versus 

modulation index for SOM pattern as shown in Figure 6-16. In this master thesis instead of 

WTHD0, THD is calculated. Hence it should not be compared with the graph completely but the 

trend can be seen and it seems to match with Table 6-3.  

 

Figure 6-16 WHTD0 vs modulation index for N=6 (f=45Hz). 

6.3.4 Comparison 
Total harmonic distortion for various conventional PWM technique for line voltage is given in 

[44]. It is interesting to compare THD of the Synchronous Optimal Modulation with them at 

stator frequency of 50Hz. Till now the frequency of IGBT is taken as 300Hz. Hence number of 
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pulse per half period (N) is 6 for 50Hz stator frequency. But for comparison, the switching 

frequency of IGBT is made 150Hz. Once switching frequency is made 150Hz in Figure 2-18 N 

would be 3 for 50 Hz stator frequency. 

Since, savgsw fNf ⋅=,1  

THD for line-line voltage is compared for stator frequency = 50Hz, m=1 and switching 

frequency= 150 Hz. 

Table 6-4 Comparison with conventional PWM technique. 

Switching Frequency 150Hz 

SPWM(%THD) 53.88 

Trapezoidal(%THD) 52.70 

SVPWM(%THD) 52.70  

Synchronous Optimal Modulation (%THD) 24.4 

THD of Program Modulation technique is extremely lower than the conventional PWM 

technique like sinusoidal PWM, Trapezoidal PWM and Space vector PWM.  From section 2.6, it 

is explained that in SOM, the switching events are pre-calculated by some software program in 

order to minimize THD. Hence the result is positive that THD is highly minimised and the 

objective of generating SOM pattern to minimize THD for low frequency is fulfilled. Another 

reason for improvement is because in [44] two level inverter is used for feeding induction 

machine while in this thesis three level inverter is used. It is seen from section 6.3.1that line-line 

voltage for three level has 5 level and is more close to sine wave and harmonics are greatly 

reduced. 

6.4 Some of Errors found in the system 
There are some errors at some modulation index and stator frequency. One of the example is 

shown in Figure 6-17 where one switching instance is missed per fundamental period as marked 

by the red circle. The missing pulse in digital signal is reflected upon the voltage signal as well. 

The current signal is also highly distorted than the sinusoidal wave and has high ripples.  For the 

same modulation index for frequency equals to 65 Hz, there is no any missing pulse as shown in 

Figure 6-18. Hence the current waveform is close to sinusoidal, however it has some ripples 

because the modulation index is very low. Another example is given in Appendix I for m=1. 

Figure 17-1 is when there are some missing pulse for m=1, 80Hz and current waveform is 
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deviated from sine wave while Figure 17-2 is when there are no pulse missing for m=1, f=45Hz 

and current wave is close to sine wave.  

 
Figure 6-17 Missing Pulse for m=0.4, f=55 Hz 

 
Figure 6-18 No missing Pulse for m=0.4, f=65 Hz 
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6.4.1 Analysis 
Whenever SOM patterns are completely obtained, current signals have lower ripples and lower 

harmonics. The reason behind this missing pulse is difficult to predict since this master thesis 

works combined with collaborating master thesis. One reason seen from this master thesis is the 

resetting of the up counter after every sampling period. From section 4.2.2 it is known that the 

counter counts from zero to the maximum value and settles down to zero. Actually it does not 

settle down to zero naturally but it is done forcefully by programming in VHDL. From section 

4.5, it is known that whenever counter resets to zero, interrupt is given to processor routine to 

place the value in the register for next Sample. Hence whenever switching event occur in this 

transition, it may be missed. 

6.4.2 Suggestion 
To solve this problem, counter must be used without force resetting. The counter which is used 

in this system is 32 bit. Hence counter reads from 0 to 232-1 and reset to zero itself after 

overflowing or reaching the maximum value. Instead of giving counter like Figure 6-19 which 

resets itself, overflow counter like Figure 6-20 is suggested to be used.  

 

Figure 6-19 Reseting counter. 

However in order to implement this type of overflow counter, processor routine should also 

increment its angular value suitable for every sampling interval. It is because every sampling 

interval starts with different value in this method.  
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Figure 6-20 Overflow counter. 
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6.5 Discussion 
This thesis proposes new modulation technique called synchronous optimal modulation for 

medium voltage multiphase machine. It has to be proposed because medium voltage switch must 

be operated in low switching frequency to reduce the switching loss. It was explained in theory 

why SOM is useful for low switching frequency. This SOM is implemented in FPGA using 

Xilinx tool. SOM patterns are generated by FPGA and given to 3 phase, 3 level converter 

feeding induction machine. 

SOM patterns are sucessfully generated by FPGA for three phase. The lab was set up to see if 

these SOM patterns can be used to operate IGBT in low switching frequency with reduced 

switching loss. As per the expectation positive results were obtained and total harmonic 

distortion in voltage and current is reduced to great extent without even using the filters except 

for the inductance of induction machine. The reduction in harmonics is also enhanced by using 

three level converters because higher level converter would make the signal more close to the 

sinusoidal wave. 

Since DC bus balancing is not included in this thesis, some voltage signals have unequal positive 

and negative pulse. The three level converter consists of two capacitor which are not equally 

charged. Method is suggested to improve DC bus balancing in 3-level converter by using space 

vector method. Harmonics can further be reduced if DC bus balancing is implemented. 

In this thesis, IGBTs are used which are operated in low switching frequency 300 Hz. In order to 

maintain switching frequency of IGBTs less than 300Hz, number of pulse per half period (N) in 

SOM pattern decrease according to increase in stator frequency or vice versa. For operating in 

low stator frequency, required number of pulse is large. But this system works only up to N=6 

and stator frequency of 45 Hz for switching frequency of 300 Hz. Further study can be done to 

increase this value up to 10. For lower stator frequency, N can be greater than 10. It is not good 

idea to implement SOM in this case. It is because SOM works by storing the optimum angle in 

memory. For large N, extremely large value of memory would be required which can be costly. 

It has been explained that for N greater than 10, conventional asynchronous modulation 

technique can be implemented. If asynchronous modulation technique is to be implemented in 

this system for lower stator frequency then software must be able to switch in between 

asynchronous and synchronous modulation. 
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7 Conclusion and further work 

7.1 Conclusion 
For medium voltage drive, IGBTs are used. In order to reduce the harmonics, low switching 

frequency must be used. Low switching frequency needs special modulation technique in order 

to remove sub harmonics. Hence synchronous optimal modulation was introduced for operating 

IGBTs at low switching frequency. Synchronous Optimal Modulation is type of Program 

modulation which generates the optimal switching angles in one fundamental period in order to 

optimize weighted total harmonic distortion by some software program. 

This master thesis is successfully collaborated with other master thesis in order to implement 

synchronous optimal modulation in FPGA for Neutral Point Clamped inverter feeding Induction 

machine. The optimal switching patterns are generated from processor routines which are taken 

by FPGA to create the digital signals for NPC inverter which acts like voltage source converter 

for induction machine. 

The total harmonic distortion is measured for line to line voltage and line current in lab for 

switching frequency of 300Hz. The results show that THD is greatly reduced even for low 

switching frequency. It is also compared with the conventional modulation technique like 

sinusoidal PWM and Space Vector PWM for low switching frequency of 150Hz. The quality of 

output voltage is excessively improved by using synchronous optimal modulation. Hence it is 

proved that synchronous optimal modulation can be applied for low switching frequency with 

lower total harmonics distortion. 

Even though dc link voltage is given 50V in lab, this can be extended for medium voltage 

because IGBT with blocking voltage of 4.5KV is available. In addition even if modulator for 

three phase is built for this master thesis, this can be easily extended for multiphase machine. It 

is because in FPGA, digital circuits per phase are operating in parallel and synchronised by one 

single  clock. 
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7.2 Further Works 
The results obtained in this thesis are interesting. Total harmonic distortion is excessively 

reduced than conventional modulation technique for low switching frequency. However some of 

the improvements can still be done and new features can be added in this system.  

1. Missing pulse in this system can be improved. 

2. The main motivation behind this thesis is to implement synchronous optimal modulation 

for multiphase machine. Even though modulation for three phase machine is 

implemented in FPGA, the system can be easily extended to multiphase machine. 

3. DC bus balancing algorithm can be included in this system. 

4. Test the modulator in the Lab by help of a 3-level 3-phase inverter operating an Induction 

Machine in open-loop control, i.e. V/f-control. 

5. The important filtering functions for voltage and current should be implemented in the 

FPGA. 

