
Propagation of Electromagnetic 
Signal along a Metal Well in an 
Inhomogeneous Medium

Thesis for the degree of Philosophiae Doctor

Trondheim, Januray 2013

Norwegian University of Science and Technology
Faculty of Information Technology, Mathematics  
and Electrical Engineering
Department of Electrical Power Engineering

Yingkang Wei



NTNU
Norwegian University of Science and Technology

Thesis for the degree of Philosophiae Doctor

Faculty of Information Technology, Mathematics and Electrical Engineering
Department of Electrical Power Engineering

© Yingkang Wei

ISBN 978-82-471-4096-3 (printed ver.)
ISBN 978-82-471-4097-0 (electronic ver.)
ISSN 1503-8181 

Doctoral theses at NTNU, 2013:3

Printed by NTNU-trykk



Abstract

In this thesis, the problem of deriving the current distribution along a metal
casing surrounded by a conductive earth is studied. The metal casing can
be taken as a long and thin metal wire antenna in this case. The current
distribution is unknown and can be decomposed into tiny current elements
along the wire antenna. The total field from the wire antenna can be achieved
by using the principle of linear superposition of the fields generated by each
of the current element. The solution of the scalar wave equation for a point
source is well known to be the Green’s function. For a tiny vector source of
current element, the solution of the scalar wave equation can be achieved by
a dyadic Green’s function. By taking advantage of the boundary conditons
at the metal surface, an electric field integral equation can be built up which
can be solved by the method of moments.

A real composition of the conductive earth is complicated and usually is
modelled as a planarly layered isotropic medium, where the eletromagnetic
properties of the medium, μ and ε vary only in one direction, e.g. the z
direction. The advantage of using such a simple model is that the vector wave
equations can be reduced to two scalar wave equations. The electromagnetic
wave represented by these two scalar wave equations are two types of waves,
namely, the transverse electric (TE) waves and the transverse magnetic (TM)
waves, which are decoupled from each other. The electromagentic field at an
arbitrary point in the medium can be accurately derived by combining the
fields propagating directly from the source with the fields reflected by the
interfaces between layers, which has been well developed in the case of plane
waves. However, the electromagnetic field generated from a dipole source
goes out not in the form of plane wave, but spherical waves. In order to
decompose it into a combination of plane waves, the Weyl’s identity (in a
Cartesian coordinate system) and the Sommerfeld identity (in a cylindrical
coordinate system) are applied to the dyadic Green’s function mentioned
above.

The thesis starts with a short review of different electromagnetic technolo-
gies applied in the oil and gas industry today. Then, Chapter 2 considers a
particular model where the wire antenna is assumed to be perpendicular to
the interfaces between the layers. Due to the inherent geometrical symmetry
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of this particular model, the source elements along the antenna are treated
as vertical electric dipoles (VEDs). As a result, the wave equations are in
this case reduced to one dimensional wave equations. Chapter 3 develops
the model further by assuming that the wire antenna is at an offset angle
compared to a line normal to each interface. The source elements are in this
case modelled as a combination of both a vertical and a horizontal electric
dipole (HED). The fields will then propagate in both TM and TE mode, and
these are then treated separately.

In a geophysical problem where the medium is highly conductive and the
operating frequency is extremely low, it is usually quite difficult to calculate
the Sommerfeld identity accurately by traditional methods. Hence, the er-
ror in the calculation result of the Sommerfeld identity is shown to have a
significant impact on the derived current distribution. Chapter 4 presents
a new method to evaluate the Sommerfeld identity by using a combination
of numerical and analytical methods. The new method gives much more
accurate results with no extra cost in computational complexity. Chapter
5 introduces how to use the new method to enhance previous analysed case
studies in Chapter 2 and Chapter 3. In this chapter, the results given by the
numerical method are compared to the data achieved from an experiment.
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Introduction

1.1 The fast developing technology for oil and
gas industry

The rapid increase in world oil consumption promotes concern about oil re-
serves and supply capability. Many new methods and technologies have been
developed to improve production efficiency, extend the life of old wells, and
explore for more new reserves. As an example, horizontal well drilling tech-
nology can exploit thin oil-rim reservoirs, avoid problems such as water/gas
coning, and extend the life of the wells by means of multiple drain holes
[1]. According to data from the National Petroleum Council (NPC) of U.S.,
many breakthroughs and thousands of incremental advances in exploration
and production have increased oil recovery levels from less than 10% (of the
initial volume in place) to more than 70% in some cases [2].

Another significant breakthrough in production technologies during re-
cent years is a technology known as smart wells or intelligent well systems.
The smart well system allows real-time information from downhole and flow
control by using permanently installed sensors and valves. With the help
of this real-time information, the operators are able to optimize control to
the drilling and production [3]. As an example, it enables operators to ac-
tively monitor, remotely choke or shut selected zones with poor performance
without costly intervention.

Before the emergence of smart well systems, the only available method
to obtain downhole information was through the use of intervention-based
logging techniques. Interventions can be conducted periodically to measure
a variety of parameters, such as pressure, temperature and flow. Although it
provides valuable information, the operation is very expensive to be done fre-
quently, especially in the sub-sea environment. The lack of timely data often
compromise the ability of the operator to optimize production [4]. Compared
to an intervention based approach, the use of smart well systems has sev-
eral important advantages. (i), it can improve information and knowledge
management, reduce the frequency of intervention and even realize auto-
matic exploration and production. (ii), it can increase net present value by
the recovery of hydrocarbons from reservoirs. (iii), it can reduce capital ex-

3



4

penditures by decreasing the number of wells drilled and that in turn will
reduce the number of surface facilities required. In 2006, some oil and gas
fields in Saudi Arabia were equipped with experimental smart well technol-
ogy and their performance have been compared to conventional vertical and
horizontal wells that were deployed in the same field. It was reported that
48 smart wells could achieve the desired production target of 66 conventional
horizontal wells or 150 vertical wells [5].

Today it is widely recognized that this technology can not only increase
operating efficiency greatly, but also save enormous expenses and risks asso-
ciated with the execution of those processes. This is accomplished by provid-
ing a better understanding of downhole processes and by helping reconcile
short-term production optimization approachs with long-term objectives.

Since the first smart well system was installed in August 1997 at Saga’s
Snorre Tension Leg Platform in the North Sea, over 300 such systems have
been installed globally. These installations range from mature land assets
to deep water off the coast of Brazil. However, the adoption of smart well
systems has not been without challenges. The most challenging problem
is the harsh wellbore environment of high temperature, high pressure and
the limited space. Since the instruments are permanently-installed downhole
and inaccessible once deployed, the value of the system is directly linked to
the life of the system devices. Many early systems were rendered inoperable
due to their low reliability. For example, high temperature electronic devices,
such as the Field-Effect Transistors (FET) and capacitors which are available
on the market today can at most work in a range of 175 − 2000C. The de-
rated performance of these devices at these temperatures make them barely
sufficient for long term downhole operation. New developments in the field
of high temperature devices will enable new technologies for oil and gas
exploration and production in the future [6, 7, 8].

Another challenging problem is how to transmit data between downhole
sensors and surface facilities to obtain real-time data and realize optimized
production. Until now, there have been a few different methods developed
in data communication for this purpose. For example, BJ Services Com-
pany has developed a wired communication system by using coaxial cable or
fiber optic cable. Unfortunately, these systems have had limited reliability
because of the strong impact of oil or gas fluid on the components deployed.
Other wireless methods have also been developed, such as pressure pulses
that propagate in the flow of the production fluid, or using an acoustic signal
that can propagate through the earth as well as along the well. According to
a report by Paul Tubel, the acoustic system they tested could communicate
over a length of 500 feet [9, 10].

Another attractive method of realizing wireless communication is to use
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electromagnetic (EM) signals. The main challenge of this method is that
the earth is highly conductive, which causes the EM signal to attenuate
very rapidly with increasing distance. In addition, the transmission power
and the size of antenna are all limited in a downhole environment. These
challenges limit the effective communication distance and the data rate of
the transmitted signals. Compared to the earth, the metal well is much
more conductive and can be taken as the core of a coaxial transmission line,
on which, the EM wave can propagate much easier. This method has been
studied much, especially in the field of measurement while drilling (MWD)
system . However this topic still benefit from further study as most of the
early research has been based on simple models, such as assuming the earth
to be a homogeneous medium. In the following section, a brief review of
this earlier research and applications of EM technologies in the oil and gas
industry is presented.

1.2 The application of EM technology in oil and
gas industry

EM technology has been applied in oil and gas industry in many aspects,
such as logging systems, borehole antennas, MWD and controlled source
electromagnetic (CSEM) surveying, also known as seabed logging (SBL).
The application of EM technology in the oil and gas industry can be traced
back to Conrad Schlumberger, who tried to measure the resistivity of the
earth by using EM technology in a well logging system in 1927 [11]. The
research on high-frequency EM logging technology started in the 1960s [12]
and in the 1980s, a borehole radar operating at 1.1GHz appeared [13, 14, 15].
However, the detection depth was too shallow for such a high frequency and a
system that worked at lower frequency, 25MHz, was proposed by Blenkinsop
and others in 1986 [16, 17]. In the 1990s, multi-frequency electromagnetic
logging with an ultra-broadband antenna was developed [18].

For an electronic system, the load determines how much power can be
delivered. For example, in a radiation system, the source impedance should
be matched to the antenna to minimize reflection signal. In the 1960s, King
and others addressed this issue by looking into the input impedance char-
acteristics of a dipole antenna when immersed in a homogeneous isotropic
conductive medium [19, 20]. In particular, King studied the relationship
between the antenna input admittance and the properties of a conductive
medium reflected through the parameter σ/(ωεrε0), where σ is the conduc-
tivity of the medium, ω is the operating frequency (in rad/s), εr is the relative



6

permittivity of the medium, and ε0 is the vacuum permittivity. In Fig.1.1 and
Fig. 1.2, the input conductance and susceptance of an antenna are plotted as
a function of the parameter σ/(ωεrε0) and the antenna electrical length βh,
where h is the physical antenna length. β = 2π/λ, and λ is the wavelength of
the signal in the surrounding medium. In [19], salt water and a frequency of
114MHz was applied, in which case the medium wavelength was reported to
be λ = 29.77cm. From Fig.1.2, it can be observed that the susceptance of the
input admittance becomes negative when the parameter σ/(ωεrε0) becomes
large and βh > 1. In addition, the susceptance approaches a constant nega-
tive value as βh increases. Since the parameter σ/(ωεrε0) becomes very large
at low frequencies and in a highly conductive medium, it can be concluded
that the input impedance of an antenna immersed in a conductive medium
usually is inductive at low frequencies.

Figure 1.1: Driving point conductance vs antenna length [19, Fig.7].

In the beginning of this century, the application of CSEM technique for oil
and gas industry became popular in offshore applications. This application
can be traced back to J.R.Wait who studied the EM fields of a phased line
current over a layered conducting half-space [21, 22]. In using CSEM, a
cable with powerful low frequency current flowing on it is immersed in the
sea. The EM field induced by the wire current propagates in the earth
and is reflected at the interfaces of discontinuous electrical properties. Since
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Figure 1.2: Driving point susceptance vs antenna length [19, Fig.8].

Figure 1.3: The SBL, this figure is from lecture note for mathematical geo-
physics given by Lasse Amundsen.
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hydrocarbons in the subsurface are significantely more resistive than non-
hydrocarbon-bearing layers such as shale or sandstone which contain salt
water, they provide measureable reflections. Hydrocarbons can therefore be
detected by a reflected signal at the seabed in a range of distances from the
source [23, 24, 25, 26].

As mentioned above, the propagation of EM waves along the drill rod
or metal casing has been a topic of discussion in oil and gas industry for
a long time, driven largely by MWD applications. J. R. Wait studied this
problem theoretically with a model where a perfectly conductive metal rod
was surrounded by a homogeneous earth rock of a very low conductivity,
σ = 10−6S/m, which is shown in Fig.1.5. Using this highly idealized model,
he concluded that the current attenuation along the drill rod would be at
least as great as plane waves in the surrounding medium [27]. He also pointed
out that an optimum frequency could be found for a fixed depth, as shown
in Fig.1.4. However, in real earth situations, the conductivity of the earth
rock is usually much higher than the value he adopted and thus his optimum
frequency could be too low to be observed.

In 1987, DeGauque and Grudzinski studied a more advanced model where
the drill rod was assumed to have a finite conductivity and the surrounding
medium was assumed to be sea water with a much higher conductivity of σ =
0.5S/m. Their model is shown in Fig.1.5. In their research, the metal drill
rod was taken as a long thin wire antenna and the current distribution along
it was solved by applying the well known Pocklington’s integral equation.
The influence of the finite conductivity of the drill rod was characterized by
assigning an internal impedance and then accounting for it with boundary
conditions. The Pocklington’s integral equation was discretized and solved
by the method of moments. The authors found that the drill rod internal
impedance played a major role in attenuating the signal and for the operating
frequencies below a few Hertz, the attenuation did not vary much yielding
an optimum frequency for maximum data rate around 3Hz [29].

In 1993, Xia and Chen developed a model where the drill rod could not
only be vertical, but could be in an arbitrary direction in a homogeneous
medium [30]. They built up an electric field integral equation (EFIE) for
this model, which could handle more complicated geometries than Pockling-
ton’s integral equation. Not surprisingly, their results matched those previ-
ously published by DeGauque and Grudzinski. The authors claimed (without
proof) that a layered earth consideration might be estimated by using the
most conductive case for the computation, and they also pointed out that
detections should be carried out near the well head.

More recently (2009), Yang and others studied a model where a metal well
was assumed to be vertically placed in a horizontally stratified earth [31]. At
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Figure 1.4: The total current on the drill rod at the surface for a source
toroid at depth d, when σ = 10−3S/m [28, Fig.1].

Figure 1.5: The models studied by Wait, Degauque and Xia.
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the same time, the author of this thesis also studied a similar model and
submitted a paper to the Applied Computational Electromagnetics Society
(ACES) 2010 conference. Both of these two studies considered the reflections
of the EM field from the interfaces of the layers and accounted for them in the
EFIE developed for the model. To do this, a Sommerfeld identity was applied
to transform the spherical wave due to a point source into a summation of
plane waves, which was in the form of Fourier transform. For the plane
waves, the field in a horizontally layered medium can be evaulated accurately
by summing up the direct propagation from the source and the reflections
at the interfaces between the layers. Yang claimed in his work that the
discretization step didn’t influence the final results. However, the numerical
results given in this thesis show that the discretization step influences the
accuracy of the Sommerfeld integration, so a special mathematical method
has been developed to solve this problem.

Figure 1.6: The models studied in this thesis.

There are other ways to approach this interesting problem other than the
application of the EFIE method. For example, in 2000, Trofimenkoff and
others developed a method which used an electric circuit network model to
study the current distribution along the metal well casing. They discretized
the metal well and the surrounding medium into small elements which was
then modeled into circuit elements of resistors, inductors and capacitors [32].
The advantage of this method is speed, as the computation is much faster
than using the EFIE method. Their results compare favorably with those
published before by DeGauque and Grudzinski, and those by Xia and Chen.
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Today, with the development of smart well systems, the communication
between surface and downhole instruments becomes an urgent need. Using
an EM signal that propagates along the metal well casing is one of the more
promising solutions. In this case, it is necessary to study the attenuation of
the signal along the surface of the metal casing. This then will provide a
theoretical basis for the assessment of the channel capacity. This problem is
closely related to the studies of the current distribution along the drill rod in
an MWD system. Until now, most of the models applied to solve this problem
have assumed that the earth is a homogeneous medium. However, in the
most recent paper published by Yang, a layered medium was considered and
a metal well was assumed to be placed along a line normal to the interfaces.
In reality, the well can penetrate the layers at an arbitrary angle and how
this will influence the current distribution is an interesting problem that (to
our knowledge) has never been studied. This thesis presents new models
and special mathematical methods to provide a solution to this problem. In
the following, a brief introduction to methods used to solve EM problems is
presented.

1.3 Methods in solving EM problems

Maxwell equations are a set of coupled first-order differential equations, which
are almost always too complicated to be solved exactly in practical problems.
The methods for solving Maxwell equations can be classified into experimen-
tal, analytical and numerical approaches. Experimental methods are very
important and often play a key roll in practical problems. However, they
are often very expensive and almost all experiments can only approximate
the real situation. What’s more, the experiment should be done based on a
theoretical model and the experiment data needs to be studied and compared
to the theoretical analysis for interpretation.

The analytical solutions are always based on highly idealized models and
can only be applied to some very simple problems. The most commonly
used analytical methods are image method and the separation of variables
[33, Ch.2,3]. Under special conditions, asymptotic methods could be ap-
plied and approximate solutions are available, which can also be classified as
analytical methods [34, Ch.2],[35]. With the development of computer tech-
nology, more and more problems can be solved by numerical methods. The
most commonly used numerical methods are the finite difference time domain
method (FDTD) [36], the finite element method (FEM) and the methods of
moments (MOM).

The FDTD algorithm can be traced back to Yee’s paper in 1966 and the
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acronym was given by Taflove in 1980 [37, 38]. Application of FDTD usually
involves three steps: (i), divide the solution region into a grid of nodes.
(ii), the given differential equations can be discretized into finite difference
equations by using Taylor’s theorem, in which case, the derivatives can be
approximated by the following equations:

f ′(x0) ≈ f(x0 +Δx)− f(x0)

Δx
, (1.3.1a)

f ′′(x0) ≈ f(x0 +Δx)− 2f(x0) + f(x0 −Δx)

(Δx)2
. (1.3.1b)

(iii), solve the difference equations subject to the prescribed boundary condi-
tions [39, Ch.3]. FDTD usually works in time domain and it can present tran-
sient responses accurately. Similar to FDTD, the integral form of Maxwell
equations can also be discretized into finite difference equations, which was
developed by Weiland independently and is called the finite integration tech-
nique (FIT) [40, 41, 42].

FEM methods are based on the theory of variational method, in which
a functional is first derived and trial functions are then used to find the
solution in order to minimize or maximize the functional. For example, for
the differential equation

∂F

∂u
− ∂

∂x
(
∂F

∂ux

)− ∂

∂y
(
∂F

∂uy

) = 0, (1.3.2)

a functional integral equation I(u) can be constructed as

I(u(x, y)) =

∫
dxdyF

(
x, y, u(x, y), ux, uy

)
. (1.3.3)

The function u(x, y) which minimize I(u) will also be a valid solution to the
differential equation in (1.3.2). It can be approximated by a series of trial
functions

u =
N∑

m=1

amgm, (1.3.4)

for which the Rayleigh-Ritz procedure is applied to find the coefficients,

∂I

∂am
= 0, m = 1, 2, · · · , N (1.3.5)

If the basis functions gm are global over the solution region, it is classified
as a Rayleigh-Ritz method. If they are piecewise for each local region, the
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method is considered a FEM. The FEM is usually more powerful and versatile
compared to the Rayleigh-Ritz method.

