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Problem Description 
 

There are many technological challenges related to the production of electrical power from offshore 

wind farms. Numerous Norwegian companies are working on different aspects of offshore wind 

power generation as a result.  

This master thesis is a part of the 5 year project “High Voltage AC and DC Subsea Cables for Offshore 

Wind Farms and Transmission Grids” supported by The Norwegian Research Council. The purpose of 

this master thesis is to study the ageing properties of subsea cable insulation with relevant voltage 

stresses applied. Power electronics used for HVDC converters will stress the cable with a HVDC 

voltage with overlaid transients. The effect of these transients on the performance of the polymeric 

cable insulation is not yet known. The main objective of the master thesis is to investigate how 

transients can influence water tree growth within wet XLPE insulation.  

The master thesis is mainly experimental. Experiments will be carried out on Rogowski shaped test 

objects exposed to a DC voltage with a superimposed high frequency AC component, approximating 

the voltage stress a HVDC cable will experience as a result of the power electronic converters. Water 

tree initiation and growth will be investigated as a function of time. The effect of the DC voltage on 

water tree degradation will also be investigated.   
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Abstract 
 

There are many technological challenges related to the production of electrical power from offshore 

wind farms. Norwegian companies are working on different aspects of offshore wind power 

generation and the Norwegian Research Council has in this context supported a five year project 

called: “High Voltage AC and DC Subsea Cables for Offshore Wind Farms and Transmission Grids”. 

This master thesis has been a part of that project.  

Power electronics used for HVDC converters will stress the cable with a HVDC component with 

overlaid transients. The effect of the DC component and the overlaid transients on the performance 

of the polymeric cable insulation is not yet known and the main purpose of this master thesis has 

been to investigate how transients can influence water tree growth within wet XLPE insulation. The 

effect of the DC component has also been evaluated.  

Laboratory experiments were conducted on Rogowski shaped test objects with an insulation 

thickness of 1.1 mm. 20 sodium chloride particles were added on the lower semiconductor during 

the manufacturing process. This was done to facilitate the initiation of water trees. The finished test 

objects were preconditioned with demineralized water in a heating cabinet at 30 °C for four weeks to 

ensure that the insulation was saturated with water.  

An experimental setup capable of applying a DC voltage with a superimposed high frequency AC 

component was used to simulate the HVDC component and the overlaid transients that occur close 

to the power electronics used for AC to DC conversion. Two sets of experiments were conducted. The 

first set was conducted using a 15 kHz AC component, with resulting electrical field strength of ± 2.05 

kV/mm. The second set of experiments was conducted combining the same high frequency AC 

component with a superimposed DC voltage, resulting in an electrical field strength of 12 ± 2.05 

kV/mm. Nine Rogowski shaped test objects were aged in both sets of experiments. Three test objects 

were aged for one week, another three for two weeks, while the last three test objects were aged for 

three complete weeks. The test objects were kept in a heating cabinet at 30 °C during testing, and 

with the exception of the electrical field, treated identically during both sets of experiments.  

All test objects experienced water tree initiation and growth.  The length of the longest water tree 

and the aggregated water tree density were observed to increase as a function of ageing time for 

both sets of experiments. All water trees were oblong and grew in the direction of the electrical field. 

The longest observed water tree, after three weeks of ageing exposed to an AC component only, was 

607 µm, corresponding to 55 % of the total insulation thickness. Two out of three test objects, 

exposed to a DC voltage with a superimposed AC component, suffered breakdown before enduring 

three complete weeks of ageing. This was most likely the result of a water tree bridging the 1100 µm 

thick insulation. Test objects exposed to a DC voltage with a superimposed high frequency AC 

component were also observed to experience a higher aggregated water tree density, with vented 

water trees observed at the lower semiconductor constituting the main difference. As a result, it 

could be argued that the DC voltage, when combined with a superimposed high frequency AC 

component, increases water tree initiation and growth within wet XLPE insulation. The experiments 

also indicate that HVDC cables should be made water tight to prevent water tree degradation due to 

the transients originating from the switching of the power electronic converters.  
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Sammendrag 
 

Det er mange tekniske utfordringer knyttet til produksjon av elektrisk kraft fra offshore vindparker. 

Mange norske bedrifter jobber med de forskjellige aspektene knyttet til offshore vind og Norges 

forskningsråd har i den forbindelse tildelt SINTEF Energi femårsprosjektet: “High Voltage AC and DC 

Subsea Cables for Offshore Wind Farms and Transmission Grids”. Denne masteroppgaven er en del 

av dette prosjektet.  

Kraftelektronikk brukt i likerettere vil belaste likestrømkabelen med en likespenning med 
overlagrede transienter. Effekten av denne påkjenningen på kabelisolasjonen er ukjent og 
hovedformålet med denne masteroppgaven har vært å undersøke hvordan transienter kan påvirke 
vanntrevekst i våt PEX-isolasjon, samt å undersøke innvirkningen til likespenningskomponenten.  

Laboratorieforsøk ble gjennomført på Rogowski-formede testobjekt med en isolasjonstykkelse på 1.1 
mm. 20 saltpartikler ble tilført kontaktflaten mellom den nedre halvlederen og isolasjonen under 
fabrikasjonsprosessen. Dette ble gjort for å framskynde initiering og vekst av vanntær. For å sikre at 
hele isolasjonen var mettet med vann før testing ble de ferdige testobjektene fylt med demineralisert 
vann og prekondisjonert i et varmeskap ved 30 °C i fire uker.  

Et eksperimentelt oppsett med muligheten til å påføre en likespenning med en superponert 
høyfrekvent vekselspenningskomponent ble brukt for å simulere likespenningen og de overlagrede 
transientene som inntreffer nærme kraftelektronikk brukt i likerettere. To sett med forsøk ble utført. 
Det første settet med forsøk ble utført med en høyfrekvent vekselspenningskomponent, med en 
resulterende elektrisk feltstyrke på ± 2.05 kV/mm. Den andre runden med forsøk ble gjennomført 
ved å kombinere den samme høyfrekvente vekselspenningskomponenten med en 
likespenningskomponent. Dette resulterte i en elektrisk feltstyrke på of 12 ± 2.05 kV/mm. Ni 
Rogowski-formede testobjekt ble testet i begge settene med forsøk. Tre testobjekt ble fjernet fra 
oppsettet etter en uke med aldring, tre til etter to uker med aldring og de siste tre testobjektene ble 
fjernet etter tre uker med aldring. Testobjektene ble oppbevart i et varmeskap ved 30 °C under 
testing og ble med unntak av den elektriske feltstyrken, behandlet helt likt.  

Initiering og vekst av vanntrær ble observert i alle testobjekt. Lengden på det lengste vanntreet og 
det totale antallet av vanntrær i isolasjonen ble for begge forsøk observert å øke som en funksjon av 
tiden. Alle vanntrær var avlange og vokste i retningen til det elektriske feltet. Det lengste observerte 
vantreet etter tre uker med aldring eksponert til bare en vekselsspenningkomponent var 607 µm, 
noe som utgjorde 55 % av den totale isolasjonstykkelsen. To av de tre testobjektene som skulle 
aldres i tre uker, eksponert til likespenning og en superponert høyfrekvent 
vekselspenningskomponent, fikk gjennomslag i isolasjonen. Dette var mest sannsynlig et resultat av 
vanntrær som vokste gjennom hele isolasjonen, altså 1100 µm. Testobjekt utsatt for en likespenning 
med en superponert høyfrekvent vekselspenningkomponent ble også observert å erfare en høyere 
vanntretetthet, med vanttrær initiert fra den nedre halvleder som den største forskjellen. Som en 
følge av dette, kan det argumenteres med at likespenning, kombinert med en superponert 
høyfrekvent vekselspenning, fremmer vanntrevekst i våt PEX-isolasjon. Forsøkene indikerer også at 
likestrømskabler med PEX-isolason burde produseres vanntette for å unngå vanntrevekst som følge 
av de overlagrede transientene som inntreffer nærme kraftelektronikk brukt i likerettere.  
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1. Introduction 
 

The threat of global warming and the anticipated decline in fossil fuel supply have initiated a 

revolution within the European energy sector and resulted in binding policies such as the EU 2020 

target. Wind power, and especially offshore wind has emerged as one of the fastest growing sectors 

within renewable power production and is expected to contribute greatly towards the EU 2020 

target. Large scale offshore wind farms are being implemented all across Europe, but there are still 

many issues and deal breakers within the industry. Numerous Norwegian companies are working on 

different aspects of offshore wind power generation and this master thesis is a part of the 5 year 

project; “High Voltage AC and DC Subsea Cables for Offshore Wind Farms and Transmission Grids”, 

supported by The Norwegian Research Council.  

Offshore power transmission is considered one of the main bottlenecks within the offshore wind 

power industry. Due to the increasing distance from shore, HVDC is going to be the power 

transmission system of choice for many of the new offshore wind farms. The newer VSC HVDC 

technology is preferable as a result of black start capability, better reactive power control and a 

significant reduction of harmonics. However, the resulting HVDC voltage from the rectifier will still 

contain transients originating from the switching of the power electronic components. These 

harmonics can be lowered by installing filters, but this solution is often limited by the offshore 

converter station’s space and cost limitations. The insulation in close proximity to the converter will 

experience the most severe harmonics due to dampening along the cable. This part of the cable also 

experiences the largest mechanical strain, with the cable connection often designed to be quite 

flexible, facilitating the connection to the offshore converter station, and to some degree, reducing 

the mechanical strain on the cable. This does however also reduce the armoring of the cable, making 

this part of the cable more prone to water shielding fracture, which can lead to water intrusion, and 

as a result of the high frequency harmonics, facilitate water tree initiation and growth.  

