
Synchronous Optimal Modulation for
Medium voltage Multi-phase Machines
Implementation of three-level modulators in

Field Programmable Gate Arrays

Mamta Maharjan

Master of Science in Electric Power Engineering

Supervisor: Tore Marvin Undeland, ELKRAFT

Department of Electric Power Engineering

Submission date: June 2013

Norwegian University of Science and Technology

i

Problem Description
Medium voltage ac drives based on voltage source inverters are in increasing demand for

numerous industrial applications. The advancement in power electronics devices like IGBTs has

allowed to rise the low voltage ac drive to the medium voltage drive system. Medium Voltage

IGBTs must have low switching frequency. Operation at reduced switching frequency requires

synchronous modulation techniques because the conventional asynchronous modulation will

generate too much harmonics.

Programmed modulation is synchronous modulation which pre-calculates optimal switching angles

within a period of the fundamental period. If those switching angles are calculated by minimizing

total harmonic contents then it is called Synchronous Optimal Modulation. These switching angles

are not formed by carrier wave like in conventional way. These optimized PWM strategies are

extremely difficult to realize with conventional analog circuitry. Therefore, the firmware

implementation of synchronous optimal modulation in digital circuitry will be created by an

extremely fast computation microchip called Field-Programmable Gate Array (FPGA).

In this Master thesis a modulator for a 3-level converter should be developed. The modulator

should be possible to be extended to 9-phase machines .The modulator should give the interrupt to

the processor routine where the calculation of relative switching instance is executed. From the

software point of view the input to the modulator is memory mapped as an array with switching

instance stored increased order due to time. The tasks to be performed are:

• Work out a specification together with the master student making the control software

for the modulator.

• Decide which method to be used for dc-bus balancing for the 3-level converter

• Implement the modulator in a FPGA

• Test the modulator in the Lab by help of a 3-level 3-phase inverter operating an

Induction Machine

Supervisor: Prof. Tore M. Undeland

Co‐supervisor: Roy Nilsen, Wärtsilä Norway AS

ii

ABSTRACT
The advancement in power electronics devices like Insulated Gate Bipolar Transistors (IGBT) has

increased the low voltage ac drive to the medium voltage drive system. These IGBTs have higher

voltage capability. For eliminating the harmonic content three level converters are chosen rather

than two level converters. But these inverter switches using IGBTs should be operated in low

switching frequency so that the huge loss associated with switching loss is reduced to large extent.

When switching frequency is low then conventional asynchronous modulation technique is not

appropriate because of the formation of sub-harmonic components. Therefore, it is wise to apply

synchronous modulation technique. Programmed Modulation is one of best synchronous

modulation technique which pre-calculates the optimum switching angles. If those switching

angles are calculated by minimizing total harmonic contents then it is called Synchronous Optimal

Modulation.

 These optimized PWM strategies are extremely difficult to realize with conventional analog

circuitry, but they can be effectively implemented in field-programmable gate array (FPGA) which

has extremely fast computation capability and allows a few microseconds real-time computation of

complex control algorithms. FPGA is a microchip which consists of matrix of configurable logic

blocks (CLB) made up of flip flops and lookup tables. VHDL is Hardware Descriptive Language

which is utilized to synthesize hardware designs in FPGA. VHDL creates digital circuitry, which

performs operations in parallel so FPGA is extremely fast and performs various time critical tasks

in the system.

The FPGA which is used in this project is Vertex-5 ppc440 FX30T. The digital electronics for

implementing Synchronous Optimal Modulation are written in Xilinx Embedded System. The

extremely fast computation power of FPGA finds its application in multiphase machine. Although

this thesis deals with three phase Induction motor, it can easily be extended up to nine phase

Machine.

This master thesis implements synchronous optimal modulation in FPGA for Neutral Point

Clamped inverter feeding Induction machine. The result shows that synchronous optimal

modulation can be applied for low switching frequency with lower total harmonics distortion.

iii

Preface
Electric Drives, Power electronics and digital control system have always been my favourite
subjects. I am extremely overwhelmed to do this project titled Synchronous Optimal
Modulation for Medium voltage Multi-phase Machines. This master thesis requires the
ideas of all these subjects. Doing this master thesis, my practical knowledge in these fields has
immensely flourished.

I want to thank my supervisor Prof. Tore Undeland for his lecture in Design of power
electronic converter which has augmented my knowledge in power electronics to great extent.
I want to show my deep gratitude and respect towards my co-supervisor Roy Nilsen, Wartsila,
Norway. I would like to express my co-supervisor how much immensely lucky I feel to get all
those supports, guidance from the initiation of the project work. I would not have been able to
fulfil this project work without the knowledge, encouragement and the positive spirit from my
co-supervisor consistently.

My unlimited gratitude goes to Kjell Ljøkelsøy from SINTEF without whom timely
completion of master thesis would have been impossible for me. He has helped me a lot during
my learning of FPGA and embedded development kit (EDK) . The threshold of learning
FPGA using Xilinx tools is very extremely high. The statement found on the Internet tells
how FPGAs are seen by most software developers: “FPGA is a dark and scary corner of the
universe teeming with HDLs, synthesis, place-and-route, and other unseen evils”. He made
this journey easier for me by being there in all my confusions. He was always so much
supportive, encouraging and helpful.

I am also thankful to my classmate Biruk Bekele for supporting me through technical
advice, profitable discussion. I also want to thank Sverre Skalleberg Gjerde for helping me
learn VHDL language. My sincere thanks go to all the technical staffs of department of
Electrical Engineering, NTNU for being so much supportive in dealing with the lab
equipments. I am very grateful towards Prof. Indraman Tamrakar, Institute of Engineering,
Nepal for always helping me out with my confusion in Induction Machine. Last but not the
least I would like to thank Kabin Tamrakar for giving me ideas on programming skills and
also for the care, moral support and encouragement throughout the thesis.

Mamta Maharjan,
Trondhiem, Norway

iv

Contents

1 Introduction ... 1

1.1 Background .. 1

1.2 Motivation .. 2

1.3 Literature review .. 3

1.4 Thesis Scope and Limitation .. 4

1.5 Organization of report .. 4

2 Theory .. 5

2.1 Electric Propulsion ... 5

2.2 Multiphase Machine ... 6

2.2.1 Harmonic Losses in Induction Machine ... 8

2.3 Three Level Converter ... 9

2.3.1 Switching loss in voltage source Inverter ... 12

2.3.2 Harmonic content of voltage source Inverter .. 13

2.3.3 DC Bus Balancing... 15

2.4 Modulation Strategy ... 19

2.5 Program Modulation Technique... 24

2.5.1 Background ... 24

2.5.2 Program Modulation ... 25

2.6 Synchronous Optimal Modulation ... 27

2.7 Open Loop Method .. 31

2.8 Synchronous Optimal Modulation signal flow graph .. 32

3 Introduction to FPGA and Xilinx EDK ... 34

3.1 Background .. 34

3.2 General Architecture of FPGA ... 35

v

3.3 Embedded System Development ... 36

3.4 Xilinx Board ... 37

3.4.1 Communication Port ... 37

3.4.2 memory ... 38

3.4.3 clock .. 38

3.4.4 Converter... 38

3.4.5 Pulse Encoder: .. 39

3.4.6 Relay drivers. .. 39

3.4.7 LVDS: ... 39

3.4.8 Signal Inputs: .. 39

3.4.9 AD Converter: ... 39

3.4.10 Digital Input Output port: ... 40

3.5 Xilinx Embedded Development Kit ... 40

3.5.1 Introduction ... 40

3.5.2 Different Abstraction Level .. 41

3.5.3 Xilinx ISE overview ... 42

3.5.4 Xilinx platform studio overview ... 45

3.5.5 Xilinx Software Development Kit overview .. 47

4 Firmware Implementation of SOM in FPGA .. 50

4.1 EDK install ... 52

4.2 Project Local Pcores (user) .. 53

4.2.1 Phase to Phase Vs Space vector Implementation. .. 53

4.2.2 SOM_PHASE IP ... 55

4.2.3 SOM_spacevector_IP ... 61

4.3 Global Peripheral Repository (user) ... 65

vi

4.3.2 Driver Interface via dig_io_connection .. 69

4.4 Driver circuit .. 71

4.5 Communication with other collaborating project... 72

4.6 Challenges faced .. 73

4.7 Simulation .. 74

4.7.1 SOM_PHASE_IP .. 75

4.7.2 SOM_spacevector_IP ... 81

5 Experiment Setup .. 83

5.1 Hardware Setup .. 83

5.1.1 Setup Overview ... 83

5.1.2 Six-Phase Induction Machine ... 84

5.1.3 DC Machine .. 85

5.1.4 Converter... 85

5.1.5 FPGA control card .. 87

5.1.6 Current Measurements .. 88

5.2 Software Implementation ... 88

5.2.1 Software Environment .. 88

5.2.2 Program Structure ... 89

6 Experimental Results and Discussion.. 91

6.1 Driver, Voltage and Current signal .. 91

6.1.1 Driver signal.. 91

6.1.2 Voltage waveform ... 92

6.1.3 Current Waveform .. 93

6.1.4 Digital, Voltage, Current signal .. 94

6.2 Variation of N with Stator frequency ... 95

vii

6.3 Total harmonic distortion ... 98

6.3.1 Line-Line Voltage ... 98

6.3.2 Measurement of THD ... 99

6.3.3 Analysis... 100

6.3.4 Comparison ... 103

6.4 Some of Errors found in the system ... 104

6.4.1 Analysis... 106

6.4.2 Suggestion ... 106

6.5 Discussion .. 108

7 Conclusion and further work ... 109

7.1 Conclusion .. 109

7.2 Further Works .. 110

8 Bibliography .. 111

9 Appendix A.. 114

10 Appendix B .. 115

11 Appendix C .. 128

12 Appendix D .. 133

13 Appendix E .. 138

14 Appendix F... 139

15 Appendix G .. 141

16 Appendix H .. 143

17 Appendix I ... 145

viii

Figure 2-1 Overview of electric propulsion. ... 5

Figure 2-2 Nine Phase Synchronous Machine [19]. ... 7

Figure 2-3 Stator winding types [3]. ... 7

Figure 2-4 Six Phase Induction Machine(SPIM) [3]. ... 8

Figure 2-5 Three level inverter NPC Technology [24]. .. 10

Figure 2-6 Bridge leg of three level converter [24]. .. 10

Figure 2-7 Naturally sampled PWM for 3 level converter [25]. ... 11

Figure 2-8 Bridge leg voltage [26].. 12

Figure 2-9 Line to Line voltage[26].. 12

Figure 2-10 Space vector diagram for three level converter. .. 16

Figure 2-11 Position of current at different level [26]. ... 16

Figure 2-12 Charging of upper capacitor and discharging of lower capacitor. 18

Figure 2-13 Modulation strategies[24]. .. 20

Figure 2-14 Naturally sampled PWM[23]. ... 21

Figure 2-15 Symmetric and asymmetric regular sampled PWM.. 22

Figure 2-16 Carrier based PWM [23]. .. 23

Figure 2-17 Programmed PWM pattern (M=N)[22]. .. 25

Figure 2-18 Programmed PWM.. 27

Figure 2-19 SOM pattern for N=4 [25]. ... 29

Figure 2-20 Harmonics for N=4 [25]. ... 30

Figure 2-21 Pulse generated from SOM pattern. .. 30

Figure 2-22 Switching Pulse in one fundamental frequency. ... 32

Figure 2-23 Synchronous Optimal Modulation signal flow graph [29]. 32

Figure 3-1 General architecture of FPGA [31]. .. 35

Figure 3-2 Interconnection programmable network. .. 35

Figure 3-3 Inside logic block [31]. .. 36

Figure 3-4 FPGA control card[35]. ... 38

Figure 3-5 FPGA design flow adopted in this work. .. 40

Figure 3-6 Overview of various steps in design flow of digital system. 43

Figure 3-7 ISE windows. .. 44

ix

Figure 3-8 XPS windows. ... 46

Figure 3-9 Microprocessor Peripheral Description (MPD) file. ... 46

Figure 3-10 Xilinx EDK flow for processor based design. .. 47

Figure 3-11 SDK windows. .. 48

Figure 3-12 Program FPGA. ... 49

Figure 4-1 List of IPs used in the project. ... 50

Figure 4-2 Block diagram. .. 51

Figure 4-3 Switchings in three phase for one sampling period. ... 54

Figure 4-4 Register used for phase to phase implementation. .. 55

Figure 4-5 Register used for spacevector implementation. .. 55

Figure 4-6 Input and output for SOM_PHASE_IP. .. 55

Figure 4-7 Program Modulation with sampling period. ... 56

Figure 4-8 Register for phase to phase implementation. .. 57

Figure 4-9 Function of SOM_PHASE_IP [43]. .. 59

Figure 4-10 Flowchart for SOM_PHASE_IP. .. 60

Figure 4-11 Input and output of SOM_spacevector_IP. ... 61

Figure 4-12 Register used for SOM_spacevector_IP. .. 62

Figure 4-13 Function of SOM_spacevector_IP[43]. .. 63

Figure 4-14 Flowchart for SOM_spacevector_IP. .. 64

Figure 4-15 Input and output Vekslretter Tilkobling. ... 65

Figure 4-16 Two Level three phase converter. ... 65

Figure 4-17 Function of Vekslretter Tilkobling[42]. .. 66

Figure 4-18 Neutral Point Clamped Converter. .. 67

Figure 4-19 Use of two Vekselretter tilkobling for three level converter. 67

Figure 4-20 Example... 68

Figure 4-21 Use of Driver Interface via Dig_IO_Connection. ... 70

Figure 4-22 FPGA card with buffer card. ... 70

Figure 4-23 Driver Circuit[42].. 71

Figure 4-24 Samples N and N+1. ... 72

Figure 4-25 Floating Point Unit processor and additional memory. .. 74

Figure 4-26 Test signals. ... 75

x

Figure 4-27 R phase. ... 75

Figure 4-28 Y phase. ... 76

Figure 4-29 B phase. ... 76

Figure 4-30 Output of SOM_PHASE_IP in ISIM. ... 78

Figure 4-31 Testing in FPGA card.. 80

Figure 4-32 Graphical output of states in oscilloscope. .. 80

Figure 5-1 Overview of experimental setup. .. 83

Figure 5-2 Assembly of Six phase machine drives. .. 84

Figure 5-3 Six Phase Induction machine (external overview). ... 84

Figure 5-4 Six Phase Induction Machine, stator terminal. .. 85

Figure 5-5 Rectifier used in the lab... 86

Figure 5-6 Three Level Inverter. ... 86

Figure 5-7 Use of FPGA in experiment. ... 87

Figure 5-8 Current sensor. .. 88

Figure 5-9 Active DSP for real time monitoring. ... 89

Figure 5-10 Program flow and interrupt. .. 90

Figure 6-1 Driver Signals For Three phase, Three level Converter (for m=1, N=5). 91

Figure 6-2 Voltage generated by Three phase, Three level Converter (for m=1, N=5). 92

Figure 6-3 Current given to load (for m=1, N=5). .. 93

Figure 6-4 Digital, Voltage, Current signal per phase for m=1, N=5. .. 94

Figure 6-5 For m=0.5, fs=45Hz, N=6. .. 95

Figure 6-6 For m=0.5, fs=55Hz, N=5. .. 96

Figure 6-7 For m=0.5, fs=65Hz, N=4. ... 96

Figure 6-8 For m=0.5, fs=80Hz, N=3. .. 97

Figure 6-9 For m= 0.87, fs=45 Hz. ... 98

Figure 6-10 THD for line voltage for m=1, 45 Hz. .. 99

Figure 6-11 THD for line current for m=1, 50 Hz. ... 100

Figure 6-12 Current and Voltage for m=0.3, f=45Hz, N=6. ... 101

Figure 6-13 Current and Voltage for m=0.5, f=45Hz, N=6. ... 101

Figure 6-14 Current and Voltage for m=0.8, f=45Hz, N=6. ... 102

Figure 6-15 Current and Voltage for m=1, f=45Hz, N=6. .. 102

xi

Figure 6-16 WHTD0 vs modulation index for N=6 (f=45Hz). .. 103

Figure 6-17 Missing Pulse for m=0.4, f=55 Hz .. 105

Figure 6-18 No missing Pulse for m=0.4, f=65 Hz .. 105

Figure 6-19 Reseting counter. ... 106

Figure 6-20 Overflow counter. ... 107

Figure 9-1 SOM pattern for N=8. ... 114

Figure 14-1 Digital signal for m=0.3, N=4. .. 139

Figure 14-2 Voltage signal for m=0.3, N=4. .. 139

Figure 14-3 Current signal for m=0.3, N=4. ... 140

Figure 15-1 Digital Signal for m=0.87, N=3. ... 141

Figure 15-2 Voltage Signal for m=0.87, N=3. .. 141

Figure 15-3 Current Signal for m=0.87, N=3. .. 142

Figure 16-1 Current and Voltage for m=0.3, f=55Hz, N=5. ... 143

Figure 16-2 Current and Voltage for m=0.5, f=55Hz, N=5. ... 143

Figure 16-3 Current and Voltage for m=0.8, f=55Hz, N=5. ... 144

Figure 16-4 Current and Voltage for m=1, f=55Hz, N=5. .. 144

Figure 17-1 Missing Pulse for m=1, f=80 Hz. .. 145

Figure 17-2 No Missing Pulse for m=1, f=45Hz. ... 145

Table 2-1 Harmonics and sequence [21]. ... 9

Table 2-2 Switching states in three level converter[24]. .. 11

Table 2-3 Overview of space vectors[26]. .. 17

Table 2-4 Overview of relation between space vectors and neutral current [26]. 17

Table 2-5 Switching angles for different modulation index ... 30

Table 4-1 Placement of Switching Time and State by Software .. 77

Table 4-2 result of the simulation. .. 79

Table 4-3 Test result. .. 81

Table 4-4 Placement of state vector in SOM_spacevector_IP. ... 82

xii

Table 6-1 variation of N for different fs (m=0.5). .. 97

Table 6-2 THD (Line Voltage) for different modulation index (m). .. 99

Table 6-3 THD(Line current) for different modulation index (m). .. 100

Table 6-4 Comparison with conventional PWM technique. ... 104

Table 9-1Rating of induction machine. .. 114

Acronym Description
IGBT Insulated Gate Bipolar Transistor
THD Total Harmonic Distortion
WHTD Weighted Total Harmonic Distortion
WHTD Normalised Weighted Total Harmonic Distortion
FPGA Field-programmable Gate Array
SOM Synchronous Optimal Modulation
SPIM Six Phase Induction Machine
CLB Configurable Logic Block
HDL Hardware Descriptive Language
VHDL Very High Speed Integrated Circuits Hardware Descriptive Language
IP Intellectual Property
LVDS Low Voltage Differential Signal
ADC Analog to Digital Converter
DSP Digital Signal Processor
PWM Pulse Width Modulator
NPC Neutral Point Clamped
BJT Bipolar Junction Transistor
MOSFET Metal Oxide Semiconductor Field Effect Transistor
USB Universal Serial Bus
DRAM Dynamic Random Access Memory
EROM Erasable Read Only Memory
MAC Media Access Controller MSPS
CMOS Complementary Metal oxide Semiconductor
TTL Transistor Transistor Logic
ISE Integrated Software Environment
XPS Xilinx Platform Studio
SDK Software Development Kit
EDK Embedded Development Kit
NPSM Nine-phase Synchronous Machine
UCF User Constraint File
MPD Microprocessor Peripheral Description
MHS Microprocessor Hardware Specification
PLB Processor Local Bus
SPWM Sinusoidal PWM
SVPWM Space Vector PWM
BSP Board Support Package

1

1 Introduction
In this chapter, the background of this master thesis is presented. In addition to that the

motivation to this master thesis is discussed. The literatures read during this master thesis are

reviewed and presented here. Because of the time constraints, this master thesis has scope and

limitation. These are also given in this chapter.

1.1 Background
The power electronic converters decouple three phase mains from the variable speed ac drives so

the number of phases of ac machine do not have to be limited to three anymore [1]. This led to

the development of multiphase machine. Even though the concept of multiphase machine was

emerged some 40 years ago, its interest took new surge in recent years through the advancement

of power electronics switching devices [2]. The pace of research in the field of multiphase

machine was even more accelerated from 1990s along with the development of electric ship

propulsion. Even though there are many other benefits of multiphase machine, they find their

major application in area of electric ship propulsion [1].

Electric ship propulsion is beneficial as it provides precise control of the shaft speed, increased

manoeuvrability, increased fuel efficiency, reduced environmental impact, and quiet operation

[3]. Multiphase machine drives are preferred to the conventional three phase machine drives in

electric ship propulsion. It is because the requirements of high power rating, high efficiency,

reliability and fault tolerant operation of electric drives for ship propulsion can be met by

multiphase machine drives [4].

Medium Voltage ac drives produce greater power than lower voltage drive. They have ability to

control high rating electric motors that industrial load require. The higher voltage of MV drive

also indicates the lower loss and use of smaller cables that outputs higher efficiency and lower

system cost [5].

2

Wärtsilä, a global leader in ship power technology, has been conducting research on the

application of multiphase machine and medium voltage drives in electric ship propulsion. This

Master thesis is also done as the part of the research.

1.2 Motivation
The research of multiphase variable speed drives started from 1960s when inverter-fed ac drives

were in the initial development stage. In six steps mode of three phase inverter operation, there

was one particular problem with low frequency torque ripple. “Since the lowest frequency

torque ripple harmonic in an n-phase machine is caused by the time harmonics of the supply of

the order 2n ± 1 (its frequency is 2n times higher than the supply frequency), an increase in the

number of phases of the machine appeared as the best solution to the problem “[1].

Previously, Voltage source pulse width modulated inverters use square wave or sinusoidal PWM

strategies for low voltage ac drives [6]. As industrial load require higher rating ac drives,

medium voltage ac drives based voltage source inverter are of higher demand [7]. Advancement

in the development of semiconductor devices with higher voltage capabilities like insulated gate

bipolar transistors (IGBTs), has allowed increasing the voltage level to medium voltage and

power rating of the system up to several MVAs. These IGBTs must be operated in lower

switching frequency to keep the switching loss to tolerable level. Once the switching frequency

is reduced, appropriate modulation technique is required. The appropriate modulation technique

is called Synchronous Optimal Modulation [8].

In order to use IGBTs for Medium Voltage drive, sophisticated technology like Synchronous

Optimal Modulation (SOM) is the better choice as it minimizes total harmonic contents. This

optimized PWM technique is extremely difficult to be implied by conventional analog circuitry

hence they need modern microprocessor or digital hardware like DSP. These sophisticated

techniques have access to the effective look-up tables on which this modulation technique can be

implemented effectively[9].

Industrial electrical control system has progressed due to technology revolution. The revolution

has outcome very powerful components to solve extremely complex control algorithm. The most

recent advancement of extremely fast computing device is called field programmable gate array

3

(FPGA). FPGA allows real time computation of complex control algorithm in a few

microseconds [10].

Therefore, it is of interest to implement this sophisticated modulation strategy like SOM in

medium voltage drive by using field-programmable gate array (FPGA) components.

1.3 Literature review
For the industrial demand of high power, medium voltage drive is used. Medium voltage ac

machines must be operated at low switching frequency to reduce the switching losses of the

power semiconductor devices. Once the switching frequency is reduced, appropriate modulation

technique like program modulation is required. In 1973 Patel and Hoft [11] generalised the

method for eliminating fixed number of harmonic. They provided the solution for eliminating up

to five harmonics. While the unlimited higher order harmonics can be attenuated by using filter

circuits. Buja and Indri [12] in 1977 started to develop optimal PWM for AC motor. They

developed the analytical procedure to calculate proper choice of commutation angles which

minimise the rms value of the current harmonics. In 1992, Programmed PWM technique was

used by Enjeti and Jakkli [13] to eliminate lower harmonics at the output of Neutral point

clamped inverter topology. In 1994, Holtz [14] employed the method called Synchronous

optimal pulsewidth modulation(SOM) for medium voltage drives at low switching frequency.

SOM is type of Program Modulation pattern.

Murphy, Howard and Hoft[9] came with the idea in 1979 that these optimized PWM strategies

are extremely difficult to realize with conventional analog circuitry, but they can be effectively

implemented with using a look-up table accessed by modern microprocessor-based control

techniques or digital hardware. Recently digital hardware like FPGA is developed which has

exceptionally fast computation capability hence complex control algorithm can be computed in

few microseconds. In 2007 Naouar and Monmasson [10] presented the interest of implementing

digital controllers in AC machine using field-programmable gate array (FPGA) components.

Numerous experimental results are given in order to illustrate the efficiency of FPGA-based

solutions to achieve high-performance control of electrical systems.

4

1.4 Thesis Scope and Limitation
For generating synchronous optimal modulation technique, the optimal angles must be

calculated. This calculation itself accepts lot of work. Hence such calculation is done in other

collaborating master thesis. This can be referred from [15]. In this thesis, it is assumed that the

optimal angles are already provided by the collaborating thesis. The other collaborating thesis is

termed as software and processor routine in this master thesis.

Even though this project is meant to produce synchronous optimal modulation technique for

multiphase machine up to 9 phases, this project generates modulation pulse only for three phases.

Hence if this project is successful in implementing modulation pulse for three phases, only the

slight modification can be done to make it appropriate for nine phases.

