
June 2008
Lars Einar Norum, ELKRAFT

Master of Science in Energy and Environment
Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Electrical Power Engineering

Expert system for hydropower stations
developed in Volve Knowledge Tools

Erlend Timberlid

Problem Description
Despite the fact that hydropower stations are equipped with the latest technology in both
regulation and remote control, it is not enough to replace the traditional machine expert. The
machine expert was a person stationed in the power plant. He had the responsibility for the
running and maintenance of the station. This person’s experience and human senses made him
crucial for the surveillance of the station. Since the machine expert has now been replaced by
electronics and newer technology, there are still areas of his expertise that are to be made.
Today’s facilities are highly sophisticated and contain the latest technology, but there are still
situations that the surveillance system may fail to intercept. These situations could for instance be
the beginning of an fault in an component.
To help the surveillance system detect these situations, the idea is to implement an expert system.
In this way the control system can match the machine expert’s skills.
Øystein Fjellheim has already done extensive work in finding a suitable development kit. He
explored several software packages looking for one to use for this purpose. The result was the
program Volve Knowledge Tools, and the purpose of this report is to further test this program for
use in expert systems. This testing considers more advanced and intelligent forms of reading raw
data, such as mean calculation, derivation and integration. It also includes testing of how the
program learns and uses existing knowledge to solve problems.

Assignment given: 15. January 2008
Supervisor: Lars Einar Norum, ELKRAFT

Master thesis 2008
Erlend Timberlid

I

1 PREFACE

This project is a part of the fourth semester of the 2-year Master program in Electric Power at
NTNU. The project is weighted as one semester in this program and is a cooperative effort
between NTNU, Voith Siemens and Volve AS. Voith Siemens has presented the approach to the
problem and also acts as external supervisor. Volve AS provides the software one wish to
investigate.

This report consists of five main parts. The first part describes the system that is going to be
modulated. In the second part it is explained what an expert system is. The third part contains
an explanation of how Volve Knowledge Tools works and how an expert system can be
created in this program. In the fourth part it is discussed why one should use condition
monitoring. The last part of the report contains simulations and results. Here, continuing work
and advantages/disadvantages will be presented as well.

I hereby send my greatest thanks to Frode Sørmo, Agnar Aamodt, Tore Brede and Jone
Rasmussen at Volve AS for invaluable help and guidance. I also thank my supervisor professor
Lars Norum at NTNU, and also Øyvind Holm and Oddbjørn Hansen at Voith Siemens for
good advice and feedback throughout the process. Finally I want to thank Ole Bjørn Westad
at Maintech AS and Jan Anders Timberlid at Sogn og Fjordane University College for help
and support during the whole process.

Trondheim, 9 June 2008

Erlend Timberlid

Master thesis 2008
Erlend Timberlid

II

2 SUMMARY

Despite the fact that hydropower stations are equipped with the latest technology in both
regulation and remote control, it is not enough to replace the traditional machine expert. The
machine expert was a person stationed in the power plant. He had the responsibility for the
running and maintenance of the station. This person’s experience and human senses made him
crucial for the surveillance of the station. Since the machine expert has now been replaced by
electronics and newer technology, there are still areas of his expertise that are to be made.
Today’s facilities are highly sophisticated and contain the latest technology, but there are still
situations that the surveillance system may fail to intercept.
To help the surveillance system detect these situations, the idea is to implement an expert
system. In this way the control system can match the machine expert’s skills.

Øystein Fjellheim has already done extensive work in finding a suitable development kit. He
explored several software packages looking for one to use for this purpose [1]. The result was
the program Volve Knowledge Tools, and the purpose of this report is to further test this
program for use in expert systems. This testing considers more advanced and intelligent forms
of reading raw data, such as mean calculation, derivation and integration. It also includes
testing of how the program learns and uses existing knowledge to solve problems.

Since hydropower plants can be constructed in so many ways, it is almost impossible to make
an expert system that can include all varieties. One solution is to narrow down the system to a
reference system. This system consists of defined components that are common in today’s
facilities. Despite this narrowing there are still many processes in a hydropower station that
need to be monitored. Voith Siemens has promoted that thermal surveillance is desirable. The
reason is that, when performing thermal surveillance, the rest of the system would be
indirectly monitored as well. A good example of this would be to monitor the bearings. To
detect the condition of a bearing, one has to compare several parameters, of which
temperature is the most essential. Two conditions of the bearing are simulated, defective
bearing and water in the bearing oil.

When constructing the program, three models were made: an ontology model, a causal model
and a case model. All models were made pursuant to the reference system. The models are
general, but still represent a good approach to the real world. All three models are considered
as a good starting point for further work.

By developing a simple expert system in Volve Knowledge Tools and using this program for
simulations, I gathered a lot of information about how the program operates and functions.
After considering advantages versus disadvantages, and the suitability of the program for
developing expert systems, I concluded that: Volve Knowledge Tools fulfils the demands that
the development an expert system entails. I therefore recommend by Volve Knowledge Tools
as the development kit for evolving an expert system in continuing work.

Master thesis 2008
Erlend Timberlid

III

3 TABLE OF CONTENTS

1 PREFACE ... I

2 SUMMARY... II

3 TABLE OF CONTENTS..III

4 LIST OF FIGURES...VI

5 LIST OF TABLES...VI

6 ABBREVIATIONS.. VII

1. INTRODUCTION ... 1

1.1. BACKGROUND .. 1
1.2. LIMITATION .. 2
1.3. STRUCTURE.. 2

2. THE REFERENCE SYSTEM.. 3

2.1. GENERAL.. 4
2.2. BEARINGS... 5

2.2.1. Placing of bearings ... 5

2.2.2. Axial bearing... 6

2.2.3. Radial bearing... 8

2.2.4. Combined axial and radial bearing .. 9

2.2.5. Monitoring... 10

2.2.6. Defective bearing .. 10

2.3. IGSS32... 11
2.4. STOP SEQUENCES.. 12

2.4.1. Quick Closing.. 12

2.4.2. Stop.. 12

2.4.3. Emergency Stop... 12

3. WHAT IS AN EXPERT SYSTEM? .. 13

3.1. DEVELOPMENT... 14
3.2. KNOWLEDGE DATABASE... 14
3.3. INFERENCE ENGINE... 15
3.4. TYPES OF EXPERT SYSTEMS.. 15

3.4.1. Rule-based system ... 15

3.4.2. Forward chaining.. 16

3.4.3. Backward chaining.. 16

3.4.4. Case-based reasoning ... 17

3.4.5. What is a case?.. 18

4. VOLVE KNOWLEDGE TOOLS .. 19

4.1. HISTORY... 19

Master thesis 2008
Erlend Timberlid

IV

4.2. THE CREEK MODEL... 20
4.3. THE REASONING PROCESS IN CREEK... 20
4.4. LEARNING IN CREEK... 21
4.5. VOLVE KNOWLEDGE EDITOR ... 22

4.5.1. Ontology model ... 23

4.5.2. Causal model... 25

4.5.3. Map view... 26

4.5.4. Relations.. 27

4.6. VOLVE PREDICTOR... 31
4.7. ADDING CASES.. 32
4.8. MATCHING OF CASES.. 35
4.9. COMMUNICATION WITH IGSS32... 37
4.10. RELATIONS BETWEEN VOLVE KNOWLEDGE TOOLS, THE HUMAN OPERATOR AND THE HMI PROGRAM

 38

5. WHY USE CONDITION MONITORING.. 39

5.1. CONDITION MONITORING WITH AND WITHOUT CONDITIONAL MAINTENANCE..................................... 40

6. SIMULATIONS AND RESULTS.. 41

6.1. TIME SPAN.. 41
6.2. MEASUREMENTS... 42
6.3. MEASUREMENT SAMPLING FREQUENCY.. 42
6.4. CASES... 43

6.4.1. Case #1.. 43

6.4.2. Case #2.. 44

6.4.3. Case #3.. 45

6.5. SIMULATIONS ... 46
6.6. SYSTEM MODEL IN VOLVE KNOWLEDGE TOOLS... 49
6.7. KNOWLEDGE MODEL IN VOLVE KNOWLEDGE TOOLS... 50
6.8. CASE MODEL IN VOLVE KNOWLEDGE TOOLS... 51

7. DISCUSSION... 52

7.1. DEVELOPING THE PROGRAM... 52
7.2. THE SIMULATIONS .. 53

8. CONCLUSION.. 54

9. RECOMMENDATIONS FOR FURTHER WORK... 55

10. REFERENCES ... 56

11. APPENDIX.. 58

11.1. CONDITION MONITORING OF BEARINGS IN VOLVE KNOWLEDGE TOOLS, THE WHOLE PROGRAM........ 58
11.1.1. Ontology model .. 58

11.1.2. Causal model, cooling system .. 59

11.1.3. Causal model, bearing system.. 60

11.1.4. Case model ... 61

11.2. PREDICTOR SCRIPT.. 62
11.3. CASES AND AGENTS.. 65

11.3.1. Case #1... 65

11.3.2. Case #2... 68

11.3.3. Case #3... 70

Master thesis 2008
Erlend Timberlid

V

11.4. SCREENSHOTS FROM SIMULATIONS... 73
11.4.1. Predictor Case #1... 73

11.4.2. Case description, Case #1 .. 74

11.4.3. Predictor Case #2... 75

11.4.4. Case description Case #2 ... 76

11.4.5. Predictor Case #3... 77

11.4.6. Case description Case #3 ... 78

Master thesis 2008
Erlend Timberlid

VI

4 LIST OF FIGURES

Figure 1, Meråker hydropower plant [2] .. 3
Figure 2, Submerged station [3] ... 4
Figure 3, Placement of bearings, model W41 [5] .. 5
Figure 4, Placement of bearing, model W42 [5] .. 5
Figure 5, Pad type bearing [5] .. 6
Figure 6, Friction in bearing at start-up [5] .. 6
Figure 7, Pad type bearing with oil-pressure discharge [5].. 7
Figure 8, Turbine bearing [4] ... 8
Figure 9, Horizontal pad type bearin [5] ... 8
Figure 10, Combined axial and radial bearing ... 9
Figure 11, Expert system shell [8] ... 14
Figure 12, Case-based reasoning [12] .. 17
Figure 13, Knowledge model in CREEK [13].. 20
Figure 14, Learning in CREEK [13]... 21
Figure 15, Creating a program in Knowledge Editor... 22
Figure 16, Generator-bearing relation.. 23
Figure 17, Ontology model .. 24
Figure 18, Causal model... 25
Figure 19, Map view .. 26
Figure 20, Messy causal model .. 28
Figure 21, Tidy causal model... 29
Figure 22, Frame view ... 30
Figure 23, Case model.. 32
Figure 24, Case in case-base .. 33
Figure 25, Creating a program in Predictor... 34
Figure 26, Relation between models .. 36
Figure 27, Relation between Volve KnowledgeTools and IGSS32... 38
Figure 28, Lifetime of an error... 39
Figure 29, Screenshot of Predictor, case #1 .. 47
Figure 30, Case description, case#1... 48
Figure 31, Hydropower station ontology ... 49
Figure 32, Causal bearing system .. 50
Figure 33, Cases ... 51

5 LIST OF TABLES

Table 1, Relations [16] ... 28
Table 2, Case #1 ... 43
Table 3, Case #2 ... 44
Table 4, Case #3 ... 45
Table 5, Simulation parameters.. 46

Master thesis 2008
Erlend Timberlid

VII

6 ABBREVIATIONS

NTNU - Norwegian University of Science and Technology
CREEK - Case based Reasoning through Extensive Explicit Knowledge
CSV - Comma separated values
XML - Extensible Markup Language
CBR - Case Based Reasoning
MBR - Model Based Reasoning
MVA - Mega Volt Amper
PLC - Programmable Logic Control
SCADA - Supervisory Control And Data Acquisition
IGSS - Interactive Graphical SCADA System
HIST - Sør-Trøndelag University College
IDI - Department of Computer and Information Science
GB - Giga Byte
HMI - Human Machine Interface

Master thesis 2008
Erlend Timberlid

 1

1. INTRODUCTION

1.1. Background

Despite the fact that hydropower stations are equipped with the latest technology in both
regulation and remote control, it is not enough to replace the traditional machine expert. The
machine expert was a person stationed in the power plant. He had the responsibility of the
running and maintenance of the station. This person’s experience and human senses made him
crucial for the surveillance of the station. Since the machine expert has now been replaced by
electronics and newer technology, there are still areas of his expertise that are to be made.
Today’s facilities are highly sophisticated and contain the latest technology, but there are still
situations that the surveillance system may fail to intercept.
To help the surveillance system detect these situations, the idea is to implement an expert
system. In this way the control system can match the machine expert’s skill.

