
A Shallow Neural Network Architecture
for Native Language Identification

Hans Olav Slotte

Master of Science in Computer Science

Supervisor: Björn Gambäck, IDI

Department of Computer Science

Submission date: March 2018

Norwegian University of Science and Technology

Hans Olav Slotte
slotte@stud.ntnu.no

A Shallow Neural Network Architecture
for Native Language Identification

Master Thesis, March 2018

Supervised by Björn Gambäck

Data and Artificial Intelligence Group
Department of Computer Science
Faculty of Information Technology and Electrical Engineering
Norwegian University of Science and Technology

Problem Description

The problem description as it was given by Björn Gambäck was stated as:

Native Language Identification is the task of identifying the native language
of a writer based solely on a sample of their writing in another language. The
task is typically framed as a classification problem where the set of native
languages is known beforehand. Most work has focused on identifying the
native language of writers learning English as a second language. The master
thesis work connects to previous work in IDI’s AI group and potentially
involves participation in a ”shared task competition” on Native Language
Identification where training and test data is made available by the organisers
(such as https://sites.google.com/site/nlisharedtask2013/).

Abstract

Native Language Identification (NLI) is the task of identifying writers’ or speak-
ers’ native languages faced only with text or speech in another language. This task
has been part of research into Second Language Acquisition for a long time, and has
more recently also become a part of Natural Language Processing research. This
research has resulted in two shared tasks where teams from around the world have
compared results and methods.

So far, it has mostly been traditional statistical machine learing methods that
have been used in these tasks, although there have been a few attempts at using
neural methods. This thesis looks at using Multilayer Perceptron (MLP) classifiers
for NLI both on their own and as part of an ensemble classifier as a possible approach
to this task. During experimentation, these are compared to a more traditional
classifier type used in NLI, Support Vector Machines (SVM). The experiments found
consistently improved results when using a two layer MLP classifier compared to a
linear SVM classifier, and gave mid range results compared to the systems submitted
to the 2017 Shared Task, while using fairly small feature vectors.

One of the problems that was brought up at the 2017 Shared Task was the fact
that classification systems could have trouble generalizing to texts written about
subjects on which the classifier had not been trained. Therefore, this thesis also
looks at whether a simpler preprocessing method can give better results for such
unseen topics than the more traditional input preprocessing methods. Two different
methods are initially compared, and experiments showed that for a word n-gram
feature vector, the simpler method had better results, while the opposite is true for
character and part-of-speech feature vectors. This leads to a mixed preprocessing
method that had better results than the traditional method for most tested prompts.

Sammendrag

Morsm̊alsidentifisering g̊ar ut p̊a å identifisere en forfatters eller talers morsm̊al
basert p̊a tekster eller opptak gjort av denne personen p̊a et annet spr̊ak. Dette
har vært et forskningsomr̊ade innenfor spr̊aklæring lenge, siden det å identifisere
spr̊akfeil som er mer vanlige for et gitt morsm̊al kan hjelpe til å forme et mer rettet
læringsopplegg. Mer nylig har morsm̊alsidentifisering ogs̊a blitt et forskningsfelt in-
nen naturlig spr̊akbehandling. Denne forskningen har kulminert i to fellesoppgaver,
der grupper fra rundt om i verden har sammenlignet resultater og metoder.

Hittil har det i all hovedsak vært tradisjonelle statistiske maskinlæringsmetoder
som har blitt brukt i disse oppgavene, selv om det har vært mindre forsøk p̊a å
bruke nevrale metoder. Denne avhandlingen ser p̊a flerlagsperceptroner som en mulig
alternativ metode, b̊ade som enkeltklassifikator og som en del av et større klassi-
fikatorensemble. I eksperimenter ble disse sammenlignet med den mer tradisjonelle
støttevektormaskin-metoden, hvor en tolags perceptronklassifikator fikk konsekvent
bedre resultater enn en lineær støttevektormaskin. Resultatene er ogs̊a sammenlign-
bare med systemer i tredje gruppe i fellesoppgaven i 2017.

I den siste fellesoppgaven i 2017, ble det brakt opp at klassifikatorer kunne ha
problemer med å generalisere til tekster som hadde blitt skrevet om tema klas-
sifikatoren ikke hadde trent p̊a. Avhandlingen undersøker derfor ogs̊a hvorvidt en
enklere forbehandling av data kan forbedre en klassifikators resultater p̊a slike nye
tema. Dette starter med eksperimenter med to ulike forbehandlingsmetoder, og disse
eksperimentene viste at den enkleste metoden gav bedre resultater for ett av de un-
dersøkte trekkene (ord), mens den mer tradisjonelle metoden gav bedre resultater
for de to andre (bokstav og ordklasse). Med disse resultatene foresl̊ar avhandlin-
gen en samlet forbehandlingsmetode som gav bedre resultater enn den tradisjonelle
metoden for de fleste nye tema som ble testet.

Preface

This thesis is submitted as the final part of the work to achieve the degree of Master of
Science in Computer Science from the Norwegian University of Science and Technology
(NTNU). The work was done at the Department of Computer Science and the thesis
work was supervised by Björn Gambäck.

Trondheim, 15 March 2018

Hans Olav Slotte

Acknowledgements

I would like to thank my parents, Mette Nilsen and Per Arne Slotte, for support through
all my life and for always believing in me. I would also like to thank my supervisor,
Björn Gambäck, for his input and advice through all the work on my thesis, and for the
opportunity to work on this very interesting topic.

Contents

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Goal and Research Questions . 1

1.2.1 New classifier model . 2
1.2.2 Input preprocessing . 2

1.3 Research Questions . 2
1.4 Contributions . 2
1.5 Thesis Structure . 3

2 Background Theory 4
2.1 Supervised Learning . 4
2.2 Classification Accuracy . 4
2.3 Cross Entropy Loss Function . 5
2.4 Overfitting and Regularization . 6
2.5 Validating Machine Learning Models . 6
2.6 Feature Vector . 7
2.7 Statistical Machine Learning Methods . 7

2.7.1 Support Vector Machines . 7
2.7.2 Other statistical methods . 8

2.8 Neural Networks . 9
2.8.1 Basics . 9
2.8.2 Backpropagation . 10
2.8.3 Activation functions . 11
2.8.4 Other neural network designs . 12

2.9 Natural Language Processing . 13
2.9.1 Syntax and semantics . 13
2.9.2 Part-of-speech . 14
2.9.3 N-grams . 14
2.9.4 Bag-of-words . 14
2.9.5 Term frequency - inverse document frequency 14

2.10 Tools . 17
2.10.1 NLTK . 17
2.10.2 TensorFlow . 17
2.10.3 Scikit-learn . 17

3 Related Work 18
3.1 Early research . 18
3.2 The TOEFL11 Dataset . 19

3.2.1 Text data . 19
3.2.2 Speech data . 20

3.3 2013 NLI Shared Task . 21
3.4 Between the Shared Tasks . 23

3.5 2017 NLI Shared Task . 24

4 System Design 27
4.1 Dataset and Preprocessing . 27
4.2 Classifiers . 28

5 Experiments 31
5.1 Choosing a classifier . 32

5.1.1 Initial results . 32
5.1.2 Classifier Homogeneity . 32
5.1.3 Alternative meta-classifier . 33

5.2 Refining the classifier setup . 34
5.2.1 Larger n-gram and feature vector sizes 34
5.2.2 Larger vector sizes . 35
5.2.3 Hidden layer sizes . 35

5.3 Input preparation . 37
5.3.1 Alternative ensemble . 37
5.3.2 Dropping prompts from the training data 37

5.4 Final system design . 38

6 Discussion 43
6.1 Simple classifier . 45
6.2 Preprocessing . 45

7 Conclusions and Future Work 47
7.1 Conclusion . 47
7.2 Future Work . 48

A Confusion matrices by prompt 54

List of Figures

1 Model of a perceptron. 9
2 The logistic function. 11
3 ReLU activation function compared to the logistic function with k=3 . . . 12
4 Simple sentence tagged by the Stanford tagger. 14
5 Direct input perceptron network. 29
6 Two layer perceptron network. 29
7 Simple Shallow Neural Network Ensemble Classifier. 30
8 Venn diagrams showing classifier homogeneity. 33
10 Confusion matrix for P5, mixed preprocessing. 44
11 Confusion matrix for P5, traditional preprocessing. 44
12 Confusion matrix for prompt P0 . 54
13 Confusion matrix for prompt P1 . 55
14 Confusion matrix for prompt P2 . 56
15 Confusion matrix for prompt P3 . 57
16 Confusion matrix for prompt P4 . 58
17 Confusion matrix for prompt P5 . 59

List of Tables

1 Some n-gram sets from a sentence. 15
2 Bag-of-words for a corpus of two short documents. 15
3 Amount of essays for each L1 and prompt in the TOEFL11 dataset. . . . 20
4 An overview of some key systems in the 2013 Shared Task. 22
5 Overview of some essay-only track systems. 24
6 Overview of some fusion track systems. 25
7 Initial experimental results. 31
8 Accuracy for SVM meta-classifier. 33
9 Accuracy for individual classifiers and ensemble using longer n-gram sizes. 34
10 Results of a more extensive size increase of the feature vectors. 35
11 Results of feature vector and layer size experiments. 36
12 Comparison of input preparation methods. 36
13 Accuracy scores for SVM-only classifiers. 37
14 Final results for mixed preprocessing method, part 1. 39
15 Final results for mixed preprocessing method, part 2. 40
16 Final results for alternative classifiers. 41
17 10-fold cross-validation results. 41

1 Introduction

When people learn a new language (L2), what impact does their native language (L1)
have on the way they use the new language? This has been a question in Second
Language Acquisition (SLA) for a long time. Lado (1957) introduced the concept of
contrastive linguistics, which seeks to map the differences and similarities between pairs
of languages. This method, also called contrastive analysis, has been used extensively
to try to explain why some language features were more difficult for some learners to
acquire than others. While it has been found that not all mistakes made when learning
a new language can be explained by interference by a learner’s L1, it is clear that some
mistakes are more common among speakers of the same L1 than others.

With the increasingly global modern world, more and more people need to learn a
second language to interact and work with people in other countries. Finding automated
ways of identifying the mistakes common to the same L1 could help language learners
and their teachers personalize their learning by keeping these mistakes in mind.

1.1 Background and Motivation

Native Language Identification was initially explored as an area of research for computer
science as a continuation of research on another text classification task: Authorship
Attribution. This task has many similarities to NLI, since both look for peculiarities in
the way text is written in order to help uncover information about the author. Research
was slow at first, and it did not really take off until the end of the previous decade.
This decade, however, has seen much more active research, and in the last five years,
there have been two shared tasks, most recently in 2017, and the accuracy of systems
has steadily climbed. Many different approaches have been used, but almost all of them
have been traditional statistical methods. Neural methods were only recently attempted,
and the traditional methods have had the best results so far.

As mentioned, an NLI shared task was held at The Twelfth Workshop on Innovative
Use of NLP for Building Educational Applications (BEA) in 2017. One problem that
was brought up (Kulmizev et al. 2017) was that when systems are tested on a set that
contain texts written for topic prompts for which no texts in the training set had been
written, accuracy dropped (between 3% and 20% depending on the prompt for Kulmizev
et al. (2017)). To get better systems, it is therefore important to find methods that help
classifiers perform better on texts written about previously unseen topics.

1.2 Goal and Research Questions

The goal of this thesis is twofold. First, to explore approaches to Native Language
Identification and attempt to find a simple classifier model that achieves good results.
Second, to find an input preprocessing method that improves accuracy on texts written
for prompts on which the classifier has not been trained compared to traditional input
preprocessing methods.

1

1.2.1 New classifier model

Neural methods have been very successful at many different classification tasks, espe-
cially within computer vision and speech recognition. However, they have remained
fairly unused in Native Language Identification, possibly due to the small amount of
prepared data that exists compared to many other text classification tasks. This leads
to the conclusion that an advanced neural model might very readily overfit the data,
but Li and Zou (2017) note that multilayer perceptron (MLP) classifiers do get better
results than linear support vector machines (SVM) in most cases for their system setup,
at the cost of training speed. A simple neural model is able to keep the strength of sep-
arating data that is not linearly separable while still being simple enough that it is not
hampered by overfitting. Therefore, it would be interesting to look at the effectiveness of
simple feedforward neural networks for this task in combination with fairly small feature
vectors to lessen the problem of the training speed. This thesis looks at one or more
network models to experiment with, and finally propose an MLP design for the task.
An important subgoal is finding out how many layers are ideal for the neural model.

1.2.2 Input preprocessing

While traditional methods of input preprocessing carefully picks out the most important
terms for identification, inherent bias in the way different learners write about any given
topics could lead to a large amount of terms that only give information for a text written
about particular topics that are included in the training set. This might be one of
the reasons that accuracy drops for traditional systems when faced with unseen topics.
A simpler method would obviously be worse at classifying texts written about topics
included in the training set, but not being as selective in the choice of terms might
improve accuracy on texts written about unseen topics.

1.3 Research Questions

Q1: To what extent can simple neural models be used effectively for NLI?

Q2: How many layers are enough for a trained MLP classifier to completely fit the
training data?

Q3: To what extent can simpler preprocessing of input help classifiers perform better
on texts written about topics which were not included in the training set?

1.4 Contributions

C1: A simple MLP/SVM ensemble classifier model for Native Language Identification.
This model achieves a 10-fold cross-validation accuracy of 80.41% on essay-only
input and 87.25% when also using speech data.

2

C2: An even simpler two-layer fully connected perceptron classifier for NLI. This model
achieves a 10-fold cross-validation accuracy of 82.56% on essay-only input and
75.69% with speech data.

C3: A comparison of two different input preprocessing methods and the difference in
accuracy when faced with texts written for previously unseen prompts. This ends
with a mixed preprocessing method that has a lower drop in accuracy than the other
two methods for most of the tested prompts.

1.5 Thesis Structure

• Section 2 goes through the background theory necessary to understand the rest
of the thesis, as well as a including a list of the tools used in the system created
as part of this thesis.

• Section 3 gives a run through of the history of Native Language Identification
(NLI) and the approaches that have been previously used, including a description
of the current de facto standard dataset for training NLI classification models:
TOEFL11. It ends with a description of the state of the art systems for this
classification task.