Water treeing is a degradation mechanism creating structures in polymer insulation under the 

influence of humidity and AC stress. Water trees can grow across and bridge the insulation, resulting 

in breakdown. Water trees can also facilitate the initiation of electrical trees, which in turn can lead 

to partial discharges and breakdown in the insulation. This means that water treeing can reduce the 

lifetime of XLPE insulated cables. 

The research conducted was mainly experimental. Rogowski type test objects were manufactured in 

a plastic lab, with salt particles added on the lower semiconductor to facilitate the initiation of water 

trees. Experiments were then conducted using an experimental setup capable of applying a DC 

voltage with a superimposed high frequency AC voltage, thus simulating the HVDC component and 

the overlaid transients that occur close to the power electronics used for HVDC converters. Two sets 

of experiments were conducted. The first experiments were conducted using the high frequency AC 

component only, while the second round of experiments combined the same high frequency AC 

component, with a DC component.  The two sets of results were compared, with water tree initiation 

and growth being investigated as a function of time. 
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This master thesis consists of four main parts. The first part is made up of chapter 2 and 3. These 

chapters form the backbone of the master thesis, including background on offshore wind and HVDC 

power transmission, as well as a theory chapter on electrical water treeing. Part two consists of 

chapter 4, which describes the preparation of the Rogowski shaped test objects, the experimental 

setup, and how the experiments were conducted. Part three consists of chapter 5 and 6, with 

chapter 5 presenting the experimental results, and chapter 6 covering the assessment of the results 

and the following discussion. Part four consists of chapter 7, the conclusion, and chapter 8, a 

suggestion for further studies and research. This last part concludes the master thesis.  
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2. Background 
 

2.1. Offshore Wind 
Coal and gas powered power plants have been the main source of electrical power generation 

worldwide for the last decades. The threat of global warming and the anticipated decline in fossil fuel 

reserves have started a revolution within the energy sector. In Europe, the EU 2020 target, has 

emerged as the most influential energy policy on the matter and is considered one of the main 

European drivers for renewable energy expansion [1]. The EU 2020 target has been put forth to limit 

global warming, reduce the dependence on oil, gas and coal within the energy sector, and to 

facilitate lower energy prices all over Europe. The main objectives are; for each participating country 

to have a 20% renewable energy generation in the gross consumption, to increase energy efficiency 

by 20%, and to reduce greenhouse gas emission by 20% compared to the 1990-levels. All three goals 

are legally binding and have accelerated the massive growth within the renewable energy sector in 

Europe.  

Wind power, and especially offshore wind power, has emerged as one of the fastest growing sectors 

within renewable energy and is expected to contribute greatly towards the EU 2020 target. Large 

scale offshore wind is being and has already been implemented in Germany, Denmark and The 

United Kingdom, and is in many cases preferable to onshore wind due to factors such as higher and 

more stable wind conditions, geographic locations and less visual pollution. The trend within the 

offshore wind industry implies larger wind farms, further from shore, with the Dogger Bank project in 

the UK being a perfect example [2]. As a result of this, offshore power transmission is being 

considered one of the main bottlenecks within the offshore wind power industry.  

Both high voltage alternating current (HVAC) and high voltage direct current (HVDC) are viable 

solutions for offshore wind farms. Long HVAC cables are affected by capacity charging and need 

extensive and expensive compensation at longer distances. This has led to HVDC being increasingly 

used for offshore power transmission over long distances. With a break even distance of about 70-

100 km, depending on various conditions, but mainly the distance from shore, HVDC is going to be 

the power transmission system of choice for many new offshore wind farms [3].  

2.2. HVDC Converter Technology 
A basic HVDC system consists of two converter stations, one at each end, and a DC circuit between 

the two stations. AC voltage and current is supplied into one of the converter stations, where a 

rectifier converts AC to DC. The DC power is then transferred through the DC circuit and to the 

receiving end, which is connected to the other converter station. Here, an inverter converts the DC 

power back into AC power, which is supplied into the grid. Figure 2.1, on the next page, shows the 

basic topology of a HVDC transmission system. Two different types of HVDC technology are available 

on the market, with the main difference being the choice of converters [3]. The two different 

converters are current source converters and voltage source converters.  
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Figure 2.1. Basic HVDC topology. 

Current Source Converter (CSC) technology, also called Line Commutated Converter (LCC) technology 

or HVDC classic, is a mature technology dating back to 1954 [3]. The technology is in use all over the 

world, interconnecting asynchronous AC systems, such as NORDEL and UCTE, and being used for long 

distance bulk power transfer. CSC HVDC uses semiconducting devices called thyristor valves to 

perform the conversion from AC to DC. Thyristors will only conduct when the anode voltage of the 

thyristor is higher than the cathode voltage [4]. This means that they rely on the external voltage of 

the AC network to operate. The converters also consume reactive power in both rectifier and 

inverter mode, which means external reactive power compensation, is needed. The main limitation 

of CSC HVDC is that it has to be supported by a strong AC network in both ends, making the current 

CSC technology unsuited for radial connections such as the connection of offshore wind farms and 

offshore petroleum industry. 

Voltage Source Converter (VSC) HVDC was first introduced in 1997 and uses IGBTs, Insulated-Gate 

Bipolar Transistors, instead of thyristors [3]. IGBTs are self-commutating, which means they can be 

switched on and off regardless of the current flowing through them. As a result, VSC HVDC can be 

connected to weak AC systems, has no minimum power limit, and can provide black start capability. 

VSC HVDC can also control reactive power and due to advanced control methods, there is a 

significant reduction of harmonics. This means that VSC HVDC requires less AC filtering compared to 

CSC HVDC and also no reactive power compensation, reducing the size of the VSC HVDC converter. 

These factors make VSC HVDC the preferred solution for the connection of offshore wind farms. VSC 

HVDC does however experience slightly higher losses compared to CSC HVDC.  

VSC HVDC converter stations use Pulse Width Modulation (PWM), the Multi-lever Converter, or a 

combination of the two [3]. A typical VSC converter station can be seen in figure 2.2 on the next 

page. The converter is connected to the grid through the AC transformer. The AC filter in 

combination with the phase reactors ensure the sinusoidal form of the AC voltage and reduce 

harmonics. The phase reactors also limit the short circuit currents and define the power flow 

between the AC and DC sides. The converter transforms the current from AC to DC, or vice versa. On 

the DC side, a DC capacitor is used to act as a low inductance path for the turned off converter 

current. It also contributes to harmonic filtering together with the DC reactors.  
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Figure 2.2. Diagram of a VSC HVDC system [3]. 

The resulting DC voltage from the VSC will contain transients originating from the switching of the 

power electronic components. The switching frequency can be in the kHz range, with the resulting 

harmonic frequencies a multiple of the switching frequency [5]. There is a 5 % total harmonic 

distortion (THD) limit for DC to AC conversion below 69 kV, while higher voltage levels have a THD 

limit of 2-3 % [6].  There is however no limit for harmonics occurring during AC to DC conversion. The 

THD can be lowered by installing filters, but this solution is limited by the offshore converter station’s 

space and cost limitations. This means there is a significant risk of harmonics along offshore HVDC 

cables as a result of the rectifier and limited filtering.  

High frequency harmonics will experience dampening along the HVDC cable length, meaning that the 

insulation closest to the rectifiers will experience the most severe harmonics [7]. This part of the 

cable also experiences the largest mechanical strain, and the cable connection is often designed to 

be quite flexible, facilitating the connection to the offshore converter station, and to some degree, 

reducing the mechanical strain on the cable. This does however also reduce the armoring of the 

cable connection, making this part of the cable more prone to water shielding fracture, which can 

lead to water intrusion, and as a result of the high frequency harmonics, facilitate water tree 

initiation and growth.  
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3. Electrical Water Treeing 
 

Water treeing is a degradation mechanism creating structures in polymer insulation under the 

influence of humidity and AC stress. The phenomenon of water treeing was first discovered in the US 

during the late sixties, a few years after the introduction of extruded insulation such as cross-linked 

polyethylene (XLPE). XLPE was introduced as a replacement to paper insulation in medium voltage 

distribution cables. Water treeing drastically reduced the estimated lifetime of these new XLPE 

cables [8]. Consequently, studies on the water treeing phenomenon and the factors influencing the 

initiation and growth of water trees became, and still are, of great importance.  

A water tree is a hydrophilic network within the insulation, consisting of strings of micro voids filled 

with water. Previous research has shown that the craze thickness in polyethylene is typically 0.1 - 0.5 

µm [9]. Water trees are defined by four factors [10]. They are permanent. They have grown due to 

humidity and an electric field. They have a lower electrical strength when wet compared to the 

original polymer, but do not act as a local breakdown path or increase the probability for short 

circuit. Lastly, water trees are also more hydrophilic compared to the original polymer and typically 

have a much higher water content when wet. Water trees can facilitate the initiation of electrical 

trees, which in turn can lead to partial discharges and breakdown in the insulation.  

3.1. Humidity in Polymers 
Water can pass through organic materials, but not through metals and glass, due to the greater 

intermolecular spacing of the organic materials [11]. This means that water is likely to be absorbed 

and diffuse through polymeric materials such as XLPE insulation. Water has three different 

characteristic states in polymers. It can be distributed in between the polymeric chains as dissolved 

water, it can be bound to the surrounding polymers by intermolecular forces, and it can be found as 

liquid water, in the form of small enclosed droplets.  

Henry’s law can be used when considering diffusion through non-polar materials such as XLPE 

insulation and when considering dissolved water within the insulation itself [11]. Henry’s law states 

that there is a linear relationship between the external vapor pressure and the corresponding water 

pressure within the polymer. The water content in polymeric materials will generally increase with 

increasing water temperature. This is a result of the higher vapor pressure that follows a higher 

temperature and the increased movement of the polymeric chains. 