Øystein Fjellheim has already done extensive work in finding the right development kit for
the expert system. He explored several software packages looking for one to use for this
purpose [1]. The key to finding the right software was to look into the oil business sector.
Although the oil drilling process seems very different from creating power from water, the
surveillance of these two processes has many things in common. The software that satisfied
all of Fjellheims demands is called Volve Knowledge Tools. This software is designed for
developing expert systems. He also used the program for comparing different sets of
parameters to detect a defective generator cooler. In this way the program proved itself useful.

This report is a continuation of “The digital machine expert – Expert system for monitoring
hydropower plants [2]. Therefore the approach to the problem is about the same: to
investigate whether Volve Knowledge Tools can be used for developing an expert system and
thus improve the surveillance system of today. This report represents the second part of this
investigation.

My purpose is to continue the development of an expert system and thereby further improve
the surveillance system of today’s power plants. This would allow me to test Volve Knowledge
Tools even further and to see if it is suitable for developing expert systems.

Since the situation today is that the highest possible profit is sought from everything,
aggregates are driven accordingly. One consequence is more frequent starts and stops of
aggregates. This starting and stopping causes more stress to the machines and in shortens the
lifetime of the equipment. Since this trend is likely to continue, the need for an improved
surveillance system is greater than ever.

Master thesis 2008
Erlend Timberlid

 2

1.2. Limitation

Since hydropower plants today can be constructed in so many ways, it is almost impossible to
make an expert system that can include all types. In any case this would be a very time-
consuming process. Since the time schedule for the present task is limited to twenty weeks,
developing such a program is not possible. However, if the system is narrowed, it could be
possible. The narrowed system is called the reference system [2]. It consists of defined
components that are common in today’s facilities.
Even if the task is narrowed into a reference system, there are still many processes in a
hydropower station that need to be monitored. As mentioned above, the time available for the
present task is relatively short, so further limitation will be to concentrate on one process in
the system. The process to be investigated is the detection of a defective bearing. This bearing
will be the combined axial and radial bearing located at the top of the machine. The
modulation will be a rough approach to the real system, but still easy to expand in continuing
work.
Since many of these components do not directly affect the final approach to the problem, they
will only be presented in general terms.

1.3. Structure

This report consists of five main parts. The first part describes the system to be investigated.
In the second part it is explained what an expert system is. The third part contains an
explanation of how Volve Knowledge Tools works and how an expert system can be created in
it. In the fourth part it is discussed why one should use condition monitoring. The final part
contains simulations and results. Continuing work and advantages/disadvantages will also be
presented here.

Master thesis 2008
Erlend Timberlid

 3

2. THE REFERENCE SYSTEM

To shape the reference system, it was necessary to decide what it should consist of. When
choosing the components, commonly-used devices were chosen. In this way the reference
system would be a good foundation for developing a specific expert system. One criterion for
shaping a reference system was that it should be similar to a facility in the Trondheim region.

Figure 1, Meråker hydropower plant [2]

The facility chosen as a basis for the reference system is Meråker power plant, Figure 1. It
consists of two aggregates one producing 75 MVA and the other 33 MVA. The reference
system should, for practical reasons, be a medium-sized power plant. This results in a
reference system which consists of [2]:

- Vertical Francis turbine
- Ball valve as main valve
- Submerged station in the bedrock with a draft tube
- Bilge system with two pumps and one ejector
- Three-phase synchronous generator
- Cooling water from the clearance of the turbine
- Cooling system with four separated coolers in the stator, spiral-coolers in the bearings

and a separate cooler for the transformer
- Pad type bearing with oil-pressure discharger in the axial bearings
- Bus system for communication
- IGSS32 as control system

Master thesis 2008
Erlend Timberlid

 4

2.1. General

The reference system is a submerged power station embedded in the bedrock. A submerged
station means that the centre of the turbine is lower then the level of the tailwater, see Figure 2.
The reason for submerging a power station is to exploit the head more effectively, which
creates more speed to the rotor. High speed turbines are smaller and less complex than slower
ones. A result of this is a cheaper power station.

Figure 2, Submerged station [3]

As shown in Figure 2, the reference system consists of a Francis turbine with a draft tube. The
purpose of the draft tube is to drain water from the runner and decrease its speed to suit the
tailwater [4]. The solution for decreasing the water speed is to gradually expand the draft
tubes outlet. At the outlet of the draft tube there is a hatch. This hatch is remotely operated, as
are all hatches in the facility. Occasionally rocks loosen in the draft tube. This is unfortunate
because rocks can clog the whole tube and cause flooding of the station. To detect any form
of landslide in the draft tube or close to it, there are float balls that measure the level of the
water. If these are triggered, the sequence of stopping the aggregate is initiated. In that case
the hatch of the draft tube will be closed.

Master thesis 2008
Erlend Timberlid

 5

2.2. Bearings

There are three types of bearing: roller bearing, ball-bearing and oil lubricated sliding bearing.
Lubricated sliding bearings are the type most commonly used in generators. The main task of
the bearings in generators is to keep the rotor in place. This is done by using a combination of
radial bearings and held bearing. The bearings have another important task; they absorb forces
applied by the magnetic and mechanical unstableness of the machine [5].

2.2.1. Placing of bearings

In this chapter, only bearings placed on a vertical machine will be presented.
To see to that the rotor is in the centre at any time, radial bearings are used. There can be
several radial bearings, but the minimum requirement is one. The other type of bearings used,
are axial bearings. The main task of these bearings is to absorb the weight of the generator
and additional hydraulic weight applied by the turbine. A common use of bearings is to
combine the axial bearing with one of the radial bearings. The placement of the bearings is
individual on each machine, depending on rotational speed, performance and type of turbine.

There are two common ways of placing bearings. One is the W41, which is used for high head
Pelton and Francis turbines. This is the most common type in Norway.

Figure 3, Placement of bearings, model W41 [5]

The other platform is W42. This form is used for low head turbines and where the radius of
the stator is rather large.

Figure 4, Placement of bearing, model W42 [5]

There are of course other ways of placing the bearings, but those types are not mentioned in
this report.

Master thesis 2008
Erlend Timberlid

 6

2.2.2. Axial bearing

The axial bearing consists of several parts. Underneath the rotor there is a seal face. The seal
face is placed on top of the axial bearings. Between the seal face and the bearing segments
there is an oil film. The oil film sees to that the rotor is floating on the top of the bearing
segments. In this way there is no physical connection between the segments and the rotor.
There are three types of axial bearings. The difference lies in how the segments are shaped:

- Stationary segment
- Tilting-pad segment
- Spring segment

Below, only the stationary-segment type is explained. In Figure 5 a stationary-segment
bearing is shown.

Figure 5, Pad type bearing [5]

As shown in Figure 5, the segments are sloping. The reason for this is that the lateral surface
creates an oil film. They also provide replacement of warm oil when the rotor rotates. Thus
the rotor functions as a pump and makes sure that the temperature is kept at an acceptable
level.
At start-up the oil has a high viscosity and the desired oil film is not established. As the rotor
gains speed the viscosity drops, and at a certain rotational speed the oil film is established
(Point C). The graph below shows how the friction factor reacts to the increasing speed,
where K is the optimal operating point of the machine.

Figure 6, Friction in bearing at start-up [5]

Master thesis 2008
Erlend Timberlid

 7

At start-up there is a direct connection between the seal face and the bearing segments. This is
not desirable and can be avoided by using oil-pressure discharging. When starting a machine,
the oil-pressure discharge raises the rotor so that there is no contact. This is done by pumping
additional oil into the bearings. Using oil-pressure discharge prevents unnecessary strain on
both the seal face and the bearing segments. In the reference system this type of bearing i.e.
pad type bearing with oil-pressure discharging will be used. How the oil-pressure discharge
functions is illustrated in Figure 7

Figure 7, Pad type bearing with oil-pressure discharge [5]

To prevent oil vapour escaping into in the rest of the system (or dirt getting in), labyrinth
glands are used.

Master thesis 2008
Erlend Timberlid

 8

2.2.3. Radial bearing

The main task of the radial bearings is to absorb the forces in the radial direction.
There are two types of bearings in this category, turbine bearing and lower radial bearing, but
their objective are the same; keep the rotor centred. Turbine bearings consist of a drum that
encloses the whole shaft and is place right above the turbine. The drum is spilt in two, one
part containing the oil. When the shaft rotates, the oil is forced into a pipe. This pipe leads to
the upper part of the drum. Here, the oil is released and flows back to the lower part along the
shaft. See Figure 8.

Figure 8, Turbine bearing [4]

The radial bearings operate in the same principle as the axial. The segments see to that an oil
film is established and the bearing get lubricated. The only difference is that the bearing is
mounted vertically instead of horizontally.

Figure 9, Horizontal pad type bearin [5]

Master thesis 2008
Erlend Timberlid

 9

2.2.4. Combined axial and radial bearing

At the top of bearing model W41, the combined axial and radial bearing is placed. As the
name indicates, the bearing consists of an axial and a radial bearing. Both of these bearing are
placed in an oil sump. The figure below shows how the bearing is built.

Figure 10, Combined axial and radial bearing

As described in the figure, both bearings are soaked in oil. In this way the bearings always
have access to plenty of oil and lubrication is kept at an optimal level.
When the shaft is not rotating, the axial bearing and half the radial bearing are underneath the
oil surface. As soon the machine starts to rotate, the oil starts to whirl around in the sump.
There are grooves in the radial segments that see to the oil is whirled up so that the whole
bearing is lubricated [6].

When the machine rotates, the segment and the oil become very hot. In order to lower the oil
temperature, a heat exchanger is used. This exchanger is a spiral pipe that cold water flows
through. The water enters the spiral at one point and runs through the spiral and out again
only aided by gravity. Since Figure 10 is drawn in 2D, it is easy to interpret the bearing as
having two spiral heat exchangers. This is not the case. The spiral goes all the way round the
shaft so that the whole oil sump is cooled down. This is an efficient method for keeping the
temperature at a reasonable level. The amount of water that runs through the heat exchanger is
depends on the cooling water valve. This valve is governed by the control system and will
open or close as the bearing temperature goes up or down.

Master thesis 2008
Erlend Timberlid

 10

2.2.5. Monitoring

Four parameters are crucial to the bearings: temperature, oil level, vibrations and electrical
currents in the shaft. To measure the temperature in the bearing, Pt-100 elements are used.
These are placed in the oil and are moulded into the bearing segments. Since the Pt-100
elements are placed in the centre of the segment, the temperature in the segments is the best
indication of the temperature in the bearing.
When the temperature reaches a certain value, a pre-warning is sent to the control system to
notify an operator. If the temperature reaches an upper level, the aggregate starts the
emergency stop sequence.

On the right-hand side of Figure 10 an oil level indicator is shown. This sensor indicators how
much oil is in the bearing. When the machine is running the oil level is totally different from
when it is stopped. The reason for this is that the oil is splashing around in the bearing. In the
simulations only the oil level when the machine is running will be considered.

To measure vibrations, an inductive distance measurer is used. Since vibration is crucial for
the aggregate, the measuring of distance is performed in µm and done continuously.

Because of the asymmetry in the stator punching, a voltage is induced in the shaft. This
voltage attempts to lead a current through the bearings. This is not desirable because the
penetration causes electro-erosion. The erosion will eventually break down the oil film and a
bearing breakdown is inevitable. A solution to this problem is to isolate the bearing from
ground.

To detect currents in the shaft, a ring-transformer is used. The transformer is mounted around
the shaft and sends out a signal when currents are detected. This signal goes directly to the
electrical protection switches.

2.2.6. Defective bearing

To detect if a bearing is defective or an error is developing, several parameters must be
considered. The most essential parameter is the temperature of the bearing. A high
temperature is not desirable and can be an indication that something is wrong. If high
temperature and vibration occur, and the rest of the systems is operating normally, it can be a
symptom of a defective bearing [4].
A defective bearing can be a result of several things, but it is mainly when the bearing is
exposed to heavy stress that its lifetime decreases. Heavy stress on a bearing can be due to
several things, including generator on overload and shaft currents, to mention only a few. In
this report only the generator on overload will be considered. The reason for excluding shaft
currents, which expose the bearing to extremely high strain, is that shaft currents are so
critical to the bearing. When a shaft current is detected, the machine goes to quick closing and
the bearings are inspected visually by maintenance staff i.e. the monitoring of bearings for
shaft currents is already covered in today’s surveillance.

Master thesis 2008
Erlend Timberlid

 11

2.3. IGSS32

In modern power plants all processes are computer controlled. This means that an operator
uses a computer to set the desired parameters and controls the different processes using its
software. The software should be simple and easy to use.
Specialized programs have been developed for this purpose. They are called SCADA systems.
SCADA stands for “Supervisory Control And Data Acquisition” [1].
A SCADA system mainly consists of several Programmable Logic Controls (PLCs),
input/output units, communication protocols and the human interface which is the program
the operator uses.

