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Abstract

In this thesis, the problem of deriving the current distribution along a metal
casing surrounded by a conductive earth is studied. The metal casing can
be taken as a long and thin metal wire antenna in this case. The current
distribution is unknown and can be decomposed into tiny current elements
along the wire antenna. The total field from the wire antenna can be achieved
by using the principle of linear superposition of the fields generated by each
of the current element. The solution of the scalar wave equation for a point
source is well known to be the Green’s function. For a tiny vector source of
current element, the solution of the scalar wave equation can be achieved by
a dyadic Green’s function. By taking advantage of the boundary conditons
at the metal surface, an electric field integral equation can be built up which
can be solved by the method of moments.

A real composition of the conductive earth is complicated and usually is
modelled as a planarly layered isotropic medium, where the eletromagnetic
properties of the medium, g and e vary only in one direction, e.g. the z
direction. The advantage of using such a simple model is that the vector wave
equations can be reduced to two scalar wave equations. The electromagnetic
wave represented by these two scalar wave equations are two types of waves,
namely, the transverse electric (TE) waves and the transverse magnetic (TM)
waves, which are decoupled from each other. The electromagentic field at an
arbitrary point in the medium can be accurately derived by combining the
fields propagating directly from the source with the fields reflected by the
interfaces between layers, which has been well developed in the case of plane
waves. However, the electromagnetic field generated from a dipole source
goes out not in the form of plane wave, but spherical waves. In order to
decompose it into a combination of plane waves, the Weyl’s identity (in a
Cartesian coordinate system) and the Sommerfeld identity (in a cylindrical
coordinate system) are applied to the dyadic Green’s function mentioned
above.

The thesis starts with a short review of different electromagnetic technolo-
gies applied in the oil and gas industry today. Then, Chapter 2 considers a
particular model where the wire antenna is assumed to be perpendicular to
the interfaces between the layers. Due to the inherent geometrical symmetry



of this particular model, the source elements along the antenna are treated
as vertical electric dipoles (VEDs). As a result, the wave equations are in
this case reduced to one dimensional wave equations. Chapter 3 develops
the model further by assuming that the wire antenna is at an offset angle
compared to a line normal to each interface. The source elements are in this
case modelled as a combination of both a vertical and a horizontal electric
dipole (HED). The fields will then propagate in both TM and TE mode, and
these are then treated separately.

In a geophysical problem where the medium is highly conductive and the
operating frequency is extremely low, it is usually quite difficult to calculate
the Sommerfeld identity accurately by traditional methods. Hence, the er-
ror in the calculation result of the Sommerfeld identity is shown to have a
significant impact on the derived current distribution. Chapter 4 presents
a new method to evaluate the Sommerfeld identity by using a combination
of numerical and analytical methods. The new method gives much more
accurate results with no extra cost in computational complexity. Chapter
5 introduces how to use the new method to enhance previous analysed case
studies in Chapter 2 and Chapter 3. In this chapter, the results given by the
numerical method are compared to the data achieved from an experiment.
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Introduction

1.1 The fast developing technology for oil and
gas industry

The rapid increase in world oil consumption promotes concern about oil re-
serves and supply capability. Many new methods and technologies have been
developed to improve production efficiency, extend the life of old wells, and
explore for more new reserves. As an example, horizontal well drilling tech-
nology can exploit thin oil-rim reservoirs, avoid problems such as water/gas
coning, and extend the life of the wells by means of multiple drain holes
[1]. According to data from the National Petroleum Council (NPC) of U.S.,
many breakthroughs and thousands of incremental advances in exploration
and production have increased oil recovery levels from less than 10% (of the
initial volume in place) to more than 70% in some cases [2].

Another significant breakthrough in production technologies during re-
cent years is a technology known as smart wells or intelligent well systems.
The smart well system allows real-time information from downhole and flow
control by using permanently installed sensors and valves. With the help
of this real-time information, the operators are able to optimize control to
the drilling and production [3]. As an example, it enables operators to ac-
tively monitor, remotely choke or shut selected zones with poor performance
without costly intervention.

Before the emergence of smart well systems, the only available method
to obtain downhole information was through the use of intervention-based
logging techniques. Interventions can be conducted periodically to measure
a variety of parameters, such as pressure, temperature and flow. Although it
provides valuable information, the operation is very expensive to be done fre-
quently, especially in the sub-sea environment. The lack of timely data often
compromise the ability of the operator to optimize production [4]. Compared
to an intervention based approach, the use of smart well systems has sev-
eral important advantages. (i), it can improve information and knowledge
management, reduce the frequency of intervention and even realize auto-
matic exploration and production. (ii), it can increase net present value by
the recovery of hydrocarbons from reservoirs. (iii), it can reduce capital ex-
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penditures by decreasing the number of wells drilled and that in turn will
reduce the number of surface facilities required. In 2006, some oil and gas
fields in Saudi Arabia were equipped with experimental smart well technol-
ogy and their performance have been compared to conventional vertical and
horizontal wells that were deployed in the same field. It was reported that
48 smart wells could achieve the desired production target of 66 conventional
horizontal wells or 150 vertical wells [5].

Today it is widely recognized that this technology can not only increase
operating efficiency greatly, but also save enormous expenses and risks asso-
ciated with the execution of those processes. This is accomplished by provid-
ing a better understanding of downhole processes and by helping reconcile
short-term production optimization approachs with long-term objectives.

Since the first smart well system was installed in August 1997 at Saga’s
Snorre Tension Leg Platform in the North Sea, over 300 such systems have
been installed globally. These installations range from mature land assets
to deep water off the coast of Brazil. However, the adoption of smart well
systems has not been without challenges. The most challenging problem
is the harsh wellbore environment of high temperature, high pressure and
the limited space. Since the instruments are permanently-installed downhole
and inaccessible once deployed, the value of the system is directly linked to
the life of the system devices. Many early systems were rendered inoperable
due to their low reliability. For example, high temperature electronic devices,
such as the Field-Effect Transistors (FET) and capacitors which are available
on the market today can at most work in a range of 175 — 200°C. The de-
rated performance of these devices at these temperatures make them barely
sufficient for long term downhole operation. New developments in the field
of high temperature devices will enable new technologies for oil and gas
exploration and production in the future [6, 7, §].