6. For operating in low stator frequency, required number of pulse is large. But this system 

works only up to N=6 for switching frequency =300 Hz. Further study can be done to 

increase this value up to 10. 

7. For lower stator frequency, N can be greater than 10 for which conventional 

asynchronous modulation technique can be implemented. 

8. If asynchronous modulation technique is to be implemented in this system for lower 

stator frequency then software must be able to switch in between asynchronous and 

synchronous modulation. 

9. Close loop system can be implemented in order to control speed of motor. 

10. Two different types of hardwares are developed in this master thesis to implement 

modulator by phase to phase method and space vector method. Due to time constraint 

only phase to phase method is used by processor routine. In future, processor routine can 

be developed to implement space vector method as well. 
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9 Appendix A 

 
Figure 9-1 SOM pattern for N=8. 

Table 9-1Rating of induction machine. 

 
Parameter 

 
Explanation 

 
Value 

 
UN 

 
Nominal line to line voltage [Vrms] 

 
400 V 

 
IN 

 
Nominal line current [Arms] 

 
11.8 A 

 
fN 

 
Nominal frequency [Hz] 

 
75 Hz 

 
p 

 
Number of pole pairs 

 
2 

 
nN 

 
Nominal speed [mechanical rpm] 

 
2235 rpm 

 
MN 

 
Nominal output torque [Nm] 

 
50 Nm 

 
PN 

 
Nominal power output [kW] 

 
11.7 kW 

 
cosφN 

 
Nominal power factor 

 
0.77 

 
nMAX 

 
Maximum speed [mechanical rpm] 

 
5000 
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10  Appendix B 
# Virtex5_EDK_basisutgave 
# # 
# Kjell Ljøkelsøy, Sintef Energi AS 
# # 
# Device:    virtex5 xc5vfx30t 
# Package:   ff665 
# Speed Grade:  -1 
# Processor: ppc440_0 
# Processor clock frequency: 400.00 MHz 
# Bus clock frequency: 100.00 MHz 
# On Chip Memory : 128 KB 
 
PARAMETER VERSION = 2.1.0 
 
 PORT KLOKKEOSC = KLOKKEOSC_s, DIR = I, SIGIS = CLK, CLK_FREQ = 40000000 
 PORT LED_RESET_GRONN_ROD = LED_RESET_GRONN_ROD_s, DIR = O, SIGIS = 
RST, RST_POLARITY = 0 
 PORT RS232_INN = RS232_INN, DIR = I 
 PORT RS232_UT = RS232_UT, DIR = O 
 PORT SYSMON_AD_N = SYSMON_AD_N_s, DIR = I, VEC = [10:0] 
 PORT SYSMON_AD_P = SYSMON_AD_P_s, DIR = I, VEC = [10:0] 
 PORT SIG_D = SIG_D_s, DIR = I, VEC = [5:0] 
 PORT DIG_IO1_D = DIG_IO1_D, DIR = IO, VEC = [15:0] 
 PORT RELE = RELE_s, DIR = O, VEC = [3:0] 
 PORT LED_SYSMON_ROD = LED_SYSMON_ROD_s, DIR = O 
 PORT LED_SYSMON_GUL = LED_SYSMON_GUL_s, DIR = O 
 PORT LED_USB_GRONN = LED_USB_GRONN_s, DIR = O 
 PORT DDR2_ODT = DDR2_ODT, DIR = O 
 PORT DDR2_A = DDR2_A, DIR = O, VEC = [12:0] 
 PORT DDR2_BA = DDR2_BA, DIR = O, VEC = [2:0] 
 PORT DDR2_CAS = DDR2_CAS, DIR = O 
 PORT DDR2_CKE = DDR2_CKE, DIR = O 
 PORT DDR2_CS = DDR2_CS, DIR = O 
 PORT DDR2_RAS = DDR2_RAS, DIR = O 
 PORT DDR2_WE = DDR2_WE, DIR = O 
 PORT DDR2_DM = DDR2_DM, DIR = O, VEC = [3:0] 
 PORT DDR2_DQS = DDR2_DQS, DIR = IO, VEC = [3:0] 
 PORT DDR2_DQSN = DDR2_DQSN, DIR = IO, VEC = [3:0] 
 PORT DDR2_D = DDR2_D, DIR = IO, VEC = [31:0] 
 PORT DDR2_CK = DDR2_CK, DIR = O 
 PORT DDR2_CKN = DDR2_CKN, DIR = O 
 PORT F_WR_LL = F_WR_LL, DIR = O 
 PORT F_WR_HL = F_WR_HL, DIR = O 
 PORT F_WR_HH = F_WR_HH, DIR = O 
 PORT F_RD = F_RD, DIR = O 
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 PORT F_A = F_A, DIR = O, VEC = [26:1] 
 PORT F_D = F_D, DIR = IO, VEC = [31:0] 
 PORT F_CS = F_CS, DIR = O 
 PORT F_RESET = F_RESET_s, DIR = O, SIGIS = RST 
 PORT EE_CS = EE_CS, DIR = O 
 PORT USB_CS = USB_CS, DIR = O 
 PORT USB_INT = USB_INT_s, DIR = I, SIGIS = INTERRUPT, SENSITIVITY = 
EDGE_RISING 
 PORT CAN_INT = CAN_INT_s, DIR = I, SIGIS = INTERRUPT, SENSITIVITY = 
EDGE_RISING 
PORT ETH_CRS_CRS_DV = 'Z', DIR = I 
 PORT ETH_COL = 'Z', DIR = I 
 PORT ETH_PD_INT = 'Z', DIR = I 
 PORT ETH_RX_CLK = ETH_RX_CLK, DIR = I 
 PORT ETH_RX_DV = ETH_RX_DV, DIR = I 
 PORT ETH_RX_D = ETH_RX_D, DIR = I, VEC = [3:0] 
 PORT ETH_TX_CLK = ETH_TX_CLK, DIR = I 
 PORT ETH_TX_D = ETH_TX_D, DIR = O, VEC = [3:0] 
 PORT ETH_TX_EN = ETH_TX_EN, DIR = O 
 PORT ETH_RX_ERR = ETH_RX_ERR, DIR = I 
 PORT ETH_RESET_N = ETH_RESET_N, DIR = O 
 PORT ETH_KLOKKE = clk_25_0000MHz, DIR = O, SIGIS = CLK, CLK_FREQ = 25000000 
 PORT ETH_MDIO = ETH_MDIO, DIR = IO 
 PORT ETH_MDC = ETH_MDC, DIR = O 
# dummypinne 
 PORT EKSTRAPINNE2 = ETH_TX_ERR, DIR = O 
 PORT CAN_KLOKKE = klokke_20_MHz, DIR = O, SIGIS = CLK, CLK_FREQ = 20000000 
 PORT USB_KLOKKE = klokke_12_MHz, DIR = O, SIGIS = CLK, CLK_FREQ = 12000000 
 PORT VE_PAA = VE_PAA, DIR = O 
 PORT VE_DRIVER = VE_DRIVER_UT, DIR = O, VEC = [5:0] 
 PORT VE_OK = VE_OK, DIR = I 
 PORT VE_T = VE_T, DIR = I, VEC = [3:0] 
 PORT LED_VE = LED_VE, DIR = O, VEC = [1:0] 
 PORT AD_REF_KLOKKE_N = AD_REF_KLOKKE_N, DIR = O 
 PORT AD_REF_KLOKKE_P = AD_REF_KLOKKE_P, DIR = O 
 PORT AD_DCON = AD_DCON, DIR = I, SIGIS = CLK, CLK_FREQ = 240000000 
 PORT AD_DCOP = AD_DCOP, DIR = I, SIGIS = CLK, CLK_FREQ = 240000000 
 PORT AD_FCON = AD_FCON, DIR = I 
 PORT AD_FCOP = AD_FCOP, DIR = I 
 PORT AD_D_N = AD_D_N, DIR = I, VEC = [7:0] 
 PORT AD_D_P = AD_D_P, DIR = I, VEC = [7:0] 
 PORT AD_CSB = AD_CSB, DIR = O 
 PORT AD_SDIO = AD_SDIO, DIR = IO 
 PORT AD_SCLK = AD_SCLK, DIR = O 
 PORT CAN_SCK = CAN_SCK, DIR = O 
 PORT CAN_SDO = CAN_SDO, DIR = I 
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 PORT CAN_SDI = CAN_SDI, DIR = O 
 PORT CAN_CS = CAN_CS, DIR = O 
 PORT DA_D = DA_D, DIR = O, VEC = [11:0] 
 PORT DA_AB_CS = DA_AB_CS, DIR = O 
 PORT DA_CD_CS = DA_CD_CS, DIR = O 
 PORT DA_RW = DA_RW, DIR = O 
 PORT DA_A_B = DA_A_B, DIR = O 
 PORT LED_TEST = LED_TEST_s, DIR = O, VEC = [5:0] 
 PORT som_phase_ip_0_interupt_port_pin = som_phase_ip_0_interupt_port, DIR = O, SIGIS = 
INTERRUPT, SENSITIVITY = EDGE_RISING 
 PORT DIG_IO3_D = DIG_IO3_D, DIR = IO, VEC = [15:0] 
 