MOM is a sub-method of the weighted residual method. For a linear
operation

Lu = f, (1.3.6)

the unknown function can be expanded by a series of trial functions (basis
functions) gm as shown in (1.3.4). For a limited number of basis functions,
the expanded function usually can not provide an exact solution for u, but
only an approximation to it. There will be an error (residual) between them:

R =
∑
m

L 〈u, gm〉 〈gm − f, (1.3.7)

where <> is inner product, f > denotes a vector and < f is its transpose.
Weight funtions w are orthogonal to the residual

〈w,R〉 = 0. (1.3.8)

For different weight functions, there are (at least) five sub methods

1. Collocation method
2. Subdomain method
3. Least square method
4. Galerkin method
5. Method of moments

Highlighting the differences in these five methods, the collocation method
use Dirac delta function δ as weight function, which forces the residual to be
zero at specific points. The response to the Dirac delta source is the Green’s
function, as shown in the following equation

LG(r, r′) = δ(r− r′). (1.3.9)

By using convolution theory, the equation can be transformed into the fol-
lowing equation

L 〈G(r, r′), f(r′)〉 = 〈δ(r− r′), f(r′)〉 = f(r), (1.3.10)

which indicates the unknown function u is equal to

u(r) =< G(r, r′), f(r′) > (1.3.11)

The subdomain method can be considered as a modification of the collo-
cation method, which forces the weighted residual to be zero not only at fixed
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points, but over various subsections. The least square method uses the resid-
ual function R as the weight function. In this case, to find the zero points
of (1.3.7), the minimum of the equation by the derivatives with respect to
the unknown parameters is computed. The Galerkin method uses the basis
functions as the weight functions and can be viewed as a modification of the
least square method. By contrast, the last method, the method of moments,
weight functions are chosen from the family of polynomials:

Wi = xi. (1.3.12)

If the basis functions for the approximation are the same polynomials, then
the method of moments is identical to the Galerkin method. Sometimes, the
meaning of MOM is equivalent to the meaning of weighted residual method
and the other four sub methods may also be referred to as MOM.

Comparing these three methods, FDTD and FEM are partial differential
equations (PDE) methods while one is in time domain and the other is in
frequency domain. Usually, both of them use volume meshing so that the
number of unknowns increases with the cube of the linear meshing density.
For these two methods, memory and solution time scale proportionally with
the number of unknowns. MOM is an integral equation method which uses
surface mesh. It imposes certain boundary conditions to the structure in its
solution technique and is not good for complex 3D volumes and non-metallic
surfaces. However, for solving surface current problems of 1D and 2D, MOM
is a good choice.

Today, there are dozens of software packages developed for solving EM
problems based on the three methods introduced above. However, most
of them are not appropriate for solving geophysical problems, where the
operating frequencies are usually very low and the earth composition is very
complicated. In addition to that, the model shown in Fig.1.6 is very difficult
to mesh since it is extremely large in one dimension but extremely small in
the other dimension. For this kind of problem, the best method is to build a
special EFIE, which is then solved by the MOM.

1.4 Contributions of the included papers

This thesis consists of four papers, which are numbered with the capital
letters A, B, C and D. In the following, a summary of the included papers is
presented.
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1.4.1 Paper A

Y. Wei, B. Holter, I. Simonsen and L. Norum, “Current Distribution Along
a Long Thin Wire Antenna Vertically Placed in a Horizontally Layered
Medium”, in Proc. Applied Computational Electromagnetic Symposium
Conference, Tampere, Finland, April 2010.

To use the metal well casing to transmit EM signal between downhole and
surface has been an interesting topic in oil and gas industry, especially for
MWD application. Many people have contributed to this topic as introduced
above. However, most of them modelled the earth to be a homogeneous
medium (to the author’s knowledge in 2009). This paper tries to make an
improvement by modelling the earth to be a horizontally layered medium
and each layer can be characterized by its conductivity independently. The
metal well is then treated as a long thin wire antenna and is assumed to
be perpendicular to the interfaces between different layers. Geometrically,
xy-plane is defined to be parallel to the interfaces and the wire antenna is on
z-axis.

The EM field induced by a delta gap source will cause an incident current
in the wire antenna and this incident current will induce a scattered field
again. The electric field at a point r = (x, y, z) in space induced by the
current element I(z′)dz′ẑ at point r′ = (0, 0, z′) is equal to

E(r) = iωμ(Ī+
∇∇
k2

) · I(z′)dz′ẑ eik|r−r
′|

4π|r− r′| , (1.4.1)

where k is the wavenumber in the vicinity of the source point and ∇ is the
vector differential operator. The electric field at point r induced by the total
wire antenna can be evaluated by doing integration

E(r) = iωμ

∫
�

dz′(Ī+
∇∇
k2

) · I(z′)ẑ eik|r−r
′|

4π|r− r′| . (1.4.2)

By taking advantage of the boundary condition at the surface of the wire
antenna, an EFIE is built for the unknown current I(z′). For a model of
homogeneous medium, the EFIE can be transformed into the well known
Pocklington’s integral equation, which can be solved by MOM [43, Ch.8].

When a horizontally layered medium is considered, the scalar Green’s
function in (1.4.2) needs to be expanded into an integration of plane waves
first, which can be done by applying the Sommerfeld identity [34, Eq.2.2.30]

eik|r−r
′|

|r− r′| = i

∫ ∞

0

dkρ
kρ
kz

J0(kρρ)e
ikz |z−z′|, (1.4.3)
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in which kρ is the wavenumber in the radial direction and kz =
√

k2 − k2
ρ.

J0() is the 0th order Bessel function of the first kind.
The propagation of plane waves in a horizontally layered medium can be

evaluated accurately by calculating the reflections at the interfaces between
different layeres. When there are multiple layers, the multi-reflections from
different layeres can be calculated by a recursive equation, which is defined as
the generalized reflection coefficient [34, Ch.2.1]. The propagation element
eikz |z−z

′| in (1.4.3) will be changed into the following form

A[eikz(z−z
′) + R̃e−ikz(z−z

′)] (1.4.4)

where R̃ is the generalized reflection coefficient.
In the paper, this method is applied for the homogeneous models pub-

lished by others and also compared to a FIT program by using a simple
homogeneous model. These tests show that the method works quite well
for the homogeneous models which are special cases of the layered medium
model. Finally, a horizontally layered medium model is used and the numer-
ical results show that the attenuation of EM field in different layers depends
on the conductivities of the independent layers. The distribution of the cur-
rent can not be estimated by only using the most conductive case as claimed
by Xia and Chen [30].

1.4.2 Paper B

Y. Wei, B. Holter, I. Simonsen and L. Norum, “Current Distribution Along
a Long Thin Wire Antenna Placed in a Horizontally Layered Medium”, in
Proc. Conference on Electromagnetic Field Computation, Houston, U.S.,
May 2010.

In the first paper, the metal well casing is assumed to be vertically placed
in the layered earth. With the development of drilling techniques, such as
horizontal well tochnology, the metal well can penetrate the earth layer at an
arbitrary angle. In this case, a question is how much the tilt angle between
the well and the medium will influence the current distribution. To the
author’s knowledge, a solution to this problem has never been published.

This paper tries to improve the model presented in Paper A by allowing
an arbitrary tilt angle between the wire antenna and the interface surface.
In this case, xy-plane is still assumed to be parallel to the interfaces and
the wire antenna is assumed to lie in xz-plane. The angle between the wire
antenna and z-axis is θ, 0 ≤ θ < π/2. The model is not symmetric with
respect to the z-axis and therefore can not be simplified to a 1-D model.
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However, it is symmetric to the xz-plane and therefore can be treated as a
2-D model.

As presented in (1.4.2), an EFIE can be constructed for the unknown
current along the wire antenna. In this case, the current element is I(z′)d��̂
in stead of I(z′)dz′ẑ. Since there is a tilt angle θ between the wire antenna
and the z-axis, the current element I(z′)d��̂ can be decoupled into a vertical
current element I(z′)d� cos θẑ and a horizontal current element I(z′)d� sin θx̂,
which can be treated as a vertical electric dipole (VED) and a horizontal
electric dipole (HED), respectively. The electric field due to the current
element I(z′)d��̂ can be evaluated by the superposition of the fields generated
by the VED and the HED.

According to the geometry used in this paper, the EM field due to a
VED is only in the transverse magnetic (TM) mode in z direction, which can
be decoupled into two components pointing in z direction and x direction,
denoted as ETM

z,VED and ETM
x,VED respectively. The EM field due to a HED is

also decoupled into components in z and x direction but they are different
in mode. The component in z direction is only in TM mode, denoted as
ETM

z,HED. The components in x direction are in both TM and transverse electric
(TE) mode, denoted by ETM

x,HED and ETE
x,HED. In this way, the integrand of

the EFIE includes five electric field components which should be calculated
independently.

For a homogeneous medium model, the tilt angle will not influence the
result and so it can be taken as a reference for validation. This method is
then applied to the homogeneous models published and compared to other
method such as FIT. The results presented by this method agrees to the
published results quite well. Then a layered model is applied and the results
show that the stability of calculation depends on the discretization size of
the wire antenna, which is studied in paper C of this thesis.

1.4.3 Paper C

Y. Wei, B. Holter, I. Simonsen and L. Norum, “Calculation of Sommerfeld
Integrals for Conductive Media at Low Frequencies”, IEEE International
Workshop on Electromagnetics, Taipei, Taiwan, 2011.

In Paper A and B, an EFIE is constructed for the unknown current distri-
bution which is then calculated by MOM. Since for a homogeneous case, the
EFIE can be simplified into the well known Pocklington’s integral equation,
which has an analytical equation in the integral, the Pocklington’s integral
equation can be used as a reference to validate the calculation of the EFIE.
In using MOM, the current along the wire antenna is discretized into small
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evenly distributed elements, I(z′)d�. When the size of the elements is small,
the current in each element can be assumed to be a constant. The EFIE is
then transformed into a series of linear equations

G(z, z′)I(z′) = b(z), (1.4.5)

Theoretically, the smaller the size of the elements, the more accurate the re-
sult will be. However, comparison to the results of the Pocklington’s integral
equation shows that there is a big error when the size is small. This paper
addresses the reason of this error and presents a mathematical method for
solving it.

By carefully comparing the calculations of the two methods, small differ-
ences are found in the two coefficient matrixes, especially the sub-diagonal el-
ements. Numerical tests prove that even though the differences are tiny, they
will introduce a significant difference in the calculation of the EFIE. In other
words, the coefficient matrix is ill conditioned. Further study shows that
the difference comes from the calculation error of the Sommerfeld identity,
which is an integral of an oscillating function. To evaluate such an integral,
traditionally, one can use asymptotic methods or numerical methods. The
asymptotic methods include method of stationary phase and method of steep-
est descent [34, Ch2]. The claimed best numerical method for the integration
of an oscillating function is the Integration-Summation-Extrapolation (ISE)
method [44]. However, for geophysical problems, which often operates in a
highly conductive medium and at very low frequency, all of these methods
present difficulties. The asymptotic method does not work for the near field
and the numerical method is computationally intense with large convergence
ranges.

To overcome these difficulties, a new asymptotic split method is developed
to calculate the Sommerfeld identity for the special geophysical condition.
The concept is that if an asymptotic equation is subtracted from the integral
kernel, the new equation will converge much faster than the original function,
which makes it much easier to be calculated numerically. The integral of the
additional asymptotic equation can be evaluated by a Laplace transform,
which yields an analytical solution. This method reduces the error compared
to previous methods at least 50 times for the example presented in the paper
without increasing computational difficulties for the calculations.

1.4.4 Paper D

Y. Wei, B. Holter, I. Simonsen and L. Norum, “Efficient and Accurate Nu-
merical Evaluation of Sommerfeld Integrals for Conductive Media at Low
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Frequencies”, proc. Geophysics, submitted.

Based on the study in Paper A, B and C, this paper presents a com-
plete dissertation of applying the metal well casing as a medium to transmit
EM signals between downhole and surface. Theoretically, by using Maxwell
equations, the scattered electric field E(s) related to a current density can be
represented by a Helmholtz equation,

∇×∇× E(s)(r, ω)− k2E(s)(r, ω) = iωμJ(r, ω), (1.4.6)

the solution to (1.4.6) can be expressed as

E(s)(r, ω) = iωμ

∫
dr3G(r, r′)J(r′, ω), (1.4.7)

where G(r, r′) is the dyadic Green’s function in (1.4.1). For the longitudinal
component of the electric field on the surface of the well casing, E(i)(r, ω) +
E(s)(r, ω) = 0, if the metal of the well casing is considered a perfect electric
conductor. With this result, an EFIE for the unknown current I(r) can be
built, ∫ �

0

dz′G(r, r′)I(r′) = i4πεωE(i)(r). (1.4.8)

For a homogeneous medium, the EFIE can be simplified to the wellknown
Pocklington’s integral equation, which has an analytic equation in the inte-
gral and can be calculated by MOM directly. When the surrouding medium
is a horizontally layered medium, the fields induced from each of the point
sources must first be expanded into an integral of plane waves by the Som-
merfeld identity. The field in the surrounding medium can be evaluated by
carefully considering the transmission and reflection of the plane waves at
interfaces between layers.

It is obvious that the Pocklington’s integral equation is a special case of
the latter and both of them should achieve the same results for a homoge-
neous earth. Therefore, the Pocklington’s integral equation can be used as
a reference to the calculation of the latter. By comparing the calculation
of the two methods, the difficulty in calculating the Sommerfeld identity in
the latter is found and a new asymptotic split method is introduced for low
operating frequencies and highly conductive medium case. This method is
applied to a homogenous model and proved that it can improve the calcula-
tion accuracy greatly without adding extra calculation complexity. It is also
applied to a model where the wire antenna is assumed to be vertically placed
in a horizontally layered medium. The numerical results are compared to
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those achieved by using electric network method and show that they agree
to each other quite well.

The asymptotic split method is applied to models where the wire antenna
is assumed to be arbitrarily placed in a horizontally layered model, as studied
in Paper B. Numerical results for this model are presented in Appendix in
this thesis. In particular, the effects of different tilt angles between the wire
antenna and the z-axis are studied and compared.

In 2010, an experiment was carried out by WINS 1 and SINTEF 2 to
test signal transmission along a metal well casing. With the permission
authorized by them, the experiment data can be applied to test the numerical
results given by the method presented in this paper. The comparison of the
numerical results to the experiment data shows that they agree to each other
quite well.

1.4.5 Supplement

Just as I was about to finish my thesis, I was informed through a review
process that a mathematical method similar to that introduced in Paper
D had been published by others. In the following, a brief review on the
published papers and a comparison to my work are presented.

In 1986, D. R. Jackson and N. G. Alexopoulos published a paper in
which they introduced a method for the evaluation of the electric field from a
Hertzian dipole in a layered geometry [45]. They started from the calculation
of the Hertzian potential

Π =

∫ ∞

0

f(λ)J0(λr)dλ, (1.4.9)

in which the integrand is equal to

f(λ) =
2

De(λ)

λ

u1

[
1

μr

u1 cosh u1(B − z′) + u sinh u1(B − z′)
]
sinh u1z,

(1.4.10)
where λ is denoted as kρ and u1 is denoted as kz in this thesis. B is the
coordinate of the interface. The author pointed out that the integral was
nonconvergent when the observation point z = z′. To overcome this problem,

1WINS is the abbreviation of a norwegian company, Wireless Instrumentation Systems
AS. This company develops technology and solutions for down-hole energy generation,
instrumentation and wireless communication.

2SINTEF is the largest independent research organisation in Scandinavia, which devel-
ops technology solutions that are brought into practical use.
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the hyperbolic functions could be approximated by [45, (11)]

sinh(u1a) ≈ 1

2
e+λa. (1.4.11)

as λ → ∞. Then an asymptotic function f0(λ) could be composed for the
integrand,

f0(λ) =
N∑

n=1

an
k0

e−λξn , (1.4.12)

where N depended on the number of layers. This asymptotic function was
then subtracted and added from the original integrand f(λ). The integration
on the added term could be calculated in a closed form and the integration
on the term f(λ)− f0(λ) could be evaluated numerically.

Compared to [45], we developed the method in a similar way by adding
and subtracting an asymptotic function to the original integrands. The inte-
gration of the asymptotic function can then be calculated analytically and the
integration of the tail term can be evaluated numerically. When we developed
this method, we were focusing on a special low frequency and high conductive
problem, based on which the asymptotic equation was deduced. Unlike their
work, we started from dyadic Green’s function, not from Hertzian potential
ant when we apply this method, we only use it on the points near the source
point. For the point z = z′, the field is evaluated directly by Pocklington’s
integral equation.

In 2006, Ergun Simsek, QingHuo Liu and BaoJun Wei published a paper
in which they presented a method to evaluate mulitlayered medium Green’s
functions for general electric and magnetic sources [46]. In their method,
a special subtraction procedure was applied to each term of the Sommer-
feld integrands to make them rapidly decreasing and the contribution of the
subtracted terms are calculated analytically.

I think the main difference between their work and our work is the project
and procedure of finding the method. In our case, we are studying the current
distribution along a metal casing in a multilayered medium and find that
the results are not stable by using ordinary integral method. Then we find
the reason of the big calculation error by comparing the EFIE method to
the Pocklington’s integral method in a homogeneous case. In addition to
this, there is a small difference in finding the asymptotic equation. In this
thesis, the asymptotic equation is found by studying the each term of the
Green’s function at a condition σ/ω >> ε for a homogeneous model. In their
paper, they considered a point source in a layered medium, in particular,
they studied the source point near an interface between different layers and
deduced asymptotic equations for different cases of receiver points.
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In 2006, M. P. Spowart and E. F. Kuester published a paper in which they
introdued a method for the studying of microstrip antennas [47]. Similar to
[45], the integral equation was developed from the Hertzian potential and an
asymptotic equation was added and subtracted from the original integrand
in the following way

I =

∫ N

0

f(λ)dλ+

∫ ∞

N

f(λ)dλ (1.4.13)

=

∫ N

0

f(λ)dλ+

∫ ∞

N

(f − fAET )dλ+

∫ ∞

N

fAETdλ. (1.4.14)

The integration of the asymptotic equation can be found by∫ ∞

N

fAETdλ = (explicit closed form expression) +

∫ N

0

g(λ)dλ,

(1.4.15)
and finally the original integral can be evaluated by

I ≈
∫ N

0

(f + g)dλ+ (explicit closed form expression) (1.4.16)

Compared to [45], the author went one step further by studying the pole
problem and applied steepest-descent path evaluation method for calculating
the integral for the pole.

Compared to their idea, the method introduced in this thesis was devel-
oped in a slightly different way,

I =

∫ N

0

f(λ)dλ+

∫ ∞

N

f(λ)dλ (1.4.17)

=

∫ N

0

(f(λ)− fAET (λ))dλ+

∫ ∞

N

(f(λ)− fAET (λ))dλ

+

∫ ∞

0

fAET (λ)dλ. (1.4.18)

Since (f(λ) − fAET (λ)) → 0 when λ → ∞, the second integral can be ne-
glected and the total integral is approximately equal to

I =

∫ N

0

(f(λ)− fAET (λ))dλ+

∫ ∞

0

fAET (λ)dλ. (1.4.19)

where the first part can be calculated numerically and the second part gives
an explicit closed form. In addition to the difference of development, we
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develop this method for problem of using low frequency and highly conductive
medium, which ensures that there is no difficulty in pole problems.