Another challenging problem is how to transmit data between downhole
sensors and surface facilities to obtain real-time data and realize optimized
production. Until now, there have been a few different methods developed
in data communication for this purpose. For example, BJ Services Com-
pany has developed a wired communication system by using coaxial cable or
fiber optic cable. Unfortunately, these systems have had limited reliability
because of the strong impact of oil or gas fluid on the components deployed.
Other wireless methods have also been developed, such as pressure pulses
that propagate in the flow of the production fluid, or using an acoustic signal
that can propagate through the earth as well as along the well. According to
a report by Paul Tubel, the acoustic system they tested could communicate
over a length of 500 feet [9, 10].

Another attractive method of realizing wireless communication is to use
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electromagnetic (EM) signals. The main challenge of this method is that
the earth is highly conductive, which causes the EM signal to attenuate
very rapidly with increasing distance. In addition, the transmission power
and the size of antenna are all limited in a downhole environment. These
challenges limit the effective communication distance and the data rate of
the transmitted signals. Compared to the earth, the metal well is much
more conductive and can be taken as the core of a coaxial transmission line,
on which, the EM wave can propagate much easier. This method has been
studied much, especially in the field of measurement while drilling (MWD)
system . However this topic still benefit from further study as most of the
early research has been based on simple models, such as assuming the earth
to be a homogeneous medium. In the following section, a brief review of
this earlier research and applications of EM technologies in the oil and gas
industry is presented.

1.2 The application of EM technology in oil and
gas industry

EM technology has been applied in oil and gas industry in many aspects,
such as logging systems, borehole antennas, MWD and controlled source
electromagnetic (CSEM) surveying, also known as seabed logging (SBL).
The application of EM technology in the oil and gas industry can be traced
back to Conrad Schlumberger, who tried to measure the resistivity of the
earth by using EM technology in a well logging system in 1927 [11]. The
research on high-frequency EM logging technology started in the 1960s [12]
and in the 1980s, a borehole radar operating at 1.1GHz appeared [13, 14, 15].
However, the detection depth was too shallow for such a high frequency and a
system that worked at lower frequency, 25MHz, was proposed by Blenkinsop
and others in 1986 [16, 17]. In the 1990s, multi-frequency electromagnetic
logging with an ultra-broadband antenna was developed [18].

For an electronic system, the load determines how much power can be
delivered. For example, in a radiation system, the source impedance should
be matched to the antenna to minimize reflection signal. In the 1960s, King
and others addressed this issue by looking into the input impedance char-
acteristics of a dipole antenna when immersed in a homogeneous isotropic
conductive medium [19, 20]. In particular, King studied the relationship
between the antenna input admittance and the properties of a conductive
medium reflected through the parameter o/(we,€y), where o is the conduc-
tivity of the medium, w is the operating frequency (in rad/s), €, is the relative



permittivity of the medium, and ¢, is the vacuum permittivity. In Fig.1.1 and
Fig. 1.2, the input conductance and susceptance of an antenna are plotted as
a function of the parameter o/(we,€p) and the antenna electrical length Sh,
where h is the physical antenna length. 8 = 27 /A, and A is the wavelength of
the signal in the surrounding medium. In [19], salt water and a frequency of
114MHz was applied, in which case the medium wavelength was reported to
be A = 29.77cm. From Fig.1.2, it can be observed that the susceptance of the
input admittance becomes negative when the parameter o/(we,€y) becomes
large and Bh > 1. In addition, the susceptance approaches a constant nega-
tive value as Sh increases. Since the parameter o/(we, €y) becomes very large
at low frequencies and in a highly conductive medium, it can be concluded
that the input impedance of an antenna immersed in a conductive medium
usually is inductive at low frequencies.

G IN milli-mhos

Figure 1.1: Driving point conductance vs antenna length [19, Fig.7].

In the beginning of this century, the application of CSEM technique for oil
and gas industry became popular in offshore applications. This application
can be traced back to J.R.Wait who studied the EM fields of a phased line
current over a layered conducting half-space [21, 22]. In using CSEM, a
cable with powerful low frequency current flowing on it is immersed in the
sea. The EM field induced by the wire current propagates in the earth
and is reflected at the interfaces of discontinuous electrical properties. Since
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Figure 1.3: The SBL, this figure is from lecture note for mathematical geo-
physics given by Lasse Amundsen.



hydrocarbons in the subsurface are significantely more resistive than non-
hydrocarbon-bearing layers such as shale or sandstone which contain salt
water, they provide measureable reflections. Hydrocarbons can therefore be
detected by a reflected signal at the seabed in a range of distances from the
source [23, 24, 25, 26].

As mentioned above, the propagation of EM waves along the drill rod
or metal casing has been a topic of discussion in oil and gas industry for
a long time, driven largely by MWD applications. J. R. Wait studied this
problem theoretically with a model where a perfectly conductive metal rod
was surrounded by a homogeneous earth rock of a very low conductivity,
o = 107%S/m, which is shown in Fig.1.5. Using this highly idealized model,
he concluded that the current attenuation along the drill rod would be at
least as great as plane waves in the surrounding medium [27]. He also pointed
out that an optimum frequency could be found for a fixed depth, as shown
in Fig.1.4. However, in real earth situations, the conductivity of the earth
rock is usually much higher than the value he adopted and thus his optimum
frequency could be too low to be observed.

In 1987, DeGauque and Grudzinski studied a more advanced model where
the drill rod was assumed to have a finite conductivity and the surrounding
medium was assumed to be sea water with a much higher conductivity of o =
0.5S/m. Their model is shown in Fig.1.5. In their research, the metal drill
rod was taken as a long thin wire antenna and the current distribution along
it was solved by applying the well known Pocklington’s integral equation.
The influence of the finite conductivity of the drill rod was characterized by
assigning an internal impedance and then accounting for it with boundary
conditions. The Pocklington’s integral equation was discretized and solved
by the method of moments. The authors found that the drill rod internal
impedance played a major role in attenuating the signal and for the operating
frequencies below a few Hertz, the attenuation did not vary much yielding
an optimum frequency for maximum data rate around 3Hz [29].