 
BEGIN ppc440_virtex5 
 PARAMETER INSTANCE = ppc440_0 
 PARAMETER HW_VER = 1.01.a 
 PARAMETER C_PPC440MC_CONTROL = 0x8060008F 
 PARAMETER C_APU_CONTROL = 0b00000010000000001 
 PARAMETER C_IDCR_BASEADDR = 0b0000000000 
 PARAMETER C_IDCR_HIGHADDR = 0b0011111111 
 PARAMETER C_SPLB0_NUM_MPLB_ADDR_RNG = 0 
 PARAMETER C_SPLB1_NUM_MPLB_ADDR_RNG = 0 
 PARAMETER C_NUM_DMA = 1 
 BUS_INTERFACE JTAGPPC = jtagppc_cntlr_0_0 
 BUS_INTERFACE RESETPPC = ppc_reset_bus 
 BUS_INTERFACE MPLB = plb_v46_0 
 BUS_INTERFACE PPC440MC = ppc440_0_PPC440MC 
 BUS_INTERFACE LLDMA0 = xps_ll_temac_0_LLINK0 
 BUS_INTERFACE MFCB = fcb_v20_0 
 PORT CPMC440CLK = proc_clk_s 
 PORT CPMPPCMPLBCLK = sys_clk_s 
 PORT CPMPPCS0PLBCLK = sys_clk_s 
 PORT CPMDMA0LLCLK = sys_clk_s 
 PORT CPMINTERCONNECTCLKNTO1 = net_vcc 
 PORT CPMMCCLK = clk_200_0000MHzPLL0_ADJUST 
 PORT CPMINTERCONNECTCLK = clk_200_0000MHzPLL0 
 PORT EICC440EXTIRQ = ppc440_0_EICC440EXTIRQ 
 PORT PPCEICINTERCONNECTIRQ = ppc440_0_PPCEICINTERCONNECTIRQ 
END 
 
BEGIN jtagppc_cntlr 
 PARAMETER INSTANCE = jtagppc_cntlr_0 
 PARAMETER HW_VER = 2.01.c 
 BUS_INTERFACE JTAGPPC0 = jtagppc_cntlr_0_0 
END 
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BEGIN apu_fpu_virtex5 
 PARAMETER INSTANCE = apu_fpu_virtex5_0 
 PARAMETER HW_VER = 1.01.a 
 BUS_INTERFACE SFCB2 = fcb_v20_0 
END 
 
BEGIN fcb_v20 
 PARAMETER INSTANCE = fcb_v20_0 
 PARAMETER HW_VER = 1.00.a 
 PORT SYS_RST = sys_bus_reset 
 PORT FCB_CLK = klokke_133_333MHz 
END 
 
BEGIN plb_v46 
 PARAMETER INSTANCE = plb_v46_0 
 PARAMETER C_DCR_INTFCE = 0 
 PARAMETER HW_VER = 1.05.a 
 PORT PLB_Clk = sys_clk_s 
 PORT SYS_Rst = sys_bus_reset 
 PORT Bus_Error_Det = plb_v46_0_Bus_Error_Det 
END 
 
BEGIN clock_generator 
 PARAMETER INSTANCE = clock_generator_0 
 PARAMETER HW_VER = 4.01.a 
 PARAMETER C_CLKIN_FREQ = 40000000 
 PARAMETER C_CLKOUT0_FREQ = 100000000 
 PARAMETER C_CLKOUT0_PHASE = 0 
 PARAMETER C_CLKOUT0_GROUP = PLL0_ADJUST 
 PARAMETER C_CLKOUT0_BUF = TRUE 
 PARAMETER C_CLKOUT1_FREQ = 133333333 
 PARAMETER C_CLKOUT1_PHASE = 0 
 PARAMETER C_CLKOUT1_GROUP = PLL0 
 PARAMETER C_CLKOUT1_BUF = TRUE 
 PARAMETER C_CLKOUT2_FREQ = 200000000 
 PARAMETER C_CLKOUT2_PHASE = 90 
 PARAMETER C_CLKOUT2_GROUP = PLL0_ADJUST 
 PARAMETER C_CLKOUT2_BUF = TRUE 
 PARAMETER C_CLKOUT3_FREQ = 200000000 
 PARAMETER C_CLKOUT3_PHASE = 0 
 PARAMETER C_CLKOUT3_GROUP = PLL0 
 PARAMETER C_CLKOUT3_BUF = TRUE 
 PARAMETER C_CLKOUT4_FREQ = 200000000 
 PARAMETER C_CLKOUT4_PHASE = 0 
 PARAMETER C_CLKOUT4_GROUP = PLL0_ADJUST 
 PARAMETER C_CLKOUT4_BUF = TRUE 
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 PARAMETER C_CLKOUT5_FREQ = 25000000 
 PARAMETER C_CLKOUT5_PHASE = 0 
 PARAMETER C_CLKOUT5_GROUP = NONE 
 PARAMETER C_CLKOUT5_BUF = TRUE 
 PARAMETER C_CLKOUT6_FREQ = 400000000 
 PARAMETER C_CLKOUT6_PHASE = 0 
 PARAMETER C_CLKOUT6_GROUP = PLL0 
 PARAMETER C_CLKOUT6_BUF = TRUE 
 PARAMETER C_EXT_RESET_HIGH = 1 
 PARAMETER C_CLKOUT7_FREQ = 20000000 
 PARAMETER C_CLKOUT8_FREQ = 12000000 
 PORT CLKIN = KLOKKEOSC_s_buf 
 PORT CLKOUT0 = sys_clk_s 
 PORT CLKOUT1 = klokke_133_333MHz 
 PORT CLKOUT2 = clk_200_0000MHz90PLL0_ADJUST 
 PORT CLKOUT3 = clk_200_0000MHzPLL0 
 PORT CLKOUT4 = clk_200_0000MHzPLL0_ADJUST 
 PORT CLKOUT5 = clk_25_0000MHz 
 PORT CLKOUT6 = proc_clk_s 
 PORT LOCKED = Dcm_all_locked 
 PORT RST = net_gnd 
 PORT CLKOUT7 = klokke_20_MHz 
 PORT CLKOUT8 = klokke_12_MHz 
END 
 
BEGIN bufg_modul 
 PARAMETER INSTANCE = bufg_modul_0 
 PARAMETER HW_VER = 1.00.a 
 PORT Clk_ut = KLOKKEOSC_s_buf 
 PORT Clk_in = KLOKKEOSC_s 
END 
 
BEGIN xps_bram_if_cntlr 
 PARAMETER INSTANCE = FPGA_BLOKKRAM_0 
 PARAMETER C_SPLB_NATIVE_DWIDTH = 64 
 PARAMETER C_SPLB_P2P = 0 
 PARAMETER C_SPLB_SUPPORT_BURSTS = 1 
 PARAMETER HW_VER = 1.00.b 
 PARAMETER C_BASEADDR = 0xfffe0000 
 PARAMETER C_HIGHADDR = 0xffffffff 
 BUS_INTERFACE SPLB = plb_v46_0 
 BUS_INTERFACE PORTA = FPGA_BLOKKRAM_0_PORTA 
END 
 
BEGIN bram_block 
 PARAMETER INSTANCE = bram_block_0 
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 PARAMETER HW_VER = 1.00.a 
 BUS_INTERFACE PORTA = FPGA_BLOKKRAM_0_PORTA 
END 
 
BEGIN xps_bram_if_cntlr 
 PARAMETER INSTANCE = FPGA_BLOKKRAM_1 
 PARAMETER HW_VER = 1.00.b 
 PARAMETER C_SPLB_P2P = 0 
 PARAMETER C_SPLB_SUPPORT_BURSTS = 1 
 PARAMETER C_SPLB_NATIVE_DWIDTH = 64 
 PARAMETER C_BASEADDR = 0x85810000 
 PARAMETER C_HIGHADDR = 0x8581ffff 
 BUS_INTERFACE PORTA = FPGA_BLOKKRAM_1_PORTA 
 BUS_INTERFACE SPLB = plb_v46_0 
END 
 
