@NTNU

Norwegian University of
Science and Technology

Evaluating performance impact of
performing computations on storage
nodes

Batch on Eos Extra Resources (BEER)

Havard Tollefsen

Master of Science in Informatics
Submission date: July 2018
Supervisor: Magnus Sjalander, IDI

Norwegian University of Science and Technology
Department of Computer Science






Summary

The Batch on EOS Extra Resources (BEER) project is a response to observations of avail-
able computing resources on EOS storage system. BEER introduces sharing computing
resources between storage and compute nodes. The project have gone through several
iterations to insure that the service provided by the EOS storage system would not be
compromised. The success of the project have provided the Batch system with an estimate
of over 2’000 extra cores, and with further scaling have a huge potential to give a lot more.




Preface

This Master’s thesis is written by Havard Tollefsen for the Norwegian University of Sci-
ence and Technology (NTNU). The thesis is written as a report of the project the author
worked on during his Technical Student programme at The European Organization for
Nuclear Research (CERN).

I want to thank my supervisor Ben Jones for giving me the opportunity to come work on
the project, the Infrastructure Services and the Storage teams for their work on the project,
and my thesis supervisor Magnus Sjdlander for accepting to supervise my thesis without
much control on the project.

ii



Table of Contents

Summary i
Preface ii
Table of Contents iv
List of Figures v
Abbreviations vi
1 Background and current state 1
1.1 WLCG. . . . . e 1
1.2 Batch . . ... . . . . e 1
1.3 EOS . . 2
1.4 HammerCloud. . . . . . . ... ... ... . . 2
1.5 Puppet . . . . . . 2
1.6 LHC@Home . .. ... ... ... ..t 2

2 Hypothesis 3
3 Project 5
3.1 Proofofconceptl . . . ... ... ... ... ... ... ... ... 5
311 Setup ... 5

312 Results . ... ... ... .. 6

3.13 Conclusion . . . ... ... 6

32 ProofofconceptIl . .. ... ... ... ... ... ... 8
321 Setup . ... 8

322 Results . . ... ... e 8

323 Conclusion . . . . ... .. ... 9

3.3 Pre-production . . . . .. ... 9
34 Production. . . . . . ... e e 10

iii



4 TImpact and further work
41 NeXtSEPS .« « . v v o e e e e e e e e e e e e
42 Tmpact . . . . .. e e e e e

Bibliography

iv



List of Figures

2.1

3.1
32
33
34
35
3.6
3.7
3.8

Average CPU and Network utilization on the ALICE EOS cluster. Idle
CPUshowningreen. . . . . . . . . . .. . ...

N

Environment 1. . . . . . . . ... ..
Environment 2. . . . . . . . ...
Environment 1 running with EOS . . . ... ... ... ... ... ...
Environment 1 running with EOS and LHCHome . . . . . ... ... ..
Environment 2 running with no compute payload . . . .. ... ... ..
Environment 2 running with compute payload . . . . . . . .. ... ...
Results of BEER Pilot . . . . . ... .. ... ... ... ... ...,
BEER nodes in production . . . . . .. ... ... 1

SO I IO




Abbreviations

ALICE = A Large Ion Collider Experiment, one of the detector experiments at the LHC
Atlas = A Toroidal LHC ApparatuS, one of the detector experiments at the LHC
BEER = Batch on EOS Extra Resources

CERN = European Organization for Nuclear Research

CPU = Central Processing Unit

LHC = Large Hydron Collider

/0 = input/output, the action of reading or writing data to a disk

vi



Chapter

Background and current state

For every iteration of the LHC experiments, detectors are upgraded to extract even more
data from events. With no plans to build any new data centers we are required to maximize
the use of any computer we can. The projections of data generated in Run 3 shows an
extreme increase in generated data, creating a huge compute load. Therefore we need to
be able to run batch on any hardware we can get our hands on. When buying hardware for
our data centers, CERN has typically bought the same hardware for batch and disk servers.

1.1 WLCG

The LHC produces an enormous amount of data. With over 99.9% of the data filtered it is
expected to gather around 50 Petabytes in 2018. This is beyond the capabilities of CERN
to process. Therefore the WLCG project was started.