3.2. Types of Water Trees 
Water trees are usually classified into two different types; vented water trees and bow-tie water 

trees [11]. Vented water trees are initiated on the interface between semiconductor and insulation, 

while bow-tie water trees are initiated from impurities within the insulation itself. Figure 3.1 shows 

the difference between a vented water tree and a bow-tie water tree.  
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Figure 3.1. Picture of bow-tie water tree (left) and vented water tree (right). 

Vented water trees are, as previously mentioned, initiated on the interface between the dielectric 

insulation and the semiconducting screen [11]. They grow symmetrically, in the same direction as the 

electrical field, towards the other side of the insulation, with water transported from the 

surroundings via the point of initiation. Impurities, mechanical damage and pollution on either the 

semiconducting screen or the insulation, are preferential sites for the initiation of vented water 

trees. Vented water trees can grow through the insulation, since they are subsequently filled with 

water transported from the root of the tree. This can lead to a breakdown in the insulation. As a 

result of this, vented water trees are usually considered more harmful than bow-tie water trees.  

Bow-tie water trees are initiated from impurities or cavities within the dielectric insulation, with 

water dissolved from the surrounding insulation [11]. They grow symmetrically in the direction of the 

electric field, towards the two interfaces between the semiconducting screens and the dielectric 

insulation. Bow-tie water trees usually have a rapid initial growth, when the availability of dissolved 

water in the surrounding insulation is high, but this growth declines quickly, due to the limited 

humidity within the insulation. This reduces the total length of bow-tie water trees and such trees 

are rarely the reason for breakdown in XLPE insulated cables. Bow-tie water trees can however 

occasionally grow and connect with the interface between the semiconductor and the insulation, 

facilitating a vented water tree, and becoming a source of breakdown in the insulation. The 

difference in growth rate between a typical vented water tree and a typical bow-tie tree is illustrated 

in figure 3.2. 
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Figure 3.2. Typical growth rate for different water tree types [12]. 

3.3. Initiation and Growth 
As previously mentioned, the two requirements for water tree initiation and growth is the 

application of an AC voltage and the presence of electrolyte (usually water) in contact with the 

polymer. A time lapse is often observed between the fulfillment of these conditions and the initiation 

of water tree growth [13]. This time lapse is called inception time. Inception time and water tree 

growth can be defined in terms of water tree length as a function of aging time as seen below in 

figure 3.3.  

 

Figure 3.3. Empirical growth behavior of water trees showing the inception time, td [13]. 

Water trees grow in the direction of the electrical field. They can grow at electrical stress levels of 

less than 1 kV/mm and it is not possible to detect any partial discharges or emission of light during 
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initiation and growth. Factors affecting water tree growth are the availability of water, the degree of 

impurities, the type of polymer, the magnitude and frequency of the applied voltage, and the 

duration of ageing [13]. There are two main theories on the initiation and growth of water trees; the 

mechanical model and the electrochemical model [11]. However, due to the many factors and the 

complexity of the process, the basic mechanism for the initiation and growth of water trees is still 

under debate.  

The mechanical model presumes that water tree initiation and growth is a result of localized 

mechanical over-stressing within the insulation [11]. Typical polyethylene insulation experiences 

large mechanical stress during extrusion and this can facilitate impurities within the insulation. With 

some degree of water saturation throughout the insulation, these impurities can experience a higher 

humidity compared to the rest of the insulation and as a result, higher Maxwell forces. These 

pulsating compressive Maxwell forces acting on enclosed water droplets within the insulation result 

in mechanical stress. Chain scission will occur if the resulting mechanical stresses exceed the local 

mechanical strength of the polymer. The result is crazing zones within the empty space. These zones 

can be filled with water due to diffusion and condensation from the surrounding insulation or the 

bottom of the tree. This will again result in higher Maxwell forces, and the water tree will keep on 

growing in the direction of the electrical field. External mechanical stress can in some cases increase 

the water tree growth. Figure 3.4 below shows the resulting Maxwell stresses of an electrical field 

and a water filled craze.  

 

Figure 3.4. Sketch showing a mechanical model for initiation and growth of vented water trees [7]. 

The electrochemical model assumes that the growth of water trees is mainly a result of localized 

chemical reactions [11]. These reactions are strongly enhanced by the electric field and the 

availability of water, and will result in chain scission and the formation hydrophilic groups such as 

carboxylates at the interface between the polyethylene insulation and such an ion-conducting water 

tree. Hydrophilic groups have a tendency to interact and be dissolved by water and other polar 

substances, and will attract water within the insulation.  Salts are one example of hydrophilic 

molecules. These hydrophilic groups form filamentary paths along the interface, causing enhanced 

diffusion and preferential sites for water condensation, facilitating further water tree growth. 
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The two different models do not necessary contradict each other and the general view is that water 

tree growth is a result of the two processes combined [11]. During chain scission caused by 

mechanical over stressing, radials are formed and these radials will initiate chemical reactions, thus 

contributing to the electrochemical growth of water trees. The result of chemical reactions might be 

reduced mechanical strength and thus lead to mechanical water tree growth. It is hard to distinguish 

between the primary and secondary effect, and most likely both of the mechanisms are involved, 

with the importance of each mechanism depending on the growth conditions. 

Previous research has shown that the rate of water tree initiation and growth can be manipulated by 

changing the magnitude and/or frequency of the applied voltage [13]. It has been concluded that it is 

the resulting electric field and not the applied voltage that is the critical parameter. By increasing the 

applied voltage, and thus the applied electric field, the density of water trees and the length of water 

trees appear to increase. Figure 3.5 below shows the increase in the density of water trees relative to 

the applied electric field. The applied voltage was kept constant, while the applied electric field was 

manipulated by varying the insulation thickness.  

 

Figure 3.5. Number density of water trees as a result of varying applied electrical field. The applied voltage was kept 
constant, while the insulation thickness was varied. [13]. 

By varying the frequency of the applied voltage, previous research has concluded that the water tree 

density increases rapidly when the frequency varies between 600 Hz and 1.16 kHz [13]. This effect 

has not been fully understood, but it has been suggested that mechanical losses at this frequency 

may be significantly higher. The frequency also influences the water tree shape. A low frequency has 

been found to result in shorter and wider water trees, while a higher frequency has been found to 

result in longer and oblong water trees. Other factors such as impurities, the type of insulation and 

the availability of water also contribute to the rate of water tree initiation and growth, but have 

proven harder to quantify through research.   
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4. Methodology 
 

This chapter describes the preparation of test objects, the laboratory setup and the experiments 

conducted.  

4.1. Test Object Preparation 
The laboratory experiments were performed on Rogowski shaped test objects. The test area of a 

Rogowski shaped test object is the bottom of the cup, which has an even electrical field distribution 

suitable for the experiments conducted in this master thesis. A finalized Rogowski test object ready 

for testing consisted of three components: 

1) PE cup 

2) Upper semiconductor  

3) Lower semiconductor with a metal electrode 

The three components were manufactured separately and then combined into a complete Rogowski 

shaped test object. There was a strict focus on cleanness during all parts of the manufacturing 

process as impurities lower the electrical properties of the insulation and had to be avoided at all 

costs. All equipment, tools and areas in contact with the material were cleaned thoroughly with 

isopropanol before use. A laminar air flow bench was used during all parts of the process to keep the 

particle pollution at a minimum. Components showing any visual irregularities or imperfections 

during the manufacturing process were discarded. 

4.1.1. Extrusion  
A standard AC polyethylene material capable of vulcanization was used as insulation. This material is 

used in XLPE insulated high voltage cables with voltages up to 300 kV [14]. The material was 

delivered as pellets and had to be extruded before being shaped into cups. Using extruded 

polyethylene, compared to pellets directly, reduced the chance of cavities and imperfections within 

the insulation.  

 

Figure 4.1. Basic extruder design, excluding extruder head [15]. 
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Extrusion is an industrial production method used to process polyethylene during the manufacture of 

extruded cables. The principle of an extruder can be seen in figure 4.1. The material, which in this 

case was polyethylene pellets, is fed into the extruder through a funnel. A screw within the extruder 

transports the material through the barrel and the material is heated by the heating elements and 

the mechanical work that is carried out by the screw. The screw pitch changes along the barrel and 

this gradually increases the pressure on the material, kneading the material together and preventing 

cavities from emerging. At the end of the extruder, the material flows through an extruder head, 

shaping the material into a practical shape.  

The extruder used in this master thesis had six different temperature zones and had to be dismantled 

and cleaned before use. The temperature settings for the six different zones can be seen in table 4-1 

below. Zone 1 was located at the inlet funnel, while zone 6 was located just before the extruder 

head, at the end of the barrel. The speed of the screw within the extruder was set at 14 rotations per 

minute.   

Table 4-1. Extruder temperature settings. 

Zone Temperature [°C] 

1 117 
2 117 
3 117 
4 117 
5 117 
6 15  

 

A rectangular extruder head was used. This gave the final material a thick tape-form, which is ideal 

for the production of Rogowski type test objects. The material was run through a drum upon leaving 

the extruder head, cooling the material and making sure the material maintained its desired shape. 

The drum had to be run at a speed marginally higher than the speed of the screw. This kept the final 

shape of the material smooth, and prevented the formation of ripple. To reduce the chance of 

impurities within the insulation, the first 50 cm of extruded material was removed. The insulation 

tape was wrapped in aluminum foil after extrusion, before being heated to 80 °C in a heating cabinet. 