In 1993, Xia and Chen developed a model where the drill rod could not
only be vertical, but could be in an arbitrary direction in a homogeneous
medium [30]. They built up an electric field integral equation (EFIE) for
this model, which could handle more complicated geometries than Pockling-
ton’s integral equation. Not surprisingly, their results matched those previ-
ously published by DeGauque and Grudzinski. The authors claimed (without
proof) that a layered earth consideration might be estimated by using the
most conductive case for the computation, and they also pointed out that
detections should be carried out near the well head.

More recently (2009), Yang and others studied a model where a metal well
was assumed to be vertically placed in a horizontally stratified earth [31]. At
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the same time, the author of this thesis also studied a similar model and
submitted a paper to the Applied Computational Electromagnetics Society
(ACES) 2010 conference. Both of these two studies considered the reflections
of the EM field from the interfaces of the layers and accounted for them in the
EFIE developed for the model. To do this, a Sommerfeld identity was applied
to transform the spherical wave due to a point source into a summation of
plane waves, which was in the form of Fourier transform. For the plane
waves, the field in a horizontally layered medium can be evaulated accurately
by summing up the direct propagation from the source and the reflections
at the interfaces between the layers. Yang claimed in his work that the
discretization step didn’t influence the final results. However, the numerical
results given in this thesis show that the discretization step influences the
accuracy of the Sommerfeld integration, so a special mathematical method
has been developed to solve this problem.

layerd | layer3 | /

conductive
rock
layer2 | layer2 |
wire antenna layert | wire antenna layer1 wire antenna
SOUICE source
Homogeneous Layered media, Layered media
medium vertical placed antenna tilted placed antenna

Figure 1.6: The models studied in this thesis.

There are other ways to approach this interesting problem other than the
application of the EFIE method. For example, in 2000, Trofimenkoff and
others developed a method which used an electric circuit network model to
study the current distribution along the metal well casing. They discretized
the metal well and the surrounding medium into small elements which was
then modeled into circuit elements of resistors, inductors and capacitors [32].
The advantage of this method is speed, as the computation is much faster
than using the EFIE method. Their results compare favorably with those
published before by DeGauque and Grudzinski, and those by Xia and Chen.
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Today, with the development of smart well systems, the communication
between surface and downhole instruments becomes an urgent need. Using
an EM signal that propagates along the metal well casing is one of the more
promising solutions. In this case, it is necessary to study the attenuation of
the signal along the surface of the metal casing. This then will provide a
theoretical basis for the assessment of the channel capacity. This problem is
closely related to the studies of the current distribution along the drill rod in
an MWD system. Until now, most of the models applied to solve this problem
have assumed that the earth is a homogeneous medium. However, in the
most recent paper published by Yang, a layered medium was considered and
a metal well was assumed to be placed along a line normal to the interfaces.
In reality, the well can penetrate the layers at an arbitrary angle and how
this will influence the current distribution is an interesting problem that (to
our knowledge) has never been studied. This thesis presents new models
and special mathematical methods to provide a solution to this problem. In
the following, a brief introduction to methods used to solve EM problems is
presented.

1.3 Methods in solving EM problems

Maxwell equations are a set of coupled first-order differential equations, which
are almost always too complicated to be solved exactly in practical problems.
The methods for solving Maxwell equations can be classified into experimen-
tal, analytical and numerical approaches. Experimental methods are very
important and often play a key roll in practical problems. However, they
are often very expensive and almost all experiments can only approximate
the real situation. What’s more, the experiment should be done based on a
theoretical model and the experiment data needs to be studied and compared
to the theoretical analysis for interpretation.

The analytical solutions are always based on highly idealized models and
can only be applied to some very simple problems. The most commonly
used analytical methods are image method and the separation of variables
(33, Ch.2,3]. Under special conditions, asymptotic methods could be ap-
plied and approximate solutions are available, which can also be classified as
analytical methods [34, Ch.2],[35]. With the development of computer tech-
nology, more and more problems can be solved by numerical methods. The
most commonly used numerical methods are the finite difference time domain
method (FDTD) [36], the finite element method (FEM) and the methods of
moments (MOM).

The FDTD algorithm can be traced back to Yee’s paper in 1966 and the
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acronym was given by Taflove in 1980 [37, 38]. Application of FDTD usually
involves three steps: (i), divide the solution region into a grid of nodes.
(ii), the given differential equations can be discretized into finite difference
equations by using Taylor’s theorem, in which case, the derivatives can be
approximated by the following equations:

_ f(wo + Az) — f(xo)
Ax '
f(xo + Az) — 2f(20) + f(x0 — Ax)
(Az)?

(1.3.1a)

f//(xo) ~

. (1.3.1b)

(i), solve the difference equations subject to the prescribed boundary condi-
tions [39, Ch.3]. FDTD usually works in time domain and it can present tran-
sient responses accurately. Similar to FDTD, the integral form of Maxwell
equations can also be discretized into finite difference equations, which was
developed by Weiland independently and is called the finite integration tech-
nique (FIT) [40, 41, 42].

