
Development of a Universal Verification
Component for CPU UVM Verification

Bernhard Bakken

Master of Science in Electronics

Supervisor: Kjetil Svarstad, IES
Co-supervisor: Vitaly Marchuk, Microchip Technologies Norway AS

Department of Electronic Systems

Submission date: July 2018

Norwegian University of Science and Technology

PROJECT ASSIGNMENT

Candidate name: Bernhard Bakken

Assignment title: Development of a Universal Verification Component for CPU

UVM verification

Assignment text: The current UVM CPU verification framework contains sev-

eral agents for working with different bus types. They were developed in accor-

dance with earlier UVM methodology. Recent development showed possibility of

creation of a single unified agent working with various buses by encapsulating

bus functionality into interfaces, thus substantially reducing amount of resources

required for developing and maintaining verification components.

1. Student needs to create universal verification component (UVC agent) by

moving functionality from drivers and monitors to bus.

2. Modify current verification framework to work with UVC.

3. Find optimal way of configuring UVC to operate on different buses by using

UVM configuration database.

4. Show benefits in terms of code reduction.

5. Compare advantages and disadvantages of both methodologies.

Prerequisites: understanding of CPU architecture, SystemVerilog for design and

verification, basic understanding of UVM, some scripting language as Perl or

Python would be an advantage.

Assigment proposer/Co-supervisor: Vitaly Marchuk, Microchip Technology

Norway AS

Supervisor: Kjetil Svarstad

i

iii

Abstract

The time used debugging and developing testbenches in FPGA and ASIC/IC

projects is around 60% of the total time spent in verification. The last years

has shown an increase in the adoption of the Universal Verification Methodol-

ogy(UVM), which can help increase the maximum reuse, and decrease the time

spent creating and debugging testbenches.

This thesis presents the development of a Universal Verification Component(UVC)

for CPU UVM verification. An existing framework has been used as a base in the

development. In the project an improvement of the existing sequence items has

been done by creating a new sequence item that is functional for several protocols,

and can be extended for additional functionality. Specialised functionality, that

can be called through tasks, has been moved from the driver and monitor to

the interface, which helps create generic components. A task implemented in

the interface, which converts signals from the DUT to a sequence item, is called

from the monitor and used to write to the analysis ports. There has also been

developed a sequencer that is functional for various protocols in the framework.

Parameterisation has been utilised for all the components in the hierarchy, in

order to grant the specialised functionality for the protocols. The agent, which is

parameterised with a configuration object and sequence item, builds the testbench

with configuration that has been retrieved from the configuration database, by

using the the handle for the various protocols’ agent to find the correct path.

The amount of code lines has been used to quantify some of the efficiency of the

UVC, as a decrease in code lines would most likely result in less bugs, and therefore

less time spent debugging. There was a total of 28% decrease in amount of code

lines for the protocols, when compared to the base framework. 21 files in the

framework have also been replaced by the generic components developed in this

project.

The UVC that has been developed, can be reused in several frameworks with its pa-

rameterisation. The framework that adopts the UVC has to set the configuration

in the configuration database as presented in this thesis for correct functionality.

This UVC can decrease the time used debugging and creating testbenches, and

the time saved can help the verification engineer to reach deadline, or be used to

further improve the quality of the tests.

iv

Sammendrag

Tiden som blir brukt i debugging og å lage testbenker for FPGA- og ASIC/IC-

prosjekter er rundt 60% av den totale tiden som g̊ar med i verifikasjon. De siste

årene har vist en økning av å ta i bruk Universal Verification Methodology(UVM),

som kan hjelpe i å gi en økning av gjenbruk, og senke tiden som blir brukt i å lage

og debugge testbenker.

Denne avhandlingen presenterer utviklingen av en Universal Verification Com-

ponent(UVC) for CPU UVM verifikasjon. Ett eksisterende rammeverk har blitt

brukt som grunnlag i utviklingen. I prosjektet har en forbedring av ett eksis-

terende sequence item blitt gjort, slik at den fungerer for flere protokoller eller

kan bli utvidet for mer funksjonalitet. Spesialisert funksjonalitet, som kan bli kalt

gjennom funksjoner, har blitt flyttet fra driveren og monitoren til grensesnittet,

som hjelper lage en generisk component som kan bli brukt av flere protokoller. En

funksjon som konverterer signaler fra DUTen til sequence items er implementert i

grensesnittet, er kalt fra monitoren og brukt til å skrive til analyse portene. Det

har ogs̊a blitt utviklet en sequencer som er funksjonell for forskjellige protokoller

i rammeverket. Alle komponentene i hierarkiet har blitt parametrisert for å f̊a

spesialisert funksjonalitet i alle protokollene. Agenten, som er parametrisert med

et konfigurasjonsobjekt og sequence item, bygger testbenken ved hjelp av konfig-

urasjon som er hentet fra konfigurasjonsdatabasen ved å bruke h̊andtaket for de

forskjellige protokollenes agenter for å velge riktig vei.

Antall kodelinjer har blitt brukt for å kvantifisere noe av effektiviteten av UVCen,

siden mindre kodelinjer vil mest sannsynlig resultere i mindre bugs og derfor min-

dre tid brukt p̊a å finne de. Det var totalt 28% mindre kodelinjer for protokollene

n̊ar det ble sammenlignet med det gamle rammeverket. 21 filer i rammeverket har

ogs̊a blitt erstattet med de generiske komponentene utviklet i dette prosjektet.

UVCen som har blitt utviklet kan bli gjenbrukt i flere rammeverk ved å bruke

parameteriseringen. Rammeverket som bruker UVCen m̊a sette konfigurasjonen i

konfigurasjonsdatabasen i tr̊ad med det som har blitt gjort i denne avhandlingen,

for korrekt funksjonalitet. Denne UVCen kan ogs̊a redusere tiden brukt for å

debugge og lage testbenker, og tiden spart kan brukes til å n̊a deadlines eller for

å forbedre kvaliteten p̊a testene.

Acknowledgements

I would express my gratitude to my supervisors: Vitaly Marchuk from Microchip

Technologies Norway AS and Professor Kjetil Svarstad from NTNU for their expert

advice, guidance, support and encouragement throughout this project.

v

Contents

Project Assignment i

Abstract ii

Sammendrag iv

Acknowledgements v

List of Figures xi

List of Tables xiii

Abbreviations xv

1 Introduction 1

1.1 Motivation . 1

1.2 Contributions . 2

1.3 Methodology . 3

1.4 Thesis Overview . 3

2 Background 5

2.1 Universal Verification Methodology 5

2.1.1 Horizontal and Vertical Reuse 6

2.1.2 Test . 7

2.1.3 Environment . 7

2.1.4 Scoreboard . 8

2.1.5 Agent . 8

2.1.6 Driver . 9

2.1.7 Monitor . 10

vii

Contents viii

2.1.8 Sequencer . 10

2.1.9 Sequence Item . 10

2.1.10 Interfaces . 10

2.1.11 Transaction Level Modeling 11

2.1.12 Transaction Methods . 12

2.1.13 Polymorphism . 13

2.1.14 Factory . 14

2.1.15 Generic Programming . 15

2.1.16 Parameterisation . 16

2.1.17 Inheritance . 17

2.1.18 Configuration Objects . 18

2.1.19 Configuration . 19

2.2 Comprehensive UVM . 22

2.2.1 Universal Verification Component 22

2.2.2 Dual Top for Accelerated Verification 23

2.2.3 Synchronisation . 25

3 Verification Infrastructure 27

3.1 Existing CPU UVM Framework . 27

3.1.1 Protocols . 28

3.1.2 Top Level . 28

3.1.3 Environment . 29

3.1.4 Configuration . 30

3.1.5 Virtual Sequencer and Sequencers 32

3.1.6 Agents . 33

3.1.7 Drivers . 33

3.1.8 Monitors . 34

3.1.9 Sequencer and Sequences 35

3.1.10 Interface . 35

3.1.11 Sequence Item . 35

3.1.12 Instruction Set Simulator 36

3.2 Improving the Existing Framework 36

3.2.1 Attempt to Create a Unified Agent 37

3.2.2 Considerations when Creating a Unified UVC 38

4 Modifying the Verification Infrastructure 41

4.1 Creating a Starting Point . 41

4.2 Starting from the Bottom . 44

4.3 Improving the Sequence Items . 45

4.4 Moving Functionality . 48

4.4.1 The Interfaces . 48

4.4.2 Configuration Object . 50

4.4.3 Attacking the Driver . 51

Contents ix

4.4.4 Modifying the Monitor . 57

4.4.5 Parameterisation . 61

4.4.6 Changing the Configuration 62

4.4.7 Changing the Cache Setup 64

4.4.8 Just a Little Sequencer . 66

4.4.9 Further Improvement of the Components 66

4.4.10 Minor Modifications . 70

4.5 Adopting the UVC . 72

5 Results 75

5.1 The Non-generic Code . 75

5.2 Generic Code . 76

6 Discussion 79

6.1 Code Reduction . 79

6.2 Parameterisation and Object Oriented Programming 81

6.3 Configuration . 81

6.4 Advantages and Disadvantages . 82

6.5 The Inconveniences . 84

6.5.1 Incomplete code . 84

6.5.2 Lost in Translation . 85

6.5.3 The Iobus qr Protocol . 85

6.5.4 The Irq Protocol . 85

6.6 Alternative Framework Setup . 85

7 Conclusion 87

7.1 Future Work . 88

Bibliography 89

List of Figures

1.1 Where Verification Engineers spend their time[1] 2

1.2 FGPA Methodologies and Testbench Base-Class Libraries[1] 2

2.1 Block Level UVM Test Bench - Hierarchical Layers 6

2.2 Active agent . 8

2.3 Passive agent . 9

2.4 Agent with analysis port and subscribers 12

2.5 Abstract Factory pattern[2] . 14

2.6 Inheritance . 17

2.7 Single top[3] . 23

2.8 Dual Top[3] . 24

2.9 UVM layered testbench[4] . 25

3.1 Environment’s configuration object 30

3.2 Configuration passing . 32

3.3 Virtual interface passing . 33

3.4 Monitor writes to analysis port . 35

4.1 Agents extended from base class 42

4.2 Specialised agents . 43

4.3 Changing the top block . 44

4.4 Changing bottom block . 45

4.5 Bug propagation in the different methodologies 45

4.6 From many specialised drivers to one generic driver 52

4.7 Creation of generic driver . 52

4.8 Driver access variables through the interface 53

4.9 Use of tasks to communicate with interface 54

4.10 Converting signals to item . 58

4.11 Configuration object set by database 62

4.12 Verification infrastructure build order 63

4.13 Configuration objects with cache enable bit 65

4.14 Handle to virtual interface changed 70

xi

List of Figures xii

5.1 Transactions are registered . 78

6.1 Class overview for specified framework 83

6.2 Class overview for framework with UVC 84

List of Tables

2.1 Overview over inherited variables and functions 18

4.1 Number of code lines in non-generic code 44

5.1 Lines of code in the top of the hierarchy for the specialised framework 76

5.2 Lines of code in the protocols, specialised framework 76

5.3 Lines of code in the top of hierarchy for the new framework 77

5.4 Lines of code in developed files . 77

5.5 Files removed . 78

5.6 Number of code lines in the protocols, new framework 78

xiii

Abbreviations

BFM Bus Functional Model

DUT Device Uunder Test

HDL Hardware Description Language

HVL High-level Verification Language

ISS Instruction Set Simulator

NVM Non Volatile Memory

RTL Register Transfer Level

TLM Transaction-level modeling

UVC Universal Verification Component

UVM Universal Verification Methodology

xv

Chapter 1

Introduction

1.1 Motivation

According to ”The 2016 Wilson Research Group Functional Verification Study”[1]

presents that the average time spent in verification in FPGA projects is 48%, and

55% in ASIC/IC projects. Figure 1.1 shows where the time is spent by Verification

engineers during a project. For both projects for FPGAs and ASICs/ICs the time

spent developing the testbench is around 20%, and the time used debugging can be

over 40%. Maximal reuse needs to be utilised in order to reduce the development

time for the testbench [5]. Reusing the same components can also reduce the time

spent debugging. To reduce the time used running tests, iterations and debugging,

a better, more advanced approach is needed. Figure 1.2 presents the different

methodologies trends in verification used for FPGA and ASIC/IC. It shows that

the adoption of UVM has drastically increased during the past years. UVM can

help increase the maximum reuse.

As reuse in UVM comes more in focus, the components used in UVM should be im-

proved. By developing a parameterised Universal Verification Component(UVC)

could be a step in the right direction towards maximising reuse and decreasing

the time spent developing the testbench, decreasing the total time spent in veri-

fication, and with it, increase the probability of delivering a project on deadline.

The extra time granted could also be spent on quality improvement.

1

Introduction 2

(a) FPGA (b) ASIC/IC

Figure 1.1: Where Verification Engineers spend their time[1]

(a) FPGA (b) ASIC/IC

Figure 1.2: FGPA Methodologies and Testbench Base-Class Libraries[1]

1.2 Contributions

Several techniques and methods were used in this project in the process of devel-

oping a UVC. The following has been achieved in this thesis:

• Modified an framework to develop a UVC.

• Developed an agent that only need configuration object and sequence item

as parameters.

• Sequence item has been improved to function for several protocols.

• Driver, monitor and sequencer have been made generic by moving and en-

capsulating specialised functionality on the interfaces.

Introduction 3

• Modified the configuration for the framework to be compatible with the

UVC.

1.3 Methodology

In this project SystemVerilog and UVM version 1.1d have been used, with Cadence

Incisive as the simulator. An existing framework for verifying a CPU has been

used as a base in order to develop a unified agent for working with various busses,

and the framework has been modified for it to work. During the project, the

workflow has consisted of altering the framework while being true to UVM. When

an alteration has been made, a script was used to execute a test for the framework.

This script builds the framework, simulates and does a clean-up. It creates logs

for the build and for the simulation, which was used to verify correct functionality,

or debugging. SimVision has also been utilised when inspecting the waveforms for

correct behaviour.

1.4 Thesis Overview

The successive chapters will go through how the process of the development of a

Universal Verification Component, and re-working the framework to work with it.

An overview over the chapters included in this thesis is given below:

Chapter 2 provides some background information about the UVM methodology.

This includes information and terms that could come in handy throughout the

thesis. First it will roughly go through a quick summary of UVM, its creation

and the components that is used to build the testbench. It will then delve into

how information is used and shared in the testbench. It will further explore how

the different components can be configured, with the use of parameters and other

methods.

Chapter 3 presents how the framework that is used as foundation in the develop-

ment of the UVC is configured, and a little bit about the structure and components

in it. This chapter also go in on how it could be possible to improve the existing

framework.

Introduction 4

Chapter 4 covers how the process of developing the UVC is carried out. It starts

with explaining the need for a different starting point, before it advances to the

description of the work process. It then progress to describe how the functionality

is moved about to create the UVC, and how the framework and configuration is

adjusted to match the UVC.

Chapter 5 presents the benefits of code reduction, both in the amount of code lines

and number of files, between the the a specialised framework and the framework

that use the UVC.

Chapter 6 is the discussion. The discussion will be based on the entire thesis,

and discuss the ways of the results found, advantages and disadvantages using

the UVC, parameterisation and configuration used in the solution, some inconve-

niences that occurred during the project, and at last it will discuss some alternative

methods that could be used to solve the problem.

Chapter 2

Background

The purpose of this chapter is to introduce important concepts and terms that

are used in the modelling approach and discussions in this thesis. In the search

for information about generic UVCs, it was revealed that there is very little, to

no information regarding the development of a pure generic UVC.

