


Chapter 3
Project

The project was iterated over a number of PoCs (Proof of Concept) with increasingly larger
scope. Each iteration was conceived after the results of the previous iteration. This chapter
is built on and elaborates on the proceeding at CHEP 2018.

Smith (2018)

3.1 Proof of concept I
The initial proof of concept tests was done by Andrey Kirianov. To test the concept two
different environments was simulated. The systems needed nodes to simulate the EOS
disk servers, clients to generate I/O load, and computational load. The computational load
was generated by running LHC@Home on the disk servers.

3.1.1 Setup
The setup of the test environments are shown in figure 3.1 and 3.2.

Figure 3.1: Environment 1

5



Chapter 3. Project

Figure 3.2: Environment 2

3.1.2 Results

When only running EOS the environment averaged 161 MB/s read and 93 MB/s write.
Shown in figure 3.3, the eminent CPU operations while running EOS is IOWait.

Shown in figure 3.4, the CPU usage is similar to figure 3.3. The IOWait operation have
been utilized. The environment averaged 156 MB/s read and 93 MB/s write.

Figure 3.3: Environment 1 running with EOS

Figure 3.4: Environment 1 running with EOS and LHCHome

Environment 2 shown almost identical I/O result when running without compute pay-
load and when running with, as shown in figure 3.5 and figure 3.6 respectively.

3.1.3 Conclusion

The results indicate that the computational service does not seem to significantly impact
the storage service.

From this point on we need to consider which requirements emerges to turn this into
production.

6



3.1 Proof of concept I

Figure 3.5: Environment 2 running with no compute payload

Figure 3.6: Environment 2 running with compute payload

The service needs to be deployable through our configuration management system. We
are introducing two, possible competing, services on the same node. There will also be
two teams responsible for maintaining the system.

The nodes main service is the large storage system. When using computing resources
to perform batch operations, it is crucial that we don’t compromise the EOS service. There
should be a way of halting the computational tasks on demand.

We want to partition the resources. With this approach we can get a few benefits, in-
cluding a guarantee that storage performance is not crippled. This makes it possible to pro-
vide accountable resources, which was not possible with LHC@Home. Using Cgroups1 to
limit the resource usage, we are effectively partitioning the resources needed by Condor.
Condor will run the jobs in containers using docker.

1A linux kernel feature that isolates resource usage of a collection of processes, making it possible to introduce
limits and accounting on the resources.

7



Chapter 3. Project

3.2 Proof of concept II
Named the BEER Pilot, an approach was made to explore the conclusions made in the first
iteration. This new iteration were performed with participation from both the storage and
batch team at CERN.

3.2.1 Setup
A puppet configuration is made based on the EOS hostgroup and using a modified EOS
module and cerncondor module. This configuration is set up on three disk servers. The
three disk serves had the following hardware.

• 48 x 6TB HSS

• 2 x E5-2630 v3

• 2 x 800GB SSD

• 10 Gbit network

A number of limits are set on these nodes. Using the Cgroup that condor is running
in, memory is limited to 98GB and 4 physical CPU cores are entirely excluded. Condor is
configured to offer 24 job slots and 96GB ram. The number of processes have been limited
to 8000.

A question about security emerged. The EOS data disks should not be accessible to
the Condor system. Data on the node is protected by UNIX ownership, and separation
between users is done by Condor. In addition, jobs are run in containers which means that
EOS data disks are not visible within the containers.

To generate I/O load a few clients clients would connect to the nodes. These clients
used an internal tool called xrdstress to read and write files to the disk servers. The com-
putational load was generated by submitting specific jobs called ATLAS Pile jobs to the
batch system and specify in the submission that the jobs were only to be run on BEER
nodes.

3.2.2 Results
The ATLAS Pile jobs consists of different stages, and are generalized to perform different
tasks. Firstly it will download instructions and inputs from a remote disk server. Then
performs the computations described in the instructions, and lastly uploads the output of
the computations back to the remote disk server. This makes Pile jobs possible to submit in
large bulks and still perform different instructions. These also means that the jobs utilizes
different resources in the different stages, namely I/O in the first and last stage and CPU
wall time in the computational stage.

When first submitting jobs to the BEER nodes we found that these stages created a
spike in resource metrics for the current stage. The reason for this is that when all the
job slots on the nodes started performing their newly received job they would all be in the
first stage and start downloading their instructions and input. Likewise, since most jobs
had similar duration in each stage, afterwards they would all be using their CPU to do

8



3.3 Pre-production

the computation task they had received and later all would be uploading the output. This
meant that our metrics would show a large number of I/O used in both the first and last
stage, and the same for CPU wall time in the computational stage.

The metric spikes would not simulate the average I/O and CPU wall time for the system
during production. We introduced a delay in the submission to saturate the nodes with jobs
at different stages.

Seen in figure 3.7, there is three phases in the results. There is I/O simulation from the
start until 08:00, and BEER Pilot jobs running after 20:00.

• Phase 1: I/O on, job off

• Phase 2: I/O on, job on

• Phase 3: I/O off, job on

There is no difference in I/O performance in phase 1 and 2.

