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Abstract

System security and power quality is important in today’s society and the ability to regulate
and balance production and consumption is crucial for any power system. More and more pene-
tration of intermittent production in power systems increases the need for regulation capability
and the importance of capacity reserve markets where capacity used for regulation is procured
and secured increases too.
Several types of regulation mechanisms are used in a power system, which creates the possibility
of several different capacity reserve markets with significant prices. A producer participating
in these markets must decide how his limited production capacity should be used taking these
markets and other physical power markets into account. A method for finding true costs for
capacity reserve supply and for bidding in sequential capacity reserve markets is presented in this
report. The method is based on a mixed-integer programming model and work has been done
to create and formulate a suitable model. The modeling is implemented with the programming
language AMPL and is an optimization model that maximizes total profit on several markets
subject to market prices and market obligations for a set of production units. The model is
then used to highlight some of the fundamental mechanisms and charactheristics in the markets
and to illustrate the bidding method for a price-taking producer in perfect markets.
Price uncertainty in future markets has a large impact on the results from the method and a
model version where price uncertainty is included for the spot market is compared to a version
where price uncertainty is not included. The reason for this comparison is that hourly spot
price forecasts used for short-term production planning in Norway today doesn’t consider price
uncertainty. The versions are compared for bidding in one capacity reserve market for a number
of market clearings where prices for the spot market in the model are taken from real spot price
forecasts and real spot price outcomes. It shows that inclusion of price uncertainty gives better
bids, but also that adjusting bids to account for price uncertainty can give good results from a
model that doesn’t explicity include this uncertainty.
The method can in any case calculate valid bids for capacity reserve market solutions that
exist today where costs and opportunity costs from all relevant markets can be accounted
for. The limitations of the method is mostly connected to what it is possible to describe with
mixed-integer programming and the computational efforts and calculation times mixed-integer
programming models require.
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Chapter 1

Introduction

1.1 Motivation

A deregulated power system usually consists of two types of market mechanisms for operation
of the system. A production plan for the next day is established through a day-ahead market.
Producers bid in this market and commit to produce their respective accepted volume the next
day. To make sure that the system frequency is kept within accepted bands the system is
balanced in real-time through different kinds of balancing(regulating) measures. The balancing
is done by adjusting production and/or consumption in real time to continuously correct the
deviations between these two. These adjustments require compensation and this is facilitated
through different kinds of real-time balancing markets or other means. In many cases markets
are also put in place to ensure that enough capacity(reserves) are available for the real-time
balancing.

Intermittent generation like wind power and solar power are an increasing part of the production
mix in many power systems across the world and this type of generation will normally make
the challenge of real-time balancing harder. Intermittent generation makes it harder to follow
and make good production plans and the demand for balancing increases. The system operator
in Norway, Statnett, has experienced that the frequency quality in Norway has gone down the
later years[7] and with the anticipation of increasing integration of intermittent generation in
the power grid in the future they believe a strengthening of the real-time balancing is needed.
They are together with the rest of NORDEL of the opinion that the introduction of automatic
secondary reserves, often called load frequency control(LFC), will improve the frequency quality
and the system operation[7].

1.2 Problems to be addressed

The introduction of a new market and a new product gives a new opportunity where producers
can sell power and possibly return a profit, but a new market also further complicates the
producers scheduling problem. A producer’s production capacity is limited and the producer
must decide how to distribute and schedule this capacity in different markets to maximize his
profits. This report will mainly focus on this problem, and a method for bidding will be proposed
that hopefully can be useful when dealing with it.
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1.3 Progress of this report

This report starts with a short description of different reserve types and a short description of
how reserve markets are organized in Norway today. The scheduling or planning problem and
the method for bidding is explained further in chapter 3 before a mixed-integer programming
model to be used is formulated in chapter 4. Illustration of the model and bidding method
with some discussion then follows before benchmarking of bids from two model versions and
two additional bid strategies is performed in chapter 8. Some further discussion is included at
the end of the report.
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Chapter 2

Balancing services

LFC can be classified as a balancing service and is normally referred to as secondary control
or secondary reserves. The terminology for balancing services and the manner in which it is
organized varies between different countries, and the same can be said of the market solutions,
but the principle that balancing services can be divided into three main categories is common.
The three categories will in this report be referred to as primary control, secondary control and
tertiary control, and table 2.1 summarizes some characteristics of the three control levels.

Table 2.1: Comparison between the three different frequency control levels [8]
Primary control Secondary control Tertiary control

Why is this
control used?

To stabilize
the frequency
in case of any
imbalance.

To bring back the
frequency to the
frequency target
and to restore the
primary control
capability.

To manage eventual conges-
tions, to restore the secondary
control capability and to bring
the frequency back to target
if secondary control reserves is
unsufficient.

How is
this control
acheived?

Automatically Manually

Where is
this control
performed?

Locally Centrally

Who sends
the control
signal to the
source of
reserve?

Local sensor TSO

When is
this control
activated?

Immediately Depends on the
system

Depends on the system, but
slower than secondary control

What sources
of reserves can
be used?

Depends on the system: partially loaded units, loads, fast-starting units. . .

Manually activated reserves have in Norway often been called secondary control, but these
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reserves are actually tertiary control according to the terminology used above. Norway and the
NORDEL area, as opposed to e.g continental Europe, have so far not operated with secondary
control. The introduction of LFC in NORDEL changes this, and Norway and NORDEL will
get an automatic secondary frequency response in addition to the automatic frequency response
of primary control.
To perform the actual control generating units or consumption units are regulated up or down
so that production and consumption matches at all times. For this regulation to take place
capacity must be available. For up-regulation generation units must have capacity available
that are not in active production so that they are able to increase the production. For down-
regulation they must have capacity available that are in active production so that they are able
to reduce the production. As seen in table 2.1 the aim of the secondary control is to restore
the primary control capability and the aim for tertiary control is to restore the secondary
control capability. This means that capacity delivered as reserves for primary control cannot
be delivered as reserves for secondary or tertiary control and vice versa.
The primary control is the first and fastest control and is a proportional control where the
activation is proportional to the frequency. In Norway all the primary control reserves are
supposed to be activated when the frequency reaches 49.9 HZ and 50.1 HZ1. In principle the
primary control will only stabilize the frequency after a disturbance and not bring the frequency
back to 50 HZ. The secondary control is an integral control and has the task of bringing the
frequency back to 50 HZ. By doing this it will release the primary control. If the disturbance
or imbalance is long-lasting or permanent, due to e.g bad prognosis or loss of a power station,
the tertiary control would be activated so that the faster acting controls are able to respond to
the continuous stochastic imbalances.
The point here is that LFC competes for capacity with all other types of balancing services in
addition to spot production, so markets for other control types can’t be ignored when discussing
markets for LFC.
To secure that enough capacity(reserves) are available for the different types of control in real-
time, TSOs(transmission system operators) procure reserves ahead of real-time in so called
capacity reserve markets. The market solutions used by the TSOs in this respect varies be-
tween different TSOs and different countries, but the capacity reserve markets generally clears
sequentially, before the spot market and for a given time period that consists of several spot
market clearings. The energy reserve markets that remunerates the energy use from activa-
tion of reserves are real-time markets that clears ex-post, but the organization of these markets
and the methods used for remuneration of the energy use differs between different TSOs and
countries also here.

2.1 Reserve markets in Norway

Today the TSO in Norway, Statnett, operates capacity reserve markets for primary control
and tertiary control. The capacity reserve market for tertiary control has so far only been
operated during winter time, when high-load situations are expected in Norway and only for
up-regulation reserves. The availability of tertiary control reserves has the rest of the year
been deemed sufficient without a capacity payment. The same is the case for down-regulation
reserves for the whole year, but this may change in the future. In principle capacity reserve

1Norway has actually defined a second type of primary control for when the frequency exceeds this boundary.
The control mechanism is the same and generators continue to adjust the power output proportionally to the
frequency as long as there is enough capacity
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markets exists for all the type of reserves, but a price has so far not always been necessary to
fulfill the reserve demand. Secondary control(LFC) has until now not been deemed necessary
in the Nordic countries, so the demand for these reserves has always been zero.
The capacity reserve market for primary control is in Norway organized with a weekly and a daily
clearing. In the weekly market bids can be delivered for a variety of time blocks in the market
period. The time blocks are night(00:00-08:00), day(08:00-20:00) and evenings(20:00-24:00)
for weekends(Saturday-Sunday) and night(00:00-08:00), day(08:00-20:00) and evenings(20:00-
24:00) for weekdays(Monday-Friday). The daily market clears after the spot market and bids
are delivered for each hour the next day. The capacity market for tertiary control is organized
as a weekly market with a single product. Statnett also buys some tertiary control capacity at
the start of the winter season for the whole season. A capacity reserve market for secondary
control that is in the process of being implemented in Norway will probably at least include
a weekly market with the same products(time blocks) as for primary control. All markets use
marginal pricing where the price is set by the last accepted bid.
Supplying in the capacity reserve markets means that one is obligated to supply for the con-
nected energy reserve markets. The energy reserve markets are the real-time markets where
the actual regulation of production is performed. Primary control activation(regulation) is not
compensated for in Norway so any costs related to this must be covered through the capacity
fee. Tertiary control activation(regulation) are compensated based on bids from suppliers and
the price is set by the last activated bid(marginal pricing). Compensation for secondary control
activation could be based on bids or e.g. a fixed price coupled to the spot price, but it will
certainly be compensated.
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Chapter 3

Planning problem

Part of the planning problem for Statkraft and other power producers is how to best schedule
the production capacity of their generation units to fulfill their market obligations from physical
power markets. This is a quite natural optimization problem. The producers’ physical power
market obligations comes from accepted bids on the different markets, so another part of the
planning problem is how and what to bid on the different markets.
All physical power markets in Norway use marginal pricing, and if market power for certain
producers exists it is not allowed to use it. So the bidding problem for producers in Norway
basically reduces to finding and bidding the marginal costs in each market. Statkraft is among
other things owner and operator of hydro-power in Norway. Hydro-power uses water as the
resource for power production and the marginal production costs for hydro-power is based on
the so called water value. Exactly what the water value is and methods to calculate it will not
be discussed here, but it is basically the resource cost for hydro-power plants similar to what
the gas price would be for gas-power plants that uses gas as the resource.
Statkraft uses these water values together with the available production capacity as the basis
for bids in the spot market. The spot market is a day-ahead energy market that matches bids
from the supply side(producers) with bids from the demand side(consumers) for each hour the
next day. Based on the obligations from the spot market a production plan for the next day can
be put together, and Statkraft uses a mixed integer optimization program(MIP) called SHOP as
decision support for finding their optimal production plan. SHOP is a short term hydro power
optimization program with a typical planning horizon of one week. Statkraft runs SHOP each
day after the spot market clears and uses the known spot obligations for the next day with a
deterministic price prognosis for the rest of the week to optimize their unit commitments. This
way a good production plan for the next day can be found. SHOP has so far only optimized
against spot obligations, but functionality are now being developed to also optimize against
primary control reserve obligations[2]. The fulfillment of reserve obligations has so far been
taken care of manually by operators in the daily production planning.
Capacity reserves compete with or directly affects available capacity and production in the spot
market. This goes both ways with spot production also directly affecting available capacity
for reserves. For bidding in the weekly primary control capacity reserve market Statkraft runs
SHOP against a deterministic spot price prognosis for the relevant period. Likely available
reserve capacity for the different products is then found and operators set the price and volumes
of the bids based mostly on experience.
With this method the potential profit to be made in the reserve capacity markets are not really
taken into account and the bids for primary control capacity reserves are mostly made up of
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capacity that doesn’t have opportunity costs related to the spot market. The spot supply will
just be based on the marginal production costs and will be very little affected by supply of
capacity reserves. In Norway the availability of capacity for the different types of reserves has
been quite good giving low prices and low income in absolute terms compared to the spot
market. So the focus on optimal bids in cases with significant prices in the capacity reserve
markets has been quite low. With the introduction of secondary control(LFC) the reserve
markets may play a more important role, and with expected tighter integration and exchange
of reserves with countries that has larger and more active reserve markets the potential for
profit in these markets may be hard to ignore.