2.1 Universal Verification Methodology

Universal Verification Methodology (UVM) is a methodology for functional veri-

fication of design units, created by Accellera. UVM is based on Open Verification

Methodology (OVM) that is created by Cadence and Mentor, and VMM from

Synopsis. The UVM standard is built on the principle of cooperation between

EDA vendors and customers. The building blocks from the class library makes it

possible to quickly develop well-constructed and reusable verification components

and test environments[6]. The UVM package contains a class library that consists

of three main types of classes[3]:

• uvm components, used to construct a class based hierarchical testbench

structure

• uvm objects, used as data structures for configuration of the testbench

• uvm transactions, used in stimulus generation and analysis

5

Background 6

UVM uses a hierarchy built on classes in its testbenches. These classes are derived

from the uvm component base class. The hierarchy is based on a class relationship,

Figure 2.1 shows the hierarchical layers that are commonly used in UVM. The top

level class in a UVM testbench, often called ”test”, is responsible for configuring

the testbench, initiating the construction process by building the next level down

in the hierarchy, and by initiating the stimulus by staring the main sequence. The

environment and the agent are components used in order to enable reuse.

The Design/device Under Test (DUT) is the code/device that is to be verified

by the testbench. It is often connected to the testbench through interfaces. It

receives stimulus from the testbench, and returns the output of that stimulus.

Figure 2.1: Block Level UVM Test Bench - Hierarchical Layers

2.1.1 Horizontal and Vertical Reuse

In order to save time and resources, and increase productivity, UVM promotes

reuse. Reuse in UVM can be divided into two sections, horizontal and vertical,

which describes the context of what verification artefacts are reused. Horizontal

verification means that a component can be used in another system or project,

Background 7

”block to design”, but still at approximately the same level of abstraction [7]. Ver-

tical reuse is used when a component is used in another hierarchical abstraction

level, ”block to subsystem to full chip”. Vertical reuse is often used when reusing

sequences, and testbenches in the same system. It is often achieved by encapsula-

tion and extensibility. Utilising vertical reuse may increase verification efficiency

by writing less code, which also gives less code to maintain, and less time on initial

debug. It also gives parallel development of testbenches and a architecture that

can be integrated with little effort into other modules and subsystems.

2.1.2 Test

The IEEE Standards Dictionary: Glossary of Terms & Definitions[8] defines test

as: specific customisation of an environment to exercise required functionality of

the DUT.

The test is in the top of the hierarchy. Tests are derived from the uvm test class.

Typically the UVM test performs three main functions[9]:

• Initiate the top-level environment

• Configure the environment

– With factory overrides or the configuration database

• Apply stimulus by invoking UVM sequences through the environment to the

DUT

2.1.3 Environment

IEEE[8]: The container object that defines the testbench topology.

The UVM environment groups together verification components that are inter-

related. The top-level environment usually contain all the components that are

targeting the DUT. Components that are encapsulated by the environment are

usually the agent, scoreboards and even other environments[9].

Background 8

2.1.4 Scoreboard

IEEE[8]: The mechanism used to dynamically predict the response of the design

and check the observed response against the predicted response. Usually refers to

the entire dynamic response-checking structure.

The scoreboards main function is to check the correctness of the DUT by com-

paring the DUTs output with the expected values[9]. The scoreboard can be

generalised into two parts: predict, which determines the correct functionality of

the DUT, and evaluate which checks if the observed results of the DUT matches

the predicted results. Separating the prediction task from the evaluation task gives

the best scoreboard architecture [3]. This is because it gives the most flexibility

for reuse by allowing for substitution of predictor and evaluation models.

2.1.5 Agent

The IEEE Standards Dictionary: Glossary of Terms & Definitions[8] defines an

agent as an abstract container used to emulate and verify DUT devices; agents

encapsulate a driver, sequencer, and monitor.

Figure 2.2: Active agent

In addition to a driver, sequencer and monitor there might also components related

to coverage monitors or scoreboards. As seen in Figure 2.2 There is an analysis

Background 9

port connected to the agents monitor. This makes it possible for any external

analysis component to connect without interfering with the agent. The agent can

also contain a configuration object, that can hold information like:

• Sub-components created under the agent

• Handle to the virtual interfaces

• Functional behaviour of the agent

The agent can be configured active or passive, more on how configuration is done

is given in Chapter 2.1.19. An active agent generate the stimulus and drive the

DUT, the driver, sequencer and monitor is therefore present. A passive agent, see

Figure 2.3, does not drive the DUT signals, it only samples them, and thus, it

does not contain a driver or a sequencer.

Figure 2.3: Passive agent

2.1.6 Driver

IEEE[8]: A component responsible for executing or otherwise processing transac-

tions, usually interacting with the DUT to do so.

The driver receives individual sequence item transactions from the sequencer via a

TLM port, and applies it to the DUT interface[9]. The driver therefore spans the

abstraction levels by converting the transaction-level stimulus to pin-level stimu-

lus.

Background 10

2.1.7 Monitor

IEEE[8]: A passive entity that samples DUT signals, but does not drive them.

The monitor samples the DUT interface, capturing information about the trans-

actions. The information can be sent to the rest of the testbench for further

analysis[9]. The monitor spans the same level of abstraction as the driver, by

converting pin-level activity to transactions. The monitor typically uses a TLM

analysis port to broadcast the transactions created. Processing on transactions,

like coverage collection, checking, recording etc, can be done by the monitor or

delegated to other components via the analysis port.

2.1.8 Sequencer

IEEE[8]: An advanced stimulus generator which executes sequences that define

the transactions provided to the driver for execution.

A sequencer serves as a router of transactions. The sequencer component feeds

the driver with transactions with stimulus in the form of sequences and sequence

items from a parent sequence[3].

2.1.9 Sequence Item

A sequence item is a class-based transaction representing stimulus passed from

a sequence to a driver[3]. A sequence item is also known as a transaction. A

transaction is a class object that represents a communication abstraction. It is

a collection of information needed to model a unit with communication between

two components. The information may include variables, constraints, and other

fields and methods needed to generate and operate the transactions[9]. In order

to model the communication to the level of abstraction wanted, transactions can

be composed, decomposed, extended, layered and manipulated.

2.1.10 Interfaces

Interfaces are used to encapsulate communication, which facilitates reuse, between

design blocks, and verification blocks, enabling a transition from the abstract level

Background 11

used in the testbench to lower RTL(Register-transfer level) and structural levels of

the design [10]. At low level an interface is an named bundle of nets and variables,

and can be accessed through a port. At higher levels the interface can encapsulate

functionality as well as connectivity. An advantage using interfaces is its flexibility,

as it can be parameterised the same way as a module, and can contain param-

eters, constants, variables, functions and tasks, and continuous assignments[10].

Modports is commonly used in interfaces. The modport controls the use of tasks

and functions, and provides information about the direction for the module inter-

face for certain modules. Implementing tasks in the interface allows for a more

abstract level of modelling, as the master module can call the tasks with no need

for references to the wires.

2.1.11 Transaction Level Modeling

Transaction level modeling(TLM) is a modelling style for building highly abstract

models of components and systems[9]. An advantage of this abstraction is that

simulation speed can increase, observing the traffic easier and debugging is easier

with TLM than RTL[11]. TLM communication creates the possibility to commu-

nicate between components utilising functions. Where tasks and functions in one

component are available in another component. UVM provides a set of interfaces

and channels for use with transaction-level communication. The use of TLM in-

terfaces promotes reuse, as it isolates the components from the interface. This

means that the component can be swapped for another, given they have the same

interface.

seq_item_port.get_next_item(req);

... //drive the response onto the interface

seq_item_port.item_done();

The code snippet above shows how the driver can get a transaction from the se-

quencer during the run-phase. The get next item is a blocking function, and it will

block until there is an item that is available from the sequencer[12]. Opposed to

using the get-function, once get next item has been called, the item done function

has to be called in order to indicate that the request is complete to the sequencer.

Background 12

Figure 2.4: Agent with analysis port and subscribers

The analysis port can be used as a broadcast port[3]. The analysis port does

not care if it is not connected, or connected to one or more ports. Figure 2.4

shows how the analysis port connects from the monitor, to the agents analysis

port, before it is connected to several subscribers analysis export. The subscriber

component is usually programmed to subscribe from analysis ports, it could for

example be a checking or coverage collector. In the figure the monitor can use

the push transaction function port.write(tx) in order to write to the analysis port,

the subscriber should then have a write-function that is read-only. The analysis

port is not supported with the factory, and needs to be created using the raw

constructor ”analysis port = new(”analysis port”, this);”

2.1.12 Transaction Methods

It is common to perform operations on transactions, like copying the transaction,

printing or comparing. UVM provides a standard set of methods to do this. The

user transaction class is extended from the uvm sequence item class, which

comes from the uvm object class type, and thus inherits utility methods: copy,

compare, print, pack, unpack, record and more[13]. These methods are non-virtual

and should not be overridden. If there are custom transactions that needs to be

implemented, the user should override the do * methods, which are called by these

utility methods.

Background 13

Do print is called by print and sprint, and allows the user to decide what is printed.

To ensure correct output format of the print and sprint operation, the printer

should be used by all the do print implementations. Which means that instead of

using $display, the do print should be called through the printer’s API[14].

The do copy is called by the copy method. It is an empty method, and should

therefore be user-defined if the field-macros are not used. The do copy method

should make a deep copy of a data object[3]. A deep copy is when the value of

the individual properties in a data object are copied to another, in contrast to

a shallow copy where the pointer is copied. The implementation of the do copy

should call super.do copy, and $cast the rhs argument to the derived type before

the copy[14].

To support the viewing of data objects as transactions in a waveform the do record

can be used. As the other do methods it is called by the record function. This

method is also empty, and the implementation should call the appropriate recorder

methods.

There are however other methods than the do methods that is important. The cre-

ate method, which should be used if the ‘uvm object utils macro is not utilised, the

clone method, which calls the create method before calling the copy method, and

the convert2string method[14]. The convert2string method is a virtual function

and works as a user-definable hook that allows users to provide object informa-

tion as a string. The default convert2string method could be seen as a placeholder

that returns an empty string [13]. It is recommended to override the convert2string

method in every transaction class with a proper formatted string of the transac-

tion variables. When extending a transaction class from a base transaction class

it is suggested to extend the convert2string method calling super.convert2string,

and not reformat all the transaction variables.

2.1.13 Polymorphism

Polymorphism is one of the key-concepts in object-oriented programming, and

it allows for the substitution of objects that have identical interfaces for each

other at run-time[2]. The use of a variable of a superclass type, is with poly-

morphism, allowed to hold subclass objects and to directly reference the methods

of those subclasses[10]. Polymorphism can be partioned in two: dynamic and

Background 14

static. Static polymorphism is also known as method overloading, as it use a

method many times, but with different parameters, and decided at compile-time.

Dynamic polymorphism happens at run-time and is also known as method over-

riding. It is where a method is overridden with the same signature in different

classes.

2.1.14 Factory

An object for creating other objects in object oriented programming is called a

”factory”. It is in other words a function or method that returns objects of a

varying prototype or class from a method call[2]. When it comes to class-based

programming, the factory works like an abstraction of the constructor class. It is

possible to define an abstract factory class to declare an interface for how objects

are created throughout an application. Figure 2.5 presents how an abstract factory

can be utilised. The client uses the interfaces of the abstract product and abstract

factory to create a product with the right specifications. The concrete factory

implements the operations to create the objects, and the abstract product creates

an interface for a type of product object.

Figure 2.5: Abstract Factory pattern[2]

To allow components to manufacture objects without needing to specify the exact

class, UVM provides a factory. This means that it is possible to allow for an ob-

ject to be substituted with an another, without having to edit the structure of the

testbench, or the testbench code. The factory takes advantage of Object oriented

programmings(OOP) polymorphism, see Chapter 2.1.13. The mechanism used by

the factory is called an override, and it can be by instance or type [9]. The factory

Background 15

can be seen as a special look-up table that create requested components or transac-

tion types. The factory should be used instead of the new() class constructor[15].

The new() constructor will only create a transaction or component of the speci-

fied type. It fixes the type during construction, meaning no run-time changes are

possible. It is therefore not possible to employ dynamic polymorphism. If there

are changes to the components there will be need for change in the source code.

Using the factory to create the constructor grants several advantages, as it enables

the choice of object type to be overridden from the test[16]. When using the fac-

tory, the components should be registered using the macros ’uvm component utils

or ’uvm object utils. The ::type id::create() command creates an object of type id

stored in the factory, and is needed in order to use overrides. By using the over-

ride command, tests can make type id substitutions. During the build phase the

components are creating a tree-like hierarchy when creating the testbench struc-

ture. This process happens top to bottom, where every component names and

builds its children, and passes a pointer, using .this pointer, from itself to the

child[15]. If the components and transaction types do not match the structure of

the testbench during the build-phase, the top-level test can change its type, and

then the factory uses overrides on the rest of the testbench.

2.1.15 Generic Programming

The Merriam-Webster’s dictionary[17] defines ”generic” as ”relating to or char-

acteristic of a whole group or class”. It can also be characterised as ”not spe-

cific”. When it comes to generic programming, the intent is to facilitate reuse,

by writing code once and invoking or instantiating it several times with generic

parameters[18]. The ability to write code for an algorithm that is independent of

parameters that will be specified later, can be considered the concept of generic

programming. SystemVerilog, as opposed to Verilog which only allows parameter-

isation of certain values, adds the possibility of full parameterisation of all data

types[10]. The parameterised data types are implemented through the use of type

definitions in parametesised classes. To avoid writing similar code for different

size and data types, it is useful to define a generic class.

Background 16

2.1.16 Parameterisation

Parameters increase the flexibility, but it also increases the complexity of the

code[19]. In SystemVerilog it is possible to make classes with their own set of

parameters that may be overridden when declaring a class variable, these classes

may be called generic classes. These classes are not true data types before the pa-

rameters have been declared. When the parameters has been declared the classes

can be called for a specialised class [10]. A parameterised class can be declared as

following:

class example #(int size = 8);

bit [size-1:0];

endclass

Here the size integer is default 8, but can be given another value when creating

the class. If there is no default value given, it has to be set before the class can be

used. A parameterized class can also be extended by another parameterised class.

Underneath is a few examples of the headers of extending parameterised classes.

class C #(type T = bit); ... endclass // base class

class D1 #(type P = real) extends C; // T is bit (the default)

class D2 #(type P = real) extends C #(integer); // T is integer

class D3 #(type P = real) extends C #(P); // T is P

class D4 #(type P = C#(real)) extends P; // for default T is real

Here class D1 extends class C, and uses the default type from the inherited class.

Class D2 extends class C, but the default type in class C is integer instead. P is

a parameterised class, and by extending C which is using P, the extended class,

D3, will also be parameterised. Class D4 uses the type parameter P as a base

class, and the name must therefore resolve to a class type after elaboration[10].

It is possible to group the parameterisation classes into two hierarchies: contain-

ment hierarchy and inheritance hierarchy [18]. The containment hierarchy works

as a ”has-a” relationship of object oriented programming (OOP), where a class

definition can instantiate other class variables. It is then possible for the class

Background 17

definition to use its parameters to parameterise the contained class members vari-

ables. This is typically done in verification environments, as they group the class

components. For example the uvm test, agent, driver and monitor are each ex-

tended from uvm component. The driver and monitor are included in agent,

and there can be several instantiations of agents in the test class. Given there are

unique class definitions used for instantiating the classes it is therefore possible to

get several specialisations of agents, drivers and monitors when declaring the test.

2.1.17 Inheritance

The inheritance hierarchy is the ”is-a” relationship of OOP. This is where the

properties and methods of a extended class is inherited directly from the base

class, and makes it possible to reference them from the extended class[18]. Pa-

rameters may then be propagated from the extended class up to the base class.

For each instance of an extended class that is instantiated, the base class will also

be instantiated.

Figure 2.6: Inheritance

Background 18

Figure 2.6 shows how a classes can be derived from a base class. The three

classes are A, B and C are all extended from the base class. Table 2.1 presents

the variables and functions each of the classes will have. As class C is directly

inherited from the base class, it will not have any of the variables or functions

that is added in class A or B. Class B is the only class with the function fourth(),

which means that the other classes can not use the function.