The WLCG project is a global collaboration of more than 170 computing centres in 42
countries, linking up national and international grid infrastructures.

The mission of the WLCG project is to provide global computing resources to store,
distribute and analyse the ~50 Petabytes of data expected in 2018, generated by the LHC
at CERN on the Franco-Swiss border.

CERN (2018)

Eck et al. (2005)

Bird et al. (2014)

1.2 Batch

CERN Batch system is a system to process CPU intensive workload. Key goals include
maximizing utilization, throughput and efficiency, and to provide a simple platform for
physics. Physicists are able to run a command on some input, and receive the output.

The batch system is distributed on the WLCG The sites are divided up into tiers de-
pendent on location and type of computing it performs.




Chapter 1. Background and current state

e Tier 0 (CERN): data recording, reconstruction and distribution
e Tier 1: permanent storage, re-processing, analysis
e Tier 2: Simulation, end-user analysis

All together these computer centers add up to approximately 350’000 cores and 500
PB of storage, and are running more than 2 million jobs per day.
Jones (2018)

1.3 EOS

EOS is a multi-protocol disk-only storage system in use at CERN. The system have been
deployed at CERN since 2011. In 2015 the system had grown to 140 PB storage provided
by 44.000 hard disks.

Peters et al. (2015)

1.4 HammerCloud

HammerCloud is a stress testing tool. The tool provides possibilities to submit a number
of analysis jobs, or a steady flow of them, to operational sites. The running jobs can be
seen and analyzed through a web-interface, which also provides historical data.

van der Ster et al. (2011)

1.5 Puppet

Puppet is a configuration management framework. The framework uses a Domain Specific
Language to describe the desired state of a server. Puppet looks at the servers current state
and only does the necessary configuration that is needed to bring the server to the desired
state, making it idempotent.

Loope (2011)

1.6 LHC@Home

LHC@Home is a system for user around the world to donate their available CPU-time to
CERN to boost CERNs own computational power. The system is built on the Berkeley
Open Infrastructure for Network Computing (BOINC), enabling CERN to access large
amounts of computational power otherwise not available to them.

Lombraa Gonzlez et al. (2012)




Chapter

Hypothesis

The CERN large storage system is made up by nodes with similar, or exactly the same,
hardware as the CERN batch system. At the time of writing there is 1339 nodes in the
large storage system.

These nodes work mainly with I/O operations. As a result of this they are often I/O
bound'. Most nodes are not CPU saturated even when they are I/O saturated.

As we can see from this snapshot in figure (2.1) of the average CPU utilization on the
ALICE EOS cluster is less than 20. Some of it is I[OWait, which can be used by other
processes. This hints at significant potential to utilize the CPU on these nodes for other
purposes.

This lets us ask two important questions to find areas of focus to work towards.

Can we make use of some of these nodes? The nodes have been set up with software
and build processes to facilitate storage. To utilize their CPU for different processes re-
quires additional software. This inclusion of extra use cases should also not do any damage
to the existing service of the nodes.

What value does this correspond to? The potential gain of computer resources should
negate the increase in software complexity and strain on the primary service for the project
to be considered successful.

11/0 bound is a condition in which operations are limited by time used on reading or writing to disk, rather
than the processing time




Chapter 2. Hypothesis

v CPU

=il —imempt —nice = softig = steal = system = user = wait

v Network

606bps

N
506tps 4 \\n\

|
et J

/ A\
Neps /

Figure 2.1: Average CPU and Network utilization on the ALICE EOS cluster. Idle CPU shown in
green.




Chapter

Project

The project was iterated over a number of PoCs (Proof of Concept) with increasingly larger
scope. Each iteration was conceived after the results of the previous iteration. This chapter
is built on and elaborates on the proceeding at CHEP 2018.

Smith (2018)

3.1 Proof of concept I

The initial proof of concept tests was done by Andrey Kirianov. To test the concept two
different environments was simulated. The systems needed nodes to simulate the EOS
disk servers, clients to generate I/O load, and computational load. The computational load
was generated by running LHC@Home on the disk servers.