In 2010, Shaun D. Walker, Deb Chatterjee and Michael S. Kluskens sub-
mitted a paper to Antennas and Propagation Society International Sympo-
sium [48], in which they also mentioned to use analytical method for closed-
form evalution of the Sommerfeld integral tail. They deduce their method for
the z-component electric field from a HED. In 2012, Deb Chatterjee, Sadasiva
M. Rao and Michael S. Kluskens published a paper in 2012 IEEE Interna-
tional Symposium on Antennas and Propagation and USNC-URSI National
Radio Science Meeting [49]. In this paper, they developed a method a lit-
tle difference to that in [48] by keeping the Bessel function intact. In their
method, the Sommerfeld integral is divided into two parts

I =

∫ kp

0

k2
ρJ1(kρρ)W

p(kρ)dkρ +

∫ ∞

kp

k2
ρJ1(kρρ)W

p(kρ)dkρ. (1.4.20)

The second term in the equation is the Sommerfeld tail. To calculate it, W p

is replaced by an asymptotic equation but the Bessel function is not replaced
by asymptotic equation, which leads to

I =

∫ kp

0

k2
ρJ1(kρρ)[W

p(kρ)−W p
asy(krho)]dkρ + Gp

tail (1.4.21)
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A Wave Propagation Along a
Thin Vertical Wire Antenna
Placed in a Horizontally Layered
Medium

Yingkang Wei, Bengt Holter, Ingve Simenson, Karsten Husby, Jacob Kuhnle,
Lars Norum

The 2010 annual conference of the Applied Computational
Electromagnetics Society (ACES2010)

Abstract

A theoretical and numerical analysis of the wave propagation along
a long thin wire antenna is presented. The wire is assumed to be placed
vertically in a conductive inhomogeneous medium, represented by a
finite set of horizontal plane layers each of which is characterized by
an individual conductivity. The current distribution along the wire
antenna is obtained as the solution of the electric field integral equa-
tion that is solved by the method of moments. Numerical results are
presented and compared to similar work for homogeneous media.

A.1 introduction

Wave propagation along a wire antenna placed in a conductive medium is an
interesting topic in low frequency communications. In 1979, J. R. Wait and
D. A. Hill [1] calculated the current distribution along a drill rod surrounded
by conducting host rock. They assumed an infinite long perfect conducting
rod located in a homogeneous lossy medium. The source was assumed to
be a toroidal coil emitting a 5KHz electromagnetic wave riding on the rod.
They found that the attenuation would be at least as great as that of plane
waves in the conductive medium surrounding the rod. In 1989, P. DeGauque
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and R. Grudzinski [2] studied the current distribution along a drillstring of
finite conductivity embedded in a homogeneous conductive medium using
Pocklington’s integral equation[3, Ch.8]. The source was assumed to be an
electric delta gap which could be viewed as a simple electric dipole. The
frequency range of the emitted sigmal was 0.1 – 10Hz. They found that the
surface impedance played a major role in attenuating the signal. However,
for frequencies below a few hertz, the attenuation did not vary much and the
optimum frequency for maximum data rate was argued to be about 3Hz.

To the author’s knowledge, an analytical solution of the current distribu-
tion along a long metal wire antenna in a conductive inhomogeneous medium
is not known. To address this issue, a theoretical and numerical analysis of
the wave propagation along a long thin wire antenna is presented. The wire
is assumed to be placed vertically in a conductive inhomogeneous medium,
represented by a finite set of horizontal plane layers (orthogonal to the an-
tenna), each of which is characterized by an individual conductivity. The
current distribution along the wire antenna is obtained as the solution of the
electric field integral equation that is solved by the method of moments.

A.2 Theoretical Approach

A.2.1 The field from a wire current in a homogeneous
medium

A long straight wire antenna of length � and radius a is assumed to be placed
vertically in a homogeneous medium and oriented along the positive z-axis.
The electric field E(r) at an observation point r = (x, y, z) is related to the
current density J(r′) on the wire antenna by the integral [4, Eq. (7.1.2)]

E(r) = iωμ

∫
V ′

d3r′G(r, r′) · J(r′). (A.2.1)

The dyadic Green’s function G(r, r′) is defined as [4, Eq. (7.1.19)]

G(r, r′) =
[
I+

∇∇
k2

]
g(r, r′), (A.2.2)

where I denotes the unit dyad and g(r, r′) is the scalar Green’s function. In an

unbounded homogeneous medium g(r, r′) = eik|r−r′|
4π|r−r′| and k = ω

√
μ(ε+ i(σ/ω))

(Im(k) > 0) is the complex wave number. In the following, the antenna is
assumed to be very thin compared to its length, i.e. � 	 a. Under this
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assumption, the current density along the wire can be approximately written
as:

J(r′) = I(z′)δ(x′)δ(y′)ẑ, (A.2.3)

where I(z′) is assumed to be an equivalent line-source current [3, Ch8]. In-
serting (A.2.2) and (A.2.3) into (A.2.1), the z-component of the electric field
directed along the antenna can be written as

Ez(r) =
iωμ

4πk2

∫ �

0

dz′I(z′)
[
k2 +

∂2

∂z2

]
eikR

R
, (A.2.4)

where R =
√
ρ2 + (z − z′)2, and ρ =

√
x2 + y2.

A.2.2 The field from a wire current in a layered medium

The wire antenna is now assumed to be placed vertically in a conductive
inhomogeneous medium represented by a finite set of horizontal plane layers,
where each layer is characterized by an individual conductivity. In [4, Ch. 2],
a method to obtain a solution for the electromagnetic fields generated by a
point or line source embedded in such a multilayered profile is presented. The
heart of the approach in [4, Ch. 2] is based on the fact that nonplanar waves
generated by finite sources can be expanded into an integral summation of
plane waves. The mathematical identity is known as Weyl’s identity [4, Eq.
(2.2.27)], and it represents a plane-wave expansion of a spherical wave. Once
this is done, the general theory of reflection and transmission of plane waves
can be used to find the electromagnetic fields within any of the layers in
response to a source within one of the layers. In this section, this method is
used to find an expression for the z-component of the electric field generated
by the antenna. Due to limited space available, a detailed explanation of the
method and a presentation of all the involved symbols and expressions are
not included. The interested reader is rather referred to [4, Ch.2] for further
details. Note that in this paper the z-axis points upwards, whereas in [4,
Fig. 2.4.1], it points downwards. As a result, there are some differences in
the subindexes of the expressions in this paper and the similar ones in [4].

Since the antenna is assumed to be placed along the z-axis of a cylin-
drical coordinate system, the electric field component in question is the z-
component which is directed along the antenna. To derive an expression for
this field, the Sommerfeld identity is used as a starting point. The Sommer-
feld identity [4, Eq. (2.2.30)] can be developed from the Weyl’s identity and
is equal to

eikR

R
= i

∫ ∞

0

dkρ
kρ
kz

J0(kρρ)e
ikz |z|, (A.2.5)
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which shows that a spherical wave can be expanded into an integral sum-
mation of cylindrical waves in the ρ direction times a plane wave in the
z-direction over all wave numbers kρ. In (A.2.5), J0(·) denotes a Bessel func-
tion of the first kind and zeroth order, and kz =

√
k2 − k2

ρ (Im(kz) > 0)
denotes the z-component of the wave vector k. In the following, it is as-
sumed that a source at z = z′ is embedded in layer m of a multilayered
profile (see [4, Fig. 2.4.1] or [5, Fig. 1] as a reference). Since the positive
z-axis in this case points upwards, layer m is mathematically constrained to
be within the limits dm−1 < z′ < dm. According to [4], the z variation an
upgoing and downgoing wave can be expressed as F (z, z′). The field inside
layer m due to a source in layer m can be divided into two parts, representing
an upgoing wave (F+) and a downgoing wave (F−), which can be expressed
as

F+(z, z
′) = A+

m

[
eikmz(z−z′) + R̃m,m+1e

ikmz(2dm−z−z′)
]

z > z′, (A.2.6)

F−(z, z′) = A−m
[
e−ikmz(z−z′) + R̃m,m−1eikmz(z+z′−2dm−1)

]
z < z′, (A.2.7)

where R̃m,m+1 and R̃m,m−1 represent generalized reflection coefficients for
waves emanating from layer m into layer m+ 1 and m− 1, respectively, dm
denotes the z-coordinate of the interface separating medium m and m + 1,
and kmz is used to indicate the z-component of the wave vector km of layer
m. In addition to the adjacent layers m + 1 and m − 1, they also include
the effect of the subsurface reflections caused by the layers above m+ 1 and
below m− 1. The amplitudes in (A.2.6) and (A.2.7) are equal to

A+
m = M̃m

[
1 + R̃m,m−1e2ikmz(z′−dm−1)

]
(A.2.8)

A−m = M̃m

[
1 + R̃m,m+1e

2ikmz(dm−z′)
]
, (A.2.9)

in which

M̃m = [1− R̃m,m−1R̃m,m+1e
2ikmz(dm−dm−1)]−1. (A.2.10)

In a similar fashion, the field variation in layer m + 1 and m − 1 can be
written as

Fm+1(z, z
′) = A+

m+1

[
eik(m+1)z(z−dm) + R̃m+1,m+2e

ik(m+1)z(2dm+1−z−dm)
]

(A.2.11)

Fm−1(z, z′) = A−m−1
[
eik(m−1)z(dm−1−z) + R̃m−1,m−2eik(m−1)z(z+dm−1−2dm−2)

]
,

(A.2.12)
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where

A+
m+1 =

Tm,m+1A
+
me

ikmz(dm−z′)

1−Rm+1,mR̃m+1,m+2e
2ik(m+1)z(dm+1−dm)

(A.2.13)

A−m−1 =
Tm,m−1A−me

ikmz(z′−dm−1)

1−Rm−1,mR̃m−1,m−2e2ik(m−1)z(dm−1−dm−2)
. (A.2.14)

The expressions Tm,m+1 and Rm+1,m as well as Tm,m−1 and Rm−1,m represent
transmission and reflection coefficients between layer m and the adjacent
layers m + 1 and m − 1 only. The field variations within the layers above
m+1 or below m− 1 are obtained through a recursive approach. The above
expressions for F (z, z′) may be introduced into (A.2.5), and when combined
with (A.2.4), the z-component of the electric field directed along the antenna
can be expressed as

Ez(a, z) =
−ωμ

4πk2

∫ �

0

dz′I(z′)(k2 +
∂2

∂z2
)

∫ ∞

0

dkρ
kρ
kz′

J0(kρa)F (z, z′). (A.2.15)

A thing to notice is that when z = 0,

(k2 +
∂2

∂z2
)

∫ ∞

0

dkρ
kρ
kz′

J0(kρa)F (z, z′) =
∫ ∞

0

dkρ
k3
ρ

kz′
J0(kρa)F (z, z′) (A.2.16)

goes to infinity. The reason for this is that when z = 0, it indicates wave
propogating in ρ direction and kz = 0. In this case, the integrand in (A.2.4)
has the following closed form solution [4, pp. 118]

(k2 +
∂2

∂z2
)
eikR

R
=

eikR

R5
[(1− ikR)(2R2 − 3a2) + (kaR)2]. (A.2.17)

The right hand side of (A.2.17) represents the core of Pocklington’s integral
equation [3].

A.2.3 Calculating the current by the method of moments

Equation (A.2.4) is the electric field integral equation with I(z′) as the un-
known current distribution and the electric field as the known excitation
function. The current may be determined by the application of boundary
conditions on the surface of the antenna. For a perfect conductor, the elec-
tric field along the antenna is equal to zero Ez(a, z) = 0 at all points except
at the source. The integral in (A.2.4) can then be solved with respect to
I(z′) by using the method of moments [6, 3]. The length of the wire antenna
is discretized into N equidistant points zi = (i − 1/2)Δz, each of length
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Δz = �/N . Under the assumption that the unknown current I(z) varies
slowly over the length Δz, and therefore can be approximated to be constant
and equal to I(zi), the following set of linear equation is obtained

G(z, z′)I(z′) = b(z), (A.2.18)

where the vector I(z′) represents the current at the points (z′1, z
′
2, · · · , z′N)

along the wire antenna. The matrix G(z, z′) is defined as

G(z, z′) =

⎡
⎢⎢⎣

g(z1, z
′
1) g(z1, z

′
2) · · · g(z1, z

′
N)

g(z2, z
′
1) g(z2, z

′
2) · · · g(z2, z

′
N)

· · · · · ·
g(zN , z

′
1) g(zN , z

′
2) · · · g(zN , z

′
N)

⎤
⎥⎥⎦ , (A.2.19)

in which the individual matrix elements are equal to

g(zi, zj) =
−ωμΔz

4π

∫ ∞

0

dkρ

{
k3
ρ

k2
mknz

J0(kρρ)F (z, zj)

}
z=zi

. (A.2.20)

Where zi is in layer m. From the boundary conditions, the vector b(z)
is equal to b(z) = [0, 0, · · · , 0, 1, 0, · · · , 0]T . If the wire is not a perfect
conductor, the matrix equation in (A.2.18) changes into [2]

(G(z, z′)− ZiI)I(z
′) = b(z), (A.2.21)

where I is an identity matrix, and Zi is the internal impedance of the wire
antenna equal to

Zi =
iksJ0(iksa)

2πaσsJ1(iksa)
. (A.2.22)

The symbols σs and ks represent the wavenumber and conductivity of the
antenna respectively.

A.3 Implementation and numerical results

The numerical results in this paper are obtained using MATLAB. To solve
the double integral in (A.2.15), the inner integral with respect to kρ needs to
be solved first. However, since 1/kz = 1/

√
k2 − k2

ρ, there is a pole at kρ = k
for kρ ∈ (0,∞). This means that kρ should be selected more finely near
the pole. For the integration with respect to z′, both the built-in MATLAB
function quad and a direct integration technique have been used. The quad
function runs faster and is more stable than a direct integration approach.
In Fig. A.1, the result of the direct integration approach is depicted for a
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perfect conductive wire antenna in a homogeneous medium with conductivity
σ1 = 4S/m, operating at a frequency of 100Hz. It shows that the results
vary with the number of selected points. In Fig. A.2, similar results are
depicted when using the quad function. It is observed that the quad function
achieves the same result as the direct integration approach but with less
points involved.
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Figure A.1: Current distribution along a perfect conductive wire antenna
of length � = 100m and radius a = 0.1m. The source is located at 0.1�.
The operating frequency f = 100Hz and conductivity of the medium is σ1 =
4S/m. Brute integration method is applied.

To verify that the numerical results in this paper are consistent with
previously reported results in homogeneous media, the results from [2, Fig.
6] and [2, Fig. 4] have been reproduced and are presented in Fig. A.3 and
Fig. A.4, respectively. By inspection, the results obtained in this paper are
in good agreement with the previously published results. However, despite
a similar shape of the curves, the attenuation of the current distribution
in this paper is larger than the those presented in [2, Fig. 4]. As a check,
the results using quad was compared to a similar model evaluated by finite
integral technique (FIT) method. Fig. A.5 shows they are in good agreement
with each other.
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Figure A.2: Numerical results obtained by using the built-in function quad
to integrate for the same model in figure A.1.
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Figure A.3: A replica of [2, Fig. 6], representing the theoretical current
distribution at different frequencies for a metallic pipe of 40m immersed in
seawater with conductivity σ1 = 4S/m. The conductivity of the pipe is
σs = 4.2 · 106S/m.
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Figure A.4: A replica of [2, Fig. 4], representing the theoretical current dis-
tribution along a drillstring of 3600m (radius 10cm) through a homogeneous
medium with conductivity σ1 = 0.5S/m. The conductivity of the drillstring
is σs = 2 · 106S/m.
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Figure A.5: Comparison with FIT simulation

For the simulations in an inhomogeneous medium, the simple model of
Fig. A.6 is considered. In this model, the wire antenna was assumed to have
a length l = 1000m, the conductivities of layer 1 and layer 3 are identical
and equal to σ1 = σ3 = 1S/m, whereas the conductivity of layer 2 is equal to
σ2 = 4S/m. The source is located at zs = 0.1� and the interfaces d1 = 0.7�
and d2 = 0.8�, and the antenna is assumed to be a perfect conductor.

The theoretical current distribution using the quad function is presented
in Fig. A.7. It is observed that attenuation increases both when the frequency
is increased and when the conductivity increases in layer 2. In Fig. A.8,
d1 = 0.6l and d2 = 0.8l, the result at 10Hz is compared to the attenuation of
a TEM wave in a similar environment. It is observed that the current along
the wire antenna attenuates faster than the TEM wave, which proves the
conclusion of J. R. Wait in [1] that a signal along the antenna will attenuate
at least as great as that of plane waves in a conductive medium.

A.4 Conclusion and Outlook

A theoretical approach to obtain the current distribution along a wire an-
tenna placed in an inhomogeneous layered medium is presented. The numer-



42
Paper A. Wave Propagation Along a Thin Vertical Wire Antenna Placed in a

Horizontally Layered Medium

ρ

z

Source

Wire

σ1 = 1 S/m

σ2 = 4 S/m

σ3 = 1 S/m

z = zs

z = d1

z = d2

z = l

Figure A.6: Inhomogeneous layered profile used in the simulations

ical results show that the attenuation will vary according to the conductivity
of the environment and at least as fast as a plane wave propagating in a
similar environment.
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Figure A.7: Theoretical current distribution along the wire antenna as a
function of frequency when placed in the inhomogeneous medium profile
depicted in Fig. A.6. The source is located at zs = 100m and the interfaces
are d1 = 700m and d2 = 800m.
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Figure A.8: Comparison of the attenuation of the current distribution along
the antenna and that of a TEM wave at 10Hz. The source is located at
zs = 100m and the interfaces are d1 = 600m and d2 = 800m.
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Abstract

A method is presented for obtaining the current distribution along
a thin, arbitrarily oriented wire antenna embedded in a conductive
inhomogeneous medium. The inhomogeneous medium is modeled as
a finite set of horizontal layers, where each layer is assumed to be
homogeneous and characterized by an individual conductivity. The
current distribution along the wire antenna is obtained by dividing
the antenna into a set of small current elements, each of which can
be considered as a linear combination of a vertical and horizontal
electric dipole. The electric field generated by each dipole is derived
using the dyadic Green’s function approach. An electric field integral
equation is obtained after imposing the boundary conditions satisfied
on the surface of the wire antenna, and it is solved by the method of
moments in order to obtain the current distribution along the antenna.
Numerical results for the current attenuation along the antenna are
presented and discussed for cases where the embedding conducting
medium is either homogeneous or inhomogeneous.

B.1 Introduction

Wireless downhole communication using electromagnetic (EM) signals at low
frequencies have for a long time been exploited by the oil and gas industry in

47
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measurement-while-drilling (MWD) systems. In such systems, information
is conveyed by EM signals excited as longitudinal currents along the drill-
string. Since the attenuation increases with frequency, low frequency sig-
naling is necessary in order to increase the communication range. As such,
research into the current distribution along an electric conductor embedded
in a conductive medium is an interesting topic, and there are several papers
in the literature which have studied this particular subject.