Class Variables Functions
Base int A, B first, second

Derived A A, B, D first, second, third
Derived B A, B, D first, second, third, fourth
Derived C A, B, C first, second

Table 2.1: Overview over inherited variables and functions

In order to create static class property for a generic class, it has to become a

concrete specialisation[18]. A specialised class can be created with the use of

typedef. The use of parameterised classes can be good for horizontal reuse, as it

makes it easier to use in different projects. It could also be a good fit for the base

classes in UVM. In order to register parameterised classes with the factory, the

‘uvm component param utils and ‘uvm object param utils macros must be used[9].

2.1.18 Configuration Objects

Configuration objects are used to keep a high reusability and easily configurable

testbench. A configuration object is a class that contains items necessary to con-

figure a single target [20]. The configuration object can hold information about

how the component that contains the object shall create sub-components, pass

handles, and the behaviour for the component. Randomisation can be a useful

feature when using configuration objects, and can be done by running the .ran-

domize() function. It is also possible to set constraints to variables if it is wanted

to restrict the variable. Extending the base class object, and setting new con-

straints can help create a new tests, without having to rewrite code, helping with

the reusability. In addition is it possible for several components to have the same

reference to a configuration object by passing around the handle to the object[21].

All the changes done to the object’s contents will be visible to all the components

with its reference. Utilising configuration objects also reduces the risk of applying

Background 19

the configuration to the wrong target, as classes are strongly typed. It is also pos-

sible to see if a configuration has been provided by looking at the object handle

value, if it is of null unambiguously, it is not provided.

2.1.19 Configuration

In order to create a verification framework that can be easily reused, a key concept

is that it should be as configurable as possible, without having having to rewrite

every part of the testbench. Delivering information to various parts of the test-

bench from a central location, and with variables and parameters, reduces code

rewriting. Variables are set at runtime, and can be organised into ”configuration

objects”, and accessed through a resource/config database[3]. Resource databases

are an in-memory database that contains objects of different types[20]. The pa-

rameters must be set during compilation, as these can not be changed during

runtime. In order to be reusable, testbench elements, like components, sequences,

sequence items etc., needs knowledge about its environment, and how it should

operate in it. This information can be classified as configuration information. Hav-

ing knowledge of the configuration information, the testbench elements can alter

its topology or behaviour accordingly [22]. The most common way configuration

information is passed to the elements are:

• class parameters

• constructor arguments

• function calls

For more on class parameters see Chapter 2.1.16. In UVM there are two types

of databases that are closely related, the configuration database, uvm config db,

and the resource database, uvm resource db. The configuration database and

the resource database are closely connected, as uvm config db is an extension of

uvm resource db. The uvm resource db works as a look-up table, and the hierarchy

is not important[23]. The uvm config db is a type-specific configuration mecha-

nism that offers a facility for specifying hierarchical configuration values of desired

parameters[9]. The uvm config db is often used when sharing virtual interfaces.

In order for the testbench to monitor or drive the DUT, it needs access to the in-

terfaces. The instantiation of the interfaces happens at the top of the framework,

Background 20

where it checks for them, and then sets an handle to the virtual interfaces using

the configuration database. The class header for the resource database and the

configuration database is given below

class uvm_resource_db#(type T=uvm_object)

class uvm_config_db#(type T=int) extends uvm_resource_db#(T)

As seen, the resource database class uses a parameterisation where the default

type T is an uvm object, while the configuration database standard is an int. It

is possible to set or get configuration information by using set- or get- functions

of the uvm config db or uvm resource db classes[23]. These functions are static

and must therefore be called using the ”::” operator. The syntax for the set- and

get- function for uvm config db is:

uvm_config_db#(<type>)::set(uvm_component cntxt, string inst_name,

string field_name, <type> value)

uvm_config_db#(<type>)::get(uvm_component cntxt, string inst_name,

string field_name, ref value)

Where cntxt is the hierarchical starting point of where the database entry is

accessible, the object hierarchy whereas. inst name is the path that limits the

accessibility of the database entry. field name is the name of the object, the

lookup label. Objects using set() or get() must use the same label, or else the

receiving part will fail to find the object in the database[24]. value is the object

handle shared in the database, the value that is to be stored in the database, it is

of a parameterised type type, which is set to int by default.

The set-function uses cntxt and inst name in order to specify the ”address”

where the object handle is stored to control the recipient of the object [24]. The

get-function can select from where it wants to retrieve information, it can for

example be from elsewhere in the hierarchy. It is common to use this pointer in

cntxt in order to specify the current scope for both the set- and get-function.

For inst name, the get-function often use an empty (””), since it usually gets

Background 21

objects destined for itself. The set function uses it to address the object to the

appropriate sub-block.

With the use of cntxt, inst name and field name it is possible to make a number

of different paths to the same object. When referencing down the hierarchy it is

common to use the this pointer. When referencing upwards, the null pointer or

the uvm root::get() function can utilised to access the hierarchy root, and then the

path down the hierarchy is given by by inst name. The database combines the

cntxt, inst name and field name parameters to make a key used for searching

through the database. There are three metacharacters, ”*, + ,?” , that can be

used when creating the path. ”*” means 0 or more characters, ”+” means 1 or

more, and ”?” means exactly 1 character. ”*” is usually called a wildcard

In addition to depositing resource items destined for a particular UVM object

or component instance into a database before the instance has been constructed,

the lookup mechanism supports keys containing wildcard and regular expression

patterns[21]. This mechanism can match only a part of a object’s full instance

name, which supports two use cases:

• Single resource targets multiple objects, which all receives the same resource

• A resource can target an object without knowledge about the full pathname

or if the object has been created.

– Helps with vertical reuse since it can appear in different levels of the

hierarchy.

– Allows configuration objects to be constructed by a top level module

and give information to components before they are constructed.

Every time the uvm config db’s set- or get- method is used, there is an entire scan

of the configuration database in order to match strings. Minimising the usage of

accesses to the configuration database, avoid wildcard matching, and avoid the

wait modified() method is recommended, since it will take longer to find a match

if the database is large and the search is little specific[4]. The wait modified()

function is blocking, and is only triggered if the set function is called using the

same exact cntxt, inst name and field name [20].

Background 22

2.2 Comprehensive UVM

There are several ways to utilise UVM and its components. A UVC could ease

the implementation of future frameworks, as it contain components needed in the

framework. When implementing a UVC synchronisation must also be considered.

It also is possible to create UVCs that are designed for multi-purposes and are

acceleration ready, generic and configurable[25].

2.2.1 Universal Verification Component

A UVC is a verification component for use in UVM. It is a multi-faceted definition

and has different meanings in different contexts. The topologies that can be defined

to be a UVC can be boiled down to[3]:

• Protocol UVC

– Each verification component connects to a DUT interface and commu-

nicates with a single protocol

• Fabric/compound UVC

– A verification component that contains a configurable number of in-

stances of the protocol UVC configured and hooked up coherently as a

unit. Purpose to verify a structured fabric with multiple interfaces of

the same protocol

• Layered UVC

– Provides a higher level of abstraction than basic pin protocol, with two

common ways of construction

∗ A UVC which does not connect to pins, but provides an upper layer

of abstraction to an existing protocol UVC

∗ A UVC which wraps and extends a lower-level protocol UVC

A UVC should make use of the factory registration API and macros provided with

UVM so that its components can participate in factory creation[3]. This way the

user decide on what portions should be factory substituted. Simple protocol UVCs

are normally not environments, but agents that are instantiated individually for

each interface. A protocol UVC should also normally not contain scoreboards.

Background 23

2.2.2 Dual Top for Accelerated Verification

As design size and complexity of automated testbenches keeps on growing, the need

of hardware assisted acceleration has increased as well. To achieve this a method-

ology based on co-emulation is recommended, which also promotes reuse[26]. Co-

emulation modelling describes the process of modelling and simulating a mixture

of software models represented with an un-timed level of abstraction, simulta-

neously executing and inter-communicating through an abstraction bridge, with

hardware models represented with the RTL level of abstraction, and running on

an emulator or a simulator[27]. It is in other words a RTL DUT running in a

hardware emulator that can interact with a testbench running on a workstation.

The testbench can still be used in simulation after it has been created to be em-

ulation ready. There is a desire for a high reusability in testbenches that can be

used in emulation, and are therefore often designed thereafter.

Typically the DUT-testbench setup use a single SystemVerilog module as top

level. The top level module contains the DUT and the interfaces associated to it,

protocol modules, connection and support logic[3]. Figure 2.7 shows the typical

encapsulation of a DUT-TB setup, it is typically a container for both the testbench

and the DUT. It also contains the the connections and support logic, like the clock

generation.

Figure 2.7: Single top[3]

To create a working co-emulation ready testbench, there are some requirements

that needs to be fulfilled[26]. It needs to follow the principles of co-emulation. It

is recommended to split the testbench into two top modules as seen in Figure 2.8.

One that module to wrap the DUT, interface, protocol modules, clock generation

Background 24

logic, DUT wires, registers etc. The other module is the module that creates

the testbench. The two top modules are in their own domains: the timed/syn-

thesisable HDL(Hardware Description Language) side where the DUT, BFM(Bus

Functional Mmodel), and clock/reset generation is, and the untimed HVL(High-

level Verification Language)/TB side, where the testbench generation and analysis

code is. When two top modules is used, it is called ”dual top”. The HDL domain

needs to be synthesisable and contain all clock synchronous code that is to be

used in the DUT, the clock and reset generators, and bus cycle state machines for

driving and sampling the DUT interface signals. The HVL domain, contradictory

to the HDL domain, needs to be strictly un-timed. This means that there should

not be any use of time explicit advances[26]. These advances are for example clock

synchronisations, # delays, wait or other time statements, as these should only

be used in the HDL domain.

Figure 2.8: Dual Top[3]

When using accelerated transactors it is possible to shift the testbench load to

the emulator. A transactor can be referred to as a Bus Functional Model(BFM).

A transactor decomposes an un-timed transaction to a series of cycle-accurate

clocked events, or, conversely, composes a series of clocked events into a single

message[27]. In the hardware-assisted verification specific context, a transactor is a

SystemVerilog interface or module on the HDL side[26]. The module in Figure 2.9

has a signal-level interface with the DUT and a transaction-level interface with the

HVL side. With a partitioning the domain, performance can be maximised because

the testbench and communication overhead is reduced, and intensive pin wiggling

can be done in the dedicated timed domain, running at emulation speed[4].

Background 25

Figure 2.9: UVM layered testbench[4]

2.2.3 Synchronisation

A race condition is a flaw in a system or process that is characterised by an output

that exhibits an unexpected dependence on the relative timing or ordering of

events[28]. It is possible to split race conditions into two different types: hardware

races and simulation induced races. The physical nature of combinational logic is

typically the reason for hardware races. An example of a hardware race is when

the inputs to a logic gate changes, this causes a finite delay before the output has

changed.

Simulation induced races are undesirable consequences of the event-driven simula-

tion algorithm used[28]. It is not intrinsic to the design or its physics, and it is an

desire to avoid them. The simulator process event one at a time and unavoidably

serialise the events that occur in the same time slot. The concurrent hardware

activity is therefore modelled as a set of ordered actions by the simulator. These

races can cause the simulator to cause a faulty design or to simulate a correct

design, which is actually incorrect.

It is important that the testbench avoids race conditions with the DUT. In UVM

it is therefore expected that the driver synchronises with a clock signal that is

available in the interface to to maintain correct transfer of values from the driver

to the interface variables[29]. This synchronisation grants important advantages,

Background 26

like simplified driver code and ease of extending the driver without having to

worry about duplicate synchronisation timing. The use of a clocking block in the

interface will help with race conditions, but may be incompatible with emulation.

Modports connections and interfaces, mentioned in Chapter 2.1.10, can specify sig-

nals and nets, and communicate with the DUT. However, they do not denote any

explicit timing disciplines, synchronisation requirements, or clocking paradigms.

Clocking blocks can identify and capture the timing and synchronisation require-

ments of the blocks being modelled. The clocking block assembles signals that

are synchronous to a particular clock and makes their timing explicit[10]. It also

enables the user to write at a higher level of abstraction, as tests can be written

with the use of cycles and transactions, instead of signals and transitions in time.

Using clocking block constructs will facilitate the specification of assertion, cycle

operations, and synchronous interfaces[29]. It also grants race free communication

between the interface and DUT, as it enforces a time when signals are sampled.

To give a powerful and efficient means of describing the communication between,

and synchronisation of concurrently active processes it is possible to use event

objects[10]. The event data type provide a handle to a synchronisation object,

which can be explicitly triggered and waited for. An identifier declared as an

event data type is called a ”named event”. The ”− >” operator will unblock all

processes waiting on the triggered named event. It is only the effect of a named

event that is observable, when the it is triggered, and not the trigger itself.

Chapter 3

Verification Infrastructure

There exist an incomplete UVM framework for verification of a CPU. This frame-

work has been created in accordance with earlier UVM methodology, and will be

used as a foundation in the development of a Universal Verification Component.

In this chapter there will be an introduction to how the framework is set up, by

presenting how the configuration is done, and clarify the structure and compo-

nents in the hierarchy. This chapter will also elaborate on how an improvement

to the framework can be done.

3.1 Existing CPU UVM Framework

The existing framework is created for the verification of a CPU, and contain several

protocols for interacting with it. The framework is developed in accordance with

earlier UVM methodologies, with some with some unusual features. What is

unusual in this framework compared to others, is that it can use two CPUs, one

with and one without cache, in the verification process. It is therefore possible

for the sequencer to feed the two CPUs and ISS (Instruction Set Simulator) with

random instructions, which is stored in a non-volatile memory(NVM), and be

compared with each other.

27

Verification Infrastructure 28

3.1.1 Protocols

There are several protocols for communication between the testbench and the

DUT. The CPU UVM framework contain eight protocols. These protocols in-

clude an implementation for an agent, driver, monitor, configuration, interface,

sequence-item, sequencer, and sequences for that protocol. The components are

supposed to be implemented such that they can be used to verify the CPU with

and without cache on the CPU. Some of the protocols’ drivers accesses the NVM

to retrieve data or instructions, if there is nothing in the memory, the driver will

request a transaction from the sequencer. There are also protocols for other func-

tionality, like on chip debug, interrupt requests and to halt the CPU externally.

3.1.2 Top Level

The framework’s build process is ordinary according to UVM, where it is the test

that initialises and starts the simulation of the testbench. Looking at the folder

structure, the existing framework includes:

• Test base

• Extended test for active agents

• The environment

• An environment configuration object

• Scoreboards

• Agents for the protocols

• A virtual sequencer

• A set of virtual sequences

• Instruction set Simulator (ISS)

Where the test base is extended from the uvm test class in UVM, and is used as

the base to build the tests that verify the CPU. During the build phase in the test

base, the environment is created and there is a check whether the interfaces for the

protocols are present in the environment configuration, then there are put handles

to the virtual interfaces, before they are set the configuration database. The test

base then gets ready to run and report test content that is specified by extended

tests. The extended test for active agents utilise the configuration database to

Verification Infrastructure 29

retrieve the environment configuration, and set the is active convenience value

to ”UVM ACTIVE” for the protocols configuration objects.

3.1.3 Environment

The environment creates a virtual sequencer and the agents for the protocols in

the build phase. It also checks the configuration database if it should create the

scoreboards. It creates all the components using the factory method described in

Chapter 2.1.14. The environment proceeds to connect the virtual sequencer to

the sequencers the agents created, and connect the analysis ports from the Pbus,

Dbus, Irq, Iobus, Iobus qr- monitors to the ISS through the scoreboard if the

scoreboard enabled.