3.1.1 Setup
The setup of the test environments are shown in figure 3.1 and 3.2.

EOS head
meP (namespace in memory)

ot

1/0 load
generators
(13 hosts)

1Gbps EOS disk server 1

Condor(vLHC@Home)

g 1Gbps

EOS disk server 2

N file 1/0 Condor(vLHC@Home)
N 1(;6
%5
EOS disk server 3
22X
Condor(\lLHC@Home)

AN EOS disk server 4
; 22X

Condor (VLHC@Home)

Figure 3.1: Environment 1




Chapter 3. Project

EOS head

1/0 load (namespace in memory)

generators
(7 hosts)

EOS disk server
+ 48X
Condor (vVLHC@Home)

106bps g
Figure 3.2: Environment 2

3.1.2 Results

When only running EOS the environment averaged 161 MB/s read and 93 MB/s write.
Shown in figure 3.3, the eminent CPU operations while running EOS is I[OWait.

Shown in figure 3.4, the CPU usage is similar to figure 3.3. The I[OWait operation have
been utilized. The environment averaged 156 MB/s read and 93 MB/s write.

CPU (%) @&

@ User @ Sysiem @ Nice  idie @ IOWait @ 1RQ @ SoftRQ per30s | (48 hits)
10

)
)
@
© .
n

IS1400 151600 11800 152000 152200 152400 162500 152800 153000 153200 153400 153500 153800 154000 154200 154400

Figure 3.3: Environment 1 running with EOS

CPU (%) @

@ User @ Sysiem @ Nice © Idie ® IOWait @ IRQ @ SolRQ per30s | (48 hits)
100

&

18.00.00 180500 18:10.00 181800 182000 18:25.00 183000 183800

Figure 3.4: Environment 1 running with EOS and LHCHome

Environment 2 shown almost identical I/O result when running without compute pay-
load and when running with, as shown in figure 3.5 and figure 3.6 respectively.

3.1.3 Conclusion

The results indicate that the computational service does not seem to significantly impact
the storage service.

From this point on we need to consider which requirements emerges to turn this into
production.

6



3.1 Proof of concept I

CPU (%) @ o

@ User @ Systom @ Nio o @ IOWait @ RQ @ SoftRQ per 30s | (70 fits)
100

0
233500 234000 2345:00 235000 235500 00:00:00 00:05:00 00:10:00 00:15:00 00:20:00
NETWORK (B/S) @ 8
® in ® Out persm | (20nits)

10068

768 M8

s12M8

256 MB

o8
2335 2340 2345 2350 2385 00:00 00:05 00:10 00:15 00:20
04-20 04-20 04-20 0420 0420 0421 0421 0421 0421 o0a-21

Figure 3.5: Environment 2 running with no compute payload

CPU (%) @ o

©® User @ System @ Nice  Idle ® 10Wait @ 1RQ @ SoftRQ. per 30| (70 hits)
100

o
16:15:00 162000 16:25:00 16:30:00 163500 16:40:00 16:45:00 165000 16:55:00 17:00:00 170600
NETWORK (B/S) @ oo
® in ® Out persm | (20hits)

10068

768MB

512M8

256 M8

08
16:15 1620 1625 1630 1635 16:40 1645 1650 1655 17:00 17:05
04-19 04-19 04-19 04-19 04-19 04-19 04-19 04-19 04-19 04-19 04-19

Figure 3.6: Environment 2 running with compute payload

The service needs to be deployable through our configuration management system. We
are introducing two, possible competing, services on the same node. There will also be
two teams responsible for maintaining the system.

The nodes main service is the large storage system. When using computing resources
to perform batch operations, it is crucial that we don’t compromise the EOS service. There
should be a way of halting the computational tasks on demand.

We want to partition the resources. With this approach we can get a few benefits, in-
cluding a guarantee that storage performance is not crippled. This makes it possible to pro-
vide accountable resources, which was not possible with LHC@Home. Using Cgroups' to
limit the resource usage, we are effectively partitioning the resources needed by Condor.
Condor will run the jobs in containers using docker.

T A linux kernel feature that isolates resource usage of a collection of processes, making it possible to introduce
limits and accounting on the resources.




Chapter 3. Project

3.2 Proof of concept 11

Named the BEER Pilot, an approach was made to explore the conclusions made in the first
iteration. This new iteration were performed with participation from both the storage and
batch team at CERN.