In the reference system, IGSS32 (Interactive Graphical SCADA System) is used. This system
has been chosen by Voith Siemens and is used in their facilities. The IGSS platform was
developed by the Danish company 7 Technologies. The IGSS system are very comprehensive
and complex, but still easy to customize, flexible and scalable. The program IGSS program
has a graphical interface. This makes it fast, simple and easy to use. IGSS is also a real-time
operating system. This means that the temperatures presented on the display are the actual
temperatures of the system at that point. A further advantage of IGSS is that it can log data.
This is practical since, when a situation occurs, it is possible to see if there is a certain chain
of events that leads to that type of error. From this information expert systems can be
developed. So when developing an expert system, it is sensible to base it on data provided by
IGSS.

Master thesis 2008
Erlend Timberlid

 12

2.4. Stop sequences

When a fault situation occurs in a hydropower station, the aggregate(s) go(es) to a given stop
sequence. This sequence depends on how severe the error is. There are three different types of
stop sequences [7]; Quick Closing, Stop and Emergency Stop.

2.4.1. Quick Closing

This is the most common way of stopping an aggregate, since it is the gentlest way of
bringing the rotating machine to a stop. When the Quick Closing command is given, both the
guide vane operating mechanism and the valve system are closed before the circuit-breaker
and the excitation switch are disconnected. This prevents racing of the machine. At rotational
speeds below 60 rpm the mechanical brakes are applied.

2.4.2. Stop

When an electrical fault occurs, the main priority is to stop producing electrical power and get
the generator off the grid. This is done by disconnecting both the circuit-breaker and the
excitation switch at the same time. As a consequence, the machine loses its electrical counter
torque and the rotational speed increases rapidly. Because of this racing, the retardation period
is far longer for the Stop sequence than for Quick Closing. Mechanical brakes are applied at
speeds below 60 rpm for this sequence as well.

2.4.3. Emergency Stop

When a critical situation occurs, for example if the temperature in the bearing reaches its
critical value, the aggregate goes to Emergency Stop. The emergency stop sequence has the
same progression as Quick Closing, the only major difference is that the brakes are applied at
a much higher rotational speed. The brakes can be activated at rotational speeds up to 90
percent of the maximum rotational speed. This exposes the components to a great load of
strain. This method of stopping is of course undesirable

Master thesis 2008
Erlend Timberlid

 13

3. WHAT IS AN EXPERT SYSTEM?

The most common form of expert system is a computer program. An expert system is often
referred to as a knowledge-based system. This means that the program can draw its own
conclusions based on knowledge. The knowledge is based on specific information concerning
the class of problems. This technology was first developed by researchers in artificial
intelligence in the 1960s and was first applied commercially in the 1980s.

Artificial intelligence means the ability of a computer to act like a human being. When a
problem occurs, the program should use programmed knowledge to work out a desirable
solution, then present the solution to an operator and store the problem situation in a database.
The information is stored so that it can be reused if the problem should occur again. This
makes the system an intelligent one; it uses its experience to handle problems.
This way of handling problems is desirable in modern society, as most systems nowadays are
controlled from a central far away from the actual process. A consequence of this is one use
computer system for controlling the process. These systems can only detect that a fault has
occurred. An expert system can provide information on what is wrong, why it happened and
what can be done to fix the problem. The expert system can also detect a potential fault
situation. In this way the process can be stopped and actual problems can be taken care of.

By implementing an expert system to assist the existing system, both the surveillance and
operation of a given process are improved.
Typical uses of expert systems include [8]:

- Surveillance
- Interpretation of parameters
- State analysis of systems

An expert system consists of two modules, the knowledge database and the inference engine
[9]. These two modules consist of knowledge about the system and sets of rules on how to
find the knowledge and how to present a solution to a user. For development purposes it is
practical to split the system into these modules. In case one wants to add something in one
part, it is unnecessary to change anything in the other.

Master thesis 2008
Erlend Timberlid

 14

3.1. Development

For developing an expert system there are mainly two sorts of tools [9]. One is to develop the
whole system using a program language such as C, C++ or Java. This is a time-consuming
process and requires a thorough understanding of programming. As a consequence, several
companies have developed a new type of programming.
This “new” way of programming is a higher-level language than those mentioned above. The
programming is based on evolving expert system, which means that it consists of finished
shells for several processes. These shells represent the skeleton of the expert system. This
means that after creating the system, one still has to implement program code to make the
system do what is required. Still this sort of programming is desirable. It is easy to understand
and it is also easy to create the basic structure of the expert system. To create an expert system
in this manner, one simply needs to select a shell and implement program codes to the
database.

Figure 11, Expert system shell [8]

3.2. Knowledge database

To solve a problem, a program needs knowledge of how to do this. This knowledge is stored
in the knowledge database. Here we find large sets of rules on how to handle a given situation.
This information can be predefined or collected over time.

When the expert system shell is created, the knowledge database is empty. Supplying the
database with relevant information is a time-consuming process and requires expertise within
the problem domain [1]. To implement this knowledge, the expert needs to cooperate with a
computer specialist. This specialist creates a digitalization of the knowledge the expert
possesses concerning the given subject. When programming the expert system, the computer
specialist needs to consider the operators that will be used in the system. This means that the
program must be user-friendly and easy to understand.
For the system to be able to update the database with new knowledge later on, it has to be
self-taught. This is further explained in chapter 3.4.4 Case-based reasoning.

Master thesis 2008
Erlend Timberlid

 15

3.3. Inference engine

When a problem occurs, the inference engine will immediately start reasoning on the basis of
the knowledge database and come up with a suitable solution. This reasoning is a search in the
database where the inference engine will find a solution (or something close to a solution) that
fits the relevant problem best. This searching function is a critical part of the system and is
often predefined in the expert system shell. The predefined program code is a set of rules that
tell the engine how the search should be performed. These rules must be able to handle the
continuous flow of new information as the expert system learns from experience.

The inference engine has another task as well: it presents the solution to an operator. In other
words, the inference engine controls the information flow of the system.

3.4. Types of expert systems

Based on how the inference engine searches the database, expert systems are divided into
several types of subsystems. In this report, two types of expert systems are presented. These
are rule-based and case-based searching [8]. Later in the report one will see that these two
types can be combined.

3.4.1. Rule-based system

The rule-based system is based on the predefined rules and facts that exist in the knowledge
database. These rules are defined by an expert in that application field and are often
represented as a large amount of “if”-statements [10]. This means that if a certain criterion is
fulfilled, then an operation is executed. Based on this knowledge, the system can solve the
given problem. Some of the “if”-statements are often linked together. An example of this is:

If A then B
If B then C

From these sets of rules, the following can be derived:

If A then C

The rules are often evaluated in terms of how reliable they are. In order to arrange the rules by
their reliability, a factor system is implemented. This factor varies between 0 and 1, where 1 is
the most reliable rule.

In the rule-based system there are two main methods of reasoning: backward chaining and
forward chaining.

Master thesis 2008
Erlend Timberlid

 16

3.4.2. Forward chaining

Forward chaining starts with available data and uses the inference rules to conclude more data
until a desired goal is reached. This means that the inference engine will search the
knowledge database for criteria which are known to be true. It then executes the “then”-
statement, saves the data and starts again from the beginning. The inference engine has now
updated the data it was previously given and is reusing this data to get new information. This
method is also called data driven.

3.4.3. Backward chaining

Compared with forward chaining, which is data driven, backward chaining is goal driven. To
use this goal driven method the inference engine needs a list of goals before it can start
searching the knowledge database.
When the inference engine starts the search, it compares the “then”-statements to see which
match the goal. When it finds a match, it compares the “if”-statement to the desired solution.
If the “if” clause is not known to be true based on the inference rules, it then adds this to the
list of goals. And the process starts again from the beginning.

Master thesis 2008
Erlend Timberlid

 17

3.4.4. Case-based reasoning

The CBR process is very similar to the human way of solving a problem. This means that
when a problem occurs, the program searches its database (case-base) for earlier, similar
situations (cases) and uses this information to solve the problem. Often the stored cases are
not completely equal to the given case. The result is that the program has to modify these
cases so a solution can be presented.
After presenting a possible solution, the program stores the result in the database for later use.
The problem solving can be divided into four sequences [11]:

- Retrieve: The inference engine analyses the given problem and searches the database
for similar cases.

- Reuse: The matching or near-matching case is presented to the system. This case is
compared with the given case. The difference is uncharted. Modification to fit the
solution is carried out.

- Revise: The suggested solution is tested. If this is not the right solution, additional
modification is performed. This is done until a solution is found.

- Retain: The solution is saved in the database.

These four steps are illustrated in Figure 12:

Figure 12, Case-based reasoning [12]

If the case is not solved, the reason for this is saved in the database so that another approach
will be used next time the problem occurs.

A CBR system differs from other expert systems in two specific ways [13]:

- It uses knowledge from earlier cases to solve a new case
- Each time a case is treated, the system gains more information which it can use on

later occasions.

Master thesis 2008
Erlend Timberlid

 18

3.4.5. What is a case?

A case is a predefined situation that may occur as a problem in a system. These situations are
defined by a set of demands that have to be fulfilled. An example of a situation may be that
the temperature in a generator bearing is increasing:

Case 1:

- Generator is operating normally
- Bearing oil level is normal
- Vibrations are detected
- Cooling water valve to the bearing is opened to max
- Temperature in bearing is increasing

Here we can see the different demands that must be fulfilled in order for Case 1 to be a 100%
match to a given problem. This is one part of a case. The other is the part that represents the
solutions to the problem. This case has the solution Defective bearing.

Master thesis 2008
Erlend Timberlid

 19

4. VOLVE KNOWLEDGE TOOLS

Volve Knowledge Tools is mainly intended for problem solving, prediction and decision
support for well drilling in the oil industry [12]. The program therefore has a lot of advantages
that can be used in an expert system in a hydropower plant. This program has therefore been
chosen for continuing work in this project. The main purpose of using this software is to
develop a simple version of an expert system and at the same time test if Volve Knowledge
Tools is suited for use in the surveillance of a hydropower plant. Volve Knowledge Tools
consists of two modules, Volve Predictor and Volve Knowledge Editor.

All development and simulations have been performed in this version of CREEK. In this
report the two modules, Volve Predictor and Volve Knowledge Editor, will only be referred to
as “Predictor” and “Knowledge Editor” respectively.

4.1. History

Volve Knowledge Tools was developed by a number of persons [14].
In the 1990s, Agnar Aamodts wrote a PhD thesis on “Case based reasoning” where CREEK
was the raw model of a program. CREEK is a shortening for “Case based Reasoning through
Extensive Explicit Knowledge”. A Lisp version of CREEK consisted mainly of the basic
architecture and the basic theory of today’s program. In the beginning of the 21st century
Aamodt and a colleague established the company Trollhetta. They developed CREEK further
and reimplemented it with Java. This provided CREEK with a better user interface and some
of the reasoning processes that are found in the program today. The new version of the
program was called TrollCREEK.

In 2004, another company called Volve was established. This company consisted of four
students and three professors from the NTNU. The primary goal of this company was to
develop a CBR-system that could be used in the oil drilling business. In 2006, Volve was
sponsored by Statoil and with this money Volve bought and took over TrollCREEK.
TrollCREEK got an even better user interface and was upgraded in several areas. The new
software was called Volve Knowledge Tools.

Master thesis 2008
Erlend Timberlid

 20

4.2. The CREEK model

The CREEK system model consists of three main levels of knowledge [13]. The top-level,
generic concepts, represents the basic structure of each CREEK model. This knowledge level
is represented in Volve Knowledge Tools by the predefined concepts, such as thing, entity and
symbol (See Figure 17). This level is common to the whole system and is domain independent.
The next knowledge level is the general domain concepts. Here we find the knowledge of the
process one wishes to describe. This level is represented by the causal model. When a case is
triggered and the inference engine starts reasoning, the reasoning process mostly takes place
in this knowledge concept. The solution to the case is found in this area as well. The final
level of knowledge is the cases. An illustration of these levels is shown in Figure 13.

Figure 13, Knowledge model in CREEK [13]

In the CREEK system there is a strong bond between the cases and the general domain
knowledge. This means that the cases in CRREK contain a lot of information about the
domain application. From Figure 13 it can be seen that the cases are connected directly to the
domain concepts. This means that the architecture of CREEK contains both model (MBR) and
case-based reasoning (CBR). It is primarily a CBR-system with an MBR support component.
TrollCREEK and Volve Knowledge Tools are constructed in this way.

4.3. The reasoning process in CREEK

Reasoning in CREEK is based on the same principles as described in section 3.4.4 Case Based
Reasoning, i.e. retrieve, reuse, revise and retain. These are automatic functions implemented
in CREEK, where each of the four stages is divided into three. These three steps are [15]:

1. Activating relevant parts of the knowledge model
2. Generating and explaining the knowledge that has been activated
3. Focusing towards and selecting a solution to the given problem

Master thesis 2008
Erlend Timberlid

 21

4.4. Learning in CREEK

CREEK is a learning program. When a program is self-learning, it means that the program
itself has the ability to have new information implemented into its database (case-base). In
CREEK the program can automatically add new cases into the case-base, making it
independent. The cases are added independently of whether the case has been solved or not. If
a case is solved by using an old case as reference, the result can be either that a new case is
created with the specified solution or that the solution from the old case is modified. In each
case the program dedicates more information to its database. Figure 14 illustrates learning in
CREEK [13].