We will try to take a look at how and if a method with a MIP-model similar to SHOP that
uses branch and bound can be used as decision support for bidding for a producer that wants
to optimize his unit commitment subject to all possible physical power markets.

3.1 Bidding procedure

The producer wants to maximize his total profit. He has limited production capacity, but
has the freedom to choose in which markets he wants to sell this capacity. With the three
different control types presented in chapter 2 there may exist a number of possible products
and markets where this capacity can be sold. These markets include the spot market which
is an energy market and capacity and energy markets for the different control types, both for
up- and down-regulation. In addition to this several markets for the same product may exist
as exemplified by the week-ahead and day-ahead markets for primary control capacity reserves
in Norway. The capacity use in the possible markets is linked to each other in different ways.
The same capacity can e.g. not be sold in both the week-ahead and the day-ahead market for
primary control capacity reserves. All the reserve markets exclude each other in that the same
capacity can only be sold in one of them. Up-regulation reserves exclude spot supply and vice
versa, while down-regulation reserves forces spot supply. Spinning requirements for primary
and secondary control means that a generating unit must have active production(spinning) and
this will in addition force at least the unit’s minimum production for up-regulation reserves and
above the minimum production for down-regulation reserves1.

The optimization problem for a producer in markets with perfect competition2 then consist
of maximizing the profit from supply on the different markets subject to the market prices,
the costs of supply and the constraints on capacity use. A MIP-model with branch and bound
would give the optimal unit commitments and dispatches in this case, assuming that the market
prices are known or the uncertainty of the market prices are perfectly accounted for.

When bidding for a market with marginal pricing a producer should in theory deliver bids
for his whole supply capacity based on the marginal costs of supply. This marginal cost of
supply in one market would depend on the prices and the potential for profits in other linked
markets through so called opportunity costs. A MIP-model will as mentioned find the optimal
unit commitment and dispatch on all markets and this can be used to deliver bids where all
opportunity costs are included in addition to the direct costs of supply.

The general method for using a MIP model as decision support for bids would then be to
choose a price level for the market in question and run the model against price forecasts or

1The unit must have at least the minimum production to not shut down so spinning down-regulation reserves
must be supplied from active production above the minimum production level.

2Meaning that he is a pure price taker on all markets
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obligations3 in all other possible markets. The model would allocate a certain capacity volume
to the market in question and this would be the volume where the total profit is maximized for
the given prices. By running the model multiple times for different price levels the result would
be price and volume pairs for the market in question that could be used for bidding.
As an example consider just the spot market and the evening-product(20:00-24:00) for weekdays
in the weekly capacity market for primary control reserves(PRIM) in Norway. The market for
PRIM clears before any of the relevant hours clear in the spot market. A price is chosen for
the PRIM market and the profit maximizing MIP-model is run against a price forecast for the
relevant hours in the spot market. Doing this for several chosen prices in the PRIM market
gives price-volume pairs used for bidding.
The difficulty is that the prices of the spot market in the example would be uncertain like all
prices of future markets would be, so the effect of all uncertainties must be perfectly accounted
for the bids to be optimal.
A good presentation for this problem of self-commitment in energy and reserve markets for
producers under uncertain market prices can be found in [4], where the problem is investigated
using a backward dynamic programming method.

3The market obligations would be known for markets that has already cleared
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Chapter 4

Model formulation

The best way to account for uncertainty in a MIP-model would probably be with a stochastic
MIP-model. A stochastic SHOP is desirable from Statkraft’s point of view and would proba-
bly give better support for production planning than today’s deterministic SHOP. However, a
satisfactory stochastic MIP-model used for hydro optimization is still far away, and including
all reserve markets in addition to the spot market makes it even harder. The need for method
to bid in capacity reserve markets is here now, so we will focus on the possibilities of today’s
short-term hydro-optimization models to serve as decision support for bidding.
We will start by creating a MIP-model that includes the spot market and capacity markets for
reserves, but that neglects the real-time energy reserve markets. As per today these markets
are not specifically considered in Statkraft’s bids for the spot market or the capacity reserve
markets, but we will discuss the impact of these markets further later in the report. We will,
since the focus is on the markets, simplify the modeling of hydro reservoirs and units a great
deal compared to the modeling in SHOP, but both SHOP and the model in this report are
based on the same mixed integer programming principles. Including all the capacity reserve
markets in SHOP and the obligations from these markets in a similar way to what will be done
here should not be a problem as shown by the inclusion of primary capacity reserves in [2].
For this model we assume a planning period, e.g a day or a week, where all the different
capacity reserve markets has the same resolution with the resolution being the whole planning
period. This means that the price is given per MW for the whole planning period and the
supplied capacity must be available at all times in this period. The spot market has an hourly
resolution and a price for each hour. A separate capacity market for all the control types and
regulating directions are modeled and separate markets for the two types of primary control in
Norway(FNR and FDR) are also included.
The model consists of a single producer that owns a set of generating units where every unit is
able to participate on all the markets.
The model presented here is purely deterministic, but we will later on also use a multi-scenario
deterministic model version. Geographical limitations are not considered in this model.

4.1 Nomenclature

Note that all prices are given in EUR/MW. The spot market is originally an energy market with
payment per MWh, but with a price and payment for each hour we will use the unit MWh/h
instead. Parameters start with capital letters, while variables starts with small letters. Names
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and subscripts fnr, fdr, lfc and rk relates the parameters or variables to the different capacity
reserve markets. These are the norwegian shorthand names for the markets. fnr and fdr are the
two types of primary control, lfc is secondary control while rk is tertiary control. spot relates
to the spot market. Subscripts + and − relates to up- or down-regulation reserves.

Sets:

G − Set of generating units

Indices:

g − Generator g in set G of generating units
t − Time period t, hourly
n − PQ segment n

Parameters:
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T − Number of time periods
NPQ − Number of PQ segments
Cstartg − Start-up costs for generator g (EUR/start
Ymaxg − Maximum production capacity for unit g (MW)
Yming − Minimum production level for unit g (MW)
δmaxg − Maximum droop for unit g (%)
δming − Minimum droop for unit g (%)
SLPg,n − Slope of PQ segment n for unit g
PQming − Discharge at minimum production level for unit g(MWh/h(?)
PQconstg − Constant used for PQ curves
SEGg,n − PQ segment limits for unit g and segment n
Λspott − Spot price in period t(EUR/MW)
Λ+
fnr − FNR capacity up price for the planning period (EUR/MW)

Λ−fnr − FNR capacity down price for the planning period (EUR/MW)
Λ+
fdr − FDR capacity up price for the planning period (EUR/MW)

Λ−fdr − FDR capacity down price for the planning period (EUR/MW)
Λ+
lfc − LFC capacity up price for the planning period (EUR/MW)

Λ−lfc − LFC capacity down price for the planning period (EUR/MW)
Λ+
rk − RK capacity up price for the planning period (EUR/MW)

Λ−rk − RK capacity down price for the planning period (EUR/MW)
FNR+

tot − FNR capacity up obligation for the planning period (EUR/MW)
FNR−tot − FNR capacity down obligation for the planning period (EUR/MW)
FDR+

tot − FDR capacity up obligation for the planning period (EUR/MW)
FDR−tot − FDR capacity down obligation for the planning period (EUR/MW)
LFC+

tot − LFC capacity up obligation for the planning period (EUR/MW)
LFC−tot − LFC capacity down obligation for the planning period (EUR/MW)
RK+

tot − RK capacity up obligation for the planning period (EUR/MW)
RK−tot − RK capacity down obligation for the planning period (EUR/MW)
Cδmaxg − Additional cost per hour for best(lowest) droop setting on unit g (EUR/h)
Cθg − Cost per hour proportional to the θ setting on unit g (EUR/h)
V Vg − Water value for unit g

Variables:
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yg,t − Total spot production for unit g in time period t(MW)
ysg,t,n − Production from segment n for unit g in time period t(MW)
qg,t − Discharge for unit g in time period t(MWh/h)
fnr+

g,t − FNR up capacity supply from unit g in time period t (MW)
fnr−g,t − FNR down capacity supply from unit g in time period t (MW)
fnr+

tot − FNR up capacity supply for the total planning period (MW)
fnr−tot − FNR down capacity supply for the total planning period (MW)
fdr+

g,t − FDR up capacity supply from unit g in time period t (MW)
fdr−g,t − FDR down capacity supply from unit g in time period t (MW)
fdr+

tot − FDR up capacity supply for the total planning period (MW)
fdr−tot − FDR down capacity supply for the total planning period (MW)
lfc+

g,t − LFC up capacity supply from unit g in time period t (MW)
lfc−g,t − LFC down capacity supply from unit g in time period t (MW)
lfc+

tot − LFC up capacity supply for the total planning period (MW)
lfc−tot − LFC down capacity supply for the total planning period (MW)
rk+
g,t − RK up capacity supply from unit g in time period t (MW)

rk−g,t − RK down capacity supply from unit g in time period t (MW)
rk+
tot − RK up capacity supply for the total planning period (MW)

rk−tot − RK down capacity supply for the total planning period (MW)
δg,t − Droop setting of unit g in time period t (%)
θg,t − Droop setting replacement variable for linearity, inverse of the droop
cδg,t − Cost for unit g in time period t related to the droop setting (EUR)
startg,t − Variable that checks if unit g has been started in period t
ug,t − Binary variable, 1 if unit g is spinning in time period t, 0 if not

All variables are non-negative.