FEM methods are based on the theory of variational method, in which
a functional is first derived and trial functions are then used to find the
solution in order to minimize or maximize the functional. For example, for
the differential equation

oF 0 0F, 0 0F, (1.3.2)

a functional integral equation I(u) can be constructed as

I(u(z,y)) = /dxdyF(x,y,u(x,y),ux,uy>. (1.3.3)

The function u(z,y) which minimize I(u) will also be a valid solution to the
differential equation in (1.3.2). It can be approximated by a series of trial
functions

N
u= Z A Grms (1.3.4)
m=1
for which the Rayleigh-Ritz procedure is applied to find the coefficients,
ol
— =0 =12,--- N 1.3.5
aam 9 m 9~y ) ( )

If the basis functions g, are global over the solution region, it is classified
as a Rayleigh-Ritz method. If they are piecewise for each local region, the
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method is considered a FEM. The FEM is usually more powerful and versatile
compared to the Rayleigh-Ritz method.
MOM is a sub-method of the weighted residual method. For a linear
operation
Lu = f, (1.3.6)

the unknown function can be expanded by a series of trial functions (basis
functions) g, as shown in (1.3.4). For a limited number of basis functions,
the expanded function usually can not provide an exact solution for u, but
only an approximation to it. There will be an error (residual) between them:

R=>"L{u,gm) (gm — [, (1.3.7)

where <> is inner product, f > denotes a vector and < f is its transpose.
Weight funtions w are orthogonal to the residual

(w, R) = 0. (1.3.8)

For different weight functions, there are (at least) five sub methods

Collocation method
Subdomain method
Least square method
Galerkin method

. Method of moments

O W=

Highlighting the differences in these five methods, the collocation method
use Dirac delta function 0 as weight function, which forces the residual to be
zero at specific points. The response to the Dirac delta source is the Green’s
function, as shown in the following equation

LG(r,r') =6(r — ). (1.3.9)

By using convolution theory, the equation can be transformed into the fol-
lowing equation

L{G(r,x'), f(r')) = (0(r = x'), f(x')) = f(r), (1.3.10)
which indicates the unknown function u is equal to
u(r) =< G(r,1'), f(r') > (1.3.11)

The subdomain method can be considered as a modification of the collo-
cation method, which forces the weighted residual to be zero not only at fixed
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points, but over various subsections. The least square method uses the resid-
ual function R as the weight function. In this case, to find the zero points
of (1.3.7), the minimum of the equation by the derivatives with respect to
the unknown parameters is computed. The Galerkin method uses the basis
functions as the weight functions and can be viewed as a modification of the
least square method. By contrast, the last method, the method of moments,
weight functions are chosen from the family of polynomials:

Wi = a". (1.3.12)

If the basis functions for the approximation are the same polynomials, then
the method of moments is identical to the Galerkin method. Sometimes, the
meaning of MOM is equivalent to the meaning of weighted residual method
and the other four sub methods may also be referred to as MOM.

Comparing these three methods, FDTD and FEM are partial differential
equations (PDE) methods while one is in time domain and the other is in
frequency domain. Usually, both of them use volume meshing so that the
number of unknowns increases with the cube of the linear meshing density.
For these two methods, memory and solution time scale proportionally with
the number of unknowns. MOM is an integral equation method which uses
surface mesh. It imposes certain boundary conditions to the structure in its
solution technique and is not good for complex 3D volumes and non-metallic
surfaces. However, for solving surface current problems of 1D and 2D, MOM
is a good choice.

Today, there are dozens of software packages developed for solving EM
problems based on the three methods introduced above. However, most
of them are not appropriate for solving geophysical problems, where the
operating frequencies are usually very low and the earth composition is very
complicated. In addition to that, the model shown in Fig.1.6 is very difficult
to mesh since it is extremely large in one dimension but extremely small in
the other dimension. For this kind of problem, the best method is to build a
special EFIE, which is then solved by the MOM.

1.4 Contributions of the included papers

This thesis consists of four papers, which are numbered with the capital
letters A, B, C and D. In the following, a summary of the included papers is
presented.
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1.4.1 Paper A

Y. Wei, B. Holter, I. Simonsen and L. Norum, “Current Distribution Along
a Long Thin Wire Antenna Vertically Placed in a Horizontally Layered
Medium”, in Proc. Applied Computational Electromagnetic Symposium
Conference, Tampere, Finland, April 2010.

To use the metal well casing to transmit EM signal between downhole and
surface has been an interesting topic in oil and gas industry, especially for
MWD application. Many people have contributed to this topic as introduced
above. However, most of them modelled the earth to be a homogeneous
medium (to the author’s knowledge in 2009). This paper tries to make an
improvement by modelling the earth to be a horizontally layered medium
and each layer can be characterized by its conductivity independently. The
metal well is then treated as a long thin wire antenna and is assumed to
be perpendicular to the interfaces between different layers. Geometrically,
zy-plane is defined to be parallel to the interfaces and the wire antenna is on
z-axis.

The EM field induced by a delta gap source will cause an incident current
in the wire antenna and this incident current will induce a scattered field
again. The electric field at a point r = (z,y,2) in space induced by the
current element /(z')dz'z at point v’ = (0,0, 2’) is equal to

B ik|r—r’|
E(r) = iwu(I+ E) 1(2)dz'2 ‘

2 (1.4.1)

4rlr — 1|
where k is the wavenumber in the vicinity of the source point and V is the
vector differential operator. The electric field at point r induced by the total
wire antenna can be evaluated by doing integration

. B vV A eik\r—r’|
E(r) = zwu/zdz/(l + ?) : I(Z')zm. (1.4.2)
By taking advantage of the boundary condition at the surface of the wire
antenna, an EFIE is built for the unknown current 7(z’). For a model of
homogeneous medium, the EFTE can be transformed into the well known
Pocklington’s integral equation, which can be solved by MOM [43, Ch.8].
When a horizontally layered medium is considered, the scalar Green’s
function in (1.4.2) needs to be expanded into an integration of plane waves
first, which can be done by applying the Sommerfeld identity [34, Eq.2.2.30]

iklr—r’| 00 k ) ,
c —i/ dk -2 Jo(k,p)e=l===1 (1.4.3)
0

rr] k.
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in which k, is the wavenumber in the radial direction and k, = |/k? — k%.
Jo() is the Oth order Bessel function of the first kind.

The propagation of plane waves in a horizontally layered medium can be
evaluated accurately by calculating the reflections at the interfaces between
different layeres. When there are multiple layers, the multi-reflections from
different layeres can be calculated by a recursive equation, which is defined as
the generalized reflection coefficient [34, Ch.2.1]. The propagation element
et*<1>=#'I in (1.4.3) will be changed into the following form

A=) | RG] (1.4.4)

where R is the generalized reflection coefficient.