3.2.1 Setup

A puppet configuration is made based on the EOS hostgroup and using a modified EOS
module and cerncondor module. This configuration is set up on three disk servers. The
three disk serves had the following hardware.

e 48 x 6TB HSS
e 2x E5-2630 v3
e 2 x 800GB SSD
o 10 Gbit network

A number of limits are set on these nodes. Using the Cgroup that condor is running
in, memory is limited to 98GB and 4 physical CPU cores are entirely excluded. Condor is
configured to offer 24 job slots and 96GB ram. The number of processes have been limited
to 8000.

A question about security emerged. The EOS data disks should not be accessible to
the Condor system. Data on the node is protected by UNIX ownership, and separation
between users is done by Condor. In addition, jobs are run in containers which means that
EOS data disks are not visible within the containers.

To generate I/O load a few clients clients would connect to the nodes. These clients
used an internal tool called xrdstress to read and write files to the disk servers. The com-
putational load was generated by submitting specific jobs called ATLAS Pile jobs to the
batch system and specify in the submission that the jobs were only to be run on BEER
nodes.

3.2.2 Results

The ATLAS Pile jobs consists of different stages, and are generalized to perform different
tasks. Firstly it will download instructions and inputs from a remote disk server. Then
performs the computations described in the instructions, and lastly uploads the output of
the computations back to the remote disk server. This makes Pile jobs possible to submit in
large bulks and still perform different instructions. These also means that the jobs utilizes
different resources in the different stages, namely I/O in the first and last stage and CPU
wall time in the computational stage.

When first submitting jobs to the BEER nodes we found that these stages created a
spike in resource metrics for the current stage. The reason for this is that when all the
job slots on the nodes started performing their newly received job they would all be in the
first stage and start downloading their instructions and input. Likewise, since most jobs
had similar duration in each stage, afterwards they would all be using their CPU to do

8



3.3 Pre-production

the computation task they had received and later all would be uploading the output. This
meant that our metrics would show a large number of I/O used in both the first and last
stage, and the same for CPU wall time in the computational stage.

The metric spikes would not simulate the average I/O and CPU wall time for the system
during production. We introduced a delay in the submission to saturate the nodes with jobs
at different stages.

Seen in figure 3.7, there is three phases in the results. There is I/O simulation from the
start until 08:00, and BEER Pilot jobs running after 20:00.

e Phase 1: I/O on, job off
e Phase 2: 1/O on, job on
e Phase 3: I/O off, job on

There is no difference in I/O performance in phase 1 and 2.

UTILISATION & s x

CPU (%) =

@ User @ System @ Nice - Idle @ IOWait @ 1RQ @ SoftRQ per 10m | (6531 hits)

NETWORK (B/S) =2

t perSm | (1792 1y

Figure 3.7: Results of BEER Pilot

3.2.3 Conclusion

The BEER Pilot confirmed our theory that both the batch and the storage service can
coexist in the same nodes without interfering on each other. With that confirmation we
could procede with the project and move towards setting the system up in our production
nodes.

3.3 Pre-production

A step before actual nodes in production was to set the system up on nodes in an pre-
production environment. This environment exist to root out any errors or faults that could
occur when the system exist in production. The storage team provided four nodes from

9



Chapter 3. Project

the EOS pre-production cluster. HammerCloud was used to submit jobs to Condor, which
would get scheduled and started like a standard grid job.

3.4 Production

With a successful pre-production the project was confirmed safe to introduce to production
nodes. 70 disk servers from ATLAS EOS Production was set up with the BEER system.
Initial computational loads are submitted by ATLAS, but the nodes will at a later stage
become part of CERN resources and the batch system in general.

Figure 3.8: BEER nodes in production

As seen in figure 3.8 the nodes have a similar I/O pattern both with jobs running, and
without.

10



Chapter

Impact and further work

4.1 Next steps

Monitoring has been used throughout the whole project to examine the impact of the dif-
ferent services. With more detailed monitoring we can increase our chances to discover
strains and benefits with the system.

There needs to be done a study of different experiments and processing steps to under-
stand how the system behaves with mixed workloads.