The code below shows how the agents, virtual sequencer and scoreboards are

declared in the environment in the testbench, as well as how the agents are in-

stantiated. None of the components need to specify any parameters in order to be

used. There is also used a naming convention for the declaration of the different

components.

class uenv extends uvm_env;

...

iobus_agt m_iobus_agt;

iobus_qr_agt m_iobus_qr_agt;

pbus_agt m_pbus_agt;

dbus_agt m_dbus_agt;

ocd_agt m_ocd_agt;

irq_agt m_irq_agt;

cpu_externals_agt m_cpu_externals_agt;

uvsequencer m_vsequencer;

cpu_snapshot_agt m_cpu_snapshot_agt;

cpu_scoreboard m_cpu_sbrd;

cpu_cpu_cache_scoreboard m_cpu_cpu_cache_sbrd;

...

m_pbus_agt = pbus_agt ::type_id::create("m_pbus_agt" , this);

m_dbus_agt = dbus_agt ::type_id::create("m_dbus_agt" , this);

Verification Infrastructure 30

3.1.4 Configuration

The framework configuration introduces an extra hierarchy for the verification

components’ configuration objects. Figure 3.1 shows how the different configu-

ration objects are encapsulated by the environment’s configuration object. The

environment’s configuration object also contain a bit to disable the ISS for debug-

ging purposes, the first address for the program to jump and the first address for

the interrupt service routine, and do print function that prints the configuration

of the objects.

Figure 3.1: Environment’s configuration object

In order to get or set values in the verification component’s configuration object,

this framework use the configuration database to retrieve the environment config-

uration before it access the verification components configuration objects’ value

hierarchically. An example of this can be seen under, where the Iobus’ agent is

set active.

if (!uvm_config_db#(uenv_config)::get(this, "*", "env_config", env_config))

`uvm_fatal(get_name(), "Can't get env_config from uvm_config_db");

env_config.iobus_cfg.is_active=UVM_ACTIVE;

uvm_config_db#(uenv_config)::set(this, "*", "env_config", env_config);

Verification Infrastructure 31

As there are a lot of similarities in the different protocols, there is a template base

class for the configuration that the configuration objects of the different protocols

can inherit from. This template contain different variables and functions, like

convert2string and do print, that should be common, and that can makes it pos-

sible to build the verification component as intended. The configuration template

specifies that every inherited class should implement a task that generates a wait

for the slave and bus signals. It is also added an handle to the interface, which is

specialised when the class is extended. It is the Pbus, Dbus, Iobus and Iobus qr’s

configuration class that extends from the template, while the other protocols’ con-

figuration objects had not been ported to use the configuration object template

at the time, containing some of the same variables and functions. The variables

available in config template used for configuration of the testbench are:

• is active

• coverage

• agent verbosity

• lock sequencer

– Set to prevent interruption from other sequences

• allow data generation

– Allows generation of data in the driver

• allow inst generation

– Allows generation of instructions in the driver

• allow generate swait bwait

– Slave and master wait

Figure 3.2 illustrates how the configuration information that is set in the environ-

ment’s object from the configuration database, is passed to the sub-components’

configuration object. The environment’s configuration object is included in every

agent, and the protocol specific configuration copied to the sub-components.

Verification Infrastructure 32

Figure 3.2: Configuration passing

3.1.5 Virtual Sequencer and Sequencers

Combining sequences can be used in order to create a hierarchy of stimuli, or to

generate stimuli in parallel to multiple interfaces [30]. A sequence that controls

stimulus generation using several sequencers is a virtual sequence [3]. The virtual

sequences in the framework controls and times the sequences run on a single bus

interface. This approach allows users of the framework to easily create various

verification programs. The virtual sequencer holds handles to all the sequencers

in the framework, as shown in the code below. In the virtual sequences the declared

sequencer is the virtual sequencer, which can access to all the sequences.

class uvsequencer extends uvm_sequencer;

`uvm_component_utils(uvsequencer)

iobus_sqr m_iobus_sqr;

iobus_qr_sqr m_iobus_qr_sqr;

pbus_sqr m_pbus_sqr;

dbus_sqr m_dbus_sqr;

ocd_sqr m_ocd_sqr;

irq_sqr m_irq_sqr;

cpu_externals_sqr m_cpu_externals_sqr;

...

Verification Infrastructure 33

3.1.6 Agents

The agents’ structure is similar to a normal agent, as described in Chapter 2.1.5,

with the creation of a monitor, driver and sequencer. However, there are agents

that create an additional driver depending on whether the cache-configuration

declares it as an active agent. The handle to the interface is passed to the monitor

and driver from the configuration object, as presented in Figure 3.3. The interface

is set with the configuration database in the test base.

Figure 3.3: Virtual interface passing

3.1.7 Drivers

The drivers in the framework are constructed as standard drivers, as described in

Chapter 2.1.6. Nevertheless, there are some differences in the driver between the

different protocols. The drivers for the different protocols varies, as the busses are

required to drive the busses according to their specifications, and the protocols’

natural differences. Many of the drivers hold variables and constraints that are

specific for the protocol, for driving the DUT correctly.

Verification Infrastructure 34

3.1.8 Monitors

As with the drivers, the monitors are also in accordance with the UVM method-

ology. Even though there are differences between the monitors of the different

protocols, there is a pattern that occurs. Many of the monitors use hierarchical

access through the virtual interface to access and check the signals from the DUT.

The code snippet underneath is taken from the run-phase in the Dbus-monitor,

and Figure 3.4 helps illustrate it.

class dbus_mon extends uvm_monitor;

...

task run_phase(uvm_phase phase);

dbus_item item;

forever begin

@vif.cb;

if(!vif.cb.dbus_s.swait && !vif.cb.dbus_s.bwait

&& vif.cb.dbus_m.re && !vif.cb.reset) begin

item = dbus_item::type_id::create("item");

item.enable_recording("DBUS ITEM");

this.begin_tr(item, "DBUS ITEM");

item.re =vif.cb.dbus_m.re;

item.we =vif.cb.dbus_m.we;

item.dbus_m_addr=vif.cb.dbus_m.addr;

item.mdata =vif.cb.dbus_m.mdata;

@vif.cb.dbus_m.addr;

item.sdata =vif.cb.dbus_s.sdata;

ap.write(item);

end

this.end_tr(item);

end

endtask: run_phase

It is possible to see how it first creates a sequence item which is type-dependent

to the protocol, checks for a specific combination of signals through the clocking

block that resides in the interface, copies the signals over to the item, and at last

writes this item to the analysis port. The begin tr and end tr which indicates the

start and stop of the transaction, making it possible to be used in for example a

waveform.

Verification Infrastructure 35

Figure 3.4: Monitor writes to analysis port

3.1.9 Sequencer and Sequences

The frameworks sequencers are extended from the uvm sequencer and spe-

cialised with the sequence item for the corresponding protocol. For each sequence

there is a sequencer declared for that specific sequence. All the sequencers in the

framework has approximately the same functionality, there are however some se-

quencers that stands out from the rest. This is the sequencer for the Pbus, which

has an access to the configuration database, and the Irq-sequencer, which builds

two unlimited FIFO’s.

3.1.10 Interface

The interface for each protocol is naturally different for each individual protocol.

The interfaces use packed structs to access the DUTs signals. The interfaces also

include a clocking block, and some include properties and assertions to assert

correct functionality.

3.1.11 Sequence Item

Each of the protocols have their own sequence item. Where there are several

similarities between the the protocols’ sequence items. The ones with the most in

common are: Pbus, Dbus, IObus and IObus qr. These sequence items all have a

variables for:

Verification Infrastructure 36

• a string name

• read data

• reset

• read enable

• bus-address

• preload bit

• done bit

• response bit

Theses sequence items, excluding Pbus’, also have write data and a write enable

bit. The read and write data size differs between one and two bytes for the different

items. Most of the items have constraints that are specific for their variables. The

Iobus and Iobus qr have identical sequence items. The other protocols’ sequence

items differ as they are specified for individual use.

In addition to common variables each of the busses are using do * methods, as

described in Chapter 2.1.12. The reoccurring methods that are used is do record,

do print, do copy and convert2string, and the CPU snapshot sequence item have

a do compare function.

3.1.12 Instruction Set Simulator

The ISS, instantiated in the scoreboard, get sequence items from all busses. It use

these items to predict the CPU state after an instruction is executed, and sends

snapshots via an analysis port to the scoreboard for comparison with the DUT

snapshots. The ISS will in other words simulate the same instructions as the CPU,

and compare the simulated results with what is generated by the DUT.

3.2 Improving the Existing Framework

As described in the previous section, it is possible to see that there are many

similarities between the different protocols. In the existing framework there is

a lot of copy-paste code, just to follow the standard UVM methodology. The

drivers and monitors can later be reused, and it is therefore a relatively decent

approach. A question that should be asked is if there is any possible way to

improve the existing framework. The answer to this question, is that it might

be improved with a more complex solution. A Universal Verification Component

Verification Infrastructure 37

which encapsulates common functionality for most busses and let the user adjust

the behaviour of this UVC according to his need, could be used. This could also

decrease the amount of code needed to write, including copy-paste code, and gain

a functional framework earlier than if a UVC would not be utilised. An additional

advantage with using a UVC is that it could result in higher reusability, explained

in Chapter 2.1.1, which again could decrease the total time spent in verification,

with the increased probability of delivering the project on deadline.

3.2.1 Attempt to Create a Unified Agent

There has been an attempt to start the process of creating a unified agent, but

only for some of the protocols, on which only on the monitor and agent has been

modified. This has been done by creating a base template component, and then

extending it for each of the different protocols. The derived class overrides the

parameterisation of the base class with its specialised types from the protocol. The

agent base class was parameterised with the driver’s, monitor’s, sequencer’s and

configuration object’s data type, as shown in the code below. The code also shows

how the agent utilises a function that must be implemented in the extended classes

in order to retrieve the correct configuration from the configuration database. It

can also be seen how the driver for the CPU with cache is created.

virtual class generic_agt #(type sqr_type=int,

type drv_type=int,

type mon_type=int,

type cfg_type=int) extends uvm_agent;

...

virtual function void build_phase(uvm_phase phase);

get_configs_from_uvm_config_db;

mon = mon_type::type_id::create("mon", this);

if (cfg.is_active == UVM_ACTIVE) begin

sqr = sqr_type::type_id::create("sqr", this);

drv = drv_type::type_id::create("drv", this);

drv.cfg=cfg;

end

if(cfg_cache.is_active == UVM_ACTIVE) begin

drv_cache = drv_type::type_id::create("drv_cache", this);

drv_cache.cfg=cfg_cache;

Verification Infrastructure 38

end

endfunction: build_phase

The code below shows how an agent extends from the generic agent and spe-

cialises it. It is also shown how the function for retrieval of correct configuration

is implemented.

class dbus_agt extends generic_agt#(dbus_sqr, dbus_drv, dbus_mon, dbus_config);

...

virtual function void get_configs_from_uvm_config_db;

if (!(uvm_config_db #(uenv_config)::get(this,"", "env_config", env_config)))

`uvm_error(get_name(),"No env config in uvm_config_db")

this.cfg=env_config.dbus_cfg;

this.cfg_cache=env_config.dbus_cache_cfg;

endfunction

The base parameterisation arguments for the monitor was the virtual interface,

configuration, and sequence item. The base monitor class only included the con-

structor and the build phase, which constructed an analysis port. Using this ap-

proach, the extended monitor is still required to implement the entire run-phase,

for every protocol, as the code shown in Chapter 3.1.8.

3.2.2 Considerations when Creating a Unified UVC

Creating a unified UVC may not be a bed of roses, as obstacles and difficulties

may arise, as it will be more complex than a non-generic counterpart. Things

to consider when starting the creation of a more generic and unified verification

component is:

• Item is split into signals in driver according to classic UVM, but now item

should be moved into interface. How to parameterise interface for a given

sequence item

• Driver and monitor should become compatible with every protocol

• What to put into the configuration database

Verification Infrastructure 39

• Retrieving and configure correct information for a specified protocol

• Communication between interface to the rest of the hierarchy

• Correct passing of configuration objects throughout the hierarchy

• Correct build and connect throughout the hierarchy

• Avoid accessing functions or variables that do not exist

• Parameterisation

• How functionality can be expanded, if built-in functionality of UVC is in-

sufficient

• Unified reporting mechanism

• Differentiate between generated components

• Avoid racing conditions between interface and DUT

Chapter 4

Modifying the Verification

Infrastructure

This chapter will go through the process that has been taken in the development

of a UVC. It starts with describing initial steps taken in order to have a code

that can be used for comparison with the finished product. The chapter will then

continue to explain the process that has been used, and alterations to the sequence

item. Chapter 4.4 starts elaborating the process of moving functionality in order

to create the UVC. The rest of the chapter will also go through steps that has

been taken in order to adapt the UVC to the framework.

4.1 Creating a Starting Point

The framework described in the previous chapter was initially intended to be used

as a starting point for the creation of the UVC. However, the use of inheritance in

the framework was not considered optimal to use as a base. Figure 4.1 shows what

agents in the framework extended from the ”generic” agent. The extended agents

all had a function that retrieves configuration through the configuration database

for the specific protocol. The derived classes inherited the functionality to create

the driver, monitor etc., and how they are connected from the generic agent. The

monitors for the same protocols were also derived from a generic monitor.

41

Modifying the Verification Infrastructure 42

Figure 4.1: Agents extended from base class

The framework was modified to use use less inheritance by reverting the extended

classes back to their own speacialised base class. In the newly created framework,

the different protocols all contained their own, complete functionality, as presented

in Figure 4.2. Everything in the protocols was modified, with the exception of the

configuration objects in the Dbus, Iobus, Iobus qr and Pbus protocols, which still

inherited some variables and functionality from configuration object’s base class.

Modifying the Verification Infrastructure 43

Figure 4.2: Specialised agents

Using a framework, that does not rely a lot on a complex parameterisation scheme

as a starting point, could make it easier to see benefits and drawbacks of the

changes in the components, compared to the final framework. Table 4.1 presents

the total amount of code lines in the framework. Since there are eight protocols,

where each protocol holds the same six sub-files, the table is partitioned such that

the code lines for the different components are added together, giving the total

amount of code for all of the sub-files combined. The code lines were counted

by using a ”regular expression”, ^.*\S+.*$, on every file, as it count every line

Modifying the Verification Infrastructure 44

that is not empty. Eventual comments were then subtracted to give an accurate

indication of active code lines.

Sub-component Lines of code
Agents 258

Configuration objects 215
Drivers 254

Interfaces 117
Sequence items 286

Monitors 236
Sequencers 59

Total 1425

Table 4.1: Number of code lines in non-generic code

4.2 Starting from the Bottom

As an initial approach to create the UVC, modifications to the agent were com-

menced. This was quickly discovered not to be a good idea. This is because, as

Figure 4.3 illustrates, modifying or replacing a block that is high up in the hier-

archy needs to be compatible with all the blocks under. When starting with the

agent, all the sub-components had to be altered to fit with the modified agent,

which meant that small changes would be very time consuming.

Figure 4.3: Changing the top block

In contradiction to the top to bottom method, a method that starts from the

bottom, and do changes upwards in the hierarchy was utilised in this project.

Modifying the Verification Infrastructure 45

Figure 4.4 illustrates how replacing, or modifying of one block at the bottom of

the hierarchy, only has to be adapted to the block above in the hierarchy. Starting

the modifications at the bottom, instead of the top, made it possible to verify that

the framework was functional and operated as intended, at a more frequent rate.

This was because the modifications were smaller, and less time was being used

debugging.

Figure 4.4: Changing bottom block

Making adjustments to the framework from top to bottom might also make de-

bugging and finding a fault more demanding and time consuming, as there might

be dependencies between objects, or that a fault might propagate in the hierarchy.

Figure 4.5 illustrates that when using the bottom up method, the bug will most

probably be in the new/modified block, while in the other method the bug could

be propagated from an unknown block further down in the hierarchy.

Figure 4.5: Bug propagation in the different methodologies

4.3 Improving the Sequence Items

It was seen that the sequence items used in the verification infrastructure had

potential to become more efficient, as it could be possible to decrease the total

amount of code lines, and to create an faster and easier way adding new items

Modifying the Verification Infrastructure 46

for new protocols. As mentioned in Chapter 3.1.11 most of the sequence items in-

cluded in the framework share a lot of the same, or similar variables and functions.