4.1.1 Objective function

max: Λ+
fnr × fnr

+
tot + Λ−fnr × fnr

−
tot + Λ+

fdr × fdr
+
tot + Λ−fdr × fdr

−
tot

+ Λ+
lfc × lfc

+
tot + Λ−lfc × lfc

−
tot + Λ+

rk × rk
+
tot + Λ−rk × rk

−
tot

+
∑
g∈G

T∑
t=1

[
Λspott × yg,t − Cstartg × startg,t − V Vg × qg,t − cδg,t

]
(4.1)

The objective of the optimization is to maximize total profit, so we add all income and subtract
all costs while maximizing. The income comes from sales on the different markets. The income
in the spot market comes from the term Λspott×yg,t. This is an hourly income, which is summed
over all the generating units and over all the hours(time periods) in the planning period. The
income from the capacity reserve markets(Λupfnr × fnr

+
tot etc.) is not defined for each unit and
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neither for each time period. With regard to the time periods, this is because these markets
have a resolution equal to the planning period in the model. With regard to the units, this is
because we are assuming that it doesn’t matter which unit the reserve supply(fnr+

tot etc.) is
coming from. The supplied quantity of reserves must be available at all times, but a producer
with a set of units may choose the units that at any time fulfills this obligation. How this is
modeled can be seen in section 4.4.
The costs consists of the water discharge from each unit g in each time period t connected with
the relevant water value(V Vg), and the start-up costs of units. In addition to this cδg,t is added
and represents the cost associated with the droop setting of each unit in each time period.
Direct costs for supply of secondary or tertiary capacity reserves are assumed to be negligible.

4.2 Discharge constraints

All the generation units in the model are supposed to be hydro-units, but we are here using
a quite simple representation of hydro power stations. We are imagining that each unit is
connected to a single reservoir. These reservoirs are 100% flexible and large enough so that
the water value will be constant for the whole planning period. No restrictions or couplings
concerning water discharge from or between reservoirs are considered and the discharge will only
be described by PQ-curves which is the relation between power output and water discharge for
generation units. So the reservoirs actually become irrelevant here and a constant water value
is defined individually for each unit.
This is a simplification, but with regard to the aims of this model the important thing to describe
is the relation between power output and water use. Hydro-units typically have a best-point
for production at some point below the maximum production level and above the minimum
production level. This is where the unit’s efficiency is best and where the power output per
volume of water discharged is highest and thus where the cost per MW produced is lowest.
So the relationship between power output and water discharge is the basis for the marginal
production costs of the units and essential in this model. This relationship is not linear, but we
will here use an approximation with linear segments.
Figure 4.1 shows an illustration of the PQ-curves in the model. In the figure we use three linear
segments. The equations used to describe the PQ relations which are given as constraints to
the model are

qg,t = PQconstg × ug,t +
NP Q∑
n=1

ysg,t,n × SLPg,n ∀ g ∈ G, t = 1..T (4.2)

yg,t =
NP Q∑
n=1

ysg,t,n ∀ g ∈ G, t = 1..T (4.3)

ysg,t,n ≤ SEGg,n ∀ g ∈ G, t = 1..T, n = 1..NPQ (4.4)

The production capacity of each unit is divided into segments(ysg,t,n) where the limit of each
segment is given by SEGg,n as seen in constraint 4.4. Constraint 4.3 gives the total production
of the units as the sum of the segments. Constraint 4.2 gives the total discharge for each unit in
each hour(qg,t). Each segment ysg,t,n is defined to start from the end of the segment before(or
zero for segment 1) so for the formulation of the model to give meaning each previous production
segment must be fully used before any production can be taken from the next segment. This
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Figure 4.1: PQ-curve

means that the slope of segments SLPg,n must be successively higher. This is also required for
the model to be convex.

The slopes of the segments are calculated from corresponding points on the non-linear PQ-
curves. With the slopes being successively higher the parameter PQconstg is added to con-
straint 4.2 so that the units will have lower efficiency also for production below the best-point.
This means that the best-point of the units in the model always will be at the end of segment 1,
and the segments must be scaled accordingly. The slope of the first segment is taken from the
discharge at best-point and at the minimum production point of the non-linear PQ-curve and
the parameter PQconstg in constraint 4.2 must as seen in figure 4.1 be extrapolated from this.
This is done with the function 4.5.

PQconstg = PQming − SLPg,1 × Yming ∀ g ∈ G (4.5)

So the discharge at minimum production is an input to the model in addition to the effiency(slope)
of the different segments. The denomination(unit) for water discharge(qg,t) is in the model given
in MWh/h and is defined with regard to the best-point of each unit, so e.g the water discharge
for a unit with production of 40 MW at best-point would be 40 MWh/h. With the water
value(V Vg) given in EUR/MWh, the production costs per MW at best-point(end of segment
1) would be equal to the water value. At either side of the best-point the discharge per MW
increases and the same would be the case for the production costs per MW. The maximum
and minimum production levels of the units are taken care of by the constraints 4.20 and 4.21
shown later so it is actually not necessary for the sum of all segments to coincide with the units’
maximum production levels as long as it is higher. It is of course convenient if they coincide.
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4.3 Primary control and regulation constraints

The ability of a hydro unit to supply primary control reserves depends on the droop setting(δ) of
the primary controller. What we will call the regulating strength(REG) of a unit can be given
by function 4.6[source]. By multiplying the regulating strength with the absolute frequency
deviation we get the regulated amount from the unit.

REG = 2× Ymax
δ

(4.6)

Ymax is the maximum production capacity of a unit and δ is the droop setting. Defining the
regulating strength for each unit g and time period t in the model we get:

REGg,t =
2× Ymaxg

δg,t
∀ g ∈ G, t = 1..T (4.7)

A unit’s droop setting is normally limited to a certain range. This range is typically from 12%
to 2%, but it may vary depending on the desired maximum and minimum droop setting for
individual units. This is taken care of by:

δming ≤ δg,t ≤ δmaxg ∀ g ∈ G, t = 1..T (4.8)

FNR reserves should be fully activated when the frequency reaches 49.9 or 50.1 which gives
a band for each regulation direction of 0.1 Hz. FDR reserves is defined with a band of 0.4
Hz(49.9-49.5) so the regulation limits for each type can be found with

REGFNRg,t = REGg,t × 0.1 ∀ g ∈ G, t = 1..T (4.9)
REGFDRg,t = REGg,t × 0.4 ∀ g ∈ G, t = 1..T (4.10)

and quantity constraints for the fnr and fdr variables given in the model are

fnr+
g,t ≤ REGFNRg,t ∀ g ∈ G, t = 1..T (4.11)

fnr−g,t ≤ REGFNRg,t ∀ g ∈ G, t = 1..T (4.12)
fdr+

g,t ≤ REGFDRg,t ∀ g ∈ G, t = 1..T (4.13)
fdr−g,t ≤ REGFDRg,t ∀ g ∈ G, t = 1..T (4.14)

(4.15)

So primary control supply are either constrained by the available capacity of the unit, which
can be seen in section 4.4, or by the regulating strength of the unit which depends on the droop
setting. The problem is that the constraint 4.7 is not linear when the droop setting(δg,t) is a
decision variable. This is not possible in a MIP-model. To fix this problem we introduce the
new variable (θg,t) to represent the droop setting and replace equation 4.7 with:

REGg,t = 2× Ymaxg × θg,t ∀ g ∈ G, t = 1..T (4.16)

The conversion from θg,t to δg,t is then done manually outside the model environment with the
following relation:
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δg,t = 1
θg,t

∀ g ∈ G, t = 1..T (4.17)

The limits for θg,t given in the model and replacing constraint 4.8 becomes:

1
δmaxg

≤ θg,t ≤ 1
δming

∀ g ∈ G, t = 1..T (4.18)

The modeling of primary control reserves seen here is in line with the modeling suggested by
SINTEF for SHOP[2].
Adjusting the droop setting to increase the primary control capability is not cost free. It is
assumed that increasing the regulating strength by adjusting the droop setting will decrease
the units lifetime. This means that supply of primary control reserves will have a related direct
cost. We assume this cost to be linear proportional with θ(constraint 4.19), which in reality
means that we assume the cost to be linear proportional with the regulating strength of the unit.

cδg,t = Cθg × θg,t ∀ g ∈ G, t = 1..T (4.19)

The ability to supply secondary and tertiary control(lfc and rk) is not constrained in other ways
than the available capacity of the unit shown in the next section, and we assume that direct
costs related to supply of these capacity reserves can be neglected.

4.4 Capacity constraints

Capacity is a limited resource and the limitations and relations between capacity use on the
different markets will in the mostly used model version of this report be given by the following
constraints:

fnr+
g,t + fdr+

g,t + lfc+
g,t + yg,t ≤ Ymaxg × ug,t ∀ g ∈ G, t = 1..T (4.20)

fnr+
g,t + fdr+

g,t + lfc+
g,t + rk+

g,t + yg,t ≤ Ymaxg ∀ g ∈ G, t = 1..T (4.21)
yg,t − fnr−g,t − fdr−g,t − lfc−g,t − rk−g,t ≥ Yming × ug,t ∀ g ∈ G, t = 1..T (4.22)

(4.23)

Constraints 4.20 ensures that available capacity for the spot market and the spinning up-
regulation capacity markets excludes each other. With the binary variable ug,t representing
the spinning state of the unit g the constraint also ensures that the production and supply of
spinning reserves is zero if the unit is not spinning or looked at in another way that ug,t must
be 1, if unit g has production. Manual up-regulation reserves rk+

g,t may be supplied from stand-
by units that starts up, so constraint 4.21 ensures that rk+

g,t can be supplied regardless of the
unit state while also taking capacity sold for the other markets into account. Constraint 4.22
ensures that the production must be above Yming when spinning and that down-regulation
capacity reserves can’t exceed (yg,t − Yming ). This is a simplification since supply of manual
down-regulation reserves could exceed this limit by shutting down the unit. However, shutting
down the unit would not be an option if the unit is supplying spinning reserves (primary and
secondary) at the same time. To model this correctly we introduce a new binary variable:

zg,t − Binary variable, 1 if unit g is supplying spinning reserves in time period t, 0 if not
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Constraints that would replace constraint 4.22 would be:

yg,t − fnr−g,t − fdr−g,t − lfc−g,t ≥ Yming × ug,t ∀ g ∈ G, t = 1..T (4.24)
yg,t − fnr−g,t − fdr−g,t − lfc−g,t − rk−g,t ≥ Yming × zg,t ∀ g ∈ G, t = 1..T (4.25)
fnr+

g,t + fdr+
g,t + lfc+

g,t + fnr−g,t + fdr−g,t + lfc−g,t ≤ M × zg,t ∀ g ∈ G, t = 1..T (4.26)
fnr+

g,t + fdr+
g,t + lfc+

g,t + fnr−g,t + fdr−g,t + lfc−g,t ≥ zg,t ∀ g ∈ G, t = 1..T (4.27)

Constraints 4.26 and 4.27 forces zg,t to one of the states(1 or 0) depending on if spinning reserves
are supplied from unit g or not. Constraint 4.24 together with 4.25 ensures that down-regulation
reserve can’t exceed (yg,t − Yming ), except for rk−g,t if the unit are allowed to shut down.