1.5 Organization of report
In Chapter 1, background, motivation, literature review, scope and limitation of the project are

discussed. The theory behind the generation of Synchronous Optimal Modulation is provided in

Chapter 2. The type of inverter used is three level Neutral Point Clamped Inverter. Since this

project is for medium voltage, Insulated Gate Bipolar Transistor is used as switch. The

implementation of three level modulator is done on extremely fast digital device called Field

Programmable Gate Array (FPGA). The important portion of the project commence from

Chapter 3 which introduces FPGA architecture, FPGA control card developed by SINTEF along

with the description of tool called Xilinx which is used to program FPGA. The methodology

applied in this project for implementing SOM by using FPGA is presented in Chapter 4 which

contains the description of Intelligent Properties (IP) and the connection between various IPs

used in this project. The output of the simulation is also shown in this chapter. This thesis also

consists of laboratory works for verification of the theories. Therefore Chapter 5 discuss about

the experimental setup of the project. Finally results, discussion are presented in Chapter 6 to

verify the validity of digital circuitry created in FPGA to fulfil the objective of the project. At

last conclusion and further works are presented in the Chapter 7.

.

5

2 Theory
In this chapter, multiphase machines are described. In addition inverters and modulators needed

for feeding the machine are discussed. The converter which is used is Neutral Clamped Three

Level converter while new modulation technique called Synchronous Optimal Modulation is

discussed along with its implication in this project.

2.1 Electric Propulsion
The shipping industry has advanced from its conventional era. The cost of propulsion has

reduced significantly without increasing marine pollution [16]. Electrically powered ship

requires energy source for all the ship’s functions, including propulsion. They are quieter, are

less susceptible to vibration and are comfortable for everyone on board [17].

Figure 2-1 Overview of electric propulsion.

The schematic overview of the main electrical and automation components for electric

propulsion is shown in Figure 2-1. The propeller shaft of the ship is connected to large motors,

which is A.C driven and are known as propulsion motors. These propulsion motors are fed by

inverter. Inverters are controlled by Modulator to convert the DC from the DC grid in ships to

http://marineinsight.com/tech/propeller-types-of-propellers-and-construction-of-propellers/
http://marineinsight.com/tech/construction-and-working-of-3-phase-induction-motor-on-ship/?utm_source=rss&utm_medium=rss&utm_campaign=construction-and-working-of-3-phase-induction-motor-on-ship

6

required AC needed by motor. Figure shows three phase propulsion motor. But the intense

research is going on to replace the three phase motor by multiphase machine.

2.2 Multiphase Machine
The power electronic converters decouple three phase mains from the variable speed ac drives so

the number of phases of ac machine do not have to be limited to three anymore [1]. This led to

the development of multiphase machine. Even though the concept of multiphase machine was

emerged some 40 years ago, its interest took new surge in recent years through the advancement

of power electronics switching devices [2]. The advantage of multiphase machine include high

power ratings, efficiency, reliability and fault tolerant operation. Its advantages over three phase

induction machine are listed below.

• The stator copper loss for multiphase machine are less than three phase machine assuming the

same torque and same speed [18].

• The harmonics of stator current are of higher order and more attenuated than three phase

machine which will reduce the torque pulsation[18].

• As the number of inverter switches increases, ratings of inverter switches decrease which helps

to reduce the cost[3].

Even though this thesis deals with three phase Induction machine, the main motivation of this

project is to make suitable modulation technique which can be extended up to nine phase

machine like Nine-phase Synchronous Machine (NPSM). There are not many NPSM in

industries. But it has many advantages over three phase machine that its research is intensively

going on. The nine-phase Synchronous Machine can be presented by windings as shown in

Figure 2-2.

Different winding layouts can be chosen for nine-phase machines. For the physical modelling,

nine phase synchronous machine with 3 sets of three phase with 200 phase shift is used [19]. The

modelling of multiphase machine is out of scope of this project. This project deals with

modulation technique developed for the multiphase machine.

7

Figure 2-2 Nine Phase Synchronous Machine [19].

Another kind of multiphase machine can be Six Phase Induction machine (SPIM). It consists of 2

sets of three phase windings. They have gathered lot of interest of drive engineers for the

industrial applications. The SPIM can be of two types, symmetric and asymmetric

depending upon the winding arrangements as shown in the Figure 2-3, if the axes of the

individual phase windings are spaced equiangular as shown in (a) then the machine is called

symmetrical SPIM. In asymmetrical SPIM the winding axes are spaced as shown in the Figure

2-3(b).

Figure 2-3 Stator winding types [3].

8

Asymmetrical SPIM is used for the research purpose than symmetrical as it has less

pulsating torque and less harmonic currents as compared to symmetric SPIM [20].

Figure 2-4 Six Phase Induction Machine(SPIM) [3].

2.2.1 Harmonic Losses in Induction Machine
Power electronic converter lies between three phase mains and the induction machine. The

voltage generated by power electronics device to be fed to the induction machine is not pure

sinusoidal. Fourier Analysis can be done to such non sinusoidal signal which helps to split them

into harmonic components. The typical definition for a harmonic is “a sinusoidal component of a

periodic wave or quantity having a frequency that is an integral multiple of the fundamental

frequency.” Except the fundamental frequency, all other higher harmonic components participate

in losses of induction machine. Motors are susceptible to harmonic pollution. In a balanced

system, the fundamental, 4th, 7th and other such types of voltage harmonics are positive sequence

and they rotate the motor forward. The 2nd, 5th, 8th voltage harmonics are negative sequence,

which try to rotate motor backward while the 3rd, 6th, 9th voltage harmonics are zero sequence,

which just heat up the motor[21] .

9

Table 2-1 Harmonics and sequence [21].

However the losses are not divided evenly over the harmonic spectra. The lower harmonic

components contribute more to losses than the higher harmonic components [22]. The reason is

lower harmonics indicates lower impedance increasing harmonic current. The higher order

harmonics produce lower harmonic current and they can be eliminated easily by using filter

circuits in the output stage of the inverter [11] . The filters to attenuate higher order of harmonic

components are smaller in size, weight and cost efficient [23].

The uneven distribution of loss in the harmonic spectra require appropriate performance

indicator that weights the lower frequency spectra of harmonic components more dominant than

the high spectra of the harmonic components [22]. Such indicator is commonly known as

Weighted Total Harmonic Distortion (WTHD), which can be calculated by normalizing the total

current harmonic distortion by the maximum inrush current. This theory after simplification

becomes as equation below[22].

𝑊𝑇𝐻𝐷 =
�∑ (𝑈𝑛𝑛)2∞

𝑛=2

𝑈1

Where, n is nth number of harmonic component. From equation it is clear that the lower order

harmonics participate more due to their high 1/𝑛2 factor compared to that of higher order

harmonics.

Harmonic currents also introduce unwanted torque pulsations in induction machines due to the

interaction of the harmonic currents and the magnetic field of fundamental frequency. This

would create mechanical oscillations and eventual wear of the machine.

2.3 Three Level Converter
The fundamental advantages of the Multilevel Converter topologies are low distorted output

waveforms and limited voltage stress on the switching devices [24]. In this Project, three level

converters called Neutral Point Clamped (NPC) is implemented as shown in Figure 2-5. Further,

10

the NPC inverter is particularly suitable in high-voltage applications since it guarantees equal

voltage sharing of series-connected power devices in each phase [13].The figure is shown for

three phase induction motor but if the numbers of bridge leg are added then it can be extended to

any multiphase machine. The working principle of three level converters can be understood by

analysing single branch as illustrated in Figure 2-6.

Figure 2-5 Three level inverter NPC Technology [24].

Figure 2-6 Bridge leg of three level converter [24].

Figure 2-6 shows one phase-leg of a three-level, three phase converter. This topology can

produce three levels at the output with respect to the neutral point n. Table 2-2 indicates the

possible output voltages for each switching state of device. There are three switching levels or

states which are +1, 0, -1.

11

Table 2-2 Switching states in three level converter[24].

Switching of each IGBT 𝟐𝑼𝒐𝒋
𝑼𝒅𝒄

(analog
switching state)

Digital
switching
state(taking
T1 and T2)

Ua0
T1 T2 T3 T4

1 1 0 0 +1 11 (3) Udc
0 1 1 0 0 01 (1) 𝑈𝑑𝑐

2

0 0 1 1 -1 00 (0) 0

If the signals to upper two IGBTs are considered for three level converter, then +1 can be

obtained by giving signal 11 to T1 and T2, while 0 can be obtained by giving signal 01. Similarly

-1 can be obtained by giving signal 00 to T1 and T2. Hence 11, 01, 00 are the states that can

define the signal +1, 0, -1 or in decimal, the states are 3,1,0. Here 10 (2) is the forbidden state.

Signal to T3 and T4 are complementary to T1 and T2 respectively.

Conventionally, the three level modulating signals for the IGBTs are generated by comparing

two carrier waves with the sinusoidal wave as shown in Figure 2-7. If sinusoidal wave is greater

than carrier signal, switch is turned on otherwise turned off. The upper carrier wave decides the

switching state of T1 while the lower carrier decides the switching state of T2. The two switches

below, T3 and T4 are complementary to two switches above T1 and T2 respectively.

Figure 2-7 Naturally sampled PWM for 3 level converter [25].

12

By combining the different states, it is possible to get waveform close to sinusoidal averaged

bridge leg output as shown in figure Figure 2-8. There are three states in bridge leg voltage. Line

to Line voltage is also calculated. The voltage between two phases, the line-to-line voltage can

achieve five different voltage levels which are +2,+1,0,-1,-2.

Figure 2-8 Bridge leg voltage [26].

Figure 2-9 Line to Line voltage[26].

2.3.1 Switching loss in voltage source Inverter
The switching power loss Psv of a Voltage source Inverter with a sinusoidal ac line current is

estimated using the following relation [27]:

𝑃𝑠𝑣 =
6
𝜋

.𝑓𝑠 . �𝐸𝑜𝑛,1 + 𝐸𝑜𝑓𝑓,1 + 𝐸𝑜𝑓𝑓,𝐷 �.
𝑉𝑑𝑐
𝑉𝑟𝑒𝑓

.
𝐼𝐿
𝐼𝑟𝑒𝑓

Where 𝑓𝑠 is the switching frequency, 𝐸𝑜𝑛,1 and 𝐸𝑜𝑓𝑓,1 are the turn-on and the turn-off energies of

the IGBT respectively, 𝐸𝑜𝑓𝑓,𝐷 is the turn-off energy in the power modules’ diode due to reverse

recovery charge current, 𝑉𝑑𝑐 is the dc link voltage, 𝐼𝐿 is the peak value of the ac line current

assumed to be sinusoidal and 𝑉𝑟𝑒𝑓 and 𝐼𝑟𝑒𝑓 are the reference voltage and current where the

switching energies provided by data sheets are given.

It is seen that switching loss increases with increasing switching frequency and increase in Dc

link voltage. If Medium voltage is used in order to increase the power rating in drive system then

13

switching loss is also increased along with it. Therefore as the compensation, switching

frequency can be reduced. For medium voltage and low switching frequency, the perfect choice

of power conductor device is IGBT. The construction of IGBT is made is such a way that it has

higher reverse voltage blocking capability being suitable for medium voltage drive and lower

operating switching frequency which shows its suitability for lower operating frequency.

However if the switching frequency is low then there will be problem in modulation which will

be discussed in the remaining sections.

2.3.2 Harmonic content of voltage source Inverter
The output of the voltage source converter is not pure sinusoidal wave. Hence it possesses

certain amount of harmonics at their output due to finite switching frequency. The output voltage

of the converter can be analyzed by Fourier series.

𝑉(𝑡) = 𝑉𝑜 + �𝑉ℎ
∞

ℎ=1

(𝑡)

The three level voltage source converter is shown in Figure 2-5.

 If the load is balanced three phase load then some harmonics in line to line voltage will be

cancelled out even though they exist in bridge leg voltage. Let Ua0, Ub0 and Uc0 are the voltages

at the phase outputs (or bridge leg) of the inverter with respect to the dc-link then line-to-line

voltage will be [25].

)()()(
)()()(
)()()(

00

00

00

tUtUtU
tUtUtU
tUtUtU

acca

cbbc

baab

−=
−=
−=

The neutral voltage 𝑈0 (𝑡) is common in all the bridge leg hence the above equation can be

further expressed as.

)t(U)t(U)t(U)t(U
)t(U)t(U)t(U)t(U
)t(U)t(U)t(U)t(U

ac0a0c

cb0c0b

ba0b0a

−=−
−=−
−=−

14

In balanced three phase load, phases are 1200 out of phase with each other, so at any instant the

sum of all the phase voltage sum upto zero.

𝑈𝑎0 + 𝑈𝑏0 + 𝑈𝑐0 = 0

𝑈𝑎 − 𝑈0 + 𝑈𝑏 − 𝑈0 + 𝑈𝑐 − 𝑈0 = 0

The neutral voltage U0 can be expressed as function of the phase voltages of the load as follows:

3
)()()()(0

tUtUtUtU cba ++
=

Using this value and inserting in above equations, the following equations can be obtained.

()

()

() 0000

0000

0000

)()()(2
3
1)(

)()()(2
3
1)(

)()()(2
3
1)(

UtUtUtUtU

UtUtUtUtU

UtUtUtUtU

bacc

acbb

cbaa

+−−⋅⋅=

+−−⋅⋅=

+−−⋅⋅=

The classical dq0-transformation one obtains:

()

⋅
−⋅

−−⋅
⋅=

⋅

−
−−

⋅=

)(3
)()(3

)()()(2

3
1

111
330

112

3
1

0

00

000

0 tU
tUtU

tUtUtU

U
U
U

U
U
U

cb

cba

c

b

a

s

s
sq

s
sd

The d-axis voltage component is equal to the difference between two line voltages. The q-axis

voltage component is proportional to the line voltage:

() ()

() ()
3

)()()(
3

1)()(
3

1)(

)()(
3
1)()()(2

3
1)(

00

000

tUtUtUtUtUtU

tUtUtUtUtUtU

bc
cbcb

s
sq

caabcba
s
sd

=−⋅=−⋅=

−⋅=−−⋅⋅=

The d-component will have the same harmonics as the difference between two line voltages,

while the q-component has the same harmonics as one line voltage. As common components in

all bridge leg voltages will not be present in the load. This indicates that motor as a load will not

15

see the harmonics presented in the bridge leg voltage but it only sees the harmonics presented in

the line-to-line voltage. Some harmonics in line to line will be cancelled out even though they

exist in bridge leg voltage. If the PWM patterns of the three bridge legs are 120 degree phase

shifted, i.e. the pattern is three phase symmetrical so no harmonics of multiple of three, exists in

the d- and q-axis system even if they exist in the bridge leg voltages. Two important conclusions

are:

 Even signals in the bridge leg voltages is cancelled in the line voltages

 Harmonics multiple with 3 do not exist in the d- and q- voltages.

2.3.3 DC Bus Balancing

2.3.3.1 Introduction

In NPC converter as shown in Figure 2-5, there are two capacitors. Depending upon the type of

neutral point current, the charging of two capacitors may differ creating voltage difference

between them. This phenomenon can increase the voltage stress in the equipment connected

across them. In the worst case, all the DC link voltage could be across only one of the capacitors.

Hence DC Bus balancing is necessary to keep the voltage difference between the two capacitors

small. The output voltage also does not follow the reference value and increase the harmonic

distortion in presence of unbalance in capacitor voltages [26]. Space Vector method can be used

in order to control the voltage across the capacitor. In space vector, Phase R,Y,B are located 1200

out of phase to each other in vector space. A three level converter has 27 vectors to create the

desired voltage with 19 different states as shown in Figure 2-10.

NPC converter has three states namely 0,1,3 where 2 is the forbidden state. In Figure 2-10 MSB

consists the state of R phase while LSB consist of state of B phase. The currents flowing in

different states for a bridge leg are given in Figure 2-11. In level 3, the current flows from the

top, in level 1, there is flow of current from neutral point while in level 0, there is flow of current

from the bottom.

16

Figure 2-10 Space vector diagram for three level converter.

Figure 2-11 Position of current at different level [26].

Vectors can be divided into four different groups according to magnitude of the vectors. The

overview is given in Table 2-3.

17

Table 2-3 Overview of space vectors[26].

Zero Vectors Small Vectors Medium Vectors Large Vectors

(000) (100)(311)(110)(331) (310)(130) (300)(330)

(111) (131)(010)(011)(133) (031)(013) (030)(033)

(333) (001)(113)(101)(313) (103)(301) (003)(303)

The vectors are 𝑈𝑠 = 1
2
𝑈𝐷𝐶 . 𝑒𝑗𝜃

𝑈𝑚 =
1
√3

𝑈𝐷𝐶 . 𝑒𝑗𝜃

𝑈𝑙 =
2
3
𝑈𝐷𝐶 . 𝑒𝑗𝜃

Where, UDC is DC link voltage. Us, Um, Ul means small, medium, large vectors respectively.

The neural current determines the charging and discharging of capacitor. A zero vector is when

all the bridge legs are connected to the same point and all of the line-to-line voltages are zero.

Hence zero vector does not create voltage difference. The six large vectors also do not affect

unbalance in voltage in capacitor. It is because the large vector do not have neutral current as it

does not involve level 1. Therefore only six medium vectors and six pairs (twelve) of small

vectors influence voltage balance. The overview is given in Table 2-4. The sum of current in

three phase equal to zero. The same table shows the neutral current flowing at different vector

combination. For instance 100, Ir flows through neutral point in R bridge leg while Iy and Ib

flows through the bottom of the Y and B bridge leg as shown in Figure 2-11.

Table 2-4 Overview of relation between space vectors and neutral current [26].

Positive small vectors INp Negative small Vectors INp Medium vectors INp

100 Ir 311 -Ir 310 Iy

331 Ib 110 -Ib 130 Ir

010 Iy 131 -Iy 031 Ib

133 Ir 011 -Ir 013 Iy

001 Ib 113 -Ib 103 Ir

313 Iy 101 -Iy 301 Ib

18

Similarly for 311, Ir flows through top of R bridge leg while Iy and Ib flows through the neutral

point in Y and B bridge leg. But we know, Ir+Iy+Ib=0 and Iy+Ib=-Ir. So it can be said that the

total neutral current flowing for the state 311 is –Ir as shown in Table 2-4.

The positive neutral current will charge the upper capacitor while discharge the lower capacitor

while negative neutral current charges oppositely. It can be seen in Figure 2-12, where the

direction of current is taken positive. The figure clearly shows how this positive current is

charging the upper capacitor and discharging the lower capacitor. For the negative current, the

phenomenon is just opposite. In the Figure 2-10 the belonging phase currents are shown with a

plus and minus sign. The plus sign is representing a positive vector, while a negative sign is

representing a negative vector.

Figure 2-12 Charging of upper capacitor and discharging of lower capacitor.

2.3.3.2 DC balancing

In order to remove the unbalance in voltage between two capacitors, six small vector pairs are

controlled. When a small vector pair is involved a total duty cycle of d1 is calculated, where d1

is a duty cycle of Ttri. This is given in detail in [26].This duty cycle is divided into two for DC

bus balancing.

𝑑1 = 𝑑1,𝑝 + 𝑑1,𝑛

Where 𝑑1,𝑛= duty cycle of negative vector

𝑑1,𝑝 =duty cycle of positive vector

19

These two duty cycle will be equal in the case of balanced voltage. For unbalanced voltage

control parameter f1 is introduced to define positive and negative vector.

𝑑1,𝑝 = 𝑓1.𝑑1 and 𝑑1,𝑛 = (1 − 𝑓1).𝑑1

The value of f1 must be calculated which depends on phase current and capacitor voltage. For

the situation when voltage in upper capacitor is greater than the lower capacitor or Udcu > Udcl,

such vector which discharge the upper and charge the lower must be selected. That means that

negative vector must be selected. It is already defined in above section that negative vector will

give negative neutral current which discharges the upper capacitor and charge the lower

capacitor. For the opposite case, positive vector must be selected. The value of f1 should be 0.5 at

balanced situations and it should be regulated depending on the voltage difference and direction

of the current. The equation of f1 is as shown below.

𝑓1 = 0.5 − 𝑘.
𝑎𝑏𝑠(𝑈𝑑𝑐𝑢 − 𝑈𝑑𝑐𝑙)

(𝑈𝑑𝑐𝑢 + 𝑈𝑑𝑐𝑙)

K is in this case a constant which has to be given a proper value. As it can be seen from the

formula, the value of f1 is depending on the difference in capacitor voltage.

2.4 Modulation Strategy
At present, voltage source converters are mostly used in electrical drives. These converters

utilize capacitors in the DC-link to store temporarily electrical energy. Switching the power

electronic devices allows the DC voltage to be modulated which can result in a variable voltage

and frequency waveform. The purpose of the modulator is to generate the required switching

signals for these switching devices.

There are various ways of modulation. The overview of a modulation method is listed in Figure

2-13. Multilevel Modulation strategies are mainly divided into Synchronous and Asynchronous

Modulation[25]. The division is based on the value of index called frequency modulation index.

𝑚𝑓 = 𝑓𝑐
𝑓𝑠

 . Here 𝑚𝑓 is called frequency modulation index, 𝑓𝑐 is called carrier frequency and 𝑓𝑠

is called reference fundamental frequency or stator frequency.

20

Figure 2-13 Modulation strategies[24].

The modulation strategies are as shown in Figure 2-13. Modulation strategies are divided into

two major areas which are as follows:

a) Asynchronous Modulation:

 When stator frequency is very low, it impacts frequency modulation to be greater than 20. There

will be high pulse number. In such scenario, zero crossing between carrier wave and reference

signal is not synchronized even if it results in unequal number of pulses in positive and negative

half cycle. For such high pulse number, difference of few pulse numbers between positive and

negative half cycle does not make huge impact hence the effect of sub-harmonic component is

minimal. Such kind of modulation in which zero crossings between the carrier wave and

reference signal are not synchronized is called asynchronous modulation.

There are two types of asynchronous modulation.

i) Space Vector PWM

ii) Carrier Based PWM

Among these two type Carrier Based is discussed here.

• Carrier Based PWM :

In Carrier Based PWM, generally there is reference wave which is compared with carrier wave.

The switching pulses are determined by the result of the comparison. If reference wave is greater

in magnitude than the carrier wave then pulse is ON otherwise OFF. Carrier Based PWM is

further divided according to the sampling of the reference wave. They are

a) Naturally sampled PWM

b) Regularly Sampled PWM

21

 Naturally sampled Pulse Width Modulation:

 This is the classical method where analog circuitry like amplifier is used for comparison of

carrier wave and reference wave. The reference voltage then change continuously within the

triangular period (carrier wave) as in Figure 2-14. If continuously changing reference wave is

greater than triangular wave, the switching pulse is ON otherwise OFF.

Figure 2-14 Naturally sampled PWM[23].

 Regular sampled Pulse Width Modulation:

A method which is easier to implement in digital form is the regular sampled PWM. In this case

the reference voltage is sampled at top and bottom of the triangular wave and then kept constant

until next sample. This sampled reference wave is compared with the magnitude of triangular

wave and switching occurs. Similar to Naturally Sampled PWM, the pulse is ON if sampled

reference wave is greater than triangular wave and OFF for the opposite case. This method is

further divided into:

• Symmetrical Regular sampled PWM

• Asymmetrical Regular sampled PWM

22

• Symmetrical Regular sampled PWM: The reference voltage is only sampled at the top

of the triangular wave and kept constant within the complete triangular period.

• Asymmetrical Regular sampled PWM: The reference voltage is sampled both at the top

and bottom of the triangular wave and kept constant within half the triangular period.

Figure 2-15 Symmetric and asymmetric regular sampled PWM.

The reference wave is stator frequency, which keep on changing. There will be change in the

carrier wave as well if frequency modulation is kept constant. As we know the formula for the

frequency modulation,

𝑚𝑓 = 𝑓𝑐
𝑓𝑠

where 𝑚𝑓 is called frequency modulation index, 𝑓𝑐 is called carrier frequency (or switching

frequency) and 𝑓𝑠 is called reference fundamental frequency.

 𝑓𝑐 = 𝑚𝑓 ∗ 𝑓𝑠

For, the application in motor, for the variable speed drive, the stator frequency (or fundamental

frequency 𝑓𝑠) may vary. For particular mf, 𝑓𝑐 varies proportional to 𝑓𝑠. However to keep the

carrier frequency constant, close to its maximum value, frequency modulation index must

23

decrease when stator frequency is increased or vice versa as seen in Figure 2-16. In order to

keep carrier frequency constant, there is change in the ratio (mf) in the different ranges of fc.

Figure 2-16 Carrier based PWM [23].

b) Synchronous Modulation:

 For small values of frequency modulation (20 or less), the number of pulse are lower hence

even the difference in pulse number in positive and negative half cycle by one unit will

generate sub harmonics. To prevent from such scenario, the carrier waveform signal and the

control signal should be synchronized to each other. That means the zero crossing of carrier

wave (triangular) and reference wave (sinusoidal) should coincide in order to prevent from

sub harmonic. This type of modulation is called synchronous modulation. As a result of this,

number of pulses in positive half cycle is equal to that in negative half cycle. The average

switching frequency is fc /2. This type of modulation is important for low pulse number

whose violation can result in sub-harmonics in motor voltage. Synchronous Modulation is

further divided into two parts called fundamental frequency synchronous PWM and Program

PWM.

i) Fundamental frequency Synchronous PWM:

ii) Program Modulation PWM:

Among these two, this thesis deals with the second type.

• Program Modulation PWM

This method pre-calculates optimal switching angles within a period of the fundamental period

1/fs to minimize the harmonic distortion. But these switching angles are not formed by carrier

wave like in conventional way. This pattern or angles are programmed, or stored, as look-up

24

tables in hardware. This type of modulation is termed as Program Modulation. Since this is also

synchronous modulation the number of pulses in positive and negative half cycle are equal. This

is explained in detail in section below.