In 1979, J. R. Wait and D. A. Hill [1] studied the current distribution
along a drill rod surrounded by conducting host rock. They found that the
attenuation would be at least as great as that of plane waves in the conductive
medium surrounding the rod. In 1989, P. DeGauque and R. Grudzinski [2]
derived the current distribution at low frequencies (0.1–10Hz) along a drill-
string of finite conductivity in a conductive medium by using Pocklington’s
integral equation. These authors found that the surface impedance played a
major role in attenuating the signal. However, for frequencies below a few
Hertz, the attenuation did not vary much and the optimum frequency for
maximum data rate was argued to be about 3Hz. In 1993, Xia and Chen [3]
presented a paper on the receivability of EM signals in a MWD system by
studying the propagation of EM waves along a drillstring placed in a con-
ductive homogeneous medium. They examined the attenuation properties of
such a system for various parameters such as the earth’s conductivity, oper-
ating frequency, and the length of the drill string. A subsequently study [4]
treated a downhole to surface communication channel that consisted of a
long vertical cylinder embedded in a homogeneous earth and a line current
technique was used to model the system. Moreover, the results reported in [4]
were found to be in good agreement with those by Xia and Chen [3] obtained
under the assumption of zero metal resistivity as well as those of DeGauque
and Grudzinski [2] that considered an uncoated steel pipe submerged in sea
water (homogeneous medium).

The three studies [4, 2, 3] all have in common that the surrounding
medium of the well is assumed to be homogeneous. In the present study,
however, the medium surrounding the well is allowed to be an inhomoge-
neous medium and the orientation of the drillstring is arbitrary, i.e. it may
have a non-zero tilt-angle with respect to the vertical direction. For such
a rather general geometry, we introduce a simple, yet effective, numerical
method for obtaining the current distribution along the drillstring.
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B.2 Geometry

The geometry that we consider consists of a layered earth, i.e. a horizontal
stack of layers each characterized by their thickness, hm, and dielectric prop-
erties, εm(ω), where ω denotes the angular frequency and the subscript refers
to layer m. For low frequencies, that will be considered here, one has to a
good approximation that εm(ω) ≈ iσm(ω)/ω where the conductivity of layer
m is σm(ω). Without loss of generality, we take the interfaces between the
various layers to be parallel to the xy-plane with the z-axis pointing upward
(Fig.B.1). The origin of the coordinate system is chosen to coincide with the
lower point of the antenna. With this coordinate system, the top interface
of layer m is z = zm. In such a stratified medium, one can place a long thin
wire antenna of length � and radius a (with � 	 a) in the xz-plane so that
it makes an arbitrarily tilt angle, θ, with the positive z-axis.

x

z

θ
source

layer1

layer2

layer3

Figure B.1: A model of a long wire antenna in a 3-layer media

B.3 Theoretical Approach

To obtain the EM fields generated by the antenna, it is divided into a finite set
of small current moments, where each is assumed to be a linear combination
of a vertical electric dipole (VED) and a horizontal electric dipole (HED).
Each VED is assumed to be parallel to the z-axis, whereas each HED is
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assumed to be parallel to the x-axis:

I(z′)Δ��̂ = I(z′)(Δxx̂+Δzẑ). (B.3.1)

With the given geometry, the EM wave generated by a VED will not have
a magnetic component in the z-direction, i.e. it is a TM wave. Hence, the
wave from a VED is characterized by the electric field components ETM

VED,z

and ETM
VED,x. Similarly, the wave from a HED propagating in z-direction

is also only in TM mode, which can be represented by ETM
HED,z. In the x-

direction, however, the electric field from the HED will have both TM and
TE components, which we denote ETM

HED,x and ETE
HED,x.

By the dyadic Green’s function [5, Eq. (2.3.1)], the electric field compo-
nents ETM

VED,z, E
TM
VED,x, E

TM
HED,z and the electric field in x̂ direction from a HED

source, EHED,x, can be found from

E(r, r′) =
iωμ

4π

(
Ī+

∇∇
k2

)
· I(z′)(Δxx̂+Δzẑ)

eikR

R
, (B.3.2)

where r = (x, y, z) (with similar definition for r′), R = |r− r′|, and wavenum-
ber k = ω

√
με.

The component ETE
HED,x can be derived from the general relation

Ex =
i

k2 − k2
z

[
kz

∂Ez

∂x
+ ωμ

∂Hz

∂y

]
, (B.3.3)

where Ez = 0 in TE mode and Hz can be obtained from:

H(r, r′) = ∇× I(z′)(Δxx̂+Δzẑ)
eikR

4πR
. (B.3.4)

Finally, we have that ETM
HED,x = EHED,x − ETE

HED,x.

The term exp (ikR)/R contained in (B.3.2) can be expanded into an inte-
gral over plane waves by the Weyl identity [5, Eq. (2.2.26)]. This identity can
further be used to derive the so-called Sommerfeld identity [5, Eq. (2.2.30)]
where exp (ikR)/R is represented as an integral with respect to wave num-
bers kρ over cylindrical waves in the ρ direction times a plane wave in the z
direction. The electric field from the antenna can then be expressed as

E(r, r′) =
iωμIΔz

4π

∫ ∞

0

dkρΦ · eikz |z−z′|, (B.3.5)
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where

Φ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ΦTM
VED,x = z−z′

|z−z′|
k2ρ
k2
J1(kρρ)

ΦTM
VED,z =

ik3ρ
k2kz

J0(kρρ)

ΦTM
HED,z =

z−z′
|z−z′|

k2ρ
k2
J1(kρρ)

ΦTE
HED,x = i

kzρ
J1(kρρ)

ΦTM
HED,x = ikρkz

k2

[
J0(kρρ)− 1

kρρ
J1(kρρ)

]
, (B.3.6)

kρ =
√

k2 − k2
z , and J0(·) and J1(·) are Bessel functions of the first kind.

However, at the position of the source (z = z′), exp (ikR)/R can not be
expanded by the Weyl identity [5, Ch. 2.7.3], but analytical solutions called
Pocklington’s integral can be found (Appendix 3.3).

When the electric dipole is placed in a horizontally layered medium, in-
stead of the factor exp (ikz|z − z′|), the z variation should include reflections
from the interfaces of the layers, which can be represented by F (z, z′), see
[5, Ch.2.4]. Since in our model, the z direction is opposite to that in [5],
the explicit form of the needed equations are given in Appendix 3.11. Put
F (z, z′) into (B.3.5) and it will be the analytical solution of the fields from
an electric dipole placed in a layered medium.

The total field from the wire antenna is given in terms of the geometric
integral of the electric field along the wire antenna. At the surface of the
wire antenna, by using the boundary condition for the tangential component
of the electric field, the electric field integral equation (EFIE) is equal to:

iωμ

4π

∫
�

I(z′)d�
∫ ∞

0

dkρΦF (z, z′) = g, (B.3.7)

where g is a source term that is non-zero only for points not on the source
that we here will model as a delta gap source. The finite conductivity of the
wire antenna is taken into account via the impedance Zi =

√
μi/εi [2, Eq.

(A-22)] that appears as a diagonal matrix in the equation.

B.4 Numerical results

The numerical simulations for the current distribution that we perform are
based on solving the integral equation in (B.3.7), for a given source type, and
this is done by applying the method of moments [6].

In particular note that for the kρ-integration appearing in (B.3.7) care
has to be taken in order to produce accurate results. Since the media are
conductive, there will be no singularity for kρ values on the (positive) real
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axis (0 to ∞). Still, however, the integrand will vary rapidly in the region
around kρ = Re (k), and for this reason, a smaller discretization interval will
be needed in this region.

For the �-integration, a point match method has been applied. The wire
antenna has been divided into equal small elements and there is a finite
number of equally-sized elements within each layer. The mid-points of each
element are selected to be the value points. By this method the EFIE of
(B.3.7) is converted into series of linear equations which can be written in
matrix form as LI = g. The current distribution along the wire antenna is
then obtained as the solution I = L−1g.

The accuracy of the numerical results depends on the length of the ele-
ments, the size of the group of kρ and the radius of the wire antenna. Nor-
mally, the smaller the element, the more accurate the result will be. However,
consider the radius of the wire antenna, an element can not be too small,
especially when the antenna is tilted at an angle. In the program, with the
point match method, the optimal size of the element is about 100 times of
the radius. The running speed will also depend on the size of the group of
elements and kρ.

To verify that this procedure produce reliable results, several homoge-
neous media geometries are considered and the prediction of the code for
these cases have been compared to previously reported results from the liter-
ature and to those obtained by alternative numerical techniques. In Fig. B.2,
the current attenuation along a wire antenna placed in a conductive homo-
geneous medium with σ = 4 S/m is compared to the results obtained by a
Finite Integration Technique (FIT) program. The results are shown to be in
good agreement.

In Fig. B.3, a replica of the results originally presented in [2, Fig. 6] are
presented, but using the method of this paper. The results represent the
theoretical current distribution at different frequencies for a metallic pipe of
40m immersed in seawater with σ = 4S/m. By inspection, the reproduced
results are in good agreement with the original results presented.

A simple 3 layer model will now be considered (Fig. B.1) where the con-
ductivities equal σ = [1, 4, 1]S/m (from down up). The length of the an-
tenna is � = 1000m and the radius is ra = 0.05m. The source is located at
zs = 50× cos θm and the interfaces of the second layer are d1 = 500× cos θm
and d2 = 700 × cos θm. Three tilt angles that will be considered are θ =
[0, π/6, π/3] and the source operates at 5Hz and 50Hz. The numerical re-
sults are shown in Fig. B.4. For each case, a homogeneous model was first
simulated in order to compare the results for different tilt angles. The sim-
ulation time in Matlab (in elapsed CPU seconds) for such a model when
kρ = 250 and the length of each current element is 10m is 324s (5minutes)
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Figure B.2: Current attenuation along a wire antenna in a conductive ho-
mogeneous medium as a function of depth. The result of this paper is com-
pared to the a similar setup in FIT. The conductivity of the wire antenna is
σs = 1 ·105S/m and the conductivity of the homogeneous medium is equal to
σ = 4S/m, The radius of the wire is ra = 0.1m and the frequency f = 1Hz.
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Figure B.3: A replica of [2, Fig. 6], representing the theoretical current dis-
tribution at different frequencies for a metallic pipe of 40m immersed in
seawater with conductivity σ = 4S/m. The conductivity of the metal pipe is
σs = 4.2 · 106S/m.
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using a desktop computer with a 2.66GHz processor and 2.5GB of memory.
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Figure B.4: Simulation results of a 3 layer model, where the conductivities
of the media are (1,4,1)S/m and the conductivity of the antenna is σs =
1 · 106S/m. The length of each current element is 10m and kρ = 250.

It shows that the current will attenuate faster when the medium around
is more conductive. In addition, it is observed that the angle θ does not
have a big impact on the attenuation. However, at 50Hz, there seems to
be less attenuation at the far end for a highly tilted antenna. To analyze
this behavior, results have been obtained when an antenna is placed in a
homogeneous medium where the attenuation should be independent of the
angle. In Fig. B.5, the results show that for higher frequencies and angles,
a higher population of kρ is needed to give a correct result. This approach
is not very efficient and asymptotic method can be applied, especially for
higher frequencies.

B.5 Conclusion

A method for obtaining the current distribution along a thin arbitrarily ori-
ented wire antenna embedded in a conductive inhomogeneous medium is
presented. The simulation results show that the current attenuation along
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Figure B.5: The influence of the frequency and angle to the results

the antenna varies as a function of depth according to the conductivity value
within each layer. Moreover, it is observed that at low frequencies the ori-
entation of the antenna does not significantly influence the attenuation. At
higher frequencies, however, asymptotic methods are needed to improve the
accuracy of the proposed method.
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Abstract

A method for accurately evaluating the Sommerfeld integral for
conductive media at low frequencies that is commonly encountered in
geophysics is presented. The motivation is that when we subtract an
asymptotic function to the integrand, the new integral will converge
much faster than the original Sommerfeld integral, which can be com-
puted numerically while the asymptotic function can be integrated
analytically by a Laplace transform. Numerical results that quantify
the performance of the proposed method are presented.

C.1 Introduction

To quantify the performance of a downhole wireless communication system
based on transmission of low frequency electromagnetic signals along a metal
pipe used in oil and gas production, it is of interest to establish the current
distribution along the pipe as a function of its length. To simplify the ex-
position, we have assumed that the metal pipe is placed in a homogeneous
medium in this paper and the current distribution can then be achieved by
solving the following electric field integral equation (EFIE)

−ωμ

4π

∫
z′
dz′I(z′)

∫ ∞

0

dkρ
k3
ρ

kz
J0(kρρ)e

ikz |z−z′| = Ez(z) (C.1.1)
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in which I(z′) is the unknown current distribution along the pipe. J0() is the
Bessel function of the first kind, kz =

√
k2 − k2

ρ, and k is the wave number.
E(z) is the electric field at the surface of the pipe, and z and ρ are pipe
length and radius coordinate variables. The inside integral of (C.1.1) is a
Sommerfeld integral, which expands the spherical wave into plane waves in
order to study the more complicated cases of layered media [1, Ch2]. The
focus of this paper is the evaluation of the inner integral (with respect to kρ)
in a conductive medium at low frequencies that is commonly encountered in
geophysics. It has an oscillatory function in its kernel and basically there
are two kinds of methods in evaluating such an integral: numerical and
asymptotic methods.

The best numerical method for solving an integral containing an oscilla-
tory function is to apply a technique denoted ISE (integration, summation
and extrapolation), which can be found in popular textbooks on numerical in-
tegration, such as [2]. With the ISE approach, the zeros of J0(kρρ) are found
first, then the integral is divided at these zeros and an alternating sequence
is summed. Finally, to accelerate convergence, extrapolation is applied, such
as Euler transformation [3], ε-algorithm of Wynn [4] and w-transform of Sidi
[5, 6]. Lucas et.al [7] have compared the efficiency of the different algorithms
and a good review are presented in [8] by Michalski.

Asymptotic methods can be applied when |z − z′| → ∞ , [1, 9], and
different methods are applied based on whether ikz|z − z′| in (C.1.1) is a
real, imaginary or complex function. If it is real and negative, (C.1.1) can be
evaluated by Laplace integral [9, Ch.6.4]. If it is pure imaginary, (C.1.1) can
be evaluated by the method of stationary phase [1, Ch.2.5.1]. If it is complex
and Re(ikz|z − z′|) < 0, (C.1.1) can be evaluated by the method of steepest
descent [1, Ch.2.5.2].

However, if |z−z′| becomes small, both the numerical and the asymptotic
methods face difficulties. The numerical approach will converge slowly and a
large integral range is required. The asymptotic approach is only valid in the
far field (when |z−z′| → ∞ ). To overcome these shortcomings, we find that
in conductive media at low frequencies, the Sommerfeld integral will converge
much faster if we subtract an asymptotic equation to the integrand. The new
integral can be calculated numerically while the asymptotic equation can be
integrated analytically by a Laplace transform.
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C.2 The Error Analysis on the Calculation of the
EFIE

In a homogeneous medium, (C.1.1) can be simplified into the Pocklington’s
integral equation[10, Ch. 8.3.1]:

iωμ

4πk2

∫
z′
dz′I(z′)

eikR

R5
[(1− ikR)(2R2 − 3ρ2) + (kρR)2] = Ez(z) (C.2.1)

whereR =
√
ρ2 + (z − z′)2. Both (C.1.1) and (C.2.1) can be evaluated nu-

merically by the method of moments, which can be represented by a set of
linear equations:

A(z − z′)I(z′) = E(z). (C.2.2)

However, (C.1.1) can not be applied to obtain a solution at the source z = z′,
where (C.2.1) has to be applied [1, Ch. 2.7.3]. In this paper, Pockling-
ton’s method is used as a reference for the evaluation of (C.1.1) since it can
produce stable numerical results as illustrated in Fig.C.1, where a pipe of
length 1000m and radius 0.1m is assumed to be enclosed in a homogeneous
medium. The conductivities of the pipe and the surrounding are assumed
to be σa = 1 × 106S/m and σm = 1S/m respectively. An electric delta gap
source operating at a frequency f = 5Hz is located 100m from the end of the
pipe.

As |z − z′| becomes smaller, (C.1.1) and (C.2.1) should provide more
accurate results. However, by using the normal quadrature method for the
inside integral, the evaluation of (C.1.1) is not stable as illustrated in Fig.C.2.
A study of the coefficient matrices A(z, z′) in (C.2.2) of the two methods
shows that they have a Toeplitz structure and the biggest difference occurs
in the elements on the first subdiagonal. In our simulation example, a tiny
difference of 4.5×10−2% is observed but it is enough to generate a significant
error in the final result. In the following, the properties of the integral are
examined and a method to evaluate it accurately is presented.

C.3 Derivation of the Method

In the following, the kernel of the inner integral in (C.1.1) is examined.

Φ(kρ, z, z
′) =

k3
ρ

kz
J0(kρρ)e

ikz |z−z′|, (C.3.1)

The real part is small and can be neglected. The imaginary part of this
term increases as |z− z′| decreases and ultimately, it will oscillate due to the
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Figure C.1: Numerical results of I(z′) along the metal pipe relative to the
source I(z′s) with different integral step Δz . The results are obtained by
using Pocklington’s integral (C.2.1).

presence of the Bessel function J0() . When |z − z′| = 0, Im(Φ(kρ, z, z
′))

will be an ever increasing oscillating function which makes the Sommerfeld
integral unsolvable. This is illustrated in Fig.C.3 and C.4.

In the geophysics, the operating frequency is usually very low, less than
100Hz. The conductivities are usually in the range (0, 10)S/m, Under these
conditions, σ

ω
>> ε and the wave number can be approximated as k ≈

(1 + i)/δ where δ is the skin depth of the medium. Furthermore, kz can be
approximated by kz =

√
k2 − k2

ρ ≈ ikρ when kρ >> 1/δ. Moreover, with the
asymptotic expansion of the Bessel function in the large argument limit [1,
Ch.1.2.4], Φ(kρ, z, z

′) asymptotically equals

Ψ(kρ, z, z
′) = −i

√
2

πρ
k

3
2
ρ cos(kρρ− π

4
)e−kρ|z−z

′|. (C.3.2)

Add and subtract (C.3.2) to the integrand, the Sommerfeld integral equals∫ ∞

0

dkρΦ(kρ, z, z
′) =

∫ ∞

0

dkρ[Φ(kρ, z, z
′)−Ψ(kρ, z, z

′) + Ψ(kρ, z, z
′)]

=

∫ ∞

0

dkρE(kρ, z, z′) +
∫ ∞

0

dkρΨ(kρ, z, z
′). (C.3.3)
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Figure C.2: Numerical results of I(z′) along the metal pipe relative to the
source I(z′s) with different integral step Δz . The results compare the eval-
uation of (C.1.1) and (C.2.1).
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Figure C.3: The imaginary part of Φ(kρ, z, z
′) as a function of kρ for |z−z′| =

5, 2m.
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Figure C.4: The imaginary part of Φ(kρ, z, z
′) as a function of kρ for |z−z′| =
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Figure C.5: The difference E(kρ, z, z′) between Im(Φ(kρ, z, z
′)) and
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The difference E(kρ, z, z′) between (C.3.1) and (C.3.2) is depicted in Fig.C.5,
which shows that it converges much faster than Φ(kρ, z, z

′). Therefore, it will
be much easier to obtain an accurate integration numerically over E(kρ, z, z′).
As for the second term on the right hand side in (C.3.3), it can be evaluated
analytically by a Laplace transform:∫ ∞

0

dkρk
3
2
ρ cos(kρρ− π

4
)e−kρ|z−z

′| =
e−i

π
4

2

3
√
π

4
s
− 5

2
1 +

ei
π
4

2

3
√
π

4
s
− 5

2
2 (C.3.4)

where s1 = −|z − z′|+ iρ and s1 = −|z − z′| − iρ.
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Figure C.6: Numerical results of I(z′) relative to the source with integral
step Δz = 2m by using the Laplace transform method.