4.4.1 FNR/FDR problem

Another simplification in both of these formulations is the relation between the two types of
primary control(FNR and FDR) in Norway for most hydro-units. The required response time
for FDR activation is lower than for FNR, which beside the frequency band also seperates the
products. However, most hydro-units are not able to separate between the products with the
control signal being a local signal that is proportional to the frequency. So when FDR reserves
are activated for frequencies below 49.9 Hz the hydro-units will already have regulated according
to the same droop setting for the frequency drop from 50 Hz to 49.9 Hz. This is regardless of if
the unit has an obligation to supply reserves for FNR or not. Capacity will already have been
activated before the first MW of FDR reserves are activated. One could say that the supplied
amount of FDR reserves would be available in any case, just for a slightly different frequency
band(50-49.6 instead of 49.9-49.5), and that this could be acceptable. In that case the modeling
so far would be good. The same total amount of primary control capacity that is procured by
the system operator would be available at all times, but there would/could be less available
capacity of the defined FDR control type. If this is not ok, the additional capacity use related
to FDR supply would need to be modeled.
The issue is that the available capacity for the other markets(LFC,RK and spot) should not
be affected when there is no obligation for primary control supply regardless of the actual
primary control regulation capability(regulation strength) of a unit. This is taken care with the
constraints 4.11 and 4.12 being inequality constraints. Using binary variables to check if e.g
there is an FDR obligation for a unit in a time period and connecting this with the actual FNR
regulation according to the droop setting is not possible in this model since the constraints would
be non-linear. Both the binary variable and the droop setting are variables. A possibility is to
use the characteristics of the variable θg,t combined with the associated cost of this variable.
Saying that the variable θg,t is only constrained downwards by non-negativity and not by a
minimum value like in constraint 4.18, we could replace the inequality constraints 4.11 and 4.12
with the equality constraints shown below:

fnr+
g,t = REGFNRg,t ∀ g ∈ G, t = 1..T (4.28)

fnr−g,t = REGFNRg,t ∀ g ∈ G, t = 1..T (4.29)

In this case the FNR supply would always be in line with the droop setting of the unit,
and the use of capacity when supplying FDR would be accurately described using 4.20-4.22
with or without 4.24-4.27. Due to the increasing cost of increasing θg,t the primary control
capabilities(REGFNRg,t and REGFDRg,t) would be pushed to zero in the time periods where
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a unit is not needed for contribution to the primary control supply. So the use of capacity would
then also be described accurately for the other reserve products in the relevant constraints. A
θg,t of zero implies an infinite droop setting δg,t, so the droop setting would just have to be
interpreted as to be the highest setting in the manual conversion in these cases. The slight
simplification here is that units may contribute to primary control even for the highest(default)
droop settings in the case of free capacity and may supply some primary control capacity free
of cost. With this modeling there will be no primary control supply free of cost in the model,
but this simplification is not severe in any situations for the purposes of this model, and it will
not have any effect at all in capacity constrained time periods.

The problem with the modeling is that the up- and down-regulation FNR supply is not decoupled
for individual units. One could think that this was ok with most markets for primary control
being symmetric markets. However, even with a symmetric FNR or FDR obligation for a
producer the actual supply of up- and down-regulation could come from different units, and
the best solution could as an example be to supply up-regulation FNR and/or FDR reserves
from a unit at minimum production and down-regulation FNR and/or FDR reserves from a
unit at maximum production. This would not be possible with the modeling above since a unit
with a regulation capability automatically supplies both types and the capacity use must be
accounted for. Splitting the droop setting in two different variables, one for up and one for
down, would solve the capacity use problem, but the cost related to the droop setting could
then not be described to satisfaction in a linear MIP-model. The effect that the same droop
setting is valid for both types and that the cost related to this can be covered by either down-
or up-regulation reserve supply, or both, is an important effect and should not be lost. So only
one of the equality constraints 4.28 and 4.29 could with this modeling really be an equality
constraint and would have to be either

fnr+
g,t = REGFNRg,t ∀ g ∈ G, t = 1..T (4.30)

fnr−g,t ≤ REGFNRg,t ∀ g ∈ G, t = 1..T (4.31)

or

fnr+
g,t ≤ REGFNRg,t ∀ g ∈ G, t = 1..T (4.32)

fnr−g,t = REGFNRg,t ∀ g ∈ G, t = 1..T (4.33)

What type of modeling to use will depend on the market situations and what the goal of the
model runs are. E.g. without a price for down-regulation FDR reserves constraints 4.30 and
4.30 would be perfectly acceptable. Without a price for down-regulation manual reserve the
simplifications of the version with constraints 4.20-4.22 without 4.24-4.27 will no effect, so it is
this version that will be mostly used here.

4.4.2 Actual supply

The supplied capacity in the reserve markets must be available at all times in the planning
period, but the producer has the freedom to choose how the supply is distributed among his
generation units in each time period. This is modeled with the following constraints:
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fnr+
tot ≤

∑
g∈G

fnr+
g,t ∀ t = 1..T (4.34)

fnr−tot ≤
∑
g∈G

fnr−g,t ∀ t = 1..T (4.35)

fdr+
tot ≤

∑
g∈G

fdr+
g,t ∀ t = 1..T (4.36)

fdr−tot ≤
∑
g∈G

fdr−g,t ∀ t = 1..T (4.37)

lfc+
tot ≤

∑
g∈G

lfc+
g,t ∀ t = 1..T (4.38)

lfc−tot ≤
∑
g∈G

lfc−g,t ∀ t = 1..T (4.39)

rk+
tot ≤

∑
g∈G

rk+
g,t ∀ t = 1..T (4.40)

rk−tot ≤
∑
g∈G

rk−g,t ∀ t = 1..T (4.41)

The hourly supply from each unit g is summed over all the units and the actual supply for the
planning period(fnr+

tot etc.) must be equal to or higher than this quantity in every time period
of the planning period. This is because the supply in these markets must be available at all
times in the planning period.
In addition to these we will implement obligations from the reserve markets by fixing the supply
to a minimum value with parameters(FNR+

tot etc.):

fnr+
tot ≤ FNR+

tot ∀ t = 1..T (4.42)
fnr−tot ≤ FNR−tot ∀ t = 1..T (4.43)
fdr+

tot ≤ FDR+
tot ∀ t = 1..T (4.44)

fdr−tot ≤ FDR−tot ∀ t = 1..T (4.45)
lfc+

tot ≤ LFC+
tot ∀ t = 1..T (4.46)

lfc−tot ≤ LFC−tot ∀ t = 1..T (4.47)
rk+
tot ≤ RK+

tot ∀ t = 1..T (4.48)
rk−tot ≤ RK−tot ∀ t = 1..T (4.49)

4.5 Start-up costs

Start-up costs of units is an important factor for the unit commitment problem and is included
in the model through the binary variable ug,t. We define the variable startg,t to represent if
unit g has been started in time period t or not. Constraint 4.50 included in the model fills the
variables.

startg,t ≥ ug,t − ug,t−1 ∀ g ∈ G, t = 1..T (4.50)

ug,t is 1 if the unit is running and 0 zero if it is not running, so (ug,t − ug,t−1), with ug,t
representing the unit state of the previous period, becomes 1 if the unit is started, 0 if the unit
state doesn’t change and - 1 if the unit is stopped. We are only interested in if the unit is
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started, and with the additional constraint that all variables are non-negative startg,t can be
included in the objective function in a way that it will be 1 if unit g is started in period t and
zero if not. This happens even though startg,t is a continuous variable.
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Chapter 5

Market and product characteristics

We will here try to look at some fundamental mechanisms and characteristics of the markets
with some model runs. In [1] a method is shown where prices and volumes for an energy
market(spot) and capacity reserve markets for the ancillary(balancing) services of primary,
secondary and tertiary control are calcucated simultaneously. In perfect and efficient markets
the market prices reflects the marginal cost of supply and/or the marginal benefit of demand,
and there will exist a solution or market equilibriums where no market participant can increase
their surplus(profit for rational profit-maximizing power producers) by changing any of their
market commitments. A method is shown in [1] that finds this solution for a power system
with simultaneous market clearings using among other methods lagrangian relaxation. The
optimizations in this chapter are actually a variant of this, and especially the first optimization
may be looked upon as simultaneous market clearings in each hour.
It is not really valid to interpret the dual values of a MIP-model as prices, since the dual values
are given for a given combination of the binary variables, so we will here do an optimization for
a set of generating units and look at the resulting volumes to say something about the charac-
teristics of the different reserve markets. To do this we will let the spot demand be represented
by spot prices, while the different reserve demands from the set of units are represented by
fixed requirements. This could be interpreted as a need for reserves in a specific geographical
area where the units are located while the spot price is set by supply and demand in a larger
area. By doing a profit maximization we will then get the optimal capacity allocation on the
different markets for the set of generating units, which also ideally should be the result for
market equilibriums in perfect markets where the reserve markets only consists of these units.

5.1 Model setup

The planning period used here is 5 hours with different spot prices in each hours. Table 5.1
shows the prices for each time period.
The highest and lowest spot price in table 5.1 are based on the real highest and lowest system
spot price at Nord Pool in week 45 of 2011. This is not really necessary here since this is just
for illustrative purposes, but is done to get realistic magnitude orders. The spot prices has here
been put together to be falling for each time period, with the other prices distributed between
the two extremes.
The reserve requirements in Norway are very approximately 10% of the total installed produc-
tion capacity for tertiary control reserves, 1% for FNR reserves and 2% for FDR reserves. We
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Table 5.1: Spot prices for basic model test
Time period Spot price (EUR/MWh)

1 53.86
2 48.26
3 42.66
4 38.82
5 34.99

assume 2% for secondary control. These requirements will be doubled for this optimization and
with a total production capacity of about 900 MW in this model setup, the requirements can be
seen in table 5.2. The primary control will not be split into FNR and FDR in this optimization,
and just the FDR variables will be used.

Table 5.2: Reserve requirements
Reserve type Demand Reserve type Demand
Up-regulation Down-regulation

FDR+
tot 70 FDR−tot 70

LFC+
tot 40 LFC−tot 40

RK+
tot 180 RK+

tot 180

The generation units used here will be identical except from their marginal production costs,
i.e. the water values(V Vg), and the PQ curve is based on one of Statkraft’s power stations. The
parameters used for the unit description can be seen in table 5.3. No start-up costs are used so
that there will be no intertemporal considerations and the cost related to the droop setting is
tuned so that the cost per hour is 5 EUR for the maximum regulation strengthof the units.

Table 5.3: Unit parameters
Unit parameters Value Unit parameters Value

Ymin (MW) 13 Cθ (EUR) 10
Ymax (MW) 89 δmax (%) 12
Start (EUR) 0 δmin (%) 2

The PQ-curve uses 4 segments and is tuned so that the efficiency of the unit for different
production levels gives a good approximation of the real PQ curve. Figure 5.1 shows the
relative water discharge with respect to the best-point for the PQ-curve used in the model and
for the PQ-curve at a given time for the real unit in question.
This optimization will use 10 of these units with the varying water values given in table 5.4
Unit 1(G1 ) has the lowest water value, with the water value increasing all the way to unit 10.
Constraints 4.24-4.27 that models the tertiary down-regulation supply accurately are included
here.