2.5 Program Modulation Technique

2.5.1 Background
BJT and MOSFET have characteristic that complement each other. BJT have lower conduction

losses in the on state, especially in devices with larger blocking voltages, but have low operating

frequency. MOSFETs can be turned on and off much faster but their on state conduction losses

are larger, especially in devices rated for higher blocking voltages. Hence device is made whose

performance is midway between BJT and MOSFET called Insulated Gate Bipolar Transistor

(IGBT). Its switching frequency is higher than a comparable BJT but lower than MOSFET

whereas the on state losses are smaller than MOSFET and are comparable with those of BJT for

larger blocking voltage [23].

It is shown in section 2.3.1, switching loss increases with increasing switching frequency and

increase in Dc link voltage. If Medium voltage is used in order to increase the power rating in

drive system then switching loss is also increased along with it. Therefore as the compensation,

switching frequency can be reduced. For medium voltage and low switching frequency, the

perfect choice of power conductor device is IGBT. The construction of IGBT is made is such a

way that it has higher reverse voltage blocking capability and lower operating switching

frequency.

For the medium voltage drive, the inverter will be designed for a 6.6 kV output voltage, which

means a dc-link voltage of approximately 10 kV. The most realistic choice of IGBTs are those

with a blocking voltage of 4.5 kV [25]. Hence series connection of devices is required in a three

Level inverter. In these devices the switching loss is a quite large part of the total losses. Hence

the switching frequency of IGBT must be lower, in the range of 200-1000Hz.

In the equation, 𝑚𝑓 = 𝑓𝑐
𝑓𝑠

 , fs=stator frequency and fc=carrier frequency or switching frequency

25

mf= frequency modulation index. For lower frequency, the value of frequency modulation is low

(20 or less). Lower carrier frequency results in lower pulse number hence even the difference of

pulse in positive and negative cycle by one unit will make huge difference. However such kind

of equalization is not necessary in higher carrier frequency.

Hence, the lower carrier/switching frequency demand synchronized modulation. Among two

types of synchronous modulation, Programmed Modulation is introduced here. Program

Modulation pre-calculates optimal switching angles within a period of the fundamental period

1/fs. These patterns or angles are programmed, or stored, as look-up tables in hardware [25].

2.5.2 Program Modulation
 Programmed Modulation is a synchronous modulation technique. In Programmed Modulation

switching events can take place freely over the fundamental period as indicated in Figure 2-17.

However, these switching instances are not given by a carrier signal. These switching instances

are pre-calculated by some software program. The Figure 2-17 is the output for the program

modulation for three level converter for one phase. This method is described initially in [13] and

revised in [22] and [25]. For two level converter this method is initially studied in [11]. This type

of modulation signal is generated by software program.

Figure 2-17 Programmed PWM pattern (M=N)[22].

In Figure 2-17, Instead of M, N will be used in this thesis. There are some parameters which

characterize this signal which are number of pulses in a half period (N), fundamental frequency

or stator frequency (fs) and switching frequency of IGBT (fsw).

26

N is number of pulses per half period. In addition, the number of turn-on of upper switch is N

and number of turn-off is N as well in one half period. The total number of commutations is thus

2*N per half period and 4*N per period. In a complete three-phase inverter this becomes 12*N

switching. The average switching frequency over one period for the upper switch is thus:

savgsw fNf ⋅=,1 where fs is stator frequency.

If this is compared with a carrier based PWM, with the same number of pulses N per half period

the equivalent ratio mf becomes:

()
() ,......27,21,15,9,3

15.0
15.0

==

−⋅
+⋅

=
s

c
f

f

f

f
fm

m
m

N

Program Modulation technique is synchronous modulation. Hence at first it is needed to check if

synchronous or asynchronous modulation has to be applied. At low speed and thus frequency fs,

asynchronous modulation can be used with a fixed switching frequency of 200 Hz. For 200 Hz

max switching frequency this gives a max motor frequency fs, with N=10 (even):

Hz
m
ff

f

c
s 52.9

21
200

1 ===

Above this stator frequency, synchronous modulation is chosen. This also means below N=10

(below𝑚𝑓 = 21), synchronous modulation is chosen.

For synchronous modulation in motor drives using Program Modulation, the number N has to be

selected to give a proper curve similar to Figure 2-16, but with N as parameter instead of mf and

fsw instead of fc, where fsw is called switching frequency while fc is called carrier frequency. The

Figure 2-16 is modified for program modulation and it looks like Figure 2-18

27

Figure 2-18 Programmed PWM.

Switching frequency increases with increase in stator frequency for constant N. However the

maximum operating frequency for IGBT is 300 Hz. In this process, if switching frequency

becomes more than 300Hz then N is decreased as stator frequency increases.

2.6 Synchronous Optimal Modulation
In Program Modulation, these switching instances are pre-calculated by some software program,

in order to achieve a purpose by applying some kind of constraint in Fourier series of the

fundamental frequency. Usually these methods are divided into Harmonic Elimination PWM

and Minimum-loss PWM methods. Harmonic Elimination PWM is used for the active rectifier

which is out of scope of this thesis. For motor drive application Minimum-loss Program

Modulation method can be used. This kind of modulation technique is called Synchronous

Optimal Modulation (SOM). In SOM pattern, switching events are determined by software in a

way that reduces the harmonic content in the current, also reducing losses due to harmonic

distortion in the controlled induction machine [28].

Losses in an induction machine due to presence of harmonic components of higher order than the

fundamental component, is not divided evenly over the harmonic spectra. The lower harmonic

components contribute more to losses than the higher harmonic components. The low harmonic

components produce lower impedance resulting in higher harmonic current. The uneven

distribution of loss in the harmonic spectra require appropriate performance indicator that

weights the lower frequency spectra of harmonic components more heavily than the high spectra

28

of the harmonic components [22]. Such indicator is commonly known as Weighted Total

Harmonic Distortion (WTHD).

In drives applications the motor leakage inductance is limiting the harmonic currents. The

weighted total harmonic distortion factor for current is then [22]:

2

2

,0

1,01,0

1

1,

2

2

,

1

ˆ
ˆ
1

ˆˆ

ˆ1

∑

∑

∞

=

∞

=

⋅=

⋅
==

⋅=

h

ha

aa

i

a

i

h

ha
i

h
U

UU
THDL

I
THDWTHD

h
U

L
THD

ω

ω

The SOM pulse patterns for a Three-Level NPC converter is as shown in Figure 2-17. In the

figure, Instead of M , N will be used in this paper. N stands for number of pulses in a half period

or number of transitions in quarter wave. Here +1 actually means Udc1 and -1 is equal –Udc2

and zero potential is the Neutral Point (NP) in the three level inverter. The total dc-link voltage

Udc is equal:

21 dcdcdc UUU +=
22121
dc

dcdcdcdc
UUUUU ==⇒=

The Fourier series coefficients do only have sine-term and odd number of harmonics due to Half

Wave Symmetry (HWS) and the Quarter Wave Symmetry (QWS). The peak value of the hth

harmonic becomes [22]:

() ()

.1,2,3,4... i 1,i6
2

.........0cos14ˆ
21

1

11
,0

=±⋅=

<<<<⋅⋅−⋅
⋅
⋅

= ∑
=

+

h

h
h
UU N

N

k
k

kdc
ha

παααα
π (1)

At this point, another modulation index called amplitude modulation index (ust or m) is

introduced. Amplitude Modulation index is proportional to fundamental voltage component [29]

amplitude modulation, 𝑚 𝑜𝑟 𝑢𝑠𝑡 = 𝑢
𝑢𝑑𝑐

, u is rms voltage of the modulated signal, udc is dc link

voltage. The modulation index is

29

() ()
2

.........0cos14
21

1

1
1,0

παααα
π

<<<<⋅−⋅== ∑
=

+
N

N

k
k

k
ast uu (2)

Hence the objective function is to minimize the following WHTD expression

∑∑
∞

=

+−
∞

=

+
+

−
⋅=

⋅=

1

2

16,0

2

16,0

1,0

2

2

,0

1,0 16

ˆ

16

ˆ
ˆ
1ˆ

ˆ
1

i

iaia

ah

ha

a i
U

i
U

Uh
U

U
WTHD (3)

The optimization task is then, for each modulation index, to find the set of N angles from α1 , …,

αN of equation (2), to minimize the function of WTHD of equation (3).

Algorithm is developed by Roy Nilsen at Wartsila Norway [25] to find the required switching

angles for given amplitude modulation index to minimize the total harmonic distortion. The

example is shown in Figure 2-19 for N (no. of switching transitions in quarter wave)=4.

Whenever the value of modulation index varies, the switching angles are changed in order to

minimize the harmonic loss. The angles are only shown for quarter wave but the angles for rest

of the period can easily be predicted as will be mentioned in section 2.7. Table 2-5 has tabulated

the angles for five amplitude modulation index. As the modulation index change, the angles also

change. Similarly there are other SOM patterns for different values of N. The example is shown

for N=8 in the Appendix A. It means that for one particular value of (m,N) there is one particular

type of switching signals. The harmonics as the function of modulation index is given in Figure

2-20.

Figure 2-19 SOM pattern for N=4 [25].

30

Table 2-5 Switching angles for different modulation index

ust α1 α2 α3 α4

0.2 53 58 76 82

0.4 52 59 73 86

0.6 51 60 69 89

0.8 18 42 55 80

1 19 46 52 86

Figure 2-20 Harmonics for N=4 [25].

Using Figure 2-19, the different switching pulse can be generated for different modulation index.

The switching pulse for modulation index ust(m)=0.4 for quarter wave is shown in Figure 2-21.

Figure 2-21 Pulse generated from SOM pattern.

0

0.5

1

1.5

0
10

20
30

40
50

60

0

0.5

1

1.5

Harmonic number

 Harmonics as function of modulation index ust

ust [pu]

 [p
u]

31

2.7 Open Loop Method
When there is change in magnetic flux then voltage is induced. So there is relation

𝑢 = 𝑓𝑠 𝜓

Where u is the applied stator voltage, fs is stator frequency, 𝜓 is stator flux.

𝜓 = 𝑢
𝑓𝑠

= 𝑢𝑑𝑐 .𝑚
𝑓𝑠

 , m is amplitude modulation, 𝑚 = 𝑢
𝑢𝑑𝑐

After rearranging,

𝑓𝑠 =
𝑢𝑑𝑐
𝜓

 𝑚 = 𝑘.𝑚

k is constant if flux 𝜓 is kept constant. Hence if m(proportional to output voltage) change then

stator frequency should also change in order to make k constant(or flux constant). Such kind of

control is called u/f control. In many industries, the induction motors are controlled by variable

frequency drives with the Volts/Hertz (U/f) control; this strategy intends to keep a constant flux,

imposing a constant volts/hertz ratio. Whenever m has to be changed then fs is also changed for

keeping flux constant.

In other to apply u/f control in Synchronous Optimal Modulation technique, there is a relation,

𝑓𝑠𝑤,𝑎𝑣𝑔 = 𝑁. 𝑓𝑠=N.k.m

Here, N is number of switching angles or transitions in one quarter wave. In this, whenever m

changes, fs must change to keep flux constant. However if fs change 𝑓𝑠𝑤,𝑎𝑣𝑔 changes

proportionaly but if 𝑓𝑠𝑤,𝑎𝑣𝑔 is greater than 300Hz, then N is decreased as shown in Figure 2-18.

Synchronous Optimal Modulation pre calculates switching angles for particular value of (m,N)

from algorithm as said in section 2.6 and store in a memory table pattern as P(m, N). Hence for

the set of one m and N, there is set of switching angles stored in memory table which generate

the pulse. For instance, for (m=0.4, N=4), the switching patterns for quarter wave is shown in

Figure 2-21. The switching angles calculated in this way, is only for quarter wave. However, it is

easy to predict the angle for rest of the period. Prediction is based on the fact that the signal has

quarter wave symmetry and half wave symmetry. It uses the following rule:

In interval I, 0 ≤ α ≤ π/2 : uss(α) = f {P(m,N)}

32

The remaining portions of a full fundamental cycle are determined using the conditions for

quarter-wave symmetry and half wave symmetry.

In interval II, π≤ α ≤ π : uss(α) = uss(π − α)

According to half-wave symmetry

In interval III, π≤ α ≤ 2π : uss (α) = uss (2π − α) [29]

After using this prediction to Figure 2-21 , the switching pulse for one fundamental period is

shown in Figure 2-22.

Figure 2-22 Switching Pulse in one fundamental frequency.

2.8 Synchronous Optimal Modulation signal flow graph

Figure 2-23 Synchronous Optimal Modulation signal flow graph [29].

33

The Figure 2-23 shows the signal flow graph of the project for open loop system. The input to

the system is the fundamental frequency and reference voltage vector u*. The modulation index

m is proportional to the magnitude of the reference voltage vector u*. There is relation

𝑓𝑠𝑤,𝑎𝑣𝑔 = 𝑁.𝑓𝑠

The value of N can be calculated using the graph Figure 2-18 for keeping the maximum

switching frequency of IGBT as 300Hz. And m depends on u* and N depends on fundamental

frequency. Once m and N are calculated, for patterns as P(m,N), the optimal switching angles

can be calculated as described in section 2.6. The patterns are functions of the modulation index

m and the pulse number N. A parameter pair (m, N) selects the corresponding pulse pattern from

pattern selector. This pattern is fed to the modulator. The modulator converts the switching

angles αi defined by P(m, N) to switching times. The fundamental frequency signal f1 translates

the resulting switching angles αi to switching time ti = αi /(2πf1). The modulator thus creates the

sequence of switching state at various switching time needed for each IGBTs of inverter to

obtain desired synchronous optimal modulation pattern as prescribed by the optimal pattern P(m,

N). The modulator is designed in FPGA. The FPGA control card is programmed accordingly for

firmware implementation of synchronous optimal modulation. In the chapter 3 below, there is

detail explanation of application of FPGA in this project.

34

3 Introduction to FPGA and Xilinx EDK
The implementation of three level modulator is done on extremely fast digital device called Field

Programmable Gate Array (FPGA). The important portion of the project commence from

chapter 3 which introduces FPGA architecture, FPGA control card developed by SINTEF along

with the description of tool called Xilinx which is used to program FPGA.

3.1 Background
The reliability and performance of digital technologies have been improving consistently. With

this growth, digital control has replaced analog counterpart because they are flexible to modify

the control schemes, they can adapt to different systems and operating conditions. Other benefits

of digital control system are immunity to noise and insensitivity to component variation. These

digital control systems are implied on microcontrollers or digital signal processors (DSPs) due to

their software flexibility and low cost. These components have arithmetic logic, analog to digital

converters, timers for solving real time operation. Nevertheless, some of the benefits of analog

control like accuracy, absence of feedback loop delays etc are very difficult to be replaced by

these microcontrollers and DSPs. However high performance DSP can provide such benefits but

they are limited to complex algorithm. The cost of such DSPs can exceed the benefits they bring

[30].

After the development of field-programmable gate array (FPGA), the gap between the analog

and digital world is reduced. FPGA has exceptionally fast computation capability hence complex

control algorithm can be computed in few microseconds and they are cost efficient as well. They

are adapted in electrical drive application. They are successfully applied in control of pulse

width-modulation (PWM) converters, machine drives and multiphase machine control system

[30].

35

3.2 General Architecture of FPGA
“A Field Programmable Gate Array (FPGA) is a microchip. FPGA consists of matrix of

configurable logic blocks (CLB) made up of flip flops and lookup tables, which can be used

along with the configurable input output blocks and interconnection programmable network to

make a programmable hardware circuit known as Intellectual Property (IP)”[31]. IP are meant

to perform certain time critical task. One of the important specification of FPGA is matrix size,

the bigger it is, more IPs it can have. The structures of CLB include two, four, or more logic

cells, also called logic elements, which are the basic grains of the FPGA [31]. It is illustrated in

Figure 3-3.

Even by changing the configuration of the switch matrix, the functionality of FPGA can be

modified hence it is a flexible chip. Such flexibility helps the user to create their own hardware

design according to their specification. This obviously contrasts the conventional micro

controller where pin configuration are fixed during manufacture [32].

Figure 3-1 General architecture of FPGA [31].

Figure 3-2 Interconnection programmable network.

36

Figure 3-3 Inside logic block [31].

Even though FPGA has such immense benefits, the design process is extremely complex. All the

hardware components have to be designed by users themselves, so the amount of programming

is huge. For designing such chips, special hardware description language called VHDL or

Verilog has to be applied. In this thesis VHDL is used. This HDL is different from other

programming language. It is because the statements in HDL create digital circuitry which

performs operation in parallel. Other programming languages like C create processor instructions

which are executed sequential. FPGA really is a digital circuit. The syntax is also different from

C [32]. VHDL stands for VHSIC hardware Description Language. VHSIC is itself an

abbreviation for Very High Speed Integrated Circuits. These HDL are executed parallel on

contrary to other computer program which are executed sequentially [33].

3.3 Embedded System Development
FPGA is operated in parallel so it is dramatically fast and can be used for time critical

application. The whole control system for a motor drive converter could be placed in an FPGA in

order to achieve high speed operations. However this would demand a very large FPGA with

complicated design structure. In addition, every function of the whole system are not time

critical. Electric Drive control system generally has slow outer loop and fast inner loop.

Moreover the speed/power/frequency control of a converter is slower process than modulation

process. Hence there is no point of implementing such relatively slower process on FPGA. The

cost and complexity of using large FPGA would be extremely high if whole control system is

implemented [32].

Advanced FPGA are manufactured with processor inside it. This kind of system is called

embedded system. This is the good solution to deal problems described in above paragraph.

37

Embedded FPGA helps to split the design procedure in two: hardware part (for FPGA) and

software part (processor). This makes it possible to take advantage of both sector but still use one

single chip. The advantage of FPGA is exceptional speed gain and that of processor is the

implementation of simple and versatile software programming [32]. The processes which are

relatively slow and which is seeking complex design are programmed in software. And faster

processes are programmed in hardware.

The concept of System on Chip (SOC) is based on integration of a variety of features combining

digital and analog part, hardware and software, equipped with a communication infrastructure.

As system on-chip architectures continue to receive more and more attention from the embedded

systems community, FPGA manufacturers such as Xilinx are responding with a new generation

of FPGA architectures that contain a variety of embedded resources. One of new generation

FPGA is Vertex-5 ppc440 FX30T which has Embedded PowerPC440 Processor Core. This type

of Soc based on platform FPGA is device which integrates field programmable logic cells with

predetermined collection of resources such as embedded CPUs, SRAM, versatile general

purpose IO ports, high speed, serial links, various standard peripherals and others [34].

3.4 Xilinx Board
Xilinx Board used for this project is Xilinx Virtex FX30T which is built by SINTEF to suit the

various requirements for different power electronic control applications. In this Xilinx board, the

Embedded Development Kit (EDK) tools can be used to design a full featured embedded system

consisting of hardware and software. The control card outline with the chip and other important

peripherals is as shown in the Figure 3-4.The important components of the control cards apart

from FPGA are mentioned below [35], [3].

3.4.1 Communication Port
The card is having RS232 serial port connected with a male 9 pol D‐sub connector. The serial

port is not isolated.

Ethernet port for 10MB/sec and 100 MB/sec connection is available on board. The port is based

on the MAC block which is embedded in the Virtex 5 chip. The standard physical interface is

located on the separate chip (National Semiconductor DP83848) outside FPGA on the board.

The board is also having the high speed V.2 USB port with the separate controller NXP ISP1582

available on board outside FPGA.

38

CAN controller IC, Microchip MCP2515, is available on card for the with the other control cards

3.4.2 memory
Card is having ample amount of memory as summarized below.

• DDR2 DRAM ‐Micron MT74H64M16HR‐3E in 1GB, 16x64Mbit 333MHz clock frequency.

• EROM‐Renesas HN58V257A. 32k x 8 bits.

• FLASH‐Spansion S29GL512P is 512 Mbit flash chip, 32Mx16 64Mx8.

3.4.3 clock
The FPGA is supplied with the 40 MHz clock on the card. FPGA generates different clock

frequencies inside which are used by various components are as listed below.

• AD‐converter is operated with a differential 40 MHz clock.

• AD converter generates a 240 MHz clock. This drives the transfer of data from the AD

Figure 3-4 FPGA control card[35].

3.4.4 Converter
• USB controller is powered with a 12 MHz clock.

• CAN controller is driven by a clock of 20 MHZ.

39

• Ethernet PHY circuit is run a 25 MHZ clock.

• The RISC processor is powered by a 300 MHz (PowerPC) or 100 MHz (Micro Blaze) clock.

• Processor bus powered by a 100 MHz clock.

• DDR2 DRAM chips driven by a differential clock of 200 MHz.

• Transport correction (IDELAYCTRL) for DDR2 DRAM is run by a 200MHz clock.

3.4.5 Pulse Encoder:
Card has input for connecting a two‐phase encoder with a reference signal. The signals are

adapted to a Heidenhain ROD 420 pulse encoder, which has balanced signals with RS422 signal

levels. Pin numbering is the same pin numbers on the Round 12 pole connector ROD420.

Receiver circuit MAX3097 detects signal on lines. Three green LEDs at the connector can be

used to indicate the signal levels from the pulse sensor, while a red LED can be used to indicate

errors.

3.4.6 Relay drivers.
Card is equipped with four relay driver. The output voltage is 5V. This is sufficient to run many

types of relays with coil voltages 6V. Small cooling fans can be operated with this. An LED

lluminates when a relay driver is turned on.

3.4.7 LVDS:
The card is having contacts for high speed serial communication with LVDS signals having 600

Mbit/sec. transfer rate. LVDS transmission line has 100 Ω differential line impedance. The line

pair is terminated on FPGA with 100 Ω resistance between lines.

3.4.8 Signal Inputs:
The card is having six general purpose signal inputs either analog or digital .The analog signals

are read through the voltage divider network and with low pass filter with 30 μ sec time constant

signal level for the analog signal is 0‐5 V. Digital signals are inputted through the low pass filter

with 1 μ sec time constant, the signal level being 5 V CMOS.

3.4.9 AD Converter:
The card is equipped with an Analog Devices AD9222, 8‐channel 12‐bit AD converter. Each

channel has its own AD converter that works with 40 MSPS. The channels thus sampled

40

synchronously. Data is transferred to the FPGA in a serial form, the baud rate is 12BIT x 40

MSPS = 480 Mbit/ sec rates.

3.4.10 Digital Input Output port:
There are three channels on card with 16 bit digital IO ports. The signal level is the 0‐3V. This

can drive 5V TTL inputs; however, as the FPGA block is fed with the 3 volts so voltage is

clipped before entering into FPGA.

3.5 Xilinx Embedded Development Kit

3.5.1 Introduction
Xilinx FPGAs provide customizable silicon on top of which different kinds of hardware can be

created. The Xilinx Embedded Development Kit (EDK) provides tools to create custom

embedded hardware on Xilinx FPGAs. EDK is a series of software products developed to extend

the Xilinx Integration Software Environment (ISE) into the realm of system level design. The

Embedded Development Kit, EDK, produced by Xilinx, provides an entry point for both

embedded software and hardware designers who want to design with the PowerPC processors

embedded into the Vertex-5 ppc440 FX30T[36].

The programming environment developed by Xilinx is called Xilinx Integrated Software

Environment (Xilinx ISE). It consists of many different programs, but three of them are more

important for embedded system.

i) ISE Project Navigator

ii) Xilinx Platform Studio(XPS)

iii) Software Development Kit. (SDK).

The design environment employed for this thesis is shown in Figure 3-5

Figure 3-5 FPGA design flow adopted in this work.

41

XPS and SDK together are known as Xilinx Embedded Development Kit. When working with

the design of an embedded system built around an FPGA‐chip, four different abstraction levels

to work on can be assumed. They are

i) Physical description level

ii) Behavior Level

iii) Module Interaction level

iv) Software Level

3.5.2 Different Abstraction Level
Each program (ISE Project Navigator, XPS, SDK) is working on one specific level of the

abstraction layers. Below is given brief introduction of the abstraction level with Xilinx program

used in each level. This section is taken from ref [32].

i) Physical description level

The lowest level is normally the result of an automatic process performed in the programming

suite, i.e. the synthesis. The synthesis tool takes the description created during the programming

phase (written in a hardware description language), and translates it to a list with the signal

routing and placement of the different ports and logic circuits.

ii) Behaviour Level

In behaviour level digital circuits are described by writing codes in hardware descriptive

language, VHDL. ISE Project Navigator is utilized when working on the behavioral level. It is

typically utilized when developing new sub modules, but also entire FPGA‐configurations can be

created here. The designer needs to specify the input and output ports for the circuit, the signal

routing and the tasks, the circuit is supposed to perform. Since the circuit is a physical circuit, all

actions which are described by the designer are performed in parallel. A module is a digital

circuit designed to perform a specific task within a larger system.

iii) Module Interaction level

In behavior level, new programmable hardware circuit known as Intellectual Property (IP) are

written using VHDL. Drive control applications seek complex algorithm structure. In order to

make the design of control algorithms more manageable and less intuitive, reusability of already

42

made IP can be done. These kinds of interaction of different modules are done in this level for

complex system [31]. The Xilinx Platform Studio (XPS) program is especially dedicated for this

level.

This program is utilized when synthesizing an FPGA‐system from existing IP‐modules (either

from a local library, or from the included Xilinx blocks) and connecting signals between these.