• Section 4 describes a proposed shallow neural network architecture for NLI.

• Section 5 goes through the experimental setup, and shows the experimental re-
sults.

• Section 6 contains a detailed discussion about the final results of these experi-
ments.

• Section 7 describes how this thesis fulfilled its objectives, gives some final thoughts
on the experimental results, and gives a few suggestions for more explorations in
this field.

3

2 Background Theory

It is important for a reader of this thesis to understand some basic concepts before
continuing on with previous work in Native Language Identification, and even more
importantly before moving on to the classifier proposed in section 4. Some concepts
require only a cursory understanding, for example classifier types that have been used in
systems discussed in section 3. Concepts that are directly related to the system proposed
in this thesis are described in more detail.

2.1 Supervised Learning

NLI, as a subset of text classification, is a typical example of a field in which Supervised
Learning methods are the logical choice for learning how to classify correctly. Super-
vised learning algorithms gain their knowledge of the domain space through examples
provided by some teacher. Such algorithms work extremely well if you know the classes
a domain space logically separates into, but you might not know exactly how to place an
unseen example into one of these classes. The supervised learning algorithm is given the
examples that are available, and attempts to make its guesses match the examples as
closely as possible, while avoiding overfitting (see 2.4). When a model is created, it can
be evaluated in relation to the observed data points by way of a loss function. This loss
function is a single number (the loss) which shows how bad the model is, with a higher
loss representing a worse model. This could be as simple as just counting the amount of
wrong guesses, called the 0-1 loss function, or more advanced, like the commonly used
cross entropy loss function, which is described in detail in 2.3.

Common examples of supervised algorithms include Support Vector Machines (see
2.7.1) and Maximum Entropy Learning (also known as Logistic Regression). Different
types of neural network designs are also commonly used for this kind of learning.

2.2 Classification Accuracy

When creating classifiers, it is important to find a good way of evaluating how well the
classifier correctly places items into their correct class. The obvious way is to simply
count how many items are correctly identified and divide that number by the total
amount of items that were tested. This very simple method is called the accuracy of the
classifier, and gives a fairly good idea of performance. However, it gives us very little
information beyond that, for example in what way it is having trouble, which items it
is having trouble with, etc. This leads us to two other measures, precision and recall.

Precision is the fraction of items predicted to have a certain classification that actu-
ally did have that classification. That is, the amount of true positives for a class divided
by the total amount of positive predictions for that class. As such, it measures the extent
to which a given class was given to items in the correct class as opposed to items in other
classes. On the other hand, recall is the fraction of items that were correctly predicted
for a certain label divided by the total items that actually belong to that label. That
is, it measures to what extent a classifier correctly places all items in a given class into

4

the correct class. Precision and recall scores are calculated for each class separately, and
gives you a lot of information regarding the problems faced for each class. For example,
a class with high precision, but low recall is rarely predicted but when predicted, it is
usually correct, while a class with low precision, but high recall is often predicted, but
the prediction is often wrong.

For each class, these two numbers can be combined into a single measure called the
F-measure or F1, which is the harmonic mean of these two numbers, given by

F1 = 2 · precision · recall
precision + recall (1)

The harmonic mean is close to the arithmetic mean when the two numbers are close,
but, since these numbers are always smaller than 1, punishes low scores more harshly
than arithmetic mean, and as such gives a better idea of when a model is poor at either
precision or recall than the accuracy score does.

As we can see, precision, recall, and F-measure are calculated on a per-class basis.
How can we combine these scores into a single measure for all classes? There are two
main ways to do this: Micro-averaging and macro-averaging. Micro-averaging counts
the true positives, false positives, and false negatives for all classes, and calculates a new
precision, recall, and F-measure for the new total. On the other hand, macro-averaging
calculates the arithmetic mean of the precision and recall of all classes, and a new F-
measure is calculated as normal using these two macro-averages scores. The averages
given for the final experiment in this thesis are calculated using prevalence-weighted
macro-averaging. Prevalence weighting means that the scores for each class are weighted
by the amount of items in that class. This means that, unlike pure macro-averaging,
label imbalance is taken into account.

2.3 Cross Entropy Loss Function

The multilayer perceptron classifier proposed in this thesis uses the cross entropy loss
function to evaluate the model. To understand what cross entropy is, it is first necessary
to understand what information entropy is. Say you are trying to encode an observation
using the least possible amount of bits on average. Such an optimal encoding would
mean that each bit in the observation gives the most amount of information possible.
Obviously, you would ideally want to use fewer bits encoding an observation that is
common, and more bits for rare observations. Given that we know how to encode the
information, and this model is given by the probability distribution y, we can find the
entropy of the system as

E(y) =
∑

i

yi log 1
yi

= −
∑

i

yi log yi (2)

where yi the probability of a given observation. Now, let us say that we do not know
how to map our observations to a probability distribution for encoding. Given the two

5

probability distributions y and ŷ, the cross entropy between these two distributions is
given by

CE(y, ŷ) =
∑

i

yi log 1
ŷi

= −
∑

i

yi log ŷi (3)

where y can be thought of as the training example, i.e. the true probability distribution
for this observation, while ŷ is the probability distribution produced by the machine
learning model that is being trained. As an example, given the true label vector y =
[0, 0, 1, 0] and ŷ = [0.2, 0.5, 0.3, 0.1], the cross entropy of the observation is given as

CE = −
∑

i

yi log ŷi = −1 · log 0.3 ≈ 1.20397 (4)

As we can see, given that a label is given as a probability vector where only one item
will have a value, cross entropy only looks at the probability the model being trained
gives for that one item. Just like a model being trained using 1-0 loss tries to minimize
the amount of differences between the model and the true labels, a model being trained
using cross entropy loss tries to minimize this cross entropy, since a model that gives
the same probability distribution as the true labels, will have a cross entropy of 0. Cross
entropy loss is currently the most common loss function in neural network classifiers.

2.4 Overfitting and Regularization

When a learning algorithm tries to learn from a set of examples, it can be prone to
matching the training data too closesly. This is known as overfitting, and results in poor
generalization to unseen data. In order to avoid this problem, it is necessary to somehow
penalize complicated models over simple ones, or to make the amount of training data so
large and representative that overfitting is less of a problem. For the first, the traditional
approach is something known as regularization. Regularization adds an extra term to the
loss function which penalizes the weights of the model, either as the sum of the weights
(L1 regularization) or as the sum of the squared weights (L2 regularization). For neural
networks, another viable method of avoiding overfitting is to randomly choose a subset
of the weights at each training step and ignore them for that step, so that each variable
in the model is less dependent on other variables to give valuable information. This
method is known as dropout (Srivastava et al. 2014).

2.5 Validating Machine Learning Models

In order to know the efficacy of a Machine Learning system, it is necessary to somehow
validate the resulting model in a way that tells us its ability to generalize to new data
points. The simplest way of doing this is to split a dataset into two parts, one larger
one to use as a training set and a smaller one to use as a test set once training has
completed. This is called hold-out validation, and is a very common measure, especially
during early experimentation, precisely because it is simple to implement, and you get
a single accuracy quickly.

6

The second main option, which will give a more accurate evaluation of the design at
the expense of time efficiency, is cross-validation. Cross validation is essentially repeat-
ing hold-out validation several times and averaging the results. As an example, when
performing 10-fold cross-validation, the data set is split into 10 parts, and 10 models are
trained using each of the 10 parts as the test set once and the rest as the training set
for that model. Then the test results for each of these 10 models is averaged and used
as the results for the machine learning design.

The most common way of validating is to use both these methods at different times.
Usually, hold-out validation is used in two phases of model creation. First, it is usually
used while designing, to get a quick idea of the strength of the model. Second, hold-out
validation is commonly used to avoid the inherent bias of training on all the data during
the creation of the system. To avoid this, carefully designed hold-out validation can be
used to have some completely unseen data points to test the model on at the very end.
As you may have surmised, cross-validation is used in between these two, and also when
doing a final comparison of different models.

2.6 Feature Vector

To input data to a machine learning model, the data that is being used has to be
represented in some way. One way to do this is as an n-dimensional vector, called the
feature vector, which represents a point in the feature space. A machine learning model
is then being trained to map this input vector in some useful way, such as to a class or
decision. Each element in this vector represents a single feature in the data. For example,
for a binary feature vector, each element signifies whether this specific feature is present
or not. For text classification problems, of which Native Language Identification is a
subset, it is common for features to represent the presence or prevalence of terms in the
text. For the machine learning methods to work well, it is very important for the input
vector to be carefully designed, in order to make the data more easily separable in the
feature space.

2.7 Statistical Machine Learning Methods

Since the system described in this thesis also experiments with the use of a Support
Vector Machine meta-classifier, this method will be described in some detail. A quick
run through of some other methods that are used by systems referenced in section 3
follows.

2.7.1 Support Vector Machines

As mentioned, Support Vector Machines (SVM) are very commonly used supervised
machine learning models, introduced by Cortes and Vapnik 1995. An SVM is a linear
classifier that finds a hyperplane that splits an n-dimensional feature space into two
parts. Each data point is called a support vector, and the idea is that the best linear
separation between two classes is found by keeping the distance between the hyperplane

7

and the closest support vector as large as possible. This distance is called the margin.
A set of data points can be expressed as (~x1, y1),, (~xn, yn), where yi is either 1 or -1,
depending on which class the ith item belongs to. Similarly, a hyperplane is given by

~w~x+ b = 0 (5)

where ~w is a weight vector for the feature space, and b is the bias. If the data is linearly
separable, we can define two parallel hyperplanes boundaries where all items on or above
~w~x + b = 1 are of one class, and all items on or below ~w~x + b = −1 are of the other.
The size of this margin is then given by 2

||~w|| , and to maximize this distance, we need to
minimize ||~w||, subject to yi(~w~x+ b) ≥ 1.

This version is called hard-margin SVM, and was the method originally introduced,
but this only works on linearly separable data. Whenever a point is found that is closer
than the margin, the margin is made smaller. But a lot of data is not linearly separable,
but we would still like a reasonable attempt. A second version, called soft-margin,
was introduced to achieve this, and works by introducing a hinge loss function, which
penalizes having data points on the wrong side, which is weighed against the value of
having a wider margin. This means that the classifier is able to learn a model even if
the data is not separable by a hyperplane.

Another way to separate data that is not linearly separable while still using Sup-
port Vector Machines, is to somehow make the data linearly separable, or at least more
separable. Manipulating the data in this way is called the kernel trick, and involves
feeding the data points into a kernel function that maps the data into another fea-
ture space where the data is linearly separable. This will often involve mapping into
a higher dimension, for example through the use of the polynomial function. Working
in a higher dimensional feature space does increase the generalization error, but using
enough examples alleviates this problem somewhat.

Splitting a feature space between more than two classes is also something that the
traditional SVM approach is unable to do. In order to do this, the problem is usually
reduced to several binary classifications. The most common ways are creating an SVM
model for each class and classifying opposed to the rest (one-vs-all), or to create a
model for each pair of classes (one-vs-one). One-vs-all chooses the classification of the
classifier with the highest degree of certainty as its final classification. On the other
hand, when using one-vs-one a classifier is trained for each pair of classes, and each of
the resulting models gives a vote to one of the two classes it has been trained on based
on its classification. The class with the most votes is given as the final classification for
the one-vs-one multiclass classifier.

2.7.2 Other statistical methods

Two other statistical methods have been used by important systems in NLI: Maximum
Entropy and Linear Discriminant Analysis (LDA). A maximum entropy learner builds on
the idea that the model which best represents given data, is the model with the highest
amount of average information for an observation. Unlike SVM, the Maximum Entropy

8

x0

x1

x2

. . .

xn

w0

w1

w2

wn

∑
w0x0

w1x1

w2x2

wnxn

φ output

Activation function

Figure 1: Model of a perceptron.

classifier model is not binary, although a Logistic Regression classifier is essentially a
binary version of a Maximum Entropy classifier. Maximum Entropy learners have been
quite commonly used methods within Natural Language Processing.

Linear Discriminant Analysis is a method that maps high dimensional data which
is split into k classes down into a (k − 1)-dimensional space. The goal is for the data
to have the highest possible degree of separability between classes and least amount of
separability within each class when mapped to this new space. More formally, it tries to
find the linear combination of predictors that best separates the data.

2.8 Neural Networks

Since the main classifier used by the system which is the topic of this thesis is a shallow
feedforward neural network, this section will go more into detail on the basics of neural
networks, and only quickly summarize some more advanced neural network types that
have been used in other NLI systems.

2.8.1 Basics

The most basic form of neural networks, the perceptron, was introduced by Rosenblatt
(1958). It was inspired by the workings of a biological neuron, and consists of a set of
weights that are multiplied with each of the perceptron’s inputs, summed, added to a
bias variable, and sent through the perceptron’s activation function, which decides the
output of the perceptron. Originally, this was a step function, where the perceptron

9

output was given by the function

φ(x) =
{

0
∑n

i=0Wixi + b ≤ 0
1

∑n
i=0Wixi + b > 0

(6)

Since this can lead to a complete change in output after only a small change in
the weights, with very little opportunity to see how certain the perceptron is in its
classification, the step function is usually no longer used. Ideally, a minor change in
the input to a perceptron should result in a minor change in the output from that
perceptron. Commonly used activation functions include sigmoid functions, the softmax
function, and the rectified linear unit (ReLU) (see 2.8.3). The output of the perceptron
separates the input into two classes (1 or 0), but due to the fact that it is based on a
linear combination of weights and inputs, the separation is a hyperplane in the feature
space, and, just like SVMs, it can not separate data that is not linearly separable. The
learning method works by updating the weights after each step by the error of the output,
modified by a learning factor. This is shown in the following equation

Wi(t+ 1) = Wi(t) + α(d− y(t))xi (7)

where Wi is the ith weight, t is the current time step, d is the desired output, y is the
actual output, and xi is the ith input. This idea of the perceptron is the basis for more
advanced neural networks.