Figure 14, Learning in CREEK [13]

Master thesis 2008
Erlend Timberlid

 22

4.5. Volve Knowledge Editor

To create a program in Volve Knowledge Tools one needs to go through the three steps of
creating an ontology model, a causal model and a case model. In these three models
information about the process is added. When all three steps are accomplished, the program
has extensive information about the process. All three models can be made in Knowledge
Editor, see Figure 15.

Figure 15, Creating a program in Knowledge Editor

In Figure 15 the models are marked with red concerning Knowledge Editor. The reason for
the dividing of the red blocks is that the case model can also be constructed in Predictor. This
will be further explained in chapter 4.8 Adding cases.

When the models are created, the program knows which process it will modulate. It also
knows how the components work together, how the system reacts to errors and which errors
may occur. [12].

Master thesis 2008
Erlend Timberlid

 23

4.5.1. Ontology model

The first step in making an expert system is to create the components of the process one
wishes to investigate. This is also known as ontology. To add information about a component,
a node is added to the Knowledge Editor. This node is a representation of a concept and is
given a name that suits the concept. For the program to be able to recognise the connection
between two concepts, a link must be established between them. This link is called a relation.
See Figure 16.

Figure 16, Generator-bearing relation

By adding these two nodes and the relations between them, the program knows that two
concepts exist and that one of the concepts is part of the other. In Figure 16 the relation is has
part. This means that the program is told that the bearing is part of the generator. By creating
many of these nodes and relations between them one can finally make a complete system. But
there are some precautions that need to be considered. One cannot just add this information
directly to the program. The program would not understand what a generator and bearing are,
only that they are somehow connected.
To enable the program to understand that these two concepts are actual components, one
needs to add some information. This information is considered as the uppermost subclass
level of Volve Knowledge Tools and is the basic structure in all CREEK programs [16]. See
Figure 17.

Master thesis 2008
Erlend Timberlid

 24

Figure 17, Ontology model

Figure 17 shows how Volve Knowledge Tools can be told that a bearing is part of a generator
and both are components of a power station. The nodes that are marked with red are the basic
structure of CREEK. First one must declare that there is a thing. A thing in Knowledge Editor
is any thing in the world worth naming or characterising. This thing has a subclass called
entity. An entity represents an object from the real world. It can be either a physical object or
an abstract [17].

A subclass of entity is domain object. By adding this information, the program creates a
domain that has an object. This object is a physical object,in this case a power station. As can
also be seen from Figure 17 the domain object has a subclass called state. In this way the
program is told that the physical object one is creating can operate in different states. The
definition of state in Knowledge Editor is a collection of things at a snapshot of time. A state
may be simple, such as a value of a parameter, or complex, such as a total situation [17].
This chain of information tells the program that a new system model has been created
concerning a modelling of a power station. It also tells the program that this power station has
several states and components.
From this model it is easy to expand with several new components. For instance the power
station also has a cooling system, and the generator has sensors that can detect vibrations.
The complexity of the model is dependent on how much of the process one wishes to model.

Master thesis 2008
Erlend Timberlid

 25

4.5.2. Causal model

The second step is to create a causal model. The purpose of this model is to tell the program
about causes and effects [12]. For instance: If there is humus in pipes, this can cause a lack or
reduced delivery of cooling water. This will cause the temperature in the bearings to increase.
The increase in the bearing temperature may then cause the aggregate to go to stop.
From Figure 17 it can be seen that the system has three states, the bearing state, the cooling
system state and the aggregate state. As can be seen, these states have describing “sub-states”
as well. These “sub-states” are linked together in the causal model. See Figure 18.

Figure 18, Causal model

In order to reach the aggregate stopped-state Volve Knowledge Tools can only send a
command to the control system to tell the operating program to initiate the stop sequence.
The information added in both the ontology and causal models is knowledge that separates an
expert system from another surveillance system.

Master thesis 2008
Erlend Timberlid

 26

4.5.3. Map view

Since both the ontology model and the causal model are built into Knowledge Editor, it is
important to have a well arranged model. This is done by using several map views. A map
view is like a new page in the Knowledge Editor. A good way to use the map views is to have
one map view per model. In this way it is easy to keep control of all the models one is creating.
An example of a map view is given in Figure 19.

Figure 19, Map view

Master thesis 2008
Erlend Timberlid

 27

4.5.4. Relations

Figure 18 shows two relations between the nodes, can cause and always causes. These two
relations are based on how possible it is to go from one node to another. The possibility is
given by strength and has a number between 0 and 1, where 1 is a 100% possibility. This
means that if the relation between nodes A and B has a strength of 1(such as always causes),
node A will always lead to node B. For example if a filter is clogged, it is most likely that the
pipes have a reduced through-put. In this case the always relation is the proper one to use.

When creating a new model in Knowledge Editor one often has to add new relations to the
knowledge model. By creating these new relations one also creates inverse relations. Always
causes has an inverse relation, always caused by. This inverse relation is a standard relation
and may cause some confusion, for instance when looking at Figure 18 and considering why
the temperature in the bearings is increasing. To explain why the temperature increases, the
program provides the information that it is always caused by the lack of cooling water. This is
not completely correct as the temperature can also increase because of a defective bearing. A
reasonable name of the inverse relation would be caused by. This would make it easier for an
human operator to understand why the program has chosen a certain solution.
The reason for inverse relations is that the program should easier understand the relations
between two nodes and it is also because the net structure should not be limited to operate
only one way. There are also predefined relations in Knowledge Editor. These relations are
divided into four main classes [16]:

1. Structural relation: Abstract relation class. Consists of relations used for
structural purposes in hierarchical systems.

2. Implication relation: Consists of relations used where an action will cause a
reaction in the next node with some probability.

3. Associative relation: Consists of relations that associate one node with another.
4. Temporal relation: Consists of relations that are related to a situation or to a state

through time-dependent relations.

Master thesis 2008
Erlend Timberlid

 28

Some examples of these relations [16]:

Relation type Relation Strength
Structural Has subclass

Has part
Has instance
Has value

Has member

1.0

Implication Always causes
Can cause

1.0
0.4

Associative Occurs in
Associated with
Described by

0.5

Temporal Pump-pressure
Torque

variation
Water flow

Individual for
each model

Table 1, Relations [16]

Nodes in causal mode are often states that are triggered by an incident. An incident can be, for
example a temperature that reaches a certain value. This triggers the state temperature high.
One can therefore say that nodes in the causal model are states of the system.

In a very large and advanced system, all the relations between the concepts can make the
system look messy. See Figure 20:

Figure 20, Messy causal model

In order to make the knowledge model easy to understand and easy to read, a function for
hiding relations is added. By using this function the model becomes simpler and easier to read.
Se Figure 21.

Master thesis 2008
Erlend Timberlid

 29

Figure 21, Tidy causal model

One disadvantage of this function is harder to see all the relations to a concept just by looking
at the model. To display this information one needs to click on the given concept. The concept
is then highlighted and a red dot appears in the node. This is shown in Figure 21, concerning
the node defective bearing. By mouse-clicking the concepts, a frame view label appears in the
right-hand part of the program window. The frame contains all the information about the
given concept. See Figure 22.

Master thesis 2008
Erlend Timberlid

 30

Figure 22, Frame view

As we can see from Figure 21, defective bearing has only one relation, emergency stop. But
looking at the frame view in Figure 22, we see that defective bearing has in fact several more.
For instance defective bearing always leads to:

• Temperature in axial segment increasing
• Emergency stop
• Generator vibrating
• Temperature in bearing oil increasing
• Temperature in axial segment increasing

As a final point the defective bearing is also an instance of the bearing state. In other words
the program is told that defective bearing is also a condition of the bearing.
Sewing the different concepts together like this is an important feature of Knowledge Editor.

Master thesis 2008
Erlend Timberlid

 31

4.6. Volve Predictor

In the Predictor module real-time data is read and interpreted. Since Predictor and
Knowledge Editor are two different modules, it is very important that the data in Predictor are
connected with the right knowledge model in Knowledge Editor. This connection is secured
by loading a script. The script contains the path of the knowledge model-files and consists of
Java commands. These Java commands also specify how the raw data will be read by
creating different sorts of agents [18]. An agent is a function of importing the parameter
values into the program. These agents are categorised according to how they read the
parameters. In Volve Knowledge Tools there are large sets of agents. A few examples are
listed below:

1. Instant-value agent
2. Derivation agent
3. Integrations agent
4. Mean value agent

When creating an agent, it is very important that its output is assigned to an existing concept
in the case-base. If not, there is no link between Predictor and Knowledge Editor, and the
agent will not feed any values into the case-base.
Agents will always interpret the parameters they have been given and do this as long as the
program is running. When the agents have finished this interpretation they pass the values on
to the case-base. In the case-base the values are compared with the demands of each of the
cases. It is here that the case matching begins. Frequently the process the agents have to
consider is time crucial. This is no problem for the agents since their performance depends
almost exclusively on computer performance. In order to get the agents to function as optimal
as possible, they are custom-made for each simulation.

To run an analysis in Predictor, there are two things that need to be considered: loading the
raw data from the given process and loading the script that tells Predictor how to read these
data. After doing so, the program is operational. When the raw data are imported into
Predictor, a list of all the parameters occurs. Now it is up to the human operator to select
which parameter he wishes to analyse. If the operator presses run, a CBR Matching-box
appears with all the cases in. The matching of the cases is given in percents according to
which one matches the most. All the agents will also appear when Run is pressed.
Since Volve Knowledge Tools can operate in real-time, the raw data that is loaded into
Predictor can come straight from the sensors. In this way an operator does not need to press
Run.

Master thesis 2008
Erlend Timberlid

 32

4.7. Adding cases

By adding cases to the knowledge model, the user creates a link between Predictor and
Knowledge Editor. This is because the raw data from the processes are gathered in Predictor
and it is the cases that interpret these data.
When adding cases to Knowledge Editor, several things must be considered, for instance

• which cases/situations one wishes to detect
• which parameters these cases include
• how one wishes to detect these cases.

When this is cleared, one can start to create the cases. The cases can either be constructed in
Knowledge Editor or in Predictor. Cases in Volve Knowledge Tools have several descriptions,
such as Case occurrence description, Measurements, Case Description and Normal section
weight. The Measurements description is the most important one, and sees to that the case-
base is fed with parameters. As Figure 23 shows, the Agent output is a parameter of the
Measurement node.
The purpose of Normal section weight is to enable the different cases to be compared with
each other so that the program can tell which case matches the most.
Case occurrence description is included to tell the case-base that the cases appear at a certain
time. The reason for the Case Description is for the user to get information about each of the
cases. This description is not vital for the case matching process.

In Figure 23 a simple case-model is shown. This is how a case would look in Knowledge
Editor.

Figure 23, Case model

In order to create a case in Knowledge Editor, the case must be constructed using the
programming language XML. Once created, the case is stored in the case-base.

Master thesis 2008
Erlend Timberlid

 33

Figure 24, Case in case-base

In Figure 24, a case is shown as it is presented in the case-base. The figure shows that the case
has several tabs. In View, the cases is described. Here the different measurements are listed.
These measurements are the output from the agents. When the cases occurred is also
described here. In the tab Text Editor the XML-codes are added. The Case Match tab contains
information about how much the cases matches pursuant to each other.

Master thesis 2008
Erlend Timberlid

 34

The other way of creating a case is in Predictor. This function is called Capture case. When a
human operator is considering the graphs in Predictor and suddenly sees something that is
abnormal, he can just press this button and mark the incident for later investigation and use. In
this way the human operator can easily, in small steps, detect new events and expand the case-
base. This makes Volve Knowledge Tools a learning program and it also includes Predictor as
a part of the three steps of making the program see Figure 25.

Figure 25, Creating a program in Predictor

The cases can have the statuses Solved, Unsolved or Processed. If a case has the status
Processed, it means that the program has suggested a solution but is not certain that this
solution works. The solution must be confirmed by the human operator. After such
confirmations, the program knows that this solution was the right one and the status of the
case becomes Solved. The processed case method is no longer in use in Volve Knowledge
Tools, but a new version of it will be introduced in the future. This will be further discussed in
chapter 4.9 Matching of cases.