The platform is built around the PowerPC‐processor and its processor bus. In addition to the

information on the processor, XPS also needs a User Constraint File (UCF), which contains the

description of all the input and output ports of the FPGA. The different IP‐blocks are added to

the design from the IP‐catalogue. Connections to the I/O‐ports, the processor bus or other FPGA‐

blocks are also created here. The communication between the processor and the hardware

modules is performed by a processor bus. The output of XPS is a hardware platform which can

be exported to the Software level to be discussed below. Such a platform contains information

about the FPGA configuration, necessary driver files and address specifications.

iv) Software Level

From the earlier section, it is clear that FPGA programming is done in two part: hardware part

and Software part. Hardware part is considered in behaviour level and module interaction level

while software part is considered in this level of abstraction. Xilinx Software Development Kit

(SDK) program is used here. The output of XPS is a hardware platform which can be exported to

the Software Development Kit. The interaction with the hardware is through a processor bus,

which transfers input data to the processor, and takes the output back to the FPGA. At this level,

programming the FPGA is done in either C or C++.

3.5.3 Xilinx ISE overview
Xilinx ISE system is an integrated design environment that consists of a set of programs to create

(capture), simulate and implement digital designs in a FPGA target device [37]. It is used in first

two abstraction level of design in Physical Description Level and Behaviour Level. The design

flow is shown in Figure 3-6. These steps are involved in the realization of a digital system using

Xilinx FPGA.

43

Figure 3-6 Overview of various steps in design flow of digital system.

Design Entry

The first step is to enter the design. This can be done by creating “Source” files. Source files can

be created in Hardware Description Language (HDL) such as VHDL, Verilog.

Synthesis

• Breaks down the VHDL design into logic elements.

• Recognizes common elements as counters, multiplexers.

• Generates a logic circuit of the design.

 Implementation

• Builds FPGA circuitry representing the logic elements

• Places the logic elements onto the FPGA structure

• Routes connections between the elements

• Calculates signal delay through connections and logic.

• Rearranges the layout in order to improve timing.

• Result: A BIT file, containing binary configuration data for the FPGA

Downloading

• Straight to the FPGA, for test and debug.

• To configuration flash memory. Loaded into FPGA at power up.

44

Project Navigator Window

The above steps are managed through a central ISE Project Navigator window, shown below.

Figure 3-7 ISE windows.

Hierarchy Window

This window contains the design source files for a project. These are the source files that is

created or added to the project. It also consist of the UCF (User Constraint File) which contains

the description of all the input and output ports of the FPGA.

45

Processes Window

The processes windows list the available processes (corresponding to the process selected in the

processes window). Typically a particular process to perform on the selected source file is

available here. This can include a simulation, implementation, etc. To run a process one need to

double click on the process. When a process has been successfully executed a green tick-off icon

appears. When a high-level process is clicked, the Project Navigator will automatically run all

the associated lower-level processes.

3.5.4 Xilinx platform studio overview
XPS is used in module interaction level. Intellectual Properties (IPs) are made by users and can

be reused by other users in order to make the design of control algorithms more manageable and

less intuitive. Interaction of various modules is done in this platform. Some of the basic modules

like Processor, timer, memory block are already provided by Xilinx. Other modules like Digital

to Analog conversion, Inverter, Driver Interface which are used in this project are created by

Kjell Ljøkelsøy from SINTEF [35]. User IPs which are convenient to this project are also created

and added to the processor bus along with all other modules. The window of XPS is shown in

Figure 3-8.

The IP catalog window consists of library of available IPs. Some IPs are directly available from

Xilinx, some IP modules are taken from Kjell Ljøkelsøy from SINTEF. While some of the IP are

user IPs.

The Bus Interface window consists of all the IP modules necessary for this project. Along that

window there is graphical connection showing the connections of the modules to the PLB (

Processor Local Bus).

There is also Port window where different IPs are connected through the common signal name.

There is address assigned to every address. The address is available in the Address window.

The VHDL description of an IP is not only enough to interface with the PLB hence an

intermediate representation layer, the Microprocessor Peripheral Description (MPD) file are also

needed which looks as shown in Figure 3-9. The MPD file contains basic information of

46

underlying IP VHDL/Verilog implementation (generics, ports), adding flow dependent attributes,

used for configuration.

Figure 3-8 XPS windows.

Figure 3-9 Microprocessor Peripheral Description (MPD) file.

47

The IP implementations abstracted by the MPD files need to be parameterized at a higher level;

this is done through the components instantiation in the Microprocessor Hardware Specification

(MHS) file. As shown in Figure 3-10, Platgen (a Xilinx tool) reads a MHS as its primary design

input. The tool also reads various hardware Microprocessor Peripheral Description (MPD) files

from the EDK library. Platgen produces the top-level HDL design file for the embedded system

that stitches together all the instances of parameterized IP blocks contained in the system. In the

process, it resolves all the high-level bus connections in the MHS into the actual signals required

to interconnect the processors, peripherals and on-chip memories. The EDK intermediate

description, based in the MHS and MPD file (among others), represents an improvement over a

purely VHDL description[38].

Figure 3-10 Xilinx EDK flow for processor based design.

3.5.5 Xilinx Software Development Kit overview
The Xilinx Software Development Kit (SDK) provides an environment for creating software

platforms and applications targeted for Xilinx embedded processors. SDK works with hardware

designs created with the Xilinx Platform Studio (XPS) embedded development tools[39].

The hardware specification captures all necessary information and files from a Xilinx Embedded

Development Kit (EDK) hardware design that are required for a software developer to develop,

debug, and deploy software applications for that hardware [39]. Typically, a hardware designer

who develops hardware using Xilinx Platform Studio (XPS) exports this specification file to a

directory. The software developer then imports this file using the Xilinx Software Development

48

Kit (SDK). SDK is based on the Eclipse open source standard. SDK features include feature-rich

C/C++ code editor and compilation environment. The SDK windows is shown in Figure 3-11

Figure 3-11 SDK windows.

The Project Explorer window consists of hardware platform (filename_hw_platform) which is

exported from Xilinx Platform studio. This window also consists of Board Support Package file

(filename_BSP). In embedded system, BSP is implementation specific support software for the

specific hardware. In this case the specific hardware is the one which is developed in XPS and

exported to the SDK. A board support package is software that implements and supports an

operating system on hardware like a development board. Usually built with a bootloader, a BSP

contains the minimal device support to load the OS and device drivers for all the devices on the

board[40]. for example it consists of address of all the modules in the hardware.

On this hardware the software application is developed. The codes are written in C++ format.

Using the features of C++, complex software needed for the project is developed here. The

49

output of the software is placed into the Processor local Bus which is common between SDK and

XPS. Data placed in PLB is retrieved by XPS and implement it into FPGA. The Figure 3-12

shows the way, how FPGA is programmed from SDK.

Figure 3-12 Program FPGA.

Once Program FPGA command is given in SDK, the software level put the data in the PLB and

the command is given to the hardware on XPS to operate. Then synthesis, implementation occurs

and bitfile is downloaded to the real FPGA and hence FPGA functions as the commanded by the

software. In this way embedded system works.

50

The methodology applied in this project for implementing SOM by using FPGA is presented in

chapter 4 which contains the description of Intelligent Properties (IP) and the connection

between various IPs used in this project.

4 Firmware Implementation of SOM in FPGA
Intellectual Properties (IPs) are key building blocks of Xilinx Targeted Design Platforms [41]. IP

performs one particular task. IPs are programmable hardware circuits. New Intellectual

Properties(IPs) are written using VHDL. Intellectual Properties (IPs) are made by users and can

be reused by other users in order to make the design of control algorithms more manageable and

less intuitive. The interaction of different IPs is done in Module Interaction level in one of the

software package from Xilinx EDK called Xilinx Platform Studio. The IPs which are used in this

thesis are named in Figure 4-1. Some of the IPs are som_phase_ip, DIG_IO1_GPIO,

vekselretter_tikobling etc . MHS file of the whole project is presented in Appendix B

Figure 4-1 List of IPs used in the project.

All these IPs are connected to the Processor Local Bus (PLB). Plb_v46 is the type of Processor

local bus used in this hardware. The communication between the processor PowerPc (ppc440)

and other hardware (IPs) is done by PLB. Through PLB, parameters and variables are transferred

to and from the program running in the processor. When IPs are connected to the PLB, base

address is assigned to them which makes processor easy to access any register by pointers to the

specific address. Figure 4-2 shows the block diagram of hardware built in FPGA. It has got

51

processor at the top and all the Intelligent Properties (IPs) that are developed by user at the

bottom. Processor communicates to IPs by Processor Local Bus (Plb_v46).

Figure 4-2 Block diagram.

52

 There are three kinds of IPs used here. These are categorized as

1) EDK install

2) Project Local Pcores (user)

3) Global Peripheral Repository (user)

4.1 EDK install
Some of the IPs are provided by EDK itself. These are the commonly used IP blocks. They are

described briefly [42].

a) ppc440: This IP is included to use Power PC 440 virtex 5 is the processor that is

embedded in FPGA. Its features are

• PowerPC 440x5 dual-issue, superscalar 32-bit embedded processor developed by IBM

• 32 KB instruction cache, 32 KB data cache

• 128-bit Processor Local Bus (PLB) version 4.6 interfaces

b) XPS bram:: This IP is named IP Processor Block RAM. The BRAM Block structural

HDL is generated by the EDK design tools based on the configuration of the BRAM

interface controller IP.BRAM block is configurable memory module. All BRAM Block

parameters are automatically calculated and assigned by the Platgen and Simgen EDK

tools.

c) XPS_intc: This is interrupt controller IP available in XPS. It contains multiple interrupt

inputs from peripheral device to single interrupt output to the system processor. It

connects as a 32 bit slave on processor local bus. To provide additional interrupt they can

easily be cascaded and prioritized. The interrupt can be edge triggered or level triggered.

d) Jtagppc_cntrl_inst: JTAGPPC Controller IP helps to connect the JTAG chain of FPGA

with the PowerPC processor

e) Proc_sys_reset: This Xilinx Processor System Reset Module design allows user to set

certain parameters to enable/disable features.

f) DIG_IO_GPIO: It stands for General Purpose input output port. It also connects as 32 bit

slave on PLB. It is configured as single or dual GPIO channels. The number of GPIO bits

53

can be configured from 1 to 32 bit. The width of each of the channel can be individually

configured. The ports can be configured dynamically for input or output by enabling or

disabling the 3-state buffer.

g) Xps_timer: The XPS Timer/Counter is a 32 bit timer module that is attached as 32 bit

slave on PLB. It has configurable counter width.

4.2 Project Local Pcores (user)
FPGA can be used in numerous applications. Every application has its own specific hardware

requirement. The intellectual properties developed for application specific need are categorized

as project local Pcores. These user developed IP cores can even be transferred to other user. For

the implementation of Synchronous Optimal Modulation technique, the IP called

SOM_PHASE_IP and SOM_spacevector_IP are developed in this master thesis. These are two

ways by which synchronous optimal modulation can be generated.

For generating synchronous optimal modulation, the optimal angles must be calculated. This

calculation itself accepts lot of work. Hence such calculation is done in other collaborating

master thesis. This can be referred from [15]. The collaborating project is termed as processor

routine or software while this project is termed as hardware in this report. The processor routine

can perform the task by phase to phase implementation or by space vector implementation. In

phase to phase implementation the processor routine deals with different phases independently

while in space vector implementation, all the phases are considered together.

If the processor routine performs phase to phase implementation then SOM_PHASE_IP is used

in the hardware while SOM_spacevector_IP is used for space vector implementation.

4.2.1 Phase to Phase Vs Space vector Implementation
In Figure 4-3, the numbers of switching instances are shown for three different phases for one

sampling period. There are total of seven switching instances in all the phases among which 2

lies in R phase, 3 lies in Y phase and remaining three lies in B phase. In phase by phase

implementation, the switching time and state for different phases are calculated separately in

software and kept separately in register as shown Figure 4-4. Even though the numbers of

switching instances in R and B phases are two, three registers are used. Registers are predefined

54

assuming that total number of switching instances that may occur in one sampling period is three

in this case. Hence for the remaining portion, the last value must be repeated. While in this thesis

for phase to phase implementation, five registers are dedicated to each phase. However in space

vector, if switching occurs even in any one phase, Time register consists the switching time and

the state register consists of the states of all the phases at that time as shown in Figure 4-5 .

For software, it can be seen that if phase to phase implementation is done, the calculation time

for the optimal angle is lesser than the space vector implementation. It is because there is no

unnecessary calculation of states of other phases where switching does not occur. This will help

to choose lesser sampling time or higher sampling frequency. Higher the sampling frequencies

help to get better output signals according to Nyquist Sampling theory. This is the benefit of

using phase to phase implementation over Spacevector implementation.

Even at the cost of longer calculation time, from section 2.3.3.2 it is known that DC bus

balancing can be applied easily using space vector implementation. This is benefit of using space

vector over phase to phase implementation.

Figure 4-3 Switchings in three phase for one sampling period.

55

Figure 4-4 Register used for phase to phase implementation.

Time (StateR,StateY,StateB)
1 010011
 2 110011
3 110001
4 110101
5 010101
6 010100
7 011100

Figure 4-5 Register used for spacevector implementation.

In the section below the two IPs namely SOM_PHASE_IP and SOM_spacevector_IP are

discussed in detail for the generation of synchronous optimal signal.

4.2.2 SOM_PHASE IP
The IP module for generating synchronous optimal modulation using phase to phase

implementation is called SOM_PHASE_IP. Its input and output ports are shown in Figure 4-6.

Figure 4-6 Input and output for SOM_PHASE_IP.

56

4.2.2.1 BACKGROUND

The Synchronous Optimal Modulation pattern for three level converter is illustrated in

Figure 4-7 for one phase. There are various numbers of switching instances in one

fundamental period. Since this SOM pattern is for three level converter, there are three levels

(states) +1, 0, -1. At each switching time, the signal changes its state. In the same figure, the

triangle indicates one sampling period. As clearly seen, Sample 1 has three switching

instances. Similarly, Sample 2, Sample 3, Sample 4 consists of one, one, two switching

instances respectively. Among three switching instances in Sample 1, at first switching

instance, the state is changed from 0 to +1, in second switching instance, state is changed

from +1 to 0 while in third switching instance, state is change from 0 to +1.

There is assumption of maximum number of switching instances that can occur in one sample.

For example, it is assumed that maximum number of switching events that can occur in one

sample is three. Then three pairs of registers are allocated individually for all the phases as

shown in Figure 4-8. Even though the number of switching events are less than three, the

remaining portion are repeated by the last switching time and switching state as shown in

Figure 4-4.

Figure 4-7 Program Modulation with sampling period.

57

The generation of synchronous optimal modulation pattern occurs in PowerPC processor. For

every sampling period, the switching time and the state of all the phases are calculated

independently and are stored in register independently as shown in Figure 4-8 This is the

responsibility of other collaborating project [15]. While this project only pays attention to

the processor bus or register where switching state for particular switching time for one

sample are stored in register as shown in Figure 4-8. These are the input to the IP as shown in

Figure 4-6

Figure 4-8 Register for phase to phase implementation.

58

4.2.2.2 Methodology

This section defines how three phase Synchronous Optimal Modulation circuit is implanted as

digital circuit in FPGA. From Power PC processor, time and state for one sampling period for

all the phases are kept in Processor Local Bus in ascending order of switching time. It is seen

from Figure 4-9, there are separate circuit for every phase which are operating in parallel. This

kind of parallel processing is possible in hardware part of FPGA. The codes written in VHDL

actually generate the digital circuits. These parallel circuits are synchronised by one single

clock. The clock generates the up counter signal which counts from zero to uppermost value

and settles down to zero. The counting signal is represented by the right angle triangle. Up

counter continues to generate this signal. The time period of the up counting signal is equal

to the length of one sampling period. Since the digital circuits are identical in all the phases,

only one phase is discussed.

At the beginning of each sampling time or when counter starts from zero, registers are stored

with all switching times and states. The switching times and switching states of all the phases

stored in the registers are transferred to the local arrays. Switching time which is stored in array

is compared with counter. The pointer called I is pointing to the first switching event. Whenever

counter equals the switching time pointed by I then output of the comparator is high. As the

rising edge of the pulse is seen, state for the switching time pointed by I is latched. This means

that inverter is switched to the given state for the given switching time. The rising edge of pulse

will also trigger the edge trigger block to increment the value of I and points to the next

switching time and next switching state. The new switching time is not equal to counter value so

the comparator will again give low pulse. The comparator will wait till counter equals to next

switching time for the output to be high. Then the process continues by incrementing counter

and comparing to the second switching time. By the end of one sampling period, all the

switching states in one sample are latched. Counter reaches the maximum value and resets to

zero. This is beginning of another sample and all the process repeats.

The method is same for all the phases. The R phase digital circuit latches the switching states of

R phase and similarly other phases latch switching states of their own states. The latched value is

taken to the inverter for switching.

59

Figure 4-9 Function of SOM_PHASE_IP [43].

60

Since the parallel processing of different phases are possible at the same time, this indicates the

possibility of extension of this firmware to the multiphase machine. By incrementing number of

phases also, the executing time for the modulation process is also extremely fast because all the

phases are processed parallel. However this kind of parallel processing is not available in

conventional programming language like C, C++ etc.

The method is also understood from the flowchart given in Figure 4-10. The flowchart is given

for R phase only. However the method is all same for all the phase.

Figure 4-10 Flowchart for SOM_PHASE_IP.

61

At the start of every sampling, up counter, variable I starts from zero. The switching times and

switching states of all the phases stored in the registers are transferred to the local arrays.

Switching times are stored in local array called Memory_time while switching states are stored

in local array called Memory_state. The maximum value of counter is called Cmax. The

constraint for this IP is that software must put the switching times and switching states in

registers in the ascending order of switching time.

When counter increments by one value, then it is compared with the first value of

Memory_time(I), counter keeps on incrementing its value until the counter equals to the first

switching time. Once it equals the first switching time, R phase would be latched to the first

switching state stored in the array Memory_state(I). After latching, value of I is incremented.

Then the process continues by incrementing counter and comparing to the second switching

time. By the end of one sampling period, all the switching states in one sample are latched.

Counter reaches the maximum value and resets to zero which is the beginning of new sample

and all the process repeats. VHDL codes for SOM_PHASE_IP is shown in Appendix C.

4.2.3 SOM_spacevector_IP
This IP also generates the synchronous optimal modulation for three phases. However the

methodology of generation is slightly different from that defined in SOM_PHASE_IP. In the

SOM_PHASE_IP, the states in each phase are treated separately while in this section all the

states of all the phases are taken into consideration at once. But input and output signals are same

as that of SOM_PHASE_IP seen from Figure 4-11.

Figure 4-11 Input and output of SOM_spacevector_IP.

62

4.2.3.1 Background

The switching instances in all the phases (RYB) of one sampling period are given in the Figure

4-3. The total numbers of switching states in all the phases are seven. In SOM_spacevector_IP

the states of all the phases are accumulated and placed in one register.

Figure 4-12 Register used for SOM_spacevector_IP.

Time registers consist the switching time of any phase and the state registers consist of the states

of all the phases at that time. Even though the state of only one phase changes, state registers also

consist of states of other two remaining phases. The state registers consist of vector of states of R

phase, Y phase and B phase respectively. In this way, the numbers of registers are also

decreased. This kind of space vector implementation also helps in DC bus balancing in NPC

inverter.

4.2.3.2 Methodology

The registers store the switching times and switching states in ascending order of switching

time. The state indicated in this section is the vector consisting states of all the three phases.

According to Figure 4-13, counter generates up counter signal which counts from 0 to

maximum value and resets again to 0. The counting signal is represented by the right angle

triangle. Up counter continues to generate this signal. The time period of the up counting

signal is equal to the length of one sampling period.

 At the beginning of each sampling time, registers are stored with all switching times and states.

The switching times and switching states of all the phases stored in the registers are transferred

to the local arrays. Switching time which is stored in array is compared with counter. The pointer

called I is pointing to the first switching time. Whenever Counter equals the switching time

pointed by I then output of the comparator is high. As the rising edge of the pulse is seen, state

63

vector for the switching event pointed by I is latched. This means that inverter is switched to the

given state vector for the given switching time. The rising edge of pulse will also trigger the

edge trigger block to increment the value of I and points to the next switching time and next

switching state vector. The new switching time is not equal to Counter value so the comparator

will again give low pulse. The comparator will wait till Counter equals to next switching time

for the output to be high. Then the process continues by incrementing counter and comparing to

the second switching time. By the end of one sampling period, all the switching states in one

sample are latched. Counter reaches the maximum value and resets to zero which is the

beginning of new sample and all the process repeats.

It is seen the methodology is almost same like that described for SOM_PHASE_IP. The only

difference is the placement of state vectors in the state register. This method can also be

implemented for multiphase machine. The state vector length would be increased and number of

switching per sampling would be increased when implemented on multiphase system. Hence this

IP can easily be extended for multiphase machine too.

Figure 4-13 Function of SOM_spacevector_IP[43].

The flowchart for SOM_spacevector_IP is shown in Figure 4-14. At the start of every

sampling period, Up counter, variable I starts from zero. The switching times and switching

64

states of all the phases stored in the registered is transferred to the local arrays. Switching times

are stored in local array called Memory_time while switching states are stored in local array

called Memory_state. The maximum value of counter is called Cmax. The constraint for this IP

is that software must put the switching times and switching states in registers in the ascending

order of switching time.

When counter increment by one value, then it is compared with the first value of

Memory_time(I), counter keeps on incrementing its value until the counter equals to the first

switching time. Once it equals the switching time, all the vectors would be latched to the

switching vector stored in the array Memory_state(I). After latching, value of I is incremented.

Then the process continues by incrementing counter and comparing to the second switching

time. By the end of one sampling period, all the switching states in one sample are latched.

Counter reaches the maximum value and resets to zero which is the beginning of new sample

and the process repeats. VHDL codes for SOM_spacevector_IP is shown in Appendix D.

Figure 4-14 Flowchart for SOM_spacevector_IP.

65

4.3 Global Peripheral Repository (user)
Drive control applications seek complex algorithm structure. In order to make the design of

control algorithms more manageable and less intuitive, reusability of already made IP can be

done. Some of the IPs are already created by Kjell Ljøkelsøy of SINTEF. The IPs which are

taken from his library source are described briefly below.

4.3.1.1 Vekselretter tilkobling (Inverter Connection):

Vekselretter tilkobling is the Norwegian word for Inverter Connection. The input and output

signal for this IP is shown in Figure 4-15 .

Figure 4-15 Input and output Vekslretter Tilkobling.

This IP is only applied for two level, three phase converter as shown in Figure 4-16. The upper

switches are TA+ , TB+ , TC+ while the lower switches are TA- , TB- , TC- . The signal to the lower

switch is complementary to the signal to the upper switch. Only the signal for the upper switch is

given as input (Driversignal_inn) to Vekselretter tilkobling. It does some operation to produce

the signal for upper as well as lower switch. The output Driver Signaler consist the signal for all

the switch of the two level inverter.

Figure 4-16 Two Level three phase converter.

66

The Figure 4-17 shows the function of IP. Driversignal_inn gives the signal to the upper switch

while driversignal_inn_L gives the signal to the lower switch. These two signals can be

separately given. Another choice is giving only the upper signal so that lower signal can be

dependent on the upper signal. Such choice is handled by

NEDRE_DRIVER_SEPARAT_KILDE. This is the Norwegian form of

lower_driver_separate_source. There are four choices for getting the output, driver_ut_H and

driver_ut_L controlled by signal called funksjon_H and funksjon_L respectively. The output can

be permanently off (0), invertered driversignal_inn , same signal as driversignal_inn or

permanently on(1).

Figure 4-17 Function of Vekslretter Tilkobling[42].

In this project work, NEDRE_DRIVER_SEPARAT_KILDE signal is made zero meaning there

are no separate lower driver signal. Only upper driver signal is used and lower signal depends on

upper signal. The output of the driver_ut_H is the signal driversignal_inn itself while the output

of the driver_ut_L is inverted driversignal_inn. It is because signals to the lower switches are

complementary to the upper switches drive signal. driver_ut_H, driver_ut_L is collectively

called Driver Signaler which is the output of the Vekselretter tilkobling IP.

4.3.1.2 Inverter for three level converter
Neutral Point clamped (NPC) converter is used for three level converter as shown in Figure 4-18.

NPC converter is combination of two, 2 level converter. T1 and T3 are one set of two level

converter where T3 is the complement of T1. Similarly T2 and T4 are another set of two level

converter. Hence for the application of three level converter, two Vekselretter tilkobling IPs must

be used as shown in Figure 4-19. Vekselretter tilkobling 1 must feed to the one set of two level

67

converter (T1,T3) by Driver signaler1 while Vekselretter tilkobling2 must feed to another set of

two level converter (T2, T4) by Driver signaler 2 as shown in Figure 4-18 and Figure 4-19.

Figure 4-18 Neutral Point Clamped Converter.

Figure 4-19 Use of two Vekselretter tilkobling for three level converter.

68

There are three levels in three level converter which are +1 , 0 , -1. In the section 2.3 it is defined

that if only signals to upper two IGBT are considered then +1 can be obtained by giving signal

11 to T1 and T2, while 0 can be obtained by giving signal 01 to T1 and T2. Similarly -1 can be

obtained by giving signal 00 to T1 and T2. The signals to the lower drives are the complementary

to the upper drive signals. Hence 11, 01 , 00 are the states that can define the level +1, 0, -1.

SOM_PHASE_IP or SOM_spacevector_IP gives the state of three phases as the output. The

output is six bitstream binary value. Suppose the output of the SOM_PHASE_IP is 110001 as

shown in example shown in Figure 4-20. That means R phase, Y phase, B phase should be

switched to +1,-1,0 analog switching states respectively because Bit5 and bit4 indicate the state

for R phase. Bit3 and bit2 is the state for Y phase and remaining bit1 and bit0 is the state for B

phase. These two bit per phase must be the input to the upper two IGBTs i.e T1 and T2. T1 with

T3 makes one 2 level converter while T2 with T4 makes another 2 level converter. Hence the

first bit must be given to Inverter1 (T1, T3) while second bit must be given to Inverter2 (T2, T4).