In the paper, this method is applied for the homogeneous models pub-
lished by others and also compared to a FIT program by using a simple
homogeneous model. These tests show that the method works quite well
for the homogeneous models which are special cases of the layered medium
model. Finally, a horizontally layered medium model is used and the numer-
ical results show that the attenuation of EM field in different layers depends
on the conductivities of the independent layers. The distribution of the cur-
rent can not be estimated by only using the most conductive case as claimed
by Xia and Chen [30].

1.4.2 Paper B

Y. Wei, B. Holter, I. Simonsen and L. Norum, “Current Distribution Along
a Long Thin Wire Antenna Placed in a Horizontally Layered Medium”, in

Proc. Conference on Electromagnetic Field Computation, Houston, U.S.,
May 2010.

In the first paper, the metal well casing is assumed to be vertically placed
in the layered earth. With the development of drilling techniques, such as
horizontal well tochnology, the metal well can penetrate the earth layer at an
arbitrary angle. In this case, a question is how much the tilt angle between
the well and the medium will influence the current distribution. To the
author’s knowledge, a solution to this problem has never been published.

This paper tries to improve the model presented in Paper A by allowing
an arbitrary tilt angle between the wire antenna and the interface surface.
In this case, xy-plane is still assumed to be parallel to the interfaces and
the wire antenna is assumed to lie in zz-plane. The angle between the wire
antenna and z-axis is 6, 0 < 6 < 7/2. The model is not symmetric with
respect to the z-axis and therefore can not be simplified to a 1-D model.
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However, it is symmetric to the xz-plane and therefore can be treated as a
2-D model.

As presented in (1.4.2), an EFIE can be constructed for the unknown
current along the wire antenna. In this case, the current element is /(z’ )dfé
in stead of I(2')dz’'z. Since there is a tilt angle  between the wire antenna
and the z-axis, the current element [(z )dﬁf can be decoupled into a vertical
current element I(2')dl cos 62 and a horizontal current element /(z")d( sin 0z,
which can be treated as a vertical electric dipole (VED) and a horizontal
electric dipole (HED), respectively. The electric field due to the current
element I(z')d¢¢ can be evaluated by the superposition of the fields generated
by the VED and the HED.

According to the geometry used in this paper, the EM field due to a
VED is only in the transverse magnetic (TM) mode in z direction, which can
be decoupled into two components pointing in z direction and x direction,
denoted as Eg{\,ﬂED and E;l\\,/IED respectively. The EM field due to a HED is
also decoupled into components in z and z direction but they are different
in mode. The component in z direction is only in TM mode, denoted as
ENgp- The components in z direction are in both TM and transverse electric
(TE) mode, denoted by E] Mgy, and E}fgn. In this way, the integrand of
the EFIE includes five electric field components which should be calculated
independently.

For a homogeneous medium model, the tilt angle will not influence the
result and so it can be taken as a reference for validation. This method is
then applied to the homogeneous models published and compared to other
method such as FIT. The results presented by this method agrees to the
published results quite well. Then a layered model is applied and the results
show that the stability of calculation depends on the discretization size of
the wire antenna, which is studied in paper C of this thesis.

1.4.3 Paper C

Y. Wei, B. Holter, I. Simonsen and L. Norum, “Calculation of Sommerfeld
Integrals for Conductive Media at Low Frequencies”, IEEE International
Workshop on Electromagnetics, Taipei, Taiwan, 2011.

In Paper A and B, an EFIE is constructed for the unknown current distri-
bution which is then calculated by MOM. Since for a homogeneous case, the
EFIE can be simplified into the well known Pocklington’s integral equation,
which has an analytical equation in the integral, the Pocklington’s integral
equation can be used as a reference to validate the calculation of the EFIE.
In using MOM, the current along the wire antenna is discretized into small
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evenly distributed elements, I(z")d¢. When the size of the elements is small,
the current in each element can be assumed to be a constant. The EFIE is
then transformed into a series of linear equations

G(z,2)I(2') = b(z), (1.4.5)

Theoretically, the smaller the size of the elements, the more accurate the re-
sult will be. However, comparison to the results of the Pocklington’s integral
equation shows that there is a big error when the size is small. This paper
addresses the reason of this error and presents a mathematical method for
solving it.

By carefully comparing the calculations of the two methods, small differ-
ences are found in the two coefficient matrixes, especially the sub-diagonal el-
ements. Numerical tests prove that even though the differences are tiny, they
will introduce a significant difference in the calculation of the EFIE. In other
words, the coefficient matrix is ill conditioned. Further study shows that
the difference comes from the calculation error of the Sommerfeld identity,
which is an integral of an oscillating function. To evaluate such an integral,
traditionally, one can use asymptotic methods or numerical methods. The
asymptotic methods include method of stationary phase and method of steep-
est descent [34, Ch2]. The claimed best numerical method for the integration
of an oscillating function is the Integration-Summation-Extrapolation (ISE)
method [44]. However, for geophysical problems, which often operates in a
highly conductive medium and at very low frequency, all of these methods
present difficulties. The asymptotic method does not work for the near field
and the numerical method is computationally intense with large convergence
ranges.

To overcome these difficulties, a new asymptotic split method is developed
to calculate the Sommerfeld identity for the special geophysical condition.
The concept is that if an asymptotic equation is subtracted from the integral
kernel, the new equation will converge much faster than the original function,
which makes it much easier to be calculated numerically. The integral of the
additional asymptotic equation can be evaluated by a Laplace transform,
which yields an analytical solution. This method reduces the error compared
to previous methods at least 50 times for the example presented in the paper
without increasing computational difficulties for the calculations.

1.4.4 Paper D

Y. Wei, B. Holter, I. Simonsen and L. Norum, “Efficient and Accurate Nu-
merical Evaluation of Sommerfeld Integrals for Conductive Media at Low
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Frequencies”, proc. Geophysics, submitted.