In Fig.C.6 the new approach is applied to similar data as in Fig.C.2 for
Δz = 2m, with the same quadrature method. An examination on the coeffi-
cient matrix shows that the difference of the elements on the first subdiagonal
has decreases from 4.5× 10−2% to 8.5× 10−4%.

C.4 Conclusion

A method for evaluating Sommerfeld integral for conductive media at low
frequency has been presented. The method is valid for σ

ω
>> ε, which is com-

monly encountered in geophysics. The Sommerfeld integral is transformed



66
Paper C. Calculation of Sommerfeld Integrals for Conductive Media at Low

Frequencies

into a sum of two parts, where part one can be calculated numerically and
part two can be evaluated analytically by a Laplace transform. The method
has been presented and applied in a homogeneous medium, but it can also
be applied in inhomogeneous cases.
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Abstract

An efficient method for evaluating Sommerfeld integrals with os-
cillating kernels is presented. The method is based on subtracting
and adding an asymptotic and analytically integrable function to the
oscillating kernel, which transforms the original integral into a sum of
two integrals. For the purpose of numerical calculations, the first in-
tegral, now containing a slowly oscillating kernel, is calculated quickly
and accurately numerically, while the second integral, the strongly os-
cillating kernel, can be treated analytically. In this way the original
Sommerfeld integral can be calculated numerically. In this paper, the
method is outlined and applied to the geophysical problem of finding
the current distribution along a thin metallic conductor immersed in
a conductive medium. To this end, the metallic conductors represent
wells immersed in conductive earth, where the earth is modeled both
as a homogeneous and a horizontally layered medium. As such, the
findings are relevant and applicable for evaluating the feasibility of us-
ing low frequency electromagnetic signals to convey information along
metal casings. The method is targeted and applicable for high loss ma-
terials, traditionally characterized by the material intrinsic impedance
having a phase angle at approximately 45 degrees. Under these con-
ditions, it is demonstrated that the new approach converges at least
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50 times faster and produces more reliable results compared to a tra-
ditional brute force approach.

D.1 Introduction

Propagation of electromagnetic waves through a planarly layered medium is
a topic of interest within the field of optics, geophysics, remote sensing, and
microwaves [1, 2]. In geophysics, the interest of this topic is mainly linked
to the application of measuring physical properties of the subsurface earth,
since the manner in which the formation responds to the field excited by an
electromagnetic source can be used to determine the resistivity and dielectric
constant of a particular rock formation. The application is known as explo-
ration geophysics, also referred to as the applied branch of geophysics. Ex-
ploration geophysics is used by the oil and gas industry to infer or detect the
presence of hydrocarbons, since oil-impregnated rocks have higher resistivity
than water-saturated rocks. The data are typically derived using a dedicated
well logging tool which is lowered vertically into the earth through a borehole.
By inducing an electromagnetic signal and measuring an increase or decrease
in electric potential between two electrodes, resistivity data related to ver-
tical changes in the geological formations can be collected. Electromagnetic
signaling may however also be applied in measurement-while-drilling (MWD)
systems, where it is used as a communication technique to guide the drill-bit
trajectory toward the oil producing strata in the earth formation. The elec-
tromagnetic signals then propagate through the formation adjacent to the
wellbore, but the electric properties of the formation and the mud that en-
circles the wellbore will greatly influence the attenuation of the signal [3]. As
a result, the reliable communication distance achieved in one well may not
be equaled in another well unless the rock formations are almost identical.

From the literature, it can be deduced that communication based on elec-
tromagnetic signaling is quite ineffective in deep wells, since electromagnetic
signals lose their strength rapidly in certain types of rock formations. To be
able to predict the expected amount of attenuation in advance, a mathemat-
ical model which can be used to simulate the propagation of electromagnetic
waves through a particular rock formation is needed. For simplicity and
mathematical tractability, it is often then assumed that the earth is homoge-
neous. However, geologic scenarios are extremely varied, and few actual cases
can be described accurately in terms of simple geometric forms like plane hor-
izontal layers. However, despite this fact, it is quite common to model an
inhomogeneous earth by dividing it into separate plane layers, where each
individual layer is modeled as a homogeneous layer [4]. Such a model may



D.2 Geophysical System 71

then be applied to predict whether or not a particular rock formation may
support a successful deployment of an electromagnetic telemetry system.

In an electromagnetic telemetry system such as MWD, the signal travels
along a metal pipe from the transmitter to the receiver by using the pipe
as a transmission line. However, there is wireless transmission of data as
well, since some of the current will divert from the pipe and leak into the
surroundings. As a result, the signal may either be picked up by a receiver by
detecting the current flow in close proximity to the well, or it can be picked
up by electromagnetic sensors placed a certain distance from the well. The
latter case resembles the act of picking up signals from a Controlled Source
Electromagnetic (CSEM) system [5, 6], which is a relatively new technique
used in exploration geophysics. However, in contrast to a traditional CSEM
system which uses a high powered signal from a towed antenna in the sea to
record a reflected signal, the received signal from a MWD telemetry system
is a direct signal which is in essence guided by a metal pipe as it propagates
from the transmitter to the receiver[7]. In order to predict the communication
range of such a system, an estimate of the current distribution along the
pipe as a function of its geophysical surroundings is needed. As shown in
this paper, this requires, under reasonable assumptions, the evaluation of
the so-called Sommerfeld integrals [8]. For a long time, a reliable numerical
evaluation of Sommerfeld integrals has been a challenge [9]. However, this
paper presents an efficient and accurate numerical evaluation technique which
is needed to obtain reliable results for the current distribution along a metal
pipe in conductive media.

This paper is organized as follows: we start by presenting the geometry
considered in this study. Then we introduce the theoretical formulation of
the problem and sketch the derivation of the two central integral equations —
the Pocklington’s and Sommerfeld’s integral equations — that our numerical
calculations based on. We then present the numerical calculations for the
current distribution along the well casing due to a source located somewhere
along it, assuming either a homogeneous or layered earth model. To this end,
we introduce an algorithm for accurate and efficient numerical evaluation for
the so-called Sommerfeld integrals for conductive media at low frequencies
and apply it to both homogeneous and layered model.

D.2 Geophysical System

The geophysical system that we consider in this study is depicted in Fig-
ure D.1. It consists of a horizontally layered earth model in which a straight
vertical well of length � is located. The metal casing of the well has a circular



72
Paper D. Efficient and Accurate Numerical Evaluation of Sommerfeld Integrals

for Conductive Media at Low Frequencies

z

zs

z = 0

d1

d2

d3

d4

dN−1

dN

σ1

σ2

σ3

σ4

σN−1

σN

Source

Figure D.1: A sketch of the geometry considered in this work.
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cross section of radius a. The origin of the coordinate system is chosen to
coincide with the top point of the well, and the z-axis, located at the center
of the well, is positive downwards. With this definition, the top (bottom) of
the well is located at z = 0 (z = �), and the interface separating medium m
from medium m+ 1 is located at depth z = dm.

An electromagnetic source, of angular frequency ω, is located in the well
at depth zs (0 ≤ zs ≤ �). Medium in layer m (m ≥ 1) is characterized
by its frequency dependent permittivity and permeability, εm(ω) and μm(ω),
respectively, and the wavenumber km is equal to km =

√
εmμmω.

We will mostly be concerned with low frequency signals, f = ω/(2π) ≤
10Hz, for which the permittivity of the media of interest to a good approxi-
mation can be written as εm(ω) ≈ iσm(ω)/ω [10, Eq.8.5]. For simplicity, we
will assume that the μm(ω) of the media is real and positive. Under these
assumptions, the wavenumber reads

km(ω) ≈ 1 + i

δm
, (D.2.1a)

where the skin depth is equal to

δm(ω) =

√
2

σmμmω
. (D.2.1b)

D.3 Theory

In the application that we consider in this work, a delta-gap source [11, Ch.8]
is placed somewhere along the length of the well. The source corresponds
to an incident electric field, E(i)(r, ω), that will induce a current density,
J(r, ω), in the metal casing of the well. This current density will give rise
to a scattered electric field, E(s)(r, ω), in and around the well. Hence, the
well casing acts as a linear wire-antenna. Moreover, if the radius (a) of the
cylindrical casing is tiny compared to its length, a � �, the current density
will have an azimuthal symmetry, and we can write it as

J(r, ω) = ẑ
I(z)

2πa
δ(ρ− a). (D.3.1)

The corresponding scattered electric field is related to this current density
via the Helmholtz equation, well-known from electromagnetic theory and
readily derived from Maxwell equations [10, Ch.9]

∇×∇×E(s)(r, ω)− k2E(s)(r, ω) = iωμJ(r, ω), (D.3.2)
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where the wave number is defined as k =
√
εμω. The general solution to

Eq. (D.3.2) can be expressed as

E(s)(r, ω) = iωμ

∫
d3r′ G(r, r′) · J(r′, ω). (D.3.3)

In writing Eq. (D.3.3), we have introduced the (electric) dyadic Green’s ten-
sor [2, Ch.6]

G(r, r′) =
[
I+

∇∇
k2

]
g(r, r′), (D.3.4a)

with the free-space Green’s function defined as

g(r, r′) =
eik·(r−r

′)

4π |r − r′| . (D.3.4b)

In what follows, our main concern will be the z-component of the electric
field on the surface of the well casing. If the metal of the well casing is
considered a perfect electric conductor, at the casing surface (r = (ρ =

a, φ, z)) , E
(i)
z (r, ω)+E

(s)
z (r, ω) = 0. With this result and the substitution of

Eq. (D.3.1) into Eq. (D.3.3) it follows that the (unknown) current I(z) along
the well satisfies the following integral equation [12, Ch.12]∫ �

0

dz′ K(z, z′)I(z′) = i4πεωE(i)
z (z, a;ω), (D.3.5a)

where the kernel reads

K(z, z′) =
[
k2 + ∂2

z

] eikR
R

, (D.3.5b)

withR =
√
(z − z′)2 + a2 and ∂z = ∂/∂z. Furthermore, in writing Eq. (D.3.5b),

it has been assumed that a2 � |z− z′|2, an approximation known in antenna
theory as the thin wire antenna approximation [11, Ch.8]. If the metal of the
well casing is considered as a non perfect electric conductor, then at the cas-
ing surface, the boundary conditon should be E

(i)
z (r, ω)+E

(s)
z (r, ω) = ZI(z),

where Z is a parameter of internal impedance of the well [13, A-22].
If the surroundings of the well is a homogeneous medium, then the kernel

can be readily evaluated so that the resulting integral equation reads∫ �

0

dz′
eikR

R5

[
(1− ikR)(2R2 − 3a2) + (kaR)2

]
I(z′)

= i4πεω E(i)
z (z, a;ω). (D.3.6)
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Equation (D.3.6), known as Pocklington’s integral equation [11, Ch.8], can be
solved numerically by the method of moments [14] to produce reliable results
(see examples below).

However, if the surroundings of the well constitute a plane layered medium,
then the field generated by the current in the antenna is partly reflected by
the surrounding media back to the antenna region, thus affecting the overall
current in the antenna. This effect can only be taken into account by prop-
erly describing how the field is scattered and transmitted by the surrounding
layered media. The scattering and transmission amplitudes between two ad-
jacent media bounded by a planar interface is known for plane waves only.
Hence, to handle the plane layered earth model, a plane wave expansion of
the kernel K(z, z′) is required. This is achieved by taking advantage of the
Sommerfeld identity [8] which reads

eikr

r
= i

∫ ∞

0

dkρ
kρ
kz

J0(kρρ)e
ikz |z|, (D.3.7)

where J0(kρρ) denotes the Bessel function of the first kind and order zero [15,
Ch.6], kρ =

√
k2
x + k2

y and kz =
√
k2 − k2

ρ (Re kz > 0, Im kz > 0) are radial
and perpendicular wave numbers, respectively. Introducing Eq. (D.3.7) into
Eq. (D.3.5) results in an alternative integral equation for the current

∫ �

0

dz′ S(z, z′)I(z′) = 4πεω E(i)
z (z, a;ω), (D.3.8a)

where

S(z, z′) =
∫ ∞

0

dkρ
k3
ρ

kz
J0(kρa)e

ikz |z−z′|, (D.3.8b)

is a Sommerfeld integral. Equation (D.3.8) has been derived under the as-
sumption that the medium surrounding the well is homogeneous. If the
medium surrounding the well instead is a plane layered medium, the field
reflected from the layers will have to be taken into account. This amounts
to replacing the exponential factor exp (ikz|z − z′|) appearing in Eq. (D.3.8)
with a function, F (z, z′), that in addition to the original exponential factor
also contains the generalized reflection coefficients for the stack of layers lo-
cated above and below the source. The mathematical form of the function
F (z, z′) is given by 3.11.

Since the derivation of Eq. (D.3.8) relies on the Sommerfeld identity, we
will below refer to it, and its generalization to layered media, as the Sommer-
feld’s intergral equations (even if this is a not commonly used nomenclature).
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D.4 Numerical Study

D.4.1 Homogeneous Earth Model

The first case we will study is the situation when the well is placed in a
homogeneous medium. The current along the well that is due to a delta-gap
source located at depth z = zs can then be obtained by solving numerically
either Eq. (D.3.6) or (D.3.8) since these two equations are equivalent under
the conditions considered here.

Numerical solution of the integral equations (D.3.6) and (D.3.8) can be
obtained by the method of moments [14]. This amounts to discretizing the
length of the wire antenna into N elements each of length Δz = �/N and
centered at depth zn = (n − 1/2)Δz (n = 1, . . . , N). Under the assumption
that the unknown current varies slowly over each of the elements, and there-
fore is well approximated by its value at the center of the element I(zn), one
obtains

N∑
n=1

K(z, zn)I(zn) � i4πεω E(i)
z (z, a;ω), (D.4.1a)

where

K(z, zn) =

∫ zn+Δz/2

zn−Δz/2

dz′ K(z, z′), (D.4.1b)

and K(z, z′) is some integral kernel. Equation (D.4.1) represents a relation
among the N unknown currents I(zn), and to determine them, we will need a
closed set of equations for these currents. To this end, we evaluate Eq. (D.3.5)
at discrete depth z = zm (m = 1, . . . , N) with the result that Eq. (D.4.1) is
converted into a linear system of equations for the currents I(zn), that can
be solved efficiently by standard linear algebra packages.

In passing we note that on the assumption that the kernel K(z, z′) also
being a smooth function of z′, the matrix elements obtained from Eq. (D.4.1b)
can be approximated as

Kmn ≡ K(zm, zn) ≈ Δz K(zm, zn). (D.4.2)

On the other hand, if K(z, z′) is not a smooth function of z′, care must be
taken to evaluate more accurately the integral present in Eq. (D.4.1b).

By the method just described, we have solved numerically both the Pock-
lington’s and Sommerfeld’s integral equations, Eqs. (D.3.6) and (D.3.8), for
a homogeneous medium. The numerical results for the current along the well
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Figure D.2: Figure 2. The current distribution (relative that of the source
Is) along the well casing, I(z)/Is, obtained by numerically solving either
the Pocklington’s integral Eq. (D.3.6) or Eq. (D.3.8) for various vertical dis-
cretization intervals Δz. The length of the well is assumed to be � = 1000m,
and its metal casing has radius a = 0.1m and conductivity σ = 106 S/m.
The source, operating at frequency f = ω/(2π) = 5Hz, is located a distance
100m from the lower end of the well (zs = 900m). The medium surrounding
the well is assumed to be homogeneous and characterized by a conductiv-
ity of σ0 = 1S/m. The numerical calculation of the integrals appearing
in Eqs. (D.3.6) and (D.3.8) are both performed with standard quadrature
schemes.
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are presented in Figure D.2 assuming various values for the discretization in-
terval Δz. Figure D.2 demonstrate that the Pocklington’s integral equation
produces stable numerical results in the sense that as Δz becomes small, the
current along the well, I(z), converges towards a well defined function that
seems to be independent of Δz. On the other hand, basing the simulations
on the Sommerfeld’s integral equation, that for a homogeneous medium is
equivalent to the integral equation of Pocklington, Figure D.2 shows that a
convergent result for the current is not obtained, at least not with the numer-
ical implementation that was described above and used to obtain the results
presented in Figure D.2.

In passing, we note that in a recent study, a similar geometry was con-
sidered by [16]. These authors, basing their numerical study on a similar
integral equation, reported good agreement between their numerical results
for a small current element (i.e. a vertical electric dipole) placed in a homo-
geneous medium and corresponding predictions made from analytic formula
(see Figure 2(a) of [16]), and these numerical results were found to be little
sensitive to the length, � = Δz, of the current element. Using the parame-
ters from [16] we can reproduce their results. Moreover, when a long well is
placed in a homogeneous medium we can also reproduce the results obtained
by Yang et al. and presented in their Figure 4(a), when we used similar
parameters and assumed a casing radius of a = 0.02m (a parameter we from
their paper could not find the value used). In particular, a discretization
interval of Δz = 12.5m was assumed by these authors and us. However, if
the value assumed for Δz is decreased when studying this latter geometry,
we find a strong influence in the predicted current distribution along the
casing of the well. The difference between the results obtained when using
Δz = 12.5m, that we can reproduce after [16], and those results that we ob-
tain when Δz = 2m, say, is of the order 10 dB at 2500m. Hence, we note that
for the parameters assumed by [16] we get strong dependence on Δz similar
to that presented in our Figure D.2. Therefore, we speculate that also the
study of [16] face the numerical issue addressed in the current study.