BEGIN bram_block 
 PARAMETER INSTANCE = bram_block_1 
 PARAMETER HW_VER = 1.00.a 
 BUS_INTERFACE PORTA = FPGA_BLOKKRAM_1_PORTA 
END 
 
BEGIN proc_sys_reset 
 PARAMETER INSTANCE = proc_sys_reset_0 
 PARAMETER HW_VER = 3.00.a 
 PARAMETER C_EXT_RESET_HIGH = 1 
 PARAMETER C_NUM_PERP_RST = 2 
 BUS_INTERFACE RESETPPC0 = ppc_reset_bus 
 PORT Slowest_sync_clk = sys_clk_s 
 PORT Dcm_locked = Dcm_all_locked 
 PORT Bus_Struct_Reset = sys_bus_reset 
 PORT Peripheral_Reset = sys_periph_reset & LED_RESET_GRONN_ROD_s 
 PORT Peripheral_aresetn = F_RESET_s 
END 
 
BEGIN xps_intc 
 PARAMETER INSTANCE = xps_intc_0 
 PARAMETER HW_VER = 2.01.a 
 PARAMETER C_BASEADDR = 0x81800000 
 PARAMETER C_HIGHADDR = 0x8180ffff 
 BUS_INTERFACE SPLB = plb_v46_0 
 PORT Irq = ppc440_0_EICC440EXTIRQ 
 PORT Intr = ppc440_0_PPCEICINTERCONNECTIRQ & plb_v46_0_Bus_Error_Det & 
xps_ll_temac_0_TemacIntc0_Irpt & xps_timer_1_Interrupt & RS232_Interrupt & CAN_INT_s 
& USB_INT_s & som_phase_ip_0_interupt_port 
END 
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BEGIN mpmc 
 PARAMETER INSTANCE = DDR2_DRAM 
 PARAMETER HW_VER = 6.03.a 
 PARAMETER C_NUM_PORTS = 1 
 PARAMETER C_MEM_PARTNO = MT47H64M16-5E 
 PARAMETER C_MEM_DATA_WIDTH = 32 
 PARAMETER C_MEM_ODT_TYPE = 1 
 PARAMETER C_MEM_REDUCED_DRV = 1 
 PARAMETER C_PIM0_BASETYPE = 5 
 PARAMETER C_MPMC_BASEADDR = 0x00000000 
 PARAMETER C_MPMC_HIGHADDR = 0x0fffffff 
 BUS_INTERFACE PPC440MC0 = ppc440_0_PPC440MC 
 PORT MPMC_Clk0 = clk_200_0000MHzPLL0_ADJUST 
 PORT MPMC_Clk90 = clk_200_0000MHz90PLL0_ADJUST 
 PORT MPMC_Clk0_DIV2 = sys_clk_s 
 PORT MPMC_Clk_200MHz = clk_200_0000MHzPLL0_ADJUST 
 PORT MPMC_Rst = sys_periph_reset 
 PORT DDR2_ODT = DDR2_ODT 
 PORT DDR2_Addr = DDR2_A 
 PORT DDR2_BankAddr = DDR2_BA 
 PORT DDR2_CAS_n = DDR2_CAS 
 PORT DDR2_CE = DDR2_CKE 
 PORT DDR2_CS_n = DDR2_CS 
 PORT DDR2_RAS_n = DDR2_RAS 
 PORT DDR2_WE_n = DDR2_WE 
 PORT DDR2_DM = DDR2_DM 
 PORT DDR2_DQS = DDR2_DQS 
 PORT DDR2_DQS_n = DDR2_DQSN 
 PORT DDR2_DQ = DDR2_D 
 PORT DDR2_Clk = DDR2_CK 
 PORT DDR2_Clk_n = DDR2_CKN 
END 
 
BEGIN xps_epc 
 PARAMETER INSTANCE = FLASH_EEPROM_USB 
 PARAMETER HW_VER = 1.02.a 
 PARAMETER C_PRH0_ADDR_TSU = 100000 
 PARAMETER C_PRH0_ADDR_TH = 120000 
 PARAMETER C_PRH0_ADS_WIDTH = 0 
 PARAMETER C_PRH0_CSN_TSU = 10000 
 PARAMETER C_PRH0_CSN_TH = 120000 
 PARAMETER C_PRH0_WRN_WIDTH = 120000 
 PARAMETER C_PRH0_WR_CYCLE = 300000 
 PARAMETER C_PRH0_DATA_TSU = 100000 
 PARAMETER C_PRH0_DATA_TH = 30000 
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 PARAMETER C_PRH0_RDN_WIDTH = 120000 
 PARAMETER C_PRH0_RD_CYCLE = 150000 
 PARAMETER C_PRH0_DATA_TOUT = 120000 
 PARAMETER C_PRH0_DATA_TINV = 20000 
 PARAMETER C_PRH0_RDY_TOUT = 1000 
 PARAMETER C_PRH0_RDY_WIDTH = 100000 
 PARAMETER C_PRH0_DWIDTH_MATCH = 1 
 PARAMETER C_PRH0_SYNC = 0 
 PARAMETER C_NUM_PERIPHERALS = 3 
 PARAMETER C_PRH_MAX_AWIDTH = 27 
 PARAMETER C_PRH0_AWIDTH = 27 
 PARAMETER C_PRH1_AWIDTH = 16 
 PARAMETER C_PRH1_ADDR_TSU = 100000 
 PARAMETER C_PRH1_ADDR_TH = 10000 
 PARAMETER C_PRH1_ADS_WIDTH = 1000 
 PARAMETER C_PRH1_CSN_TSU = 100000 
 PARAMETER C_PRH1_CSN_TH = 150000 
 PARAMETER C_PRH1_WRN_WIDTH = 200000 
 PARAMETER C_PRH1_WR_CYCLE = 300000 
 PARAMETER C_PRH1_DATA_TSU = 150000 
 PARAMETER C_PRH1_DATA_TH = 1000 
 PARAMETER C_PRH1_RDN_WIDTH = 150000 
 PARAMETER C_PRH1_RD_CYCLE = 250000 
 PARAMETER C_PRH1_DATA_TOUT = 150000 
 PARAMETER C_PRH1_DATA_TINV = 10500 
 PARAMETER C_PRH1_RDY_TOUT = 100 
 PARAMETER C_PRH1_RDY_WIDTH = 1000 
 PARAMETER C_PRH2_AWIDTH = 9 
 PARAMETER C_PRH2_ADDR_TSU = 20000 
 PARAMETER C_PRH2_ADDR_TH = 201000 
 PARAMETER C_PRH2_ADS_WIDTH = 20000 
 PARAMETER C_PRH2_CSN_TSU = 20000 
 PARAMETER C_PRH2_CSN_TH = 40000 
 PARAMETER C_PRH2_WRN_WIDTH = 40000 
 PARAMETER C_PRH2_WR_CYCLE = 50000 
 PARAMETER C_PRH2_DATA_TSU = 30000 
 PARAMETER C_PRH2_DATA_TH = 30000 
 PARAMETER C_PRH2_RDN_WIDTH = 20000 
 PARAMETER C_PRH2_RD_CYCLE = 40000 
 PARAMETER C_PRH2_DATA_TOUT = 40000 
 PARAMETER C_PRH2_DATA_TINV = 30000 
 PARAMETER C_PRH2_RDY_TOUT = 100 
 PARAMETER C_PRH2_RDY_WIDTH = 10000 
 PARAMETER C_PRH1_SYNC = 0 
 PARAMETER C_PRH2_SYNC = 0 
 PARAMETER C_PRH_CLK_PERIOD_PS = 10000 
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 PARAMETER C_PRH1_DWIDTH_MATCH = 1 
 PARAMETER C_PRH2_DWIDTH_MATCH = 1 
 PARAMETER C_PRH1_DWIDTH = 16 
 PARAMETER C_PRH2_DWIDTH = 16 
 PARAMETER C_PRH1_FIFO_ACCESS = 0 
 PARAMETER C_PRH1_BUS_MULTIPLEX = 0 
 PARAMETER C_PRH2_FIFO_ACCESS = 0 
 PARAMETER C_PRH2_BUS_MULTIPLEX = 0 
 PARAMETER C_PRH0_BASEADDR = 0x88000000 
 PARAMETER C_PRH0_HIGHADDR = 0x8fffffff 
 PARAMETER C_PRH1_BASEADDR = 0x80a00000 
 PARAMETER C_PRH1_HIGHADDR = 0x80a0ffff 
 PARAMETER C_PRH2_BASEADDR = 0x80c00000 
 PARAMETER C_PRH2_HIGHADDR = 0x80c0ffff 
 BUS_INTERFACE SPLB = plb_v46_0 
 PORT PRH_Rdy = net_vcc 
 PORT PRH_Wr_n = F_WR_n 
 PORT PRH_Rd_n = F_RD 
 PORT PRH_BE = F_BE_h 
 PORT PRH_Addr = F_A & 'Z' 
 PORT PRH_Data = F_D 
 PORT PRH_CS_n = F_CS & EE_CS & USB_CS 
 PORT PRH_Rst = sys_bus_reset 
 PORT PRH_Clk = sys_clk_s 
END 
 