Based on the study in Paper A, B and C, this paper presents a com-
plete dissertation of applying the metal well casing as a medium to transmit
EM signals between downhole and surface. Theoretically, by using Maxwell
equations, the scattered electric field E® related to a current density can be
represented by a Helmholtz equation,

V x V x E®(r,w) — K®E® (r,w) = iwpd (r,w), (1.4.6)

the solution to (1.4.6) can be expressed as
E®) (r,w) = iwu/dr?’G(r,r’)J(r',w), (1.4.7)

where G(r,r’) is the dyadic Green’s function in (1.4.1). For the longitudinal
component of the electric field on the surface of the well casing, E(i)(r, w) +
E® (r,w) = 0, if the metal of the well casing is considered a perfect electric
conductor. With this result, an EFIE for the unknown current I(r) can be
built,

/ [ d2'G(r,v)I(r') = idmewED(r). (1.4.8)
0

For a homogeneous medium, the EFIE can be simplified to the wellknown
Pocklington’s integral equation, which has an analytic equation in the inte-
gral and can be calculated by MOM directly. When the surrouding medium
is a horizontally layered medium, the fields induced from each of the point
sources must first be expanded into an integral of plane waves by the Som-
merfeld identity. The field in the surrounding medium can be evaluated by
carefully considering the transmission and reflection of the plane waves at
interfaces between layers.

It is obvious that the Pocklington’s integral equation is a special case of
the latter and both of them should achieve the same results for a homoge-
neous earth. Therefore, the Pocklington’s integral equation can be used as
a reference to the calculation of the latter. By comparing the calculation
of the two methods, the difficulty in calculating the Sommerfeld identity in
the latter is found and a new asymptotic split method is introduced for low
operating frequencies and highly conductive medium case. This method is
applied to a homogenous model and proved that it can improve the calcula-
tion accuracy greatly without adding extra calculation complexity. It is also
applied to a model where the wire antenna is assumed to be vertically placed
in a horizontally layered medium. The numerical results are compared to
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those achieved by using electric network method and show that they agree
to each other quite well.

The asymptotic split method is applied to models where the wire antenna
is assumed to be arbitrarily placed in a horizontally layered model, as studied
in Paper B. Numerical results for this model are presented in Appendix in
this thesis. In particular, the effects of different tilt angles between the wire
antenna and the z-axis are studied and compared.

In 2010, an experiment was carried out by WINS ! and SINTEF ? to
test signal transmission along a metal well casing. With the permission
authorized by them, the experiment data can be applied to test the numerical
results given by the method presented in this paper. The comparison of the
numerical results to the experiment data shows that they agree to each other
quite well.

1.4.5 Supplement

Just as I was about to finish my thesis, I was informed through a review
process that a mathematical method similar to that introduced in Paper
D had been published by others. In the following, a brief review on the
published papers and a comparison to my work are presented.

In 1986, D. R. Jackson and N. G. Alexopoulos published a paper in
which they introduced a method for the evaluation of the electric field from a
Hertzian dipole in a layered geometry [45]. They started from the calculation
of the Hertzian potential

M- / T OV ()N, (1.4.9)

in which the integrand is equal to

2 1
f) = 5 ()\))\ [ul coshuy(B = 2') + usinhuy (B — 2') | sinhu; 2,
e Uy | Hr
(1.4.10)

where A is denoted as k, and w; is denoted as k. in this thesis. B is the
coordinate of the interface. The author pointed out that the integral was
nonconvergent when the observation point z = z’. To overcome this problem,

'WINS is the abbreviation of a norwegian company, Wireless Instrumentation Systems
AS. This company develops technology and solutions for down-hole energy generation,
instrumentation and wireless communication.

2SINTEF is the largest independent research organisation in Scandinavia, which devel-
ops technology solutions that are brought into practical use.
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the hyperbolic functions could be approximated by [45, (11)]

1
sinh(uja) ~ 56“‘1. (1.4.11)
as A — oco. Then an asymptotic function fo(\) could be composed for the
integrand,

N
an —
fo(A) = Z T A, (1.4.12)
n=1

where N depended on the number of layers. This asymptotic function was
then subtracted and added from the original integrand f(A). The integration
on the added term could be calculated in a closed form and the integration
on the term f(\) — fo(A\) could be evaluated numerically.

Compared to [45], we developed the method in a similar way by adding
and subtracting an asymptotic function to the original integrands. The inte-
gration of the asymptotic function can then be calculated analytically and the
integration of the tail term can be evaluated numerically. When we developed
this method, we were focusing on a special low frequency and high conductive
problem, based on which the asymptotic equation was deduced. Unlike their
work, we started from dyadic Green’s function, not from Hertzian potential
ant when we apply this method, we only use it on the points near the source
point. For the point z = 2/, the field is evaluated directly by Pocklington’s
integral equation.

In 2006, Ergun Simsek, QingHuo Liu and BaoJun Wei published a paper
in which they presented a method to evaluate mulitlayered medium Green’s
functions for general electric and magnetic sources [46]. In their method,
a special subtraction procedure was applied to each term of the Sommer-
feld integrands to make them rapidly decreasing and the contribution of the
subtracted terms are calculated analytically.

I think the main difference between their work and our work is the project
and procedure of finding the method. In our case, we are studying the current
distribution along a metal casing in a multilayered medium and find that
the results are not stable by using ordinary integral method. Then we find
the reason of the big calculation error by comparing the EFIE method to
the Pocklington’s integral method in a homogeneous case. In addition to
this, there is a small difference in finding the asymptotic equation. In this
thesis, the asymptotic equation is found by studying the each term of the
Green’s function at a condition o/w >> ¢ for a homogeneous model. In their
paper, they considered a point source in a layered medium, in particular,
they studied the source point near an interface between different layers and
deduced asymptotic equations for different cases of receiver points.
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In 2006, M. P. Spowart and E. F. Kuester published a paper in which they
introdued a method for the studying of microstrip antennas [47]. Similar to
[45], the integral equation was developed from the Hertzian potential and an
asymptotic equation was added and subtracted from the original integrand
in the following way

N [eS]
I = / FOVA + / FOVdA (1.4.13)
0 N
N [eS) oo
= / JA)A + / (f — fapr)d\ +/ faprd\.  (1.4.14)
0 N N
The integration of the asymptotic equation can be found by

00 N
/ faprd\ = (explicit closed form expression) —|—/ g(N)d\,
N 0

(1.4.15)
and finally the original integral can be evaluated by

N
I %/ (f + g)d\ + (explicit closed form expression) (1.4.16)
0

Compared to [45], the author went one step further by studying the pole
problem and applied steepest-descent path evaluation method for calculating
the integral for the pole.