As mentioned above, a single perceptron is only able to linearly split an n-dimensional
space into two classes, since it is a linear combination of weights on the input with some
activation function. Using a perceptron for multiple classes is simply a case of creating
one perceptron for each class and choosing the class of the perceptron that fires most
strongly on a given input. To avoid the linearity, it is necessary to add more layers.
This type of neural network is known as a multilayer perceptron (MLP), or feedforward
neural network, and all perceptrons in a layer take as their input the outputs from all
neurons in the preceding layer.

One thing to note, is that unlike statistical classifiers like SVMs, neural networks will
not necessarily find the global optimum on a given training session, since the way they
are trained is by repeatedly looking at different subsets of the training data. However,
when finding a good kernel function to make data easily separable is difficult, it can
often be easier to train a neural network on that data.

2.8.2 Backpropagation

It is clearly much more difficult to train a network with several layers, since it is not
immediately obvious how each weight in the network impacts the final output. The solu-
tion to this problem is an algorithm known as backpropagation, introduced by Rumelhart,
Hinton, and Williams (1986). They showed that backpropagation was significantly faster
than other methods for finding the gradient of the loss function. Backpropagation is the
neural network version of reverse-mode differentiation, which is partial differentiation
backwards through a computational graph. The introduction of backpropagation made

10

Figure 2: The logistic function is a sigmoid function, and is a commonly used activation
function in artificial neural networks. Shown are two logistic functions using k = 1 and
k = 3

.

neural networks able to solve problems that were previously considered computationally
infeasible, and it is the central concept of training neural networks.

2.8.3 Activation functions

As mentioned in 2.8.1, the output from a perceptron is decided by that perceptron’s
activation function. Initially this was the step function, but due to the fact that small
changes in input could lead to massive changes in output, alternative functions are
now used. These are generally sigmoid functions, most commonly the logistic function
(confusingly also commonly known as the sigmoid function). When using the logistic
function, a perceptron is essentially a special case of Logistic Regression, and the version
used as an activation function in artificial neural networks is given by

f(x) = 1
1 + e−kx

(8)

where k gives the steepness of the curve.
When looking at the graph of a sigmoid function, it is obvious that it bears a very

close resemblance to the step function, with a fairly rapid flattening out as the sum
of inputs gets farther away from 0. While this makes it more similar to biological
neurons, it leads to a problem in perceptron networks when perceptron weights lead the
input away from the center, since the gradient becomes less and less steep. Known as
gradient saturation, this extremely shallow gradient leads to further learning becoming
very slow, and for multilayer perceptron networks this shallow gradient also leads to

11

Figure 3: ReLU activation function compared to the logistic function with k=3

problems further back, since the perceptron will no longer propagate a gradient back
through the network. Fairly recently, an alternative activation function that avoids this
problem was introduced, the Rectified Linear Unit (ReLU) (Nair and Hinton 2010).
ReLU is defined as

f(x) = x+ = max(0, x) (9)

As long as the final input is positive, there is always a constant gradient. Using ReLU
does however have one problem. If the bias term of a perceptron becomes a large negative
number that drowns out the summed weight input such that no input makes it fire, it
becomes a dead neuron, and learning is completely impossible for that neuron, unlike for
the sigmoid functions where there might still be some slight learning possible, however
slow. Because of this, it is important to try to avoid negative bias terms, if possible,
and the bias terms for a perceptron layer using ReLU activation are usually initiated to
some small positive constant.

2.8.4 Other neural network designs

Two other very different neural network design types have seen significant use in Natural
Language Processing generally, and have also been tried more recently in NLI: Recurrent
neural networks and convolutional neural networks. A recurrent neural network (RNN)
is a network where instead of sending its output forward in a network, some data is also
sent back into the same layer in the next step. This means that an RNN can have a dy-
namic internal state (somewhat like a memory), and such networks are good at learning
temporal connections such as that found in natural language. They are therefore com-
monly used for machine translation and speech recognition. The backpropagation for
such networks require calculating the gradient at all previous steps. While traditional

12

RNNs have been good at learning short term dependencies, long term dependencies
were elusive due to a problem of exploding and vanishing gradients (Pascanu, Mikolov,
and Bengio 2013). Some RNN network types have been created to mitigate this prob-
lem, of which the most commonly used is Long Short Term Memory (Hochreiter and
Schmidhuber 1997).

Convolutional neural networks (ConvNets) were originally created within the field
of computer vision, where the method has been very successful at training computers
to recognize objects, faces, etc. The idea behind ConvNets is that each neuron acts
as a filter over a vector or matrix of inputs. In each layer a certain amount (usually
a lot fewer than in traditional networks) of neurons pass over the preceding layer and
filters it into a new output. This is easiest to explain with image recognition. On the
2-dimensional input image, each neuron passes over it and creates an output for each
pixel based on some size of filter (3x3 or 5x5 is common). This is then saved as a new
image as that neuron’s output. However, since each neuron creates a full output, the
amount of pixels is usually at least halved though a pooling function, since the amount of
memory required would otherwise expand very rapidly with each layer. At the next level
each neuron passes over all the output matrices from the preceding layer and creates a
single new output layer of its own. Finally, after the last convolution layer, the output
is flattened and one or more fully connected layers are added at the end to create the
final classification.

For text, the process is very similar, except the representation of text is less obvious
than it is for an image. Two main ways exist to do this. The traditional way is to
add a word embedding layer at the beginning, trained as part of the network but often
initialized to a pretrained layer to shorten training times. An embedding layer creates a
vector for each word in the text. These vectors are then placed next to each other and
the convolution is performed over the resulting matrix with a region size in one direction
equal to the vector length and any desired size in the other (Y. Zhang and Wallace 2015).
More recently, character level convolutional networks have also been used effectively (X.
Zhang, Zhao, and LeCun 2015).

2.9 Natural Language Processing

Natural language processing (NLP) is the study of helping computers parse and under-
stand natural languages. Terms and concepts related to NLP that are used a lot in this
thesis are explained here.

2.9.1 Syntax and semantics

The syntax of a language is the set of rules and processes that define how to create
valid statements in that language. However, it does not give any information about
whether the sentence makes any sense or what it means. It is mainly about the order of
tokens in statements, and is a subset of grammar. Contrasting this, semantics focuses
on signifiers, such as words or phrases, and the relationship between them, and is the
study of meaning in languages.

13

The quick brown dog jumps over the lazy fox .
DT JJ JJ NN VBZ IN DT JJ NN .

Figure 4: Simple sentence tagged by the Stanford tagger.

2.9.2 Part-of-speech

Part-of-speech (POS) is a lexical categorization of words where the words are given a
class based on their grammatical properties. These are classes like noun, verb, adjective,
etc. To avoid tagging texts manually, a POS tagger has to be created and trained for a
specific language. Since this is a lot of work, pre-created taggers are ususally used. For
English, the most common tagger is the Stanford POS Tagger (Toutanova et al. 2003),
which uses the Penn Treebank English POS tag set, which includes 36 tags, including
general ones such as Verb, past tense (VBD) and Proper Noun, singular (NNP), and
more particular ones, like Wh-pronoun (WP), List item marker (LS), and to (TO).
Figure 4 shows a simple sentence and its associated POS tags. The Stanford Tagger is
used by the system outlined in this thesis.

2.9.3 N-grams

An n-gram is a substring of length n of a string of tokens. These tokens can be anything,
but the most common in the context of NLP are character, word, and POS. As an
example, for the sentence “The quick dog jumps over the lazy fox”, some n-grams include
brown fox jumps (word trigram), JJ NN VBZ (POS trigram), and mps ov (character
6-gram). A look at some complete n-gram sets from the sentence in figure 4 can be
found in table 1.

2.9.4 Bag-of-words

Bag-of-words is a simple and common way of representing text for text classification
tasks. In a bag-of-words vector, each element in the vector represents some term in the
text. For each text, the terms are either counted or, for a binary vector, marked as
present or not. The order in which the terms are found in the text is not represented,
although the model can be used with any terms, such as n-grams to show ordering,
part-of-speech tags to represent grammar, etc. A bag-of-words model of two sentences
can be seen in table 2.

2.9.5 Term frequency - inverse document frequency

In order to help decide which terms are important to a document in relation to its corpus,
it is fairly intuitive to look at terms that are rare in the overall corpus but used in some
documents. These can then be weighted to make them have more of an impact on the
position of those documents in the feature space. This is the idea behind term frequency
- inverse document frequency (tf-idf).

14

Type Size Set
Character trigrams (3) The, he , e q, qu, qui, uic, ick, ck , k b, br, bro,

row, own, wn , n d, og, dog, og , g j, ju, jum, ump,
mps, ps , s o, ov, ove, ver, er , r t, th, the, he , e l,
la, laz, azy, zy , y f, fo, fox, ox , x .

4-grams The , he q, e qu, qui, quic, uick, ick , ck b, k br,
bro, brow, rown, own , wn j, n ju, jum, jump, umps,

mps , ps o, s ov, ove, over, ver , er t, r th, the,
the , he l, e la, laz, lazy, azy , zy f, y fo, fox, fox ,
ox .

Word unigrams (1) The, quick, brown, dog, jumps, over, the, lazy, fox, .
bigrams (2) The quick, quick brown, brown dog, dog jumps, jumps

over, over the, the lazy, lazy fox, fox .
POS bigrams (2) DT JJ, JJ JJ, JJ NN, NN VBZ, VBZ IN, IN DT, DT

JJ, JJ NN, NN .

Table 1: Some n-gram sets in the sentence from figure 4. Note that the commas in the
character n-gram lists are the delimiters, and that spaces are indicated by .

Terms Document 1 Document 2
the 2 2
quick 1 0
brown 1 0
dog 1 1
jumps 1 0
over 1 0
lazy 1 0
fox 1 0
. 1 1
bowl 0 1
belongs 0 1
to 0 1

Table 2: Bag-of-words for a corpus of two short documents, one of which is the sentence
from figure 4.

15

Term frequency (tf) is a measure of how common a given term is in the current
document. The two most basic ways of looking at a term’s frequency in a document
is raw count and binary. Raw count, as the name implies counts the amount of times
a term is found in the document, while binary only checks whether a term is present
or not. Since the raw count, denoted by ft,d, is prone to weighting longer documents
more highly than short ones, it is usually scaled, either by simply dividing by the total
amount of terms in the document, or by dividing all the terms by the highest ft,d in the
document. The last one is the most common and is given by

tf(t, d) = K + (1−K) ft,d

maxt′∈dft′,d
(10)

where K is a smoothing term between 0 and 1 (0.4 and 0.5 are common).
Inverse document frequency (idf) is a measure of how rare a term is in the entire

corpus and is the logarithmically scaled fraction of documents in the corpus that contain
the term.

idf(t,D) = log N

|{d ∈ D : t ∈ d}| (11)

where D is the corpus and N is the total amount of documents in D. For a given document,
the tf-idf score of each of its terms is found by multiplying that term’s tf and idf scores.

tf-idf(t, d,D) = tf(t, d) · idf(t,D) (12)
As an example, let us look at the terms the and brown in the small corpus from table 2.
First we find the term frequency for each term in each document and inverse document
frequency of each term in the corpus.

tf(“the”, d1) = 0.4 + 0.6 · 2
2 = 1.0

tf(“the”, d2) = 1.0

tf(“brown”, d1) = 0.4 + 0.6 · 1
2 = 0.7

tf(“brown”, d2) = 0.4 + 0.6 · 0
2 = 0.4

idf(“the”, D) = log2
2 = 0

idf(“brown”, D) = log2
1 ≈ 0.301

As expected, the term the, while very common in both documents, is removed by
tf-idf, since the term gives less obvious information about the documents’ place in the
corpus. On the other hand, brown will be kept, since it is only present in half of the
corpus. The final tf-idf scores of brown are given by

tf-idf(“brown”, d1) = 0.7 · log(2) ≈ 0.211
tf-idf(“brown”, d2) = 0.4 · log(2) ≈ 0.120

16

2.10 Tools

This section will go through the tools used by the system in this thesis. In addition to
the tools mentioned here, the Stanford Tagger (Toutanova et al. 2003), also referenced
in 2.9.2, was used for POS tagging of all the documents in the dataset.

2.10.1 NLTK

NLTK (Bird, Klein, and Loper 2009) is a leading open source set of libraries for Natural
Language Processing using Python. It contains many useful methods for collocations,
tokenizers, grammars, automatic calculation of probabilistic distributions, parse trees,
etc. In the system for this thesis, it is only used for creating the n-grams, and to have a
Python interface to the Stanford Tagger, which is written in Java.

2.10.2 TensorFlow

TensorFlow (Abadi et al. 2015) is an open source library developed by Google for nu-
merical computations in flow graphs, for example to create neural networks. Using
TensorFlow involves first builing a flow graph, and then using one of the many training
functions on the end result. For the system outlined in this thesis, it is used to create
the flow graph for the shallow neural network classifiers, and training them.

2.10.3 Scikit-learn

Scikit-learn (Pedregosa et al. 2011) is a machine learning library for Python. It contains
implementations of many common machine learning methods, such as Logistic Regres-
sion, Support Vector Machines, k-nearest neighbor, etc. For the system in this thesis,
the linear SVM classifier is implemented using scikit-learn’s LinearSVC, which is an
interface to LIBLINEAR’s (Fan et al. 2008) implementation of a linear SVM classifier.
Also, tf-idf weighting and chi squared feature selection is implemented using scikit-learn,
as well as calculating of precision, recall, and F-measures, and creating the confusion
matrices.

17

3 Related Work

As mentioned in the introduction, research into NLI by computer scientists only took off
at the end of the previous decade. This research can be split into two main phases. First,
the early phase, which focused on researching baseline systems and corpora. This phase
culminated in a large shared task in 2013, where 27 teams compared results on the same
dataset. Second, the period after the shared task, where the results from the shared
task were explored further and improved upon, as well as some smaller explorations,
including a shared task for NLI using speech only. This second phase culminated in
another large shared task using both text and speech in 2017.