5.1.1 Results and discussion

The optimization here can be interpreted in two slightly different ways. If we imagine that the
set of units represents the whole reserve participating market and the reserve requirements the
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Figure 5.1: Comparison of relative water discharge between the unit in reality and in the model

Table 5.4: Water values
Unit VV(EUR/MWh) Unit VV(EUR/MWh)

G1 34 G6 44
G2 36 G7 46
G3 38 G8 48
G4 40 G9 50
G5 42 G10 52
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total market requirements, we get the simultaneous clearing of all markets for each time period.
The reserve requirements must be fulfilled in each hour over the whole planning period, but how
they are fulfilled are independent from hour to hour and the optimal solution is found in each
hour independently. We can also imagine that the set of units represents a single producer that
has taken on obligations for the whole planning period from different reserve capacity markets
that clears before the first time period and spot market clearing. In this case it is assumed that
the producer in each hour can choose how to fulfill his reserve obligations for all the reserve
markets and it will be done in the way that his profit his maximized in each hour subject to the
spot prices. This is valid for the reserve capacity markets that exists in Norway today(primary
and tertiary), since the merit order list for tertiary control activation is updated hourly and the
automatic activation of primary control is done locally on each unit. So we will here assume
that the same is the case for an automatic secondary control market(LFC).
A very thorough analysis of the exact number values of the results will not be done here, but
we will look at the general mechanisms that these results outline. Table 5.5 shows the spot
commitment in each hour.

Table 5.5: Spot commitment (MW)
Unit Hour 1 Hour 2 Hour 3 Hour 4 Hour 5
G1 89 89 89 89 89
G2 89 89 89 89 89
G3 89 89 88 78 78
G4 89 89 78 59 59
G5 87 87 66 13 13
G6 78 78 13 - -
G7 66 66 - - -
G8 13 13 - - -
G9 - - - - -
G10 - - - - -

We see that even though the spot price in hour 1 is above all the units’ production costs
some units are not producing at all, and some are producing well below maximum production
capacity and even well below best-point. The best-point is 66 MW for all the units. This is
because the reserve requirements for up-regulation must be fulfilled, and this capacity cannot
be in active production. In hour 5 we see that even though the spot price is below all the units’
production costs(except unit 1) some units are producing so that the reserve requirements for
down-regulation can be fulfilled. This commitment is obviously not optimal for the units when
considering just the spot market, and opportunity costs would arise when supplying reserves.
These costs would be compensated through prices in the reserve markets. The characteristics of
the opportunity costs related to the spot market for a unit are a bit different for different types
of reserves. This is summarized below for the three types that will have distinct characteristics
when considering the spot market.

• Up-regulation manual reserves: For these types of reserves a unit must have capacity
available that is not in active production, i.e. spot production. This means that an
individual unit’s cost of supplying up-regulation manual capacity reserves will always be
lower with higher marginal production costs.

• Up-regulation spinning reserves: For these types of reserves a unit must have capacity
available that is not in active production, while at the same time producing at least the
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minimum production level for the unit. This is because the unit must be spinning. This
means that an individual unit’s cost of supplying up-regulation spinning capacity reserves
will always be lower the closer the marginal production costs are to the spot price.

• Down-regulation reserves: For these types of reserves the reserve capacity consists of active
production that may be reduced. This means that an individual unit’s cost of supplying
down-regulation capacity reserves, manual and spinning, will always be lower with lower
marginal production costs.

In this optimization the units are only separated by their water values with everything else being
equal. This means that it is this difference that mostly decides the distribution of the units on
the different markets. Other differences between units, like maximum and minimum production
levels, differences in direct costs for reserve supply and differences in efficiency curves will also
affect the optimal distribution of units on the different markets. Even so, there still exist a type
of rank between the units on different markets that ensures that market equilibriums and prices
in theory can be found where every unit has maximized their profits. Table 5.6 to 5.11 shows
the supply of the different reserve types for each unit and hour.

Table 5.6: FDR+ commitment (MW)
Unit Hour 1 Hour 2 Hour 3 Hour 4 Hour 5
G1 - - - - -
G2 - - - - -
G3 - - 1 11 11
G4 - - 11 30 30
G5 2 2 23 29 29
G6 11 11 36 - -
G7 23 23 - - -
G8 34 34 - - -
G9 - - - - -
G10 - - - - -

Table 5.7: FDR− commitment (MW)
Unit Hour 1 Hour 2 Hour 3 Hour 4 Hour 5
G1 6 6 24 - -
G2 6 6 6 - -
G3 6 6 6 36 36
G4 6 6 11 34 34
G5 6 6 23 - -
G6 17 17 - - -
G7 23 23 - - -
G8 - - - - -
G9 - - - - -
G10 - - - - -

The solution here represents the optimal solution where the demand on all markets in all hours
is met with minimum costs. The optimization here may actually be seen as a cost minimization
instead of a profit maximization when we interpret the spot prices as a representation for spot

25



Table 5.8: LFC+ commitment (MW)
Unit Hour 1 Hour 2 Hour 3 Hour 4 Hour 5
G1 - - - - -
G2 - - - - -
G3 - - - - -
G4 - - - - -
G5 - - - 40 40
G6 - - 40 - -
G7 - - - - -
G8 40 40 - - -
G9 - - - - -
G10 - - - - -

Table 5.9: LFC− commitment (MW)
Unit Hour 1 Hour 2 Hour 3 Hour 4 Hour 5
G1 40 40 40 - -
G2 - - - - -
G3 - - - 30 30
G4 - - - 10 10
G5 - - - - -
G6 - - - - -
G7 - - - - -
G8 - - - - -
G9 - - - - -
G10 - - - - -

Table 5.10: RK+ commitment (MW)
Unit Hour 1 Hour 2 Hour 3 Hour 4 Hour 5
G1 - - - - -
G2 - - - - -
G3 - - - - -
G4 - - - - -
G5 - - - 7 7
G6 - - 1 89 89
G7 - - 89 89 89
G8 2 2 89 89 89
G9 89 89 89 89 89
G10 89 89 89 89 89
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Table 5.11: RK− commitment (MW)
Unit Hour 1 Hour 2 Hour 3 Hour 4 Hour 5
G1 30 30 12 89 89
G2 70 70 70 89 89
G3 70 70 70 2 2
G4 70 70 55 - -
G5 69 69 30 - -
G6 48 48 - - -
G7 30 30 - - -
G8 - - - - -
G9 - - - - -
G10 - - - - -

demand. The only actual(direct) costs in this optimization is the production costs and the
costs related to the droop setting of the units. We see from the results how the spot production
is maximized for capacity with production costs below the spot price and minimized for units
with production costs above the spot price while also fulfilling the reserve demands. In this
case the result is that a unit with higher production costs will have equal or lower production
compared to units with lower production costs. The impact of the droop setting costs is a bit
more interesting. These costs are just related to the droop setting which limits the capability for
both up- and down-regulation primary control supplies. This means that a unit that is already
supplying a certain amount of up-regulation primary control reserves may also supply the same
amount of down-regulation primary control reserves without an increase in the droop-setting
costs. So we see in table 5.6 and 5.7 that supply of primary control reserves above the minimum
droop setting for up- and down-regulation are mostly put on the same units so that as many
units as possible can stay at the minimum droop setting. The minimum droop setting gives
here a maximum primary control supply of 6 MW for each unit.

5.1.2 Pricing

The market prices for the different products must as mentioned compensate for the cost of
supply. We will take a short look at some of the hours in this respect. In hour 1, we see that the
spot price is above all the units’ production costs. Enough capacity will, due to the high spot
price(demand), be in production so that all down-regulation reserve demand can be met without
a capacity price. Up-regulation reserves must be taken from capacity that would otherwise have
produced for the spot market, so a capacity price that compensates for this opportunity costs
is needed. We see in table 5.8 that it is unit 8 that is fulfilling the up-regulation secondary
control (LFC+) demand. To do this he would require a compensation that at the minimum
equaled his profit in the spot market which would be the difference between the spot price and
his marginal production cost. If we ignore any impact of the unit efficiency curve this would
mean Λspot − V V8 which equals 6 EUR/MW. But it is obvious here that unit 10(and unit 9)
would be able to supply LFC+ for a lower opportunity cost than unit 8. Unit 10 is however
supplying RK+ instead. If unit 10 was to fulfill the LFC+ demand instead of unit 8, it would
then require that unit 8 supplied more RK+ and the same dilemma would occur since unit 10
obviously could supply this reserve type for a lower cost too. The separating factor between
the two types is the spinning requirement. Supply of spinning reserves for the units in question
here requires at least the minimum production level(Y min). This means that a unit supplying
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manual reserves(RK+) can sell the whole unit capacity as reserves, while a unit supplying
spinning reserves(LFC+) can maximum sell the quantity (Y max−Y min) as reserves with the
rest being sold as spot production. If we assume that unit 8 is the price setting unit for the
reserves, it becomes clear that unit 10 is best off supplying exclusively RK+ capacity with unit
8 supplying the spinning reserves(LFC+) since unit 10 has a lower profit in the spot market
compared to unit 8. Unit 10’s required compensation for his RK+ supply would be above his
individual opportunity cost related to the spot market though, since it is now the markets for
up-regulation spinning reserves that gives him the highest opportunity costs.

In hour 3 with a medium spot price(demand) there is enough capacity available so that both
manual up-regulation reserves(RK+) and down-regulation reserves can be supplied without
opportunity costs. This can be seen by the surplus of capacity for down and up-regulation
reserves in tables 5.10 and 5.11. For up-regulation spinning reserves it is not so straight forward.
We see in table 5.8 that unit 6 is fulfilling the LFC+ demand. Unit 6 cannot make a profit in
hour 3 with the given spot price, so the production he has in hour 3(the minimum production)
gives a negative profit(loss) for unit 6. This production is at least required to supply the spinning
up-regulation reserves, so it becomes a cost that must be recovered through compensation for
the reserves. This cost is not coupled to the supply of up-regulation spinning reserves since the
total cost doesn’t change with changing LFC+ supply. This is different from the supply in hour
1 where the cost was coupled to each MW supplied. So it is actually a fixed cost where the
required compensation per MW of LFC+ supply depends on the volume. Larger supply means
lower cost per MW since the cost that must be compensated for is the same regardless. Fixed
costs in the normal sense of the word should of course not really be considered when selling this
service, but since these costs are only incurred when one chooses to supply LFC+ they are not
really fixed costs. They are coupled to the option of supplying LFC+ or not, but decoupled to
the options of how much to supply.

In hour 5 with a low spot price(demand) there is enough capacity available so that manual up-
regulation reserves can be supplied without opportunity costs. For the rest of the reserve types
there will be a cost since the required spot production to supply the reserves gives a loss for all
the producing units. We see in table 5.8 that unit 5 is fulfilling the LFC+ demand even though
all units below could do this for a lower cost. The mechanisms is the same as in hour 1 and it is
the units with the lowest production costs that is supplying the manual down-regulation reserves
in this hour with the spinning reserves being pushed to the units with higher production costs.
The ’fixed’ costs exists also for spinning down-regulation reserves in this case even though the
supply for spinning down-regulation reserves is always coupled to spot production for marginal
increases in supply. The quantity Y min cannot be sold as spinning reserves, but must be sold
in the spot market so increased supply will help to cover this ’fixed’ cost also for spinning down-
regulation reserves. This is what separates the manual down-regulation capacity reserves from
the spinning down-regulation reserves and equilibrium prices could also here be found such that
all units have maximized their profits with the resulting commitments.