Compared to their idea, the method introduced in this thesis was devel-
oped in a slightly different way,

I = /Nf(/\)d)\Jr/oof()\)d)\ (1.4.17)
- / (FOV) = Fapr(\)dA + /N T = Fasr(A)dx
v / T Fapr(V)dA (1.4.18)

Since (f(A) — fagr(A)) — 0 when A — oo, the second integral can be ne-
glected and the total integral is approximately equal to

= / (FO) = Fapr(0)dA + / " fasr(Vdn. (1.4.19)

where the first part can be calculated numerically and the second part gives
an explicit closed form. In addition to the difference of development, we
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develop this method for problem of using low frequency and highly conductive
medium, which ensures that there is no difficulty in pole problems.

In 2010, Shaun D. Walker, Deb Chatterjee and Michael S. Kluskens sub-
mitted a paper to Antennas and Propagation Society International Sympo-
sium [48], in which they also mentioned to use analytical method for closed-
form evalution of the Sommerfeld integral tail. They deduce their method for
the z-component electric field from a HED. In 2012, Deb Chatterjee, Sadasiva
M. Rao and Michael S. Kluskens published a paper in 2012 IEEE Interna-
tional Symposium on Antennas and Propagation and USNC-URSI National
Radio Science Meeting [49]. In this paper, they developed a method a lit-
tle difference to that in [48] by keeping the Bessel function intact. In their
method, the Sommerfeld integral is divided into two parts

kp 0
I= /O k2 Ty (kop)WP (K, )dk, + / k2 J1 (k) WP (k) dk,. (1.4.20)

kp

The second term in the equation is the Sommerfeld tail. To calculate it, W?
is replaced by an asymptotic equation but the Bessel function is not replaced
by asymptotic equation, which leads to

asy

Ky
= /0 K20, (ko) WP (k) — W2, (yho)ldk, + G (14.21)
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A Wave Propagation Along a

Thin Vertical Wire Antenna
Placed in a Horizontally Layered

Medium

Yingkang Wei, Bengt Holter, Ingve Simenson, Karsten Husby, Jacob Kuhnle,
Lars Norum

The 2010 annual conference of the Applied Computational
Electromagnetics Society (ACES2010)

Abstract

A theoretical and numerical analysis of the wave propagation along
a long thin wire antenna is presented. The wire is assumed to be placed
vertically in a conductive inhomogeneous medium, represented by a
finite set of horizontal plane layers each of which is characterized by
an individual conductivity. The current distribution along the wire
antenna is obtained as the solution of the electric field integral equa-
tion that is solved by the method of moments. Numerical results are
presented and compared to similar work for homogeneous media.

A.1 introduction

Wave propagation along a wire antenna placed in a conductive medium is an
interesting topic in low frequency communications. In 1979, J. R. Wait and
D. A. Hill [1] calculated the current distribution along a drill rod surrounded
by conducting host rock. They assumed an infinite long perfect conducting
rod located in a homogeneous lossy medium. The source was assumed to
be a toroidal coil emitting a 5KHz electromagnetic wave riding on the rod.
They found that the attenuation would be at least as great as that of plane
waves in the conductive medium surrounding the rod. In 1989, P. DeGauque
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and R. Grudzinski [2] studied the current distribution along a drillstring of
finite conductivity embedded in a homogeneous conductive medium using
Pocklington’s integral equation[3, Ch.8]. The source was assumed to be an
electric delta gap which could be viewed as a simple electric dipole. The
frequency range of the emitted sigmal was 0.1 — 10Hz. They found that the
surface impedance played a major role in attenuating the signal. However,
for frequencies below a few hertz, the attenuation did not vary much and the
optimum frequency for maximum data rate was argued to be about 3Hz.
To the author’s knowledge, an analytical solution of the current distribu-
tion along a long metal wire antenna in a conductive inhomogeneous medium
is not known. To address this issue, a theoretical and numerical analysis of
the wave propagation along a long thin wire antenna is presented. The wire
is assumed to be placed vertically in a conductive inhomogeneous medium,
represented by a finite set of horizontal plane layers (orthogonal to the an-
tenna), each of which is characterized by an individual conductivity. The
current distribution along the wire antenna is obtained as the solution of the
electric field integral equation that is solved by the method of moments.

A.2 Theoretical Approach

A.2.1 The field from a wire current in a homogeneous
medium

A long straight wire antenna of length ¢ and radius a is assumed to be placed

vertically in a homogeneous medium and oriented along the positive z-axis.

The electric field E(r) at an observation point r = (x,y, z) is related to the
current density J(r') on the wire antenna by the integral [4, Eq. (7.1.2)]

B(r) = iwp /v PG ) 3() (A2.1)

The dyadic Green’s function G(r,r’) is defined as [4, Eq. (7.1.19)]

G(r,r') = [I+ VkQV] g(r,v'), (A.2.2)

where T denotes the unit dyad and g(r, ') is the scalar Green’s function. In an

unbounded homogeneous medium g(r,r’) = Z::‘::,‘l and k = wy/pu(e +i(o/w))
(Im(k) > 0) is the complex wave number. In the following, the antenna is
assumed to be very thin compared to its length, i.e. £ > a. Under this
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assumption, the current density along the wire can be approximately written
as:

J(x') = I(z")o(2")d(y')z, (A.2.3)
where I(2') is assumed to be an equivalent line-source current [3, Ch8|. In-

serting (A.2.2) and (A.2.3) into (A.2.1), the z-component of the electric field
directed along the antenna can be written as

iWM 82 eikR

E.(r)= 1k /O L0 1) [k2+822} - (A.2.4)

where R = /p?+ (z — 2)?, and p = /22 + 3%

A.2.2 The field from a wire current in a layered medium

The wire antenna is now assumed to be placed vertically in a conductive
inhomogeneous medium represented by a finite set of horizontal plane layers,
where each layer is characterized by an individual conductivity. In [4, Ch. 2],
a method to obtain a solution for the electromagnetic fields generated by a
point or line source embedded in such a multilayered profile is presented. The
heart of the approach in [4, Ch. 2] is based on the fact that nonplanar waves
generated by finite sources can be expanded into an integral summation of
plane waves. The mathematical identity is known as Weyl’s identity [4, Eq.
(2.2.27)], and it represents a plane-wave expansion of a spherical wave. Once
this is done, the general theory of reflection and transmission of plane waves
can be used to find the electromagnetic fields within any of the layers in
response to a source within one of the layers. In this section, this method is
used to find an expression for the z-component of the electric field generated
by the antenna. Due to limited space available, a detailed explanation of the
method and a presentation of all the involved symbols and expressions are
not included. The interested reader is rather referred to [4, Ch.2] for further
details. Note that in this paper the z-axis points upwards, whereas in [4,
Fig. 2.4.1], it points downwards. As a result, there are some differences in
the subindexes of the expressions in this paper and the similar ones in [4].

Since the antenna is assumed to be placed along the z-axis of a cylin-
drical coordinate system, the electric field component in question is the z-
component which is directed along the antenna. To derive an expression for
this field, the Sommerfeld identity is used as a starting point. The Sommer-
feld identity [4, Eq. (2.2.30)] can be developed from the Weyl’s identity and
is equal to

eikR 00 k .
R / k2 Jo ()™ (A.25)
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which shows that a spherical wave can be expanded into an integral sum-
mation of cylindrical waves in the p direction times a plane wave in the
z-direction over all wave numbers k,. In (A.2.5), Jy(-) denotes a Bessel func-
tion of the first kind and zeroth order, and k., = /k? — k2 (Im(k.) > 0)
denotes the z-component of the wave vector k. In the following, it is as-
sumed that a source at z = z’ is embedded in layer m of a multilayered
profile (see [4, Fig. 2.4.1] or [5, Fig. 1] as a reference). Since the positive
z-axis in this case points upwards, layer m is mathematically constrained to
be within the limits d,,,—1 < 2’ < d,,. According to [4], the z variation an
upgoing and downgoing wave can be expressed as F'(z,z’). The field inside
layer m due to a source in layer m can be divided into two parts, representing
an upgoing wave (F,) and a downgoing wave (F_), which can be expressed
as

F.(z,2)= A} [eikm(z_z/) + Rm,mﬂeikngdm_z_zl)} 2> 7, (A.2.6)

F (z,2)= A, [e*ikmz(%z’) + Ij?m,m,leikmz(”z/”dm*l)} z< 2, (A27)
where Rmym_i'_]_ and }N%m’m_l represent generalized reflection coefficients for
waves emanating from layer m into layer m + 1 and m — 1, respectively, d,,
denotes the z-coordinate of the interface separating medium m and m + 1,
and k,,, is used to indicate the z-component of the wave vector k,, of layer
m. In addition to the adjacent layers m + 1 and m — 1, they also include
the effect of the subsurface reflections caused by the layers above m + 1 and
below m — 1. The amplitudes in (A.2.6) and (A.2.7) are equal to

A = N, [1 n Rm,m,lemmz(’*dm*)] (A.2.8)
A = M, [1 + Rm,mﬂe?i’“mz(dm*’q , (A.2.9)

in which
My = [1 = Ryt Ry g1 €2 (@m=dm-1)] =1, (A.2.10)

In a similar fashion, the field variation in layer m + 1 and m — 1 can be
written as

Fga(z, z/) = A:_n+1 [eik(’”*l)Z(z_dm) + Rm-i—l m+2eik<m+1>z(2dm+1_z_dm)
(A.2.11)
Fra(z,2) = A, {eik(m_l)Z(dm*rZ) + Rmfl,mﬂeik(’"_l)z(Hdmfligdm*ﬂ] )

(A.2.12)
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where

; !
P Tyt Ay (=)
m+1 ~
1-— Rm+1,mRm+l,m+26

T A= et —dno)
Aner = R L (A2.14)
]' - Rm—l’mRm_Lm_2€21k(mfl)z(dnb—lfdm,2)

(A.2.13)

26k (4 1)z (dm+1—dm)

The expressions T, ;p+1 and Ry, 41, as well as 1), ,,—1 and R,,_1 ,, represent
transmission and reflection coefficients between layer m and the adjacent
layers m 4+ 1 and m — 1 only. The field variations within the layers above
m~+ 1 or below m — 1 are obtained through a recursive approach. The above
expressions for F'(z, 2’) may be introduced into (A.2.5), and when combined
with (A.2.4), the z-component of the electric field directed along the antenna
can be expressed as

—WH ‘ ’ ! 2 82 - kﬂ /
E.(a,z) = ke ), dz'I(2") (k" + @) i dk‘pKJo(kpa)F(z,z ). (A.2.15)

A thing to notice is that when z = 0,
3

0? o k *
(k2+(922)/0 dkpﬁjo(kpa)F(zvzl) :/0 dkpkp, Jo(kpa)F(z,2") (A.2.16)

goes to infinity. The reason for this is that when z = 0, it indicates wave
propogating in p direction and k, = 0. In this case, the integrand in (A.2.4)
has the following closed form solution [4, pp. 118§]

92 kR kR

(k* + @) TR [(1 —ikR)(2R? — 3a®) + (kaR)?. (A.2.17)

The right hand side of (A.2.17) represents the core of Pocklington’s integral
equation [3].

A.2.3 Calculating the current by the method of moments

Equation (A.2.4) is the electric field integral equation with I(z") as the un-
known current distribution and the electric field as the known excitation
function. The current may be determined by the application of boundary
conditions on the surface of the antenna. For a perfect co