Figure 4-20 Example.

69

These states are two bit for each phase. The collection of first bit of states of all the phase should

be given to T1 and collection of second bit of state of all the phase should be given to T2 in order

to generate the required analog signal from the digital states. The output states of

SOM_PHASE_IP or SOM_spacevector_IP should be split and given separately to two

Vekselretter tilkobling IPs.

Figure 4-19 illustrates how output of SOM_IP is splitted into two. One of the set called

pwm_ut_T1 goes to Vekselretter tilkobling1 which produce the signal called Driversignaler1 for

T1 and T3 for all the three phases RYB. Similarly, another set (pwm_ut_T2) goes to Vekselretter

tilkobling2 to produce the signal called Driversignaler2 for T2 and T4 for all the three phases

RYB. The input to the Vekselretter tilkobling is just the signal for the upper switch of the two

level converter while the output of Vekselretter tilkobling is Driversignal which produce the

signal for the upper and lower switch. It has been mentioned lot of time that the lower signal is

the complementary of upper signal.

4.3.2 Driver Interface via dig_io_connection

It can be seen from Figure 3-4 that FPGA card used in this thesis has only one converter driver

interface port from which driver signals are given to the converter. The output of Vekselretter

tilkobling is connected to such driver interface port. But this project deals with three level

converter so there is one extra Vekselretter tilkobling which also seek another converter driver

interface port. Therefore this IP called Driver Interface via dig_io_connection is created. This

would direct the output of Vekselretter tilkobling2 to General Purpose Input Output (GPIO) port

through DIG_IO signal as shown in Figure 4-21. One additional card called buffer card is

connected to that GPIO. The input terminal of Buffer card is connected to GPIO and at the

output, there is converter driver interface port which is required by Vekselretter tilkobling2 to

send the driver signals to converter. DIG_IO is the name of signal to GPIO. Hence it is clear

from the name of IP itself that driver interface port is connected to Vekselretter tilkobling via

dig_io. This is illustrated in Figure 4-21 and Figure 4-22 .

70

Figure 4-21 Use of Driver Interface via Dig_IO_Connection.

Figure 4-22 FPGA card with buffer card.

71

4.4 Driver circuit
From above section it is found that the output of Vekselretter tilkobling is the driver signal

circuit for two level, three phase converter. Hence two Vekselretter tilkobling IP is used in this

project because this project deals with three level, three phase converter. But keeping aside this

fact, only one Vekselretter tilkobling is considered in this section to find out how the signals

generated are given to IGBT switch through the driver circuit.

Figure 4-23 Driver Circuit[42].

The Figure 4-23 shows how the signals from modulator are connected to the IGBTs. The output

signals of Vekselretter tilkobling are Driver signaler which contains the signals for upper and

lower switch of two level, three phase converter. The upper and lower switch of one bridge leg

72

should not be ON at the same time which will short the dc bus. There must be some delay

between turning ON of two switches in one bridge leg. This delay time is included in this circuit.

Whenever any fault occurs in power circuit or power transition then they must not affect the

FPGA control card which is operating in very low voltage than the power circuits. Hence

galvanic separation is done to isolate the power circuit from logic circuit or FPGA control card.

4.5 Communication with other collaborating project

In chapter 2, it is already mentioned that in SOM pattern, switching events are determined in a

way that reduces the harmonic content in the current, also reducing losses due to harmonic

distortion in the controlled induction machine. Calculation of such switching events is done in

the other collaboration project using Software Development Kit. In the following text, the terms

like software, processor routine and SDK refer to the other collaborating project while the terms

like XPS, hardware refer to this project.

Digital control signals are carried out by dividing signals into sampling intervals. The hardware

consists of up counter which starts from zero to maximum value and settle down to zero again.

Sampling period is equal to the length of counter. The sampling intervals are shown in Figure

4-24.

Figure 4-24 Samples N and N+1.

In sampling interval N, the switching times and states of SOM for next sampling interval (N+1)

are calculated in software and place in register which is accessible by hardware. The time of

73

calculation and placing in register is less than the sampling period. Software waits until the

current sampling period is finished. As the up counter settles from maximum value to zero, the

hardware sends interrupt to the software. Once Software gets interrupt, it again starts to calculate

the switching time and states for next sample (N+2).

 After giving interrupt to software, the up counter in hardware starts from zero in N+1 Sample.

The switching times and states needed for N+1 Sample is already stored in register by Software.

Hardware reads the switching times and states from the registers only once and copies into its

own arrays in order to free the registers so that software can use them to calculate values for N+2

Sample. During N+1 Sampling period, hardware switch IGBTs to given state at the given time.

During Phase to Phase implementation, software places switching time and switching state of

each phase independently. And in Space Vector implementation, software places the switching

times and states of all the phases together as explained in section 4.2.1.

4.6 Challenges faced

The processor routine calculates the optimal angles for generating synchronous optimal

modulation. Such calculation should be less than sampling time as described in section 4.5.

Initially, it was assumed that the sampling time is 1ms. As the project was carried out, it was

realized that the time for calculation of optimal angles exceed 1ms, to almost 1.5ms. In order to

calculate optimum angle software needs to handle floating point unit. Power PC takes very long

time to handle floating point unit. It takes longer time for the calculation which can be longer

than sampling period. But it is not accepted.

In order to solve this problem, the floating point processor is included along with Power PC

processor. This is added as separate auxiliary processor which is used only to handle the floating

point unit. This will decrease the calculation time, lesser than the sampling time. After adding

floating point unit, Figure 4-2 would have addition of apu_fpu_virtex5 as shown in Figure 4-25.

74

Figure 4-25 Floating Point Unit processor and additional memory.

Program Modulation technique is based on storing the optimum angles. Since this project deals

with three phase modulation circuit, more memory is required, hence additional memory is

added as seen in the same figure. After these modification the overall block diagram of hardware

is shown in Appendix E.

4.7 Simulation
The project is divided into two parts. In this part implementation of three level converter in

FPGA is done. Once the implementation is finished, this project must be exported to the other

project. The combination of both of the project will create the synchronous optimal modulation

for medium voltage multiphase machine. Before exporting to the other project, some of the test

has to be performed to see if this project successfully achieved its objective. Two method of

generating PWM signal are discussed in above sections. Therefore both of them are tested.

75

4.7.1 SOM_PHASE_IP
Suppose the generated signals for three phases from the processor routine (software) are as

shown in Figure 4-26. It is just the assumption for the test signals.

Figure 4-26 Test signals.

Digital control signals are sampled. The sampling period is taken to be 500us (sampling

frequency= 2Khz) for testing while for the project sampling period is 1ms (sampling frequency=

1Khz). The sampled value for R, Y, B phase are shown in Figure 4-27,Figure 4-28 and Figure

4-29. It is seen that Sample 1 has three switching instances in all the phases. Similarly, Sample 2,

Sample 3, Sample 4 has two, one and zero switching instances in all the phases. The meaning of

zero switching instances in Sample 4 means the states of previous sample is continued in this

sample.

Figure 4-27 R phase.

76

Figure 4-28 Y phase.

Figure 4-29 B phase.

This is SOM_PHASE_IP. Hence from the section 4.2.1 it is known that switching times and

switching states of all the phases are calculated independently and put in the register separately.

The values of R phase, Y phase and B phase are kept respectively in the register as shown in

Table 4-1.

The switching time is converted into relative numbers.

Frequency of clock in FPGA =40 Mhz

Time period = 25 ns

Sampling rate frequency=2 Khz

Number of counter in one sampling period=40Mhz/2Khz =20000

77

Hence 20000 counting number=500µs

The sampling period is taken to be 500µs or relatively presented by number 20,000. The time

must be converted to relative number and placed in register along with its switching state as

shown in Table 4-1.
Table 4-1 Placement of Switching Time and State by Software

Number
of
sample

Phase
where
switching
occurs

Switching
Time
µs

Switching
Time
numbers

Switching
State

Sample1 R 125 5000 11
 R 200 8000 01
 R 325 13000 00
 Y 150 6000 01
 Y 225 9000 00
 Y 350 14000 01
 B 75 3000 00
 B 175 7000 01
 B 300 12000 11
Sample2 R 125 5000 01
 R 200 8000 11
 Y 150 6000 11
 Y 225 9000 01
 B 75 3000 01
 B 175 7000 00
Sample3 R 125 5000 01
 Y 150 6000 00
 B 75 3000 01
Sample4 R 01
 Y 00
 B 01

There is one simulation tool called ISIM in Xilinx tool which displays the result before it is

downloaded into the FPGA card. Register stored as in Table 4-1 is the input to the

SOM_PHASE_IP. This IP takes the input as the value stored in register and does its function

and the result is shown as six bit stream as shown in Figure 4-30. The bit5 and bit 4 shows the

state of R phase, bit 3 and bit 2 shows the state of Y phase while bit 1 and bit 0 shows the state of

78

B phase. These states are taken to the inverter for switching to the desired state at the desired

time.

The simulation is done in Xilinx project Navigator by ISIM tool.

 The simulation frequency is 500 Ghz. (i.e T=2 ps).

The upcounter counts from 0 to 20,000.

For FPGA, frequency of clock=40 Mhz i.e time period=25 ns

Therefore, 20000=20000*25 ns=500 us is the Sampling time when implementing on FPGA

But, For simulation, frequency of clock=500 Ghz i.e time period= 2 ps

Therefore, 20000= 20000*2 ps=40ns is the sampling time when simulation in ISIM.

Figure 4-30 Output of SOM_PHASE_IP in ISIM.

79

 The initial values of the states are 011101. From the section 4.2.2 it is known that the switching

is done according to the ascending order of switching time in SOM_PHASE_IP. Hence from the

register in Table 4-1, the desired switching time for desired phase to the desired state are given in

Table 4-2. In the same table the result of the simulation is also tabulated from the Figure 4-30.

And the obtained switching time match with the desired switching time. The required phase is

switched to required switching state which is illustrated Figure 4-30 and Table 4-2. The phase in

which switching occurs is shown in bold letter in Table 4-2 . The remaining two phases continue

its previous state.
Table 4-2 result of the simulation.

Number
of sample

Desired
Switching time in
FPGA (with
500µs sampling
time) µs

Sampling
period
Number

Phase
where
switching
occurs

Desired
Switching
time in
ISIM (with
40ns as
sampling
time) ns

Desired
Switching
state for the
phase

Simulation
output in
ISIM
Switching
time
ns

Obtained State in
ISIM for all the
phases

R Y B

Initial 0 0 0 0 01 11 01
Sample 1 75 3000 B 6 00 6 01 11 00
 125 5000 R 10 11 10 11 11 00
 150 6000 Y 12 01 12 11 01 00
 175 7000 B 14 01 14 11 01 01
 200 8000 R 16 01 16 01 01 01
 225 9000 Y 18 00 18 01 00 01
 300 12000 B 24 11 24 01 00 11
 325 13000 R 26 00 26 00 00 11
 350 14000 Y 28 01 28 00 01 11
Sample 2 75+500=575 3000 B 46 01 46 00 01 01
 125+500=625 5000 R 50 01 50 01 01 01
 150+500=650 6000 Y 52 11 52 01 11 01
 175+500=675 7000 B 54 00 54 01 11 00
 200+500=700 8000 R 56 11 56 11 11 00
 225+500=725 9000 Y 58 01 58 11 01 00
Sample 3 75+1000=1075 3000 B 86 01 86 11 01 01
 125+1000=1125 5000 R 90 01 90 01 01 01
 150+1000=1150 6000 Y 92 00 92 01 00 01
Sample 4 0+1500=1500 0 120 120 01 00 01

After the successful simulation, experiment is carried out in actual FPGA control card as

shown Figure 4-31 . The output is displayed in the oscilloscope. The switching states of three

phases are displayed in six leds. Using digital probe, the datas in the leds are fed to the digital

oscilloscope. The output of the digital oscilloscope is shown in Figure 4-32. There are 6

signals named as R1, R0, Y1, Y0, B1, B0 pointing the output in led5 to led0 respectively. In

this experiment, the switching time between two states are observed from graphical way. For

80

example as shown in Figure 4-32, the switching time between state 010101 and 011101 is

25µs as presented in upper right corner in the graph.

Figure 4-31 Testing in FPGA card.

Figure 4-32 Graphical output of states in oscilloscope.

81

In First state 010101 and second state 011101, there is only change in state of Y phase. The

time required to obtained 010101 state is 625us while the time required to obtained

011101 is 650us from Table 4-2. This means that the desired switching time between these

two states is 25us. And the obtained value is also same.

The experiment is carried out to see the switching time between all states. The result of the

experiment is presented in tabular form below:
Table 4-3 Test result.

State 1
R Y B

Switching
time 1
(µs)

State 2

R Y B

Switching
time 2
(µs)

Desired Time
Difference
(µs)

Observed time
difference (µs)

01 11 01 0 01 11 00 75 75 74
01 11 00 75 11 11 00 125 50 49.8
11 11 00 125 11 01 00 150 25 24
11 01 00 150 11 01 01 175 25 24.6
11 01 01 175 01 01 01 200 25 24.8
01 01 01 200 01 00 01 225 25 24
01 00 01 225 01 00 11 300 75 76
01 00 11 300 00 00 11 325 25 24
00 00 11 325 00 01 11 350 25 24
00 01 11 350 00 01 01 575 225 223
00 01 01 575 01 01 01 625 50 51
01 01 01 625 01 11 01 650 25 25
01 11 01 650 01 11 00 675 25 24
01 11 00 675 11 11 00 700 25 24.8
11 11 00 700 11 01 00 725 25 24.8
11 01 00 725 11 01 01 1075 350 349
11 01 01 1075 01 01 01 1125 50 51
01 01 01 1125 01 00 01 1150 25 24.8
01 00 01 1150 01 00 01 1500 350 351

It is seen from the table that observed time difference match with the desired time difference

except for very small errors. This concludes that it is possible to switch to the desired state at

the desired switching time for the all three phases. This verifies that codes written are valid for

implementing synchronous optimal modulation through FPGA.

4.7.2 SOM_spacevector_IP
It is assumed that the input signal for SOM_spacevector_IP is also same as for SOM_PHASE_IP

as shown as in Figure 4-26. They are also sampled as Figure 4-27, Figure 4-28 and Figure 4-29

According to SOM_spacevector_IP, all the phases are analysed together. Whenever there is

82

switching in one of the phase, then states of all other phases must be placed in register. In this IP,

software has to place switching time and states in the ascending order of time. Assuming

Sampling period and all other condition same like in section 4.7.1, the input register to

SOM_spacevector_IP is shown Table 4-4.

Table 4-4 Placement of state vector in SOM_spacevector_IP.

Number of sample Switching_time
us

Phase
where
switching
occurs

State

Initial 0 0111 01
Sample 1 75 B 011100
 125 R 111100
 150 Y 110100
 175 B 110101
 200 R 010101
 225 Y 010001
 300 B 010011
 325 R 000011
 350 Y 000111
Sample 2 75 B 000101
 125 R 010101
 150 Y 011101
 175 B 011100
 200 R 111100
 225 Y 110100
Sample 3 75 B 110101
 125 R 010101
 150 Y 010001
Sample 4 0 010001

The simulation output in ISIM is exactly same as Figure 4-30 and Table 4-2. In addition the test

is done on FPGA whose output is also same like Figure 4-32 and Table 4-3.This is expected

because the input signals are same. Only, the way of giving input and methodology of

functioning are different in SOM_PHASE_IP and SOM_spacevector_IP. If the input to both of

them are same, the output is expected to be same.

From these test it is proved FPGA is able to switch to desired state in desired time. It can be

exported to the other collaborating project for generating synchronous optimal modulation

pattern. Due to the time constraint for the collaborating project only SOM_PHASE_IP is used by

it.

83

5 Experiment Setup
This thesis also consists of laboratory works for verification of theories. This chapter discuss

about the experimental setup of the project. The high level schematic laboratory setup is shown

along with the software development and real time interaction tool.

5.1 Hardware Setup
The experiment setup consists of hardware and software components. The hardware component

is described in this section.

5.1.1 Setup Overview
This thesis is meant for the multiphase machine. Hence Six Phase Induction Motor(SPIM) is

used. As shown in section 2.2, SPIM consists of two set of three phase winding separated by

some angle. However in this thesis only one set of three phase winding is used as shown in

Figure 5-1. The load for the motor is DC machine connected to load resistors. SPIM is supplied

by three level, three phase inverter which is modulated by modulating circuit embedded in FPGA

board. FPGA is controlled by PC.

Figure 5-1 Overview of experimental setup.

84

The DC link voltage is obtained by rectifier. The AC input to the rectifiers can be varied using

the three phase auto transformer which helps to vary DC link voltage as required. Real time

monitoring is also done using software in PC. The assembled drive is shown in Figure 5-2.

Figure 5-2 Assembly of Six phase machine drives.

5.1.2 Six-Phase Induction Machine
The six-phase induction machine used in the experiment has two 3-phase stator winding

groups, separated by 30 electrical degrees in space. The machine has a squirrel-cage rotor.

Figure 5-3 and Figure 5-4 shows the external view and terminals of the machine.

Figure 5-3 Six Phase Induction machine (external overview).

85

Figure 5-4 Six Phase Induction Machine, stator terminal.

The rated power output of the machine is 11.7 kW. The nameplate data and parameters of the

machine are given in Appendix A.

5.1.3 DC Machine
DC machine is separately excited. It is mounted on the same shaft as six phase induction

machine as load. The armature of the DC machine is connected to load resistors. The load can be

varied either by changing the value of the load resistors or by varying the field voltage

(excitation) of the DC machine. The six-phase induction machine is operated as a motor, and acts

as prime mover as viewed from the DC machine.

5.1.4 Converter
Three-phase diode rectifiers are used to convert the AC line voltage into DC. The rectifiers can

take voltage input of 0 – 400 V rms. The current rating is 63 A. The DC voltage output range is 0

– 540 V. The front view of one rectifier is shown in Figure 5-5.

86

Figure 5-5 Rectifier used in the lab.

Three phase three level Neutral Point Clamped Inverter is used as inverter to supply Motor. The

switch used in the inverter is IGBTs. The inverter is shown in Figure 5-6. This NPC is rated to be

40KW with dc link voltage of 2x315V. IGBTs are 1200V, 200A rated.

Figure 5-6 Three Level Inverter.

87

5.1.5 FPGA control card
FPGA used for this project is Xilinx Virtex FX30T. The control card outline with the chip and

other important peripherals are as shown in Figure 3-4. The modulator signal is designed in

FPGA control card. The use of FPGA in this thesis is shown in Figure 5-7.

Figure 5-7 Use of FPGA in experiment.

88

5.1.6 Current Measurements
LEM Current Transducer LA 205-S. is used for stator current measurement. It has a primary

nominal rms current of 200 A and current transformation ratio is 1:2000. The secondary nominal

current is 100mA.

Figure 5-8 Current sensor.

5.2 Software Implementation
In this section, softwares used to control the motor drives are described.

5.2.1 Software Environment
The Xilinx Software Development Kit (SDK) provides an environment for creating software

platforms and applications targeted for Xilinx embedded processors. SDK features include

feature-rich C/C++ code editor and compilation environment. The SDK windows looks as shown

in Figure 3-11.

The processes which are relatively slow and which are seeking complex design are programmed

in software. And faster processes are programmed in hardware using IP module which are

explained in section 3.3. The control code together with the library of IP modules are

programmed from the PC into the FPGA using a USB connection. The modulating signal for the

inverter is generated by FPGA.

Real time monitoring of the drive system can be done using ActiveDSP software on the PC as

shown in Figure 5-9. The communication is done through the RS232 serial cable connected to

the computer. Two way communications are possible using Active DSP. It can give input to and

89

output from FPGA. The software enables the real-time logging of data. This data can be saved

and processed using other software tools such as Matlab.

Figure 5-9 Active DSP for real time monitoring.

5.2.2 Program Structure
The program flow and interrupt routines of the drive control system are shown in Figure 5-10.

The start routine initializes the system and sets up the interrupt mechanisms. The service routine

consists of the main function of program.

From section 4.5 it is known that the calculation of switching times and states for Nth sample is

done in N-1 th sample. As the interrupt comes from the hardware for Nth sample, the first task of

the software would be to place those switching time and states of Nth Sample to the register so

that hardware can performs its task. Then after placing them in the register, software calculates

the switching times and states for N+1th sample. Then program returns to Background routine

90

and checks if the program is running or not. If it is running the process continues. If not then stop

routine is executed which will stop PWM interrupt, timer interrupts etc.

Figure 5-10 Program flow and interrupt.

91

6 Experimental Results and Discussion
Processor routine generates the SOM pattern as indicated by chapter 2. It generates optimal

angles and states acquired at that time and place in register. On the other hand, FPGA switch

the IGBT to the given switching states at the given optimal angles.

6.1 Driver, Voltage and Current signal

6.1.1 Driver signal
From section 2.6, it is known that for particular value of amplitude modulation index (m) and

number of pulse per half cycle (N), there is algorithm which gives the optimal angles to

minimize the total harmonic distortion. These optimal angles are generated in processor routine

which place these optimal angles and states in register for each sampling period. These register

are read by FPGA and SOM patterns are generated as shown in figure 6-1. In the figure, 15th and

14th digital signals are the switching signals for R bridge leg, 13th and 12th gives the signals of Y

bridge leg while 11th and 10th gives the switching signals for B bridge leg.

Figure 6-1 Driver Signals For Three phase, Three level Converter (for m=1, N=5).

92

Switching states are defined by two bits per phase. These two bits can be combined in four

different ways among which only three of them are used. They are 11(+1), 01(0) and 00(-1)

where 10 is the forbidden state. In this thesis three level modulator for three phase is designed in

FPGA. These digital signals are sent to the 3 level, 3 phase converter(NPC inverter). As

mentioned in section 2.7, switching waveform has quarter wave symmetry and half wave

symmetry. This figure shows the switching pulse for three phases. These phases are 1200 out of

phase with each other. It is seen that number of Pulse per half wave (N) is 5.

6.1.2 Voltage waveform

The driver signals defined in section 6.1 are given to three phase, three level converter. The state

represented by these driver signals are two bits. According to Figure 4-18 and Figure 4-20 the

first bit is given to T1 while second bit is given to T2. The signals to T3 and T4 are

complementary to T1 and T2 respectively. It has been mentioned many times that driver signal

11 gives +1(+Vd/2) analog state, 01 gives 0 (0 V) analog state while 00 gives -1(–Vd/2) analog

state. Here Vd is dc link voltage which is given as 50V.

Figure 6-2 Voltage generated by Three phase, Three level Converter (for m=1, N=5).

93

Even though dc link voltage is given 50V in lab, this can be extended for medium voltage

because IGBT with blocking voltage of 4.5KV is available. It is interesting to see if the driver

signals generated by FPGA would be able to switch the IGBT in right manner. Digital signals

generated by FPGA are given by Figure 6-1. This signal is given to three phase, three level

converter. The output is shown in Figure 6-2. First waveform is for R phase and other two is for

Y and B phase respectively. RYB phases are 1200 out of phase with each other. It is seen that

there are three voltage levels: +25V(+Vd/2), 0V(0V), -25V(-Vd/2). If these two figures are

noticed carefully then it is seen than +Vd/2 is result of digital signal 11, 0V is result of digital

signal 01 while –Vd/2 is formed by digital signal 00.

6.1.3 Current Waveform

The three phase, three level converter acts like voltage source converter and it is connected to

induction machine whose rating is shown in Appendix A. The voltage generated by synchronous

optimal modulation is shown in section 6.1.2. For the same modulation index and number of

pulse per half cycle(m=1, N=5) the current waveform is inspected.

Figure 6-3 Current given to load (for m=1, N=5).

94

First waveform is for R phase and other two is for Y and B phase respectively. RYB phases are

1200 out of phase with each other. The current waveform is nearly perfectly sinusoidal without

ripples for this case. The driver signal, voltage signal and current signal for m=0.3,N=4 and

m=0.87, N=3 are given in Appendix F and Appendix G respectively.

6.1.4 Digital, Voltage, Current signal

To summarize, per phase digital signal, voltage signal and current signal are shown in the same

frame as shown in Figure 6-4 for m=1, N=5. The lower most waveform is digital signal which

produce voltage signal in the middle portion. The voltage generated by inverter produce the

current signal (upper most) to the induction machine. As expected, current is lagging voltage.

The dc link voltage is given as 50V. It is seen very clearly here that 11 digital signal produce

+Vd/2 (+25V), 01 produce 0V while 00 digital signal produce –Vd/2(-25V).

Figure 6-4 Digital, Voltage, Current signal per phase for m=1, N=5.

95

6.2 Variation of N with Stator frequency
Section2.5.2 also indicates that for constant N, switching frequency increase with increased

stator frequency but when switching frequency is greater than 300Hz then N is decreased as

stator frequency is increased so that the switching frequency of IGBTs does not exceed 300Hz.

To verify this, experiment was done. From section 2.8 it is known that (m,N) are the input to the

modulator, where N is decided by value of stator frequency of induction machine as shown in

Figure 2-18. Induction machine is the load for voltage source converter. For one particular value

of m, stator frequency is varied. Experiment is done to see if N is maintained with changed in

stator frequency so that switching frequency does not exceed 300Hz.

savgsw fNf ⋅=,1 where fsw is switching frequency of IGBT and fs is stator frequency.

The experiment was conducted for m=0.5 and frequency is varied. The following figures from

Figure 6-5 to Figure 6-8 was obtained for frequency 45 Hz, 55Hz , 65Hz and 80 Hz respectively

and result is tabulated in Table 6-1.