So why do we not get convergent results when solving the Sommerfeld’s
integral equation numerically. To see the cause of the problem, let us start by
introducing S(kρ; z, z′) as the integrand of the integral defining S(z, z′). Fig-
ure D.3 shows that the convergence range of the imaginary part of S(kρ; z, z′)
becomes large as |z − z′| is small, while the real part of S(kρ; z, z′) is tiny com-
pared to the imaginary part and doesn’t change much with |z − z′|. When the
integrand function S(kρ; z, z′) converges slowly, it is hard to evaluate the in-
tegral S(z, z′) accurately. In the extreme case, when |z − z′| = 0, S(kρ; z, z′)
becomes an ever increasing oscillating function, whose integral can not be
evaluated numerically. In the example presented in Figure D.2, the maxi-
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mum difference appears at the subdiagonal of the coefficient matrix, which
is only 4.5 × 10−2% when |z − z′| = 2m, but it is big enough to generate a
significant error in the final result.
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Figure D.3: Im(S(kρ; z, z′)) and Re(S(kρ; z, z′)) vs. kρ for various choices
of |z − z′|. The radius is assumed to be a = 0.1m and the conductivity is
assumed to be σ = 4S/m. The operating frequency f = 5Hz.

The root of the problem comes from the strongly oscillating integrand
which causes standard numerical integration schemes to fail miserably. Cur-
rently there are essentially two classes of methods used for the numerical
evaluation of Sommerfeld integrals; numerical and asymptotic methods.

One of the best numerical method for evaluating integrals of oscillat-
ing integrands is the integration, summation and extrapolation(ISE) method
(see e.g. Davis and Rabinowitz[17]). To use the ISE method, the zeros
of the Bessel function are found first, then the integral is divided at these
zeros and an alternating sequence is summed. Finally, to accelerate con-
vergence, extrapolation methods are applied such as Euler transformation
[18], ε-algorithm of Wynn [19] and W -transform of Sidi [20, 21]. Lucas and
Stone [22] have compared the efficiency of the different algorithms and a good
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review is presented by Michalski [23].

Asymptotic methods can be applied when |z − z′| → ∞ and different
methods are applied based on whether ikz|z − z′| is a real, imaginary or
complex function. If it is real and negative, the Sommerfeld integral can
be evaluated as a Laplace integral [24, Ch.6.4]. If it is pure imaginary, the
Sommerfeld integral can be evaluated by the method of stationary phase [2,
Ch.2.5.1]. If it is complex and Re(ikz|z − z′|) < 0, the Sommerfeld integral
can be evaluated by the method of steepest descent [2, Ch.2.5.2].

However, when (|z − z′|) becomes small, both the numerical and the
asymptotic methods face difficulties. The numerical approach will converge
slowly so that a large integral range is required. The asymptotic approach,
on the other hand, is only valid in the far field region where |z − z′| →
∞. In conclusion, existing techniques for evaluating Sommerfeld integrals
numerically are not sufficient for geophysical applications.

D.4.2 Asymptotic Splitting Method

We have seen that the main challenge for obtaining a reliable and efficient
evaluation of Sommerfeld integrals (assuming relevant geophysical parame-
ters), is the huge amplitude, oscillating and slowly decaying behavior with
kρ of the integrand

S(kρ; z, z′) =
k3
ρ

kz
J0(kρa)e

ikz |z−z′|, (D.4.3)

for small values of |z − z′|.
With the aim of making the integrand more suited for accurate numerical

integration, we will subtract and add to it, a function A(kρ; z, z
′) that has

the same asymptotic form as S(kρ; z, z′), but which also can be integrated
analytically. If such a function can be found, one has that

S(z, z′) =
∫ ∞

0

dkρ [S(kρ; z, z′)−A(kρ; z, z
′)]

+

∫ ∞

0

dkρ A(kρ; z, z
′) (D.4.4)

where the second integral is evaluated analytically, while the first is evaluated
numerically. Since, the two integrands S(kρ; z, z′) and A(kρ; z, z

′) have the
same asymptotic form, the difference between them, is expected to decay
much quicker, so that its integral can be calculated quicker and much more
reliably. To illustrate this technique, we start by noting that the asymptotic
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form of S(kρ; z, z′), as given by Eq. (D.4.3), is

A(kρ; z, z
′) = −i

√
2

πa
k

3
2
ρ cos

(
kρa− π

4

)
e−kρ|z−z

′|, (D.4.5)

where we have used Eq. (D.2.1), kz =
√

k2 − k2
ρ ≈ ikρ when kρ 	 1/δ, and

the asymptotic expansion of the Bessel function J0(kρa) [2, Eq.(1.2.32)]. The
integral of the function in Eq. (D.4.5) can be evaluated analytically by the
Laplace transform to produce∫ ∞

0

dkρ A(kρ; z, z
′) = −i

3

4

√
1

2a

[
e−i

π
4 s
− 5

2
+ + ei

π
4 s
− 5

2−
]

(D.4.6)

where s± = −|z − z′| ± ia.
To investigate how well the asymptotic splitting method works in practice,

we in Figure D.4 present the dependence of the imaginary part of S(kρ; z, z′)−
A(kρ; z, z

′) vs. kρ for given value of |z − z′|. By comparing the results of
Figure D.3(c) and D.4, it is observed that the asymptotic separation method
reduces the integrand by about two orders of magnitude, at least for the
parameters considered here.
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assumed parameters in these calculations are equal to those of Figure D.3.
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Figure D.5: Numerical results obtained by applying the new method to
Eq. (D.3.8) and compared to that given by Eq. (D.3.6) for the integral step
Δz = 2m. The length of the well � = 1000m and the radius a = 0.1m.
The source is located at 100m from the lower end of the well. The conduc-
tivity of the well is assumed to be σa = 1 × 106 S/m and the conductivity
of the surroundings is assumed to be σm = 1S/m. The system operates at
f = 5Hz.
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By performing the calculation of the Sommerfeld kernel S(z, z′) as out-
lined above, it is hoped that better numerical accuracy can be obtained.
This is indeed the case, as demonstrated in Figure D.5. An examination on
the coefficient matrix shows that the difference of the elements on the first
sub-diagonal decreases from 4.5× 10−2% to 8.5× 10−4%.

D.4.3 Plane Layered Earth Model

It is well known that the subsurface of the earth is not a homogeneous
medium. As a crude approximation, the outer crust of the earth can be
considered to consist of horizontal plane layers. For such model, the Pock-
lington’s integral equation can not any longer be used to model the current
signal propagating along the well. Instead one has to resort to the Sommer-
feld’s integral equation.

For evaluation purposes, we will consider a simple three layered earth
model for which the interfaces are located at d1 = 300m and d2 = 500m.
The conductivities of the various media are σ1 = 1S/m, σ2 = 4S/m, and
σ3 = 1S/m, respectively. In this layered model, we assume that a vertical
well of length � = 1 000m and radius a = 0.1m. The conductivity of the
well casing is assumed to be σa = 1 × 106S/m. The electromagnetic source
is located at depth zs = 900m and the top of the well is located at z = 0m.

By the method introduced above, we numerically solved the Sommerfeld’s
integral equation for the model, and Figure D.6 presents the current distri-
bution along the length of the well. In performing these calculations, we had
to substitute, as mentioned previously, the factor exp (ikz|z − z′|) appearing
in Eq. (D.3.8) with a function, F (z, z′). The explicit mathematical form of
F (z, z′) can be found in the Appendix 3.11.

From the simulation results presented in Figure D.6, it is observed that
close to the source, the current distribution along the well follows closely the
corresponding current distribution for a homogeneous 1 S/m medium. How-
ever, as for depths corresponding to the high conductive layer (medium 2), a
steeper current gradient is readily observed. Near to the interface of medium
1 and medium 2, a reflection effect can be observed.

In order to be able to compare the quality of the numerical results based
on the Sommerfeld’s integral equation, Figure D.6 also presents results ob-
tained by using the transmission line matrix method [25]. The predictions
obtained by both methods compare favorably, which verifies the quality of
our numerical results. However, the latter method is less general than the
former, and can, for instance, not handle a geometry where the well is not
perpendicular to the interfaces of the layers. When the well is tilted with
respect to the plane layers (with an angle different from 90o), the Sommer-
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Figure D.6: Numerical result of I(z′) along the well relative to the source
I(z′s) in dB when the integral step |z − z′| = 2m. The length of the well
is � = 1 000m and the radius is a = 0.1m. The source is located 100m
from the lower end of the well. The conductivity of the well is assumed
to be σa = 1 × 106 S/m and the conductivities of the layered media are
assumed to be σm = [1, 4, 1] S/m. The system operates at f = 5Hz. The
result is compared to the results for a homogeneous medium and the results
computed by the transimission line matrix method.
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feld’s integral equation method is one of the few semi-analytic methods that
can be used to obtain the current distribution along the well.

D.4.4 Experiment

In 2011, an experiment was carried out by Wins and Sintef on testing signal
transmission along a metal well casing. Thanks for the kindness of Wins and
Sintef, the experiment data can be applied to test the numerical results given
by the method presented in this paper.

A sketch of the experiment is presented in Fig.D.7. Two equipments,
named tool 1 and tool 2, was installed in the well and communicated with
each other with single frequency signals. Tool 2 was installed at a depth of
2500m and tool 1 was first installed at 10m and then installed at 1500m.
In order to correct the big calculation error near the end of the well, a 50m
cable was connected to the top of the well.

25
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surface
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well

Figure D.7: A sketch of the experiment
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To compare the experiment data to the numerical results, the signal re-
ceived by the same tool with different distance to the source are compared.
For tool 1 worked as a receiver, the difference between the signal received
by it at 1500m and 10m are presented in Table.D.1 and the corresponding
numerical results are presented in Fig.D.8. For tool 2 worked as a receiver,
the difference between the signal transmitted by tool 1 when it was at 1500m
and 10m are presented in Table.D.2 and the corresponding numerical results
are presented in Fig.Fig.D.9.

Table D.1: Compare the experiment data received by tool 1 to the numerical
results

0.66 Hz 1 Hz 2 Hz 4 Hz
difference in experiment for
tool 1 at 1500m and 10m 59.09dB 60.55dB 64.14dB 64.9dB
numerical results for
tool 1 at 10m −112.3dB −113.3dB −118.4dB −132.6dB
numerical results for
tool 1 at 1500m −52.11dB −52.66dB −55.22dB −62.19dB
difference in numerical model
between 1500m and 10m 60.19dB 60.64dB 63.18dB 70.4dB
error between numerical model
and experiment 1.1dB 0.09dB −0.96dB 5.5dB

Table D.2: Compare the experiment data received by tool 2 to the numerical
results

0.66 Hz 1 Hz 2 Hz 4 Hz
difference in experiment for
tool 1 at 1500m and 10m 59.68dB 61.64dB 66.06dB 66.68dB
numerical results for
tool 1 at 10m −110.3dB −111.5dB −117.2dB −132.5dB
numerical results for
tool 1 at 1500m −48.22dB −48.75dB −51.26dB −58.12dB
difference in numerical model
between 1500m and 10m 62.08dB 62.75dB 65.94dB 74.38dB
error between numerical model
and experiment 2.4dB 1.11dB −0.12dB 7.7dB

Comparing the numerical results to the experiment results in Table.D.1
and Table.D.2, we can see that the results given by the numerical method
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are agree to the experiment results quite well except when f = 4Hz. There
is no exact explanation for this and noise effect for weak signal can be one
of the reason. For the sake of commercial confidence, no more detail of the
experiment could be presented here.

D.5 Conclusion

In geophysics, the earth is often considered as a horizontally layered medium,
where each layer is characterized by a conductivity. When an electric dipole
source is placed over the earth or embedded in it, the electromagnetic wave ra-
diated from it will be reflected and transmitted from the various layer bound-
aries. To calculate the electromagnetic field anywhere in the structure, the
well developed plane wave theory for a horizontally layered medium can be
applied. This amounts to expanding the source in plane waves, an expansion
that introduces the so-called Sommerfeld integrals. However, such integrals
are challenging to evaluate accurately due to the oscillating behavior and/or
slow decay of the the integrand. In this paper, we present an efficient and
accurate numerical method for evaluating such integrals in the low frequency
limit, i.e. when Im(ε(ω)) 	 Re(ε(ω)) (σ/ω 	 Re(ε)). The method relies on
adding and subtracting to the Sommerfeld integrand a functional form that
has the same asymptotic form as the Sommerfeld integrand, but which can
be evaluated analytically. The remaining integrand can accurately be inte-
grated numerically since it is better behaved (in the large argument limit).
By adding the two former integrals evaluated analytically and numerically,
an accurate estimate for the original Sommerfeld integral is obtained. Our
method is evaluated by presenting numerical results for the wave propagation
from a source placed in a vertical well surrounded by either a homogeneous
or horizontally layered medium. We find that the current along the well cal-
culated with the method introduced in this paper compares favorably with
what can be obtained by alternative methods. It is found that the proposed
method produces results which are (for similar computational complexity)
50 times more accurate, at least for the examples studied in this paper. The
application of the results presented in this work points towards obtaining
more accurate computation of the strongly attenuated electromagnetic (or
other) field in geophysical systems.
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Appendix

3.1 Maxwell equations and Constitutive relations

In vector notation and SI units, Maxwell’s equations can be written in dif-
ferential representations:

∇ ·D(r, t) = ρ(r, t), (3.1.1a)

∇ ·B(r, t) = 0, (3.1.1b)

∇× E(r, t) = − ∂

∂t
B(r, t), (3.1.1c)

∇×H(r, t) = J(r, t) +
∂

∂t
D(r, t), (3.1.1d)

where D is the electric flux in C/m2, B is the magnetic flux in Wb/m2, E is
the electric field in V/m and H is the magnetic field in A/m. J is the current
density in A/m2 and ρ is the charge density in C/m2 [1, P.1].

If we assume the fields are time harmoic, Eq.3.1.1c and Eq.3.1.1d can be
simplified as

∇× E(r, t) = iωB(r, t), (3.1.2a)

∇×H(r, t) = J(r, t)− iωD(r, t), (3.1.2b)

where ω is the angular frequency in rad/S.
In the differential equations above, the nabla operator ∇ has different

forms in different coordinates. In Cartesian coordinate,

∇ = x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
. (3.1.3)

In cylindrical coordinate,

∇ = ρ̂
∂

∂ρ
+ θ̂

1

ρ

∂

∂θ
+

∂

∂z
ẑ. (3.1.4)

In spherical coordinate,

∇ = r̂
∂

∂r
+ θ̂

1

r

∂

∂θ
+ φ̂

1

r sin θ

∂

∂φ
. (3.1.5)

93



94

Although Maxwell’s equations are extremely compact, the applications
and solutions of Maxwell’s equations turn out to be extremely comprehen-
sive because in practical problems, the constitutive relations are specific to
materials and substances:

D(r, ω) = ε̄(r, ω) · E(r, ω) + ξ̄(r, ω) ·H(r, ω) (3.1.6a)

B(r, ω) = ζ̄(r, ω) · E(r, ω) + μ̄(r, ω) ·H(r, ω) (3.1.6b)

where ε̄, ξ̄, ζ̄ and μ̄ are 3 × 3 tensors [1, P.5]. If the medium is assumed to
be isotropic and homogeneous, ε and μ are constants

D = εE = εrε0E (3.1.7a)

B = μH = μrμ0H (3.1.7b)

where ε0 = 8.85× 10−12F/m and μ0 = 4π × 10−7H/m, the permittivity and
permeability in vacuum. εr and μr are respectively the dielectric constant
and the relative permeability of the medium. If the medium is conductive for
a conductivity σ, the permittivity is complex. From Eq.(3.1.2b) and Ohm’s
law J = σE, we could obtain

∇×H = J− iωD = −iωε̃E, (3.1.8)

where the generalized permittivity ε̃ equals

ε̃ = ε+ i
σ

ω
. (3.1.9)

3.2 Potentials and Lorenz gauge

For the convenience of calculation, vector and scalar potentials are defined
from the Maxwell’s equation. Since ∇ ·B = 0, vector magnetic potential A
can be defined by

B = ∇×A. (3.2.1)

Put Eq.(3.2.1) into Eq.(3.1.2a), we can define the scalar potential Φ by

E = −∇Φ− ∂A

∂t
. (3.2.2)

The potentials defined in Eq.(3.2.1) and (3.2.2) are not unique. All the
couples that fulfills the field will be a pair of solution. For example, A′ and
Φ′ defined by the equations

A′ = A+∇Λ, (3.2.3a)

Φ′ = Φ− ∂Λ

∂t
, (3.2.3b)
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will have the same fields derived from A and Φ. All the sets of (A,Φ) which
satisfies the relation

∇ ·A = −με
∂Φ

∂t
(3.2.4)

belong to the Lorenz gauge.
Insert potential (3.2.1) and (3.2.2) into the inhomogeneous Maxwell equa-

tions Eq.(3.1.1a) and (3.1.2b), together with constitutive relations and Lorenz
gauge, we can obtain the following Helmholtz equations:

(∇2 + k2)Φ(r) = −ρ(r′)
ε

, (3.2.5a)

(∇2 + k2)A(r) = −μJ(r′), (3.2.5b)

in which the wavenumber k = ω
√
με, r′ represents the source position.These

two equations represent the electromagnetic wave induced by charge source
ρ(r′) and current source J(r′). In a conductive medium, k is complex and
equals

k = ω
√
με̃ = ω

⎡
⎣
√
μ(

√
ε2 + (σ

ω
)2 + ε

2
) + i

√
μ(

√
ε2 + (σ

ω
)2 + ε

2
)

⎤
⎦ . (3.2.6)

If σ/ω >> ε, the wave number can be approximated by

k ≈
√

ωμσ

2
(1 + i). (3.2.7)

3.3 Electromagnetic fileds induced by a current
element in a homogeneous medium

To solve an inhomogeneous Helmholtz equation such as

(∇2 + k2)L(r) = s(r′), (3.3.1)

we need to study the case of a point source first,

(∇2 + k2)G(r) = −δ(r− r′), (3.3.2)

where the solution G(r) to this equation is called the scalar Green’s function.
In frequency domain, it equals

G(r, r′) =
eikR

4πR
, (3.3.3)
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where R = |r − r′|. Then, for a given source s(r′), the Holmheltz equation
(3.3.1) can be solved by applying convolution theory

L(r) =
∫

dr′G(r, r′)s(r′). (3.3.4)

When the source s(r′) is a current source, we first devided it into small
elements, each of which can be considered as an electric dipole I(r′)dll̂. Next,
we study the field induced by each of electric dipole and finally we can find
the total field by summing up the fields from all of the dipoles. The vector
potential A(r) induced by an electric dipole is equal to

A(r) =
μI(r′)dll̂eikR

4πR
. (3.3.5)

By applying the definition of potential (3.2.2) and Lorenz gauge (3.2.4), we
can get electric field E due to an electric dipole:

E(r) = iω
[ ∇∇
ω2με

+ Ī
]
·A = iωμ

[ ∇∇
ω2με

+ Ī
]
· e

ikRI(r′)dll̂
4πR

. (3.3.6)

We define

Ḡ(r, r′) =
[ ∇∇
ω2με

+ Ī
]
· e

ikR

4πR
, (3.3.7)

as the dyadic Green’s function. In the equations above, Ī denotes the unit
dyad

Ī =

⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦ . (3.3.8)

By using the definition of the nabla operator (3.1.3), (3.1.4), (3.1.5), the
tensor ∇∇ can be calculated as following. In Cartesian coordiante,