The wrapped and heated insulation tape was moved to a laminar air flow bench where the aluminum 

foil was removed and the tape was cut into smaller tablets, weighing about 28 grams each. The 

tablets were stored in a sealed box.   

The extruder was cleaned after use. This was done using cleaning pellets. These pellets melt into 

liquid form, just like polyethylene, but the final material is much softer, and as a result, is much 

easier to remove. The extruder was then dismantled and thoroughly cleaned with a copper brush 

and isopropanol.  

4.1.2. Casting of the PE Cup 
Pre-shaped Rogowski cups were casted from the insulation tablets using casting molds and a 

hydraulic press. The molds were thoroughly cleaned with isopropanol before four layers of release 

agent (Frekote 55-NC) were applied. A five minute break was taken between each layer of release 

agent.  
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The optimal amount of insulation material in each mold was 31 grams and this meant that pellets 

had to be used in addition to the tablets. Since the tablets formed the bottom of the cups, while the 

pellets formed the upper part of the cup, the increased probability of cavities as a result of using 

pellets, should have little impact on the experimental results. Shims with a thickness of 1.5 mm were 

used to obtain an initial insulation thickness of 1.4 mm. The molds were covered in plastic sheeting 

to prevent surplus insulation material from adhering to the press during casting. 

In this first phase of molding, the insulation material was only shaped and not vulcanized. This was 

done by keeping the temperature and the pressure of the hydraulic press within the limits given in 

table 4-2 below. The molds were dismantled after casting and the surplus material was removed 

using a scalpel. The pre-shaped Rogowski cups were placed in sealed plastic bags during storage.  

Table 4-2. Hydraulic press settings for the casting of PE cups. 

Process Temperature[°C] Pressure[tonnes] Duration[minutes] 

Low pressure 118 3.5 55 

High pressure 118 25 12 

Water cooling  25 18 

 

4.1.3. Rolling of Semiconductor 
A black cross-linking polyethylene material, compatible with the used XLPE insulation and specially 

designed for bonded semi conductive screen applications, was used for the manufacture of the 

upper and lower semiconductor. The material was supplied as pellets and was first dried in a vacuum 

chamber, at 60 °C, for a period of three days. This removed any humidity from the material. The 

material was then rolled, before being shaped into the upper and lower semi-conductor 

The roller was located beneath a laminar air flow bench and had two roller elements with individual 

temperature control. The distance between the two roller elements was adjustable and this made it 

possible to wary the thickness of the semiconductor being produced.  

The whole area was thoroughly cleaned with isopropanol before use. A copper knife was used to 

remove old pieces of semiconductor from the roller elements. The temperature of the front roller 

element and the back roller element were put at 105 °C and 115 °C respectively. During the heating 

of the roller elements, the distance between them was at a minimum. Pellets were then added 

between the two roller elements, before they were set to rotate. The distance between the two 

roller elements was gradually increased to 0.50 mm and the rolling continued until the 

semiconductor had acquired a smooth surface at that thickness. The temperature difference made 

the semiconductor adhere to the front roller element and the semiconductor was easily removed 

once the roller had cooled down, before being cut into smaller pieces, and placed in sealed plastic 

bags.  

4.1.4. Upper Semiconductor 
The casting molds used for the production of semiconductor were cleaned thoroughly with 

isopropanol before use. The molds had a diameter of 65 mm and a thickness of 0.5 mm. About 2.8 

grams of semiconductor material was put in each of the casting molds. The casting molds were then 

covered with clean plastic sheeting to protect the semiconductor against impurities and placed in the 

hydraulic press.  The settings of the hydraulic press can be seen in table 4-3. 
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Table 4-3. Hydraulic press settings for the casting of upper and lower semiconductor. 

Process Temperature[°C] Pressure[tonnes] Duration[minutes] 

Low pressure 118 3.5 10 

High pressure 118 25 2 

Water cooling  25 8 

 

The finished circular pieces of upper semiconductor were cut into pieces with a diameter of 54 mm 

and stored in sealed plastic bags.  

4.1.5. Lower Semiconductor with Aluminum Electrode  
The lower semiconductor was manufactured in the same way as the upper semiconductor. The only 

difference being an aluminum electrode, which was attached to the bottom of the semiconductor. 

Aluminum foil with a thickness of 2 mm was cut into rectangles the size of 90x90 mm. One side of the 

foil was brushed with a steel brush. This increased the surface roughness and helped the 

semiconductor adhere better to the aluminum foil. The rectangular pieces of aluminum foil were 

then thoroughly washed in isopropanol and put on the top of the casting molds. The casting molds 

were placed in the hydraulic press and the machine was run with the same setting as for the upper 

semiconductor.  

The surplus semiconductor material and aluminum foil was removed with a scissor after casting. The 

finished circular pieces of lower semiconductor had a diameter of 64 mm and were stored in sealed 

plastic bags. 

4.1.6. Salt Particles 
A 0.1 molar NaCl saline was produced from 0.5844 grams of NaCl and 0.1 liter of demineralized 

water. 20 salt particles were applied on the surface of each lower semiconductor. Salt particles are 

hydrophilic and can attract water within the insulation, increasing the regional humidity and thus 

facilitate water tree initiation and growth. All salt particles were applied in the region of homogenous 

field distribution using a syringe with 0.5 µl capacity. Each droplet was approximated with 0.1 µl of 

the NaCl saline. The droplets were then dried using a vacuum chamber at 60 °C for thirty minutes.  

4.1.7. Vulcanization (cross-linking) 
Vulcanization is a chemical process that converts polymers into more durable materials by forming 

cross-links between the individual polymer chains [14]. Polyethylene can be cross-linked using heat 

and high pressure, causing the material to go through a curing process, preventing future reshaping. 

Cross-linked polyethylene, commonly abbreviated XLPE or PEX, has higher thermal resistance, 

increased tensile and impact strength, higher scratch resistance and is less prone to brittle fracture. 

The chemical resistance of the material is also enhanced. This means that XLPE-insulation can handle 

higher current densities and operational temperatures compared to PE-insulation. XLPE-insulation 

can be operated at a temperature of 125 °C and can sustain short fault-temperatures of 250 °C [11]. 

The PE cup, the upper semiconductor and the lower semiconductor were combined into a complete 

Rogowski shaped test object using vulcanization. The PE cups, with the upper and lower 

semiconductor, were vulcanized in the same casting molds they were casted in, making it easier to 

dismantle the casting molds after vulcanization. Shims with a thickness of 0.45 mm were added on 
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top of the casting molds. This gave the finished test objects an insulation thickness of 1.1 mm. A 

plastic film was placed on top of the casting molds to prevent excess insulation material from 

adhering to the hydraulic press. The hydraulic press was run with the settings given in table 4-4 

below. The high temperature and pressure resulted in vulcanization. Surplus insulation material was 

removed with a scalpel after vulcanization.  

Table 4-4. Hydraulic press settings for vulcanization. 

Process Temperature[°C] Pressure[tonnes] Duration[minutes] 

Low pressure 170 3.5 1 

High pressure 170 25 45 

Water cooling  25 18 

 

4.1.8.  Relaxation and Degassing 
Mechanical relaxation was performed to improve the mechanical properties of the XLPE-insulation. 

This was done by placing the vulcanized Roowski shaped test objects in a ventilated heating cabinet 

at 130 °C. The relaxation process removed some of the mechanical stress acquired by the test objects 

during vulcanization.  The heat was turned down to 90 °C once the XLPE-insulation turned 

transparent.  The test objects were then kept in the heating cabinet at this temperature for three 

days. This last process is called degassing and removed volatile byproducts from the vulcanization 

process [14].  

4.1.9. Preconditioning with Demineralized Water 
The test objects were preconditioned with demineralized water before testing. This was done to 

saturate the XLPE insulation with water and to facilitate the initiation of water trees. The test objects 

were filled with demineralized water and then sealed off using a XLPE cover. Evaporation of water 

was prevented by sealing the lid with silicone. The test objects were left in a heating cabinet at 30 °C 

for four weeks to ensure saturation all the way through the XLPE insulation. Figure 4.2 below 

presents a complete Rogowski shaped test object ready for ageing. 

 

Figure 4.2. Complete Rogowski shaped test object ready for testing [16]. 
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4.2. Experimental Setup 
An experimental setup capable of applying a DC voltage with a superimposed high frequency AC 

component was used to simulate the HVDC component and the overlaying transients that occur 

close to the power electronics used for HVDC converters. The experimental setup used in this master 

thesis was developed by Petter I. Nodeland [17] and further improved by Martin Amundsen [18]. 

Figure 4.3 presents a principal sketch of the experimental setup.  

 

Figure 4.3. Principal sketch of the experimental set-up. The test object can be supplied with DC from the HVDC source on 
the left side and/or a high frequency AC component through a high frequency transformer supplied from an IGBT 

converter on the right side [16]. 

As seen in figure 4.3 above, the test object is represented by a capacitance. The left side of the test 

object is connected to a 50 kV Spellman DC voltage source. The voltage source is protected by a 10 

MΩ short circuit resistance in case of test object breakdown. On the other side of the test object a 0-

200 V DC source supplies an IGBT converter. The IGBT converter has its frequency and amplitude 

controlled by a signal generator and is connected to the test object through a high frequency 

controller. This allows the application of a variable high frequency AC voltage across the test object.  

A 10 nF capacitor is located on the DC side of the test object to create a path for the AC current. A 

complete figure of the electrical circuit and in-depth explanations regarding the experimental setup 

and the individual components can be found in [17].  