Figure 6-5 For m=0.5, fs=45Hz, N=6.

96

Figure 6-6 For m=0.5, fs=55Hz, N=5.

Figure 6-7 For m=0.5, fs=65Hz, N=4.

97

Figure 6-8 For m=0.5, fs=80Hz, N=3.

Table 6-1 variation of N for different fs (m=0.5).

fs (Hz) N fsw=N.fs (Hz)
45 6 270
55 5 275
65 4 260
80 3 240

The results verify that when stator frequency is increased, number of pulse per half period is

decreased in order to maintain switching frequency of IGBT less than 300Hz.

It is noticed in Figure 6-6 that the positive pulse and negative pulse are not equal. This problem

has occurred due to lack of DC bus balancing in this system. The three level converter consists of

two capacitor which are not equally charged. It seems that lower capacitor is more charged than

the upper capacitor because negative pulse is higher than positive. From section 2.3.3 the reason

behind this imbalance is mentioned to be the generation of negative current from neutral point

which is charging the lower capacitor and discharging the upper capacitor. Hence positive vector

must be used which charge the upper capacitor and discharge the lower capacitor to balance

voltage in two capacitor.

98

6.3 Total harmonic distortion

6.3.1 Line-Line Voltage
It is shown in Figure 2-9 that line to line voltage of three level converter has five different levels.

They are +2(+Vd), +1(+Vd/2), 0,-1(-Vd/2),-2(-Vd). The dc link voltage (Vd) is given as 50V.

The output of three level converter for this thesis for m=0.87, fs=45 is shown in Figure 6-9. It is

also able to achieve five states as 50V, 25V, 0V, -25V, -50V. The three level converter feeds the

induction motor.

From section 2.3.2, it is known that it is the harmonics of line-line voltage that would affect the

machine. Even if the harmonics occurs in bridge leg voltage, they might not appear in line-line

voltage and do not affect the machine. Since the line-line voltage has five levels, the harmonics

are reduced significantly because the multilevel output voltage waveforms have less distorted

output and are close to sinusoidal waveforms.

Figure 6-9 For m= 0.87, fs=45 Hz.

99

6.3.2 Measurement of THD
The total harmonic distortion for line-line voltage and line current are analyzed at 45 Hz, 50 Hz

and 55 Hz by increasing the amplitude modulation index. The result of THD for line-line voltage

is tabulated in Table 6-2. THD is taken as percentage of DC link voltage. The DC link voltage is

50V.
Table 6-2 THD (Line Voltage) for different modulation index (m).

m THD(%)
fs=45 Hz

THD(%)
fs=50 Hz

THD(%)
fs=55 Hz

0.3 42 40.95 44.25
0.5 38.3 44.2 43
0.8 29.84 26.96 26.8
1 27.7 29.96 29.96

THD for line-line voltage is analysed by using Power analyser The example is shown for m=1,

f=45Hz in Figure 6-10. The result of THD for line current is tabulated in Table 6-3. THD is

taken as percentage of fundamental current component at m=1 for particular frequency.

Figure 6-10 THD for line voltage for m=1, 45 Hz.

100

Table 6-3 THD(Line current) for different modulation index (m).

m THD(%)
fs=45 Hz

THD(%)
fs=50 Hz

THD(%)
fs=55 Hz

0.3 3.9 5.9 4.59
0.5 4.4 6.2 6.2
0.8 2.24 2 1.9
1 1.9 2.5 2.5

THD for line current is analysed by using Power analyser The example is shown for m=1,

f=50Hz in Figure 6-11.

Figure 6-11 THD for line current for m=1, 50 Hz.

6.3.3 Analysis
It is seen from Table 6-2 and Table 6-3 that lower modulation index has higher total harmonic

distortion. Normally machines do not perform smoothly due to large amount of %THD, which

causes noise, vibration and heating in machines [44]. For analyzing, per phase voltage and

current waveform is inspected at different modulation index for particular frequency. The

following four figures from Figure 6-12 to Figure 6-15 shows per phase voltage and current for

different modulation index for stator frequency 45Hz. In all these figures, upper figure indicates

the voltage waveform and lower indicate the current waveform for one phase.

101

Figure 6-12 Current and Voltage for m=0.3, f=45Hz, N=6.

Figure 6-13 Current and Voltage for m=0.5, f=45Hz, N=6.

102

Figure 6-14 Current and Voltage for m=0.8, f=45Hz, N=6.

Figure 6-15 Current and Voltage for m=1, f=45Hz, N=6.

103

Similarly, the four figures from Figure 16-1 and Figure 16-4 in Appendix H shows per phase

voltage and current for different modulation index for stator frequency 55Hz. In these figures,

the upper figures are voltage signals. From these figures it is noticed that lower modulation has

longer gaps between the voltage pulse or more zero voltage pulse than positive or negative

voltage, so it is obvious that it is more deviated than the fundamental sinusoidal components and

has higher THD. These voltage signals generated by lower modulation index has lower order

harmonic component which could not be even filtered by inductance of induction motor so it is

seen that current signal has more ripples and more THD than those generated by high modulation

index. Since DC bus balancing algorithm is not included in this system, it can also increase the

harmonics in the system.

In [28], there is graph between normalized weighted total harmonic distortion(WTHD0) versus

modulation index for SOM pattern as shown in Figure 6-16. In this master thesis instead of

WTHD0, THD is calculated. Hence it should not be compared with the graph completely but the

trend can be seen and it seems to match with Table 6-3.

Figure 6-16 WHTD0 vs modulation index for N=6 (f=45Hz).

6.3.4 Comparison
Total harmonic distortion for various conventional PWM technique for line voltage is given in

[44]. It is interesting to compare THD of the Synchronous Optimal Modulation with them at

stator frequency of 50Hz. Till now the frequency of IGBT is taken as 300Hz. Hence number of

104

pulse per half period (N) is 6 for 50Hz stator frequency. But for comparison, the switching

frequency of IGBT is made 150Hz. Once switching frequency is made 150Hz in Figure 2-18 N

would be 3 for 50 Hz stator frequency.

Since, savgsw fNf ⋅=,1

THD for line-line voltage is compared for stator frequency = 50Hz, m=1 and switching

frequency= 150 Hz.

Table 6-4 Comparison with conventional PWM technique.

Switching Frequency 150Hz

SPWM(%THD) 53.88

Trapezoidal(%THD) 52.70

SVPWM(%THD) 52.70

Synchronous Optimal Modulation (%THD) 24.4

THD of Program Modulation technique is extremely lower than the conventional PWM

technique like sinusoidal PWM, Trapezoidal PWM and Space vector PWM. From section 2.6, it

is explained that in SOM, the switching events are pre-calculated by some software program in

order to minimize THD. Hence the result is positive that THD is highly minimised and the

objective of generating SOM pattern to minimize THD for low frequency is fulfilled. Another

reason for improvement is because in [44] two level inverter is used for feeding induction

machine while in this thesis three level inverter is used. It is seen from section 6.3.1that line-line

voltage for three level has 5 level and is more close to sine wave and harmonics are greatly

reduced.

6.4 Some of Errors found in the system
There are some errors at some modulation index and stator frequency. One of the example is

shown in Figure 6-17 where one switching instance is missed per fundamental period as marked

by the red circle. The missing pulse in digital signal is reflected upon the voltage signal as well.

The current signal is also highly distorted than the sinusoidal wave and has high ripples. For the

same modulation index for frequency equals to 65 Hz, there is no any missing pulse as shown in

Figure 6-18. Hence the current waveform is close to sinusoidal, however it has some ripples

because the modulation index is very low. Another example is given in Appendix I for m=1.

Figure 17-1 is when there are some missing pulse for m=1, 80Hz and current waveform is

105

deviated from sine wave while Figure 17-2 is when there are no pulse missing for m=1, f=45Hz

and current wave is close to sine wave.

Figure 6-17 Missing Pulse for m=0.4, f=55 Hz

Figure 6-18 No missing Pulse for m=0.4, f=65 Hz

106

6.4.1 Analysis
Whenever SOM patterns are completely obtained, current signals have lower ripples and lower

harmonics. The reason behind this missing pulse is difficult to predict since this master thesis

works combined with collaborating master thesis. One reason seen from this master thesis is the

resetting of the up counter after every sampling period. From section 4.2.2 it is known that the

counter counts from zero to the maximum value and settles down to zero. Actually it does not

settle down to zero naturally but it is done forcefully by programming in VHDL. From section

4.5, it is known that whenever counter resets to zero, interrupt is given to processor routine to

place the value in the register for next Sample. Hence whenever switching event occur in this

transition, it may be missed.

6.4.2 Suggestion
To solve this problem, counter must be used without force resetting. The counter which is used

in this system is 32 bit. Hence counter reads from 0 to 232-1 and reset to zero itself after

overflowing or reaching the maximum value. Instead of giving counter like Figure 6-19 which

resets itself, overflow counter like Figure 6-20 is suggested to be used.

Figure 6-19 Reseting counter.

However in order to implement this type of overflow counter, processor routine should also

increment its angular value suitable for every sampling interval. It is because every sampling

interval starts with different value in this method.

107

Figure 6-20 Overflow counter.

108

6.5 Discussion
This thesis proposes new modulation technique called synchronous optimal modulation for

medium voltage multiphase machine. It has to be proposed because medium voltage switch must

be operated in low switching frequency to reduce the switching loss. It was explained in theory

why SOM is useful for low switching frequency. This SOM is implemented in FPGA using

Xilinx tool. SOM patterns are generated by FPGA and given to 3 phase, 3 level converter

feeding induction machine.

SOM patterns are sucessfully generated by FPGA for three phase. The lab was set up to see if

these SOM patterns can be used to operate IGBT in low switching frequency with reduced

switching loss. As per the expectation positive results were obtained and total harmonic

distortion in voltage and current is reduced to great extent without even using the filters except

for the inductance of induction machine. The reduction in harmonics is also enhanced by using

three level converters because higher level converter would make the signal more close to the

sinusoidal wave.

Since DC bus balancing is not included in this thesis, some voltage signals have unequal positive

and negative pulse. The three level converter consists of two capacitor which are not equally

charged. Method is suggested to improve DC bus balancing in 3-level converter by using space

vector method. Harmonics can further be reduced if DC bus balancing is implemented.

In this thesis, IGBTs are used which are operated in low switching frequency 300 Hz. In order to

maintain switching frequency of IGBTs less than 300Hz, number of pulse per half period (N) in

SOM pattern decrease according to increase in stator frequency or vice versa. For operating in

low stator frequency, required number of pulse is large. But this system works only up to N=6

and stator frequency of 45 Hz for switching frequency of 300 Hz. Further study can be done to

increase this value up to 10. For lower stator frequency, N can be greater than 10. It is not good

idea to implement SOM in this case. It is because SOM works by storing the optimum angle in

memory. For large N, extremely large value of memory would be required which can be costly.

It has been explained that for N greater than 10, conventional asynchronous modulation

technique can be implemented. If asynchronous modulation technique is to be implemented in

this system for lower stator frequency then software must be able to switch in between

asynchronous and synchronous modulation.

109

7 Conclusion and further work

7.1 Conclusion
For medium voltage drive, IGBTs are used. In order to reduce the harmonics, low switching

frequency must be used. Low switching frequency needs special modulation technique in order

to remove sub harmonics. Hence synchronous optimal modulation was introduced for operating

IGBTs at low switching frequency. Synchronous Optimal Modulation is type of Program

modulation which generates the optimal switching angles in one fundamental period in order to

optimize weighted total harmonic distortion by some software program.

This master thesis is successfully collaborated with other master thesis in order to implement

synchronous optimal modulation in FPGA for Neutral Point Clamped inverter feeding Induction

machine. The optimal switching patterns are generated from processor routines which are taken

by FPGA to create the digital signals for NPC inverter which acts like voltage source converter

for induction machine.

The total harmonic distortion is measured for line to line voltage and line current in lab for

switching frequency of 300Hz. The results show that THD is greatly reduced even for low

switching frequency. It is also compared with the conventional modulation technique like

sinusoidal PWM and Space Vector PWM for low switching frequency of 150Hz. The quality of

output voltage is excessively improved by using synchronous optimal modulation. Hence it is

proved that synchronous optimal modulation can be applied for low switching frequency with

lower total harmonics distortion.

Even though dc link voltage is given 50V in lab, this can be extended for medium voltage

because IGBT with blocking voltage of 4.5KV is available. In addition even if modulator for

three phase is built for this master thesis, this can be easily extended for multiphase machine. It

is because in FPGA, digital circuits per phase are operating in parallel and synchronised by one

single clock.

110

7.2 Further Works
The results obtained in this thesis are interesting. Total harmonic distortion is excessively

reduced than conventional modulation technique for low switching frequency. However some of

the improvements can still be done and new features can be added in this system.

1. Missing pulse in this system can be improved.

2. The main motivation behind this thesis is to implement synchronous optimal modulation

for multiphase machine. Even though modulation for three phase machine is

implemented in FPGA, the system can be easily extended to multiphase machine.

3. DC bus balancing algorithm can be included in this system.

4. Test the modulator in the Lab by help of a 3-level 3-phase inverter operating an Induction

Machine in open-loop control, i.e. V/f-control.

5. The important filtering functions for voltage and current should be implemented in the

FPGA.

6. For operating in low stator frequency, required number of pulse is large. But this system

works only up to N=6 for switching frequency =300 Hz. Further study can be done to

increase this value up to 10.

7. For lower stator frequency, N can be greater than 10 for which conventional

asynchronous modulation technique can be implemented.

8. If asynchronous modulation technique is to be implemented in this system for lower

stator frequency then software must be able to switch in between asynchronous and

synchronous modulation.

9. Close loop system can be implemented in order to control speed of motor.

10. Two different types of hardwares are developed in this master thesis to implement

modulator by phase to phase method and space vector method. Due to time constraint

only phase to phase method is used by processor routine. In future, processor routine can

be developed to implement space vector method as well.

111

8 Bibliography
[1] E. Levi, "Multiphase Electric Machines for Variable-Speed Applications," Industrial Electronics,

IEEE Transactions on, vol. 55, pp. 1893-1909, 2008.
[2] S. Lu and K. Corzine, "Multilevel multi-phase propulsion drives," in Electric Ship Technologies

Symposium, 2005 IEEE, 2005, pp. 363-370.
[3] S. Thopate, "Modeling, simulation and implementation of Multi-phase Induction Motor Drives,"

Master in Electric Power Engineering, Department of Electric Power Engineering, Norwegian
University of Science and Technology, Norway, 2011.

[4] G. K. Singh, "Multi-phase induction machine drive research—a survey," vol. 61, pp. 139-147,
March 28, 2002 2002.

[5] "http://www.csemag.com/home/single-article/why-choose-medium-voltage-
drives/300c6244667657657f313913d2a4a167.html."

[6] J. M. D. Murphy and M. G. Egan, "A Comparison of PWM Strategies for Inverter-Fed Induction
Motors," Industry Applications, IEEE Transactions on, vol. IA-19, pp. 363-369, 1983.

[7] J. Holtz and N. Oikonomou, "Fast Dynamic Control of Medium Voltage Drives Operating at Very
Low Switching Frequency—An Overview," Industrial Electronics, IEEE Transactions on,
vol. 55, pp. 1005-1013, 2008.

[8] N. Oikonomou and J. Holtz, "Closed-Loop Control of Medium-Voltage Drives Operated With
Synchronous Optimal Pulsewidth Modulation," Industry Applications, IEEE Transactions on, vol.
44, pp. 115-123, 2008.

[9] J. M. D. Murphy, L. S. Howard, and R. G. Hoft, "Microprocessor control of a PWM inverter
induction motor drive," Institute of Electrical and Electronics Engineers, Inc, pp. 344-348,
00/1979 1979.

[10] M. w. Naouar, E. Monmasson, A. A. Naassani, I. Slama-Belkhodja, and N. Patin, "FPGA-Based
Current Controllers for AC Machine Drives—A Review," Industrial Electronics, IEEE
Transactions on, vol. 54, pp. 1907-1925, 2007.

[11] H. S. Patel and R. G. Hoft, "Generalized Techniques of Harmonic Elimination and Voltage Control
in Thyristor Inverters: Part I--Harmonic Elimination," Industry Applications, IEEE Transactions on,
vol. IA-9, pp. 310-317, 1973.

[12] G. S. Buja and G. B. Indri, "Optimal Pulsewidth Modulation for Feeding AC Motors," Industry
Applications, IEEE Transactions on, vol. IA-13, pp. 38-44, 1977.

[13] P. N. Enjeti and R. Jakkli, "Optimal power control strategies for neutral point clamped (NPC)
inverter topology," Industry Applications, IEEE Transactions on, vol. 28, pp. 558-566, 1992.

[14] J. Holtz, "Pulsewidth modulation for electronic power conversion," Proceedings of the IEEE, vol.
82, pp. 1194-1214, 1994.

[15] B. B. Yenore, "Low switching frequency modulation scheme for high power three level
converters: FPGA based implementation " Norwegian University of Science and
Technology2013.

[16] http://www.marineinsight.com/tech/marine-electrical/electrical-propulsion-system-in-ships/
[17] "http://www.imtech.eu/eCache/DEF/12/552.bGFuZz1FTg.html."
[18] S. Williamson and S. Smith, "Pulsating torque and losses in multiphase induction machines,"

Industry Applications, IEEE Transactions on, vol. 39, pp. 986-993, 2003.
[19] R. Nilsen, "Modelling of multi-phase Synchronous Machines," Wärtsilä Norway AS, Trondhiem,

ConfidentialApril 6, 2009 2009.

http://www.csemag.com/home/single-article/why-choose-medium-voltage-drives/300c6244667657657f313913d2a4a167.html.
http://www.csemag.com/home/single-article/why-choose-medium-voltage-drives/300c6244667657657f313913d2a4a167.html.
http://www.imtech.eu/eCache/DEF/12/552.bGFuZz1FTg.html.

112

[20] R. H. Nelson and P. C. Krause, "Induction Machine Analysis for Arbitrary Displacement Between
Multiple Winding Sets," Power Apparatus and Systems, IEEE Transactions on, vol. PAS-93, pp.
841-848, 1974.

[21] R. P. Bingham, "HARMONICS - Understanding the Facts."
[22] D. G. Holmes and L. A. Thomas, Pulse width modulation for power converters. USA, 2003.
[23] N. Mohan, T. M. Undeland, and R. P. William, "The Power Electronics: Converter, Applications

and Design," 2003.

[24] R. Lund, "Multilevel Power Electronic Converters for Electrical Motor Drives," Phd, Department
of Electrical Power Engineering, Norwegian University of Science and Technology, Trondhiem,
2005.

[25] R. Nilsen, "Modulation Methods for 3 Level Inverter," Wärtsilä Norway AS, Stiklestadveien 1 N-
7041 TRONDHEIM, Confidential2010-02-17 2010.

[26] S. Floten and T. S. Haug, "Modulation Methods for Neutral-Point-Clamped Three-Level Inverter,"
N. U. o. S. a. Technology, Ed., ed. Trondhiem, 2010.

[27] M. H. Bierhoff and F. W. Fuchs, "Semiconductor losses in voltage source and current source IGBT
converters based on analytical derivation," in Power Electronics Specialists Conference, 2004.
PESC 04. 2004 IEEE 35th Annual, 2004, pp. 2836-2842 Vol.4.

[28] R. Enes, "Modelling and Control of High Performance Medium Voltage Drives," Master of
Science in Electric Power Engineering, Department of Electric Power Engineering, Norwegian
University of Science and Technology, Trondhiem, 2012.

[29] J. Holtz and N. Oikonomou, "Synchronous optimal pulsewidth modulation and stator flux
trajectory control for medium voltage drives," in Industry Applications Conference, 2005.
Fourtieth IAS Annual Meeting. Conference Record of the 2005, 2005, pp. 1748-1791 Vol. 3.

[30] H. Berriri, W. Naouar, I. Bahri, I. Slama-Belkhodja, and E. Monmasson, "Field programmable gate
array-based fault-tolerant hysteresis current control for AC machine drives," Electric Power
Applications, IET, vol. 6, pp. 181-189, 2012.

[31] E. Monmasson and M. N. Cirstea, "FPGA Design Methodology for Industrial Control
Systems—A Review," Industrial Electronics, IEEE Transactions on, vol. 54, pp. 1824-1842,
2007.

[32] S. S. Gjerde, "Introduction to Xilinx FPGA for Digital Control of Power Electronics," Norwegian
University of Science and Technology, TrondhiemOctober 31. 2011 2011.

[33] V. A. Pedroni, Circuit Design with VHDL: MIT Press, 2004.
[34] M. Aymen, A. Abdelaziz, S. Halim, and H. Maaref, "Hardware Implementation on a Xilinx

Virtex4," Laboratory of Micro-Optoélectronique and Nanostructure, Faculty of sciences
Monastir, Tunisia.

[35] K. Ljøkelsøy, "FPGA based processor board for control of power electroncs converters," SINTEF,
Norway, Technical reportDecember 12, 2008 2008.

[36] "http://www.plagscan.com/highlight?doc=2084618&source=0."
[37] " http://www.seas.upenn.edu/~ese171/ise/ISEIntroduction.pdf."
[38] G. Ochoa-Ruiz, O. Labbani-Narsis, and E. Bourennane, "FACILITATING IP DEPLOYMENT IN A

MARTE-BASED MDE METHODOLOGY USING IP-XACT: A XILINX EDK CASE STUDY," LE2I
Laboratory, Université de Bourgogne, France.

[39]
http://www.xilinx.com/support/documentation/sw_manuals/xilinx12_1/SDK_Doc/concepts/sdk
_c_hwspec.htm

[40] http://www.adeneo-embedded.com/Services/BSP-and-Driver-Development. Available:
http://www.adeneo-embedded.com/Services/BSP-and-Driver-Development

http://www.plagscan.com/highlight?doc=2084618&source=0.
http://www.seas.upenn.edu/~ese171/ise/ISEIntroduction.pdf.
http://www.adeneo-embedded.com/Services/BSP-and-Driver-Development
http://www.adeneo-embedded.com/Services/BSP-and-Driver-Development

113

[41] "http://www.origin.xilinx.com/products/intellectual-property/."
[42] "PDF attached to the IPs in XPS."
[43] R. Nilsen, "Ideas ".
[44] R. R. Kumar, S. Kumar, and A. Yadav, "Comparison of PWM Techniques and Inverter

Performance," IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE), vol. 4, pp. 18-
22, 2013.

http://www.origin.xilinx.com/products/intellectual-property/

114

9 Appendix A

Figure 9-1 SOM pattern for N=8.

Table 9-1Rating of induction machine.

Parameter

Explanation

Value

UN

Nominal line to line voltage [Vrms]

400 V

IN

Nominal line current [Arms]

11.8 A

fN

Nominal frequency [Hz]

75 Hz

p

Number of pole pairs

2

nN

Nominal speed [mechanical rpm]

2235 rpm

MN

Nominal output torque [Nm]

50 Nm

PN

Nominal power output [kW]

11.7 kW

cosφN

Nominal power factor

0.77

nMAX

Maximum speed [mechanical rpm]

5000

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

80

90

modulation index ust

 α
1 ..