3.1 Early research

While not the first work in the field, Koppel, Schler, and Zigdon (2005) created the
first baseline system for this task. Using the International Corpus of Learner English
(ICLE) (Granger et al. 2002) as their corpus, and looking at a set of 1035 features,
they achieved an accuracy rating of more than 80%. They used work from the field of
authorship attribution, and modified it to identify the class (native language, L1) the
author belonged to, rather than looking for a specific author. In their system, they used
four feature types (function words, character n-grams, error types, and POS n-grams)
all of which have been used to some extent in most later systems for NLI. The size of
the feature space used (1035 features in total) was, however, quite small compared to
later work, which can be seen quite clearly when we look at the submissions to the first
shared task. In Tsur and Rappoport (2007) they found that even using just character
n-grams worked very well, although the results, both from Tsur and Rappoport (2007)
and Koppel, Schler, and Zigdon (2005), may have been influenced by the topic bias
found in ICLE, leading to the learning of topic words rather than words unique to
speakers of the same L1. This bias was first brought up by Brooke and Hirst (2013),
who found significant drops in accuracy when doing tests accounting for topic bias, even
in features that were previously assumed to be immune to such biases, like POS n-grams
and function words.

Noting the lack of use of syntactic features in NLI, Wong and Dras (2011) looked at
using parse structures to create feature sets on the ICLE. Looking at the previously used
lexical features as a baseline, they created a new semantic feature type based on parse
trees. They took horizontal slices from parse trees and treated them as Context-Free
Grammar (CFG) production rules, and then created binary feature vectors for each text
(i.e. a text either contained a given production rule or not). After training a Maximum
Entropy machine learner to act as the classifier, they reported an accuracy of 80% on
the ICLE with hold-out validation, and 77.75% accuracy with 5-fold cross validation.

Based on this use of Context-Free Grammars to create feature sets for NLI, Tree
Substitution Grammars (TSGs) were brought up as an alternative by Swanson and
Charniak (2012), where they achieved an accuracy of 78.4% on the ICLE with their best
model. They experimented with two different heuristic types and two ways of looking
at the data (sentence or complete document), and compared this to the performance of

18

using Context-Free Grammars. While Swanson and Charniak do not report what kind
of validation was used for their result, they do compare their results to those of Wong
and Dras. Swanson and Charniak report that they implemented the CFG as described
in Wong and Dras (2011), and this CFG model gave a worse accuracy than all three
TSG implementations when looking at the whole document, and worse than the best
system when looking at sentences individually and voting.

Tetreault, Blanchard, Cahill, and Chodorow (2012) reached a new peak on the ICLE
corpus, at 90.1% accuracy, but they expanded on the problems of ICLE for NLI. In
addition to the topic bias, there are also encoding errors that vary from language to
language. These together lead to learners learning specific topic words, or the encoding,
rather than language mistakes tied to an L1. To address these problems, Tetreault,
Blanchard, Cahill and Chodorow proposed two solutions, first by changing the ICLE
corpus they worked on, creating a subset called ICLE-NLI. Second, they introduced a
new corpus made specifically for NLI, TOEFL11 (Blanchard et al. 2013), which has since
become the de facto standard corpus for NLI, especially since its use in the 2013 Shared
Task. Since this is also the dataset that is used for the experiments in this thesis, a
description of the dataset follows.

3.2 The TOEFL11 Dataset

The original TOEFL11 data set consisted of 12,100 English language essays from the
Test of English as a Foreign Language (TOEFL), evenly split between 11 different native
languages (L1s): Arabic, Chinese, French, German, Hindi, Italian, Japanese, Korean,
Spanish, Telugu, and Turkish. This means each language has 1,100 essays. These
essays were written as answers to 8 different questions (henceforth called prompts). An
attempt has been made to make them as evenly distributed between the 8 essay prompts
as possible, but there is a certain amount of difference in distribution for the different
L1s, especially with regard to prompt 6, where several of the languages have very few
essays. In fact, only 4 languages (Arabic, Chinese, Japanese, and Korean) have more
than 100 essays for all prompts. A complete overview of the distributions can be seen
in table 3. For each of the shared tasks 1,100 more essays were added to the set as
hold-out validation sets, raising the amount up to 13,200 essays. Note that the prompt
identification numbers differ between the original dataset and the version given out in
2017. Both of the prompt identifiers are shown in table 3.

In the original data set, proficiency levels (based on the essay writer’s result in the
TOEFL) for each essay were also provided, but since the inclusion of proficiency did not
give noticeable improvements to the accuracy of classifiers, this was omitted in the set
for the 2017 Shared Task.

3.2.1 Text data

The essay data is released in two different formats, raw and tokenized. The raw data
is the set of essays from the TOEFL without any preprocessing. As such, this is the
dataset to use when exploring different tokenizing and early preprocessing steps. The to-

19

Language
Prompts

1 2 3 4 5 6 7 8
P4 P7 P6 P0 P5 P1 P3 P2

Arabic 138 137 138 139 136 133 138 141
Chinese 140 141 126 140 134 141 139 139
French 158 160 87 156 160 68 151 160
German 155 154 157 151 150 28 152 153
Hindi 161 162 163 86 156 53 158 161
Italian 173 89 138 187 187 12 173 141
Japanese 116 142 140 138 138 142 141 143
Korean 140 133 136 128 137 142 141 143
Spanish 141 133 54 159 134 157 160 162
Telugu 165 166 167 55 169 41 166 171
Turkish 169 145 90 170 147 43 167 169
Total 1,656 1,562 1,396 1,509 1,648 960 1,686 1,683

Table 3: Amount of essays for each L1 and prompt. Numbers are taken from Blanchard
et al. (2013), and therefore only includes the 12,100 essays that are publically available.
The first row of prompt numbers are the ones found in the original data set, while the
second row are the prompt identification from the 2017 Shared Task.

kenized set consists of the essays pre-tokenized. That is, all tokens (such as punctuations,
contractions, and quotation marks) are separated by a space.

As an example, let us look at a partial sentence from the dataset, more specifically
the test taker that was given the identification number 7173 in the 2017 Shared Task
version of the dataset. In the raw data, the example partial sentence is written “In my
life I don’t like lies, and I don’t like liar people, (...)”. In contrast, the tokenized text is
written “In my life I do n’t like lies , and I do n’t like liar people , (...)”. Note the space
between the commas and the preceding word, and the split of don’t into do and n’t.

There is a lot of variance in the length of essays in the data set. The shortest essay
is only two words (“I agree.”), while the longest is 876 words, with an average length
of approximately 300 words. Obviously, short essays are much more difficult to classify
than longer ones, but at the same time, the long ones are usually correlated with high
proficiency, and one could imagine that some obvious mistakes, such as spelling mistakes
might be much more rare for these essays.

3.2.2 Speech data

The speech data was added to the dataset for the 2017 Shared Task. As part of the
TOEFL, participants’ responses to speech prompts were originally recorded, and these
had been kept. Ideally, these raw recordings should be available for classification, but for
the privacy of the test takers, it was not possible to make such a wide release of this data.
Two versions of the speech data was released: transcripts and i-vectors. The transcripts

20

were manually created orthographic transcriptions of lengths between 0 and 202 words.
Since the i-vectors are used as is by the papers in the 2017 Shared Task and this work, it
is sufficient to know that an i-vector is a vector of fixed length (in this case 800), which
has been created as a lower-dimensional representation of high-dimensional sequential
recordings of speech data. They were originally created for use in speaker recognition
(Dehak et al. 2011), later used for language recognition (Martinez et al. 2011), and used
at the paralinguistics challenge at Interspeech 2016 for NLI (Senoussaoui et al. 2016).

3.3 2013 NLI Shared Task

In 2013, the first shared task for NLI was held to have a better comparison between
different NLI systems. Using the TOEFL11 data set and adding another 1,100 essays
as the hold out validation set, 29 teams submitted solutions to the task, with accuracy
scores ranging from 84.6% to 63% for the 13 teams that did 10-fold cross validation on
the full set after the task had finished. A longer summary can be found in Tetreault,
Blanchard, and Cahill (2013), but a short summary of the systems follows here.

Jarvis, Bestgen, and Pepper (2013) reported the best results for the initial holdout
validation, at 83.6% on the test set, and second best after 10-fold cross validation, at
84.5%. They used a bag-of-words feature vector consisting of lexeme, lemma, and POS
1-, 2-, and 3-grams that were present in at least two texts in the training set. This
vector was normalized to unit length, and a log-entropy weighting was applied, both of
which gave improved accuracy. They also optimized the cost parameter of their SVM.
Since none of the features used were new, and they did not employ a comparatively large
feature vector, these optimization and weighting methods are likely to be a major reason
for their good results.

Motivated by the possibility that simple lexical features could efficiently be used on
the task without the need to learn syntactic and morphological differences between L1s,
Lynum (2013) trained a system using only lexical features. As features he used word
unigrams and bigrams, character n-grams, with n ranging from 3-6 and 1-7 depending on
the system, and suffix bigrams. All these features were weighted through tf-idf weighting.
As most systems in the shared task, a linear SVM classifier was used on these feature
vectors, and like Jarvis, Bestgen, and Pepper (2013), the cost parameter was optimized
with 5-fold cross validation. This system reported the second best results, at 83.4%.

One thing to note is the huge feature space found in a lot of the solutions. The
best systems all used large n-grams (up to 9-gram for characters for one system), but
some systems made the feature vectors smaller by omitting features that did not occur
frequently, or that occurred often enough that they were less useful for distinguishing
between L1s. For example, Gebre et al. (2013) omitted features that occurred less than
5 times or that occurred in more than 50% of the essays to reduce the feature space
to 73,626, which is still significantly higher than the small feature space from Koppel,
Schler, and Zigdon (2005). Other systems (Jarvis, Bestgen, and Pepper 2013; Lynum
2013; Popescu and Ionescu 2013) had much larger feature spaces, most notably Popescu
and Ionescu (2013) with a total feature space size of 7,669,684.

Having such large feature spaces necessarily means that the learning algorithms need

21

Rank Team Classifier Feature space Accuracy 10-fold CV
1 Jarvis, Bestgen, and

Pepper (2013)
SVM > 400,000 83.6% 84.5%

2 Lynum (2013) SVM 867,479 83.4% 83.9%
3 Popescu and Ionescu

(2013)
KRR 7,669,684 82.7%1 82.6%

6 Goutte, Léger, and
Carpuat (2013)

SVM Ensemble 81.8%

7 Tsvetkov et al. (2013) MaxEnt 5,664,461 81.5%
8 Gebre et al. (2013) SVM 73,626 81.4% 84.6%2

13 Malmasi, Wong, and
Dras (2013)

SVM Ensemble 80.1% 82.5%

1 : 82.5% without heuristics based on knowledge of the test set.
2 : When doing 10-fold cross validation, this system did better than all other systems.

Table 4: An overview of some key systems in the 2013 Shared Task.

to be relatively simple in order to remain computationally feasible. Thirteen of the
submitted systems used SVM classifiers, and four of those consisted of several SVM
classifiers set up in an ensemble. For example, Goutte, Léger, and Carpuat (2013)
found that classifiers with very similar accuracy could disagree on a large percentage
of the dataset. This led them to using a simple majority vote to take advantage of
combining classifiers trained on different features (character n-grams, PoS n-grams, etc.).
Malmasi, Wong, and Dras (2013) experimented on different combination methods for
SVM classifiers and found that, for their features, using the sum combination method
worked best. They also concluded that the differences were small and that any new
ensemble combination method would have to be very different from existing combination
methods to expect greater improvement on the results.

Only two other approaches were used in systems that achieved more than 80% accu-
racy, Logistic Regression and String Kernels. Logistic Regression was used in Tsvetkov
et al. (2013) to achieve 81.5% accuracy using a feature set of 5,664,461, a set that is
more than ten times larger than that of the best system. This feature set included a
large amount of non-standard features, a lot of which had a fairly low impact on system
accuracy.

The string kernel method proposed by Popescu and Ionescu (2013) consists of a one-
vs-all Kernel Ridge Regression classifier system using two kernel methods, String Kernels
and Local Rank Distance. Their String Kernel simply looks at how many substrings of a
given length are shared between two texts, either in a binary fashion, where a substring
is either shared or not, or counted for each text. Both of these are usually normalized.
Local Rank Distance measures the offset of similar character n-grams within a string, in
this case the whole document, with some maximum offset. This maximum offset is used
to avoid searching too far, as well as making sure normalization is simple. Using all of
this together, Popescu and Ionescu achieved an accuracy of 82.5% for their best system.

22

They also used a set that exploited knowledge about the testing set to create a heuristic
to improve accuracy, which performed slightly better, at 82.7%, but this does not show
the actual performance of the system itself.

3.4 Between the Shared Tasks

Kŕıž, Holub, and Pecina (2015) took ideas from other parts of NLP to greatly reduce
the feature space while keeping comparable accuracy to the better systems in the 2013
Shared Task. They based this system on two new ideas for NLI, namely Language
Modeling and looking at the difference in cross-entropy scores between the text and the
language models. The scores were calculated for each feature family (tokens, characters,
suffixes, and POS tags) and these scores were then used as features for a linear SVM
classifier, which as in previous research was found to be no worse than more advanced
classifiers. In addition to the 44 cross entropy features, 11 more features were added.
Two of these features, Prompt and Proficiency, were tags for each text and are not useful
for data that unlike TOEFL11 does not have such tags. With only these 55 features,
they reported an accuracy of 82.4%, which was competitive with the best systems from
the preceding shared task.

Malmasi and Dras (2017) built on the results from the 2013 Shared Task and explored
different ensemble methods and ensemble stacking, a method where a second ensemble is
trained on all the outputs from the classifiers of the first ensemble. Testing was done on
three different corpora, and they used a large amount of different classifiers and features.
This ensemble stacking with Linear Discriminant Analysis classifiers reached a new best
result on the TOEFL11, at 87.1% accuracy on the test set, and even using only a single
LDA meta-classifier rather than an ensemble reached 86.8%. They also brought up the
idea of Statistical Significance to NLI, since the reported accuracy is now becoming very
close to the oracle baselines, and that it could be very beneficial for comparing systems
when the differences in accuracy become smaller. Malmasi and Dras (2017) proposed
using McNemar’s test, due to its wide use for pairwise classifier comparison, and it
was noted that comparisons with older systems was difficult due to the fact that the
actual predictions of the systems are rarely released. Furthermore, in order to improve
comparisons as systems approach the oracle upper bounds, they suggested that future
systems should release this data, and showed their significance testing by comparing
their new system to two of the best performing systems from the 2013 Shared Task.