Further security measures have been taken to protect the components in the electrical circuit. A 

sphere gap has been placed in parallel with the high frequency transformer to protect the 

transformer against high voltages in the event of breakdown. A gas sphere gap has been placed on 

the primary side of the transformer as further protection. The DC voltage and current was measured 

at the sphere gaps on the high voltage side of the high frequency transformer. The software LabVIEW 

was used to supervise the magnitude of this voltage and current.  A voltage drop at the DC source 

and/or a rapid increase of current through the IGBT, which both can occur during breakdown, would 

result in a disconnection of the voltage sources.  

The test objects were located in a heating cabinet at all times during testing. The temperature was 

set at 30 °C and kept constant during testing. The AC-voltage was imposed on the lower semi-

conductor, while the DC-voltage was imposed on the upper semi-conductor through a metal 

electrode. Two different rounds of experiments were conducted. The first set of experiments was 

conducted using the high frequency AC component only, while the second round of experiments 

combined the same high frequency AC component, with a superimposed DC component. For both 
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sets of experiments, nine Rogowski style test objects were aged. Three test objects were removed 

after one week of ageing, another three after two weeks of ageing, and the final three test objects 

were removed after three weeks of ageing. 

4.2.1. High Frequency AC Component  
Experiments were first conducted with the high frequency AC component as the only voltage 

imposed across the test objects. The peak to peak magnitude of the high frequency AC component 

was calculated by keeping the resulting electrical field strength in the insulation equal to experiments 

previously conducted on the same topic [12]. The calculation can be seen in equation 4.1 below. 

 
                 

  

  
                

 

(4.1) 
 

The frequency of the signal generator was set at 15 kHz and the voltage amplitude was set at 5 V. 

The DC source feeding the AC-side was then increased until a resulting high frequent AC voltage with 

a magnitude of 4.51 kV was obtained. The 15 kHz frequency is higher than the frequency which can 

be expected in real transmission networks [19], but has been chosen as it is within the optimal 

frequency range of the transformer. The resulting AC stress can be seen below in figure 4.4. 

 

Figure 4.4. Resulting AC stress on the high voltage side of the high frequency transformer. 

As seen in figure 4.4, the resulting AC stress was of a triangular shape with a frequency of 15 kHz. A 

Fast Fourier Transform was performed with the oscilloscope to find the harmonics. Figure 4.5 on the 

next page illustrates how the AC voltage contained a significant share of harmonics with different 

frequencies, all a multiple of 15 kHz.   
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Figure 4.5. The different frequency components of the high frequency AC component. 

4.2.2. DC Voltage with Superimposed High Frequency AC Component  
A new set of experiments were conducted, but this time with a DC voltage imposed across the test 

objects in addition the high frequency AC component. The DC source was turned on before the AC 

source. The voltage of the DC component was set at 13,2 kV, while the AC component had the same 

peak to peak value as in the previous set of experiments, corresponding to a ripple of 17.1 %. The 

resulting electrical field strength of the DC component is calculated in equation 4.2 below.  

 
    

 

 
 
       

   
         

 

(4.2) 
 

 

4.3. Water Tree Analysis 
All the Rogowski shaped test objects were disassembled after testing. The bottom part, consisting of 

the two semiconductors and the insulation, was sliced into 0.5 mm thick cuts using a microtron. Sixty 

cuts were taken from each test object, ensuring that the area being investigated had been exposed 

to a homogenous electrical field. The cuts were dyed with methylene blue using the CIGRE standard 

methylene blue procedure. The ingredients were mixed in a glass container using a magnetic stirrer 

and the mixing ratio shown below in table 4-5. 

Table 4-5. Mixing ratio for CIGRE standard methylene blue procedure. 

Ingredient Amount 

Methylene blue 54 g 
Sodium carbonate (Na2CO3) 4,5 g 

Tap water 1,8 l 

 

The container was then covered with aluminum foil to reduce evaporation and put in a heating 

cabinet at 67.5 °C. The mixing and dyeing procedure can be seen in table 4-6. 
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Table 4-6. Procedure for the mixing of methylene blue and the dyeing of insulation cuts. 

Process Time [h] 

Magnetic stirrer on 5 
Magnetic stirrer off 20 
Magnetic stirrer on 1.5 

Magnetic stirrer off and cuts placed 
in methylene blue mixture for dyeing 

4.5 

 

The cuts were removed from the container after dyeing, rinsed with water, and placed in a glass 

container with warm water for a day. This last process improved the coloring of the water trees.  

All cuts were investigated with an optical microscope at 25-50 times of magnification. All water trees 

were photographed and measured using the software ZEN 2011. Cuts containing water trees were 

then put aside, with the type of water tree and the length of the water tree being noted. The 

initiation location was also noted down in the case of vented water trees (upper or lower 

semiconductor).   
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5. Results 
 

Two sets of experiments were conducted in this master thesis. The first set of experiments was 

conducted using a high frequency AC component only, while the second set of experiments was 

conducted using a DC voltage with a superimposed high frequency AC component. All test objects 

experienced significant water tree initiation and growth. The water tree analysis found vented water 

trees, initiated at both the upper and lower semiconductor, and bow-tie water trees, in both sets of 

experiments.  

5.1. High Frequency AC Component 
All test objects exposed to a high frequency AC component experienced water tree initiation and 

growth. The water trees were quite evenly distributed among the different test objects. Tables 

showing the water trees observed in each individual test object can be found in appendix A. 

5.1.1. Development of the Longest Water Tree 
The longest observed water tree after one week of ageing was a bow-tie water tree with a length of 

471 µm. This corresponded to 43 % of the total insulation thickness. The water tree is presented in 

figure 5.1 below. 

 

Figure 5.1. Longest observed water tree after one week of ageing exposed to a high frequency AC component only. 

After two weeks of ageing, the longest observed water tree was a vented water tree from the upper 

semiconductor, and at 477 µm, only slightly longer than the one observed after one week of ageing. 

This length corresponded to 43 % of the total insulation thickness. The water tree is shown in figure 

5.2. 
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Figure 5.2. Longest observed water tree after two weeks of ageing exposed to a high frequency AC component only. 

After three weeks of ageing, the longest observed water tree was a bow tie water tree with a length 

of 607 µm, corresponding to 55 % of the total insulation thickness. The water tree is presented below 

in figure 5.3. 

 

Figure 5.3. Longest observed water tree after three weeks of ageing exposed to a high frequency AC component only. 

There was only a slight increase in the length of the longest observed water tree from week to week. 

Two of the three water trees were bow-tie water trees, but it should be noted that many of the 

vented water trees that were observed in the insulation were of almost comparable length to these 

bow-tie water trees. Figure 5.4 depicts the development of the longest observed water tree as a 

function of the ageing duration.  
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Figure 5.4. Longest observed water tree as a function of time. Test objects were exposed to a high frequency AC 
component only. 

5.1.2. Bow-tie Water Trees 
Bow-tie water trees were observed in all but one test object. 7 bow-tie water trees were observed 

after one week of ageing. After two weeks of ageing, 22 bow-tie water trees were observed. After 

three weeks of ageing, the number had increased even further and 53 bow-tie water trees were 

observed in the three test objects. Figure 5.5 below illustrates the increase in observed bow-tie 

water trees as a function of ageing time. 

 

Figure 5.5. Number of observed bow-tie water trees as a function of time. Test objects were exposed to a high frequency 
AC component only. 

As seen in table 5-1, the average length of the observed bow-tie water trees was lower after two and 

three weeks of ageing, compared to one week of ageing, while the relative standard deviation 

increased. 
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Table 5-1. The average length and standard deviation of the observed bow-tie water trees. Test objects were exposed to 
a high frequency AC component only. 

Ageing time [weeks] Average length [µm]  Standard deviation [µm] 

1 333.9 124.3 

2 245.6 96.7 

3 275.5 128.0 

 

5.1.3. Vented Water Trees from Upper Semiconductor 
Vented water trees from the upper semiconductor were observed in all test objects. After one week 

of ageing, 21 vented water trees were observed from the upper semiconductor. The number 

increased to 34 after two weeks of ageing. In the last three test objects, which had aged for three 

weeks, a total of 26 vented water trees from the upper semiconductor were observed. Figure 5.6 

below depicts the number of observed vented water trees from the upper semiconductor as a 

function of the ageing duration.  

 

Figure 5.6. Number of observed vented water trees from the upper semiconductor as a function of time. Test objects 
were exposed to a high frequency AC component only. 

The average length of the vented water trees from the lower semiconductor increased slightly 

between two and three weeks of ageing, while the standard deviation remained stable.  Table 5-2 

presents the average length and the corresponding standard deviation for vented water trees at the 

lower semiconductor.  

Table 5-2. The average length and standard deviation of the observed vented water trees from the upper semiconductor. 
Test objects were exposed to a high frequency AC component only. 

Ageing time [weeks] Average length [µm]  Standard deviation [µm] 

1 301.2 90.2 

2 295.3 90.0 

3 337.0 94.3 

 

21 

34 

26 

0

5

10

15

20

25

30

35

40

1 2 3

N
u

m
b

e
r 

o
f 

tr
e

e
s 

Ageing time [weeks] 



27 
  

5.1.4. Vented Water Trees from Lower Semiconductor 
Only one vented water tree was observed at the lower semiconductor after one week of ageing. 6 

vented water trees were observed at the lower semiconductor after two weeks of ageing. After three 

weeks of ageing, the number of vented water trees observed at the lower semiconductor had 

drastically increased to 35. Figure 5.7 below illustrates the almost exponential increase in vented 

water trees from the lower semiconductor as a function of ageing time.  

 

Figure 5.7. Number of observed vented water trees from the lower semiconductor as a function of time. Test objects 
were exposed to a high frequency AC component only. 

The average length of the observed vented water trees from the lower semiconductor increased with 

the ageing time and can be seen in table 5-3 below. The standard deviation declined between two 

and three weeks of ageing, but remained large relative to the average length.  