This was a quite superficial analysis of the results and the pricing in the markets, but the point is
that all the different market prices are correlated with each other and will be a function of supply
and demand on all markets. With the demand for reserves being mostly the same at all times in
a power system, it is the changing spot demand that will be the driving force behind the prices.
The clearest characteristics is that periods with high spot demand will be correlated with high
manual up-regulation reserve prices and high spot prices, and periods with low spot demand will
be correlated high down-regulation reserve prices and low spot prices. Up-regulation spinning
reserves is a bit special in that high up-regulation spinning reserve prices may be correlated with
both high and low spot demand periods due to the simultaneous requirement of capacity in and
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out of production for individual units. Primary control reserves and secondary control reserves
has the same capacity characteristics with regard to the other markets, but the limitation on
each unit for primary control reserves makes separates them besides just the direct costs for
primary control. This makes it possible that it is just not the direct costs that should separate
the prices in these two markets. The manual capacity reserves(RK+ and RK−) will for all
units have equal or lower costs of supply compared to their spinning counterparts, so the prices
for these reserves should be equal or lower in perfect markets. The units in a power system
that at a given time are competitive for manual up- down-regulation reserves will not change
with changing spot demand(prices), while the units competitive for especially up-regulation
spinning reserves will change with changing spot demand(prices). Units competitive for down-
regulation spinning reserves when a capacity price is needed can change with changing spot
demand(prices), but that would be due to differences in maximum and minimum production
levels and not because of production costs differences.

The spinning requirement and the minimum production level creates a binary effect for the
supply on the different markets, so a marginal analysis of the potential profits in different
markets is not really possible and marginal shifts of capacity between different reserves markets
is not always possible or desirable for units operating in these markets. This is also what makes
a MIP-model suitable to finding optimal unit commitments on the different markets.

5.2 Station specific LFC

The optimization with results in table 5.5-5.11 was for a secondary control market(LFC) where
the unit(s) supplying the reserves could change from hour to hour. In a memo on the intro-
duction of LFC markets in Norway[6], Statnett states that the most probable solution at least
in the implementation period for LFC will be a weekly market with station specific bids. This
means that the accepted bids are coupled to specific power stations for the whole bid period.
To model this we need to introduce two new variables:

lfc+
STg

− LFC up capacity supply from unit g for the total planning period(MW)
lfc−STg − LFC down capacity supply from unit g for the total planning period(MW)

With this modeling we assume that each unit g in the model is a station of its own. A power
station may of course consist of several units, and it is not complicated to model this possibility
in a model like this, but we will not do that here.

We replace constraints 4.38 and 4.39 with

lfc+
STg

≤ lfc+
g,t ∀ g ∈ G, t = 1..T (5.1)

lfc−STg ≤ lfc−g,t ∀ g ∈ G, t = 1..T (5.2)
(5.3)

and add the following constraints
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lfc+
tot ≤

∑
g∈G

lfc+
STg

∀ t = 1..T (5.4)

lfc+
tot ≤

∑
g∈G

lfc−STg ∀ t = 1..T (5.5)

(5.6)

This way the supply from an individual unit(station) must be available at that unit in the whole
period, and the total supply consists of the sum of supply from individual units(stations).

5.2.1 Results and discussion

Table 5.12 shows the spot commitment from the same optimization as before with the changed
market rules.

Table 5.12: Spot commiment with station specific LFC (MW)
Unit Hour 1 Hour 2 Hour 3 Hour 4 Hour 5
G1 89 89 89 89 89
G2 89 89 89 89 89
G3 89 89 88 84 84
G4 89 89 78 78 78
G5 87 87 66 13 13
G6 78 78 - - -
G7 66 66 - - -
G8 13 13 13 13 13
G9 - - - - -
G10 - - - - -

We see that the optimal solution has changed quite a bit. The LFC demand must now be
supplied from the same unit for all hours and we see that unit 8 produces at the minimum level
for the low price hours even when units with lower production costs are not producing. It is
clear that this gives a higher cost than if the demand was covered with an optimal commitment
in each hour as in the previous optimization. This can also be seen by the fact that the objective
function value changes from 13 982 to 13 823 for the two optimizations. For a producer supplying
these reserves for the whole period it would mean a higher required compensation and for the
market as a whole it would mean a higher secondary control capacity price and lower social
surplus. One thing to note is that having the market for reserves clear for periods of several spot
clearings(hours) instead of in each hour will give lower social surplus1 by itself when considering
that the units of a power system is divided between several independent producers. By taking
the extreme of this and saying that each independent producer only has one unit each, we see
that the result would be the same as for the rule of unit(station) specific supply.
The reason for all of the above is the mentioned characteristics of up-regulation spinning reserves.
The cost of supply for an individual unit will always be lower the closer the marginal production
costs are to the spot price. With varying spot prices during the period, it is likely that the
demand or obligation optimally should be fulfilled by different units in each hour, which is
the case for the optimization seen here. Down-regulation spinning reserves doesn’t have the

1We are assuming correct prices(bidding) for all alternatives and are not considering factors such as adminis-
trative costs etc. for different market solutions here
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same characteristic and the capacity price for LFC− wouldn’t necessarily increase with varying
spot prices and station specific supply. But station specific supply would probably mean that
the secondary control energy reserve market is isolated for the capacity that is procured in
the capacity market. Activation of down-regulation reserves is best to do at units with high
production costs, so this means that the demand also for LFC− probably should be fulfilled by
different units in each hour to maximize the social surplus. Energy markets are not included in
the model though so station specific LFC− doesn’t increase the costs for this optimization.
Another point that can be seen here is the advantage a large producer with many units of vary-
ing production costs would have in up-regulation spinning reserve capacity markets where the
producers can choose how to fulfill their LFC obligations in each hour over the obligation pe-
riod. Consider a producer owning and operating the full set of units used in these optimizations
against a producer owning only the unit that supplies LFC+ capacity for the second opti-
mization(unit G8 ). It becomes clear that the first producer would be able to supply the same
amount of LFC+ capacity for a lower cost than the second producer. This difference between
producers disappears when the supply is unit(station) specific over the obligation period.
The solution used to reduce the effect of these issues in the weekly capacity markets today
is to divide the market products for spinning reserves into several specific time periods(see
section 2.1). These periods are chosen so that they consist of hours with similar spot demand
and thus similar spot prices.
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Chapter 6

Bidding

We see that the MIP-model finds the optimal commitment for a producer considering market
obligations and/or market prices, so how would the model work when using this for bidding in
sequential weekly market auctions for the different reserve products. We will consider capacity
markets similar to the markets in Norway today, with LFC markets included, but without
seperation between FNR and FDR, i.e one type of primary control. We assume here that
the primary control capacity market clears first for several specific obligation periods during
the coming week, and that the product is symmetric, meaning that the payment is per MW
of primary control capacity in both directions. The secondary control capacity market clears
second with the same obligations periods as for primary control, bids are not unit(station)
specific and there exists separate products for each regulation direction. The tertiary control
capacity market clears for one obligation period(the whole week) with separate products for
each regulation direction. The spot markets clears in every hour during the week.

To get the symmetric primary control market modeled correctly some changes must be made in
the model. The results from the previous optimizations would not have changed though since the
primary control obligations for the ’producer’ is symmetric. To model payment for symmetric
supply we replace the price parameters for up and down supply with one price parameter for
primary control. We do the modeling here for both types of primary control in Norway, even
though we will just consider one type and only use the FDR variables:

Λfnr − FNR capacity price for the planning period (NOK/MW)
Λfdr − FDR capacity price for the planning period (NOK/MW)

We also need new variables to represent the symmetric supplies:

fnrsymmtot − FNR symmetric capacity supply for the total planning period (MW)
fdrsymmtot − FDR symmetric capacity supply for the total planning period (MW)

The objective function changes to:
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max: Λfnr × fnrsymmtot + Λfdr × fdrsymmtot

+ Λ+
lfc × lfc

+
tot + Λ−lfc × lfc

−
tot + Λ+

rk × rk
+
tot + Λ−rk × rk

−
tot

+
∑
g∈G

T∑
t=1

[
Λspott × yg,t − Cstartg × startg,t − V Vg × qg,t − cδg,t

]
(6.1)

Constraints 4.34-4.37 are replaced with:

fnrsymmtot ≤
∑
g∈G

fnr+
g,t ∀ t = 1..T (6.2)

fnrsymmtot ≤
∑
g∈G

fnr−g,t ∀ t = 1..T (6.3)

fdrsymmtot ≤
∑
g∈G

fdr+
g,t ∀ t = 1..T (6.4)

fdrsymmtot ≤
∑
g∈G

fdr−g,t ∀ t = 1..T (6.5)

We assume here that the producer is a pure price-taker on all markets.
So the first market is the primary control capacity market. The model is run several times for
chosen bid prices for this market with price forecasts for all the remaining markets(secondary,tertiary,
spot) that may influence the primary control bid. With several products for specific obligation
periods during the week(e.g. Monday-Friday 2000-2400) it is important that the price fore-
casts for the other markets are for the same periods. This is natural when products in other
markets are split into the same(secondary) obligations periods. Shorter periods that can be
added to match the relevant obligation period is also natural since the price forecasts of the
different shorter periods can be represented in the model in much the same way that the single
hour obligations of the spot market is represented. For the tertiary reserve market where the
price is given for a longer obligation period it would be more difficult, but it would have severe
consequences for the bids if the price forecast isn’t representative for the relevant obligation
periods as any bad price forecast would be. As an example we take a look at table 5.10. We
see that the required compensation to fulfill the tertiary up-regulation capacity demand stems
from hour 1 and 2. In hour 3,4 and 5 there is a surplus of supply. The price forecast used
for primary control bids in an auction that spanned the hours 3,4 and 5(the shorter period)
should be the part of the price needed to fulfill the tertiary up-regulation capacity demand for
all the hours(the longer period) that stems from the hours in the shorter period(zero in this
case). When an obligation is used instead of a price forecast the correct obligation would of
course have to be used for the relevant periods. With this in mind it could be practical to clear
the weekly market with the longest obligation period first since the obligation is the same for
every hour while the contribution to the capacity price changes from hour to hour. This makes
it more complicated to split an expected capacity price for a longer period into shorter periods.
After the primary control capacity market has cleared, the producer’s obligations are known and
this is used as an input when bidding for the next reserve type together with the price forecasts
for remaining markets. The next reserve type is the secondary control reserves(LFC ). Here we
have separate products for each regulation direction(up and down). These two products are
not only competing for capacity with other reserve types and the spot market, but also with
each other. So prices or obligations for one of the products influence the bids for the other
product. This means that auctions for these products must be cleared sequentially too. The
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obligation from one product must be known before calculating bids for the other. If the auctions
were simultaneous and a producer used this method with a price forecast for one product when
bidding for the other, the result could in worst case be physically infeasible for the producer.
This is because price forecasts can’t be exact per definition, and e.g. with a clearing price
above the forecast for both products a producer could in worst case receive obligations that
exceeded his total available capacity. This is the case for all competing products in the same
obligation period, and one product must be cleared before calculating bids for the next. That
price forecasts are not exact is not a problem with regard to feasability when all products clear
sequentially.
With the primary and secondary control capacity markets cleared, the bids for tertiary control
reserve capacity can be calculated with the same procedure. Bids for up- and down-regulation
tertiary reserves will probably not influence each other for any units in a realistic power system
with realistic demand and prices, but it may in theory so these auctions should also be sequential
when using this method. Assuming that the spot market always clears last, i.e. after all the
reserve markets, spot market bids would just be based on the marginal production costs while
also accounting for the unavailable production capacity and/or forced production of the reserve
obligations.
The elegant property of the procedure is how the total profit at all times is maximized ensuring
optimal allocation of capacity. The model allocates capacity to the markets where this capacity
achieves the highest profit. Capacity will be allocated to bids when the bid price gives a higher
profit for this capacity than for any of the remaining markets according to the price forecasts.
So opportunity costs for all markets are accounted for in the bids in addition to the direct costs
and characteristics of the different products.
We will below use the model to illustrate bids on the different markets from a producer owning
and operating a set of generating units.