At the Interspeech conference, a Computational Paralinguistics challenge is set every
year, and in 2016, the challenge was related to NLI. The task, called “Deception, Sincerity
& Native Language” (Schuller et al. 2016), had as one of its subtasks the challenge of
identifying speakers’ native language based only on an audio-recording of them speaking
in English. The main difference between these systems and the text based systems
is in the features used for training. When using sound for identification, phonetics,
acoustics and phonotactics become important features, currently more so than lexical
and syntactic content.

The best system for the Native Language subtask, by Abad et al. (2016), used Phone
Log Likelihood Ratios to find acoustic-phonetic features, which were decoded through

23

Rank Team Classifier Accuracy F1
1 Cimino and Dell’Orletta

(2017) Lab
Stacked SVM 88.18% 88.18%

1 Kulmizev et al. (2017) Linear SVM 87.55% 87.56%
1 Goutte and Léger (2017) Voting ensemble 87.36% 87.40%
1 Ionescu and Popescu (2017) 86.91% 86.95%
1 Li and Zou (2017) Ensemble 86.55% 86.54%
2 Oh et al. (2017) DNN ensemble 86.00% 86.01%
3 Bjerva et al. (2017) Resnets+MLP+CBOW 83.18% 83.23%

Table 5: Overview of some essay-only track systems.

trained Multilayer Perceptron networks. These, along with some other acoustic and
phonotactic features, were used for training with Total variability modelling, also known
as the i-vector framework, which was also used by Senoussaoui et al. (2016). Abad et al.
(2016) found that using ConvNets or Recurrent Neural Networks gave worse performance
for the final training on these features. Their final system got an accuracy of above 80%
(82.9% accuracy on the development set and a reported 81.3% Unweighted Average
Recall on the test set1).

3.5 2017 NLI Shared Task

A second large shared task was held in 2017, combining the previously separate fields of
text-based and speech-based NLI (Malmasi, Evanini, et al. 2017). While the text dataset
was the same as the one from 2013 except a new test set, the speech part of the task
consisted of previously unused manually created speech transcripts, and optionally a set
of i-vector features created from the recorded speech of the TOEFL test takers. The
i-vectors were added to give a more realistic idea of the performance of speech-based
classifiers. Section 3.2 describes the dataset in more detail. The task was split into
three tracks, essay-only, speech-only, and fusion. This section will look at the essay-only
and fusion tracks, since the essay-only track had the most participants and the most in
common with previous work, and the majority of teams that submitted systems to the
speech-only track also submitted systems to the fusion track, whereas some teams with
key systems from the essay-only track did not. Each task was also split into open and
closed competitions, depending on what training data was used. The open competition
allowed use of other training data in addition to the one provided by the organizers of the
shared task. The organizers used statistical significance testing to place the teams into
groups where the best and worst results were not significantly different. These groups
were then ordered from best group to worst group, and all teams within a group were
given the same rank.

Most of the top ranked essay-only systems used SVM classifiers in some configuration
with different n-grams features; only a single rank 1 system (Li and Zou 2017) used neural

1No accuracy was reported for the test set.

24

Rank Team Classifier Accuracy F1
1 Ionescu and Popescu (2017) 93.18% 93.19%
1 Oh et al. (2017) SVM/DNN Ensemble 92.18% 92.20%
1 Goutte and Léger (2017) Voting ensemble 91.91% 91.93%

Table 6: Overview of some fusion track systems.

methods, and in that case only as the meta-classifier for a statistical ensemble. The best
of these traditional systems was the one delivered by Cimino and Dell’Orletta (2017).
They based their system on the idea that there are differences in the importance of
features for sentence classification as opposed to document classification. Combining
this idea with ensemble stacking, their system achieved an accuracy of 88.18% on the
2017 test set. The stacking consisted of an SVM sentence classifier, whose predictions
were used as features by a second SVM document classifier. Both classifiers used most
of the standard features, such character n-grams (up to 8-grams), word n-grams (up to
4), and POS n-grams (up to 4) as well as syntactic features, such as linear dependency
and hierarchical dependency type n-grams. During experiments, they found that the
syntactic features did not have a statistically significant effect on system performance.

Kulmizev et al. (2017) showed that very simple feature sets could still be used with
good results. Their best system used only a binary feature vector of 1-9 character n-
grams normalized using tf-idf, with an official test accuracy of 87.55%. They also looked
at the prompt distributions for different languages in the data, and found some evidence
of topic bias, which they tried to correct for by omitting topic words. When they also
did experiments dropping prompts entirely from the training data, they found drops in
accuracy when tested against that prompt. This shows that systems might have trouble
generalizing toward unseen prompts, and they suggested that a true metric of a system
can only be obtained by testing a system against such unseen prompts.

Continuing their work from the 2013 Shared Task, Goutte and Léger (2017) looked
at the use of voting in ensemble classifiers. They found that the gains from using a
voting ensemble were small, but consistently present given the same estimator, but with
variability between estimators. Because of this, they concluded that there might still be
room for improvement in voting systems. They also brought up the question of whether
it is time to use long character n-grams in place of word n-grams now that computers
can handle large n-grams. This choice of only using character n-grams would remove
the need for linguistic preprocessing, even tokenization, and it might be able to model
word stems without linguistic modeling.

Oh et al. (2017) delivered a deep learning based system using latent semantic analysis
(LSA). Count based vectors from different length character and word n-grams went
through an extensive preprocessing step to end up with fairly small feature vectors.
Three deep neural network classifiers (DNN) took these features, DNN bottleneck values,
and the i-vector as inputs, and the output of the three classifiers was fed into a final
DNN meta-classifier. This performed very well, especially on the fusion track, where it
achieved a top ranked accuracy score of 92.18%.

25

Bjerva et al. (2017) used a mix of Deep residual networks (resnet) directly on the
text, a sentence level Bidirectional LSTM on POS tags, logistic regression on spelling
features, and a continuous bag of words (CBOW) model. Their best system, which
skipped the use of the LSTM, had a rank 3 accuracy of 83.18% in the essay-only track,
but even using only resnets gave an accuracy of 80.27%.

The system that performed the best on the fusion track was delivered by Ionescu and
Popescu (2017), who tried to see if a String Kernel system was still able to deliver state
of the art results in NLI. Along with the string kernels for the text, they also developed a
kernel based on the provided i-vectors. They experimented on using Kernel Discriminant
Analysis instead of Kernel Ridge Regression, and found that it performed consistently
better. Their best system had an accuracy of 92.09% on the fusion track and 86.91% on
the essay-only track, both of which amount to rank 1 results. Their system shows that
a system using only the character data can achieve top results.

26

4 System Design

The goals of this thesis is to explore the ability of a simple MLP classifier to get good
results in NLI, and to look for an input preprocessing layer that is less prone to the drops
in accuracy brought up by Kulmizev et al. (2017) when confronted with texts about an
unseen topic. This section will outline the two proposed MLP designs, as well as the
proposed preprocessing method, which will be compared to the more standard tf-idf /
χ2 selection which is commonly used in bag-of-words models.

4.1 Dataset and Preprocessing

The data used for the system is the TOEFL11 version from the 2017 shared task, without
the test set. As such, it consists of essays and speech data from 12,100 test answers,
split between 11 different native languages, as outlined in 3.2. It is split into two sets, a
development set consisting of 100 essays, speech transcripts, and i-vectors from each L1,
and a training set consisting of 1,000 from each L1. The essays are written as answers
to 8 different prompts, while the spoken answers were given to 9 different questions.

• Character n-grams are extracted from the tokenized essays, varying in size from
3-9.

• Word n-grams are created from the tokenized essay data varying in size from
1-5.

• POS n-grams. The POS tags are found using the free Stanford Tagger (Toutanova
et al. 2003) on the tokenized essay data, and 1-4-grams are created.

• Speech data. The provided i-vector data is used as the only speech data for the
system. Transcripts will not be used, since the transcript data provided much less
additional accuracy to systems in the 2017 Shared Task compared to the i-vectors.

Systems have had trouble generalizing to texts written for unseen prompts, and for
this reason, part of the goal of this thesis is to look for preprocessing methods that could
mitigate this drop in accuracy. To get a baseline result of the drop in accuracy, the
preprocessing step will consist of using tf-idf weighted items selected through χ2 feature
selection. Both tf-idf and χ2 were implemented using scikit-learn (Pedregosa et al. 2011).
This method is chosen since it is a tried and true method for preprocessing text data
into a bag-of-words model. However, one of the reasons this method could have drops in
accuracy when faced with unseen prompts is that many of the important words chosen
could possibly be chosen specifically due to the fact that they give very good information
for specific prompts. For example, one could imagine that a prompt stating “Describe
something that surprised you when coming to another country.” could lead to writers
using the name of their own country extensively in their text, an item which would be
completely useless in prompts where a comparison between countries is not needed.

To combat this inherent bias toward high value items, a much simpler method of
choosing n-grams is proposed. First, all items in the corpus are counted. Then, all

27

n-grams are sorted by how common they are, and the x most common items are chosen
for the feature vector. These items are then linearly normalized within its vector. This
simplistic choice will in all likelihood drop accuracy on known prompts, but hopefully
this lower dependency on highly valued items could lead to a better ability to generalize.
Another problem this method might have is that longer n-grams might be left out of the
feature vector, since one could assume that long n-grams are more varied and therefore
any given n-gram will be more rare. To combat this problem, experiments are also run
looking at an individual feature vector for longer n-grams (n from 7-9), and comparing
this to the result of using a single n-gram vector (n from 3-9).

4.2 Classifiers

Traditional statistical methods have been used a lot in NLI in the past, while neural
methods have only recently been explored. The first goal of this thesis was to look at
whether simple MLP classifiers could achieve good results for the task. To this end, this
thesis is experimenting with two main classifier types. Simple MLP classifiers and MLP
classifier ensembles. Since the ensembles essentially use simple MLP classifiers as their
building blocks, the MLP classifiers will be described first.

The simple classifiers that are experimented with are two different types of fully
connected perceptron networks. The most basic one is a linear classifier with one per-
ceptron for each native language to be classified, each directly connected to each item
in the input feature vector. This type of network is shown in figure 5. The second type
is a multilayer perceptron, with the two-layer version shown in figure 6. The amount of
layers could have increased further, but experiments described in section 5 found that
even two layers completely fit the input data, and that more layers would not increase
performance. The size of the hidden layer is also experimented on. The activation func-
tion used for all layers in the network is the Rectified Linear Unit (ReLU). The most
basic classifier is therefore an MLP classifier that takes as its input the concatenated
feature vectors of all the inputs.

The ensemble classifier, shown in figure 7, is designed using these MLP classifiers
as its building blocks. First, individual MLP classifiers are trained for each of the
features. Then, a final classifier is trained on the concatenated outputs from each of
these individual classifiers. Two versions of this meta-classifier are experimented with.
The first version is an identical MLP classifier, while the alternative is a one-vs-rest
linear multiclass SVM meta-classifier implemented using LinearSVC from scikit-learn.

28

i0 i1 i2 i3 i4 i5 . . . ix−5 ix−4 ix−3 ix−2 ix−1 ix

o5o4o3o2o1o0 o6 o7 o8 o9 o10

Figure 5: Direct input perceptron network with a single output node per native language.

i0 i1 i2 i3 i4 i5 . . . ix−5 ix−4 ix−3 ix−2 ix−1 ix

. . .h4 hx−4h3 hx−3h2 hx−2h1 hx−1h0 hx

o5o4o3o2o1o0 o6 o7 o8 o9 o10

Figure 6: Two layer perceptron network.

29

Pre-trained network Pre-trained network Pre-trained network Pre-trained network

char n-gram vector word n-gram vector POS n-gram vector

preprocessing

Tokenized text

Concatenate

MLP/SVM meta-classifier

Prediction

i-vector

Figure 7: Simple Shallow Neural Network Ensemble Classifier.

30

Feature Accuracy Feature Accuracy
1 Layer 2 Layers 1 Layer 2 Layers 2-Layer

meta-classifier
Character 73.27% 77.06% Character + Word 76.27% 78.91% 60.36%
Word 68.18% 78.73% Character + POS 74.27% 78.36% 49.64%
POS 45.27% 58.09% Word + POS 69.27% 73.64% 57.09%
i-vector 72.09% 75.55% All n-grams 77.00% 80.64% 60.81%

All + i-vector 79.18% 84.18% 72.09%
Char + i-vector 77.36% 81.82% 69.09%

Table 7: Initial Results using hold-out validation with the development set from the
2017 Shared Task as the test set.

5 Experiments

A goal of this thesis is to find out whether a multilayer perceptron classifier setup can
work well for NLI. As such the first step is to find out which multilayer perceptron
classifier setup works best. The specific preprocessing method was less important for this
test, since this is a classifier test. Therefore, since linear normalization was the simplest
to implement, this is the one that is used. The results will also serve as a baseline.
For all tests, the feature vector size for the classifiers are 30,000, 30,000, and 10,000
for character, word, and POS n-grams respectively. The n-gram sizes are character (3-
6)-grams, word (1-4)-grams, and POS (1-3)-grams. Also, for the two layer perceptron
classifiers, the size of the hidden layer is kept to 500, except for the meta-classifier which
uses a hidden layer size of 20.

After a good classifier setup is found, the experiments move on to testing different
layer sizes, feature vector sizes, and n-gram lengths, to find their impact on the accuracy
of the system, and to find a good setup for the final system. As part of these experiments,
an experiment is also run to see whether an individual long character n-gram feature
vector should be used due to a possible exclusion of long character n-grams in the list
of most common n-grams.

A set of experiments are then run using tf-idf weighting and χ2 feature selection and
comparing the results to the ones we found initially. These are expected to be better for
the standard testing, but comparisons are also run where the test set instead consists of
texts written to specific writing prompts and the rest being the training set. This will
give a comparison of how the two methods perform on texts about unseen topics. For
this test, the system again reverts to using layer sizes of 30,000, 30,000, and 10,000 for
char, word, and POS, and uses the best setup found in the initial experiments.