By looking at the similarities from the different protocols and utilising inheritance,

the generation of a ”generic” sequence item, that could be used by most protocols,

or be extended for further functionality, was started. In the development of this

item, the Pbus, Dbus, Iobus and Iobus qr items were used as a base, and there

was also taken a look at the protocols’ drivers and monitors for special cases.

For the the generic sequence item to function as intended for the different pro-

tocols, it was crucial that it could handle its objectives. Since the variables in

the sequence items might not exist or have different sizes, it was first created a

sequence item only consisting of the common variables, and the do * methods

associated with these variables. It was originally thought to use this sequence

item as a base, before extending it for further functionality or variables. A mayor

drawback with this solution was that the extended items still had a lot of code

that had to be added, such as having to implement the do * methods for the

added variables. Further development of the sequence item resulted in the differ-

ent busses with different width was included in the sequence item. To compute

with the different widths, the class was parameterised as shown under along with

the rest of the variables included in the generic sequence item.

virtual class generic_item#(int msize=16, int asize=16, int ssize=16)

extends uvm_sequence_item;

rand logic [ssize-1:0] sdata;

rand bit [asize-1:0] bus_m_addr;

rand logic [msize-1:0] mdata;

rand t_cpu_version cpu_version;

logic reset;

logic re;

logic we;

string s_name;

bit preload_nvm=1'b0;

bit done;

bit response=1'b0;

rand int delay;

rand logic [1:0] gen_wait;

...

Modifying the Verification Infrastructure 47

Where mzise decides the size for the write-data, asize for the width of the bus-

address, and ssize sets the size for the read-data. In addition was the variable

name for the bus-address changed from a specific name, like pbus m addr, to

a more general ”bus m addr”. This change was done throughout the hierarchy,

for all the components that used it. In addition to this were the delay and gen-

wait variables from the driver moved to the item. Even though the some of the

variables necessarily are not used in the item for a specific bus, they are still

used by other busses, and was therefore included. It also grants more positive

than negative outcomes in the end. One of these positives is the reduction of

the implementation of do * methods in the extended classes. Constraints that

could be found in the sequence items and drivers were consequently moved to the

extended class of the item.

virtual class generic_item#(int msize=16, int asize=16, int ssize=16)

extends uvm_sequence_item;

...

function void do_copy(uvm_object rhs);

...

function void do_record(uvm_recorder recorder);

...

virtual function string convert2string();

...

virtual function void do_print(uvm_printer printer);

...

The do * methods, see Chapter 2.1.12, implemented in in the generic sequence

item can be seen in the code above. Even though some the variables in the item

was not used, it does not have an impact on the do record method. If more

functionality is needed on an added item, it is possible to extend the generic item,

add additional variables, use super.build to extend the functions from the generic

item, and add other functions if necessary.

`define make_generic_item(classname ,msize ,asize ,ssize)\

typedef class generic_item ;\

class ``classname extends generic_item #(``msize , ``asize , ``ssize);\
function new(string name = "");\

super.new("");\

endfunction\

`uvm_object_param_utils(``classname #(``msize , ``asize , ``ssize))\
endclass

Modifying the Verification Infrastructure 48

In addition to having the ability to extend the class, there has also been defined

an macro that takes classname, msize, asize and ssize in as arguments, and

constructs a generic item with these. The macro is given above, it has however

not been utilised in the framework.

4.4 Moving Functionality

After the sequence items had been improved the focus was moved to the blocks

higher up in the hierarchy, like the driver, monitor, sequencer and configuration

object. It was these components that should become the foundation in the creation

of the UVC. Common for the driver, monitor and sequencer was that each of

them are specialised with the protocols item and that they had to connect to the

corresponding interface. All of the components would eventually become generic,

with the exception for the configuration object, which has to be specific for each

of the protocols, as it would be used to determine how the UVC should be built.

4.4.1 The Interfaces

As mentioned in Chapter 2.1.10, can the interfaces in SystemVerilog encapsulate

functionality and connectivity. Taking advantage of this, and the fact that UVM

utilises Transaction Level Modeling, see Chapter 2.1.11, has been used in the de-

velopment of the UVC. Concepts like dual top and abstracting the communication,

mentioned in Chapter 2.2.2, were also in mind in the development of the interface

and its communication role in the framework. These concepts were considered

as it makes for a natural division between the driver and interface. It was also

considered as it could help create an emulation ready framework in the future.

interface dbus_if #(type signal_type = int, type item_type = int)

(input logic clk);

signal_type signals;

item_type item;

Modifying the Verification Infrastructure 49

The first thought was to utilise parameterisation in the interfaces, as shown in

the example snippet above. This is possible since the interfaces can be modelled

as a module, and therefore also parameterisable. The parameters considered was

for signals and for items. Where the signals are the internal signals related to the

protocol, and the item should come from the sequencer. With this set-up, the

signal and item has to be parameterised throughout the hierarchy, including the

the environment, which may cause an extra inconvenience in comprehending the

verification infrastructure.

interface dbus_if #(type item_type = int)

(input logic clk);

mem_byte_s_t dbus_s;

mem_byte_m_t dbus_m;

item_type item;

The parameter for the signals was removed and replaced with packed structs

that could be used to access the DUT. This made the components accessing the

interface less bound, as it was possible to add several structs, as shown in the code

above. Additional tasks and changes that are added and done to the interface will

be given Chapter 4.4.3.

interface dbus_if

(

input logic clk, reset

);

mem_byte_s_t dbus_s;

mem_byte_m_t dbus_m;

logic dbus_master_sc =1'b0;

logic dbus_flash_access =1'b0;

logic dbus_io_access =1'b0;

dbus_item item;

It was later discovered that the same could be done with the item type. This is

because the interfaces has to be tailored for every protocol, and does therefore

Modifying the Verification Infrastructure 50

not need to be parameterised, as it can declare the items that is needed. The

code snippet above presents how the final interface would be, where the interface

access the DUT’s signals with the use of packed structs, and the declaration of

sequence items is used. It is also possible to see that with this solution, it is

possible to access several signals, and that there is no use of parameterisation.

The communication between the driver, monitor and interface will be through

tasks and sequence items, and is explained more in detail in Chapters 4.4.3 and

4.4.4.

4.4.2 Configuration Object

In order to keep the amount of code in the configuration objects to a minimum,

and have a structure that makes sense, the configuration object class template

base is kept. The protocols can inherit from this class for faster integration of a

new protocol, which helps facilitate reuse. The function to generate wait signals

was moved to the interface. This was done because all the variables used were

accessed through the interface, and by moving it, makes it easier to get an overview

of the verification infrastructure. The base template for the configuration objects

is given in the code below.

virtual class config_template#(type vif_name=string)extends uvm_object;

vif_name vif;

uvm_active_passive_enum is_active = UVM_PASSIVE;

bit coverage = 1'b1;

int agent_verbosity = UVM_NONE;

bit allow_data_generation = 1'b0;

bit allow_inst_generation = 1'b0;

rand bit allow_generate_swait_bwait;

rand bit lock_sequencer;

//Wait functions

virtual task wait_for_reset;

...

virtual task wait_cycle(int delay);

...

Modifying the Verification Infrastructure 51

virtual function void disable_interface_assertions;

...

virtual function void enable_interface_assertions;

...

virtual function string convert2string();

...

virtual function void do_print(uvm_printer printer);

...

It is possible to see what functions can be inherited, that the virtual interface

has to receive its data type through parameters and how the other variables are

initialised. Some of the variables has been declared as rand. This means that

when the object is randomised, these variables will be randomised. This is used

to increase the constrained random verification, which is core in UVM. There are

functions that can be used to enable or disable assertions in the interface, which

can used for debugging purposes.

class pbus_config extends config_template #(virtual pbus_if);

`uvm_object_utils(pbus_config)

int pbus_seq_min_random_count = 2;

int pbus_seq_max_random_count = 5;

bit allow_inst_generation = 1'b1;

The extended configuration objects has been specialised with the virtual interface

handle, for the specific protocols, as seen in the code above. It also shows that

there are added and changed variables for this specific object. All the protocols in

the framework has been modified to extend from the base class. How the virtual

interface is set with the configuration database to the configuration object is given

Chapter 4.4.6.

4.4.3 Attacking the Driver

The drivers in the framework have different specialised functionality, and as Figure

4.6 illustrates, the functionality of all of these drivers needs to fit into one generic

driver. The approach taken to achieve this was by starting with one of the drivers,

Modifying the Verification Infrastructure 52

Figure 4.6: From many specialised drivers to one generic driver

in this case the Dbus, and modify it for generic functionality. Figure 4.7 presents

a rough illustration of the approach taken. The specialised driver, which resides

in the Dbus-agent, have the same specialised type for the virtual interface and

configuration object as well as its specialised functionality(1). The driver was

then changed for a generic driver, which still kept the types that belonged to the

specialised driver(2). The last step generalised the data types used in the driver

and finding a way to pass the correct data types to the driver, for example by

utilising parameterisation(3).

Figure 4.7: Creation of generic driver

An advantage of altering a driver with this approach was that it was possible to

make several small changes instead of a few big ones. This most probably saved

time debugging, and made it easier to verify that the functionality of the testbench

had not changed. This approach also gave a good base for what should be included

when this class was brought in and adapted to the next protocol.

Modifying the Verification Infrastructure 53

Figure 4.8: Driver access variables through the interface

As mentioned was the Dbus the first protocol out. The first thing that had to be

done was to change the handle for the function that generates wait for master and

slave, from cfg (configuration object) to vif (virtual interface). The functions and

tasks in the driver accessed the signals of the DUT directly through the interface,

illustrated in Figure 4.8, using the handle for the signals and clocking block is

in the driver. These accesses were common for the drivers and monitors, and

thus the initial idea was to generalise the name. The code snippet under presents

how the signal-names from the driver was altered, such that it would not say

dbus s, but bus s. This was done in both the driver and the interface. There

was several problems that arose with this approach. The biggest problem may be

that some of the interfaces did not contain the signal attempted accessed. This

could cause constraints that decrease the reusability of the driver, which is against

the purpose in this project. In addition to this, other big changes had to be done

to the testbench, like changing the tests and all the busses’ structs. The tests’

accesses to these signals made it hard to keep control of what signals were from

what protocols, As it generally was an unstructured approach, the changes was

reverted and this solution did not happen.

//original

vif.pbus_s.swait <=1'b0;

vif.pbus_s.bwait <=1'b0;

//new

vif.bus_s.swait <=1'b0;

vif.bus_s.bwait <=1'b0;

In an attempt to gain high reusability, and generalise the driver, the idea of using

tasks and items to communicate, instead of signals, were set into action. Figure

4.9 illustrates how a task could be called from the driver to generalise the it, and

Modifying the Verification Infrastructure 54

still get the specialisation that is needed of the protocols through the interface

whose handle is in the driver. In this project it is impossible to move all the code

over from the driver to the interface. It also does not make any sense to do so, as

the problem would be moved, and the functionality of the driver is important.

Figure 4.9: Use of tasks to communicate with interface

In order to achieve generic functionality on the driver, and move the specialised

parts over to the interface, a set of tasks that is implemented in the interface

were mixed into the drivers functionality. The tasks that were called upon in the

driver can be empty if there is no need for it in the protocol. This induced the

opportunity to have several smaller tasks, that may or may not have functionality

in the interface. With a set-up in the driver that manages to execute the different

tasks in such a way that it can be used for every protocol, the driver can be

considered generic.

interface dbus_if

...

task init_content;

dbus_s.swait <=1'b0;

dbus_s.bwait <=1'b0;

dbus_s.sdata <=16'h0000;

endtask : init_content

Originating from the Dbus, a set of tasks was developed. The first task, init content,

is used to initialise signals on the DUT. For the Dbus protocol, it initialise the

Modifying the Verification Infrastructure 55

signals from the slave to zero, as seen in the code above, such that there are no

wrong initial values on the bus.

After the driver checks the configuration object whether data generation is allowed,

it will start to drive the DUT by setting signals. As mentioned in Chapter 3.1.1,

the Dbus driver has a memory that is used when driving the bus. The master

bus’ read and write bits are checked, and if they they are low, the driver will

request a transaction from the sequencer. This memory was moved to the interface,

as this was type specific for the protocol. Since the driver had to use this for

correct functionality, a task that sends the sequence item over to the interface was

developed. In the code below, it is possible to see that the init content task is

called before the forever loop with the creation of the sequence item. The created

sequence item is used in the generate content-task.

class gen_drv#(...

...

vif.init_content;

forever begin

req=item_type::type_id::create("req", this);

vif.generate_content(req);

...

It was the use of sequence items that made it possible for correct communication

between the the UVC and interface. As a problem arose when the data did not

exist in the memory, and the sequencer had to be called, there was need for

additional functionality in the driver. As a call to the sequencer can not be

made from the interface, and to maintain correct functionality with the memory

checking, a fix was needed.

class gen_drv#(...

...

if (vif.pull_req == 1'b0) begin

seq_item_port.get_next_item(req);

vif.generate_content_IF(req);

seq_item_port.item_done();

end

Modifying the Verification Infrastructure 56

The solution to this problem was the use of a bit, that was added in the interface.

This bit, called pull req, indicates if there is a need to pull a request from the

sequencer. If the pull req bit is low, the driver will retrieve the requested item

from the sequencer, as seen in the code from the forever-loop in the driver above.

interface dbus_if

...

task generate_content(dbus_item req);

if(dbus_m.re) begin

pull_req = 1'b1;

if(DRAM.exists(dbus_m.addr)) //Check if data exists in DRAM:

drive_bus(DRAM[dbus_m.addr]);

end

else if(dbus_m.we)

begin

pull_req = 1'b1;

req.sdata=dbus_m.mdata;

DRAM[dbus_m.addr]=req;

end

else

pull_req = 1'b0;

@cb;

endtask

The implementation of the generate content task in the Dbus interface is given

above. The task checks if there is a need for a pull request, and sets the pull req

bit accordingly. As seen, as long as read or write enable is not low, the pull req-

bit will never go low. The generate content function in the interface has a @cb

at the end of the function. This is to get correct functionality with the forever

loop in the driver. The driver will check the pull req bit for every iteration in

the forever loop, and the clocking block force the loop to a run at controlled pace.

generate content IF is the second task called from the forever loop. As seen in

the code below, the task copies the address from the master bus to the items

address, and copies the item into the memory, before the bus is driven. The

generate content IF should be used to drive the the sequence item that is requested

from the interface for all the protocols.

Modifying the Verification Infrastructure 57

interface dbus_if

...

task generate_content_IF(dbus_item req);

req.bus_m_addr=dbus_m.addr;

if(^dbus_m.addr===1'bx)

$error("dbus_if, dbus_m.addr contains X, addr=%b", dbus_m.addr);

DRAM[dbus_m.addr]=req;

if(!DRAM.exists(dbus_m.addr)) begin

$warning("Skipping RAM, driving req directly");

drive_bus(req);

end

else

drive_bus(DRAM[dbus_m.addr]);

endtask : generate_content_IF

The last task in the driver was generate swait bwait only. This function ran-

domises the variables, primarily gen wait and delay, before it calls genereate swait bwait.

The functionality of the task is kept the same, with the exception that an addi-

tional task, generate swait bwait IF, is created. This task is called from gener-

ate swait bwait only, after the randomisation and check whether it should gener-

ate the wait, from the configuration object. The generate swait bwait IF -task is

added in order for the driver to be used for many protocols, and it is therefore

possible to add additional specialised functionality if necessary.

4.4.4 Modifying the Monitor

The monitor is a crucial component in the UVM testbench, and it is important

that it functions correctly. As mentioned in 3.1.8, is the monitors using a special

handshake for when it should kick in and monitor the DUT. In the creation of a

monitor for use on different protocols, the same approach as the driver was used,

starting with one protocol and altering it, small pieces at a time.