Table 5-3. The average length and standard deviation of the observed vented water trees from the lower semiconductor. 
Test objects were exposed to a high frequency AC component only. 

Ageing time [weeks] Average length [µm]  Standard deviation [µm] 

1 64 - 

2 120.3 91.3 

3 170.9 74.8 

 

5.1.5. Aggregated Water Tree Density and Average Water Tree Length 
The aggregated water tree density was acquired by combining the number of observed bow-tie 

water trees with the number of observed vented water trees from both the upper and the lower 

semiconductor. After one week of ageing, the total number of observed water trees was 29. The 

density of observed water trees increased drastically with the ageing time.  Another week of ageing 

increased the number to 62, while three weeks of ageing resulted in 114 observed water trees. 

Figure 5.8 depicts the trend in aggregated water tree density as a function of the duration of ageing.  
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Figure 5.8. Aggregated number of observed vented and bow-tie water trees as a function of time. Test objects were 
exposed to a high frequency AC component only. 

The average aggregated water tree length declined as the ageing duration increased. After one week 

of ageing the average water tree length was 300.9 µm, with a standard deviation of 106.7 µm. Two 

weeks of ageing resulted in an average aggregated water tree length of 260.8 µm, with a standard 

deviation of 104.7 µm. After three weeks of ageing, the resulting aggregated water tree length was 

257.4 µm, with a standard deviation of 122.9 µm. The average aggregated water tree length as a 

function of ageing duration can be seen in figure 5.9 below. 

 

Figure 5.9. Average aggregated water tree length as a function of time. Test objects were exposed to a high frequency AC 
component only. 

5.2. DC Voltage with Superimposed High Frequency AC Component  
All test objects exposed to a DC voltage with a superimposed high frequency AC component 

experienced water tree initiation and growth. Some variations in water tree density were observed 

for test objects subjected to the same duration of ageing. Tables showing the water trees observed in 
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each individual test object can be found in appendix B.  Two out of three test objects experienced 

breakdown before enduring three complete weeks of ageing. It has been assumed that the 

breakdown was caused by water trees bridging the insulation, as this seems the only plausible 

explanation. The results from the only test object to experience three complete weeks of ageing has 

been multiplied with 3 to make linear regression possible. This is a crude simplification and has to be 

kept in mind when assessing the graphs. The data could also have been presented as the number of 

water trees per cut, or water trees per test object, but none of these approaches would have 

improved the statistical credibility. 

5.2.1. Development of the Longest Water Tree 
The longest observed water tree after one week of ageing was a vented water tree from the lower 

semiconductor. The water tree was 528 µm long, corresponding to 48 % of the total insulation 

thickness, as shown in figure 5.10 below.  

 

Figure 5.10. Longest observed water tree after one week of ageing exposed to a DC voltage with a superimposed high 
frequency AC component.  

After two weeks of ageing, the longest observed water tree was a vented water tree from the upper 

semiconductor. The water tree was 476 µm long, corresponding to 43 % of the total insulation 

thickness. The water tree is presented in figure 5.11 below.  

 

Figure 5.11. Longest observed water tree after two weeks of ageing exposed to a DC voltage with a superimposed high 
frequency AC component. 
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Two out of three test objects experienced breakdown before completing three weeks of ageing. This 

was most likely a result of a water trees bridging the insulation. Hence, the longest water tree before 

three weeks of ageing can be said to have been 1100 µm, corresponding to 100 % of the total 

insulation thickness. The first breakdown occurred after two weeks and 52 hours of ageing and is 

shown below in figure 5.12. The second breakdown occurred after two weeks and 55 hours of 

ageing.  

 

Figure 5.12. Breakdown observed after two weeks and 52 hours of ageing exposed to a DC voltage with a superimposed 
high frequency AC component. 

There was a slight reduction in the length of the longest observed water tree between one and two 

weeks of ageing. However, after three weeks of ageing, the longest water tree bridged the insulation 

and caused a breakdown. Figure 5.13 below depicts the development of the longest observed water 

tree as a function of ageing time.   

 

Figure 5.13. Longest observed water tree as a function of time. Test objects were exposed to a DC voltage with a 
superimposed high frequency AC component.  

5.2.2. Bow-tie Water Trees 
Bow-tie water trees were observed in all test objects. 8 bow-tie water trees were observed after one 

week of ageing. After two weeks of ageing, the number of observed bow-tie water trees had 
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increased to 11. After three weeks of ageing, 11 bow-tie water trees were observed in the one test 

object that completed three whole weeks of ageing. Figure 5.14 illustrates the increase in the 

number of observed bow-tie water trees as a function of ageing time. The number of observed bow-

tie water trees in the only test objects to complete three weeks of ageing has in this figure been 

multiplied by 3. 

 

 

Figure 5.14. Number of observed bow-tie water trees as a function of time. Test objects were exposed to a DC voltage 
with a superimposed high frequency AC component.  

The average length and the corresponding standard deviation for the bow-tie water trees observed 

in the insulation can be seen below in table 5-4. There was a drastic increase in the standard 

deviation between two and three weeks of ageing.  

Table 5-4. The average length and standard deviation of the observed bow-tie water trees. Test objects were exposed to 
a DC voltage with a superimposed high frequency AC component. 

Ageing time [weeks] Average length [µm]  Standard deviation [µm] 

1 396.9 136.1 

2 211.1 65.1 

3 290.3 140.7 

 

5.2.3. Vented Water Trees from Upper Semiconductor 
Vented water trees from the upper semiconductor were observed in all test objects. 8 vented water 

trees were observed from the upper semiconductor after one week of ageing. After two weeks of 

ageing, 18 vented water trees were observed from the upper semiconductor. 8 vented water trees 

were observed from the upper semiconductor in the single test object that completed three weeks 

of ageing. Figure 5.15 illustrates the number of observed vented water trees from the upper 

semiconductor as a function of ageing time. The number of observed vented water trees from the 

upper semiconductor in the only test object to complete three weeks of ageing has in this figure 

been multiplied by 3. 
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Figure 5.15. Number of observed vented water trees from the upper semiconductor as a function of time. Test objects 
were exposed to a DC voltage with a superimposed high frequency AC component. 

The average length and the corresponding standard deviation for the vented water trees observed 

from the upper semiconductor can be seen in table 5-5 below. There was a drastic increase in the 

standard deviation between two and three weeks of ageing. 

Table 5-5. The average length and standard deviation of the observed vented water trees from the upper semiconductor. 
Test objects were exposed to DC voltage with a superimposed high frequency AC component. 

Ageing time [weeks] Average length [µm]  Standard deviation [µm] 

1 331.4 89.4 

2 326.7 85.6 

3 253.3 125.7 

 

5.2.4. Vented Water Trees from Lower Semiconductor 
Numerous vented water trees from the lower semiconductor were observed in all test objects. After 

one week of ageing, a total of 23 vented water trees were observed from the lower semiconductor. 

13 of the vented water trees were observed in one test object, while the two other test objects 

experienced 5 each. 64 vented water trees were observed from the lower semiconductor after two 

weeks of ageing. Only 13 vented water trees were observed from the lower semiconductor in the 

single test object that completed three weeks of ageing. Figure 5.16 presents the number of vented 

water trees observed from the lower semiconductor as a function of ageing time. The number of 

vented water trees from the lower semiconductor in the only test object to complete three weeks of 

ageing has in this figure been multiplied by 3.  

8 

18 

24 

0

5

10

15

20

25

30

1 2 3

N
u

m
b

e
r 

o
f 

tr
e

e
s 

Ageing time [weeks] 



33 
  

 

Figure 5.16. Number of observed vented water trees from the lower semiconductor as a function of time. Test objects 
were exposed to a DC voltage with a superimposed high frequency AC component. 

As seen in table 5-6 below, the average length of the observed vented water trees from the lower 

semiconductor increased with the increasing duration of ageing.  The standard deviation increased 

drastically between two and three weeks of ageing.  

Table 5-6. The average length and standard deviation of the observed vented water trees from the lower semiconductor. 
Test objects were exposed to a DC voltage with a superimposed high frequency AC component. 

Ageing time [weeks] Average length [µm]  Standard deviation [µm] 

1 170.6 87.4 

2 206.7 81.4 

3 300.6 152.3 

 

5.2.5. Aggregated Water Tree Density and Average Water Tree Length 
The aggregated water tree density was acquired by combining the number of observed bow-tie 

water trees with the number of observed vented water trees from both the upper and the lower 

semiconductor. After one week of ageing, a total of 39 water trees were observed in the insulation. A 

significant increase was observed between one and two weeks of ageing, and a total of 93 water 

trees were observed after two weeks of ageing. A total of 33 water trees were observed in the only 

test object to complete three weeks of ageing. Figure 5.17 depicts the increase in the aggregated 

number of observed water trees as a function of ageing time. The number of observed water trees in 

the single test object to complete three weeks of ageing has in this figure been multiplied by a factor 

of 3.  
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Figure 5.17. Aggregated number of observed vented and bow-tie water trees as a function of time. Test objects were 
exposed to a DC voltage with a superimposed high frequency AC component. 

After one week of ageing, the observed water trees had an average length of 229.5 µm, with a 

standard deviation of 120.6 µm. Another week of ageing resulted in an observed average length of 

230.4 µm and a standard deviation of 92.6 µm. After three weeks of ageing, the average aggregated 

water length was 285.2 µm, with a standard deviation of 138.9 µm. The average aggregated water 

tree length as a function of the ageing time can be seen below in figure 5.18. 