BEGIN util_vector_logic 
 PARAMETER INSTANCE = f_wr_logikk 
 PARAMETER HW_VER = 1.00.a 
 PARAMETER C_OPERATION = or 
 PARAMETER C_SIZE = 4 
 PORT Res = F_WR_HH & F_WR_HL & 'Z' & F_WR_LL 
 PORT Op1 = F_WR_n & F_WR_n & F_WR_n & F_WR_n 
 PORT Op2 = F_BE_inv 
END 
 
BEGIN util_vector_logic 
 PARAMETER INSTANCE = f_byte_enable_inverter 
 PARAMETER HW_VER = 1.00.a 
 PARAMETER C_OPERATION = not 
 PARAMETER C_SIZE = 4 
 PORT Res = F_BE_inv 
 PORT Op1 = F_BE_h 
END 
 
BEGIN xps_timer 
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 PARAMETER INSTANCE = xps_timer_0 
 PARAMETER HW_VER = 1.02.a 
 PARAMETER C_COUNT_WIDTH = 32 
 PARAMETER C_ONE_TIMER_ONLY = 0 
 PARAMETER C_BASEADDR = 0x83c00000 
 PARAMETER C_HIGHADDR = 0x83c0ffff 
 BUS_INTERFACE SPLB = plb_v46_0 
 PORT Interrupt = xps_timer_1_Interrupt 
END 
 
BEGIN xps_uartlite 
 PARAMETER INSTANCE = RS232 
 PARAMETER HW_VER = 1.01.a 
 PARAMETER C_BAUDRATE = 115200 
 PARAMETER C_DATA_BITS = 8 
 PARAMETER C_ODD_PARITY = 1 
 PARAMETER C_USE_PARITY = 0 
 PARAMETER C_SPLB_CLK_FREQ_HZ = 100000000 
 PARAMETER C_BASEADDR = 0x84000000 
 PARAMETER C_HIGHADDR = 0x8400ffff 
 BUS_INTERFACE SPLB = plb_v46_0 
 PORT RX = RS232_INN 
 PORT TX = RS232_UT 
 PORT Interrupt = RS232_Interrupt 
END 
 
BEGIN spi_io_logikk 
 PARAMETER INSTANCE = spi_io_logikk_0 
 PARAMETER HW_VER = 1.00.a 
 PORT CAN_CS = CAN_CS 
 PORT CAN_SDI = CAN_SDI 
 PORT CAN_SDO = CAN_SDO 
 PORT CAN_SCK = CAN_SCK 
 PORT AD_CSB = AD_CSB 
 PORT AD_SCLK = AD_SCLK 
 PORT AD_SDIO = AD_SDIO 
END 
 
BEGIN xps_ll_temac 
 PARAMETER INSTANCE = Hard_Ethernet_MAC 
 PARAMETER C_FAMILY = virtex5 
 PARAMETER C_PHY_TYPE = 0 
 PARAMETER C_TEMAC1_ENABLED = 0 
 PARAMETER C_BUS2CORE_CLK_RATIO = 1 
 PARAMETER C_TEMAC_TYPE = 0 
 PARAMETER C_TEMAC0_PHYADDR = 0b00001 
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 PARAMETER HW_VER = 2.03.a 
 PARAMETER C_BASEADDR = 0x87000000 
 PARAMETER C_HIGHADDR = 0x8707ffff 
 BUS_INTERFACE SPLB = plb_v46_0 
 BUS_INTERFACE LLINK0 = xps_ll_temac_0_LLINK0 
 PORT TemacPhy_RST_n = ETH_RESET_N 
 PORT TemacIntc0_Irpt = xps_ll_temac_0_TemacIntc0_Irpt 
 PORT MII_TXD_0 = ETH_TX_D 
 PORT MII_TX_EN_0 = ETH_TX_EN 
 PORT MII_TX_CLK_0 = ETH_TX_CLK 
 PORT MII_RX_CLK_0 = ETH_RX_CLK 
 PORT MII_RX_ER_0 = ETH_RX_ERR 
 PORT MII_TX_ER_0 = ETH_TX_ERR 
PORT MII_RX_DV_0 = ETH_RX_DV 
 PORT MII_RXD_0 = ETH_RX_D 
 PORT MDIO_0 = ETH_MDIO 
 PORT MDC_0 = ETH_MDC 
 PORT LlinkTemac0_CLK = sys_clk_s 
END 
 
BEGIN xps_gpio 
 PARAMETER INSTANCE = DIG_IO1_GPIO 
 PARAMETER HW_VER = 2.00.a 
 PARAMETER C_ALL_INPUTS = 0 
 PARAMETER C_GPIO_WIDTH = 16 
 PARAMETER C_IS_DUAL = 0 
 PARAMETER C_BASEADDR = 0x81440000 
 PARAMETER C_HIGHADDR = 0x8144ffff 
 BUS_INTERFACE SPLB = plb_v46_0 
 PORT GPIO_IO = DIG_IO1_D 
END 
 
BEGIN util_vector_logic 
 PARAMETER INSTANCE = signal_inn_inverter 
 PARAMETER HW_VER = 1.00.a 
 PARAMETER C_OPERATION = not 
 PARAMETER C_SIZE = 6 
 PORT Op1 = SIG_D_s 
END 
 
BEGIN ad_omformer_seriemottaker 
 PARAMETER INSTANCE = ad_omformer_seriemottaker_0 
 PARAMETER HW_VER = 1.00.a 
 PARAMETER LEGG_INN_INTERN_DELAYCTRL = 0 
 PARAMETER C_BASEADDR = 0xc0400000 
 PARAMETER C_HIGHADDR = 0xc040ffff 
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 BUS_INTERFACE SPLB = plb_v46_0 
 PORT AD_REF_KLOKKE_INN = KLOKKEOSC_s 
 PORT AD_REF_KLOKKE_N = AD_REF_KLOKKE_N 
 PORT AD_REF_KLOKKE_P = AD_REF_KLOKKE_P 
 PORT AD_DCON = AD_DCON 
 PORT AD_DCOP = AD_DCOP 
 PORT AD_FCON = AD_FCON 
 PORT AD_FCOP = AD_FCOP 
 PORT AD_D_N = AD_D_N 
 PORT AD_D_P = AD_D_P 
 PORT AD_200MHZ_DELAYREFKLOKKE = clk_200_0000MHzPLL0 
 PORT AD_SIGNAL_A = AD_strom_a 
END 
 
BEGIN da_omformer_utgang 
 PARAMETER INSTANCE = DA_omformer_utgang_0 
 PARAMETER HW_VER = 1.00.a 
PARAMETER DEFAULTVERDI_OPPSETTREGISTER = 0x0000000F 
 PARAMETER BREDDE_INN = 16 
 PARAMETER ANTALL_SIGNALKILDER = 2 
 PARAMETER C_BASEADDR = 0xcd600000 
 PARAMETER C_HIGHADDR = 0xcd60ffff 
BUS_INTERFACE SPLB = plb_v46_0 
 PORT DA_RW = DA_RW 
 PORT DA_D = DA_D 
 PORT DA_A_B = DA_A_B 
 PORT DA_AB_CS = DA_AB_CS 
 PORT DA_CD_CS = DA_CD_CS 
 PORT DA_SIGNAL_NY = net_vcc 
END 
 
BEGIN vekselretter_tilkobling 
 PARAMETER INSTANCE = vekselretter_tilkobling_0 
 PARAMETER HW_VER = 1.00.a 
 PARAMETER C_BASEADDR = 0xc5620000 
 PARAMETER C_HIGHADDR = 0xc562ffff 
 BUS_INTERFACE SPLB = plb_v46_0 
 PORT ve_paa = VE_PAA 
 PORT ve_driver = VE_DRIVER_UT 
 PORT ve_ok = VE_OK 
 PORT ve_t = VE_T 
 PORT led_ve = LED_VE 
PORT paa_inn = net_vcc 
 PORT driversignal_inn = sv_pwm_ut_T1 
END 
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BEGIN vekselretter_tilkobling 
 PARAMETER INSTANCE = vekselretter_tilkobling_1 
 PARAMETER HW_VER = 1.00.a 
 PARAMETER C_BASEADDR = 0xc5600000 
 PARAMETER C_HIGHADDR = 0xc560ffff 
 BUS_INTERFACE SPLB = plb_v46_0 
 PORT driversignal_inn = sv_pwm_ut_T2 
 PORT ve_t = ve_t1 
 PORT ve_ok = ve_ok1 
 PORT ve_paa = ve_paa1 
 PORT ve_driver = ve_driver1 
 PORT led_ve = led_ve1 
 PORT paa_inn = net_vcc 
END 
 