Finally, a mixed preprocessing method is proposed and tested. This preprocessing
is used by both the single multilayer perceptron classifier type as well as the ensemble,
and the experiments focus on how the new preprocessing method performs when faced
with unseen topics. This is done in the same way as the preceding experiments, by using
texts written as answers to a single prompt as the test set. These results are compared

31

to tf-idf weighting and χ2 feature selection as used in the previous experiment.

5.1 Choosing a classifier

To begin with, a good classifier has to be selected. As mentioned in section 4, the tested
system consists of a set of fully connected perceptron classifiers. These classifiers were
tested on individual features, as well as combinations of features. Since the specifics of
the preprocessing is not important for this initial experiment, and due to the ease of
implementing the k-most common and linear weighting, that is what is used for these
experiments.

5.1.1 Initial results

The initial results can be seen in table 7, and seem quite promising considering how
simple this preprocessing method is. As we can see, an extra layer helps for all classifiers
(a similar conclusion was made by Li and Zou (2017)). For word and POS classifiers
especially, the accuracy goes up significantly (POS performs more than 25% better with
two layers, and word more than 15%). The accuracy is promising for multiple feature
vectors classified by a single MLP classifier, even with such a simplistic preprocessing
method. 80.64% is slightly below the rank 3 teams in the 2017 Shared Task for essay-
only, and 84.18% is also comparable to rank 3 teams in the fusion track. Note that for
all two layer classifiers, the classifier had completely fit the training data at the end of
its training. This leads to the conclusion that using more than two layers is unnecessary,
at least using this preprocessing method, and would probably negatively impact results
due to overfitting.

However, something is wrong with the ensemble. The results when using a two layer
meta-classifier on the single layer individual feature classifiers is consistently worse than
the best individual classifier included. At this point, there were two hypotheses for why
this happened. One was that the individual classifiers were interfering with each other
due to making too many similar predictions, while the other was that the meta-classifier
got stuck in a local maximum, and an alternative meta-classifier might improve results.

5.1.2 Classifier Homogeneity

To check whether the individual classifiers are interfering with each other, it was neces-
sary to find out to which extent the n-gram classifiers’ predictions overlapped with each
other. A Venn diagram of the results can be seen in figure 8. Two conclusions can be
taken from looking at these figures. First, classifier homogeneity probably does have an
effect, since there is little doubt that there is a lot of overlap, especially compared to
the relative uniqueness of the i-vector classifier. Second, there is still new information
from all the individual classifiers. Some overlap is obviously to be expected, since all the
classifiers use text data and are trained on the same data set. This means that it should
be possible for a classifier to take advantage of this information, but the MLP classifier
is clearly not the right one.

32

(a) (b)

Figure 8: Venn diagrams showing (a) the overlap for correct predictions between the
three single layer n-gram classifiers, and (b) for the correct predictions of character,
word, and i-vector classifiers.

Individual classifiers Single layer Two layers
Character + Word 72.55% 78.27%
Character + POS 70.82% 75.82%

Word + POS 69.64% 76.36%
All n-grams 73.00% 78.18%

All + i-vector 84.36% 85.82%
Char + i-vector 83.64% 84.64%

Table 8: Accuracy using a linear SVM meta-classifier instead of the two layer fully
connected perceptron meta-classifier. Apart from the meta-classifier the system in the
first column is identical to the system used by the meta-classifier in table 7. The results
in the second column were achieved by training the meta-classifier on the output from
two layer individual classifiers.

5.1.3 Alternative meta-classifier

A single MLP meta-classifier trained on all the individual classifiers reached an accu-
racy of 84.45%. Repeated attempts to replicate this result failed, which leads to the
conclusion that the meta-classifier easily gets stalled in a local optimum. To confirm
this, an experiment was run using a linear SVM classifier as the meta-classifier instead.
The system was otherwise identical, except a second system using two layer individual
classifiers was also tested, since the two layer classifiers consistently gave better results.
The hope was that an SVM classifier would have more stable results, and therefore give
a better idea of the performance of the input preparation. The complete results can be
seen in table 8, and, as expected, the ensemble performs much better, probably since it
is not stuck in local optima.

The best neural classifier achieved a result of 84.45%, which repeated attempts were

33

Feature Accuracy
Character (3-9), vector size 30000 77.18%
Character (3-6), vector size 45000 77.45%
Character (3-9), vector size 45000 77.18%
Character (7-9), vector size 15000 70.81%

Character-only Ensemble, (3-6) and (7-9) 76.09%
Word (1-5), vector size 30000 78.36%
Word (1-4), vector size 45000 79.55%
Word (1-5), vector size 45000 79.36%
POS (1-4), vector size 10000 58.27%
POS (1-3), vector size 15000 55.36%
POS (1-4), vector size 15000 54.55%

Table 9: Accuracy for individual classifiers and ensemble using longer n-gram sizes.

unable to replicate. Due to this, it seems reasonable to assume that the SVM meta-
classifier result of 84.36% is probably close to the optimal result using this input prepa-
ration. Also expected, but of note, is that using the two layer individual classifiers gives
an across the board increase in ensemble accuracy compared to using single layer classi-
fiers. This is especially noticeable for the word + POS ensemble, which can be assumed
to be because of the significant increase in accuracy for the two layer n-gram classifiers
for both word and POS inputs when compared to their single layer counterparts.

However, it is important to note that the meta-classifier is still only better than
using concatenated input two layer MLP classifiers when including i-vectors, and even
then, only slightly. The reason for this improvement when using the i-vector is probably
due to the increased importance of the i-vector input in an ensemble system compared
to concatenation (11 out of 44 compared to 800 out of 70,800) coupled with the high
amount of new information from the i-vector classifier, as seen in figure 8b. Unless stated
otherwise, all future experiments use the two layer individual classifiers with an SVM
meta-classifier.

5.2 Refining the classifier setup

The next set of experiments focused on looking at the effect of larger n-grams and larger
feature vector sizes, as well as looking at different hidden layer sizes for the character
n-gram classifier. This was in order to find a good setup for the system before moving
on to the most important set of tests.

5.2.1 Larger n-gram and feature vector sizes

The first part of these experiments focused on the effect of using larger n-grams for the
individual classifiers. This is done in two main ways. First, the length of the n-grams
are simply increased (from 3-6 to 3-9 for character, 1-4 to 1-5 for word, and 1-3 to 1-4
for POS), while keeping the length of the feature vectors the same. For the second setup

34

Feature Vector Size Accuracy
Character 100000 79.36%

Word 100000 78.36%
POS 20000 53.45%

Table 10: Results of a more extensive size increase of the feature vectors.

feature vector sizes are increased (to 45,000 for character and word, and 15,000 for POS).
In order to get a set of baseline values for these vector lengths to compare to, tests were
first run using the original n-gram sizes, and then repeated using the larger n-gram sizes.
For character n-grams an experiment was also run using an extra classifier for n-grams
of length 7-9.

As we can see from the results in table 9, none of these changes had much of an effect.
This might not be very surprising with regards to the longer n-grams, since the way the
items were chosen is so simplistic, but it is surprising that even the longer feature vector
size seems to have a fairly negligible effect on accuracy. For the POS vector, the larger
vector size even seems to have had a negative impact. Another surprising finding was
that all the 15,000 most common n-grams of length 7-9 were also included in the 45,000
most common n-grams of length 3-9, leading to the conclusion that there is no need for
an individual classifier for long character n-grams.

5.2.2 Larger vector sizes

Since the larger vector size seemed to have a negligible effect for this preprocessing
method, another set of experiments was run to see whether a large increase in feature
vector size would have any effect. These results were found with the n-gram sizes reverted
to their initial values. As we can see from table 10, this seems to increase the accuracy for
the character n-gram classifier somewhat, while the result for the word n-gram classifier
was negligible, and again, for the POS classifier, the results seem to have become worse
with the increased size.

5.2.3 Hidden layer sizes

Using different sizes of hidden layers is another variable that has an impact on the
accuracy of the model. To explore this impact and choose a good hidden layer size, a
few experiments were run using two different feature vector sizes. These experiments
used, like for the vector size experiments, character n-gram classifiers. As we can see
from the results in table 11, using very large layer sizes only gave reduced results. These
poor results are actually not due to overfitting, since the results on the training set are
only slightly better. The conclusion of these results is that there is no reason to deviate
from the chosen hidden layer size of 500 for this system.

35

Feature vector size Layer size Accuracy
30000 500 77.06%
30000 250 76.54%

1000 69.91%
5000 56.55%
10000 30.45%

100000 500 79.36%
100000 50 77.36%

250 79.91%
1000 79.63%
5000 46.27%

Table 11: Character n-gram two layer classifier with different feature vector and layer
sizes. The results using the hidden layer size of 500 is the baseline from preceding
experiments.

Testing set
Preparation Feature dev P0 P1 P2 P3 P4

tf-idf/χ2 Character 79.45% 63.15% 56.35% 60.96% 61.27% 63.95%
Word 77.73% 65.07% 63.54% 67.20% 58.95% 58.94%
POS 54.36% 43.67% 45.42% 49.02% 52.14% 54.71%

Ensemble 80.18% 66.33% 61.56% 71.72% 71.35% 71.35%
+ i-vector 87.45% N/A N/A N/A N/A N/A

linear/common Character 77.05% 62.29% 55.00% 60.31% 61.21% 66.61%
Word 78.73% 71.17% 63.23% 70.41% 72.66% 75.24%
POS 45.27% 48.11% 45.62% 45.16% 54.80% 51.87%

Ensemble 78.18% 67.13% 60.00% 67.08% 69.28% 70.47%
+ i-vector 85.82% N/A N/A N/A N/A N/A

Table 12: A comparison of results using two different input preparation methods on the
development set, as well as using prompts as the test set instead. The prompts here are
labeled using the labels from the 2017 Shared Task, a conversion to the prompts from
the original TOEFL11 can be found in section 3.2.

36

Feature tf-idf linear
Character 78.36% 74.91%

Word 76.45% 77.64%
POS 58.45% 56.82%

i-vector 74.91%
All 79.45% 81.09%

Ensemble 83.45% 84.09%

Table 13: Accuracy scores for SVM-only classifiers.

5.3 Input preparation

Another goal for the thesis was to explore whether an alternative input preparation
method could improve results on texts about unseen topics. Some experiments therefore
needed to be run to compare the simplistic linear input preprocessing to a more tradi-
tional input preparation method, and comparing the results on both seen and unseen
prompts. As mentioned, the traditional preprocessing method chosen for this system is
tf-idf weighting and choosing the k-best items using a χ2 metric. Both are implemented
in scikit-learn. Look at the first colum of table 12. As expected, for the baseline re-
sults, using the development set as the test set, the more traditional input preprocessing
method is better on seen topics for all classifiers, except the word classifier, which might
simply be an outlier. Surprisingly, the results were not as much of an improvement as
was expected.

5.3.1 Alternative ensemble

Since the baseline results for the tfidf/χ2 input preprocessing were worse than expected,
a test was run to see if this was due to a weakness in using MLP classifiers with tfidf-
weighted input. Using linear SVM classifiers for all parts of the input using both input
preparation methods, we can see (table 13) that the results are slightly worse than using
the MLP classifiers. This leads to the conclusion that the results are probably due to
the fairly small feature vector sizes and the overall simplicity of the system.

5.3.2 Dropping prompts from the training data

As we can see from the rest of the results in table 12, there is a decrease in accuracy
for all individual classifiers no matter the input preparation method. However, for the
word classifier there is in fact less of a drop when using the most common items instead
of the traditional preprocessing method. While this may seem surprising, topic words
are an obvious source of this discrepancy, and since there is a huge amount word n-
grams compared to character and POS n-grams, the 30,000 most common items are
very unlikely to contain many items that are only useful for a specific topic. However,
when chosen for most impact, there is a good chance that many of the included words
will only be useful for specific prompts. This difference probably means that the χ2

37

selection has a greater ratio of prompt specific words in its set of 30,000, and the most
common words are an equal or better choice depending on the prompt. However, the
weakness of the most common items shows when it comes to the ensemble classifier,
where the accuracy is consistently worse. This is probably because of less homogeneity
in the individual classifiers when using tf-idf weighting and χ2 feature selection, which
leads to a better ensemble result.

5.4 Final system design

The final step was to combine the information gained from the preceding experiments.
Since tf-idf/χ2 feature preprocessing seems to usually be better for character and POS
classifiers, while choosing the most common items seems to usually be better (in many
cases a lot better) for the word classifier, the idea for the final system was to combine
this into one system. The expectation was that while this system might be worse on
prompts for which the system has been trained, it will perform better than using pure
tf-idf/χ2 feature preprocessing on prompts for which it has not been trained. Since
changing the vector sizes and n-gram sizes had a minimal effect on overall accuracy, all
of these were kept at their initial values to give a better idea of the value of the mixed
preprocessing method. The test was run using both the ensemble method and a single
MLP trained on the concatenated feature vectors. The results when using all items from
a single prompt as the test set can be seen in tables 14, 15, and 16, including precision,
recall, and F1 scores for individual languages as well as the whole test set. In addition
to looking at results on unseen prompts, a 10-fold cross-validation test was run using
the mixed preprocessing method. The results of this cross-validation test can be seen in
table 17, and a combined confusion matrix for the cross-validation can be seen in figure
9. Prompts P6 and P7 were not tested, since P0 through P5 were the prompts that
were expected to give the most trouble. These six include the prompt that creates the
largest test set and the prompt that has the worst balance in terms of L1s. Other large
prompts and another imbalanced prompt were also included to confirm any issues that
may have been due to those considerations. The results from prompts P6 and P7 would
therefore give less new information about the performance of this method. The results
of the final experiments are discussed in the next section.