 

Figure 5.18. Average aggregated water tree length as a function of time. Test objects were exposed to a DC voltage with 
a superimposed high frequency AC component. 
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6. Discussion 

6.1. High Frequency AC Component 
All test objects exposed to a high frequency AC component experienced water tree initiation and 

growth during ageing. The length of the longest observed water tree increased with an increasing 

ageing time, confirming previous research [7]. The longest tree after two weeks of ageing was just 

marginally longer than the longest tree after one week of ageing. However, the longest tree after 

three weeks of ageing was 27% longer compared to the longest water tree observed after two weeks 

of ageing. This water tree measured 607 µm, corresponding to 55% of the total insulation thickness.  

Two of the three respective water trees were bow-tie water trees. As mentioned in chapter 3, bow-

tie water trees generally have a rapid initial growth, which then declines quickly. This could support 

the factum that many of the long water trees are bow-tie water trees, and also the fact that the 

observed growth has stagnated after the first week. However, some of the observed vented water 

trees were of almost comparable length to these bow-tie trees. These vented water trees could, with 

prolonged ageing, have led to a breakdown. Because the first test objects were removed after one 

complete week of ageing it is hard to say anything concrete about the water tree inception time.  

The number of observed bow-tie water trees increased with an increasing duration of ageing. This 

increase, combined with the declining average bow-tie water tree length, and an increasing relative 

standard deviation, indicated a continuous initiation of new bow-tie water trees.  

A significant number of vented water trees were observed in the test objects. After one week of 

ageing, all but one of the 22 observed vented water trees had been initiated at the upper 

semiconductor. The number of observed vented water trees from the upper semiconductor 

remained quite stable, numbering 34 after two weeks and 26 after three weeks of ageing. The 

average length of the vented water trees from the upper semiconductor was of comparable size after 

the first and the second week of ageing. However, after three weeks of ageing, there was a slight 

increase in the average length. The standard deviation was practically the same for all three ageing 

durations. This indicates an early initiation and quick initial growth rate, with a slower growth and a 

lower rate of initiation as the ageing continued past the first week.   

As mentioned in chapter three, impurities on the interface between semiconductor and insulation 

can act as preferential sites for water tree initiation and significantly increase the initiation rate of 

vented water trees. The amount of vented water trees observed from the upper semiconductor, 

combined with observations made in the microscope, have indicated that there might be a problem 

with the old casting molds used in this master thesis and that these have resulted in irregularities and 

impurities on the interface between upper semiconductor and the insulation. Figure 6.1 gives an 

example of such an impurity.  
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Figure 6.1. Impurity and resulting vented water tree from upper semiconductor. 

Only one vented water tree was observed from the lower semiconductor after one week of ageing. 

After two weeks of ageing a total of six water trees were observed. Five of these trees were observed 

in one test object. However, after three weeks of ageing, the number had increased drastically, and a 

total of 35 vented water trees were observed from the lower semiconductor. All three test objects 

aged for three weeks experienced vented water tree growth from the lower semiconductor, with the 

respective numbers being; 12, 16 and 5 water trees. One plausible explanation is that the initial 

saturation time of four weeks was insufficient and that the required humidity needed for the 

initiation of vented water trees at the lower semiconductor might have been attained during the 

ageing process. The average length after three weeks of ageing was 170.9 µm, with a standard 

deviation of 74.8 µm. This indicates a large dispersion, as the standard deviation is almost 44% of the 

average water tree length. The average length is also much lower compared to the venter water 

trees initiated at the upper semiconductor. This further strengthens the assumption made on lacking 

saturation. 

The insufficient initial saturation at the lower semiconductor, combined with the impurities observed 

on the upper semiconductor, makes it hard to evaluate the effect of the salt particles. However, the 

exponential increase in the initiation of vented water trees from the lower semiconductor between 

two and three weeks of ageing gave an indication of the effect salt particles could have had under 

more optimal conditions.  

As seen in figure 6.2, bow-tie water trees and vented water trees from the lower semiconductor 

constituted the main contribution to the increasing number of observed water trees during the 

ageing process. This further emphasizes the factum that impurities and the unsaturated insulation 

might have led to the initial vented water trees from the upper semiconductor, but as the ageing 

time increased, new water trees were formed within the insulation as bow-tie water trees or as 

vented water trees at the preferential sites created by the salt particles at the lower semiconductor.  
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Figure 6.2. Number of observed water trees by type as a function of time. Test objects were exposed to a high frequency 
AC component only. 

The aggregated number of observed water trees experienced an almost linear increase during the 

ageing process. There was also a decline in the average water tree length, while the standard 

deviation remained approximately the same for one and two weeks of ageing. This means that the 

respective standard deviation given as a percentage, increased from 35.5% to 40.1%. After three 

weeks of ageing, the average length was 257.4 µm, with a standard deviation of 122.9 µm, 

accounting for 48% of the average water tree length. The increasing dispersion and the declining 

average water tree length is a result of the continuous initiation of new water trees and the slow 

growth of the existing water trees. 

6.2. DC Voltage with Superimposed High Frequency AC Component  
All test objects exposed to a DC voltage with a superimposed high frequency AC component 

experienced water tree initiation and growth. However, two out of three test objects experienced 

breakdown before completing three weeks of ageing. This greatly reduced the number of 

investigated cuts from test objects subjected to three complete weeks of ageing and reduced the 

statistical credibility of these results. To make linear regression possible, the number of water trees 

found in the only test object aged for the complete period of three weeks had to be multiplied by 3. 

This crude simplification and has to be kept in mind when evaluating the experimental results for 

three weeks of ageing.  

A slight reduction in the length of the longest observed water tree was experienced between one 

and two weeks of ageing. The decline corresponded to 10% of the length, and although minor, 

contradicts with previous research [7]. It has been assumed that this error is a result of the small 

sample pool. Additionally, the only test object to complete three weeks of ageing contained water 

trees above 600 µm, while the two other test objects experienced breakdown before completing 

three weeks of ageing. The breakdowns were most likely a result of a water tree bridging the 

insulation, having grown to 1100 µm, which is 100% of the total insulation thickness. This indicates 

that the length of the longest observed water tree increased with an increasing ageing time. It is 

uncertain whether the breakdowns were caused by vented water trees, bow-tie water trees, or 

water trees growing into each other, but it clearly indicates the dangers related to water tree 
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initiation and growth, and also that an ageing duration of three weeks was more than sufficient for 

experiments on Rogowski style test objects with an insulation thickness of 1.1 mm.  

Bow-tie water trees and vented water trees from the upper semiconductor were observed in all test 

objects subjected to a DC voltage with a superimposed high frequency AC component. The number 

of bow-tie water trees and the number of vented water trees from the upper semiconductor were 

both found to increase with the duration of ageing. As a result of more water trees being initiated, 

they also experienced a decreasing average water tree length. A significant increase in the standard 

deviation was observed for both bow-tie water trees and vented water trees from the upper 

semiconductor from two to three weeks of ageing. By using bow-tie water trees as an example, one 

can see that the standard deviation increased with 116% between two and three weeks of ageing. 

This indicates a high dispersion and reduces the confidence one can have in the experimental results 

for three weeks of ageing and is a direct consequence of having only one test object subjected to 

three complete weeks of ageing. Many of the observed vented water trees initiated at the upper 

semiconductor were a result of imperfections on the interface between semiconductor and 

insulation. 

Vented water trees from the lower semiconductor were observed to be dominant for all three 

periods of ageing. This was arguably a direct result of the hydrophilic sodium chloride particles acting 

as preferential sites for water tree initiation and growth. The vented water trees from the lower 

semiconductor were also observed to have a lower average tree length and a higher relative 

standard deviation compared to vented water trees from the upper semiconductor. This is a result of 

the accelerated water tree initiation rate, with new trees leading to a lower average water tree 

length and a higher dispersion.  

The aggregated number of observed water trees was observed to increase with the duration of 

ageing. Between one and two weeks of ageing, the number increased with 138%. Between two and 

three weeks there was only a minor increase, but this was arguably a result of the small sample pool 

for three weeks of ageing, as the number of water trees observed in the only test object to complete 

three weeks of ageing was similar to the number observed in the test objects subjected to two weeks 

of ageing. Two more test objects would most likely have resulted in a larger increase in the 

aggregated number of observed water trees. Although the number of vented water trees from both 

the upper and lower semiconductor, as well as the number of bow-tie water trees increased with an 

increasing ageing duration, figure 6.4 clearly illustrates how vented water trees from the lower 

semiconductor formed the main contribution to the aggregated number of observed water trees. 

This was probably a direct consequence of the hydrophilic salt particles. The number of observed 

water trees for the only test object to complete three weeks of ageing has in this figure been 

multiplied by 3.  
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Figure 6.3. Number of observed water trees by type as a function of time. Test objects were exposed to a DC voltage with 
a superimposed high frequency AC component. 

The average aggregated water tree length was observed to increase with an increasing duration of 

ageing. The increase was negligible between one and two weeks of ageing, while it was observed to 

increase greatly between two and three weeks of ageing. The increase in standard deviation 

indicates the problem with such a small sample pool for three weeks of ageing yet again, and it 

should be pointed out that the continuous initiation of new water trees combined with a slow 

existing water tree growth should have resulted in a quite stable, if maybe declining, average 

aggregated water tree length.  

6.3. Comparison of Results  
Both sets of experiments resulted in significant water tree initiation and growth. Additionally, both 

the length of the longest water tree and the aggregated water tree density were observed to 

increase with an increasing duration of ageing. The water trees from both sets of experiments were 

also of comparable form. All water trees were oblong and grew in the direction of the electrical field. 

Some bow-tie water trees were especially oblong, and seemed to consist of only one or two strings 

of micro voids. This corresponds with previous research [13] and is a direct result of the high 

frequency of the AC component. The two breakdowns experienced during testing with a DC voltage 

with a superimposed high frequency AC component greatly reduced the statistical credibility of the 

results for three weeks of ageing. As a result, when comparing the two sets of experiments, the two 

first weeks of ageing have been emphasized.  