Master thesis 2008
Erlend Timberlid

 35

4.8. Matching of cases

In chapter 3.4.5 What is a case?, five demands are listed. If all demands are fulfilled, Case 1
is a fact and the matching is 100%. Often cases don’t match 100%, which means that not all
the demands are totally fulfilled. The reason for this may be, for instance, that one of the
parameters has not reached the value for that specific case. The result can be that Case 1 is
only a 95% match. Case matching is a continuous process. This process compares the solved
cases in the case-base with the real-time data that the agent provides. This means that case
matching is always running as long as Predictor has parameter values, even if everything is
running normally.
When Predictor is running with a set of raw data, the program searches the case-base for
cases that match the data series. In this process the program always presents the case that has
the highest matching percent. When searching the case-base for matching cases, Volve
Knowledge Tools uses the simple method of comparing each of the fulfilled demands with the
demands that are in different cases. In Case 1 if vibrations are detected, one demand is
fulfilled and so on. This method is called syntactical match.
In previous versions of the program there was another additional case matching method. This
method was more sophisticated and is called the relation match method. This means that the
program knows that if one demand is fulfilled others will automatically be fulfilled. Looking
at Case 1 in chapter 3.4.5 What is a case?, this method is not easy to use. The method is based
on states that always cause another state, independently of external conditions. An example of
this is if the bearing does not receive cooling water. The result of this is always that the oil
temperature increases. If the purpose was to detect if the temperature increases this method
could be used, but this would not had been the case if the purpose was to detect how fast it
was increasing. For instance, if the bearing oil was new, the temperature coefficient would
had been higher. A result of this, the oil requires much more energy to increase the
temperature and the oil temperature would not increase so fast.
Since many things, like how fast the temperature increase, are depending on several criteria,
this method cannot be used. In fact almost all things do have states that do not only depending
on one parameter. Since very few processes can apply this reasoning method, it has been
removed and, as a result the causal model has been made redundant. The co-operation
between the models is illustrated in Figure 26. Here the causal model is marked with red to
indicate that this model is not a relevant part of the system today. In other words, connections
“2” and “3” do not exist.

Master thesis 2008
Erlend Timberlid

 36

Figure 26, Relation between models

Volve AS is planning to reintroduce the causal model into the system. The consequence of this
is that a new and far more advanced case matching method has to be introduced. This method
is in the development phase at Volve AS, and some of the technology will be introduced
already within as little as six months. This technology represents the “2”-connection in Figure
26 and is called Fuzzy logic. The “3”-connection is more advanced and needs more time for
development. This connection represents adding more information to the causal model based
on the cases.
To reintroduce these connections into the model, students can participate by way of a PhD-
thesis or similar activity.

Master thesis 2008
Erlend Timberlid

 37

4.9. Communication with IGSS32

When making an expert system, one needs to consider communication with the system
already existing. The interface, IGSS Automation Interface makes this possible. The interface
is built on the Microsoft Automation platform. This means that every program that supports
this standard can communicate with the IGSS interface. The interface gives access to:

- Properties of the given objects
- Parameters, alarm limits, i/o-mode
- Alarm lists
- Alarm control and alarm confirmations
- Properties of the system

Since Volve Knowledge Tools is constructed on a Java-platform, the communication between
the two programs can be complicated. To get the programs to communicate with each other,
an interface between them has to be created. This is the case with many programs today, two
programs with different platform are connected, and it is not unknown to create such an
connection.

Master thesis 2008
Erlend Timberlid

 38

4.10. Relations between Volve Knowledge Tools, the human operator and the

HMI program

Once the expert system is developed, it is ready to be implemented in the hydropower plant.
The implementation is a large operation and requires a thorough understanding of how the
expert system should cooperate with the already existing systems. Since the approach to the
problem has been given by Voith Siemens, the HMI program is IGSS32. In Figure 27 the
relations between the different systems are illustrated.

Figure 27, Relation between Volve KnowledgeTools and IGSS32

In Figure 27 the connection and relations between Volve Knowledge Tools and IGSS32 are
visualized. The green sections represent today’s surveillance system with IGSS32 as the HMI
program. Volve Knowledge Tools is represented as blue sections, and the red section is a
human operator. The arrows show how data is sent between the different sections. As shown
in Figure 27, the operator can overrun the expert system by giving IGSS32 a direct command.
The operator can also create agents and add new information to the case-base by using the
capture-case function.
When a command is given, IGSS32 changes the real-time parameters, which leads to a
modification of the process. The process provides real-time parameters to the agents. These
real-time data are interpreted by the agents and sent to the case-base. In the case-base the case
matching is running and reaches a conclusion. This conclusion is a command that is sent to
IGSS32, and the HMI program takes action. The action can be, for example, to open the
cooling water valve more, since the temperature in the bearing oil is increasing. Since IGSS32
and Volve Knowledge Tools are built on different platforms, developing the interface between
them could be a challenge.

Master thesis 2008
Erlend Timberlid

 39

5. WHY USE CONDITION MONITORING

The main purpose of using condition monitoring is to see how the different machines are
operating. By getting this sort of information one can easily plan the next maintenance,
prevent breakdowns and optimize the running of the machine.

Figure 28, Lifetime of an error

In Figure 28 the progress of a bearing failure is shown. The red arrow illustrates the lifetime
of an error from the moment the error occurs until the component is defective. In order to
detect the error one can either use sensors and surveillance systems or gamble that the fault
will be discovered during the next routine check.
By using condition monitoring of bearings, one can detect an error early (before point 1 in
Figure 28) and start planning the maintenance. In this way the maintenance can be performed
at a time when electricity prices are low and thus minimize the cost of stopping the aggregate.
When the component reaches point 2, the error can be heard and felt. This is the stage where
the damage would be detected during a routine check. When studying the remaining lifetime
of the error, the time before the bearing is defective is extremely short and the bearing is
probably more or less defective already. At this stage it is too late to start planning the
maintenance. Often the aggregate has to go to stop immediately even if prices are sky high.
This means that condition monitoring is beneficial and very helpful.

Master thesis 2008
Erlend Timberlid

 40

5.1. Condition monitoring with and without conditional maintenance

If a company decides to start using condition monitoring of a process, it is very important that
the data gathered are used to improve the process. Using condition monitoring alone achieves
nothing. Below is a list of situations that will occur if condition monitoring is not followed up
by conditional maintenance [19]:

1. Increased running costs
2. Increased need for education of the work force
3. Increased workload
4. No improvement in reliability
5. No reduction of errors in the facility
6. No reduction of stocks
7. No advantages

Based on these facts there is no point in using condition monitoring without conditional
maintenance. By doing so, these advantages appear:

1. Optimization of running costs
2. Increased need for education of the work force
3. Optimized workload
4. Potential improvement in reliability
5. Potential for reducing the number of errors
6. Potential for reducing the stocks
7. Significant improvement in the running of the machine

Master thesis 2008
Erlend Timberlid

 41

6. SIMULATIONS AND RESULTS

In this report three simulations will be performed, one for each case.
The simulation will be performed in Predictor and are based on data series created in
Microsoft Excel. This will be further discussed in chapter 6.5 Simulations.

6.1. Time span

The surveillance of parameters can be divided into three sections:

- Momentary: Momentary surveillance of the temperature, dTemp/dt, is often
practical, dTemp/dt calculates in real-time how much the temperature
in the bearings increase or decrease. These results are compared with
how much it is allowed to vary, and a response to given. This is a very
important surveillance method because it can detect errors before they
really happen, for example if the temperature in a bearing suddenly
increases very fast. This is clearly abnormal and is a sign that
something is wrong. So instead of the bearing reaching its critical
temperature and the machine going to emergency stop, the program
detects these abnormal conditions and goes to quick closing or other
counteractions. In this way all the components in a power station can be
taken better care of and unnecessary stress to the components can be
avoided.

- Daily/weekly: For daily/ weekly surveillance, the most practical method is to absolute
temperature measurement. This means that the temperature is measured
with a certain resolution and the absolute value is compared with a
predefined value. In hydropower plants there is a pre-warning system
that has a value below the critical one. When the temperature reaches
this value the program sends a message to alert the operator. This is the
method used in power plants today.

- Long-time: Sometimes the different processes are monitored over longer
periods, i.e. months or years. The purpose of this surveillance is to
improve the maintenance of the hydropower plant. This sort of
surveillance provides a good indication as to whether parts of the
station need maintenance, for example if the mean temperature of a
bearing has increased over a period of two years. This could be the
result if the coolers have gradually been filled with humus and their
cooling ability has decreased.

In the following simulations, only the first two sections will be taken into account.

Master thesis 2008
Erlend Timberlid

 42

6.2. Measurements

Hydropower stations often employ more than one sensor to measure one parameter. The
reason for this is to detect a defective sensor. A common way of doing this is to have three
sensors, with the measurements from at least two of them being dominant. This means that the
mean value of those two sensors will be the signal that the control system receives. This large
amount of information from the process complicates the weighting of each of the signals,
placing great demands on the software IGSS32. A possible limitation is to have the PLCs in
the stations take care of this weighting. Such a limitation is very much possible with today’s
PLCs.

6.3. Measurement sampling frequency

In many processes monitored today the sampling frequency of the measurements is a central
term. The sampling frequency of the measurements means how often the sensors are triggered
to measure a given parameter value. One might believe that the measuring of sensor data is
done continuously, this is not the case, but sensors can measure several times per second. In
many cases, a sampling frequency of more then one sampling per second, are not needed,
since many parameters do not change that much within this short amount of time. An example
of this is temperature in water. Since water has a high specific heat capacity it takes a lot of
energy to change its temperature. As a result, the temperature does not change vary rapidly.
Surveillance of water temperature in a hydropower station is only relevant in the case of the
cooling water temperature. These measurements have a resolution of one measurement per
half minute or higher.
In some cases the resolution of the measurements is crucial. In these processes the highest
possible resolution is desirable. This of course is dependant on several factors, for example
how fast a sensor can measure the parameter and continue to pursue the information. Another
restriction on how high the resolution can be is data processing and storage. How high the
resolution of the measurements should be, is proportional to the amount of data that is going
to be processed and stored.
When creating a surveillance system, all these factors must be taken into consideration. This
is also crucial for the agents in Predictor.

Master thesis 2008
Erlend Timberlid

 43

6.4. Cases

In this report, three cases are looked into. The cases primarily concern a defective bearing and
water in the bearing oil. For more information on the cases, see appendix 10.3 Cases and
agents.

6.4.1. Case #1

The symptoms of a defective bearing are mainly that the temperature in the bearing segments
increases and vibrations are detected. These two parameters are compared with the position of
the cooling water valve, the produced effect and the oil level. If vibrations are detected, the
temperature in the segments is increasing, the cooling water valve’s position is 100%, the
aggregates are not running on overload and the oil level is normal, it can be said with great
certainty that a bearing is defective.
In order to detect whether the cooling water valve is fully open or not, a limit-switch would be
sufficient. Since the measuring of the cooling water valve is a percent indicator, an agent is
created to see if the percent is 100 or not. The same type of agent is used for detecting
vibrations and whether the generator is operating on overload or not.
Since the oil is splashing around in the bearing, the oil level will vary within certain limits. To
measure the oil level a mean value agent is used. The agent integrates 30 of the previous
measurements and divides this number by 30. If the level is above a certain limit the oil level
is high, if below another limit it is low, and in between the oil level is normal.
To detect if the temperature in a bearing is increasing, a pre-warning system is established.
The program compares the instant temperature with a given pre-warning value. When this
value is reached, the program investigates if the temperature is still increasing. If it is, the
program sends a message to the control system that the temperature in the bearing is
increasing after the pre-warning. When all these states occur, the error is detected and the
machine goes to quick closing.
Another scenario is if the temperature increases and none of the other states occur. In this case
the temperature will be investigated individually and if the temperature increases above a
certain limit after the pre-warning has been issued, the machine goes to Emergency stop.

CASE #1
1. The aggregate is running normally at 55 kW
2. Vibrations are detected.(pre-warning)
3. Temperature in bearing segment starts to increase
4. Cooling water valve position opens further
5. Temperature in bearing segments stabilizes for a moment, then increases further
6. The temperature is increases along with the cooling water valve until the valve has

reached 100% open
7. The temperature in the axial bearing segment increases further and reaches the pre-

warning value: pre-warning is sent to control system.
8. The temperature increases further. The error is detected and the aggregate goes to

quick closing. Message to operator: “Defective bearing”
Table 2, Case #1

Master thesis 2008
Erlend Timberlid

 44

6.4.2. Case #2

Sometimes when a bearing is defective the temperature increases very fast. Today’s
surveillance does not include this form of monitoring, but only observes the maximum level
of the absolute temperature. When the temperature increases rapidly in a hydropower station
today, nothing is triggered until the temperature reaches its pre-warning level. By the time the
temperature reaches its critical value, the aggregate goes to emergency stop. As mentioned in
chapter 2.4.3 Emergency stop, the emergency stop exposes the components in the station to a
lot of stress and is not desirable. An easy way to prevent this is to monitor the derived
function of the temperature.
If the temperature is increasing rapidly, the program should detect this at an early stage and
send a command to IGSS32 that the aggregate should go to quick closing. This should prevent
unnecessary stress to the different components.
This will be compared with whether the generator is running on overload.