38

Essay-only
dev P0 P1 P2

L1 Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1
ARA 0.79 0.80 0.80 0.85 0.76 0.80 0.74 0.78 0.76 0.66 0.81 0.73
CHI 0.80 0.82 0.81 0.78 0.84 0.81 0.88 0.84 0.86 0.75 0.72 0.73
FRE 0.87 0.84 0.85 0.80 0.76 0.78 0.81 0.81 0.81 0.92 0.61 0.73
GER 0.82 0.93 0.87 0.80 0.94 0.87 0.87 0.93 0.90 0.85 0.86 0.85
HIN 0.68 0.75 0.71 0.72 0.72 0.72 0.74 0.80 0.77 0.61 0.76 0.67
ITA 0.87 0.82 0.85 0.89 0.79 0.84 0.85 0.83 0.84 0.80 0.79 0.80
JPN 0.80 0.82 0.81 0.71 0.70 0.71 0.80 0.73 0.77 0.84 0.40 0.54
KOR 0.82 0.75 0.78 0.83 0.70 0.76 0.72 0.70 0.71 0.71 0.73 0.72
SPA 0.80 0.66 0.72 0.66 0.78 0.72 0.78 0.76 0.77 0.76 0.75 0.75
TEL 0.76 0.75 0.75 0.80 0.80 0.80 0.83 0.78 0.80 0.79 0.73 0.76
TUR 0.78 0.81 0.79 0.84 0.88 0.86 0.74 0.77 0.76 0.57 0.81 0.67
Avg 0.80 0.80 0.79 0.79 0.79 0.79 0.80 0.80 0.80 0.75 0.73 0.72

Accuracy 79.55% 79.01% 79.75% 72.61%

Table 14: Precision, Recall, F1, and Accuracy for the ensemble on essay-only features when using the mixed preprocessing
method.

39

Essay-only
P3 P4 P5

L1 Precision Recall F1 Precision Recall F1 Precision Recall F1
ARA 0.83 0.79 0.81 0.76 0.70 0.73 0.81 0.68 0.74
CHI 0.88 0.90 0.89 0.99 0.51 0.67 0.72 0.79 0.75
FRE 0.82 0.85 0.84 0.86 0.84 0.85 0.76 0.75 0.76
GER 0.88 0.93 0.90 0.59 0.97 0.73 0.56 0.97 0.71
HIN 0.74 0.82 0.78 0.67 0.80 0.73 0.71 0.45 0.55
ITA 0.86 0.89 0.88 0.85 0.78 0.81 0.86 0.84 0.85
JPN 0.84 0.79 0.81 0.78 0.61 0.69 0.80 0.78 0.79
KOR 0.82 0.80 0.81 0.59 0.91 0.72 0.94 0.34 0.49
SPA 0.85 0.79 0.82 0.71 0.58 0.64 0.59 0.61 0.60
TEL 0.86 0.75 0.81 0.80 0.59 0.68 0.72 0.73 0.73
TUR 0.82 0.86 0.84 0.88 0.79 0.83 0.64 0.84 0.73
Avg 0.84 0.83 0.83 0.77 0.74 0.74 0.74 0.71 0.70

Accuracy 83.39% 74.09% 71.27%

Table 15: Precision, Recall, F1, and Accuracy for the ensemble on essay-only features when using the mixed preprocessing
method continued.

40

Test set
Classifier dev P0 P1 P2 P3 P4 P5

MLP Character + Word + POS 82.73% 81.57% 80.83% 70.59% 78.10% 75.12% 73.48%
+ i-vector 80.82% N/A N/A N/A N/A N/A N/A

Ensemble tf-idf/χ2 essay-only 80.18% 66.33% 61.56% 71.72% 71.35% 71.35% 74.51%
+ i-vector 87.45% N/A N/A N/A N/A N/A N/A

Table 16: Accuracy of the alternative classifiers: MLP with the mixed input preprocessing, and Ensemble with the pure
tf-idf/χ2 preprocessing.

Classifier Accuracy
Ensemble (essay-only) 80.41%

Ensemble (fusion) 87.25%
MLP (essay-only) 82.56%

MLP (fusion) 75.69%

Table 17: 10-fold cross-validation accuracy of the two different systems when using the mixed preprocessing method.

41

Figure 9: Combined confustion matrix for the fusion system when tested using 10-fold
cross-validation.

42

6 Discussion

As we see in tables 14, 15, and 16, the mixed input preparation method usually performs
better than tf-idf/χ2 preprocessing on unseen data. For P3, the system even performs
better than it does on the dev set. The expected lowered performance on the dev set
is not particularly bad. P3 is also the only prompt for which the MLP classifier on the
concatenated feature vector performs worse than the ensemble. However, for P5 the
input preparation performs worse than tf-idf/χ2. There was no time to look into what
was different with this prompt, but intuitively, this prompt is probably less prone to
topic word bias than the other prompts. It could also have been due to a large amount
of essays, but other prompts with similar or larger sizes, P3 and P4, have not had this
large drop in accuracy, which rules set size out as the main reason.

Looking at the precision and recall scores for the different prompts, there is a great
deal of variance, and it is not immediately obvious why. For example, the recall score
of Hindi for P5 is 0.45, meaning that Hindi is guessed less than 50% of the time it
appears. If there was an imbalance in the share of Hindi essays in the test set compared
to the training set, one could easily understand such an issue, but P5 is a fairly balanced
prompt, and the scores for Italian, which has a greater degree of imbalance, show no
such issues. When recall is low on one language, that necessarily drags down precision
for other classes, and for Hindi, the obvious target would be Telugu, which is usually its
most mutually confused native language (figure 9). However, there does not seem to be
a very large drop in precision for Telugu, while German, which has previously seen very
little confusion with Hindi has a significant drop in precision, while keeping recall high,
meaning it is guessed a lot more often than it should. Looking at the confusion matrix
for this prompt (figure 10) and comparing it to the combined confusion matrix (figure
9), it is clear that German is guessed across the board more often than normal.

My first hypothesis was that this might be due to higher proficiency among writers
of this prompt, and that the German linguistic similarity to English makes it the most
similar to other high proficiency texts. Comparing the confusion matrix from the mixed
preprocessing to the confusion matrix when using the traditional method, seen in figure
11, makes it clear that it is not quite as simple as that. However, the same L1s (Hindi,
Korean, and Spanish) have an abnormally low recall, so there is clearly some quirk
regarding this prompt and those languages.

Looking at other confusion matrices from the other prompts (found in appendix
A), we can see that some prompts seems to have different languages for which the
recall is low, and Japanese and Spanish have this problem for two prompts. There are
clearly some peculiarities regarding each prompt and the languages, and it is not readily
apparent from essay counts why the confusion for these languages should be this way for
the prompts. There was unfortunately not enough time to explore this further for this
thesis, but a thorough exploration of the prompts with regards to language needs to be
undertaken.

Table 17 shows the results of the final system when tested using 10-fold cross vali-
dation, and as we can see, the system has good results. The classifiers are well within

43

Figure 10: Confusion matrix for texts written to prompt P5 when trained on the rest of
the essays using the mixed preprocessing method.

Figure 11: Confusion matrix for texts written to prompt P5 when trained on the rest of
the essays using tf-idf weighting and χ2 feature selection on all features.

44

rank 3 systems from the 2017 Shared Task for both essay-only and fusion tracks, which
shows that a simple system design and preprocessing can give acceptable results in NLI.

Looking at the combined confusion matrix from the 10-fold cross-validation, seen in
figure 9, there are no surprising results when looking at other systems developed for
NLI. The confusion often seems to be more related to geographical vicinity rather than
linguistic similarity. For example, the two Indian languages Hindi and Telugu are the
most mutually confused by the system, even though these two languages come from two
different language families (Indo-European and Dravidian, respectively). At the same
time, some languages that are geographically close and linguistically close, are confused
less often.

What could be the reasons for these results? German is the least confused language.
My hypothesis for this is that this is probably due to the linguistic relatedness of German
to English, which might make it possible for German native speakers to directly use
some of the German language structures and word choices in English while keeping
the sentence at a fairly competent level. A language that is farther away from English
linguistically would have more trouble doing this, which might mean that mistakes that
are more general become more common. Since the average essay lengths are similar
between the languages (Blanchard et al. 2013), this is unlikely to be a cause of this
discrepancy. A reason the two Indian languages have such a high degree of mutual
confusion, could also be because English is such a common second language in India as
a whole, and that it might simply be because of the way in which English is taught to
Indian students.

6.1 Simple classifier

Considering the simplicity of the classifiers and the fairly small feature vectors, both the
ensemble and the MLP classifier worked very well. Both of them have an accuracy that
would place them well within rank 3 teams in the 2017 Shared Task. However, there is
a long way up to state of the art results for this model. One of the main reasons for
this is probably the very small feature vector sizes. As we can see from section 5.2.2
and table 10, increased vector sizes do have an effect, but at these still fairly small sizes
the improvement was minor. As such, the next step would probably be to look at a
significant increase in vector sizes (10-20 times) to see what effect that would have on
the result.

One thing to note is that, just as in the earlier experiments, the simplest model (a
single MLP classifier) gives better results for essay only-data, while getting less of a
boost when i-vectors are also included, which leads to the ensemble performing best for
the fusion track. It might be possible to combine these strengths into an even better
classifier.

6.2 Preprocessing

Using the ensemble, the traditional tf-idf/χ2 preprocessing method faces a drop in ac-
curacy of between 7% and 30%. As we saw, using frequency based feature selection and

45

linear weighting alone did not achieve better results. However, the hybrid version used
in the final system, which only performs 1% worse on previously seen prompts, only faces
a drop of up to 12%, and even has no drop in accuracy for certain prompts, a significant
improvement. The drop in accuracy is not always better on every prompt, however, as
we saw with the results on prompt P5.

While the performance of frequency based selection is good for word n-grams in
particular, it gave less of an improvement to the other essay n-gram features (character
and word). A look at a frequency based character n-gram showed that a lot of the features
that were right next to each other in the vector were simply the same n-gram with a
single space or other character added. This means that there is a lot of data in the feature
vector that are not independent of each other. Ideally, to improve the performance on
character n-grams, a method would need to be used that kept the strength of frequency
based selection (fewer topic words) while also avoiding this waste of space in the feature
vector.

46

7 Conclusions and Future Work

This thesis started with two main goals: to explore the use of MLP for NLI and to find an
input preprocessing method that reduced drops in accuracy when faced with topics for
which the NLI classifiers had not been trained. This section will draw some conclusions
about how this thesis fulfilled those goals, and answer the three research questions that
were introduced in the introduction.

7.1 Conclusion

This thesis explored the use of shallow MLP classifier systems for Native Language
Identification, and proposed two straightforward architectures. The simplest is a two
layer MLP classifier, which, of the two models, performs the best on essay-only features,
and would be the recommended continuation of this approach, even more so because
of its simplicity. If feature selection and preparation is changed significantly, for exam-
ple by using several methods for the same feature, an ensemble might achieve better
performance.

Two questions were posed relating to this goal in the introduction of this thesis. The
first was to what extent can MLP be used effectively for NLI? Using only these small
feature vector sizes, a single MLP classifier achieved results comparable to rank 3 systems
in the 2017 Shared Task for essay-only data, and when combined in an ensemble, also
achieved rank 3 results when adding i-vector speech data. As such, it is clear that MLP
can be quite effective at this task, especially when the small feature vector sizes limit
the long training times that might otherwise be a problem for this model. Looking at
the results for SVM classifiers on the same data, seen in table 13, it is clear that the two
layer perceptron classifiers consistently outperform SVMs on these feature vectors.

The second, smaller, question was how many layers are necessary for a trained MLP
to completely fit the training data? The answer to this question was found quite quickly.
Two layers were enough to fit the data, and as such, adding more layers would defeat
the purpose, and only serve to make the model overfit.

The second part of this thesis is the attempt at improving the results on unseen
prompts using simpler preprocessing methods. When using the most common terms and
linear normalization of the feature vector, only the word classifier gained a consistent
improvement on unseen prompts compared to more traditional tf-idf weighting and χ2

feature selection. The other classifiers had drops that were equally bad for both input
preparation methods, and lower homogeneity leads to better overall results using tf-
idf/χ2. When combining the simpler word preprocessing with traditional preprocessing
for the other features, the system gave improved inputs for most prompts. However, for
prompt P5, the traditional input methods performed better. There was not enough time
to explore why this input gave such different results from the others, but, intuitively,
prompt P5 could be less prone to topic words compared to the others. Exploring this
would be the obvious next step.

The partial success of the combination method leads me to the conclusion that im-
provements on unseen prompts is very possible by using vectors that avoid topic words.

47

A negligible drop seems within reach, although I suspect some of the reasons for the
extremely low drop in accuracy for the system in this thesis on some prompts might also
be paired with the initial lower accuracy compared to the best systems from the 2017
Shared Task.

7.2 Future Work

There were several ideas that needed to be abandoned in order to keep focus on the
important parts of this thesis or because there was no time. The most pressing one is to
explore why the combined preprocessing method works so well on some prompts while
much less on others. My initial thoughts are that P5 is somehow a more general prompt,
or that it is answered by more proficient test takers, but without enough time to thor-
oughly compare the essays and no direct knowledge of the actual prompts or proficiency
scores by prompt these remain hypotheses. This should be explored before continuing
to develop this preprocessing method, in order to better understand its weaknesses.

The most important of the abandoned ideas was a more in depth alternative pre-
processing method, which was touched upon in 6.2. Frequency based feature selection
worked better than expected, but, for character n-grams, a close inspection shows that
a lot of the chosen n-grams are actually just different versions of what is essentially the
same n-gram. The reason for this is obviously that the n-gram that is one item longer
or shorter than a given n-gram would in all likelihood appear in a frequency very similar
to that n-gram. Thus, to keep the strength of choosing the most common items (cre-
ating a feature vector that generalizes better), while avoiding the problem that what is
essentially the same feature can appear at several locations in the vector, it might be
interesting to experiment with merging these n-grams into one entry while still keeping
the frequency based feature selection.

The MLP classifier on the concatenated feature vectors gave consistently better accu-
racy than the ensemble for essay-only data, and this could possibly be taken advantage
of for a better classifier. The initial idea, which there was unfortunately no time to work
on, is to train two MLP classifiers, one for essay data and one for i-vectors, and then
combine these classifers using an SVM meta-classifier. This could potentially give im-
proved accuracy compared to the current systems while still keeping the feature vector
sizes small.

48

References

Abad, Alberto, Eugénio Ribeiro, Fábio Kepler, Ramon Astudillo, and Isabel Trancoso.
“Exploiting phone log-likelihood ratio features for the detection of the native lan-
guage of non-native English speakers”. In: San Francisco, CA, USA, 2016, pp. 2413–
2417.