6.1 Model setup

The obligation period we will consider on all the markets is 20.00-24.00 from Monday to Friday.
This means that there is 4 spot markets clearings each day for 5 days in the obligation period
giving a total of 20 hours. The deterministic spot price forecast we use here is equal to the
system spot price in these hours on Nord Pool for week 45 in 2011. Figure 6.1 shows the prices
for the 20 hours. Each day is 4 hours and we see that the prices typically fall towards the last
hour each day and jumps up to the first hour the next day. This reflects the typical demand
characteristics of the spot market in the Nordic countries with the demand at 20.00 being larger
than the demand at 24.00.
Price forecasts for the other markets can be seen in table 6.1. A price forecast for primary
control capacity reserves is not needed since it is the first market. The price forecasts here are
not based on any real prices and are arbitrary other than that the likely correlation between
prices are considered to some extent. But we use a price above zero for all markets, except for
down-regulation manual reserve capacity market.
The set of generating units is based on real units, and 7 units with different characteristics are
used. Some of these units is really part of a station with several units, but we will only include
one unit from each station. Parameters used for the different units can be seen in table 6.2.
We ignore start-up costs. The droop setting costs are adjusted according to the size of the unit
with basis in the largest unit(SyS). This is because this cost is assumed to be a wear and tear
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Figure 6.1: Spot price forecast

Table 6.1: Price forecasts for the relevant reserve capacity markets
Market Forecast Market Forecast

(EUR/MW) (EUR/MW)
LFC+ 40 RK+ 20
LFC− 5 RK− 0
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Figure 6.2: Relative water discharge

cost and is related to the investment costs of units. Only 2 segments are used for the PQ-curves
due to computational considerations. Figure 6.2 shows the relative water discharge comparison
for unit SyS. The actual best-point of each unit is included in the table. The water value for
each unit is based on real water values from Statkraft in the relevant week.

Table 6.2: Unit parameters
Unit Y_min Y_max Best-point PQ_min Th_min Th_max C_st VV

(MW) (MW) (MW) (MWh/h) (EUR) (EUR/MWh)
Adam 15 25 22.07 15.55 0.0833 0.5 0.81 41.9
Aura 3 29 24.40 3.85 0.0833 0.5 0.94 34.9
Bjol 13 89 65.96 13.21 0.0833 0.5 2.87 40.2
Gry 10 143 95.31 11.19 0.0833 0.5 4.61 46
Leir 58 114 97.90 60.22 0.0833 0.5 3.68 39.1
Mar 5 36 30.34 5.75 0.0833 0.5 1.16 32.7
SyS 50 310 223.25 51.99 0.0833 0.5 10.00 44.50

We will use the simplified version for down-regulation reserves that ignores the ability to shut
down a unit for manual down-regulation reserves. This means that there is no difference between
manual and spinning down-regulation reserves, but this simplification doesn’t matter when the
capacity price for down-regulation manual reserves(RK−) is zero. It basically means that there
is no capacity market for (RK−) to be considered. The primary control reserves consist of only
one type(FDR) as mentioned.
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6.2 Results and discussion

First we will look at some of the impact unit characteristics other than the water value(resource
cost) has on bidding and supply of capacity reserves. As an example we consider the unit
SyS. SyS has minimum production(Ymin) of 50 MW and maximum production(Ymax) of 310
MW. This means that the unit has the ability to supply from zero to Ymax − Ymin = 260
MW of spinning reserves. In hours where the unit does not want to produce anything(low
spot price), the ’fixed’ cost for spinning reserves that is decoupled to the supply arises and
increased supply lowers the required compensation per MW, i.e. a falling supply curve for
the unit. Direct costs, e.g. the droop setting costs for primary control, may offset this and
the capability for primary control supply may anyhow be below the available capacity(260
MW), but any profitable utilization of the remaining capability, e.g. as secondary or tertiary
up-regulation reserves, would in this case lower the required compensation per MW also for
primary control. This means that it is the relation between (Ymax) and (Ymin) rather than the
actual value of (Ymin) that is most crucial for a unit’s cost of supplying up-regulation spinning
reserves assuming that the full capacity of a unit can be sold. This relation is also crucial for
the difference between a unit’s cost of up-regulation spinning reserve supply and up-regulation
manual reserve supply(RK+). Unit SyS may supply 310 MW of (RK+), so the difference will
not only be made up of the ’fixed’ costs, but also the increased total income for a given price
coming from the larger volume. Comparing unit SyS with unit Gry we see that the relation
between (Ymin) and (Ymax) is 16% for SyS and 7% for Gry. Lower is better. With everything
else being equal between the units it means that Gry is better suited for e.g LFC+ supply and
that SyS is better suited than Gry for RK+ supply relative to LFC+ supply. This means that
there would exist a price level for LFC+ and RK+ where Gry would maximize its profits with
LFC+ supply while SyS would do the same with RK+ even though everything else apart from
Ymin and Ymax were equal.

The relation between (Ymax) and (Ymin) is important also for down-regulation spinning reserves
for the same reasons and the unit with the lowest cost of supply may change with varying spot
prices also for down-regulation, even though an individual unit always has lower costs with
lower marginal production costs and lower spot prices can only lead to higher costs of supply
for the market as a whole.

The efficiency curves of different units will also have an impact on how units will rank on different
markets and on the bids themselves. The efficiency of different production levels compared to
the efficiency at best-point becomes important whenever a unit may achieve a profit in the
spot market. We see from table 6.2 that the production costs per MW for SyS is 44.50 EUR
at best-point, while being 46.22 EUR at the minimum production level. This is calculated
using the efficiency at Ymin. We assume an hour with a spot price of 46.50. The marginal
production cost is lowest at the best-point with 44.50 EUR, so the required compensation for
any type of up-regulation reserve related to the spot market would increase with increasing
supply up to a compensation of 2 EUR/MW for a supply of Ymax - best-point MW(86.75 MW).
Increasing the up-regulation reserve supply marginally from the best-point also increases the
required compensation per MW since the efficiency again drops, but for RK+ supply it would
be possible to supply Ymax MW (310 MW) without increasing the compensation per MW since
the total profit would still be the same.The required compensation for maximum RK+ supply
would actually be lower than 2 EUR/MW since the full unit capacity can be sold without any
changes to the direct costs like for the spot market. For spinning reserves it is a requirement
with spot production, so if the unit should supply the maximum capability of 260 MW for
up-regulation spinning reserves(LFC+), the spot production would be sold with a production
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cost per MW of 46.22 EUR instead of 44.50 EUR. This gives a higher required compensation
per MW of LFC+ supply since the total profit is reduced compared to spot production at
best-point. The calculation would be a total profit of 2 ∗ 310 = 620EUR for maximum RK+

supply or spot production at best-point plus the rest as reserves with a price of 2 EUR/MW
for reserves. With 260 MW as LFC+ supply the compensation per MW LFC+ would have to
be (620 − 50 ∗ (46.50 − 46.22))/260 = 2.33 EUR/MW for the total profit to be equal. So we
see that the spinning requirement creates an extra cost also here, and this extra cost would be
lower for a unit the better the efficiency at Ymin would be compared to the best-point.

In the last case we saw that LFC+ supply for a unit has increasing costs with increased supply,
so a unit wouldn’t always want to increase its supply of up-regulation spinning reserves for a
given price in those spot price situation as it would when no profits could be made in the spot
market. For a unit bidding for and supplying LFC+ for a period of several hours with varying
spot prices the actual volume offered from the unit at the lowest price level(the lowest bid)
would be a tradeoff between these two situations in the period. The maximum volume would
be offered if costs from hours where the spot price is too low for the unit dominated, while a
lower volume would be offered if the accumulated extra profits from the spot market with this
lower volume exceeded the extra income from the higher volume in the reserve market.

6.2.1 Primary control capacity bids

Table 6.3 shows the bids for primary control capacity. The price column shows the price range
that gives the same offered volume. The symmetric product means that the offered volume
goes in both directions. E.g. the bid for 8 MW means 8 MW down-regulation and 8 MW
up-regulation. Any capacity that qualifies as reserves for up-regulation primary control for
the total period may here be directly substituted with tertiary up-regulation reserves(RK+)
and/or secondary up-regulation reserves(LFC+), so the bids would in this case never go below
40 EUR/MW which is the forecast for LFC+. A lower price than this for primary control
reserves means that it would be more profitable to save all up-regulation spinning capacity for
use in the future LFC+ market where it could be sold for 40 EUR/MW. The same can be
said for down-regulation primary control reserves which may be directly substituted for tertiary
and/or secondary down-regulation reserves(RK− and LFC−). The price forecast for LFC−
is here 5 EUR/MW, so this actually means that the bids for the symmetric primary control
product would never go below 40 + 5 = 45EUR/MW in this case.

Table 6.3: Symmetric primary control bids
Price Volume Price Volume

(EUR/MW) (MW) (EUR/MW) (MW)
0-44 0 128-130 218
45 8 131 226
46 49 132-193 230

47-53 96 194-247 234
54-67 102 248-276 240
68-101 105 277-278 242
102-120 114 279-280 247
121-124 117 281-290 254
125-127 215 291- 260
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Table 6.4: Primary control bids when the spot market is the only other market
Price Volume Price Volume

(EUR/MW) (MW) (EUR/MW) (MW)
0 0 34-72 105
1-5 3 73-81 110
6 6 82-85 218

7-12 16 .. ..
13-14 23 .. ..
15-25 26 .. ..
26-27 39 .. ..
28 42 .. ..

29-33 52 .. ..