. α
8 [d

eg
re

es
]

Harmonic Elimination PWM for NPC inverter with N=8

115

10 Appendix B
Virtex5_EDK_basisutgave

Kjell Ljøkelsøy, Sintef Energi AS

Device: virtex5 xc5vfx30t
Package: ff665
Speed Grade: -1
Processor: ppc440_0
Processor clock frequency: 400.00 MHz
Bus clock frequency: 100.00 MHz
On Chip Memory : 128 KB

PARAMETER VERSION = 2.1.0

 PORT KLOKKEOSC = KLOKKEOSC_s, DIR = I, SIGIS = CLK, CLK_FREQ = 40000000
 PORT LED_RESET_GRONN_ROD = LED_RESET_GRONN_ROD_s, DIR = O, SIGIS =
RST, RST_POLARITY = 0
 PORT RS232_INN = RS232_INN, DIR = I
 PORT RS232_UT = RS232_UT, DIR = O
 PORT SYSMON_AD_N = SYSMON_AD_N_s, DIR = I, VEC = [10:0]
 PORT SYSMON_AD_P = SYSMON_AD_P_s, DIR = I, VEC = [10:0]
 PORT SIG_D = SIG_D_s, DIR = I, VEC = [5:0]
 PORT DIG_IO1_D = DIG_IO1_D, DIR = IO, VEC = [15:0]
 PORT RELE = RELE_s, DIR = O, VEC = [3:0]
 PORT LED_SYSMON_ROD = LED_SYSMON_ROD_s, DIR = O
 PORT LED_SYSMON_GUL = LED_SYSMON_GUL_s, DIR = O
 PORT LED_USB_GRONN = LED_USB_GRONN_s, DIR = O
 PORT DDR2_ODT = DDR2_ODT, DIR = O
 PORT DDR2_A = DDR2_A, DIR = O, VEC = [12:0]
 PORT DDR2_BA = DDR2_BA, DIR = O, VEC = [2:0]
 PORT DDR2_CAS = DDR2_CAS, DIR = O
 PORT DDR2_CKE = DDR2_CKE, DIR = O
 PORT DDR2_CS = DDR2_CS, DIR = O
 PORT DDR2_RAS = DDR2_RAS, DIR = O
 PORT DDR2_WE = DDR2_WE, DIR = O
 PORT DDR2_DM = DDR2_DM, DIR = O, VEC = [3:0]
 PORT DDR2_DQS = DDR2_DQS, DIR = IO, VEC = [3:0]
 PORT DDR2_DQSN = DDR2_DQSN, DIR = IO, VEC = [3:0]
 PORT DDR2_D = DDR2_D, DIR = IO, VEC = [31:0]
 PORT DDR2_CK = DDR2_CK, DIR = O
 PORT DDR2_CKN = DDR2_CKN, DIR = O
 PORT F_WR_LL = F_WR_LL, DIR = O
 PORT F_WR_HL = F_WR_HL, DIR = O
 PORT F_WR_HH = F_WR_HH, DIR = O
 PORT F_RD = F_RD, DIR = O

116

 PORT F_A = F_A, DIR = O, VEC = [26:1]
 PORT F_D = F_D, DIR = IO, VEC = [31:0]
 PORT F_CS = F_CS, DIR = O
 PORT F_RESET = F_RESET_s, DIR = O, SIGIS = RST
 PORT EE_CS = EE_CS, DIR = O
 PORT USB_CS = USB_CS, DIR = O
 PORT USB_INT = USB_INT_s, DIR = I, SIGIS = INTERRUPT, SENSITIVITY =
EDGE_RISING
 PORT CAN_INT = CAN_INT_s, DIR = I, SIGIS = INTERRUPT, SENSITIVITY =
EDGE_RISING
PORT ETH_CRS_CRS_DV = 'Z', DIR = I
 PORT ETH_COL = 'Z', DIR = I
 PORT ETH_PD_INT = 'Z', DIR = I
 PORT ETH_RX_CLK = ETH_RX_CLK, DIR = I
 PORT ETH_RX_DV = ETH_RX_DV, DIR = I
 PORT ETH_RX_D = ETH_RX_D, DIR = I, VEC = [3:0]
 PORT ETH_TX_CLK = ETH_TX_CLK, DIR = I
 PORT ETH_TX_D = ETH_TX_D, DIR = O, VEC = [3:0]
 PORT ETH_TX_EN = ETH_TX_EN, DIR = O
 PORT ETH_RX_ERR = ETH_RX_ERR, DIR = I
 PORT ETH_RESET_N = ETH_RESET_N, DIR = O
 PORT ETH_KLOKKE = clk_25_0000MHz, DIR = O, SIGIS = CLK, CLK_FREQ = 25000000
 PORT ETH_MDIO = ETH_MDIO, DIR = IO
 PORT ETH_MDC = ETH_MDC, DIR = O
dummypinne
 PORT EKSTRAPINNE2 = ETH_TX_ERR, DIR = O
 PORT CAN_KLOKKE = klokke_20_MHz, DIR = O, SIGIS = CLK, CLK_FREQ = 20000000
 PORT USB_KLOKKE = klokke_12_MHz, DIR = O, SIGIS = CLK, CLK_FREQ = 12000000
 PORT VE_PAA = VE_PAA, DIR = O
 PORT VE_DRIVER = VE_DRIVER_UT, DIR = O, VEC = [5:0]
 PORT VE_OK = VE_OK, DIR = I
 PORT VE_T = VE_T, DIR = I, VEC = [3:0]
 PORT LED_VE = LED_VE, DIR = O, VEC = [1:0]
 PORT AD_REF_KLOKKE_N = AD_REF_KLOKKE_N, DIR = O
 PORT AD_REF_KLOKKE_P = AD_REF_KLOKKE_P, DIR = O
 PORT AD_DCON = AD_DCON, DIR = I, SIGIS = CLK, CLK_FREQ = 240000000
 PORT AD_DCOP = AD_DCOP, DIR = I, SIGIS = CLK, CLK_FREQ = 240000000
 PORT AD_FCON = AD_FCON, DIR = I
 PORT AD_FCOP = AD_FCOP, DIR = I
 PORT AD_D_N = AD_D_N, DIR = I, VEC = [7:0]
 PORT AD_D_P = AD_D_P, DIR = I, VEC = [7:0]
 PORT AD_CSB = AD_CSB, DIR = O
 PORT AD_SDIO = AD_SDIO, DIR = IO
 PORT AD_SCLK = AD_SCLK, DIR = O
 PORT CAN_SCK = CAN_SCK, DIR = O
 PORT CAN_SDO = CAN_SDO, DIR = I

117

 PORT CAN_SDI = CAN_SDI, DIR = O
 PORT CAN_CS = CAN_CS, DIR = O
 PORT DA_D = DA_D, DIR = O, VEC = [11:0]
 PORT DA_AB_CS = DA_AB_CS, DIR = O
 PORT DA_CD_CS = DA_CD_CS, DIR = O
 PORT DA_RW = DA_RW, DIR = O
 PORT DA_A_B = DA_A_B, DIR = O
 PORT LED_TEST = LED_TEST_s, DIR = O, VEC = [5:0]
 PORT som_phase_ip_0_interupt_port_pin = som_phase_ip_0_interupt_port, DIR = O, SIGIS =
INTERRUPT, SENSITIVITY = EDGE_RISING
 PORT DIG_IO3_D = DIG_IO3_D, DIR = IO, VEC = [15:0]

BEGIN ppc440_virtex5
 PARAMETER INSTANCE = ppc440_0
 PARAMETER HW_VER = 1.01.a
 PARAMETER C_PPC440MC_CONTROL = 0x8060008F
 PARAMETER C_APU_CONTROL = 0b00000010000000001
 PARAMETER C_IDCR_BASEADDR = 0b0000000000
 PARAMETER C_IDCR_HIGHADDR = 0b0011111111
 PARAMETER C_SPLB0_NUM_MPLB_ADDR_RNG = 0
 PARAMETER C_SPLB1_NUM_MPLB_ADDR_RNG = 0
 PARAMETER C_NUM_DMA = 1
 BUS_INTERFACE JTAGPPC = jtagppc_cntlr_0_0
 BUS_INTERFACE RESETPPC = ppc_reset_bus
 BUS_INTERFACE MPLB = plb_v46_0
 BUS_INTERFACE PPC440MC = ppc440_0_PPC440MC
 BUS_INTERFACE LLDMA0 = xps_ll_temac_0_LLINK0
 BUS_INTERFACE MFCB = fcb_v20_0
 PORT CPMC440CLK = proc_clk_s
 PORT CPMPPCMPLBCLK = sys_clk_s
 PORT CPMPPCS0PLBCLK = sys_clk_s
 PORT CPMDMA0LLCLK = sys_clk_s
 PORT CPMINTERCONNECTCLKNTO1 = net_vcc
 PORT CPMMCCLK = clk_200_0000MHzPLL0_ADJUST
 PORT CPMINTERCONNECTCLK = clk_200_0000MHzPLL0
 PORT EICC440EXTIRQ = ppc440_0_EICC440EXTIRQ
 PORT PPCEICINTERCONNECTIRQ = ppc440_0_PPCEICINTERCONNECTIRQ
END

BEGIN jtagppc_cntlr
 PARAMETER INSTANCE = jtagppc_cntlr_0
 PARAMETER HW_VER = 2.01.c
 BUS_INTERFACE JTAGPPC0 = jtagppc_cntlr_0_0
END

118

BEGIN apu_fpu_virtex5
 PARAMETER INSTANCE = apu_fpu_virtex5_0
 PARAMETER HW_VER = 1.01.a
 BUS_INTERFACE SFCB2 = fcb_v20_0
END

BEGIN fcb_v20
 PARAMETER INSTANCE = fcb_v20_0
 PARAMETER HW_VER = 1.00.a
 PORT SYS_RST = sys_bus_reset
 PORT FCB_CLK = klokke_133_333MHz
END

BEGIN plb_v46
 PARAMETER INSTANCE = plb_v46_0
 PARAMETER C_DCR_INTFCE = 0
 PARAMETER HW_VER = 1.05.a
 PORT PLB_Clk = sys_clk_s
 PORT SYS_Rst = sys_bus_reset
 PORT Bus_Error_Det = plb_v46_0_Bus_Error_Det
END

BEGIN clock_generator
 PARAMETER INSTANCE = clock_generator_0
 PARAMETER HW_VER = 4.01.a
 PARAMETER C_CLKIN_FREQ = 40000000
 PARAMETER C_CLKOUT0_FREQ = 100000000
 PARAMETER C_CLKOUT0_PHASE = 0
 PARAMETER C_CLKOUT0_GROUP = PLL0_ADJUST
 PARAMETER C_CLKOUT0_BUF = TRUE
 PARAMETER C_CLKOUT1_FREQ = 133333333
 PARAMETER C_CLKOUT1_PHASE = 0
 PARAMETER C_CLKOUT1_GROUP = PLL0
 PARAMETER C_CLKOUT1_BUF = TRUE
 PARAMETER C_CLKOUT2_FREQ = 200000000
 PARAMETER C_CLKOUT2_PHASE = 90
 PARAMETER C_CLKOUT2_GROUP = PLL0_ADJUST
 PARAMETER C_CLKOUT2_BUF = TRUE
 PARAMETER C_CLKOUT3_FREQ = 200000000
 PARAMETER C_CLKOUT3_PHASE = 0
 PARAMETER C_CLKOUT3_GROUP = PLL0
 PARAMETER C_CLKOUT3_BUF = TRUE
 PARAMETER C_CLKOUT4_FREQ = 200000000
 PARAMETER C_CLKOUT4_PHASE = 0
 PARAMETER C_CLKOUT4_GROUP = PLL0_ADJUST
 PARAMETER C_CLKOUT4_BUF = TRUE

119

 PARAMETER C_CLKOUT5_FREQ = 25000000
 PARAMETER C_CLKOUT5_PHASE = 0
 PARAMETER C_CLKOUT5_GROUP = NONE
 PARAMETER C_CLKOUT5_BUF = TRUE
 PARAMETER C_CLKOUT6_FREQ = 400000000
 PARAMETER C_CLKOUT6_PHASE = 0
 PARAMETER C_CLKOUT6_GROUP = PLL0
 PARAMETER C_CLKOUT6_BUF = TRUE
 PARAMETER C_EXT_RESET_HIGH = 1
 PARAMETER C_CLKOUT7_FREQ = 20000000
 PARAMETER C_CLKOUT8_FREQ = 12000000
 PORT CLKIN = KLOKKEOSC_s_buf
 PORT CLKOUT0 = sys_clk_s
 PORT CLKOUT1 = klokke_133_333MHz
 PORT CLKOUT2 = clk_200_0000MHz90PLL0_ADJUST
 PORT CLKOUT3 = clk_200_0000MHzPLL0
 PORT CLKOUT4 = clk_200_0000MHzPLL0_ADJUST
 PORT CLKOUT5 = clk_25_0000MHz
 PORT CLKOUT6 = proc_clk_s
 PORT LOCKED = Dcm_all_locked
 PORT RST = net_gnd
 PORT CLKOUT7 = klokke_20_MHz
 PORT CLKOUT8 = klokke_12_MHz
END

BEGIN bufg_modul
 PARAMETER INSTANCE = bufg_modul_0
 PARAMETER HW_VER = 1.00.a
 PORT Clk_ut = KLOKKEOSC_s_buf
 PORT Clk_in = KLOKKEOSC_s
END

BEGIN xps_bram_if_cntlr
 PARAMETER INSTANCE = FPGA_BLOKKRAM_0
 PARAMETER C_SPLB_NATIVE_DWIDTH = 64
 PARAMETER C_SPLB_P2P = 0
 PARAMETER C_SPLB_SUPPORT_BURSTS = 1
 PARAMETER HW_VER = 1.00.b
 PARAMETER C_BASEADDR = 0xfffe0000
 PARAMETER C_HIGHADDR = 0xffffffff
 BUS_INTERFACE SPLB = plb_v46_0
 BUS_INTERFACE PORTA = FPGA_BLOKKRAM_0_PORTA
END

BEGIN bram_block
 PARAMETER INSTANCE = bram_block_0

120

 PARAMETER HW_VER = 1.00.a
 BUS_INTERFACE PORTA = FPGA_BLOKKRAM_0_PORTA
END

BEGIN xps_bram_if_cntlr
 PARAMETER INSTANCE = FPGA_BLOKKRAM_1
 PARAMETER HW_VER = 1.00.b
 PARAMETER C_SPLB_P2P = 0
 PARAMETER C_SPLB_SUPPORT_BURSTS = 1
 PARAMETER C_SPLB_NATIVE_DWIDTH = 64
 PARAMETER C_BASEADDR = 0x85810000
 PARAMETER C_HIGHADDR = 0x8581ffff
 BUS_INTERFACE PORTA = FPGA_BLOKKRAM_1_PORTA
 BUS_INTERFACE SPLB = plb_v46_0
END

BEGIN bram_block
 PARAMETER INSTANCE = bram_block_1
 PARAMETER HW_VER = 1.00.a
 BUS_INTERFACE PORTA = FPGA_BLOKKRAM_1_PORTA
END

BEGIN proc_sys_reset
 PARAMETER INSTANCE = proc_sys_reset_0
 PARAMETER HW_VER = 3.00.a
 PARAMETER C_EXT_RESET_HIGH = 1
 PARAMETER C_NUM_PERP_RST = 2
 BUS_INTERFACE RESETPPC0 = ppc_reset_bus
 PORT Slowest_sync_clk = sys_clk_s
 PORT Dcm_locked = Dcm_all_locked
 PORT Bus_Struct_Reset = sys_bus_reset
 PORT Peripheral_Reset = sys_periph_reset & LED_RESET_GRONN_ROD_s
 PORT Peripheral_aresetn = F_RESET_s
END

BEGIN xps_intc
 PARAMETER INSTANCE = xps_intc_0
 PARAMETER HW_VER = 2.01.a
 PARAMETER C_BASEADDR = 0x81800000
 PARAMETER C_HIGHADDR = 0x8180ffff
 BUS_INTERFACE SPLB = plb_v46_0
 PORT Irq = ppc440_0_EICC440EXTIRQ
 PORT Intr = ppc440_0_PPCEICINTERCONNECTIRQ & plb_v46_0_Bus_Error_Det &
xps_ll_temac_0_TemacIntc0_Irpt & xps_timer_1_Interrupt & RS232_Interrupt & CAN_INT_s
& USB_INT_s & som_phase_ip_0_interupt_port
END

121

BEGIN mpmc
 PARAMETER INSTANCE = DDR2_DRAM
 PARAMETER HW_VER = 6.03.a
 PARAMETER C_NUM_PORTS = 1
 PARAMETER C_MEM_PARTNO = MT47H64M16-5E
 PARAMETER C_MEM_DATA_WIDTH = 32
 PARAMETER C_MEM_ODT_TYPE = 1
 PARAMETER C_MEM_REDUCED_DRV = 1
 PARAMETER C_PIM0_BASETYPE = 5
 PARAMETER C_MPMC_BASEADDR = 0x00000000
 PARAMETER C_MPMC_HIGHADDR = 0x0fffffff
 BUS_INTERFACE PPC440MC0 = ppc440_0_PPC440MC
 PORT MPMC_Clk0 = clk_200_0000MHzPLL0_ADJUST
 PORT MPMC_Clk90 = clk_200_0000MHz90PLL0_ADJUST
 PORT MPMC_Clk0_DIV2 = sys_clk_s
 PORT MPMC_Clk_200MHz = clk_200_0000MHzPLL0_ADJUST
 PORT MPMC_Rst = sys_periph_reset
 PORT DDR2_ODT = DDR2_ODT
 PORT DDR2_Addr = DDR2_A
 PORT DDR2_BankAddr = DDR2_BA
 PORT DDR2_CAS_n = DDR2_CAS
 PORT DDR2_CE = DDR2_CKE
 PORT DDR2_CS_n = DDR2_CS
 PORT DDR2_RAS_n = DDR2_RAS
 PORT DDR2_WE_n = DDR2_WE
 PORT DDR2_DM = DDR2_DM
 PORT DDR2_DQS = DDR2_DQS
 PORT DDR2_DQS_n = DDR2_DQSN
 PORT DDR2_DQ = DDR2_D
 PORT DDR2_Clk = DDR2_CK
 PORT DDR2_Clk_n = DDR2_CKN
END

BEGIN xps_epc
 PARAMETER INSTANCE = FLASH_EEPROM_USB
 PARAMETER HW_VER = 1.02.a
 PARAMETER C_PRH0_ADDR_TSU = 100000
 PARAMETER C_PRH0_ADDR_TH = 120000
 PARAMETER C_PRH0_ADS_WIDTH = 0
 PARAMETER C_PRH0_CSN_TSU = 10000
 PARAMETER C_PRH0_CSN_TH = 120000
 PARAMETER C_PRH0_WRN_WIDTH = 120000
 PARAMETER C_PRH0_WR_CYCLE = 300000
 PARAMETER C_PRH0_DATA_TSU = 100000
 PARAMETER C_PRH0_DATA_TH = 30000

122

 PARAMETER C_PRH0_RDN_WIDTH = 120000
 PARAMETER C_PRH0_RD_CYCLE = 150000
 PARAMETER C_PRH0_DATA_TOUT = 120000
 PARAMETER C_PRH0_DATA_TINV = 20000
 PARAMETER C_PRH0_RDY_TOUT = 1000
 PARAMETER C_PRH0_RDY_WIDTH = 100000
 PARAMETER C_PRH0_DWIDTH_MATCH = 1
 PARAMETER C_PRH0_SYNC = 0
 PARAMETER C_NUM_PERIPHERALS = 3
 PARAMETER C_PRH_MAX_AWIDTH = 27
 PARAMETER C_PRH0_AWIDTH = 27
 PARAMETER C_PRH1_AWIDTH = 16
 PARAMETER C_PRH1_ADDR_TSU = 100000
 PARAMETER C_PRH1_ADDR_TH = 10000
 PARAMETER C_PRH1_ADS_WIDTH = 1000
 PARAMETER C_PRH1_CSN_TSU = 100000
 PARAMETER C_PRH1_CSN_TH = 150000
 PARAMETER C_PRH1_WRN_WIDTH = 200000
 PARAMETER C_PRH1_WR_CYCLE = 300000
 PARAMETER C_PRH1_DATA_TSU = 150000
 PARAMETER C_PRH1_DATA_TH = 1000
 PARAMETER C_PRH1_RDN_WIDTH = 150000
 PARAMETER C_PRH1_RD_CYCLE = 250000
 PARAMETER C_PRH1_DATA_TOUT = 150000
 PARAMETER C_PRH1_DATA_TINV = 10500
 PARAMETER C_PRH1_RDY_TOUT = 100
 PARAMETER C_PRH1_RDY_WIDTH = 1000
 PARAMETER C_PRH2_AWIDTH = 9
 PARAMETER C_PRH2_ADDR_TSU = 20000
 PARAMETER C_PRH2_ADDR_TH = 201000
 PARAMETER C_PRH2_ADS_WIDTH = 20000
 PARAMETER C_PRH2_CSN_TSU = 20000
 PARAMETER C_PRH2_CSN_TH = 40000
 PARAMETER C_PRH2_WRN_WIDTH = 40000
 PARAMETER C_PRH2_WR_CYCLE = 50000
 PARAMETER C_PRH2_DATA_TSU = 30000
 PARAMETER C_PRH2_DATA_TH = 30000
 PARAMETER C_PRH2_RDN_WIDTH = 20000
 PARAMETER C_PRH2_RD_CYCLE = 40000
 PARAMETER C_PRH2_DATA_TOUT = 40000
 PARAMETER C_PRH2_DATA_TINV = 30000
 PARAMETER C_PRH2_RDY_TOUT = 100
 PARAMETER C_PRH2_RDY_WIDTH = 10000
 PARAMETER C_PRH1_SYNC = 0
 PARAMETER C_PRH2_SYNC = 0
 PARAMETER C_PRH_CLK_PERIOD_PS = 10000

123

 PARAMETER C_PRH1_DWIDTH_MATCH = 1
 PARAMETER C_PRH2_DWIDTH_MATCH = 1
 PARAMETER C_PRH1_DWIDTH = 16
 PARAMETER C_PRH2_DWIDTH = 16
 PARAMETER C_PRH1_FIFO_ACCESS = 0
 PARAMETER C_PRH1_BUS_MULTIPLEX = 0
 PARAMETER C_PRH2_FIFO_ACCESS = 0
 PARAMETER C_PRH2_BUS_MULTIPLEX = 0
 PARAMETER C_PRH0_BASEADDR = 0x88000000
 PARAMETER C_PRH0_HIGHADDR = 0x8fffffff
 PARAMETER C_PRH1_BASEADDR = 0x80a00000
 PARAMETER C_PRH1_HIGHADDR = 0x80a0ffff
 PARAMETER C_PRH2_BASEADDR = 0x80c00000
 PARAMETER C_PRH2_HIGHADDR = 0x80c0ffff
 BUS_INTERFACE SPLB = plb_v46_0
 PORT PRH_Rdy = net_vcc
 PORT PRH_Wr_n = F_WR_n
 PORT PRH_Rd_n = F_RD
 PORT PRH_BE = F_BE_h
 PORT PRH_Addr = F_A & 'Z'
 PORT PRH_Data = F_D
 PORT PRH_CS_n = F_CS & EE_CS & USB_CS
 PORT PRH_Rst = sys_bus_reset
 PORT PRH_Clk = sys_clk_s
END

BEGIN util_vector_logic
 PARAMETER INSTANCE = f_wr_logikk
 PARAMETER HW_VER = 1.00.a
 PARAMETER C_OPERATION = or
 PARAMETER C_SIZE = 4
 PORT Res = F_WR_HH & F_WR_HL & 'Z' & F_WR_LL
 PORT Op1 = F_WR_n & F_WR_n & F_WR_n & F_WR_n
 PORT Op2 = F_BE_inv
END

BEGIN util_vector_logic
 PARAMETER INSTANCE = f_byte_enable_inverter
 PARAMETER HW_VER = 1.00.a
 PARAMETER C_OPERATION = not
 PARAMETER C_SIZE = 4
 PORT Res = F_BE_inv
 PORT Op1 = F_BE_h
END

BEGIN xps_timer

124

 PARAMETER INSTANCE = xps_timer_0
 PARAMETER HW_VER = 1.02.a
 PARAMETER C_COUNT_WIDTH = 32
 PARAMETER C_ONE_TIMER_ONLY = 0
 PARAMETER C_BASEADDR = 0x83c00000
 PARAMETER C_HIGHADDR = 0x83c0ffff
 BUS_INTERFACE SPLB = plb_v46_0
 PORT Interrupt = xps_timer_1_Interrupt
END

BEGIN xps_uartlite
 PARAMETER INSTANCE = RS232
 PARAMETER HW_VER = 1.01.a
 PARAMETER C_BAUDRATE = 115200
 PARAMETER C_DATA_BITS = 8
 PARAMETER C_ODD_PARITY = 1
 PARAMETER C_USE_PARITY = 0
 PARAMETER C_SPLB_CLK_FREQ_HZ = 100000000
 PARAMETER C_BASEADDR = 0x84000000
 PARAMETER C_HIGHADDR = 0x8400ffff
 BUS_INTERFACE SPLB = plb_v46_0
 PORT RX = RS232_INN
 PORT TX = RS232_UT
 PORT Interrupt = RS232_Interrupt
END

BEGIN spi_io_logikk
 PARAMETER INSTANCE = spi_io_logikk_0
 PARAMETER HW_VER = 1.00.a
 PORT CAN_CS = CAN_CS
 PORT CAN_SDI = CAN_SDI
 PORT CAN_SDO = CAN_SDO
 PORT CAN_SCK = CAN_SCK
 PORT AD_CSB = AD_CSB
 PORT AD_SCLK = AD_SCLK
 PORT AD_SDIO = AD_SDIO
END

BEGIN xps_ll_temac
 PARAMETER INSTANCE = Hard_Ethernet_MAC
 PARAMETER C_FAMILY = virtex5
 PARAMETER C_PHY_TYPE = 0
 PARAMETER C_TEMAC1_ENABLED = 0
 PARAMETER C_BUS2CORE_CLK_RATIO = 1
 PARAMETER C_TEMAC_TYPE = 0
 PARAMETER C_TEMAC0_PHYADDR = 0b00001

125

 PARAMETER HW_VER = 2.03.a
 PARAMETER C_BASEADDR = 0x87000000
 PARAMETER C_HIGHADDR = 0x8707ffff
 BUS_INTERFACE SPLB = plb_v46_0
 BUS_INTERFACE LLINK0 = xps_ll_temac_0_LLINK0
 PORT TemacPhy_RST_n = ETH_RESET_N
 PORT TemacIntc0_Irpt = xps_ll_temac_0_TemacIntc0_Irpt
 PORT MII_TXD_0 = ETH_TX_D
 PORT MII_TX_EN_0 = ETH_TX_EN
 PORT MII_TX_CLK_0 = ETH_TX_CLK
 PORT MII_RX_CLK_0 = ETH_RX_CLK
 PORT MII_RX_ER_0 = ETH_RX_ERR
 PORT MII_TX_ER_0 = ETH_TX_ERR
PORT MII_RX_DV_0 = ETH_RX_DV
 PORT MII_RXD_0 = ETH_RX_D
 PORT MDIO_0 = ETH_MDIO
 PORT MDC_0 = ETH_MDC
 PORT LlinkTemac0_CLK = sys_clk_s
END

BEGIN xps_gpio
 PARAMETER INSTANCE = DIG_IO1_GPIO
 PARAMETER HW_VER = 2.00.a
 PARAMETER C_ALL_INPUTS = 0
 PARAMETER C_GPIO_WIDTH = 16
 PARAMETER C_IS_DUAL = 0
 PARAMETER C_BASEADDR = 0x81440000
 PARAMETER C_HIGHADDR = 0x8144ffff
 BUS_INTERFACE SPLB = plb_v46_0
 PORT GPIO_IO = DIG_IO1_D
END