BEGIN som_phase_ip 
 PARAMETER INSTANCE = som_phase_ip_0 
 PARAMETER HW_VER = 1.00.a 
 PARAMETER C_BASEADDR = 0xcea00000 
 PARAMETER C_HIGHADDR = 0xcea0ffff 
 BUS_INTERFACE SPLB = plb_v46_0 
 PORT Led_port = LED_TEST_s 
 PORT pwm_ut_T1 = sv_pwm_ut_T1 
 PORT pwm_ut_T2 = sv_pwm_ut_T2 
 PORT interupt_port = som_phase_ip_0_interupt_port 
END 
 
BEGIN driver_interface_via_dig_io_connection 
 PARAMETER INSTANCE = driver_interface_via_dig_io_connection_0 
 PARAMETER HW_VER = 1.00.a 
 PORT ve_ok = ve_ok1 
 PORT ve_paa = ve_paa1 
 PORT ve_driver = ve_driver1 
 PORT ve_t = ve_t1 
 PORT led_ve = led_ve1 
 PORT dig_io = DIG_IO3_D 
END 
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11  Appendix C 
--(VHDL codes for SOM_PHASE_IP)--- 
library ieee; 
use ieee.std_logic_1164.all; 
use ieee.std_logic_arith.all; 
use ieee.std_logic_unsigned.all; 
library proc_common_v3_00_a; 
use proc_common_v3_00_a.proc_common_pkg.all; 
 
entity user_logic is 
  generic 
  ( 
      NO_OF_LEDS       : integer              := 6; 
    NO_OF_PHASES      : integer            := 3; 
   NO_OF_SWITCHINGS    : integer    := 5; 
     C_SLV_DWIDTH            : integer              := 32; 
    C_NUM_REG                  : integer              := 100 
     ); 
  port 
  ( 
        Led_port                   : out  std_logic_vector(NO_OF_LEDS-1 downto 0); 
      pwm_ut_T1           : out std_logic_vector(NO_OF_PHASES-1 downto 0); 
      pwm_ut_T2          : out std_logic_vector(NO_OF_PHASES-1 downto 0); 
     interupt_port           : out std_logic; 
    Bus2IP_Clk                     : in  std_logic; 
    Bus2IP_Reset                   : in  std_logic; 
    Bus2IP_Data                    : in  std_logic_vector(0 to C_SLV_DWIDTH-1); 
    Bus2IP_BE                      : in  std_logic_vector(0 to C_SLV_DWIDTH/8-1); 
    Bus2IP_RdCE                    : in  std_logic_vector(0 to C_NUM_REG-1); 
    Bus2IP_WrCE                    : in  std_logic_vector(0 to C_NUM_REG-1); 
    IP2Bus_Data                    : out std_logic_vector(0 to C_SLV_DWIDTH-1); 
    IP2Bus_RdAck                   : out std_logic; 
    IP2Bus_WrAck                   : out std_logic; 
    IP2Bus_Error                   : out std_logic 
     ); 
  attribute SIGIS : string; 
  attribute SIGIS of Bus2IP_Clk    : signal is "CLK"; 
  attribute SIGIS of Bus2IP_Reset  : signal is "RST"; 
 
end entity user_logic; 
 
------------------------------------------------------------------------------ 
-- Architecture section 
------------------------------------------------------------------------------ 
architecture IMP of user_logic is 
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  --USER signal declarations added here, as needed for user logic 
  ------------------------------------------ 
  -- Signals for user logic slave model s/w accessible register example 
  ------------------------------------------ 
  signal slv_reg0                       : std_logic_vector(0 to C_SLV_DWIDTH-1); 
  signal slv_reg1                       : std_logic_vector(0 to C_SLV_DWIDTH-1); 
    . 
     . 
  signal slv_reg98                      : std_logic_vector(0 to C_SLV_DWIDTH-1); 
  signal slv_reg99                      : std_logic_vector(0 to C_SLV_DWIDTH-1); 
  signal slv_reg_write_sel              : std_logic_vector(0 to 99); 
  signal slv_reg_read_sel               : std_logic_vector(0 to 99); 
  signal slv_ip2bus_data                : std_logic_vector(0 to C_SLV_DWIDTH-1); 
  signal slv_read_ack                   : std_logic; 
  signal slv_write_ack                  : std_logic; 
 signal Max_Counter                       : std_logic_vector( C_SLV_DWIDTH-1 downto 0);  
type vector_array_time is array ( 0 to NO_OF_SWITCHINGS-1)of 
std_logic_vector(C_SLV_DWIDTH-1 downto 0); 
type vector_array_state is array ( 0 to NO_OF_SWITCHINGS-1) of std_logic_vector( 1 downto 
0); 
signal Rmemory_time                       :vector_array_time; 
signal Rmemory_state                      :vector_array_state; 
signal Ymemory_time                       :vector_array_time; 
signal Ymemory_state                      :vector_array_state; 
signal Bmemory_time                       :vector_array_time; 
signal Bmemory_state                      :vector_array_state; 
signal Rcount_down                        : integer; 
signal Ycount_down                        : integer; 
signal Bcount_down                        : integer; 
type initial is array (0 to NO_OF_PHASES-1) of std_logic_vector(1 downto 0); 
signal initial_value: initial:=("01", "11" ,"01"); 
signal Rn: integer:=0; 
signal Yn: integer:=0; 
signal Bn: integer:=0; 
signal testsignal   : std_logic_vector(5 downto 0); 
signal pwm              : std_logic_vector(NO_OF_PHASES-1 downto 0); 
signal pwm_com              : std_logic_vector(NO_OF_PHASES-1 downto 0); 
signal pwm_T1             : std_logic_vector(NO_OF_PHASES-1 downto 0); 
signal pwm_T2             : std_logic_vector(NO_OF_PHASES-1 downto 0); 
signal interupt_out : std_logic:='0'; 
--- Here reading and writing in the 100 register take place which is removed in this thesis 
because it is bulky   
  -- ##################################################### 
Max_Counter <= slv_reg60; 
---R phase---------------- 
Rphase:process(Bus2IP_Clk) 
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begin 
if(Bus2IP_Clk'event and Bus2IP_Clk='1') then 
interupt_out<='0'; 
 if (Rcount_down<Max_Counter) then 
   if (Rcount_down=0) then 
   Rmemory_time(0) <=slv_reg0; -- time_R0 
   Rmemory_time(1) <=slv_reg1; -- time_R1 
   Rmemory_time(2) <=slv_reg2; -- time_R2 
   Rmemory_time(3) <=slv_reg3; -- time_R3 
   Rmemory_time(4) <=slv_reg4; -- time_R4 
 
   Rmemory_state(0) <=slv_reg30(30 to 31); -- state_R0 
   Rmemory_state(1) <=slv_reg31(30 to 31); -- state_R1  
   Rmemory_state(2) <=slv_reg32 (30 to 31);  -- state_R2 
   Rmemory_state(3) <=slv_reg33 (30 to 31);  -- state_R3 
   Rmemory_state(4) <=slv_reg34 (30 to 31);  -- state_R4 
 
   testsignal(5 downto 4) <= initial_value(0); 
   end if; 
    
   if (Rcount_down=Rmemory_time(Rn)) then 
       testsignal(5 downto 4)<=Rmemory_state(Rn); 
     if (Rn<NO_OF_SWITCHINGS-1) then 
     Rn<=Rn+1; 
     else 
     Rn<=0; 
     end if; 
   end if; 
  Rcount_down<=Rcount_down+1; 
 else 

Rn<=0; 
 Rcount_down<=0; 
 initial_value(0)<=testsignal(5 downto 4); 
 interupt_out<='1'; 
end if; 
end if;  
end process; 
------------------------Y Phase----------------------------------------- 
Yphase:process(Bus2IP_Clk) 
 begin 
  if(Bus2IP_Clk'event and Bus2IP_Clk='1') then 
 if (Ycount_down<Max_Counter) then 
   if (Ycount_down=0) then 
    Ymemory_time(0) <=slv_reg10; -- time_Y0 
   Ymemory_time(1) <=slv_reg11; -- time_Y1 
   Ymemory_time(2) <=slv_reg12; -- time_y2 
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   Ymemory_time(3) <=slv_reg13; -- time_Y3 
   Ymemory_time(4) <=slv_reg14; -- time_Y4 
    