∇∇ =

⎡
⎣ ∂x

∂y
∂z

⎤
⎦ [

∂x ∂y ∂z
]
=

⎡
⎣ ∂xx ∂xy ∂xz

∂yx ∂yy ∂yz
∂zx ∂zy ∂zz

⎤
⎦ . (3.3.9)

In cylindrical coordinate,

∇∇ =

⎡
⎣ ∂ρ

1
ρ
∂θ
∂z

⎤
⎦ [

∂ρ
1
ρ
∂θ ∂z

]
=

⎡
⎣ ∂ρρ

1
ρ
∂ρθ ∂ρz

1
ρ
∂θρ

1
ρ2
∂θθ

1
ρ
∂θz

∂zρ
1
ρ
∂zθ ∂zz

⎤
⎦ . (3.3.10)
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In spherical coordinate,

∇∇ =

⎡
⎣ ∂r

1
r
∂θ

1
r sin θ

∂φ

⎤
⎦ [

∂r
1
r
∂θ

1
r sin θ

∂φ
]

=

⎡
⎣ ∂rr

1
r
∂rθ

1
r sin θ

∂rφ
1
r
∂θr

1
r2
∂θθ

1
r2 sin θ

∂θφ
1

r sin θ
∂φr

1
r2 sin θ

∂φθ
1

r2 sin2 θ
∂φφ

⎤
⎦ . (3.3.11)

We take an vertical electic dipole (VED) source for an example. Put a
current element at the origin along z-axis of a cylindrical coordinate, which
can be illustrated by Idzẑ. The field components induced by this VED can
be calculated by (3.3.6). Ez is equal to

Ez =
iωμIdz

4πk2
(k2 + ∂zz)

eikR

R
. (3.3.12)

By using chain rule of derivative, we get

Ez =
iωμIdz

4πk2

eikR

R5

[
(1− ikR)(2R2 − 3ρ2) + (kρR)2

]
, (3.3.13)

which is the integrand of the Pocklington’s integral. Eρ is equal to

Eρ =
iωμIdz

4πk2
∂ρz

eikR

R
(3.3.14)

=
iωμIdz

4πk2

eikR

R5

[
ρz(−k2R2 − 3ikR + 3)

]
(3.3.15)

Ez and Eρ from a VED are illustrated in Fig.3.10 and 3.11.
The magnetic field H can be calculated from A by

H =
1

μ
∇×A. (3.3.16)

3.4 Decomposition of electromagnetic fields

In a source free space, wave equations of fields E and H can be achieved from
the Maxwell’s equations:

(∇2 + k2)E = 0, (3.4.1a)

(∇2 + k2)H = 0, (3.4.1b)
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Figure 3.10: The electric field components |EVED,z| in ρz-plane, the field is
valued in dB
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Figure 3.11: The electric field components |EVED,x| in ρz-plane, the field is
valued in dB
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which indicate that they will propagate in plane waves in a homogeneous
medium:

E = Eeik·r−iωt, (3.4.2a)

H = Heik·r−iωt, (3.4.2b)

where k = kk̂ and k̂ is the propagating direction. Since the fields E and
H are transverse to the propagating direction in this case, they propagate
in TEM mode. Before studying the electromagnetic wave propagation in
inhomogeneous medium, we need to study the decomposition of the fields
first. We will consider the electric field E and the magnetic field H could be
studied in a similar way.

Given an arbitrary direction which can be represented by a direction unit
û, the field E can then be decomposed into a component Eu which is in the
direction of û and a component Et which is transverse to û and lies in E− û
plane, as shown in Fig.3.12. By applying vector calculus theory, we can get
Eu = E · û and Et = E− Euû.

Figure 3.12: The longitudinal-transverse decomposition of E field

In the wave equations (3.4.1a), wave number k and nabla operator ∇ are
also vectors and can be decomposed in the way of E. The wave number k is
decomposed into a longitudinal component ku in û direction and a transverse
component kt =

√
k2 − k2

u which is transverse to û and lies in k − û plane.
The nabla symbol ∇ is decomposed into ∂

∂u
û and ∇t = ∇ − ∂

∂u
û. Put

them back into Maxwell equations and together with vector calculus theory,
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we can get the Maxwell equations in terms of transverse and longitudinal
components [2, Ch.8.2] [3, Ch.5.3][4, Ch.9.5]

∇t · Et = −∂Eu

∂u
, (3.4.3a)

∇t ·Ht = −∂Hu

∂u
, (3.4.3b)

û · ∇t × Et = iωμHu, (3.4.3c)

∂Et

∂z
−∇tEz = −iωμû×Ht, (3.4.3d)

û · ∇t ×Htt̂ = −iωεEu, (3.4.3e)

∂Ht

∂z
−∇tBz = iωεû× Et. (3.4.3f)

Equations (3.4.3d) and (3.4.3f) can be used to get solutions for Et and Ht in
the longitudinal components Eu and Hu:

Et =
i

k2 − k2
u

[ku∇tEu − ωμû×∇tHu], (3.4.4a)

Ht =
i

k2 − k2
u

[ku∇tHu + ωεû×∇tEu]. (3.4.4b)

Since in each of the equations (3.4.3a) and (3.4.3b), there are two forcing
terms on the right hand side, Eu and Hu, we can take them independently
and then use superposition method to get the total results.

E = E1 + E2, (3.4.5a)

H = H1 +H2. (3.4.5b)

For Hu = 0, E2 and H2 are equal to:

E2 = E2t + E2uû, (3.4.6a)

H2 = H2t, (3.4.6b)

in which

E2t =
i

k2 − k2
u

[ku∇tEu], (3.4.7a)

H2t =
i

k2 − k2
u

[ωεû×∇tEu]. (3.4.7b)

Since Hu = 0, it is a TM mode.
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For Eu = 0, E1 and H1 are equal to:

E1 = E1t, (3.4.8a)

H1 = H1t +H1uû, (3.4.8b)

in which

E1t =
i

k2 − k2
u

[−ωεû×∇tHu], (3.4.9a)

H1t =
i

k2 − k2
u

[ku∇tHu]. (3.4.9b)

Since Eu = 0, it is a TE mode. In a homogeneous and isotropic medium, the
TE and TM decomposition are shown in the Fig.3.13:

TM mode TE mode

x

y

z

Ht

E

Euû

Et k

kuû
x

y

z

Et

H

Huû
Ht

k

kuû

Figure 3.13: The components of the fields in TM mode and TE mode

From the analysis above, we can prove that the electromagnetic field can
be completely characterized by the two longitudinal field components Eu

and Hu [1, Ch.2.1][3, Ch.5.4]. For example, in a source free space, the field
equations are equal to

(∇2 + k2)Eu = 0, (3.4.10a)

(∇2 + k2)Hu = 0, (3.4.10b)

3.5 Field components from an electric dipole

Equation (3.3.6) presented how to compute electric field induced by an elec-
tric dipole in a homogeneous medium. But when an electric dipole is embeded
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in a layered medium, we need to decompose the field first by using Wyel’s
identity or Sommerfeld integral in order to apply the propagation theory of
plane waves [1, Eq.2.2.27, 2.2.30],

eikR

R
=

i

2π

∫ ∞

−∞

∫ ∞

−∞
dkxdky

eikx(x−x
′)+iky(y−y′)+ikz |z−z′|

kz
, (3.5.1a)

eikR

R
= i

∫ ∞

0

dkρ
kρ
kz

J0(kρ(ρ− ρ′))eikz |z−z
′|. (3.5.1b)

where kz =
√
k2 − k2

ρ. In the following, we will study the field components
induced by a VED source and a HED source respectively. The study will be
done in a Cartesian coordinate.

For a VED source placed at the origin and along z-axis, there is no Hz

component induced by it, which can be proved by (3.3.5) and (3.3.16). The
electromagnetic wave induced by VED is in TM mode in z-direction. Since
the model is symmetry in xy-plane, we only study the field components in
xz-plane. By putting the Sommerfeld integral (3.5.1b) into equation (3.3.12),
we can compute ETM

z,V ED

ETM
z,V ED =

−ωμIdz

4π

∫ ∞

0

dkx(k
2 +

∂2

∂z2
)
kx
kzk2

J0(kxx)e
ikz |z|

=
−ωμIdz

4π

∫ ∞

0

dkx
k3
x

kzk2
J0(kxx)e

ikz |z|, (3.5.2)

where kx =
√
k2 − k2

z . Similarly, the field component ETM
x,V ED is equal to

ETM
x,V ED =

−ωμIdz

4π

∫ ∞

0

dkx(
∂2

∂x∂z
)
kx
kzk2

J0(kxx)e
ikz |z|

=
iωμIdz

4π

z

|z|
∫ ∞

0

dkx
k2
x

k2
J1(kxx)e

ikz |z|, (3.5.3)

An example is given in Fig.3.14 and Fig.3.15, which are the same as Fig.3.10
and Fig.3.11 and prove that both methods will present the same results in a
homogeneous medium.

If the electric dipole at the origin is placed along x-axis, then it is a
horizontal electric dipole (HED) for wave propagating in z-direction. Since
HED will induce Hz component which inturn will induce Ex, it will be in TE
mode. The Hz induced by a HED is equal to

Hz,HED = ẑ ·
[
∇× Idxx̂eikR

4πR

]
= −ikyIdx

eikR

4πR
. (3.5.4)
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Figure 3.14: The electric field components |ETM
VED,z| in xz-plane, the field is

valued in dB
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Figure 3.15: The electric field components |ETM
VED,x| in xz-plane, the field is

valued in dB
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By using (3.4.9a), the Ex,HED component induced by Hz,HED is equal to

ETE
x,HED =

i

k2 − k2
x

[−ωεẑ ×∇tHz] =
iωμ

k2 − k2
z

∂Hz

∂y
. (3.5.5)

Put (3.5.4) into (3.5.5) and applying Weyl identity (3.5.1a), ETE
x,HED is equal

to

ETE
x,HED =

−ωμIdx

4π

1

2π

∫ ∞

−∞

∫ ∞

−∞
dkxdky(

k2
y

k2
x + k2

y

)
eikxx+ikyy+ikz |z|

kz
. (3.5.6)

The reason that we need to apply Weyl identity instead of Sommerfeld in-
tegral is that it is not symmetry in xy-plane anymore. In k domain, we
have

kρ =
√
k2
x + k2

y, (3.5.7)

where kx = kρ cosα, ky = kρ sinα. In space domain,

ρ =
√
x2 + y2, (3.5.8)

where x = ρ cos β and y = ρ sin β. Therefore

eikxx+ikyy = eikρρ(cosα cosβ+sinα sinβ) = eikρρ sin ξ, (3.5.9)

in which ξ = α−β+π/2. This can be expressed by a series of Bessel functions
[5, 8.511]:

eikρρ sin ξ =
∞∑
−∞

Jn(kρρ)e
inξ (3.5.10)

where J−n(kρρ) = (−1)nJn(kρρ). From this, one obtains [5, 8.411]:

J0(kρρ) =
1

2π

∫ 2π

0

dξeikρρ sin ξ (3.5.11a)

J1(kρρ) =
1

2πi

∫ 2π

0

dξ sin ξeikρρ sin ξ (3.5.11b)

J2(kρρ) =
1

2π

∫ 2π

0

dξ cos 2ξeikρρ sin ξ (3.5.11c)

and the relationship between J0, J1 and J2:

J0(kρρ) + J2(kρρ) =
2

kρρ
J1(kρρ) (3.5.12)
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Equation (3.5.6) can be transformed into

ETE
x,HED =

−ωμIdx

4π

1

2π

∫ ∞

0

dkρkρe
ikz |z|

∫ 2π

0

dξ
sin2 α

kz
eikρρ sin ξ. (3.5.13)

sin2 α = cos2(ξ + β) =
1

2
+

1

2
(cos 2ξ cos 2β − sin 2ξ sin 2β), (3.5.14)

therefore,

ETE
x,HED =

−ωμIdx

4π

1

2π

∫ ∞

0

dkρ
kρ
kz

eikz |z|
∫ 2π

0

dξ(
1

2
+

cos 2ξ cos 2β

2
)eikρρ sin ξ,

(3.5.15)
which is equal to

ETE
x,HED =

−ωμIdx

4π

∫ ∞

0

dkρ
kρ
kz

[
sin2 βJ0(kρρ) +

cos 2β

kρρ
J1(kρρ)

]
eikz |z|.

(3.5.16)
In xz-plane, β = 0, the equation can be simplified as

ETE
x,HED =

−ωμIdx

4π

∫ ∞

0

dkx
1

kzx
J1(kxx)e

ikz |z|. (3.5.17)

An example of ETE
x,HED is shown in Fig.3.16.

From (3.3.6), the total Ex induced by a HED is equal to

ETM+TE
x,HED =

iωμIdx

4πk2
(k2 + ∂xx)

eikR

R
. (3.5.18)

By using Wyel identity, it is equal to

ETM+TE
x,HED =

iωμIdx

4πk2

1

2π

∫ ∞

−∞

∫ ∞

−∞
dkxdky

k2 − k2
x

k2

eikxx+ikyy+ikz |z|

kz
. (3.5.19)

The ETM
x,HED will equal to ETM+TE

x,HED − ETE
x,HED, which is equal to

ETM
x,HED =

iωμIdx

4πk2

1

2π

∫ ∞

−∞

∫ ∞

−∞
dkxdky

k2
xkz

k2(k2
x + k2

y)
eikxx+ikyy+ikz |z|. (3.5.20)

Apllying the properties of the Bessel function introduced above, we can get

ETM
x,HED =

−ωμIdx

4π

∫ ∞

0

dkρ
kρkz
k2

[
cos2 βJ0(kρρ)− cos 2β

kρρ
J1(kρρ

]
eikz |z|.

(3.5.21)
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Figure 3.16: The electric field components |ETE
HED,x| in xz-plane, the field is

valued in dB
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Figure 3.17: The electric field components |ETM
HED,x| in xz-plane, the field is

valued in dB
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Figure 3.18: The electric field components |ETE+TM
HED,x | in xz-plane, the field is

valued in dB

in xz-plane, it is equal to

ETM
x,HED =

−ωμIdx

4π

∫ ∞

0

dkρ
kxkz
k2

[
J0(kxx)− 1

kxx
J1(kxx)

]
eikz |z|. (3.5.22)

Fig.3.17 shows an example of ETM
x,HED. The total Ex,HED is shown in Fig.3.18,

which is equal to Ez,V ED.

Finally, Ez component induced by a HED will be always in TM mode in
z-direction and it can be calculated from (3.3.6) directly

ETM
z,HED =

iωμdz

4π

z

|z|
∫ ∞

0

dkx
k2
x

k2
J1(kxx)e

ikz |z| = ETM
x,V ED. (3.5.23)

This is shown in Fig.3.19

To sum up, the electric field components in xz-plane, which are induced
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Figure 3.19: The electric field components |ETM
HED,z| in xz-plane, the field is

valued in dB

by a VED and a HED placed at the origin, are listed below:

ETM
z,V ED =

−ωμIdz

4π

∫ ∞

0

dkx
k3
x

kzk2
J0(kxx)e

ikz |z|, (3.5.24a)

ETM
x,V ED =

iωμIdz

4π

z

|z|
∫ ∞

0

dkx
k2
x

k2
J1(kxx)e

ikz |z|, (3.5.24b)

ETM
z,HED =

iωμdz

4π

z

|z|
∫ ∞

0

dkx
k2
x

k2
J1(kxx)e

ikz |z|, (3.5.24c)

ETM
x,HED =

−ωμIdx

4π

∫ ∞

0

dkx
kxkz
k2

[
J0(kxx)− 1

kxx
J1(kxx)

]
eikz |z|, (3.5.24d)

ETE
x,HED =

−ωμIdx

4π

∫ ∞

0

dkx
1

kzx
J1(kxx)e

ikz |z|. (3.5.24e)

3.6 E field from a dipole source (small current)
embeded in earth

Assuming a small current source, a V ED is embeded in earth, which is
a conductive medium, the fields induced by the source have already been
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studied before, which can be obtained by using dyadic Green’s function. In
a cylindrical coordinate, Ez and Eρ are equal to

Ez,TM
V ED =

iωμI�

4π
[1 +

∂2
z,z

k2
]
eikr

r
(3.6.1)

Eρ,TM
V ED =

iωμI�

4π
[
∂2
ρ,z

k2
]
eikr

r
(3.6.2)

which gives

Ez,TM
V ED =

iωμI�

4πk2
[k2 +

∂2

∂z2
]
eikr

r

=
iωμI�

4πk2

eikr

r5

[
(krρ)2 + (2r2 − 3ρ2)(1− ikr)

]
(3.6.3)

Eρ,TM
V ED =

iωμI�

4πk2
[
∂2

∂ρ∂z
]
eikr

r

=
iωμI�

4πk2

eikrρz

r5

[
− k2r2 − 3ikr + 3

]
(3.6.4)

in which ρ = r sin θ and z = r cos θ, k = ω
√
με̃ is the wavenumber. From Ez

and Eρ, we can found Er and Eθ components in a corresponding spherical
cooridnate, which are equal to

Er
V ED = Ez cos θ + Eρ sin θ (3.6.5)

Eθ
V ED = −Ez sin θ + Eρ cos θ (3.6.6)

which is given in the text book as

Er
V ED =

Z0I� cos θe
ikr

2π

[
1

r2
− 1

ikr3

]

=
iωμI� cos θeikr

4πk2

[
2k

ir2
+

2

r3

]
(3.6.7)

Eθ
V ED = − ikZ0I� sin θe

ikr

4π

[
1

r
− 1

ikr2
− 1

k2r3

]

= − iωμI� sin θeikr

4πk2

[
k2

r
− k

ir2
− 1

r3

]
(3.6.8)

The common constant is defined as

K =
iωμI�

4πk2
(3.6.9)
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by which we can simplify the equations above

Ez,TM
V ED = Keikr

[k2 sin2 θ

r
− 2ik − 3ik sin2 θ

r2
+

2− 3 sin2 θ

r3

]
(3.6.10)

Eρ,TM
V ED = Keikr

[−k2 sin θ cos θ

r
− 3ik sin θ cos θ

r2
+

3 sin θ cos θ

r3

]
(3.6.11)

Er
V ED = Keikr

[−i2k

r2
+

2

r3

]
cos θ (3.6.12)

Eθ
V ED = Keikr

[
k2

r
+

ik

r2
− 1

r3

]
sin θ (3.6.13)

which shows that at far zone, Ez, Eρ and Eθ attenuates with eikr/r, while
Er doesn’t have far zone element. At far zone, the power propagate in r̂
direction since the Poynting vector S = E ×H = Eθθ̂ × Hφφ̂. In Fig.3.20,
the Ez field estimated by using (3.6.10) and the far zone equation (3.6.14)
are compared with each other for θ = π/2.

Ez,TM
V ED = Keikr

k2 sin2 θ

r
(3.6.14)

when θ = π/2, the equations (3.6.10) and (3.6.14) are equal to

Ez,TM
V ED = Keikr

[k2

r
+

ik

r2
− 1

r3

]
(3.6.15)

Ez,TM
V ED = Keikr

k2

r
(3.6.16)

In Fig.3.20, the model is assumed that the operating frequency is 1Hz
and the conductivity of the medium is 1S/m. Under such a condition, there
is a big difference between the results from the two methods.