Figure 3.7: Results of BEER Pilot

3.2.3 Conclusion
The BEER Pilot confirmed our theory that both the batch and the storage service can
coexist in the same nodes without interfering on each other. With that confirmation we
could procede with the project and move towards setting the system up in our production
nodes.

3.3 Pre-production
A step before actual nodes in production was to set the system up on nodes in an pre-
production environment. This environment exist to root out any errors or faults that could
occur when the system exist in production. The storage team provided four nodes from

9



Chapter 3. Project

the EOS pre-production cluster. HammerCloud was used to submit jobs to Condor, which
would get scheduled and started like a standard grid job.

3.4 Production
With a successful pre-production the project was confirmed safe to introduce to production
nodes. 70 disk servers from ATLAS EOS Production was set up with the BEER system.
Initial computational loads are submitted by ATLAS, but the nodes will at a later stage
become part of CERN resources and the batch system in general.

Figure 3.8: BEER nodes in production

As seen in figure 3.8 the nodes have a similar I/O pattern both with jobs running, and
without.

10



Chapter 4
Impact and further work

4.1 Next steps
Monitoring has been used throughout the whole project to examine the impact of the dif-
ferent services. With more detailed monitoring we can increase our chances to discover
strains and benefits with the system.

There needs to be done a study of different experiments and processing steps to under-
stand how the system behaves with mixed workloads.

The EOS large storage system have a much larger number of nodes still not CPU
saturated, therefore it is desired to scale the system up to benefit from these resources.

4.2 Impact
The following are conservative assumption about the impact of the BEER project, both for
the near future and with long term in mind.

In the following calculations we are assuming that we are able to utilize 40% of a
machines CPU. Our measurements show that this is far less than what can be done when
the node is fully saturated. We are also generalizing all machines to have 32 core CPUs.

In the near future we can expect 350 machines running BEER.

350× 32cores× 0.4 = 4480cores (4.1)

The number of machines running BEER should increase as the system is scaled up.
Using an estimate of 1200 machines, almost all machines in ALICE EOS Cluster, we find

this number.

1200× 32cores× 0.4 = 15360cores (4.2)

These numbers of cores will continue to scale parallel to the scaling of the EOS storage
system. This makes BEER make an impact on the number of computational cores in the
Batch system that will continue to grow in the years to come.

11



Chapter 4. Impact and further work

12



Bibliography

Bird, I., Buncic, P., Carminati, F., Cattaneo, M., Clarke, P., Fisk, I., Girone, M., Harvey,
J., Kersevan, B., Mato, P., Mount, R., Panzer-Steindel, B., Apr 2014. Update of the
Computing Models of the WLCG and the LHC Experiments. Tech. Rep. CERN-LHCC-
2014-014. LCG-TDR-002.
URL http://cds.cern.ch/record/1695401

CERN, Apr. 2018. About — worldwide lhc computing grid.
URL https://wlcg-public.web.cern.ch/about

Eck, C., Knobloch, J., Robertson, L., Bird, I., Bos, K., Brook, N., Dllmann, D., Fisk, I.,
Foster, D., Gibbard, B., Grandi, C., Grey, F., Harvey, J., Heiss, A., Hemmer, F., Jarp, S.,
Jones, R., Kelsey, D., Lamanna, M., Marten, H., Mato-Vila, P., Ould-Saada, F., Panzer-
Steindel, B., Perini, L., Schutz, Y., Schwickerath, U., Shiers, J., Wenaus, T., 2005.
LHC computing Grid: Technical Design Report. Version 1.06 (20 Jun 2005). Technical
Design Report LCG. CERN, Geneva.
URL http://cds.cern.ch/record/840543

Jones, B. D., 2018. How does batch work, internal document for Infrastructure Service
team.

Lombraa Gonzlez, D., et al., 2012. LHC@home: a Volunteer Computing System for Mas-
sive Numerical Simulations of Beam Dynamics and High Energy Physics Events. Conf.
Proc. C1205201, 505–507.

Loope, J., 2011. Managing Infrastructure with Puppet: Configuration Management at
Scale. O’Reilly Media.
URL https://books.google.ch/books?id=hYb2U-ZZByMC

Peters, A., Sindrilaru, E., Adde, G., 2015. Eos as the present and future solution for data
storage at cern. In: Journal of Physics: Conference Series. Vol. 664. IOP Publishing, p.
042042.

Smith, D., 2018. Sharing server nodes for storage and compute. Presented at CHEP 2018.

13

http://cds.cern.ch/record/1695401
https://wlcg-public.web.cern.ch/about
http://cds.cern.ch/record/840543
https://books.google.ch/books?id=hYb2U-ZZByMC


van der Ster, D. C., Elmsheuser, J., beda Garca, M., Paladin, M., 2011. Hammercloud:
A stress testing system for distributed analysis. Journal of Physics: Conference Series
331 (7), 072036.
URL http://stacks.iop.org/1742-6596/331/i=7/a=072036

14

http://stacks.iop.org/1742-6596/331/i=7/a=072036

	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	

	
	

	
	
	

	