The EOS large storage system have a much larger number of nodes still not CPU
saturated, therefore it is desired to scale the system up to benefit from these resources.

4.2 Impact

The following are conservative assumption about the impact of the BEER project, both for
the near future and with long term in mind.

In the following calculations we are assuming that we are able to utilize 40% of a
machines CPU. Our measurements show that this is far less than what can be done when
the node is fully saturated. We are also generalizing all machines to have 32 core CPUs.

In the near future we can expect 350 machines running BEER.
350 x 32cores x 0.4 = 4480cores 4.1

The number of machines running BEER should increase as the system is scaled up.
Using an estimate of 1200 machines, almost all machines in ALICE EOS Cluster, we find
this number.

1200 x 32cores x 0.4 = 15360cores “4.2)

These numbers of cores will continue to scale parallel to the scaling of the EOS storage
system. This makes BEER make an impact on the number of computational cores in the
Batch system that will continue to grow in the years to come.

11



Chapter 4. Impact and further work

12



Bibliography

Bird, 1., Buncic, P., Carminati, F., Cattaneo, M., Clarke, P., Fisk, 1., Girone, M., Harvey,
J., Kersevan, B., Mato, P., Mount, R., Panzer-Steindel, B., Apr 2014. Update of the
Computing Models of the WLCG and the LHC Experiments. Tech. Rep. CERN-LHCC-
2014-014. LCG-TDR-002.

URL http://cds.cern.ch/record/1695401

CERN, Apr. 2018. About — worldwide lhc computing grid.
URL https://wlcg-public.web.cern.ch/about

Eck, C., Knobloch, J., Robertson, L., Bird, I., Bos, K., Brook, N., Dllmann, D., Fisk, I.,
Foster, D., Gibbard, B., Grandi, C., Grey, F., Harvey, J., Heiss, A., Hemmer, F., Jarp, S.,
Jones, R., Kelsey, D., Lamanna, M., Marten, H., Mato-Vila, P., Ould-Saada, F., Panzer-
Steindel, B., Perini, L., Schutz, Y., Schwickerath, U., Shiers, J., Wenaus, T., 2005.
LHC computing Grid: Technical Design Report. Version 1.06 (20 Jun 2005). Technical
Design Report LCG. CERN, Geneva.

URL http://cds.cern.ch/record/840543

Jones, B. D., 2018. How does batch work, internal document for Infrastructure Service
team.

Lombraa Gonzlez, D., et al., 2012. LHC@home: a Volunteer Computing System for Mas-
sive Numerical Simulations of Beam Dynamics and High Energy Physics Events. Conf.
Proc. C1205201, 505-507.

Loope, J., 2011. Managing Infrastructure with Puppet: Configuration Management at
Scale. O’Reilly Media.
URL https://books.google.ch/books?id=hYb2U-ZZByMC

Peters, A., Sindrilaru, E., Adde, G., 2015. Eos as the present and future solution for data
storage at cern. In: Journal of Physics: Conference Series. Vol. 664. IOP Publishing, p.
042042.

Smith, D., 2018. Sharing server nodes for storage and compute. Presented at CHEP 2018.

13


http://cds.cern.ch/record/1695401
https://wlcg-public.web.cern.ch/about
http://cds.cern.ch/record/840543
https://books.google.ch/books?id=hYb2U-ZZByMC

van der Ster, D. C., Elmsheuser, J., beda Garca, M., Paladin, M., 2011. Hammercloud:
A stress testing system for distributed analysis. Journal of Physics: Conference Series
331 (7), 072036.
URL http://stacks.iop.org/1742-6596/331/1=7/a=072036

14


http://stacks.iop.org/1742-6596/331/i=7/a=072036

	Summary
	Preface
	Table of Contents
	List of Figures
	Abbreviations
	Background and current state
	WLCG
	Batch
	EOS
	HammerCloud
	Puppet
	LHC@Home

	Hypothesis
	Project
	Proof of concept I
	Setup
	Results
	Conclusion

	Proof of concept II
	Setup
	Results
	Conclusion

	Pre-production
	Production

	Impact and further work
	Next steps
	Impact

	Bibliography