Abadi, Mart́ın, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-
mawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia,
Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané,
Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon
Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Van-
houcke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin
Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-Scale
Machine Learning on Heterogeneous Systems. Software available from tensorflow.org.
2015. url: https://www.tensorflow.org/.

Bird, Steven, Ewan Klein, and Edward Loper. Natural Language Processing with Python.
O’Reilly Media, 2009.

Bjerva, Johannes, Gintare Grigonyte, Robert Östling, and Barbara Plank. “Neural net-
works and spelling features for native language identification”. In: Proceedings of the
Twelfth Workshop on Innovative Use of NLP for Building Educational Applications.
Association for Computational Linguistics. Copenhagen, Denmark, 2017, pp. 235–
239.

Blanchard, Daniel, Joel Tetreault, Derrick Higgins, Aoife Cahill, and Martin Chodorow.
TOEFL11: A corpus of non-native English. Tech. rep. Educational Testing Service,
2013.

Brooke, Julian and Graeme Hirst. “Native language detection with ‘cheap’ learner cor-
pora”. In: Twenty Years of Learner Corpus Research. Looking Back, Moving Ahead:
Proceedings of the First Learner Corpus Research Conference (LCR 2011). Vol. 1.
Presses Universitaires de Louvain. Louvain, France, 2013, pp. 37–47.

Cimino, Andrea and Felice Dell’Orletta. “Stacked Sentence-Document Classifier Ap-
proach for Improving Native Language Identification”. In: Proceedings of the Twelfth
Workshop on Innovative Use of NLP for Building Educational Applications. Associ-
ation for Computational Linguistics. Copenhagen, Denmark, 2017, pp. 430–437.

Cortes, Corinna and Vladimir Vapnik. “Support-vector networks”. In: Machine learning
20.3 (1995), pp. 273–297.

Dehak, Najim, Patrick J Kenny, Réda Dehak, Pierre Dumouchel, and Pierre Ouellet.
“Front-end factor analysis for speaker verification”. In: IEEE Transactions on Audio,
Speech, and Language Processing 19.4 (2011), pp. 788–798.

Fan, Rong-En, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin.
“LIBLINEAR: A Library for Large Linear Classification”. In: Journal of Machine
Learning Research 9 (2008), pp. 1871–1874.

49

https://www.tensorflow.org/

Gebre, Binyam Gebrekidan, Marcos Zampieri, Peter Wittenburg, and Tom Heskes. “Im-
proving native language identification with tf-idf weighting”. In: Proceedings of the
Eighth Workshop on Innovative Use of NLP for Building Educational Applications.
Association for Computational Linguistics. Atlanta, GA, USA, 2013, pp. 216–223.

Goutte, Cyril and Serge Léger. “Exploring Optimal Voting in Native Language Identifica-
tion”. In: Proceedings of the Twelfth Workshop on Innovative Use of NLP for Building
Educational Applications. Association for Computational Linguistics. Copenhagen,
Denmark, 2017, pp. 367–373.

Goutte, Cyril, Serge Léger, and Marine Carpuat. “Feature space selection and combi-
nation for native language identification”. In: Proceedings of the Eighth Workshop
on Innovative Use of NLP for Building Educational Applications. Association for
Computational Linguistics. Atlanta, GA, USA, 2013, pp. 96–100.

Granger, Sylviane, Estelle Dagneaux, Fanny Meunier, and Magali Paquot. International
corpus of learner English. Louvain, France: Presses Universitaires de Louvain, 2002.

Hochreiter, Sepp and Jürgen Schmidhuber. “Long short-term memory”. In: Neural com-
putation 9.8 (1997), pp. 1735–1780.

Ionescu, Radu Tudor and Marius Popescu. “Can string kernels pass the test of time in
Native Language Identification?” In: (2017), pp. 224–234.

Jarvis, Scott, Yves Bestgen, and Steve Pepper. “Maximizing classification accuracy in
native language identification”. In: Proceedings of the Eighth Workshop on Innovative
Use of NLP for Building Educational Applications. Association for Computational
Linguistics. Atlanta, GA, USA, 2013, pp. 111–118.

Koppel, Moshe, Jonathan Schler, and Kfir Zigdon. “Determining an author’s native
language by mining a text for errors”. In: Proceedings of the eleventh ACM SIGKDD
international conference on Knowledge discovery in data mining. ACM. Chicago, IL,
USA, 2005, pp. 624–628.

Kŕıž, Vincent, Martin Holub, and Pavel Pecina. “Feature Extraction for Native Language
Identification Using Language Modeling”. In: Recent Advances in Natural Language
Processing (2015), pp. 298–306.

Kulmizev, Artur, Bo Blankers, Johannes Bjerva, Malvina Nissim, Gertjan van Noord,
Barbara Plank, and Martijn Wieling. “The power of character n-grams in native lan-
guage identification”. In: Proceedings of the Twelfth Workshop on Innovative Use of
NLP for Building Educational Applications. Association for Computational Linguis-
tics. Copenhagen, Denmark, 2017, pp. 382–389.

Lado, Robert. Linguistics Across Cultures: Applied Linguistics for Language Teachers.
Ann Arbor, MI, USA: University of Michigan Press., 1957.

Li, Wen and Liang Zou. “Classifier Stacking for Native Language Identification”. In:
Proceedings of the Twelfth Workshop on Innovative Use of NLP for Building Edu-
cational Applications. Association for Computational Linguistics. Copenhagen, Den-
mark, 2017, pp. 390–397.

Lynum, André. “Native language identification using large scale lexical features”. In:
Proceedings of the Eighth Workshop on Innovative Use of NLP for Building Educa-

50

tional Applications. Association for Computational Linguistics. Atlanta, GA, USA,
2013, pp. 266–269.

Malmasi, Shervin and Mark Dras. “Native Language Identification using Stacked Gen-
eralization”. In: arXiv preprint arXiv:1703.06541 (2017).

Malmasi, Shervin, Keelan Evanini, Aoife Cahill, Joel Tetreault, Robert Pugh, Christo-
pher Hamill, Diane Napolitano, and Yao Qian. “A report on the 2017 native language
identification shared task”. In: Proceedings of the Twelfth Workshop on Innovative
Use of NLP for Building Educational Applications. Association for Computational
Linguistics. Copenhagen, Denmark, 2017, pp. 62–75.

Malmasi, Shervin, Sze-Meng Jojo Wong, and Mark Dras. “NLI shared task 2013: MQ
submission”. In: Proceedings of the Eighth Workshop on Innovative Use of NLP for
Building Educational Applications. Association for Computational Linguistics. At-
lanta, GA, USA, 2013, pp. 124–133.

Martinez, David, Oldřich Plchot, Lukáš Burget, Ondřej Glembek, and Pavel Matějka.
“Language recognition in iVectors space”. In: Twelfth Annual Conference of the In-
ternational Speech Communication Association. Florence, Italy, 2011.

Nair, Vinod and Geoffrey E Hinton. “Rectified linear units improve restricted Boltzmann
machines”. In: Proceedings of the 27th international conference on machine learning
(ICML-10). Haifa, Israel, 2010, pp. 807–814.

Oh, Yoo Rhee, Hyung-Bae Jeon, Hwa Jeon Song, Yun-Kyung Lee, Jeon-Gue Park, and
Yun-Keun Lee. “A deep-learning based native-language classification by using a la-
tent semantic analysis for the NLI Shared Task 2017”. In: Proceedings of the Twelfth
Workshop on Innovative Use of NLP for Building Educational Applications. Associ-
ation for Computational Linguistics. Copenhagen, Denmark, 2017, pp. 413–422.

Pascanu, Razvan, Tomas Mikolov, and Yoshua Bengio. “On the difficulty of training
recurrent neural networks”. In: Proceedings of the 30th International Conference on
Machine Learning. Atlanta, GA, USA, 2013, pp. 1310–1318.

Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M.
Brucher, M. Perrot, and E. Duchesnay. “Scikit-learn: Machine Learning in Python”.
In: Journal of Machine Learning Research 12 (2011), pp. 2825–2830.

Popescu, Marius and Radu Tudor Ionescu. “The Story of the Characters, the DNA
and the Native Language”. In: Proceedings of the Eighth Workshop on Innovative
Use of NLP for Building Educational Applications. Association for Computational
Linguistics. Atlanta, GA, USA, 2013, pp. 270–278.

Proceedings of the Eighth Workshop on Innovative Use of NLP for Building Educational
Applications. Association for Computational Linguistics. Atlanta, GA, USA, 2013.

Proceedings of the Twelfth Workshop on Innovative Use of NLP for Building Educa-
tional Applications. Association for Computational Linguistics. Copenhagen, Den-
mark, 2017.

Rosenblatt, Frank. “The perceptron: A probabilistic model for information storage and
organization in the brain.” In: Psychological review 65.6 (1958), pp. 386–408.

51

Rumelhart, David E, Geoffrey E Hinton, and Ronald J Williams. “Learning representa-
tions by back-propagating errors”. In: Nature 323.6088 (1986), pp. 533–538.

Schuller, Björn, Stefan Steidl, Anton Batliner, Julia Hirschberg, Judee K Burgoon, Al-
ice Baird, Aaron Elkins, Yue Zhang, Eduardo Coutinho, and Keelan Evanini. “The
INTERSPEECH 2016 computational paralinguistics challenge: Deception, sincerity
& native language”. In: Proceedings of Interspeech. San Francisco, CA, USA, 2016.

Senoussaoui, Mohammed, Patrick Cardinal, Najim Dehak, and Alessandro L Koerich.
“Native language detection using the i-vector framework”. In: San Francisco, CA,
USA, 2016, pp. 2398–2402.

Srivastava, Nitish, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. “Dropout: a simple way to prevent neural networks from overfitting.”
In: Journal of machine learning research 15.1 (2014), pp. 1929–1958.

Swanson, Ben and Eugene Charniak. “Native language detection with tree substitu-
tion grammars”. In: Proceedings of the 50th Annual Meeting of the Association for
Computational Linguistics: Short Papers-Volume 2. Association for Computational
Linguistics. Jeju Island, South Korea, 2012, pp. 193–197.

Tetreault, Joel, Daniel Blanchard, and Aoife Cahill. “A report on the first native language
identification shared task”. In: Proceedings of the Eighth Workshop on Innovative
Use of NLP for Building Educational Applications. Association for Computational
Linguistics. Atlanta, GA, USA, 2013, pp. 48–57.

Tetreault, Joel, Daniel Blanchard, Aoife Cahill, and Martin Chodorow. “Native Tongues,
Lost and Found: Resources and Empirical Evaluations in Native Language Identi-
fication.” In: Proceedings of COLING. The COLING 2012 Organizing Committee.
Mumbai, India, 2012, pp. 2585–2602.

Toutanova, Kristina, Dan Klein, Christopher D Manning, and Yoram Singer. “Feature-
rich part-of-speech tagging with a cyclic dependency network”. In: Proceedings of
the 2003 Conference of the North American Chapter of the Association for Com-
putational Linguistics on Human Language Technology-Volume 1. Association for
Computational Linguistics. Edmonton, Canada, 2003, pp. 173–180.

Tsur, Oren and Ari Rappoport. “Using classifier features for studying the effect of native
language on the choice of written second language words”. In: Proceedings of the
Workshop on Cognitive Aspects of Computational Language Acquisition. Association
for Computational Linguistics. Prague, Czechia, 2007, pp. 9–16.

Tsvetkov, Yulia, Naama Twitto, Nathan Schneider, Noam Ordan, Manaal Faruqui, Vic-
tor Chahuneau, Shuly Wintner, and Chris Dyer. “Identifying the L1 of non-native
writers: the CMU-Haifa system”. In: Proceedings of the Eighth Workshop on Inno-
vative Use of NLP for Building Educational Applications. Association for Computa-
tional Linguistics. Atlanta, GA, USA, 2013, pp. 279–287.

Wong, Sze-Meng Jojo and Mark Dras. “Exploiting parse structures for native language
identification”. In: Proceedings of the Conference on Empirical Methods in Natural
Language Processing. Association for Computational Linguistics. Edinburgh, Scot-
land, UK, 2011, pp. 1600–1610.

52

Zhang, Xiang, Junbo Zhao, and Yann LeCun. “Character-level convolutional networks
for text classification”. In: Advances in neural information processing systems 28.
Montréal, Canada, 2015, pp. 649–657.

Zhang, Ye and Byron Wallace. “A sensitivity analysis of (and practitioners’ guide to) con-
volutional neural networks for sentence classification”. In: arXiv preprint arXiv:1510.03820
(2015).

53

A Confusion matrices by prompt

Figure 12: Confusion matrix for prompt P0

54

Figure 13: Confusion matrix for prompt P1

55

Figure 14: Confusion matrix for prompt P2

56

Figure 15: Confusion matrix for prompt P3

57

Figure 16: Confusion matrix for prompt P4

58

Figure 17: Confusion matrix for prompt P5

59

	Introduction
	Background and Motivation
	Goal and Research Questions
	New classifier model
	Input preprocessing

	Research Questions
	Contributions
	Thesis Structure

	Background Theory
	Supervised Learning
	Classification Accuracy
	Cross Entropy Loss Function
	Overfitting and Regularization
	Validating Machine Learning Models
	Feature Vector
	Statistical Machine Learning Methods
	Support Vector Machines
	Other statistical methods

	Neural Networks
	Basics
	Backpropagation
	Activation functions
	Other neural network designs

	Natural Language Processing
	Syntax and semantics
	Part-of-speech
	N-grams
	Bag-of-words
	Term frequency - inverse document frequency

	Tools
	NLTK
	TensorFlow
	Scikit-learn

	Related Work
	Early research
	The TOEFL11 Dataset
	Text data
	Speech data

	2013 NLI Shared Task
	Between the Shared Tasks
	2017 NLI Shared Task

	System Design
	Dataset and Preprocessing
	Classifiers

	Experiments
	Choosing a classifier
	Initial results
	Classifier Homogeneity
	Alternative meta-classifier

	Refining the classifier setup
	Larger n-gram and feature vector sizes
	Larger vector sizes
	Hidden layer sizes

	Input preparation
	Alternative ensemble
	Dropping prompts from the training data

	Final system design

	Discussion
	Simple classifier
	Preprocessing

	Conclusions and Future Work
	Conclusion
	Future Work

	Confusion matrices by prompt