The monitoring of the signals was the first obstacle explored in the development

of making the monitor generic. As with the driver, the use of tasks and a sequence

item was utilised. A task named convert2Item was created. This task was first

implemented and called in the driver, before the implementation was moved to

the interface. Figure 4.10 illustrates how the monitor and interface utilise the

Modifying the Verification Infrastructure 58

Figure 4.10: Converting signals to item

convert2Item task, which is given below for the Dbus. The monitor will check

the signals from the bus, which can be considered the handshake, before the an

”empty” sequence item is created. Instead monitoring the signals from the inter-

face directly, as it used to, the convert2Item task is called and the specific signals

are copied onto the sequence item, which is written to the analysis port.

interface dbus_if

...

task convert2Item(dbus_item item);

item.re =cb.dbus_m.re;

item.we =cb.dbus_m.we;

item.bus_m_addr=cb.dbus_m.addr;

item.mdata =cb.dbus_m.mdata;

@(cb.dbus_m.addr);

item.sdata =cb.dbus_s.sdata;

endtask : convert2Item

An interesting challenge was how to handle the handshake. The first solution

considered was to remove the handshake, and sample at every clock edge. However,

this solution did not work well with recording transactions for usage in visual

aids, like waveforms. This is because, even though the monitor checks the signals

correctly, there would be a transaction at every clock edge, ruining the duration

of the transaction. This would not result in any visual aid for the verification

engineer.

//////Interface:

always @(cb)

Modifying the Verification Infrastructure 59

begin

run_bit = (!cb.dbus_s.swait && !cb.dbus_s.bwait && cb.dbus_m.re && !cb.reset);

end

//////Monitor:

forever begin

@vif.cb;

if(vif.run_bit)

//start monitoring

end

The second solution was to add a new bit in the interface, almost like the pull req-

bit, that decides whether or not the monitor should start its transaction. An

alternative to the bit-solution was to use events, as described in Chapter 2.2.3.

The code above shows how the use of a run bit can be implemented in the monitor

and interface. The drawback of using the run bit solution is that it is necessary

to trigger on the interface’s clocking block in the monitor before checking the bit’s

value. By using events, see code below, it will trigger when there is an event

instead. In this infrastructure events are utilised, as the initial thought was to

keep clear of accessing the clocking block from the components.

//////Interface:

always @(cb)

begin

if (!cb.dbus_s.swait && !cb.dbus_s.bwait && cb.dbus_m.re && !cb.reset)

-> e_mon;

end

//////Monitor:

forever begin

@(vif.e_mon);

//Start monitoring

end

With the use of the task that retrieves the item from the interface, and as the

handshake got a solution, the rest of the monitor is quite simple. It is parame-

terised with default data types, like config type, that will be overwritten when

implemented in the the environment. It then continues to register the class with

Modifying the Verification Infrastructure 60

the factory, creates the analysis port before it goes on to run the monitor, which

can be seen in the code below.

class gen_mon#(...

...

task run_phase(uvm_phase phase);

run_monitor;

endtask: run_phase

virtual task run_monitor;

item_type item;

forever begin

@(vif.e_mon);

item = item_type::type_id::create("item");

item.enable_recording(cfg.name);

begin_tr(item, cfg.name);

vif.convert2Item(item);

ap.write(item);

end_tr(item);

end

...

The code also shows the solution to another issue that appeared in the process

of generalising the monitor. It was regarding the recording, and the transaction

name that is attached. For the specialised monitors the name had previously

been added with a string, but would result with the same name for every monitor

if this was done in the generic class. To get a distinct separation between the

different monitors, a new variable was included in the configuration object. This

variable takes in a string for adding the name of the protocol, and was added in

all the configuration objects. Additionally to have a clear separation between the

original bus and the bus that use cache, the cache-bus’ name will automatically

add ” cache” in the build phase in the agent.

Modifying the Verification Infrastructure 61

4.4.5 Parameterisation

Using the initial verification infrastructure as a base, the development of the new

unified agent was started. The agent was initially parameterised with the se-

quencer, driver, monitor and configuration as arguments. This idea was taken

from the original framework. It was initially thought that this would be an easy

way to parameterise the agent, but as it is possible to see in the code to declare

the agent below, the parameterisaton in the environment became big and repet-

itive as the sub-components also are parameterised. The code underneath is not

completed, it is only the driver that is generalised, meaning that a fully generic

agent with this parameterisation would be even bigger, and therefore be prone to

errors and become time consuming for the verification engineer. This was also the

parameterisation before the interfaces was simplified.

class uenv extends uvm_env;

...

generic_agt#(dbus_sqr, //sqr_type

generic_drv#(//drv_type(

dbus_if#(dbus_item), //vif_name#(item_type)

dbus_item, //item_type

dbus_config), //config_type

dbus_mon, //mon_type

dbus_config) m_dbus_agt; //config_type

To prevent such a complex and unnecessary set-up, the parameterisation of the

agent had to be altered. Instead of parameterising the agent with the the sub-

components that created a chain of different parameterisations, it was taken a

closer look on how the agent could be parameterised in a compact and effective

way.

This was done by looking at what the sub-components of the agent was param-

eterised with, which revealed that they shared the same parameters. The agent

was therefore parameterised with the virtual interface type, item type, and con-

figuration type. As described in Chapter 4.4.1 was the parameterisation of the

virtual interface simplified, causing it to no longer need sequence item. Declaring

the agent in the environment was therefore simplified, as seen under.

Modifying the Verification Infrastructure 62

generic_agt#(dbus_if, //vif_name

dbus_config, //config_type

dbus_item) m_dbus_agt; //item_type

Later it was discovered it was possible to further simplify the parameterisation of

the agent, and is described in Chapter 4.4.10.

4.4.6 Changing the Configuration

Since the UVC was under development is the ”generic”-agent presented above ac-

tually just the Dbus-agent that builds the ”generic”-Dbus’ sub-components. This

was because the access to the configuration database still retrieved the configu-

ration through the environment configuration object with a hierarchical look-up,

where the look-up string still had not become adapted to the generic component.

In order to achieve a correct generic build, the different agents’ configuration ob-

jects were moved from the environment’s configuration object, that was mentioned

in Chapter 3.1.3. This removed the extra layer of hierarchy that had to be ac-

cessed in the original framework. Figure 4.11 shows how the agents configuration

object should get the configuration directly from the configuration database, and

then pass this configuration to its sub-components.

Figure 4.11: Configuration object set by database

In order to move the configuration objects from the environment’s configuration

object, it was necessary to alter the structure of the test. The configuration object

was moved to, and declared, in the test base. It was also necessary to modify the

Modifying the Verification Infrastructure 63

set functions for the configuration database, in the test base and all the test-classes

that extended it. A consequence of altering the set-functions, was that accesses

to the configuration database also had to be modified.

The issue with retrieving the correct configuration for the agent still persisted.

Figure 4.12 illustrates how the environment should be used to build the rest of

the hierarchy. The environment is created in the test, and the specialised generic-

agents in the environment. As mentioned could the agents no longer use the

hierarchical look-up from the environment’s configuration object. In order to

retrieve the correct configuration, the use of the hierarchy and the fact that the

components are very similar was exploited. Utilising the configuration database’s

get- and set- function, alongside with the use of wildcards, see Chapter 2.1.19,

made it possible to pass the configuration through the generic hierarchy.

Figure 4.12: Verification infrastructure build order

The agents’ handles was used as the splitting point for the different agents. This

along with the use of the wildcard, *, and a phrase for specifying the end made

it possible to set the right configuration to the specified generic agent. The code

below shows how the configuration for the Dbus-agent is set from the test base.

Take notice that the configuration database needs to know the configuration ob-

jects type, and that it is specified. This method of setting the configuration made

it possible for the agents to utilise a generic get function, but still retrieve the

specialised configuration.

uvm_config_db #(dbus_config)::set(this, "*m_dbus_agt*", "config_type", dbus_cfg);

Modifying the Verification Infrastructure 64

In order to get the object in the agent, the configuration database’s get function

was applied. The code below shows the get- function, called from the generic

agent. As seen has all the variables and strings become generalised. The agent

was parameterised with the configuration object type, config type, which has to

be set to a specified type in the environment, since the configuration database

needed the type of the object in order to be used.

if (!(uvm_config_db #(config_type)::get(this, "", "config_type", cfg)))

`uvm_fatal("Agent", $sformatf("Missing configuration in agent %m"));

How the virtual interfaces are set to the configuration object also had to be mod-

ified. The code under shows how the code is retrieved and set using the configu-

ration database in the test, for the use with and without cache.

if (!uvm_config_db #(virtual dbus_if)::get(this, "","dbus_if", dbus_cfg.vif))

`uvm_fatal(get_name(), "Can't read dbus_if from config_db");

uvm_config_db #(dbus_config)::set(this, "*m_dbus_agt*", "config_type", dbus_cfg);

if (!uvm_config_db #(virtual dbus_if)::get(this, "","dbus_if_cache",dbus_cache_cfg.vif))

`uvm_fatal(get_name(), "Can't read dbus_if_cache from config_db");

uvm_config_db #(dbus_config)::set(this, "*m_dbus_agt*",

"config_type_cache", dbus_cache_cfg);

4.4.7 Changing the Cache Setup

The agent is supposed to build components for a verifying a CPU with and without

cache, as mentioned earlier. In the initial verification infrastructure the agent only

built the driver, and not the sequencer and monitor. It also built the cache-driver

every time, even if it was not used. To make the building process more effective,

an additional configuration bit was added to the configuration object. This bit

decides whether or not the caches components should be built and if an additional

call should be made to the configuration database for the cache’s configuration,

see Figure 4.13.

If the cache-enable bit is active, it will add ” cache” to the name variable in the

configuration object, as mentioned earlier. It then gets the configuration from the

Modifying the Verification Infrastructure 65

Figure 4.13: Configuration objects with cache enable bit

configuration database, before it builds the newly added monitor. Following, it

checks the cache-specific configuration if it should be built as an active agent, and

builds the driver and the new sequencer, as a normal verification component. The

implementation of how the agent’s build-phase handles the cache is given below.

The agent utilises the same bit in the connection phase to check if it should connect

to the cache-components.

class gen_agt#(type config_type = int, type item_type = int)

extends uvm_agent;

...

function void build_phase(uvm_phase phase);

//build regular agent...

...

if(cfg.enable_cache) begin

if (!(uvm_config_db #(config_type)::get(this, "", "config_type_cache", cfg_cache)))

`uvm_fatal("Agent",$sformatf("Missing cache-configuration in agent %m"));

cfg_cache.name = $sformatf(cfg_cache.name, "_cache");

mon_cache = gen_mon#(config_type, item_type)::type_id::create("mon_cache", this);

mon_cache.cfg = cfg_cache;

if(cfg_cache.is_active == UVM_ACTIVE) begin

sqr_cache = generic_sqr#(item_type)::type_id::create("sqr_cache", this);

drv_cache = gen_drv#(config_type,item_type)::type_id::create("drv_cache", this);

drv_cache.cfg=cfg_cache;

end

end

Modifying the Verification Infrastructure 66

The agent in this framework will therefore work as a two-in-one agent, where it

creates a double set of sub-components, with the use of two different configuration

objects. The sub-components are the however the same type, and will receive the

same sequences from the virtual sequencer. An additional monitor can be used to

compare results with the other.

4.4.8 Just a Little Sequencer

The sequencer is the component with the least differences between the different

protocols. The generic sequencer was extended from the uvm sequencer and

parameterised with a sequence item. The sequencer was registered with the fac-

tory using the ‘uvm component param utils(generic sqr#(item type)) macro. In

the build phase there is a call to the configuration database to access to the envi-

ronment configuration object, which can be used by the sequences. As the generic

sequencer took the specified sequencers spot, there was changes that had to be

done in order to achieve a functional testbench:

• The virtual sequencer had to swap the old sequencer with the new parame-

terised sequencer.

• All the sequences needed to change its declared sequencer.

• Small changes to some of the sequences

– As the configuration object for the Pbus protocol is no longer in the

environment configuration.

4.4.9 Further Improvement of the Components

After a functional and working hierarchical build was made, it was time to start the

integration of the other protocols. Since the Dbus could be counted as integrated,

the Pbus protocol was decided to be next in line, as this protocols functionality

was the most different from the Dbus’.

In order generalise the Pbus’ functionality into the generic driver, the same ap-

proach as earlier was utilised, where the agent was from the Pbus protocol and

the driver was altered to become generic. One of the crucial differences between

Modifying the Verification Infrastructure 67

the protocols, was the way they handled the transactions in the driver. The Pbus’

driver utilised while-loops and response from the items, as well as copying of items,

as apposed to the Dbus’ protocol. The code used in the original Pbus driver is

given below. The other protocols were also taken into consideration at this stage.

One thing that stood out was the request to memory. Which meant that the

pull req bit should be reused.

class pbus_drv extends uvm_driver #(pbus_item);

...

task generate_content;

integer addr;

pbus_item req_cp;

forever

@vif.cb

//Check if data is present in NVM

if(!tb_uvm.flash_memory.exists(vif.pbus_m.addr))

//Block generates data, put it into NVM, and then put it on pbus_

begin

addr=vif.pbus_m.addr; //Save current address in local variable

do begin

port.get_next_item(req);

//Create a copy of request to be put into NVM

req_cp=pbus_item::type_id::create("req_cp", this);

req.pbus_m_addr=addr;

req_cp.copy(req);

//Put generated sequence item to NVM

tb_uvm.flash_memory[addr]=req_cp.sdata;

if(req.response) begin

rsp=req;

rsp.set_id_info(req);

seq_item_port.item_done(rsp);

end

else seq_item_port.item_done();

//Jump to drive task if preload_nvm bit is not set

if(!req.preload_nvm)

break;

addr=addr+2;

end while (1);

end

endtask

Modifying the Verification Infrastructure 68

To reduce the amount of sequence items created in the driver, the Pbus driver was

altered, as it created and used a sequence item copy. The handling of a response

was also included in the generic driver. One of the biggest obstacles was how to

deal with the loop and correct address for every cycle. Since there was no use for

a while-loop in the data generation, this had to be separated.

The new driver utilises the same set of tasks, for the use in both data and instruc-

tion generation. This reduces the amount of tasks necessary in the interface. The

memory access and the variable to hold and increment the address, was moved

to the interface. The pull req bit has also become a necessary part for all inter-

faces. As the driver need the sequence item’s response bit, this means that all

the sequence items needs to include this bit.

class gen_drv#(type config_type = int, type item_type = int)

extends uvm_driver #(item_type);

...

task run_phase(uvm_phase);

vif.init_content;

fork

if(cfg.allow_inst_generation || cfg.allow_data_generation) begin

forever begin

generate_data;

end

end

generate_swait_bwait_only;

join_none

endtask

The run phase of the generic driver, as seen above, checks if the configuration

object allows for generating data or instructions, and then runs the generate data

for the generation. The code that is added to the generate data task for the data

instruction generation part of the driver is given below.

class gen_drv#(type config_type = int, type item_type = int)

extends uvm_driver #(item_type);

...

virtual task generate_data;

req=item_type::type_id::create("req", this);

Modifying the Verification Infrastructure 69

cfg.vif.generate_content(req);

if (cfg.allow_inst_generation) begin

do begin

seq_item_port.get_next_item(req);

cfg.vif.generate_content_IF(req);

if(req.response) begin

rsp=req;

rsp.set_id_info(req);

seq_item_port.item_done(rsp);

end

else seq_item_port.item_done();

end while(cfg.vif.pull_req == 1'b0);

end

...

In this task the driver first creates the request item and calls generate content from

the interface. The generate content task for the Pbus-protocol, shown in the code

below, retrieves the address from the signals in the interface, if the address does

not exist in the memory. The driver then separates the instruction generation and

data generation by looking at the configuration object. If it is data generation,

the functionality is like before, if allow inst generation is high, it starts to loop,

and exits the loop depending on the pull req bit. The loop starts with requesting

an item from the sequencer, then it calls the next task from the interface. If

the response bit in the item is set, item done will be called with the response.