   Ymemory_state(0) <=slv_reg40 (30 to 31);  -- state_Y0 
   Ymemory_state(1) <=slv_reg41 (30 to 31);  -- state_Y1 
   Ymemory_state(2) <=slv_reg42 (30 to 31);  -- state_Y2 
   Ymemory_state(3) <=slv_reg43 (30 to 31);  -- state_Y3 
   Ymemory_state(4) <=slv_reg44 (30 to 31);  -- state_Y4 
    
   testsignal(3 downto 2) <= initial_value(1); 
                                         end if; 
 
   if (Ycount_down=Ymemory_time(Yn)) then 
       testsignal(3 downto 2)<=Ymemory_state(Yn); 
     if (Yn<NO_OF_SWITCHINGS-1) then 
     Yn<=Yn+1; 
     else 
     Yn<=0; 
     end if; 
   end if; 
    
   Ycount_down<=Ycount_down+1; 
 Else 

Yn<=0; 
 Ycount_down<=0; 
 initial_value(1)<=testsignal(3 downto 2); 
end if; 
end if;  
end process;  
------------------------------------------------------------------------- 
Bphase:process(Bus2IP_Clk) 
 begin 
  if(Bus2IP_Clk'event and Bus2IP_Clk='1') then 
 if (Bcount_down<Max_Counter) then 
   if (Bcount_down=0) then 
   Bmemory_time(0) <=slv_reg20; -- time_B0 
   Bmemory_time(1) <=slv_reg21; -- time_B1 
   Bmemory_time(2) <=slv_reg22; -- time_B2 
   Bmemory_time(3) <=slv_reg23; -- time_B3 
   Bmemory_time(4) <=slv_reg24; -- time_B4 
    
   Bmemory_state(0) <=slv_reg50 (30 to 31);  -- state_B0 
   Bmemory_state(1) <=slv_reg51 (30 to 31);  -- state_B1 
   Bmemory_state(2) <=slv_reg52 (30 to 31);  -- state_B2 
   Bmemory_state(3) <=slv_reg53 (30 to 31);  -- state_B3 
   Bmemory_state(4) <=slv_reg54 (30 to 31);  -- state_B4 
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    testsignal(1 downto 0) <= initial_value(2); 
   end if; 
    
  if (Bcount_down=Bmemory_time(Bn)) then 
       testsignal(1 downto 0)<=Bmemory_state(Bn); 
              if (Bn<NO_OF_SWITCHINGS-1) then 
    Bn<=Bn+1; 
     else 
    Bn<=0; 
     end if; 
  end if; 
      
  Bcount_down<=Bcount_down+1;  
else 
 Bcount_down<=0; 
 initial_value(2)<=testsignal(1 downto 0);   
end if; 
end if;  
end process; 
----giving the switching pulse to three level converter--------------assuming R= bit 5-4, Y=bit 3-2, 
B= bit 1-0 
------signal for T1-------- 
pwm_T1(0) <=testsignal(5);  --R phase 
pwm_T1(1) <=testsignal(3);  --Y phase 
pwm_T1(2) <=testsignal(1); -- B phase 
------signal for T2-------- 
pwm_T2(0) <=testsignal(4);  --R phase 
pwm_T2(1) <=testsignal(2);  --Y phase 
pwm_T2(2) <=testsignal(0); -- B phase 
 
Led_port<=testsignal; 
pwm_ut_T1<= pwm_T1; 
pwm_ut_T2<= pwm_T2; 
interupt_port<=interupt_out; 
--
##############################################################################
########## 
end IMP; 
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12  Appendix D 
 
--VHDL codes for SOM_spacevector_IP 
 
library ieee; 
use ieee.std_logic_1164.all; 
use ieee.std_logic_arith.all; 
use ieee.std_logic_unsigned.all; 
library proc_common_v3_00_a; 
use proc_common_v3_00_a.proc_common_pkg.all; 
 
entity user_logic is 
  generic 
  ( 
      NO_OF_LEDS       : integer              := 6; 
    NO_OF_PHASES      : integer            := 3; 
     C_SLV_DWIDTH            : integer              := 32; 
    C_NUM_REG                  : integer              := 30 
     ); 
  port 
  ( 
        Led_port                   : out  std_logic_vector(NO_OF_LEDS-1 downto 0); 
      pwm_ut_T1           : out std_logic_vector(NO_OF_PHASES-1 downto 0); 
      pwm_ut_T2          : out std_logic_vector(NO_OF_PHASES-1 downto 0); 
     interupt_port           : out std_logic; 
    Bus2IP_Clk                     : in  std_logic; 
    Bus2IP_Reset                   : in  std_logic; 
    Bus2IP_Data                    : in  std_logic_vector(0 to C_SLV_DWIDTH-1); 
    Bus2IP_BE                      : in  std_logic_vector(0 to C_SLV_DWIDTH/8-1); 
    Bus2IP_RdCE                    : in  std_logic_vector(0 to C_NUM_REG-1); 
    Bus2IP_WrCE                    : in  std_logic_vector(0 to C_NUM_REG-1); 
    IP2Bus_Data                    : out std_logic_vector(0 to C_SLV_DWIDTH-1); 
    IP2Bus_RdAck                   : out std_logic; 
    IP2Bus_WrAck                   : out std_logic; 
    IP2Bus_Error                   : out std_logic 
     ); 
  attribute SIGIS : string; 
  attribute SIGIS of Bus2IP_Clk    : signal is "CLK"; 
  attribute SIGIS of Bus2IP_Reset  : signal is "RST"; 
 
end entity user_logic; 
 
------------------------------------------------------------------------------ 
-- Architecture section 
------------------------------------------------------------------------------ 
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architecture IMP of user_logic is 
  --USER signal declarations added here, as needed for user logic 
  ------------------------------------------ 
  -- Signals for user logic slave model s/w accessible register example 
  ------------------------------------------ 
  signal slv_reg0                       : std_logic_vector(0 to C_SLV_DWIDTH-1); 
  signal slv_reg1                       : std_logic_vector(0 to C_SLV_DWIDTH-1); 
    . 
     . 
  signal slv_reg28                      : std_logic_vector(0 to C_SLV_DWIDTH-1); 
  signal slv_reg29                      : std_logic_vector(0 to C_SLV_DWIDTH-1); 
  signal slv_reg_write_sel              : std_logic_vector(0 to 99); 
  signal slv_reg_read_sel               : std_logic_vector(0 to 99); 
  signal slv_ip2bus_data                : std_logic_vector(0 to C_SLV_DWIDTH-1); 
  signal slv_read_ack                   : std_logic; 
  signal slv_write_ack                  : std_logic; 
  
signal led_reg_Tm                       : std_logic_vector(C_SLV_DWIDTH-1 downto 0); 
  
signal led_reg_T1                       : std_logic_vector(C_SLV_DWIDTH-1 downto 0); 
signal led_reg_T2                       : std_logic_vector(C_SLV_DWIDTH-1 downto 0); 
signal led_reg_T3                       : std_logic_vector(C_SLV_DWIDTH-1 downto 0); 
signal led_reg_T4                       : std_logic_vector(C_SLV_DWIDTH-1 downto 0); 
signal led_reg_T5                       : std_logic_vector(C_SLV_DWIDTH-1 downto 0); 
signal led_reg_T6                       : std_logic_vector(C_SLV_DWIDTH-1 downto 0); 
signal led_reg_T7                       : std_logic_vector(C_SLV_DWIDTH-1 downto 0); 
  
  
signal led_reg_S1                       : std_logic_vector(C_SLV_DWIDTH-1 downto 0); 
signal led_reg_S2                       : std_logic_vector(C_SLV_DWIDTH-1 downto 0); 
signal led_reg_S3                       : std_logic_vector(C_SLV_DWIDTH-1 downto 0); 
signal led_reg_S4                       : std_logic_vector(C_SLV_DWIDTH-1 downto 0); 
signal led_reg_S5                       : std_logic_vector(C_SLV_DWIDTH-1 downto 0); 
signal led_reg_S6                       : std_logic_vector(C_SLV_DWIDTH-1 downto 0); 
signal led_reg_S7                       : std_logic_vector(C_SLV_DWIDTH-1 downto 0); 
  
  
signal state_count                       : std_logic_vector(C_SLV_DWIDTH-1 downto 0); 
signal clk         : std_logic:='0'; 
signal testsignal            : std_logic_vector(5 downto 0) := (others => '0');  
type     states          is                     (zero, one, two, three, four, five, six); 
signal mem_state                         : states; 
signal count_down                       : integer:=0; 
signal pwm_T1                : std_logic_vector(NO_OF_PHASES-1 downto 0); 
signal pwm_T2              : std_logic_vector(NO_OF_PHASES-1 downto 0); 
 signal interupt_out    : std_logic:='0'; 
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begin 
 