BEGIN util_vector_logic
 PARAMETER INSTANCE = signal_inn_inverter
 PARAMETER HW_VER = 1.00.a
 PARAMETER C_OPERATION = not
 PARAMETER C_SIZE = 6
 PORT Op1 = SIG_D_s
END

BEGIN ad_omformer_seriemottaker
 PARAMETER INSTANCE = ad_omformer_seriemottaker_0
 PARAMETER HW_VER = 1.00.a
 PARAMETER LEGG_INN_INTERN_DELAYCTRL = 0
 PARAMETER C_BASEADDR = 0xc0400000
 PARAMETER C_HIGHADDR = 0xc040ffff

126

 BUS_INTERFACE SPLB = plb_v46_0
 PORT AD_REF_KLOKKE_INN = KLOKKEOSC_s
 PORT AD_REF_KLOKKE_N = AD_REF_KLOKKE_N
 PORT AD_REF_KLOKKE_P = AD_REF_KLOKKE_P
 PORT AD_DCON = AD_DCON
 PORT AD_DCOP = AD_DCOP
 PORT AD_FCON = AD_FCON
 PORT AD_FCOP = AD_FCOP
 PORT AD_D_N = AD_D_N
 PORT AD_D_P = AD_D_P
 PORT AD_200MHZ_DELAYREFKLOKKE = clk_200_0000MHzPLL0
 PORT AD_SIGNAL_A = AD_strom_a
END

BEGIN da_omformer_utgang
 PARAMETER INSTANCE = DA_omformer_utgang_0
 PARAMETER HW_VER = 1.00.a
PARAMETER DEFAULTVERDI_OPPSETTREGISTER = 0x0000000F
 PARAMETER BREDDE_INN = 16
 PARAMETER ANTALL_SIGNALKILDER = 2
 PARAMETER C_BASEADDR = 0xcd600000
 PARAMETER C_HIGHADDR = 0xcd60ffff
BUS_INTERFACE SPLB = plb_v46_0
 PORT DA_RW = DA_RW
 PORT DA_D = DA_D
 PORT DA_A_B = DA_A_B
 PORT DA_AB_CS = DA_AB_CS
 PORT DA_CD_CS = DA_CD_CS
 PORT DA_SIGNAL_NY = net_vcc
END

BEGIN vekselretter_tilkobling
 PARAMETER INSTANCE = vekselretter_tilkobling_0
 PARAMETER HW_VER = 1.00.a
 PARAMETER C_BASEADDR = 0xc5620000
 PARAMETER C_HIGHADDR = 0xc562ffff
 BUS_INTERFACE SPLB = plb_v46_0
 PORT ve_paa = VE_PAA
 PORT ve_driver = VE_DRIVER_UT
 PORT ve_ok = VE_OK
 PORT ve_t = VE_T
 PORT led_ve = LED_VE
PORT paa_inn = net_vcc
 PORT driversignal_inn = sv_pwm_ut_T1
END

127

BEGIN vekselretter_tilkobling
 PARAMETER INSTANCE = vekselretter_tilkobling_1
 PARAMETER HW_VER = 1.00.a
 PARAMETER C_BASEADDR = 0xc5600000
 PARAMETER C_HIGHADDR = 0xc560ffff
 BUS_INTERFACE SPLB = plb_v46_0
 PORT driversignal_inn = sv_pwm_ut_T2
 PORT ve_t = ve_t1
 PORT ve_ok = ve_ok1
 PORT ve_paa = ve_paa1
 PORT ve_driver = ve_driver1
 PORT led_ve = led_ve1
 PORT paa_inn = net_vcc
END

BEGIN som_phase_ip
 PARAMETER INSTANCE = som_phase_ip_0
 PARAMETER HW_VER = 1.00.a
 PARAMETER C_BASEADDR = 0xcea00000
 PARAMETER C_HIGHADDR = 0xcea0ffff
 BUS_INTERFACE SPLB = plb_v46_0
 PORT Led_port = LED_TEST_s
 PORT pwm_ut_T1 = sv_pwm_ut_T1
 PORT pwm_ut_T2 = sv_pwm_ut_T2
 PORT interupt_port = som_phase_ip_0_interupt_port
END

BEGIN driver_interface_via_dig_io_connection
 PARAMETER INSTANCE = driver_interface_via_dig_io_connection_0
 PARAMETER HW_VER = 1.00.a
 PORT ve_ok = ve_ok1
 PORT ve_paa = ve_paa1
 PORT ve_driver = ve_driver1
 PORT ve_t = ve_t1
 PORT led_ve = led_ve1
 PORT dig_io = DIG_IO3_D
END

128

11 Appendix C
--(VHDL codes for SOM_PHASE_IP)---
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;
library proc_common_v3_00_a;
use proc_common_v3_00_a.proc_common_pkg.all;

entity user_logic is
 generic
 (
 NO_OF_LEDS : integer := 6;
 NO_OF_PHASES : integer := 3;
 NO_OF_SWITCHINGS : integer := 5;
 C_SLV_DWIDTH : integer := 32;
 C_NUM_REG : integer := 100
);
 port
 (
 Led_port : out std_logic_vector(NO_OF_LEDS-1 downto 0);
 pwm_ut_T1 : out std_logic_vector(NO_OF_PHASES-1 downto 0);
 pwm_ut_T2 : out std_logic_vector(NO_OF_PHASES-1 downto 0);
 interupt_port : out std_logic;
 Bus2IP_Clk : in std_logic;
 Bus2IP_Reset : in std_logic;
 Bus2IP_Data : in std_logic_vector(0 to C_SLV_DWIDTH-1);
 Bus2IP_BE : in std_logic_vector(0 to C_SLV_DWIDTH/8-1);
 Bus2IP_RdCE : in std_logic_vector(0 to C_NUM_REG-1);
 Bus2IP_WrCE : in std_logic_vector(0 to C_NUM_REG-1);
 IP2Bus_Data : out std_logic_vector(0 to C_SLV_DWIDTH-1);
 IP2Bus_RdAck : out std_logic;
 IP2Bus_WrAck : out std_logic;
 IP2Bus_Error : out std_logic
);
 attribute SIGIS : string;
 attribute SIGIS of Bus2IP_Clk : signal is "CLK";
 attribute SIGIS of Bus2IP_Reset : signal is "RST";

end entity user_logic;

--
-- Architecture section
--
architecture IMP of user_logic is

129

 --USER signal declarations added here, as needed for user logic
 --
 -- Signals for user logic slave model s/w accessible register example
 --
 signal slv_reg0 : std_logic_vector(0 to C_SLV_DWIDTH-1);
 signal slv_reg1 : std_logic_vector(0 to C_SLV_DWIDTH-1);
 .
 .
 signal slv_reg98 : std_logic_vector(0 to C_SLV_DWIDTH-1);
 signal slv_reg99 : std_logic_vector(0 to C_SLV_DWIDTH-1);
 signal slv_reg_write_sel : std_logic_vector(0 to 99);
 signal slv_reg_read_sel : std_logic_vector(0 to 99);
 signal slv_ip2bus_data : std_logic_vector(0 to C_SLV_DWIDTH-1);
 signal slv_read_ack : std_logic;
 signal slv_write_ack : std_logic;
 signal Max_Counter : std_logic_vector(C_SLV_DWIDTH-1 downto 0);
type vector_array_time is array (0 to NO_OF_SWITCHINGS-1)of
std_logic_vector(C_SLV_DWIDTH-1 downto 0);
type vector_array_state is array (0 to NO_OF_SWITCHINGS-1) of std_logic_vector(1 downto
0);
signal Rmemory_time :vector_array_time;
signal Rmemory_state :vector_array_state;
signal Ymemory_time :vector_array_time;
signal Ymemory_state :vector_array_state;
signal Bmemory_time :vector_array_time;
signal Bmemory_state :vector_array_state;
signal Rcount_down : integer;
signal Ycount_down : integer;
signal Bcount_down : integer;
type initial is array (0 to NO_OF_PHASES-1) of std_logic_vector(1 downto 0);
signal initial_value: initial:=("01", "11" ,"01");
signal Rn: integer:=0;
signal Yn: integer:=0;
signal Bn: integer:=0;
signal testsignal : std_logic_vector(5 downto 0);
signal pwm : std_logic_vector(NO_OF_PHASES-1 downto 0);
signal pwm_com : std_logic_vector(NO_OF_PHASES-1 downto 0);
signal pwm_T1 : std_logic_vector(NO_OF_PHASES-1 downto 0);
signal pwm_T2 : std_logic_vector(NO_OF_PHASES-1 downto 0);
signal interupt_out : std_logic:='0';
--- Here reading and writing in the 100 register take place which is removed in this thesis
because it is bulky
 -- ###
Max_Counter <= slv_reg60;
---R phase----------------
Rphase:process(Bus2IP_Clk)

130

begin
if(Bus2IP_Clk'event and Bus2IP_Clk='1') then
interupt_out<='0';
 if (Rcount_down<Max_Counter) then
 if (Rcount_down=0) then
 Rmemory_time(0) <=slv_reg0; -- time_R0
 Rmemory_time(1) <=slv_reg1; -- time_R1
 Rmemory_time(2) <=slv_reg2; -- time_R2
 Rmemory_time(3) <=slv_reg3; -- time_R3
 Rmemory_time(4) <=slv_reg4; -- time_R4

 Rmemory_state(0) <=slv_reg30(30 to 31); -- state_R0
 Rmemory_state(1) <=slv_reg31(30 to 31); -- state_R1
 Rmemory_state(2) <=slv_reg32 (30 to 31); -- state_R2
 Rmemory_state(3) <=slv_reg33 (30 to 31); -- state_R3
 Rmemory_state(4) <=slv_reg34 (30 to 31); -- state_R4

 testsignal(5 downto 4) <= initial_value(0);
 end if;

 if (Rcount_down=Rmemory_time(Rn)) then
 testsignal(5 downto 4)<=Rmemory_state(Rn);
 if (Rn<NO_OF_SWITCHINGS-1) then
 Rn<=Rn+1;
 else
 Rn<=0;
 end if;
 end if;
 Rcount_down<=Rcount_down+1;
 else

Rn<=0;
 Rcount_down<=0;
 initial_value(0)<=testsignal(5 downto 4);
 interupt_out<='1';
end if;
end if;
end process;
------------------------Y Phase---
Yphase:process(Bus2IP_Clk)
 begin
 if(Bus2IP_Clk'event and Bus2IP_Clk='1') then
 if (Ycount_down<Max_Counter) then
 if (Ycount_down=0) then
 Ymemory_time(0) <=slv_reg10; -- time_Y0
 Ymemory_time(1) <=slv_reg11; -- time_Y1
 Ymemory_time(2) <=slv_reg12; -- time_y2

131

 Ymemory_time(3) <=slv_reg13; -- time_Y3
 Ymemory_time(4) <=slv_reg14; -- time_Y4

 Ymemory_state(0) <=slv_reg40 (30 to 31); -- state_Y0
 Ymemory_state(1) <=slv_reg41 (30 to 31); -- state_Y1
 Ymemory_state(2) <=slv_reg42 (30 to 31); -- state_Y2
 Ymemory_state(3) <=slv_reg43 (30 to 31); -- state_Y3
 Ymemory_state(4) <=slv_reg44 (30 to 31); -- state_Y4

 testsignal(3 downto 2) <= initial_value(1);
 end if;

 if (Ycount_down=Ymemory_time(Yn)) then
 testsignal(3 downto 2)<=Ymemory_state(Yn);
 if (Yn<NO_OF_SWITCHINGS-1) then
 Yn<=Yn+1;
 else
 Yn<=0;
 end if;
 end if;

 Ycount_down<=Ycount_down+1;
 Else

Yn<=0;
 Ycount_down<=0;
 initial_value(1)<=testsignal(3 downto 2);
end if;
end if;
end process;

Bphase:process(Bus2IP_Clk)
 begin
 if(Bus2IP_Clk'event and Bus2IP_Clk='1') then
 if (Bcount_down<Max_Counter) then
 if (Bcount_down=0) then
 Bmemory_time(0) <=slv_reg20; -- time_B0
 Bmemory_time(1) <=slv_reg21; -- time_B1
 Bmemory_time(2) <=slv_reg22; -- time_B2
 Bmemory_time(3) <=slv_reg23; -- time_B3
 Bmemory_time(4) <=slv_reg24; -- time_B4

 Bmemory_state(0) <=slv_reg50 (30 to 31); -- state_B0
 Bmemory_state(1) <=slv_reg51 (30 to 31); -- state_B1
 Bmemory_state(2) <=slv_reg52 (30 to 31); -- state_B2
 Bmemory_state(3) <=slv_reg53 (30 to 31); -- state_B3
 Bmemory_state(4) <=slv_reg54 (30 to 31); -- state_B4

132

 testsignal(1 downto 0) <= initial_value(2);
 end if;

 if (Bcount_down=Bmemory_time(Bn)) then
 testsignal(1 downto 0)<=Bmemory_state(Bn);
 if (Bn<NO_OF_SWITCHINGS-1) then
 Bn<=Bn+1;
 else
 Bn<=0;
 end if;
 end if;

 Bcount_down<=Bcount_down+1;
else
 Bcount_down<=0;
 initial_value(2)<=testsignal(1 downto 0);
end if;
end if;
end process;
----giving the switching pulse to three level converter--------------assuming R= bit 5-4, Y=bit 3-2,
B= bit 1-0
------signal for T1--------
pwm_T1(0) <=testsignal(5); --R phase
pwm_T1(1) <=testsignal(3); --Y phase
pwm_T1(2) <=testsignal(1); -- B phase
------signal for T2--------
pwm_T2(0) <=testsignal(4); --R phase
pwm_T2(1) <=testsignal(2); --Y phase
pwm_T2(2) <=testsignal(0); -- B phase

Led_port<=testsignal;
pwm_ut_T1<= pwm_T1;
pwm_ut_T2<= pwm_T2;
interupt_port<=interupt_out;
--
##
##########
end IMP;

133

12 Appendix D

--VHDL codes for SOM_spacevector_IP

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;
library proc_common_v3_00_a;
use proc_common_v3_00_a.proc_common_pkg.all;

entity user_logic is
 generic
 (
 NO_OF_LEDS : integer := 6;
 NO_OF_PHASES : integer := 3;
 C_SLV_DWIDTH : integer := 32;
 C_NUM_REG : integer := 30
);
 port
 (
 Led_port : out std_logic_vector(NO_OF_LEDS-1 downto 0);
 pwm_ut_T1 : out std_logic_vector(NO_OF_PHASES-1 downto 0);
 pwm_ut_T2 : out std_logic_vector(NO_OF_PHASES-1 downto 0);
 interupt_port : out std_logic;
 Bus2IP_Clk : in std_logic;
 Bus2IP_Reset : in std_logic;
 Bus2IP_Data : in std_logic_vector(0 to C_SLV_DWIDTH-1);
 Bus2IP_BE : in std_logic_vector(0 to C_SLV_DWIDTH/8-1);
 Bus2IP_RdCE : in std_logic_vector(0 to C_NUM_REG-1);
 Bus2IP_WrCE : in std_logic_vector(0 to C_NUM_REG-1);
 IP2Bus_Data : out std_logic_vector(0 to C_SLV_DWIDTH-1);
 IP2Bus_RdAck : out std_logic;
 IP2Bus_WrAck : out std_logic;
 IP2Bus_Error : out std_logic
);
 attribute SIGIS : string;
 attribute SIGIS of Bus2IP_Clk : signal is "CLK";
 attribute SIGIS of Bus2IP_Reset : signal is "RST";

end entity user_logic;

--
-- Architecture section
--

134

architecture IMP of user_logic is
 --USER signal declarations added here, as needed for user logic
 --
 -- Signals for user logic slave model s/w accessible register example
 --
 signal slv_reg0 : std_logic_vector(0 to C_SLV_DWIDTH-1);
 signal slv_reg1 : std_logic_vector(0 to C_SLV_DWIDTH-1);
 .
 .
 signal slv_reg28 : std_logic_vector(0 to C_SLV_DWIDTH-1);
 signal slv_reg29 : std_logic_vector(0 to C_SLV_DWIDTH-1);
 signal slv_reg_write_sel : std_logic_vector(0 to 99);
 signal slv_reg_read_sel : std_logic_vector(0 to 99);
 signal slv_ip2bus_data : std_logic_vector(0 to C_SLV_DWIDTH-1);
 signal slv_read_ack : std_logic;
 signal slv_write_ack : std_logic;

signal led_reg_Tm : std_logic_vector(C_SLV_DWIDTH-1 downto 0);

signal led_reg_T1 : std_logic_vector(C_SLV_DWIDTH-1 downto 0);
signal led_reg_T2 : std_logic_vector(C_SLV_DWIDTH-1 downto 0);
signal led_reg_T3 : std_logic_vector(C_SLV_DWIDTH-1 downto 0);
signal led_reg_T4 : std_logic_vector(C_SLV_DWIDTH-1 downto 0);
signal led_reg_T5 : std_logic_vector(C_SLV_DWIDTH-1 downto 0);
signal led_reg_T6 : std_logic_vector(C_SLV_DWIDTH-1 downto 0);
signal led_reg_T7 : std_logic_vector(C_SLV_DWIDTH-1 downto 0);

signal led_reg_S1 : std_logic_vector(C_SLV_DWIDTH-1 downto 0);
signal led_reg_S2 : std_logic_vector(C_SLV_DWIDTH-1 downto 0);
signal led_reg_S3 : std_logic_vector(C_SLV_DWIDTH-1 downto 0);
signal led_reg_S4 : std_logic_vector(C_SLV_DWIDTH-1 downto 0);
signal led_reg_S5 : std_logic_vector(C_SLV_DWIDTH-1 downto 0);
signal led_reg_S6 : std_logic_vector(C_SLV_DWIDTH-1 downto 0);
signal led_reg_S7 : std_logic_vector(C_SLV_DWIDTH-1 downto 0);

signal state_count : std_logic_vector(C_SLV_DWIDTH-1 downto 0);
signal clk : std_logic:='0';
signal testsignal : std_logic_vector(5 downto 0) := (others => '0');
type states is (zero, one, two, three, four, five, six);
signal mem_state : states;
signal count_down : integer:=0;
signal pwm_T1 : std_logic_vector(NO_OF_PHASES-1 downto 0);
signal pwm_T2 : std_logic_vector(NO_OF_PHASES-1 downto 0);
 signal interupt_out : std_logic:='0';

135

begin

--- Here reading and writing in the 100 register take place which is removed in this thesis
because it is bulky
 -- ###
led_reg_Tm <= slv_reg1;

-----lower section:----
process(Bus2IP_Clk)
begin
if(Bus2IP_Clk'event and Bus2IP_Clk='1') then
interupt_out<='0';
 if (count_down<led_reg_Tm) then
 if (count_down= 0) then
led_reg_T1 <= slv_reg2;
led_reg_T2 <= slv_reg3;
led_reg_T3 <= slv_reg4;
led_reg_T4 <= slv_reg5;
led_reg_T5 <= slv_reg6;
led_reg_T6 <= slv_reg7;
led_reg_T7 <= slv_reg8;

led_reg_S1 <= slv_reg9;
led_reg_S2 <= slv_reg10;
led_reg_S3 <= slv_reg11;
led_reg_S4 <= slv_reg12;
led_reg_S5 <= slv_reg13;
led_reg_S6 <= slv_reg14;
led_reg_S7 <= slv_reg15;

end if;

 count_down<=count_down+1;

if (count_down= led_reg_T1) then
mem_state<=zero;
end if;

if (count_down= led_reg_T2) then
mem_state<=one;
end if;

if (count_down= led_reg_T3) then
mem_state<=two;
 end if;

136

if (count_down= led_reg_T4) then
mem_state<=three;
end if;

if (count_down= led_reg_T5) then
mem_state<=four;
end if;

if (count_down= led_reg_T6) then
mem_state<=five;
end if;

if (count_down= led_reg_T7) then
mem_state<=six;
end if;

else
count_down<=0;
 interupt_out<='1';
end if;
end if;
end process;

----upper section:----
process(mem_state)
begin
case mem_state is

when zero=>
state_count<=led_reg_S1;

when one=>
state_count<=led_reg_S2;

when two=>
state_count<=led_reg_S3;

when three=>
state_count<=led_reg_S4;

when four=>
state_count<=led_reg_S5;

when five=>

137

state_count<=led_reg_S6;

when six=>
state_count<=led_reg_S7;
end case;
end process;
Led_port<=state_count(NO_OF_LEDS-1 downto 0);

----giving the switching pulse to three level converter--------------assuming R= bit 5-4, Y=bit 3-2,
B= bit 1-0
------signal for T1--------
pwm_T1(0) <=testsignal(5); --R phase
pwm_T1(1) <=testsignal(3); --Y phase
pwm_T1(2) <=testsignal(1); -- B phase
------signal for T2--------
pwm_T2(0) <=testsignal(4); --R phase
pwm_T2(1) <=testsignal(2); --Y phase
pwm_T2(2) <=testsignal(0); -- B phase

pwm_ut_T1<= pwm_T1;
pwm_ut_T2<= pwm_T2;
interupt_port<=interupt_out;
--
##
##########
end IMP;

138

13 Appendix E

Figur 13-1 Block diagram of hardware.

139

14 Appendix F

Figure 14-1 Digital signal for m=0.3, N=4.

Figure 14-2 Voltage signal for m=0.3, N=4.

140

Figure 14-3 Current signal for m=0.3, N=4.

141

15 Appendix G

Figure 15-1 Digital Signal for m=0.87, N=3.

Figure 15-2 Voltage Signal for m=0.87, N=3.

142

Figure 15-3 Current Signal for m=0.87, N=3.

143

16 Appendix H

Figure 16-1 Current and Voltage for m=0.3, f=55Hz, N=5.

Figure 16-2 Current and Voltage for m=0.5, f=55Hz, N=5.

144

Figure 16-3 Current and Voltage for m=0.8, f=55Hz, N=5.

Figure 16-4 Current and Voltage for m=1, f=55Hz, N=5.

145

17 Appendix I

Figure 17-1 Missing Pulse for m=1, f=80 Hz.

Figure 17-2 No Missing Pulse for m=1, f=45Hz.

	1 Introduction
	1.1 Background
	1.2 Motivation
	1.3 Literature review
	1.4 Thesis Scope and Limitation
	1.5 Organization of report

	2 Theory
	2.1 Electric Propulsion
	2.2 Multiphase Machine
	2.2.1 Harmonic Losses in Induction Machine

	2.3 Three Level Converter
	2.3.1 Switching loss in voltage source Inverter
	2.3.2 Harmonic content of voltage source Inverter
	2.3.3 DC Bus Balancing
	2.3.3.1 Introduction
	2.3.3.2 DC balancing

	2.4 Modulation Strategy
	2.5 Program Modulation Technique
	2.5.1 Background
	2.5.2 Program Modulation

	2.6 Synchronous Optimal Modulation
	2.7 Open Loop Method
	2.8 Synchronous Optimal Modulation signal flow graph

	3 Introduction to FPGA and Xilinx EDK
	3.1 Background
	3.2 General Architecture of FPGA
	3.3 Embedded System Development
	3.4 Xilinx Board
	3.4.1 Communication Port
	3.4.2 memory
	3.4.4 Converter
	3.4.5 Pulse Encoder:
	3.4.6 Relay drivers.
	3.4.7 LVDS:
	3.4.8 Signal Inputs:
	3.4.9 AD Converter:
	3.4.10 Digital Input Output port:

	3.5 Xilinx Embedded Development Kit
	3.5.1 Introduction
	3.5.2 Different Abstraction Level
	3.5.3 Xilinx ISE overview
	3.5.4 Xilinx platform studio overview
	3.5.5 Xilinx Software Development Kit overview

	4 Firmware Implementation of SOM in FPGA
	4.1 EDK install
	4.2 Project Local Pcores (user)
	4.2.1 Phase to Phase Vs Space vector Implementation
	4.2.2 SOM_PHASE IP
	4.2.2.1 BACKGROUND
	4.2.2.2 Methodology

	4.2.3 SOM_spacevector_IP
	4.2.3.1 Background
	4.2.3.2 Methodology

	4.3 Global Peripheral Repository (user)
	4.3.1.1 Vekselretter tilkobling (Inverter Connection):
	4.3.1.2 Inverter for three level converter
	4.3.2 Driver Interface via dig_io_connection

	4.4 Driver circuit
	4.5 Communication with other collaborating project
	4.6 Challenges faced
	4.7 Simulation
	4.7.1 SOM_PHASE_IP
	4.7.2 SOM_spacevector_IP

	5 Experiment Setup
	5.1 Hardware Setup
	5.1.1 Setup Overview
	5.1.2 Six-Phase Induction Machine
	5.1.3 DC Machine
	5.1.4 Converter
	5.1.5 FPGA control card
	5.1.6 Current Measurements

	5.2 Software Implementation
	5.2.1 Software Environment
	5.2.2 Program Structure

	6 Experimental Results and Discussion
	6.1 Driver, Voltage and Current signal
	6.1.1 Driver signal
	6.1.2 Voltage waveform
	6.1.3 Current Waveform
	6.1.4 Digital, Voltage, Current signal

	6.2 Variation of N with Stator frequency
	6.3 Total harmonic distortion
	6.3.1 Line-Line Voltage
	6.3.2 Measurement of THD
	6.3.3 Analysis
	6.3.4 Comparison

	6.4 Some of Errors found in the system
	6.4.1 Analysis
	6.4.2 Suggestion

	6.5 Discussion

	7 Conclusion and further work
	7.1 Conclusion
	7.2 Further Works

	8 Bibliography
	9 Appendix A
	10 Appendix B
	11 Appendix C
	12 Appendix D
	13 Appendix E
	14 Appendix F
	15 Appendix G
	16 Appendix H
	17 Appendix I