To detect if the temperature increases rapidly within a short amount of time, a definition of
‘short time’ must be provided. In these simulations a limit of two-and-a-half minutes is set.
This corresponds to 30 measurements. The agent used in this case is a derivation agent. This
agent derives the 30 previous measurements and sums the result. If the result is above a
certain value, and the oil level is normal, and the generator is not operating on overload, the
machine goes to quick closing.

CASE #2
1. The aggregate is running normally at 55 kW
2. Temperature in bearing suddenly increases rapidly, i.e. the temperature is

increasing by one or two degrees per measurement
3. Oil level and produced power are at normal values
4. Aggregate goes to quick closing. Message to operator: “Temperature in bearing

increasing rapidly, possible defective bearing, go to quick closing
Table 3, Case #2

Master thesis 2008
Erlend Timberlid

 45

6.4.3. Case #3

To detect if there is water in the bearing oil, the oil level in the bearing needs to be considered.
This level will be more or less constant when the bearing is operating under normal conditions.
As a comparison with this parameter the running time of the reserve bilge pump and the
temperature in the bearings are monitored. These parameters are compared with the produced
power.
Since there is no parameter called On-time of bilge bump, one can create a counter that starts
every time the pump is switched on. The reason for monitoring the on-time of the bilge pumps
is because it is an indirect indicator of whether the water level in the sump is increasing. If it
is, a water leakage has occurred. This leakage could be responsible for the increasing water in
the oil. The reason for monitoring just the reserve pump and not both is that the reserve pump
will only operate if the water level reaches a certain value. If this value is reached, it is a sign
that there is something wrong with the system. Most likely a water leakage has occurred.
The temperature in the bearing functions as a final comparison and is also an indicator that
there is water in the oil. If there is water in the oil, the viscosity of the oil changes and the oil
has reduced load carrying capacity. This results in more friction between the rotor and the
bearing surface and the temperature rises. All these parameters are compared with the
produced power. If the generator is not running on overload, a fault has occurred.

CASE #3
1. The aggregate is running normally at 55 kW
2. Reserve bilge pump starts
3. Oil level in bearing increases
4. Temperature in bearing segments increasing.
5. Aggregate goes to quick closing. Message to operator: “Oil level unnaturally high,

possible water in oil”
Table 4, Case #3

Master thesis 2008
Erlend Timberlid

 46

6.5. Simulations

The purpose of these simulations is to see if Volve Knowledge Tools can handle this way of
detecting fault conditions.
Due to the short time available for performing the investigation, the parameters are limited to
a general point of view. A real model would be far more advanced. For example the detection
of a leak involves more than just considering how long the reserve bilge pump is running. But
by using the bilge pump as a basic approach, it is easy to further expand the system. In this
way one get to test Volve Knowledge Tools can be tested more thoroughly than Fjellheim’s
work. Another means of testing Volve Knowledge Tools is to use derivation for detecting
abnormal behaviour at an early stage.

The parameters involved in the simulation are listed in Table 5.

Signal name Parameter name Resolution
Vibration Vibration 5 sec
Temperature in axial segments CombAx_SegTemp 5 sec
Temperature in radial segments CombRad_SegTemp 5 sec
Temperature in oil CombAxRad_OilTemp 5 sec
Oil level CombAxRad_OilLev 5 sec
Cooling water valve position CoolingWaterValve_Setpoint 5 sec
Produced power Produced_Power 5 sec
Reserve Bilge pump on/ off RedBilge_Pump 5 sec

Table 5, Simulation parameters

Because of the simplicity of the system and the few parameters, the raw data series is
constructed in Microsoft Excel. The values of the parameters are realistic as compared with
the real world. This means that if the temperature in the bearing segment increases, the
temperature of the bearing oil will also increase after a small delay. At the same time the
cooling water valve is opens further to lower the temperature. These data are transformed into
Excel CSV-format so that Predictor can read them. Since Fjellheim has already performed
simulation in Predictor using log-files from IGSS32, this is no important issue, but one that
has been considered.

The total simulation time is limited to one hour. This is of course too short compared with the
real world. But since the purpose of the simulations is to see if Volve Knowledge Tools can
handle the new measuring method, it is acceptable. The new measuring methods are
derivation, integration and mean values. In this way the software can be further tested.

Figure 29 shows a screenshot of Predictor in operation. The different cases are further
described in appendix 10.3 Cases and agents. Here all the agents are mentioned as well.

Master thesis 2008
Erlend Timberlid

 47

Figure 29, Screenshot of Predictor, case #1

Master thesis 2008
Erlend Timberlid

 48

In Figure 29 shows how the parameters changes over time. The red line in the centre of the
window represents the present time and moves along the vertical time-axis. In the figure the
time resolution is shown for every fifth minute, this can be whether zoomed in or out by using
the time zoom scroll bar.
When the parameters reach a certain value, the agents display a message to the human
operator. The function is called Event, and makes Predictor more user friendly. As shown in
Figure 29 these messages can come in two different colours, yellow and white. This is can be
an indication of how severe a message can be.
On the right-hand side the parameters are listed. Below these there is a CBR Matching-box.
Inside this box there are four indicators. These indicators illustrate how much each of the
cases, Case #1, Case #2 and Case #3, match the data that are being read. The matching is
measured in percent. By double-clicking one of these bars, a window appears which contains
information about the given case. In this window the demands of each case are listed and
there is also a case description and information when the case matched 100%. This is the
same window that is shown in Figure 24, only more complete. See Figure 30.

Figure 30, Case description, case#1

In Figure 30 there is presented a case description. It contains why case#1 is matched 100%,
and which commends have been send to the HMI program. The reason is defective bearing.
For more information about the simulations, see appendix 11.4 Screenshots from simulations.

Master thesis 2008
Erlend Timberlid

 49

6.6. System model in Volve Knowledge Tools

As mentioned in chapter 4.7 Predictor one has to create a knowledge model that matches the
simulations performed in Predictor. This model consists first of a hardware part, in which the
system to be modulated is created. The different states of the system are also defined in the
system model. A screenshot of the system is shown in Figure 31. For more information
concerning the system model see appendix 10.1.1 Ontology model.

Figure 31, Hydropower station ontology

The model in Figure 31 is very good starting point for continued work. One reasons for this is
that it already includes many other systems in addition to the bearing system. The model is
well suited for further work, whether to improve what has already been done or to consider
other parts of the power station. In Figure 31, some of the relations are marked with red. The
red relations are the parameters that are going to be used in this simulation. The reason for
this marking is to separate the parameters from the other signals as a matter of form.

Master thesis 2008
Erlend Timberlid

 50

6.7. Knowledge model in Volve Knowledge Tools

In the knowledge model all the different states are linked together, and it is here that the
system gets its knowledge of how the processes in the system work. When an abnormal state
occurs in the system, the inference engine searches this model for an explanation of what is
wrong.
In Figure 32, one of the knowledge models is illustrated. For more information concerning the
knowledge model, see appendix 10.1.2 and 10.1.3 Causal model

Figure 32, Causal bearing system

In Figure 32 the causes and effects are illustrated. One can see how the system reacts to one
state and changes into another. In the figure the system detects a lack of cooling water. This
causes the temperature in the bearing oil to rise, and a new state is reached. In this way the
Temperature in bearing oil increasing-node is the effect of missing cooling water.
Furthermore, the increasing temperature in the oil causes the cooling water valve to open
further. This adjustment will continue until the valve goes to full opening. If the temperature
in the bearing still increases and reaches its maximum value, the generator starts the
emergency stop procedure.

As mentioned in chapter 4.6.1 Ontology model the model is a good starting point for
continuing work. This especially concerns the causal knowledge model. In the latest versions
of Volve Knowledge Tools, the causal model has been excluded from the monitoring process.
The reason why is explained in chapter 4.8 Matching of cases.

Master thesis 2008
Erlend Timberlid

 51

6.8. Case model in Volve Knowledge Tools

The third and final step is to create the cases. In this process it is important that Predictor and
Knowledge Editor correspond to each other.

Figure 33, Cases

Figure 33 illustrates how the parameters are imported into the case-base by agents. It also
shows that the parameter values have the value type Integer.
For further information on the model see chapter 4.8 Adding cases.

Master thesis 2008
Erlend Timberlid

 52

7. DISCUSSION

The intention of this report is to investigate if Volve Knowledge Tools is capable of
performing the functions required of an expert system. This investigation is about exploring
the software and mapping the features it possesses. To explore the software a program has
been developed and tested through simulations.

7.1. Developing the program

To create a program in Volve Knowledge Tools it is necessary to go through three steps:
creating an ontology model, a causal model and a case model. To these three models
information about the process is added. When all three steps are accomplished, the program
has extensive information about the process. The models consist of information about which
process the program will modulate. It also knows how the components work together, how the
system reacts to errors and what errors that may occur.

Since Volve Knowledge Tools uses a graphical interface, the program is clear, easy to use and
easy to create for a new operator. The graphical interface sees to it that the system is easy to
read even if the system is large and sophisticated. A tutorial on creating a simple CBR-system
for condition monitoring of a car, gives a quick introduction to the software. The introduction
gives the user knowledge of how the three models work together, and hence how the program
works. After completing the tutorial, the user is ready to create a system on his own.

In the final step of developing the program, cases are created. The cases represent events that
may occur in the system. A feature of Volve Knowledge Tools is that one can add information
about the cases. The information indicates why the case occurred and which actions should be
considered. This is useful when an event occurs and the operator is perplexed. This function
makes the program user-friendly.

Volve Knowledge Tools is a program that can be installed on an average computer. The only
specification required is at least 2 GB of memory. The reason for this requirement is that the
Predictor can load huge amounts of external raw data. A general recommendation for the
computer utility is that the computers memory capacity should be four times the size of the
external raw data. Since 2 GB is the average standard nowadays, this would not be a problem.

Since the program is still under construction, it has a huge potential for becoming an even
better learning program. When the program gets its new learning ability, it can gain its own
knowledge and thus be very suitable for use in expert systems. The developing of this feature
is already in progress and will be included in the program in approximately one year. Still,
Volve Knowledge Tools can already be considered a learning program, thanks to the Capture
case-feature in Predictor.

Even though the program is evolving in a positive direction, the developing phase sometimes
creates bugs. This can of course result in some program errors. Since Volve Knowledge Tools
is used by oil drilling companies, security standards are extremely high. In order to maintain
this security standard, extensive troubleshooting procedures are initiated. Therefore, computer

Master thesis 2008
Erlend Timberlid

 53

errors that might occur will be insignificant to the monitoring. In the simulations performed in
connection with this report no errors occurred.

Volve Knowledge Tools is created on the Java platform. Since IGSS32 was built on another
platform, Microsoft Automation platform, the communication between the two programs may
cause some problems. However, many of the communication programs today are built on
different platforms, so communication between Volve Knowledge Tools and IGSS32 should
be possible.

7.2. The simulations

Because of the simplicity of the system and the few parameters, the raw data series is
constructed in Microsoft Excel. The values of the parameters are realistic as compared with
the real world. For instance if the temperature in the bearing segment increases, the
temperature of the bearing oil will increase after a small delay. At the same time the cooling
water valve is opens further to lower the temperature. These data are transformed into Excel
CSV-format so that Predictor can read them. Since Fjellheim has already performed
simulation in Predictor using log-files from IGSS32, this is no important issue, but one that
has been considered.

Even though the data is created as a log in these simulations, Volve Knowledge Tools can
handle real-time data, directly from sensors in a process. This is an obvious criterion for a
development kit for expert systems. Since the amount of sensor data processed is only limited
by the memory capacity of the computer, Volve Knowledge Tools can handle large amounts of
data. Since the agents in Volve Knowledge Tools are custom-made for each measurement, the
program is very flexible and can interpret the raw data in ways to suits any customer.

When simulating in Predictor, the layout of the program is very tidy. The simple layout
makes the program easy to operate and easy to use. Predictor also has the function Capture
Case. This function makes it easy to implement new cases to the case-base, thus expanding
the knowledge of the program. When the program is detects cases, it uses previous experience
with the real-time data. This is a form of artificial intelligence which is also a criterion for
making an expert system.

Because of the Case description function in the cases, it is easy for an inexperienced operator
to know what to do when a fault/case occurs. The description tells the operator why the case
occurred and what actions should be taken into consideration.

One disadvantage of Volve Knowledge Tools is that the program can not function as a
surveillance system alone. The program can not give direct orders to the process, for instance
tell an actuator to open a valve. If the program detects an error, it can only send an error
message to the HMI program telling it what to do. The HMI program then carries out the
order. However, in the present investigation of using Volve Knowledge Tools to create an
expert system, the program will work as a supplement to today’s surveillance system. This so
called disadvantage becomes insignificant.