After one week of ageing the longest observed water tree was 12 % longer in the test objects 

exposed to a DC voltage and a superimposed high frequency AC component, compared to the test 

objects subjected to a high frequency AC component only. By assuming that the breakdowns were 

caused by water trees bridging the insulation, this difference increased to 81% after three weeks of 

ageing. The average aggregated length of the observed water trees was however lower for the 

experiments conducted with a DC voltage and a superimposed high frequency AC component, but 

this was arguably just a consequence of the higher water tree initiation rate. It should also be noted 

that the length of the longest water tree is most important when considering the consequences of 

water tree degradation. Even though the average water tree length might be small, one long water 
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tree bridging the insulation is enough to cause a breakdown. Figure 6.4 below presents the length of 

the longest observed water tree for the two sets of experiments as a function of time.  

 

Figure 6.4. The longest observed water tree in each of the two sets of experiments as a function of time. 

The DC component was observed to induce a higher water tree initiation rate. When comparing test 

objects subjected to one week of testing, the test objects subjected to a DC voltage with a 

superimposed high frequency AC component  were observed to experience 34% higher water tree 

density. This percentage increased to 50% after two weeks of ageing. Vented water tree growth at 

the lower semiconductor was observed as the most significant difference between the two sets of 

experiments. The experiments conducted with a DC component with a superimposed high frequency 

AC component experienced significant vented water tree initiation at the lower semiconductor 

during the first week of ageing. In comparison, experiments conducted with a high frequency AC 

component only, experienced a significant initiation of vented water trees at the lower 

semiconductor between two and three weeks of ageing.  Figure 6.5 illustrates the difference in the 

number of observed vented water trees at the lower semiconductor between the two sets of 

experiments as a function of the ageing time. The number of observed vented water trees from the 

lower semiconductor in the only test object to complete three weeks of ageing exposed to a DC 

voltage with a superimposed high frequency AC component has in this figure been multiplied by 3.  
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Figure 6.5. The number of vented water trees initiated at the lower semiconductor in each of the two sets of experiments 
as a function of time. 

As mentioned in chapter three, the two requirements for water tree initiation and growth are the 

application of an AC voltage and the presence of electrolyte, which in this case was demineralized 

water. Both sets of experiments were conducted under near identical conditions, with the only 

difference being the DC component.  The mechanism for the increase in water tree initiation and 

growth due to the DC component has not been fully understood. One theory is that the DC 

component has resulted in local field amplification at the salt particles and thus facilitated a faster 

saturation. The result is earlier water tree initiation, leading to a higher number of vented water 

trees from the lower semiconductor, and an overall higher aggregated number of water trees 

compared to the experiments conducted with a high frequency AC component only. As a result of 

this, in addition to the two breakdowns experienced, it could be argued that a DC component, in 

combination with a superimposed high frequency AC component, increases water tree degradation 

within XLPE insulation. This contradicts with earlier research [20]. 

All test objects were produced identically; with the same equipment and the same materials. 

Additionally, test objects showing any visual irregularities or imperfections were discarded. This 

means that the variations between individual test objects were small. However, some variations 

between the individual test objects might have occurred, and can have had an impact on the 

experimental results. In addition, significant imperfections were observed with the microscope at the 

upper semiconductor, and these have arguably acted as preferential sites for vented water tree 

initiation and facilitated vented water tree growth at this interface. This was an issue for all test 

objects, and cannot be said to have an impact on the comparison between the two sets of 

experiments.    
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7. Conclusion 
 

The main objective of this master thesis was to study water tree degradation within wet XLPE 

insulation with relevant voltage stresses applied. An experimental setup capable of applying a DC 

voltage with a superimposed high frequency AC component was used to simulate the HVDC 

component and the overlaid transients that occur close to the power electronics used for AC to DC 

conversion. Rogowski shaped test objects with an insulation thickness of 1.1 mm and with 20 sodium 

chloride particles added at the lower semiconductor were tested. Two sets of experiments were 

conducted. The first set was conducted using a ± 2.05 kV/mm high frequency AC component only. 

The frequency of the AC component was 15 kHz. The second set of experiments was conducted 

combining the same high frequency AC component with a superimposed 12 kV/mm DC component. 

All other aspects of the experiments, including the test objects, were identical. 

The experiments conducted with a high frequency AC component resulted in water tree initiation 

and growth.  The length of the longest observed water tree was found to increase with an increasing 

duration of ageing, with the longest observed water tree after three weeks of ageing measuring 607 

µm, corresponding to 55% of the total insulation thickness. The aggregated number of water trees 

was also observed to increase with an increasing ageing time. However, as a result of impurities on 

the upper semiconductor and insufficient saturation, most of the water trees observed in the test 

objects were either bow-tie water trees or vented water trees from the upper semiconductor. A 

significant increase in the number of vented water trees observed from the lower semiconductor 

from two to three weeks of ageing gave an indication on the effect the salt particles could have had 

under more optimal conditions.  

Experiments conducted with a DC voltage and a superimposed high frequency AC component gave 

many similar results. The length of the longest observed water tree and the aggregated number of 

water trees were both found to increase with an increasing ageing time. Additionally, two out of 

three test objects suffered breakdown before completing three weeks of ageing. This was most likely 

the result of water trees bridging the 1100 µm thick insulation. It is uncertain if the breakdowns were 

caused by vented water trees, bow-tie water trees, or water trees growing into each other, but it 

clearly indicates the dangers related to water tree initiation and growth, and that the ageing duration 

of three weeks was more than sufficient. 

After one week of ageing, a 34 % higher water tree density was observed in the test objects 

subjected to a DC voltage with a superimposed high frequency AC component compared to the test 

objects exposed to a high frequency AC component only. This percentage increased to 50 % after two 

weeks of ageing. Vented water tree growth at the lower semiconductor was the most significant 

difference between the two sets of experiments. One plausible theory is that the DC component has 

resulted in local field enhancement at the salt particles, facilitating faster saturation, and faster water 

tree initiation, leading to a higher number of vented water trees at the lower semiconductor, and a 

higher aggregated number of water trees. Due to the higher water tree density, in addition to the 

two breakdowns experienced, it could be argued that a DC component, when combined with a 

superimposed high frequency AC component, increases water tree degradation within wet XLPE 

insulation. The experiments also indicate that HVDC cables should be made water tight to prevent 

water tree growth due to the transients originating from the switching of the power electronics. 
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8. Further Studies 
 

There are many possibilities for further studies on water tree degradation within wet XLPE insulation. 

The experiments covered in this master thesis have shown how transients with and without a DC 

component can result in water tree initiation and growth, and have indicated that a DC component, 

when combined with a superimposed AC component, can increase water tree degradation.   

The statistical quality and the quantity of data are always of great importance when discussing 

experimental results. Two out of three test objects exposed to a DC voltage with a superimposed 

high frequency AC component suffered breakdown before completing three weeks of ageing. This 

greatly reduced the sample pool and the validity of the results for three weeks of ageing. New 

experiments should be conducted with an ageing duration of three weeks. By reducing the ageing 

duration to five, ten and fifteen days respectively, it might be possible to avoid breakdown all 

together. This is recommended as breakdowns were experienced both during this master thesis and 

also during previous research using Rogowski shaped test objects [12].  

Impurities were observed on the upper semiconductor and these have arguably acted as preferential 

sites for water tree initiation and increased the initiation rate of vented water trees from the upper 

semiconductor. Observations made in the microscope have indicated that there might be a problem 

with the old casting molds used in this master thesis and conducting new experiments, using new 

casting molds, should increase the quality of the experimental results.  

Lacking saturation throughout the insulation was another issue in this master thesis. This can be 

avoided by increasing the preconditioning period with demineralized water. Eight weeks of 

preconditioning should ensure complete saturation throughout the insulation and could make it 

easier to evaluate the effect of the salt particles. Another possibility is to perform two sets of near 

identical experiments, using one set of Rogowski test objects with salt particles and one set of 

Rogowski test objects without salt particles. This could also make it easier to evaluate the effect of 

adding hydrophilic groups and “virtual” imperfections to the insulation.   

Ultimately, the quantity and quality of the experimental results are the most critical parameters for 

laboratory research, and further studies are encouraged to validate and increase the credibility of the 

experimental results. 
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Appendix   

A. High Frequency AC Component 
 

Ageing time [hours] Test object Bow-tie  Vented upper s.c. Vented lower s.c. 

168 1A 3 8 1 

168 1B - 6 - 

168 1C 4 7 - 

 

Ageing time [hours] Test object Bow-tie  Vented upper s.c. Vented lower s.c. 

336 2A 3 11 5 

336 2B 10 11 1 

336 2C 9 12 - 

 

Ageing time [hours] Test object Bow-tie  Vented upper s.c. Vented lower s.c. 

504 3A 18 10 12 

504 3B 22 11 16 

504 3C 13 7 5 

 

B. DC Voltage with Superimposed High Frequency AC Component 
 

Ageing time [hours] Test object Bow-tie  Vented upper s.c. Vented lower s.c. 

168 1A 3 4 5 

168 1B 4 2 13 

168 2C 1 6 5 

 

Ageing time [hours] Test object Bow-tie  Vented upper s.c. Vented lower s.c. 

336 2A 3 9 13 

336 2B 1 5 25 

336 2C 7 4 26 

 

Ageing time [hours] Test object Bow-tie  Vented upper s.c. Vented lower s.c. 

388 3A – Breakdown - - - 

391 3B – Breakdown - - - 

504 3C 11 8 13 

 