Comparing Ez field for θ = 0 and θ = π/2, we can see that for the far
field, θ = π/2 will be higher, which are shown in Fig.3.21 and Fig.3.22

If the medium is not conductive, the comparison between them will be

Ez,TM
V ED =

[k2

r
+

ik

r2
− 1

r3

]
(3.6.17)

Ez,TM
V ED =

k2

r
(3.6.18)

This indicates that we could not use the far zone equation to calculate the
field when the medium is lossy.
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Figure 3.20: Comparison of Ez field calculated by using total equation and
only far zone element, when the medium is lossy
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Figure 3.21: Comparison of Ez field for θ = 0 and θ = π/2

3.7 Comparison of the field with a metal casing
and without a metal casing

A question is when there is a metal casing, what is the difference of the
field to the case that the metal casing does not exists. In the following, this
problem is studied. It is assumed in the model that the conductivity of the
metal casing is 1 × 106S/m and the conductivity of the earth is 1S/m. The
operating frequency is 1Hz. The results are shown in Fig.3.24-3.27.

According to the simulation results, it shows that the field is stronger
when a metal casing exists in all directions. By comparing Fig.3.24 and
Fig.3.25, it is possible to communicate signal along casing or in a vertical
direction. The way to transmit signal along a metal casing is the best way
in them.
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Figure 3.22: Contour of Ez in ρz plane

3.8 Asymptotic equations for Sommerfeld inte-
grals

As studied above, the electric field components induced by a VED and a
HED can be expressed as

E(r, r′) =
iωμIdl

4πk2

∫ ∞

0

dkxΦ(kx, z, z
′), (3.8.1)

where

Φ(kx) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ΦTM
z,VED = ik3x

kz
J0(kxx)e

ikz |z−z′|

ΦTM
x,VED = z−z′

|z−z′|k
2
xJ1(kxx)e

ikz |z−z′|

ΦTM
z,HED = z−z′

|z−z′|k
2
xJ1(kxx)e

ikz |z−z′|

ΦTM
x,HED = ikxkz

2
[J0(kxx)− J2(kxx)]e

ikz |z−z′|

ΦTE
x,HED = ikxk2

2kz
[J0(kxx) + J2(kxx)]e

ikz |z−z′|

, (3.8.2)

kx =
√
k2 − k2

z , and J0() and J1() are Bessel functions of the first kind. The
integral can be transformed into∫ ∞

0

dkxΦ(kx) =

∫ kx,m

0

dkxΦ(kx) +

∫ ∞

kx,m

dkxΦ(kx), (3.8.3)
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Figure 3.23: Comparison of Ez field calculated by using total equation and
only far zone element, when the medium is lossless
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Figure 3.24: Comparison field Ez when θ = π/2 for the cases with a metal
casing and without a metal casing
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Figure 3.25: Comparison field Ez along ρ = 0.1 for the cases with a metal
casing and without a metal casing
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Figure 3.26: Comparison field Ez in a contour figure for the cases with a
metal casing and without a metal casing
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Figure 3.27: Comparison field Ez in a surf figure for the cases with a metal
casing and without a metal casing
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in which the first element could be calculated numerically and the second
element which is the tail could be estimated asymptotically.

3.8.1 ΦTM
z,VED

For the integrand

ΦTM
z,VED =

ik3
x

kz
J0(kxx)e

ikz |z−z′|, (3.8.4)

when kz → ikx, it asymptotically equals

ΨTM
z,VED =

√
2

πx
k

3
2
x cos(kxx− π

4
)e−kx|z−z

′|. (3.8.5)

The tail can be estimated by

TTM
z,VED ≈

∫ ∞

kx,m

dkxΨ
TM
z,VED =

∫ ∞

0

dkxΨ
TM
z,VED −

∫ kx,m

0

dkxΨ
TM
z,VED, (3.8.6)

where the second term of RHS could be calculated numerically and the first
term could be calculated by the Laplace transform:

∫ ∞

0

dkxΨ
TM
z,VED =

3

4

√
1

2x

[
e−i

π
4 s−

5
2 |s=|z−z′|−ix + ei

π
4 s−

5
2 |s=|z−z′|+ix

]
. (3.8.7)

3.8.2 ΦTM
x,VED

For the equation
ΦTM

x,VED = k2
xJ1(kxx)e

ikz |z−z′|, (3.8.8)

when kz → ikx, it approximately equals

ΨTM
x,VED =

√
2

πx
k

3
2
x cos(kxx− 3π

4
)e−kx|z−z

′| (3.8.9)

The tail can be estimated by

TTM
x,VED ≈

∫ ∞

kx,m

dkxΨ
TM
x,VED =

∫ ∞

0

dkxΨ
TM
x,VED −

∫ kx,m

0

dkxΨ
TM
x,VED, (3.8.10)

where∫ ∞

0

dkxΨ
TM
x,VED =

3

4

√
1

2x

[
e−i

3π
4 s−

5
2 |s=|z−z′|−ix+ei

3π
4 s−

5
2 |s=|z−z′|+ix

]
. (3.8.11)



120

3.8.3 ΦTM
z,HED

Third, Since ΦTM
z,HED = ΦTM

x,VED, it is the same as above.

3.8.4 ΦTM
x,HED

For the equation

ΦTM
x,HED =

ikρkz
2

[J0(kxx)− J2(kxx)]e
ikz |z−z′|, (3.8.12)

when kz → ikx, it approximately equals

ΨTM
x,HED = −1

2

√
2

πx
k

3
2
x

[
cos(kxx− π

4
)− cos(kxx− 5π

4
)
]
e−kx|z−z

′|

=

√
2

πx
k

3
2
x sin(kxx− 3π

4
)e−kx|z−z

′|

= −
√

2

πx
k

3
2
x cos(kxx− π

4
)e−kx|z−z

′|

= −ΦTM
z,VED (3.8.13)

The tail can be estimated by

TTM
x,HED ≈

∫ ∞

kx,m

dkxΨ
TM
x,HED =

∫ ∞

0

dkxΨ
TM
x,HED −

∫ kx,m

0

dkxΨ
TM
x,HED, (3.8.14)

where∫ ∞

0

dkxΨ
TM
x,HED = −3

4

√
1

2x

[
e−i

π
4 s−

5
2 |s=|z−z′|−ix+ ei

π
4 s−

5
2 |s=|z−z′|+ix

]
(3.8.15)

3.8.5 ΦTE
x,HED

For equation

ΦTE
x,HED =

ik2kx
2kz

[J0(kxx) + J2(kxx)]e
ikz |z−z′|, (3.8.16)

when kz → ikx, it approximately equals

ΨTM
x,HED =

k2

2

√
2

πx
k
− 1

2
x

[
cos(kxx− π

4
) + cos(kxx− 5π

4
)
]
e−kx|z−z

′|

= k2

√
2

πx
k
− 1

2
x cos(kxx− 3π

4
) cos(

π

2
)e−kx|z−z

′|

= 0 (3.8.17)
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3.8.6 Laplace transform and Bessel function

In the above, we need to apply the properties of Laplace transform:

L(f(t)) =
∫ ∞

0

dtf(t)e−st, (3.8.18a)

L(t− 1
2 ) =

√
π

s
, (3.8.18b)

L(tng(t)) = (−1)nG(n)(s), (3.8.18c)

we can get

L(t 1
2 ) = L(tt− 1

2 ) = −d(
√

π/s)

ds
=

√
π

2
s−

3
2 , (3.8.19a)

L(t 3
2 ) = L(t2t− 1

2 ) =
d2(

√
π/s)

ds2
=

3
√
π

4
s−

5
2 . (3.8.19b)

For the Bessel function of the first kind, it has asymptotic equation

Jα(x) =

√
2

πx
cos(x− απ

2
− π

4
) (3.8.20)

when x → ∞ [6, 9.2.1].

3.9 Plane wave in a two layered source-free medium

The problem of waves propagating in inhomogeneous media is very compli-
cated. A special case for an inhomogenous medium is a planarly multi-layered
medium, where each layer is homogeneous and isotropic, that can be char-
acterized by its independent parameters ε and μ. The simplest model is two
layers with an interface plane, where wave reflection and transmission occur.

In a two layered medium case, we take the interface between the two layers
to be xy-plane and we take its normal to be z-axis. The wave direction unit
k̂ and z-axis form the xz-plane. As we mentioned above, the field can be
decomposed into TM and TE mode. In the given coordinate, H and E field
will only have y-component Hy and Ey in TM and TE mode respectively as
illustrated in Fig.3.28.

The propagation of electromagnetic wave in a homogeneous medium were
given in (3.4.2a) and (3.4.2b). In our case, we are more interested in the
electric field propagation. Assuming that electromagnetic wave propagates
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Figure 3.28: Reflection and transmission of plane wave at the interface of
two piecewise constant regions

from layer 1 to layer 2, the E-field components in layer 1 are equal to

E1z = Az0[e
ik1zz +RTM

Ez
e2ik1zd1−ik1zz], (3.9.1a)

E1x = Ax0[e
ik1zz +RTM

Ex
e2ik1zd1−ik1zz], (3.9.1b)

E1y = Ay0[e
ik1zz +RTE

Ey
e2ik1zd1−ik1zz], (3.9.1c)

in which, A0 are the amplitudes of the incident wave components. R are
reflection coefficients. In layer 2, the field components are equal to

E2z = Az0T
TM
Ez

e2ik1zd1−ik1zz, (3.9.2a)

E2x = Ax0T
TM
Ex

e2ik1zd1−ik1zz, (3.9.2b)

E2y = Ay0T
TE
Hy

e2ik1zd1−ik1zz, (3.9.2c)

where T are the transmission coefficients. For TM mode, the reflection coef-
ficient is equal to

RTM
12 =

HR
1y

H I
1y

=
k1z
ε̃1

− k2z
ε̃2

k1z
ε̃1

+ k2z
ε̃2

. (3.9.3)

By applying the boundary condition,

H I
1y +HR

1y = HT
2y, (3.9.4)

we can get the transmission coefficient

TTM
12 = 1 +RTM

12 . (3.9.5)



3.9 Plane wave in a two layered source-free medium 123

The reflection and transmission coefficients of the electric field can be calcu-
lated then. In source free space,

ik×H = −iωε̃E, (3.9.6)

which indicates the electric field components are equal to

ωε̃Ex = kzHy, (3.9.7a)

ωε̃Ez = −kxHy. (3.9.7b)

In the two halfspaces, assume μ1 = μ2, we have the following equations in
wavenumber

kR
1x = kI

1x, (3.9.8a)

kT
2x = kI

1x, (3.9.8b)

kR
1z = −kI

1z, (3.9.8c)

(
k1
k2

)2 =
ε̃1
ε̃2
. (3.9.8d)

Then the reflection and transmission coefficients of the electric components
Ez and Ex in TM mode are equal to

ε̃1E
R
1z

ε̃1EI
1z

=
kR
1xH

R
1y

kI
1xH

I
1y

= RTM
12 ⇒ ER

1z

EI
1z

= RTM
Ez

= RTM
12 , (3.9.9a)

ε̃2E
T
2z

ε̃1EI
1z

=
kT
2xH

T
2y

kI
1xH

I
1y

= TTM
12 ⇒ ET

2z

EI
1z

= TTM
Ez

= (
k1
k2

)2TTM
12 , (3.9.9b)

ε̃1E
R
1x

ε̃1EI
1x

=
kR
1zH

R
1y

kI
1zH

I
1y

= −RTM
12 ⇒ ER

1x

EI
1x

= RTM
Ex

= −RTM
12 , (3.9.9c)

ε̃2E
T
2x

ε̃1EI
1x

=
kT
2zH

T
2y

kI
1zH

I
1y

=
kT
2z

kI
1z

TTM
12 ⇒ ET

2x

EI
1x

= TTM
Ex

= 1−RTM
12 . (3.9.9d)

In TE mode, as shown in Fig.3.28, the reflection and transmission coeffi-
cients of the electric field can be directly calculated by the following equations

RTE
12 =

ER
1x

EI
1x

=

k1z
μ1

− k2z
μ2

k1z
μ1

+ k2z
μ2

, (3.9.10a)

TTE
12 =

ET
2x

EI
1x

= 1 +RTE
12 (3.9.10b)
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3.10 Plane wave in a multi-layered source-free
medium

If there are more than two layers, for example, a three layer model illustrated
in Fig.3.29, a series of multiple reflections will occur at the interfaces.

Figure 3.29: Multiple reflections of a TE wave at interfaces in a multilayer
medium

In this case, take TE mode for example, the electric field in the three
regions are respectively equal to:

ETE
1y = A1[e

ik1zz + R̃TE
12 e

2ik1zd1−ik1zz], (3.10.1a)

ETE
2y = A2[e

ik2zz +RTE
23 e

2ik1zd1−ik2zz], (3.10.1b)

ETE
3y = A3e

ik3zz, (3.10.1c)

in which A1 is the amplitude in the first layer and the amplitudes in the sec-
ond and third layer A2 and A3 can be calculated by the boundary conditions,
which are equal to:

A2 =
TTE
12 A1e

i(k1z−k2z)d1

1−RTE
21 R

TE
23 e

2ik2z(d2−d1) , (3.10.2a)

A3 = (1 +RTE
23 )A2e

i(k2z−k3z)d2 . (3.10.2b)
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R̃TE
12 in (3.10.1a) is the generalized reflection coefficient between layer 1 and

layer 2 at interface z = d1, which is equal to

R̃TE
12 = RTE

12 +
TTE
12 RTE

23 T
TE
21 e2ik2z(d2−d1)

1−RTE
21 R

TE
23 e

2ik2z(d2−d1) . (3.10.3)

If more layeres are added below layer 3 and the interfaces are denoted by di,
the generalized reflection coefficient for each layer can be calculated recur-
sively, [1, Eq.2.1.23]

R̃i,i+1 = Ri,i+1 +
Ti,i+1R̃i+1,i+2Ti+1,ie

2iki+1,z(di+1−di)

1−Ri+1,iR̃i+1,i+2e2iki+1,z(di+1−di)
. (3.10.4)

where Ri,i+1 and Ti,i+1 are the reflection and transmission coeffients for a
wave from layer i to layer i+ 1. ki is the wavenumber of layer i.

3.11 A point source embeded in a layered medium

As given in (3.3.3), in homogeneous space, a point source will induce spherical
wave. When a point source is embeded in a layered medium, as shown in
Fig.3.30, we can first expand the spherical wave into an integral summation
of plane waves and then apply the propagation theory of plane waves in a
layered medium.

Figure 3.30: A point source in a multilayer medium
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The expansion of a spherical wave can be achieved by using Weyl identity
(3.5.1a) or Sommerfeld identity (3.5.1b). In Fig.3.30, a coordinate system
is established which let x − y plane parallel to the interfaces and z-axis
parallel to the normal and pointing upwards. The point source is assumed
to be embeded at z = z′ in layer m. Since the positive z-axis in this case
points upwards, layerm is mathematically constrained to be within the limits
dm−1 < z′ < dm. The z-variation of an upgoing and downgoing wave can
be expressed as F (z, z′). The field inside layer m due to a source in layer
m can be divided into two parts, representing an upgoing wave (F+) and a
downgoing wave (F−), which can be expressed as

F+
m(z, z′) = A+

m[e
ikm,z(z−z′) + R̃m,m+1e

ikm,z(2dm−(z−z′))], (3.11.1a)

F−m(z, z′) = A−m[e
−ikm,z(z−z′) + R̃m,m−1e−ikm,z(2dm−(z−z′))], (3.11.1b)

where R̃m,m+1 and R̃m,m−1 represent generalized reflection coefficients for
waves emanating from layer m into layer m + 1 and m − 1, which can be
calculated by (3.10.4). dm denotes the z-coordinate of the interface separating
medium m and m + 1, and km,z is used to indicate the z-component of the
wave vector km of layer m. The amplitudes in (3.11.1a) and (3.11.1b) are
equal to

A+
m =

1 + R̃m,m−1e−2ikm,z(dm−1−z′)

1− R̃m,m+1R̃m,m−1e2ikm,z(dm−dm−1)
, (3.11.2a)

A−m =
1 + R̃m,m+1e

2ikm,z(dm−z′)

1− R̃m,m+1R̃m,m−1e2ikm,z(dm−dm−1)
. (3.11.2b)

In a similar fashion, the field variation in layer m + 1 and m − 1 can be
written as

Fm+1(z, z
′) = A+

m+1[e
ikm+1,z(z−dm) + R̃m+1,m+2e

ikm+1,z(2dm+1−(z−dm))],
(3.11.3a)

Fm−1(z, z′) = A−m−1[e
−ikm−1,z(z−dm−1) + R̃m−1,m−2e−ikm−1,z(2dm−2−(z−dm−1))],

(3.11.3b)

where

A+
m+1 =

Tm,m+1A
+
me

ikm,z(dm−z′)

1−Rm+1,mR̃m+1,m+2e2ikm+1,z(dm+1−dm)
, (3.11.4a)

A−m−1 =
Tm,m−1A−me

−ikm,z(dm−1−z′)

1−Rm−1,mR̃m−1,m−2e2ikm−1,z(dm−1−dm−2)
. (3.11.4b)
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The expressions Tm,m+1 and Rm+1,m as well as Tm,m−1 and Rm−1,m represent
transmission and reflection coefficients between layer m and the adjacent
layers m + 1 and m− 1. The field variations within the layers above m + 1
or below m− 1 are obtained through a recursive approach.

3.12 Current distribution along metal casing tilted
in a layered medium

In chapter 3, the tilt model is studied but the results are not stable because
of the error in the evaluation of the Sommerfeld integral. Now the new
method introduced in Chapter 4 is applied to the model and the results are
presented in Fig.3.31, Fig. 3.32 and Fig.3.33. Numerical results shows that
under geophysics condition, which the operating frequency is very low and the
surrounding medium is highly conductive, the tilt angle doesn’t have much
effect on the current distribution, which allows us to use a corresponding
vertical model to estimate the results.
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Figure 3.31: Numerical results for a homogeneous model where the conduc-
tivities of the medium and the well are assumed to be σm = 1S/m and
σc = 1× 106 S/m respectively. The relative permeability of the metal casing
is assumed to be μr = 100. The radius of the well is assumed to be 0.1m
and the operating frequency is assumed to be 5Hz. The source is located at
100m from the lower end. The tilt angle is assumed to be 0, π/6, π/4 and
π/3 respectively.
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Figure 3.32: Numerical results for the same model in Fig.3.31 for the second
3-layer model with the interface d = [300, 500] cos θm, the conductivities for
the 3 layers are assumed to be σm = [1, 4, 1] S/m.
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Figure 3.33: Numerical results for the same model in Fig.3.31 for the second
3-layer model with the interface d = [300, 500] cos θm, the conductivities for
the 3 layers are assumed to be σm = [4, 1, 4] S/m.
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