The task called in the interface will set the data to the memory, and increment

the address. It will also set the pull req bit depending on the sequence items

preload nvm variable.

interface pbus_if

...

task generate_content(pbus_item req);

@cb;

pull_req = 1'b0;

if(!tb_uvm.flash_memory.exists(pbus_m.addr))

begin

addr=pbus_m.addr;

end

endtask

task generate_content_IF(pbus_item req);

Modifying the Verification Infrastructure 70

req.bus_m_addr=addr;

tb_uvm.flash_memory[addr]=req.sdata;

if(!req.preload_nvm) pull_req = 1'b1;

addr = addr + 2;

endtask

As it is possible to see, is the pull req bit used to keep the the loop running in the

generate data task. The generate content function sets the status of the pull req

bit, checks the memory and sets the initial address. The incrementation of the

address needs to be be done in the loop, in other words in the generate content IF

function, which also sets the pull req bit to exit the loop, as seen above.

4.4.10 Minor Modifications

Parameterisation of the agent was earlier described in Chapter 4.4.5, and how it

was parameterised with the virtual interface type, item type and configuration

type. It was taken closer examination of the framework to determine if there

were any simplifications that could be accomplished. As the interface type is

parameterised with the item type, the idea that the virtual interface might be

redundant as a parameter came to light.

Figure 4.14: Handle to virtual interface changed

Instead of passing the handle to the virtual interface from the configuration object

to the monitor and driver, which is commonly done in UVM, the handle was not

Modifying the Verification Infrastructure 71

passed, but utilised through hierarchical access. Figure 4.14 illustrates how the

handle to the interface, that the configuration object receives from the configura-

tion database, is used by the driver and monitor with a call, and not passed to

the driver and monitor. The call to the virtual interface was done with cfg.vif.*,

instead of vif.*. The final parameterisation for the agent therefore consist only of

the item and the configuration object. The code for the generic class header with

the declarations of generic components is shown below.

class gen_agt#(type config_type = int, type item_type = int) extends uvm_agent;

`uvm_component_param_utils(gen_agt#(config_type,item_type))

generic_sqr#(item_type) sqr, sqr_cache;

gen_drv#(config_type,item_type) drv, drv_cache;

gen_mon#(config_type, item_type) mon, mon_cache;

config_type cfg, cfg_cache;

It can be seen that the driver, monitor and agent use the same parameterisation,

and the sequencer does utilise a configuration object. It is also possible to see that

each of the sub-components are declared for the use with cache and without.

class irq_agt extends uvm_agent;

`uvm_component_utils(irq_agt)

irq_sqr sqr;

gen_drv#(irq_config,irq_item) drv;

irq_mon mon;

The Irq protocol is different from the other protocols as it adds an extra analysis

port. However, small alterations made it possible for the protocol to use generic

components. As seen in the code above, which is taken from the Irq-agent, the

generic driver is utilised and specified with the correct types. The monitor in this

protocol was also altered, it was extended from the generic monitor, as seen below,

and then added the extra analysis ports and task it uses to call the interface for

the convert2Item-, and an extra added convert2Item seq- function.

Modifying the Verification Infrastructure 72

class irq_mon extends gen_mon#(irq_config, irq_item);

4.5 Adopting the UVC

The remaining agents started their adoption of the UVC. As the framework already

was customised for the specialised agents, it was not possible to just swap the

agent in the environment. In order for correct functionality with the rest of the

framework several actions was made in order to make the protocols compatible:

• Environment

– Declaring the agent

– Creating the agent

• Add generic sequencer to the virtual sequencer

• If the configuration object was in the environment’s configuration object, it

had to be removed

• Add the protocols’ configuration object

• Modifying the configuration in tests

– Also necessary for extended tests

• Added name variable to configuration object, if this was not already done.

• Use/extend generic sequence item or add necessary variables to sequence

item.

– delay

– gen wait

– response

• Changes to sequences

– Change configuration

Modifying the Verification Infrastructure 73

– Use generalised instead of specialised names, i.e. bus address, not

pbus address

• Changes in the interface

– Move the functionality from the old driver and monitor to the interface,

using the tasks discussed in this thesis.

– Clocking block

– Pull req-bit

– e mon-event

• Remove old, unused components

– Driver, monitor, sequencer and agent

The generic agent was adopted by most of the protocols. It is possible to see the

declarations in the environment in the new framework in the code below. It is

also included how one agent is created in the build phase.

class uenv extends uvm_env;

...

gen_agt#(pbus_config, pbus_item) m_pbus_agt;

gen_agt#(dbus_config, dbus_item) m_dbus_agt;

gen_agt#(iobus_config, iobus_item) m_iobus_agt;

gen_agt#(ocd_config, ocd_item) m_ocd_agt;

gen_agt#(cpu_externals_config, cpu_externals_item) m_cpu_externals_agt;

irq_agt m_irq_agt;

iobus_qr_agt m_iobus_qr_agt;

uvsequencer m_vsequencer;

...

m_dbus_agt = gen_agt#(dbus_config, dbus_item)

::type_id::create("m_dbus_agt", this);

The agents that have been included in the environment is declared and created

with their specialised parameters. The configuration objects used in the agents

Modifying the Verification Infrastructure 74

have been extended from the configuration template. The sequence items have

either been extended from the generic sequence item or used its own specialised

one. The generic sequencers that was declared in the virtual sequencer can be

seen in the code given below.

class uvsequencer extends uvm_sequencer;

`uvm_component_utils(uvsequencer)

generic_sqr#(iobus_item) m_iobus_sqr;

generic_sqr#(pbus_item) m_pbus_sqr;

generic_sqr#(dbus_item) m_dbus_sqr;

generic_sqr#(ocd_item) m_ocd_sqr;

generic_sqr#(cpu_externals_item) m_cpu_externals_sqr;

irq_sqr m_irq_sqr;

iobus_qr_sqr m_iobus_qr_sqr;

There are differences between the old framework, described in Chapter 3, com-

pared to the new framework. For both the environment (Chapter 3.1.3) and virtual

sequencer (Chapter 3.1.5), is the old specialised declarations for the agents and

sequencers, swapped for a generic component that utilise parameters.

Chapter 5

Results

The results discovered in this project are presented in this chapter. It will be taken

a look at how many lines of code there are in the frameworks, as it is a way to

quantify the work that has been done. It can also be stated that with more code,

there will be more bugs, which again can lead to more time debugging. As the

Iobus qr protocol has not been integrated under the new framework yet, it will be

ignored in the results. Also, as there has been minimal changes to the sequences

and no changes to the CPU snapshot and scoreboards as these are outside of the

scope of the project, these are also ignored.

Taking the initial framework and altering it to become independent of base classes,

as described in Chapter 4.1, before developing the new framework, allows for a

comparison between the two frameworks. As the framework that is independent

of base classes, and all the classes are specialised, it is referred to as the specialised

framework.

5.1 The Non-generic Code

Table 5.1 shows the amount of code lines in the top of the hierarchy in the spe-

cialised framework. Even though the top of the hierarchy is not a part of the

verification component, it is included as there has been alterations to the rest of

75

Results 76

the framework during the development of the UVC, like alterations to the config-

uration.

Component / file Lines of code
config template 46

test base 70
test base active agents 31

uvm base test 16
uenv 74

uenv config 53
uvsequencer 18

Total 308

Table 5.1: Lines of code in the top of the hierarchy for the specialised frame-
work

The total amount of code lines in the protocols are presented in Table 5.2. The

amount of code-lines in the table is an aggregate from all the components and

objects, as each of the protocols contain every file that is presented in the table.

Sub-component Lines of code
Agents 211

Configuration objects 182
Drivers 236

Interfaces 105
Sequence items 221

Monitors 168
Sequencers 53

Total 1176

Table 5.2: Lines of code in the protocols, specialised framework

The total amount of files used for the protocols is 42. The amount of code lines

in the protocols and the top of the hierarchy is 1484.

5.2 Generic Code

When the framework uses the UVC, the code is considered as generic. At the end

of the previous chapter it was shown all the generic agents that had replaced the

specialised agents. Table 5.3 presents the amount of code lines in the top of the

hierarchy for the generic code. It also shows the difference of code lines compared

Results 77

to the specialised framework. An increase in the amount of code lines from the

specialised framwork’s code is marked with red, while a decrease is marked with

green. There has been a small overall increase in the amount of code lines in

this part of the hierarchy. This is mainly coming from moving the protocol’s

configuration objects from the environment’s configuration object, along with the

need for extra lines of code used to access the configuration database.

Component / file Lines of code Difference
Config template 46 0

test base 92 22
test base active agents 55 24

uvm base test 16 12
uenv 86 -12

uenv config 33 0
uvsequencer 18 0

Total 346 38

Table 5.3: Lines of code in the top of hierarchy for the new framework

The amount of code lines for the components and objects that are developed to be

generic, or extended from, is shown in Table 5.4. The new components removes

the need for some of the old components. Table 5.5 presents the components that

have been replaced with the generic. There is a total of 21 files that has been

replaced with four generic files. The yellow cells marks the classes that has been

extended from another class.

Generic files Lines of code
Agent 52

Monitor 29
Driver 61

Sequencer 16
Sequence item 71

Total 229

Table 5.4: Lines of code in developed files

Table 5.6 presents the amount of lines of code for the protocols with the all the

components, including the generic. As earlier is the cells with an reduction of code

highlighted in green, and the one with an increase is highlighted with red. There is

a overall a reduction in code lines, except for the interfaces. This is because a lot

of the functionality that has previously been on the driver and monitor has been

Results 78

Protocol Agent Monitor Driver Sequencer Item
Pbus X X X X -
Dbus X X X X -
Iobus X X X X -
OCD X X X X
IRQ - X

CPU externals X X X X

Table 5.5: Files removed

moved to the interface. The total amount of code lines for the whole framework

is 1266, a reduction of 218.

Component/file Lines of code Difference in code lines
Agents 86 -125

Configuration objects 75 -107
Drivers 61 -175

Interfaces 446 341
Sequence items 158 -63

Monitors 64 -104
Sequencers 30 -23

Total 920 -256

Table 5.6: Number of code lines in the protocols, new framework

In order to use waveforms, the transactions had to be working. Figure 5.1 shows

that the transactions in the waveform diagram is working. It is also possible to

see the correct bus names for the transactions, as well as the ” cache” extension”.

Figure 5.1: Transactions are registered

Chapter 6

Discussion

This chapter discuss the results from the previous chapter, before it will continue

to discuss the use of parameters and the configuration that has been done. Ad-

vantages and disadvantages with using a UVC will also be discussed, before men-

tioning some inconveniences in the project. The end of the chapter will discuss

different alternative solutions that could have been used in this project.

6.1 Code Reduction

The specialised framework’s code had a total of 1484 lines of code in the frame-

work without the files that has been omitted, where 1176 of these were from the

protocols’ components. The amount of code is spread quite evenly across the

different components, with the exception of the sequencer, which naturally will

contain less code. The amount of code in the agents could have been greater had

the cache-functionality been added. The amount of code lines could have been

even greater if the the template for the configuration objects had not been utilised

for some of the protocols.

The generic code totalled to 1266 lines of code for the whole framework. The total

reduction in code adds up to 218 lines of code, a 14.7% decrease. Excluding the

higher levels from the equation, the decrease for the total amount of code in the

protocols adds up to 256 lines, a 21.8% decrease. This is a substantial amount

79

Discussion 80

of decrease, and suggest that the generic code may help reduce the time spent

creating the components.

Even though there is a overall decrease in the amount of code lines in the protocols,

the interfaces stand out. The interfaces had a total increase of 341 code lines,

a stunning 325%. There are several reasons for this enormous increase in the

interfaces. The first reason is that most of the specialised functionality from the

driver and monitor was moved here, which naturally increases the amount of code

required to implement the interface. Additionally was the generate swait bwait

function that previously was contained in the configuration objects, moved to the

interface. When most of the functionality that is specialised for a protocol is moved

to the interface, it may reduce the amount of time used to probe the framework

looking for code. This may further decrease of the total time spent in verification,

which again can lead to more time spent on quality instead of development and

debugging.

The code increase in the top of the framework does indicate that there is a little

more configuration in the new framework. It is mostly from moving the con-

figuration object from the environment’s configuration object, which hides a lot

of the overhead code that comes when using the get- and set- functions for the

configuration database. Moving the configuration objects does, however, reduce

the hierarchy, and make the access to the individual objects easier with the new

framework. The advantage of using the hierarchical methodology is that setting

the configuration for several of the configuration object is easier, which could help

the verification engineer when creating the tests.

In addition to the decrease in code, there is also a huge reduction in the amount of

files used in the new framework, with the four generic files replacing 21 files from

the old framework. The sequence item that was created is also extended by three

of the protocols. Even though there are a lot of the same constraints used in the

items, the items are extended and not parameterised with the constraints because

it makes for an easier implementation in the rest of the hierarchy, in addition to

the fact that there might be additional or different constraints for other protocols.

The reduction of the amount of files necessary in the framework, shows that there

is a high reusability of the components. This is also seen in the possibility to use

the same agent, with only specifying the type of configuration and sequence item.

Discussion 81

It can also be seen as it is possible to use the other components in another agent,

or that it is possible to inherit from them.

6.2 Parameterisation and Object Oriented Pro-

gramming

The use of parameterisation and OOP in this project has primary been in order

to enable reuse and decreasing the copy-paste code in the framework. Using

parameterisation can be considered as a dual-edge sword, as it is quite complex

to implement and the code base can become more verbose. In this project the

parameterisation has mainly been used to specify the data type utilised throughout

the verification component. However, parameterisation is also used to specify the

size of parameters in the generic sequence item. This makes it possible to use the

generic sequence item directly, and if there are constraints or other functionality

needed, it could be extended with the parameters specified in the class declaration.

Parameterising the agent with a configuration object and the sequence item, makes

it easy to implement, as the agents configuration object and sequence item names

should follow naming conventions. The parameters are propagated throughout the

hierarchy, and used in the sub-components. It is the use of parameterisation and

correct configuration that enabled the opportunity to develop the Universal Ver-

ification Component in this project. Chapter 4.4.10 described how the handle to

the virtual interface was moved from the monitor and driver, to the configuration

object, which is set from the test with the configuration database. This reduces

the amount of parameterisation necessary, but still keep the same functionality as

if they would be called from the monitor and driver. The extra hierarchical step

to call functions, does not make much difference, as the components ideally should

only need be instantiated in the environment, and the specialisation added in the

interface.

6.3 Configuration

Correct configuration is a crucial part in UVM and in this project. The use of

the configuration database has been utilised in great extent in order to achieve

Discussion 82

correct configuration for the different protocols. In the development process this

was one big obstacle that the entire project needed to function correctly. Since the

environment use the same agent in order to build different protocols, the method

of setting and getting the correct configuration was modified. The use of wildcards

and the agent’s handles, is a solution that relies on the verification engineer that

creates the tests to have control over the names of the handles for the different

protocols. Nonetheless, this should not be a problem, with the correct usage of

naming conventions. Despite this, there is still not thought of a method for correct

passing of configuration if there should be more than the standard configuration,

that consist of the non-cache and cache setup. This might, however, be solved by

an alteration to the uvm config db’s field name.

6.4 Advantages and Disadvantages

The framework that has been developed has its positive and negative sides to it.

On a positive side it is a framework that can work for many protocols, but on

the other side it might reduce the degrees of freedom for the functionality in the

interfaces.

The framework that has been created have several advantages compared to the

previous framework. The first is the reduction in code, and with less code there

will be less debugging. It is also less files that is needed to be considered, and

working with less files will decrease the places problems and bugs may arise. As

mentioned in Chapter 1.1, the total time verification engineers spend developing

the verification environment and debugging in a project can be over 60%. Utilising

a UVC where the code is bug-free, will ultimately reduce the total amount of code

and where bugs may arise in the framework, which can significantly reduce the time

developing and debugging. The time saved may contribute to that the deadline

is kept, and it can be used in further development of tests for better coverage.