Master thesis 2008
Erlend Timberlid

 54

8. CONCLUSION

The background of this report is the desire to improve the surveillance system of hydropower
stations. This improvement involves implementing an expert system. To make an expert
system, development software is needed, and in this case Volve Knowledge Tools was used.
The intention of this report is to investigate how suitable Volve Knowledge Tools is for
developing expert systems.
By developing a simple expert system in Volve Knowledge Tools and using this program for
simulations, I gathered a lot of information on how the program operates and on its functions.
After considering the advantages versus disadvantages and the suitability of the program for
developing expert systems, I concluded that Volve Knowledge Tools has the capabilities
required for developing an expert system. I therefore recommend Volve Knowledge Tools as a
development kit for evolving an expert system in further work.

Master thesis 2008
Erlend Timberlid

 55

9. RECOMMENDATIONS FOR FURTHER WORK

By describing how the different parts of a hydropower station functions, one can detect the
different errors and faults that may occur as well. Some of these situations are not detectable
by surveillance systems today. Below is a list of ideas that would help to improve today’s
surveillance systems [2].

1. Frequency monitoring of the machines: By performing an analysis of the sound
pattern of the machine, deviations from normal operation will be detected quickly and
easily. Partial discharges and cavitations may also be discovered. A disadvantage of
frequency analysis is that the system would need to be expanded. When expanding a
system there are always some difficulties in integrating the new component into the
old system. The expansion requires the implementation of a microphone.

2. Surveying the start-up and stopping times of the aggregate: By performing this simple

surveillance one can get an indication that something is wrong if the start-up-time or
the stop-time is suddenly much shorter or longer than usual. A microphone would be
useful here as well because it can detect slouch scuffling. Investigating this time
interval compared with other parameters can provide useful information concerning
the system.

3. Identify ways to get the case model to add new information to the causal model.

4. Surveillance of the amount of clearance water from the turbine. If the amount of

clearance water increases and vibrations are detected, the labyrinth gland may be worn.

5. Surveillance of the outdoor climate, temperature in the water and the magnetic ability
of valves and sluices. By monitoring this, heat cables or pressure air can be activated if
equipment such as valves and sluices threaten to freeze. In this way the station can at
any time go to stop in all weather conditions.

6. What happens to the expert system at power failure?

- How should the expert system be reset?
- What happens if the communication with IGSS32 is down?

7. Further improvement and expansion of the bearing model

8. Comparison of parameters to detect fault situations in other areas of the hydropower

station.

9. Establish a cooperation with an IDI student with the purpose of making an interface
between Volve Knowledge Editor and IGSS32.

10. Establish a cooperation with the automation or machine engineers at HIST with the

purpose to make a hydropower station emulator.

Master thesis 2008
Erlend Timberlid

 56

10. REFERENCES

[1] Fjellheim, Ø., Ekspertsystem i Vannkraftverk, Master thesis, Norwegian University

of Science and Technology, Department of Electrical Engineering, 2007.

[2] Timberlid, E., The digital machine expert – Expert system for monitoring hydropower

plants.(Preliminary study for master thesis) Norwegian University of Science and
technology, Department of Electrical engineering, 2007

[3] Lecture notes, Subject: Dimensjonering, drift og vedlikehold av strømningsmaskiner,

TEP15., Norwegian University of Science and technology

[4] Energiforsyningens fellesorganisasjon, Tilstandskontroll av Vannkraftanlegg,
 Håndbok Francisturbin, Oslo, 1995

[5] Mårdalen, Helge, J., Vedlikehold av vannkraftgeneratorer, Master thesis, Norwegian

University of Science and Technology, Department of Electro- and Computer
technique, 1994

[6] Westad, Bjørn, O. / Maintech, Visit at Maintech, 15.05.08

[7] Fjellheim, Ø., Den digitale maskinmester.(Preliminary study for Master thesis,

 Norwegian University of Science and Technology, Department of Electrical
Engineering, 2006).

[8] Jackson, P., Introduction to Expert Systems, Essex: Addison Longmann Limited,

Third Edition, 1999

[9] Harmon, P., Sawyer, B., Creating Expert Systems. For business and Industry, USA:

John Wiley & Sons, Inc., 1990

[10] Cawsey, A., Artificial intelligence, Edinburgh: Heriot Watt University. [online]

http://www.macs.hw.ac.uk/~alison/ai3notes/all.html
[Accessed 09.10.07]

[11] Aamodt, A., Plaza, E., Cased-Based Reasoning: Foundational Issues, Methodological

Variations and System Approaches, AICom - Artificial Intelligence Communications,
IOS Pres, Vol 7: 1, 1994

[12] Aamodt, A., Brede, T., Bø, K., Sørmo, F., TrollCreek, A Knowledge Modelling

Editor and Testing Environment for Knowledge-Intensive Case-Based Reasoning,
Tutorial version 0.9 TrollCreek, 2004 [online]
http://www.idi.ntnu.no/emner/it3704/lectures/papers/TrollCreek-tutorial.pdf
[Accessed 03.02.08]

Master thesis 2008
Erlend Timberlid

 57

[13] Aamodt, A., Knowledge-Intensive Case-Based Reasoning in CREEK [online]
Norwegian University of Science and Technology, Department of Computer and
Information Science, [online] http://www.idi.ntnu.no/~agnar/publications/eccbr04-
aamodt.pdf,
[Accessed 15.05.2008]

[14] Aamodt, A., Volve AS, Interview at Volve AS, 20.05.08

[15] Aamodt, A., Knowledge-Intensive Case-Based Reasoning and Intelligent Tutoring,

Norwegian University of Science and Technology, Department of Computer and
Information Science, [online] http://www.idi.ntnu.no/~agnar/publications/sais-05.pdf
[Accessed 07.05.08]

[16] Aamodt, A., Skalle, P., Sørmo, F., How to modell in TrollCreek in the Petroleum

Engeneering domain, [online], Instruction of modelling in TrollCreek, TrollCreek
Documentation. http://creek.idi.ntnu.no/docs/TrollCreek-modelling.doc
[Accessed 03.02.08]

[17] Source code of Volve Knowledge Tools software, created by Volve AS 2008

[18] Brede, T., Volve AS, Visit at Volve AS, 19.05.08

[19] Power point presentation from maintenance seminar 28. Mars in Maintech

http://www.maintech.no/maintech/entrypage.aspx?t=2008&containerid=10121&paren
tid=10041&entrypage=true&guid=1&lnodeid=8&pageid=5001

 [Accessed 15.05.08]

Master thesis 2008
Erlend Timberlid

 58

11. APPENDIX

11.1. Condition monitoring of bearings in Volve Knowledge Tools, the whole

program

11.1.1. Ontology model

Master thesis 2008
Erlend Timberlid

 59

11.1.2. Causal model, cooling system

Master thesis 2008
Erlend Timberlid

 60

11.1.3. Causal model, bearing system

Master thesis 2008
Erlend Timberlid

 61

11.1.4. Case model

Master thesis 2008
Erlend Timberlid

 62

11.2. Predictor script

var outputDirectory = "D:\\Skule\\4. Semester Eletric Power Engineering\\Master
thesis\\Work\\Volve Knowledge Tools\\Sensordata";
var inputDirectory = "D:\\Skule\\4. Semester Eletric Power Engineering\\Master
thesis\\Work\\Volve Knowledge Tools\\Sensordata2";

var d = new java.util.Date();
var sdf = new java.text.SimpleDateFormat("dd-MM-yyyy_HH-mm-ss");
var nameAdd = sdf.format(d);

var knowledgeModel = "D:\\Skule\\4. Semester Eletric Power Engineering\\Master
thesis\\Work\\Volve Knowledge Tools/HydroPowerPlant_with_cases.km";
var knowledgeModelSaveName = "D:\\Skule\\4. Semester Eletric Power Engineering\\Master
thesis\\Work\\Volve Knowledge Tools/HydroPowerPlant_with_cases.km";

var sim = api.getTracker();

//captureCases();

runInPredictor();

function runInPredictor() {

var cbrAg = api.addAgent("CBRAgentImpl", "CBR-agent", api.getTracker(), new
java.lang.Boolean("true"));
cbrAg.setComparisonController(new
Packages.volve.creek.cbr.DefaultComparisonController());
api.loadDrillLog("D:\\Skule\\4. Semester Eletric Power Engineering\\Master
thesis\\Work\\Volve Knowledge Tools\\Sensordata/Case#1.csv");

 api.loadKnowledgeModel(knowledgeModelSaveName);
 setupAgents(cbrAg);

var cbrReporter = api.addAgent("CaseMatchingResultLogger", "CBRReporter",
cbrAg, 0.1, 3, api.getTracker());

}

function captureCases() {

 var captureTimes = java.lang.reflect.Array.newInstance(java.lang.String, 1);

 // Case 3
 captureTimes[0] = "01.01.2008 16:57:02";

var cbrAg = api.addAgent("CaptureAgent", "Capture agent", "Time", "Case#",
captureTimes, sim);
api.loadDrillLog("D:\\Skule\\4. Semester Eletric Power Engineering\\Master
thesis\\Work\\Volve Knowledge Tools\\Sensordata/Case#3.csv");

 api.loadKnowledgeModel(knowledgeModelSaveName);
 setupAgents(cbrAg);
 runSimulation();
 sim.getKnowledgeModel().saveAs(knowledgeModelSaveName);
 api.clear();

Master thesis 2008
Erlend Timberlid

 63

 // Case 1
captureTimes[0] = "01.01.2008 16:26:57"; // The two added seconds are a hack...
var cbrAg = api.addAgent("CaptureAgent", "Capture agent", "Time", "Case#",
captureTimes, sim);

api.loadDrillLog("D:\\Skule\\4. Semester Eletric Power Engineering\\Master
thesis\\Work\\Volve Knowledge Tools\\Sensordata/Case#1.csv");

 api.loadKnowledgeModel(knowledgeModel);
 setupAgents(cbrAg);
 runSimulation();
 sim.getKnowledgeModel().saveAs(knowledgeModelSaveName);
 api.clear();

 // Case 2
 captureTimes[0] = "01.01.2008 16:33:37";

var cbrAg = api.addAgent("CaptureAgent", "Capture agent", "Time", "Case#",
captureTimes, sim);

api.loadDrillLog("D:\\Skule\\4. Semester Eletric Power Engineering\\Master
thesis\\Work\\Volve Knowledge Tools\\Sensordata/Case#2.csv");

 api.loadKnowledgeModel(knowledgeModelSaveName);
 setupAgents(cbrAg);
 runSimulation();
 sim.getKnowledgeModel().saveAs(knowledgeModelSaveName);
 api.clear();
}

function runSimulation() {
 api.runSimulator(0);
 api.waitForEnd();
 api.println("Simulation finished");

 //api.exportWITSMLDrillLog(outputDirectory +logName +nameAdd +".xml");
 //sim.exportEvents(outputDirectory +logName +"_events_" +nameAdd +".csv");
 //sim.getKnowledgeModel().saveAs(outputDirectory +nameAdd +"_test.km");
}

function setupAgents(cbrAg) {

cbrAg.setPropertyFile("D:\\Skule\\4. Semester Eletric Power Engineering\\Master
thesis\\Work\\Volve Knowledge Tools/KraftCBR.properties");

 var timeAgent = api.addAgent("TimeAgent", "Time", "Case", sim);

cbrAg.addCaseParameterMapping(timeAgent, "Data value", "Time Of Occurrence",
"Case occurrence description", true);

 // Set up agents reading data from the data log

var combAxRadOilLevAgent = api.addAgent("CombAxRadOilLevAgent", "Oil level
high", "Oil level low", sim);
cbrAg.addCaseParameterMapping(combAxRadOilLevAgent, "Oil level high", "Oil
level high", "Measurements", true);