--- Here reading and writing in the 100 register take place which is removed in this thesis 
because it is bulky   
  -- ##################################################### 
led_reg_Tm <= slv_reg1; 
 
-----lower section:---- 
process(Bus2IP_Clk) 
begin 
if(Bus2IP_Clk'event and Bus2IP_Clk='1') then 
interupt_out<='0'; 
 if (count_down<led_reg_Tm) then 
  if (count_down= 0) then 
led_reg_T1 <= slv_reg2; 
led_reg_T2 <= slv_reg3; 
led_reg_T3 <= slv_reg4; 
led_reg_T4 <= slv_reg5; 
led_reg_T5 <= slv_reg6; 
led_reg_T6 <= slv_reg7; 
led_reg_T7 <= slv_reg8; 
 
led_reg_S1 <= slv_reg9; 
led_reg_S2 <= slv_reg10; 
led_reg_S3 <= slv_reg11; 
led_reg_S4 <= slv_reg12; 
led_reg_S5 <= slv_reg13; 
led_reg_S6 <= slv_reg14; 
led_reg_S7 <= slv_reg15; 
    
end if; 
 
   count_down<=count_down+1; 
     
if (count_down= led_reg_T1) then 
mem_state<=zero; 
end if; 
     
if (count_down= led_reg_T2) then 
mem_state<=one; 
end if; 
     
if (count_down= led_reg_T3) then 
mem_state<=two; 
  end if; 
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if (count_down= led_reg_T4) then 
mem_state<=three; 
end if; 
     
if (count_down= led_reg_T5) then 
mem_state<=four; 
end if; 
     
if (count_down= led_reg_T6) then 
mem_state<=five; 
end if; 
     
if (count_down= led_reg_T7) then 
mem_state<=six; 
end if;  
           
else 
count_down<=0; 
 interupt_out<='1'; 
end if; 
end if;  
end process; 
  
----upper section:---- 
process(mem_state) 
begin 
case mem_state is 
     
when zero=> 
state_count<=led_reg_S1; 
  
   
when one=> 
state_count<=led_reg_S2; 
   
when two=> 
state_count<=led_reg_S3; 
   
when three=> 
state_count<=led_reg_S4; 
   
when four=> 
state_count<=led_reg_S5; 
   
when five=> 
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state_count<=led_reg_S6; 
   
when six=> 
state_count<=led_reg_S7; 
end case; 
end process; 
Led_port<=state_count(NO_OF_LEDS-1 downto 0); 
 

----giving the switching pulse to three level converter--------------assuming R= bit 5-4, Y=bit 3-2, 
B= bit 1-0 
------signal for T1-------- 
pwm_T1(0) <=testsignal(5);  --R phase 
pwm_T1(1) <=testsignal(3);  --Y phase 
pwm_T1(2) <=testsignal(1); -- B phase 
------signal for T2-------- 
pwm_T2(0) <=testsignal(4);  --R phase 
pwm_T2(1) <=testsignal(2);  --Y phase 
pwm_T2(2) <=testsignal(0); -- B phase 
 
pwm_ut_T1<= pwm_T1; 
pwm_ut_T2<= pwm_T2; 
interupt_port<=interupt_out; 
--
##############################################################################
########## 
end IMP; 
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13  Appendix E 

 

Figur 13-1 Block diagram of hardware. 
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14  Appendix F 

 
Figure 14-1 Digital signal for m=0.3, N=4. 

 
Figure 14-2 Voltage signal for m=0.3, N=4. 
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Figure 14-3 Current signal for m=0.3, N=4. 
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15  Appendix G 

 

Figure 15-1 Digital Signal for m=0.87, N=3. 

 
Figure 15-2 Voltage Signal for m=0.87, N=3. 
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Figure 15-3 Current Signal for m=0.87, N=3. 
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16  Appendix H 

 

Figure 16-1 Current and Voltage for m=0.3, f=55Hz, N=5. 

 

Figure 16-2 Current and Voltage for m=0.5, f=55Hz, N=5. 
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Figure 16-3 Current and Voltage for m=0.8, f=55Hz, N=5. 

 

Figure 16-4 Current and Voltage for m=1, f=55Hz, N=5. 
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17 Appendix I 

 
Figure 17-1 Missing Pulse for m=1, f=80 Hz. 

 
Figure 17-2 No Missing Pulse for m=1, f=45Hz. 


	1 Introduction 
	1.1 Background
	1.2 Motivation
	1.3 Literature review
	1.4 Thesis Scope and Limitation
	1.5 Organization of report

	2 Theory
	2.1 Electric Propulsion 
	2.2 Multiphase Machine
	2.2.1 Harmonic Losses in Induction Machine

	2.3 Three Level Converter
	2.3.1 Switching loss in voltage source Inverter
	2.3.2 Harmonic content of voltage source Inverter
	2.3.3 DC Bus Balancing
	2.3.3.1 Introduction
	2.3.3.2 DC balancing 


	2.4 Modulation Strategy
	2.5 Program Modulation Technique  
	2.5.1 Background
	2.5.2 Program Modulation

	2.6 Synchronous Optimal Modulation
	2.7 Open Loop Method 
	2.8 Synchronous Optimal Modulation signal flow graph

	3 Introduction to FPGA and Xilinx EDK
	3.1 Background
	3.2 General Architecture of FPGA
	3.3 Embedded System Development 
	3.4 Xilinx Board 
	3.4.1 Communication Port
	3.4.2 memory
	3.4.4 Converter
	3.4.5 Pulse Encoder: 
	3.4.6  Relay drivers. 
	3.4.7  LVDS: 
	3.4.8  Signal Inputs: 
	3.4.9  AD Converter: 
	3.4.10  Digital Input Output port: 

	3.5  Xilinx Embedded Development Kit
	3.5.1 Introduction
	3.5.2 Different Abstraction Level
	3.5.3  Xilinx ISE overview
	3.5.4 Xilinx platform studio overview
	3.5.5 Xilinx Software Development Kit overview


	4 Firmware Implementation of SOM in FPGA
	4.1 EDK install
	4.2 Project Local Pcores (user)
	4.2.1 Phase to Phase Vs Space vector Implementation
	4.2.2 SOM_PHASE IP
	4.2.2.1 BACKGROUND
	4.2.2.2 Methodology

	4.2.3 SOM_spacevector_IP
	4.2.3.1 Background
	4.2.3.2 Methodology


	4.3 Global Peripheral Repository (user)
	4.3.1.1 Vekselretter tilkobling (Inverter Connection): 
	4.3.1.2 Inverter for three level converter
	4.3.2 Driver Interface via dig_io_connection

	4.4 Driver circuit
	4.5 Communication with other collaborating project
	4.6 Challenges faced 
	4.7 Simulation
	4.7.1 SOM_PHASE_IP
	4.7.2 SOM_spacevector_IP


	5 Experiment Setup
	5.1 Hardware Setup
	5.1.1 Setup Overview
	5.1.2 Six-Phase Induction Machine
	5.1.3 DC Machine
	5.1.4 Converter
	5.1.5 FPGA control card
	5.1.6 Current Measurements

	5.2 Software Implementation
	5.2.1 Software Environment
	5.2.2 Program Structure


	6 Experimental Results and Discussion
	6.1 Driver, Voltage and Current signal 
	6.1.1 Driver signal
	6.1.2 Voltage waveform
	6.1.3 Current Waveform
	6.1.4 Digital, Voltage, Current signal

	6.2 Variation of N with Stator frequency
	6.3 Total harmonic distortion
	6.3.1 Line-Line Voltage 
	6.3.2 Measurement of THD
	6.3.3 Analysis
	6.3.4 Comparison

	6.4 Some of Errors found in the system
	6.4.1 Analysis
	6.4.2 Suggestion

	6.5 Discussion

	7 Conclusion and further work
	7.1 Conclusion
	7.2 Further Works

	8 Bibliography
	9 Appendix A
	10  Appendix B
	11  Appendix C
	12  Appendix D
	13  Appendix E
	14  Appendix F
	15  Appendix G
	16  Appendix H
	17 Appendix I