The UVC that has been developed should also be capable of being used for other

DUTs, as most of the specialised functionality is moved to the interface, which has

to be implemented by the verification engineer. Another advantage is that every

component has been created like standard UVM, which makes it possible to use

functionality like the factory as described in Chapter 2.1.14.

Discussion 83

A disadvantage is that the UVC relies on that the code written by the user is

compatible with the rest of the framework. The user also needs knowledge about

how the configuration object is built, and how to set the configuration from the

configuration database to the correct protocol. Another drawback with the frame-

work might be that if there is needed more complex setup, it is either needed to

extend the components, or create new. This would, however, also have been the

case in another framework. As the framework is new and has not been tested on

other devices there might still be some small alterations that can be made.

Figure 6.1: Class overview for specified framework

Figure 6.1 illustrates an example of what should be included in the specified frame-

work, which was used as a base in the project, in order for it to be usable. As seen

must every class and interface needed for a functional protocol be implemented by

the user. There is one template that is given for the configuration object classes,

that can be extended when creating a new protocol. All the other classes has to

be created from scratch using this framework.

Figure 6.2 illustrates the same as the previous figure, but with a framework that

utilises the UVC. Here the generic files and templates will be handed down from the

UVC, and is therefore considered as a global delivery. The user still has to create

the environment, where he can instantiate the generic components directly when

creating new protocols. When adding a new protocol, the verification engineer

can use the generic classes, extend them, or create new classes from scratch. The

configuration object should be extended from the template.

Discussion 84

Figure 6.2: Class overview for framework with UVC

6.5 The Inconveniences

The project of creating a Universal Verification Component for CPU verification

started with altering the existing framework, which utilised some inheritance, to

a framework that did not utilise it to the same extent. The components in this

framework were all specialised for every single protocol. This gave the opportunity

to have a base, of which the new framework could be built on. It also made for

a good comparison between two. One which was specialised and has the need to

create components for every protocol, and one which is more complex, but where

the components could be used for most of the protocols. However, there were

some inconveniences with this.

6.5.1 Incomplete code

Chapter 4.4.7 described about the extension of the functionality when the cache

is enabled. This is one example from the initial framework that suggest that the

initial framework was not complete, and had room for improvement. Since the

initial framework might have had other flaws, they may also have propagated to

the new framework, as functionality has been moved. With the expanding of the

agent functionality regarding the cache, also means that the verification engineer

that will be continuing with the framework needs to be aware of such functionality

and set the correct configuration when creating the tests.

Discussion 85

6.5.2 Lost in Translation

One inconvenience in the project was that a lot of the functionality of the compo-

nents has been moved around, back and forth to the interface. Thus the function-

names that has been used has lost some of its initial meaning, which could make

it harder for the verification engineer to understand the code.

6.5.3 The Iobus qr Protocol

As previously mentioned, was the code lines for the Iobus qr omitted in the results.

This was done to create a better image of how the UVC will impact the framework,

as the Iobus qr protocol was out of the scope of the project, and has yet to be

altered. There are some things that should be taken a look at when adapting this

protocol. The agent in the initial framework creates a total of four configuration

files, and pass some of these on to one monitor. One way of utilising the generic

components could be to split the functionality of this protocol into two different

protocols, creating two monitors and drivers. A problem that might occur is

that they access the same interface, and could cause a clash in configuration and

accesses. Another way might be to do the same as the Irq protocol and utilise

the inheritance to extend functionality for the components. There is also need to

change the configuration depending on the solution that is chosen.

6.5.4 The Irq Protocol

The Irq protocol, as described in Chapter 4.4.10, did not have its agent, monitor

and sequencer replaced. This is because of the irregularity in the protocol, where

it creates additional analysis ports. The new framework utilises inheritance in

order to handle irregularities in the functionality. This does, however, show that

even though the component is used, it is still reusable by inheritance.

6.6 Alternative Framework Setup

It might be possible to solve the project using different methods than the ones that

has been utilised in this thesis. One method might be a continuation of the initial

Discussion 86

framework, that extend the the agent and sub-components to add the specialised

functionality. This method simplifies the retrieval of configuration. It might,

nonetheless, create the need for the user to re-write code, or write almost similar

code for the various protocols. Extending from a base class could, nevertheless,

reduce the amount of parameterisation that is used throughout the hierarchy, as

it would rely on a heavier OOP-approach. It might also reduce the amount of

code in the framework, but there will still be the same amount of files, and if

there is not much functionality in the component the reduction of code might be

sub-optimal.

It could also be possible to have another method of communication between the

driver and monitor. Instead of the verification component making calls to the

interface, the use of naming events could be used. The tasks in the UVC will then

only be run if an event is triggered in the interface. If communication from the in-

terface relies solely on events, clocking blocks might not be utilised. As described

in Chapter 2.2.3 does the clocking block guarantee race free communication be-

tween the DUT and verification environment, and the use of events might also not

be optimal.

To further improve the generic sequence item, it could be possible to add other

variables to it. Having a sequence item with a lot of variables etc. on it would

however also imply that there would be a lot of redundant code for some protocols.

It could also be possible to use very generic variable names, but this could also

cause for more confusion with the user, and therefore work against the purpose of

saving time.

Chapter 7

Conclusion

This thesis has described the development of a Universal Verification Component

for CPU UVM verification. The agent that has been developed contain a generic

driver, monitor and sequencer. The UVC has been created by moving functionality

from the drivers and monitors to the interface. The driver and monitor that has

been developed use generic task-calls to the interface to retrieve the specialised

functionality for the protocol. To include the agent in an environment, it has to

be parameterised with the protocol’s configuration object and sequence item. It

is also necessary to set the configuration for specific protocols as described in this

thesis. The UVC has been created to work on two CPUs, with and without cache,

at the same time. There is a bit in that can be set in the configuration object

that decides if it should create components for it. A sequence item has also been

developed, which can be used directly or extended to add additional functionality.

The new framework that has been developed reduces the total amount of code

needed to implement the protocols in the framework with 21.8%. It also reduced

the total amount of files used for the protocols from 42 down to 25. The decrease

in code and files may lead to less time debugging and development of a testbench

in the future, which means more time can be used improving tests and get better

coverage of the device. UVM promotes reuse, and the developed universal veri-

fication component is an excellent example of how one component can be reused

and decrease the development and debug time of a testbench in a project.

87

Conclusion 88

7.1 Future Work

Despite good results on the protocols that has been added to the framework, there

is still one protocol that needs to be included in the framework, as mentioned in the

discussion. The UVC should also be tested on other CPUs, and be tested further

for bugs. In order to speed up verification, the current framework can be modified

to support hardware emulation by introducing a dual top approach, as described

in Chapter 2.2.2. It is possible with a further reduction of signals between the

UVC and the interface, and emulation may be the future in verification as the

DUTs increase in size and complexity.

Bibliography

[1] Wilson Research Group. Functional Verification Study. 2016. URL

https://blogs.mentor.com/verificationhorizons/blog/2016/08/08/

prologue-the-2016-wilson-research-group-functional-verification-study/.

[2] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design

Patterns: Elements of Reusable Object-Oriented Software. Number 2 in

Addison-Wesley Professional Computing Series. Addison-Wesley, 37 edition,

1994. ISBN 0-201-63361-2.

[3] Mentor Graphics’ Verification Methodology Team. Uvm cookbook. UVM

Cookbook. URL https://verificationacademy.com/cookbook/uvm.

[4] Hans van der Schoot and Anoop Saha. UVM and Emulation: How to Get

Your Ultimate Testbench Acceleration Speed-up. DVCon, 2015.

[5] ANOOP SAHA. From Simulation to Emulation A Fully Reusable UVM

Framework. Technical Report TECH12100-w, Mentor Graphics, 7 2014.

[6] Young-Nam Yun, Jae-Beom Kim, Nam do Kim, and Byeong Min. Beyond

UVM for practical SoC verification. IEEE-978-1-4577-0711-7, pages 158–162,

2011.

[7] Mark Litterick. Pragmatic Verification Reuse in a Vertical World. 2013.

[8] IEEE Standards Dictionary: Glossary of Terms Definitions (CDROM). IEEE

Standards Dictionary: Glossary of Terms Definitions (CDROM), .

[9] Accellera Systems Initiative Inc. Universal Verification Methodology (UVM)

1.2 User’s Guide. October 2015. URL http://www.accellera.org/images/

/downloads/standards/uvm/uvm_users_guide_1.2.pdf.

89

https://blogs.mentor.com/verificationhorizons/blog/2016/08/08/prologue-the-2016-wilson-research-group-functional-verification-study/
https://blogs.mentor.com/verificationhorizons/blog/2016/08/08/prologue-the-2016-wilson-research-group-functional-verification-study/
https://verificationacademy.com/cookbook/uvm
http://www.accellera.org/images//downloads/standards/uvm/uvm_users_guide_1.2.pdf
http://www.accellera.org/images//downloads/standards/uvm/uvm_users_guide_1.2.pdf

Bibliography 90

[10] IEEE Standard for SystemVerilogUnified Hardware Design, Specification, and

Verification Language. pages 1–1315, . doi: 10.1109/IEEESTD.2013.6469140.

[11] Khaled Salah Mohamed. IP Cores Design from Specifications to Production

Modeling, Verification, Optimization, and Protection. Springer International

Publishing : Imprint : Springer. ISBN 978-3-319-22035-2 978-3-319-22034-5.

OCLC: 968791013.

[12] VMM Central. Uvm sqr if base #(REQ,RSP). Accessed 2018-05-01

. URL https://www.vmmcentral.org/uvm_vmm_ik/files3/tlm1/sqr_

ifs-svh.html#uvm_sqr_if_base%23%28REQ,RSP%29.get_next_item.

[13] Clifford E Cummings. UVM Transactions - Definitions, Methods and Usage.

SNUG, 2014.

[14] Accellera Systems Initiative Inc. Universal Verification Methodology (UVM)

1.2 Class Reference. June 2014. URL http://www.accellera.org/images/

downloads/standards/uvm/UVM_Class_Reference_Manual_1.2.pdf.

[15] Clifford E Cummings. The OVM/UVM Factory & Factory Overrides How

They Work - Why They Are Important. SNUG, 2012.

[16] John Aynsley. Easier UVM for Functional Verification by Mainstream Users.

2011.

[17] ”Generic”. accessed 2018-05-01. URL https://www.merriam-webster.com/

dictionary/generic.

[18] David Rich and Adam Erickson. Using Parameterized Classes and Facto-

ries: The Yin and Yang of Object-Oriented Verification. Technical Report

TECH8190-w, Mentor Graphics, 4 2009.

[19] Bryan Ramirez and Michael Horn. Parameters and OVM Cant They Just

Get Along? DVCon, 2011.

[20] Mark Glasser and Santa Clara. Conguration in UVM: The Missing Manual.

DVCon India, 2014.

[21] Jonathan Bromley. Slicing Through the UVMs Red Tape. DVCon Europe,

2016.

https://www.vmmcentral.org/uvm_vmm_ik/files3/tlm1/sqr_ifs-svh.html#uvm_sqr_if_base%23%28REQ,RSP%29.get_next_item
https://www.vmmcentral.org/uvm_vmm_ik/files3/tlm1/sqr_ifs-svh.html#uvm_sqr_if_base%23%28REQ,RSP%29.get_next_item
http://www.accellera.org/images/downloads/standards/uvm/UVM_Class_Reference_Manual_1.2.pdf
http://www.accellera.org/images/downloads/standards/uvm/UVM_Class_Reference_Manual_1.2.pdf
https://www.merriam-webster.com/dictionary/generic
https://www.merriam-webster.com/dictionary/generic

Bibliography 91

[22] Mark Glasser. Advanced Testbench Conguration with Resources. Technical

Report TECH9850-w, Mentor Graphics, 3 2011.

[23] Vanessa R. Cooper and Paul Marriott. Demystifying the UVM Configuration

Database. DVCon, 2014.

[24] Hierarchal Testbench Configuration Using uvm config db. Technical Report

AP.CS3989, Synopsis, June 2014.

[25] Comprehensive UVM/OVM Acceleration. Technical Report 21501, Cadence

Design Systems, Inc., 12 2011.

[26] Hans van der Schoot, Anoop Saha, Ankit Garg, and Krishnamurthy Suresh.

Off To The Races With Your Accelerated SystemVerilog Testbench. DVCon,

2011.

[27] Standard Co-Emulation Modeling Interface(SCE-MI) Reference Manual.

Technical Report 2.4, Accellera Systems Initiative Inc., November 2016.

URL http://www.accellera.org/images/downloads/standards/sce-mi/

SCE-MI_v24-Nov2016.pdf.

[28] Clifford E. Cummings and Arturo Salz. System Verilog Event Regions, Race

Aviodance & Guidelines. SNUG Boston, 2006.

[29] Stuart Sutherland and Tom Fitzpatrick. UVM Rapid Adoption: A Practical

Subset of UVM. DVCon, 2015.

[30] Marcio F S Oliveira, Christoph Kuznik, Wolfgang Mueller, Wolfgang Ecker,

and Volkan Esen. A SystemC Library for Advanced TLM Verification. 2012.

http://www.accellera.org/images/downloads/standards/sce-mi/SCE-MI_v24-Nov2016.pdf
http://www.accellera.org/images/downloads/standards/sce-mi/SCE-MI_v24-Nov2016.pdf

	Project Assignment
	Abstract
	Sammendrag
	Acknowledgements
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Methodology
	1.4 Thesis Overview

	2 Background
	2.1 Universal Verification Methodology
	2.1.1 Horizontal and Vertical Reuse
	2.1.2 Test
	2.1.3 Environment
	2.1.4 Scoreboard
	2.1.5 Agent
	2.1.6 Driver
	2.1.7 Monitor
	2.1.8 Sequencer
	2.1.9 Sequence Item
	2.1.10 Interfaces
	2.1.11 Transaction Level Modeling
	2.1.12 Transaction Methods
	2.1.13 Polymorphism
	2.1.14 Factory
	2.1.15 Generic Programming
	2.1.16 Parameterisation
	2.1.17 Inheritance
	2.1.18 Configuration Objects
	2.1.19 Configuration

	2.2 Comprehensive UVM
	2.2.1 Universal Verification Component
	2.2.2 Dual Top for Accelerated Verification
	2.2.3 Synchronisation

	3 Verification Infrastructure
	3.1 Existing CPU UVM Framework
	3.1.1 Protocols
	3.1.2 Top Level
	3.1.3 Environment
	3.1.4 Configuration
	3.1.5 Virtual Sequencer and Sequencers
	3.1.6 Agents
	3.1.7 Drivers
	3.1.8 Monitors
	3.1.9 Sequencer and Sequences
	3.1.10 Interface
	3.1.11 Sequence Item
	3.1.12 Instruction Set Simulator

	3.2 Improving the Existing Framework
	3.2.1 Attempt to Create a Unified Agent
	3.2.2 Considerations when Creating a Unified UVC

	4 Modifying the Verification Infrastructure
	4.1 Creating a Starting Point
	4.2 Starting from the Bottom
	4.3 Improving the Sequence Items
	4.4 Moving Functionality
	4.4.1 The Interfaces
	4.4.2 Configuration Object
	4.4.3 Attacking the Driver
	4.4.4 Modifying the Monitor
	4.4.5 Parameterisation
	4.4.6 Changing the Configuration
	4.4.7 Changing the Cache Setup
	4.4.8 Just a Little Sequencer
	4.4.9 Further Improvement of the Components
	4.4.10 Minor Modifications

	4.5 Adopting the UVC

	5 Results
	5.1 The Non-generic Code
	5.2 Generic Code

	6 Discussion
	6.1 Code Reduction
	6.2 Parameterisation and Object Oriented Programming
	6.3 Configuration
	6.4 Advantages and Disadvantages
	6.5 The Inconveniences
	6.5.1 Incomplete code
	6.5.2 Lost in Translation
	6.5.3 The Iobus_qr Protocol
	6.5.4 The Irq Protocol

	6.6 Alternative Framework Setup

	7 Conclusion
	7.1 Future Work

	Bibliography