Master thesis 2008
Erlend Timberlid

 64

cbrAg.addCaseParameterMapping(combAxRadOilLevAgent, "Bearing oil OK",
"Bearing oil OK", "Measurements", true);
cbrAg.addCaseParameterMapping(combAxRadOilLevAgent, "Oil level low", "Oil
level low", "Measurements", true);

var combAxSegTempAgent = api.addAgent("CombAxSegTempAgent1", "Axial segm
prewarning", "Temp increase abnormal fast, defective bearing", "Emergency stop!",
sim);
cbrAg.addCaseParameterMapping(combAxSegTempAgent, "Comb axial seg temp
increase after prewarning", "Comb axial seg temp increase after prewarning",
"Measurements", true);
cbrAg.addCaseParameterMapping(combAxSegTempAgent, "Emergency stop",
"Emergency stop", "Measurements", true);

var combAxSegTempAgent2 = api.addAgent("CombAxSegTempAgent2",
"Temperature increase rapidly", sim);
cbrAg.addCaseParameterMapping(combAxSegTempAgent2, "Comb axial seg temp
increases fast", "Comb axial seg temp increases fast", "Measurements", true);

var combAxSegTempAgent3 = api.addAgent("CombAxSegTempAgent3",
"Prewarning: \"Temperature in axial segment rising\"", sim);
cbrAg.addCaseParameterMapping(combAxSegTempAgent3, "Mean temperature in
axial segment increasing", "Mean temperature in axial segment increasing",
"Measurements", true);

var combRadSegTempAgent = api.addAgent("CombRadSegTempAgent",
"Prewarning: \"Temperature in radial segement rising\"", sim);
cbrAg.addCaseParameterMapping(combRadSegTempAgent, "Mean temperature in
radial segment increasing", "Mean temperature in radial segment increasing",
"Measurements", true);

var producedPowerAgent = api.addAgent("ProducedPowerAgent", "Generator on
overload", sim);
cbrAg.addCaseParameterMapping(producedPowerAgent, "Generator on overload",
"Generator on overload", "Measurements", true);

 var resBilgePumpTimerAgent = api.addAgent("ResBilgePumpTimerAgent", sim);

cbrAg.addCaseParameterMapping(resBilgePumpTimerAgent, "Reserve bilge pump
long on-time", "Reserve bilge pump long on-time", "Measurements", true);

var valveSetpointAgent = api.addAgent("ValveSetpointAgent", "Valve 100% open",
sim);
cbrAg.addCaseParameterMapping(valveSetpointAgent, "Cooling water valve 100%
open", "Cooling water valve 100% open", "Measurements", true);

 var vibrationAgent = api.addAgent("VibrationAgent", "Vibrations prewarning", sim);

cbrAg.addCaseParameterMapping(vibrationAgent, "Generator vibrating", "Generator
vibrating", "Measurements", true);

}

Master thesis 2008
Erlend Timberlid

 65

11.3. Cases and agents

11.3.1. Case #1

%**
%* *
%* CASE #1 *
%* *
%* *
%* SIMULATION TIME : 01.01.2008 16:00:00 - *
%* 01.01.2008 16:27:20 *
%* *
%* FAULT OCCUR : 01.01.2008 16:04:00 *
%* FAULT DETECTED : 01.01.2008 16:26:55 *
%* *
%* *
%* *
%* Sequence Happening Time Value *
%* 1. Vibration, prewarning 16:13:55 6,0 um *
%* 2. Valve setpoint, message 16:18:35 100 % *
%* 3. CombAx_SegTemp, prewarning 16:25:10 70 Deg *
%* *
%* *
%**

%*********************** AGENTS *****************************
%* *
%* Vibration agent *
%* Valve setpoint agent *
%* Produced Power agent *
%* CombAxRad_OilLev agent *
%* Comparator CombAx_SegTemp agent1 *
%* *
%**

%*********************** PROGRAM *****************************

 dim double Vibration agent = 0;
 dim bool Generator vibrating = 0;

 dim int Valve setpoint agent = 0;
 dim bool Cooling water valve 100% open = 0;

 dim int Produced_Power agent = 0;
 dim bool Generator on overload = 0;

 dim int CombAxRad_OilLev agent = 0;
 dim bool Oil level high = 0;
 dim bool Bearing oil OK = 1;
 dim bool Oil level low = 0;

 dim int CombAx_SegTemp agent1 = 1;
 dim bool Comb axial seg temp increase after prewarning = 0;

 dim bool Emergency stop = 0;
 dim bool Quick closing = 0;

Master thesis 2008
Erlend Timberlid

 66

main()
{

%Vibration agent

 Vibration agent = Instant value;

 If Vibration agent > 5 then
 Message: "Vibrations prewarning";
 Generator vibrating = 1;
 Else
 Generator vibrating = 0;
 End if

%Valve setpoint agent

 Valve setpoint agent = Instant value

 If Valve setpoint agent = 100%
 Message: "Valve 100% open";
 Cooling water valve 100% open = 1;
 Else
 Cooling water valve 100% open = 0;
 End if

%Produced_Power agent

 Prodced_Power agent = Instant value,

 If Produced_Power > 55
 Message: "Generator on overload";
 Generator on overload = 1;
 Else
 Generator on overload = 0;
 End if

%CombAxRad_OilLev agent

 CombAxRad_OilLev agent = Integrate 30 measurments,
 devide by 30,

 If CombAxRad_OilLev > 255
 Message: "Oil level high";
 Oil level high = 1;
 Bearing oil OK = 0;
 Oil level low = 0;
 Elseif CombAxRad_OilLev < 245
 Message: "Oil level low"
 Oil level high = 0;
 Bearing oil OK = 0;
 Oil level low = 1;
 Else
 Oil level high = 0;
 Bearing oil OK = 1;
 Oil level low = 0;
 End if

%CombAx_SegTemp agent1

 CombAx_SegTemp agent1 = 70 - Instant value

Master thesis 2008
Erlend Timberlid

 67

 If CombAx_SegTemp agent1 = 0
 Message: "Axial segment temp prewarning"
 ElseIf CombAx_SegTemp agent1 = -3
 Message: "Temp increase abnormal fast, defective bearing"
 Comb axial seg temp increase after prewarning = 1;
 Emergency stop = 0;
 ElseIf CombAx_SegTemp agent1 < -9
 Message: "Emergency stop!";
 Emergency stop = 1;
 Else
 End if

%Case #1

 If (Generator vibrating = 1;
 Cooling water valve 100% open = 1;
 Generator on overload = 0;
 Bearing oil OK = 1;
 Comb axial seg temp increase after prewarning = 1)
 Message: "Defective bearing";
 Quick closing = 1;
 End if

}

Master thesis 2008
Erlend Timberlid

 68

11.3.2. Case #2

%**
%* *
%* CASE #2 *
%* *
%* *
%* SIMULATION TIME : 01.01.2008 16:30:05 - *
%* 01.01.2008 16:34:00 *
%* *
%* FAULT OCCUR : 01.01.2008 16:31:10 *
%* FAULT DETECTED : 01.01.2008 16:33:35 *
%* *
%* *
%* *
%* Sequence Happening Time Value *
%* 1. CombAx_SegTemp, rapid incr 16:13:55 1 deg/10 s*
%* 2. Vibrations, incr 16:18:35 0,1 um/5 s*
%* 3. Valve setpoint, opens 16:25:10 1 % /5 s*
%* *
%* *
%**

%*********************** AGENTS *****************************
%* *
%* Produced_Power agent *
%* CombAxRad_OilLev agent *
%* Derivation CombAx_SegTemp agent2 *
%* *
%**

%*********************** PROGRAM *****************************

 dim int Produced_Power agent = 0;
 dim bool Generator on overload = 0;

 dim int CombAxRad_OilLev agent = 0;
 dim bool Oil level high = 0;
 dim bool Bearing oil OK = 1;
 dim bool Oil level low = 0;

 dim int CombAx_SegTemp agent2 = 0;
 dim bool Comb axial seg temp increases fast = 0;

 dim bool Emergency stop = 0;
 dim bool Quick closing = 0;

Master thesis 2008
Erlend Timberlid

 69

main()
{

%Produced_Power agent

 Prodced_Power agent = Instant value,

 If Produced_Power > 55
 Message: "Generator on overload";
 Generator on overload = 1;
 Else
 Generator on overload = 0;
 End if

%CombAxRad_OilLev agent

 CombAxRad_OilLev agent = Integrate 30 measurments,
 devide by 30,

 If CombAxRad_OilLev > 255
 Message: "Oil level high";
 Oil level high = 1;
 Bearing oil OK = 0;
 Oil level low = 0;
 Elseif CombAxRad_OilLev < 245
 Message: "Oil level low"
 Oil level high = 0;
 Bearing oil OK = 0;
 Oil level low = 1;
 Else
 Oil level high = 0;
 Bearing oil OK = 1;
 Oil level low = 0;
 End if

%CombAx_SegTemp agent2

 CombAx_SegTemp agent2 = Derivation 30 measurments,
 Sum up measurments

 If CombAx_SegTemp agent2 >= 15
 Message: "Temperature increase rapidly";
 Comb axial seg temp increases fast = 1;
 Else
 Comb axial seg temp increases fast = 0;
 End if

%Case #2

 If (Generator on overload = 0;
 Bearing oil OK = 1;
 Comb axial seg temp increases fast = 1)
 Message: "Temperature increase rapidly, defective bearing";
 Quick closing = 1;
 End if

}

Master thesis 2008
Erlend Timberlid

 70

11.3.3. Case #3

%**
%* *
%* CASE #3 *
%* *
%* *
%* SIMULATION TIME : 01.01.2008 16:36:45 - *
%* 01.01.2008 16:57:10 *
%* *
%* FAULT OCCUR : 01.01.2008 16:40:45 *
%* FAULT DETECTED : 01.01.2008 16:57:00 *
%* *
%* *
%* Sequence Happening Time Value *
%* 1. ReserveBilge pump, start 16:52:00 1 *
%* 2. Mean_CombAxRad_OilLev, inc 16:55:30 256 mm *
%* 3. Mean_CombAx_SegTemp, inc 16:56:00 40 Deg *
%* 4. Mean_CombRad_SegTemp, inc 16:56:40 65 Deg *
%* 5. ResBilge_PumpOnLong = 1 16:57:00 5 Min *
%* *
%**

%*********************** AGENTS *****************************
%* *
%* ResBilge_Pump agent *
%* Produced_Power agent *
%* CombAxRad_OilLev agent *
%* Mean value CombAx_SegTemp agent3 *
%* Mean value CombRad_SegTemp agent *
%* *
%**

%*********************** PROGRAM *****************************

 dim int Produced_Power agent = 0;
 dim bool Generator on overload = 0;

 dim int CombAxRad_OilLev agent = 0;
 dim bool Oil level high = 0;
 dim bool Bearing oil OK = 1;
 dim bool Oil level low = 0;

 dim int ResBilge_Pump agent = 0;
 dim bool ResBilge_Pump_Timer = 0;
 dim bool Reserve bilge pump long on-time = 0;

 dim int CombAx_SegTemp agent3 = 0;
 dim bool Mean temperature in axial segment increasing = 0;

 dim int CombRad_SegTemp agent = 0;
 dim bool Mean temperature in radial segment increasing = 0;

 dim bool Emergency stop = 0;
 dim bool Quick closing = 0;

Master thesis 2008
Erlend Timberlid

 71

main()
{

%Produced_Power agent

 Prodced_Power agent = Instant value,

 If Produced_Power > 55
 Message: "Generator on overload";
 Generator on overload = 1;
 Else
 Generator on overload = 0;
 End if

%CombAxRad_OilLev agent

 CombAxRad_OilLev agent = Integrate 30 measurments,
 devide by 30,

 If CombAxRad_OilLev > 255
 Message: "Oil level high";
 Oil level high = 1;
 Bearing oil OK = 0;
 Oil level low = 0;
 Elseif CombAxRad_OilLev < 245
 Message: "Oil level low"
 Oil level high = 0;
 Bearing oil OK = 0;
 Oil level low = 1;
 Else
 Oil level high = 0;
 Bearing oil OK = 1;
 Oil level low = 0;
 End if

%ResBilge_Pump agent

 If ResBilge_Pump agent = 1
 ResBilge_Pump_Timer = +1;
 End if
 If ResBilge_Pump_Timer > 59
 Reserve bilge pump long on-time = 1;
 ResBilge_Pump_Timer = 0;
 End if

%CombAx_SegTemp agent3

 CombAx_SegTemp agent3 = Integrate 30 measurments,
 devide by 30

 If CombAx_SegTemp agent3 > 44
 Prewarning: "Temperature in axial segment rising"
 Mean temperature in axial segment increasing = 1;
 Else
 Mean temperature in axial segment increasing = 0;
 End if

%CombRad_SegTemp agent

 CombRad_SegTemp agent = Integrate 30 measurments,

Master thesis 2008
Erlend Timberlid

 72

 devide by 30

 If Mean_CombRad_SegTemp > 64
 Prewarning: "Temperature in radail segement rising"
 Mean temperature in radial segment increasing = 1
 Else
 Mean temperature in radial segment increasing = 0
 End if

%Case #3

 If (Reserve bilge pump long on-time = 1;
 Generator on overload = 0;
 Oil level high = 1;
 Mean temperature in axial segment increasing = 1;
 Mean temperature in radial segment increasing = 1)
 Message: "Oil level high, possible water in oil";
 End if

}

Master thesis 2008
Erlend Timberlid

 73

11.4. Screenshots from simulations

11.4.1. Predictor Case #1

Master thesis 2008
Erlend Timberlid

 74

11.4.2. Case description, Case #1

Master thesis 2008
Erlend Timberlid

 75

11.4.3. Predictor Case #2

Master thesis 2008
Erlend Timberlid

 76

11.4.4. Case description Case #2

Master thesis 2008
Erlend Timberlid

 77

11.4.5. Predictor Case #3

Master thesis 2008
Erlend Timberlid

 78

11.4.6. Case description Case #3

	Title Page
	Problem Description
	Expert system for hydropower stations developed in Volve Knowledge Tools