We see in table 6.3 that the bids starts at 45 EUR/MW, which means that the offered volume
replaces profitable LFC+ and LFC− supply. We will assume that the market clears with a
price of 50 EUR/MW. This gives an obligation of 96 MW for the producer. By taking a look
at tables A.1 and A.2 in appendix A we see that the supply is supposed to come from the same
combination of units and commitment in each hour during the period, but with a different unit
commitment for each direction. If only the spot market was considered it is likely that some
capacity could have been supplied for a lower cost by changing the commitment in some hours.
This is due to the variation of the spot prices. Table 6.4 shows the bids without a price for any
of the other reserve capacity markets. The bid for 50 EUR/MW shows a bit higher volume and
tables A.3 and A.4 in appendix A shows the calculated unit commitment in each hour for this
bid. We see that the volume for this price is supplied by changing the committed units in some
hours. With a profitable price(or obligation) for the other markets this type of changing the
committed units from hour to hour is discouraged. Take as an example RK+ supply where the
best unit commitment for a given price and amount doesn’t change with varying spot prices
during a period. The unit SyS sells his whole capacity as RK+ with the prices given here. Now
if capacity for up-regulation primary control reserves(FDR+) is supplied from this unit in e.g.
only one hour or a number of hours shorter than the full period which is the case is in table A.3,
it means that the unit can’t supply the full RK+ capacity in each hour and a lower amount of
RK+ must be sold for the whole period. This does not maximize the profits, and the effect is
that the supply of primary control reserves over the period is more likely to come from the same
unit commitment in each hour. All such considerations are taken care of by the optimization.
Another important factor that discourages different commitments in each hour is the size differ-
ences of units(Y max−Y min). The best commitment for the supplying unit/units in a specific
hour is often maximum supply, and with large size differences the optimal volume to be offered
for the whole period is most likely not possible to supply from different units in different hours.
Low variation of the spot price(demand) during the period will of course also contribute to the
same unit commitment for the reserve supply in each hour.
It also shows how important the price forecasts for the other reserve markets can be with this
method. To illustrate this we can again take a look at the optimization in section 5.1.1. Assume
that a producer with the units in that optimization is bidding for symmetric primary control
reserves or for up-regulation spinning reserves in general for the 5 hour period shown in table 5.1.
The market situations are such that the producer optimally should get the market commitments
shown in the optimization. Without a price forecast for the other reserve markets(manual up-
regulation reserves and down-regulation reserves) the accumulated costs over the hours that is
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the basis for the bids would for the lowest bid volume come from unit 10 in hour 1 and unit 1
in hour 5. Those units should optimally be used for other markets, so the accumulated costs
would be too low and the bid would thus be priced too low. With correct price forecasts those
units would have been ’reserved’ for other markets and using them as up-regulation spinning
reserves decreases the total profit in the model and ultimately gives correct costs as basis for
the bids.

6.2.2 Up-regulation secondary control capacity bids

Table 6.5 now shows the bids for LFC+ with the obligation of 96 MW for primary control. The
up-regulation capacity qualified as LFC+ for the period is directly substitutable with RK+ so
no bid will be below 20 EUR/MW. If we assume the same clearing price as the price forecast(40
MW/EUR) the obligation for LFC+ becomes 76 MW, which is the offered volume for a price
between 21 and 40 EUR/MW. If we now prepare the bids without the primary control obligation
we can see the effect the primary obligation has on the LFC+ bids. Table 6.6 shows the bids
without the primary control obligation.

Table 6.5: LFC+ bids
Price Volume Price Volume

(EUR/MW) (MW) (EUR/MW) (MW)
0-20 0 84-136 369
21-40 76 137-169 374
41-46 336 170-179 384
47 349 180-205 389
48 354 206 396

49-83 360 207- 400

Table 6.6: LFC+ bids without primary control obligations
Price Volume

(EUR/MW) (MW)
0-20 0
21-32 23
33-35 39
36-40 172
41-48 432
48-91 485
.. ..
.. ..
.. ..

We see that the offered volume without the primary obligation is much lower for prices between
21 and 35 EUR/MW. The reason for this is the ’fixed’ costs originating from the minimum
production level of a unit. These costs are accumulated for each hour during the period. Primary
control capability for a unit is limited by the droop setting and will normally be limited to an
amount lower than the available capacity at minimum production(Y max−Y min). This means
that a unit that must be spinning throughout the period due to primary control obligations can
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supply available capacity as LFC+ without accumulating these ’fixed’ costs. For this capacity
the difference between RK+ and LFC+ disappears completely since the units supplying the
capacity are now known to be spinning. Due to this effect we see in tables 6.5 and 6.6 that a
larger volume is offered as LFC+ for a lower price with the primary control obligation. For a
price above 36 EUR/MW a larger volume of LFC+ is offered for the bids without a primary
control obligation. This is because that price makes LFC+ supply more profitable than the
other markets for a larger part of the capacity without relying on already committed spinning
units. The primary control obligation is taken from this capacity and we see that 172 − 76
equals 96 MW.
The big jump in the offered volume at 41 EUR/MW is just a coincidence. That price is exactly
where it becomes more profitable for the unit SyS to switch from RK+ supply to LFC+ supply
and has actually nothing to do with the price forecast for LFC+.

6.2.3 Remaining markets

Assuming the same clearing price for LFC+ as the price forecast the obligation becomes 76
MW. By also assuming the same clearing price as the price forecast for the following markets
we get bids for each market shown in tables 6.7-6.9.

Table 6.7: LFC− bids
Price Volume

(EUR/MW) (MW)
0 0

1-45 55
46-74 64
75-87 191
88-90 277
91-92 314
93- 324

Table 6.8: RK+ bids
Price Volume

(EUR/MW) (MW)
0 0
1 231
2 234

3-12 310
13-29 335
30- 335

Table 6.9: RK− bids
Price Volume

(EUR/MW) (MW)
1- 0
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Table 6.10: Final reserve obligations
Market Obligation Market Obligation

(MW) (MW)
Prim 96 Rkup 335

LFCup 76 Rkdown 0
LFCdown 55

The final reserve obligations can be seen in table 6.10. This is exactly the same allocation
of capacity that was assumed when capacity was reserved for future markets for the bid at
50 EUR/MW for primary control capacity reserves. This is natural since we have cleared the
markets with the price forecasts.
We see here is that all the capability for reserve supply has been sold for the given prices, so
there is no freedom left for the spot supply. There is no capacity left for RK− either as seen in
table 6.9, since no price was expected in this market and all the capacity was sold in previous
markets. The spot production would have to be the same in every hour during the period to
fulfill all the reserve obligations, so the bid in the spot market for the set of units have to be this
exact amount regardless of the price. If the price forecast for the spot prices were exact too,
the capacity allocation resulting from the bids would give the maximum possible total profit for
the producer owning the set of units.

Changed market order

Changing the order of the markets, e.g letting the secondary control markets be the first markets,
will theoretically not change anything. Table 6.11 shows the bids for LFC+ when the primary
control market is included with a price forecast of 50 EUR/MW.

Table 6.11: Bids for LFC+ when it is the first market
Price Volume Price Volume

(EUR/MW) (MW) (EUR/MW) (MW)
0-30 0 48-91 485
31-40 76 .. ..
41-43 330 .. ..
44 363 .. ..
45 414 .. ..

46-47 432 .. ..

We see that the volume offered for 40 MW/EUR is the same as before.
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Chapter 7

Multi-Scenario model

7.1 Price uncertainty

Prices of future markets are uncertain and may have a number of possible outcomes. The
optimizations in the last chapter that illustrated the bidding procedure used a deterministic
model, where the price forecasts represented the expected value of the uncertain prices. This
type of model does not consider the effect the variation of possible price outcomes has on a unit’s
valuation of future markets. A deterministic model does actually not consider uncertainty at
all since it assumes everything to be known.
Consider a unit acting on the spot market. Whenever the spot price is above his marginal
production costs he gets a profit, and whenever the spot price is below his marginal production
costs he has the option to not produce and thus avoid a negative profit. Using the expected
value of the uncertain prices as a forecast will generally understate the value of this optionality
for the unit and could thus understate the expected profits[4]. As an example we can again take
a look at unit SyS with a marginal production cost at best-point of 44.50 EUR/MW used in
the bid illustration. With the price forecast from figure 6.1 the unit would have zero expected
profits from the spot market in this period since the spot price is given as below(or equal to) the
marginal production cost at best point for all hours. Assuming that the unit couldn’t achieve a
profit in any of the down-regulation or spinning reserve markets it means that he would be able
to offer RK+ volume without compensation. But the spot prices in the period are uncertain,
and any probability for the spot price outcome to actually be higher than the forecast and
above the marginal production costs in any hour means that the expected profits in the spot
market for the period would be above zero. So the unit would need a compensation for RK+

capacity that takes this probability into account. A similar type of optionality effect also exists
between the different markets, since several future markets for the same capacity creates even
more options.
To illustrate this we consider a unit that is bidding for one of the up-regulation capacity reserve
markets(the first market) that clears for a specific period. There are two future markets, the
spot market and another up-regulation capacity reserve market(the second market) that is an
alternative to spot supply, e.g RK+, meaning that capacity supplied for this market has zero
profits from the spot market in the period. The first market is an alternative to both these
markets. The other capacity reserve market clears for the same specific period and before the
spot market. The unit has expected profits of 35 EUR/MW from the spot market for the total
period, accounting for all price uncertainty. The second market has four possible price outcomes
with equal probability that gives a profit for the unit in this market of respectively 50, 40, 35
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and 25 EUR/MW. Assuming no direct costs for the unit in this market they represent the actual
prices. So the expected value of the prices in this market is (50+40+35+25)/4 = 37.5EUR/MW.
Using just this single price as a price forecast gives the correct expected profits of 37.5 EUR/MW
for the unit in this market, but it does not give the unit’s correct expected profits for the future
markets combined which should be considered for the bids in the first market. When the price
outcome for the second market is below 35 EUR/MW it is better for the unit to save the
capacity for the spot market since his expected profit in the spot market is 35 EUR/MW. So
the actual future expected profit for the unit is (50 + 40 + 35 + 35)/4 = 40EUR/MW. Using the
expected value of the price as a price forecast for the second market could thus understate the
expected profits from future markets.
Understating the value of future competing markets leads to too low bids in previous markets,
but the severity of the effects above with a deterministic approach depends on the variance of
the possible price outcomes. If the uncertainty is low so that the forecast is always close to the
actual price the method may still provide good bids.

7.2 Multi-scenario

A multi-scenario deterministic approach for the MIP-model where the price forecast in each
scenario represents different price outcomes is suitable to capture effects of uncertain prices in
future markets and the option value this creates for the units. With scenarios that perfectly
represents the statistical properties of the uncertain prices the expected profits and value of
the future markets can be calculated. The model is still deterministic for each scenario though,
with the general issues this presents.
The complication is all the different markets. While a multi-scenario deterministic approach
might be fine for all the markets independently1, it is difficult and probably not so good to
have scenarios with prices across all markets. All market prices are correlated with each other
to differing degrees, but the market prices of previous markets are not correlated to specific
outcomes of the prices in future markets. They are rather correlated to the total expectation
of the future uncertain prices. So the price uncertainty in each market is independent of the
uncertainty of the other markets. Having a multi-scenario deterministic description of the spot
market with stochastic links between the different markets is a possibility. It is the many time
periods of the spot market that is the biggest challenge, but the amount of stochastic periods
increases with the amount of future markets.
We will here simplify by saying that the only future market with price uncertainty is the spot
market. This is actually often the case in Norway today, when FNR+ is the only reserve
capacity market with prices(LFC markets not implemented). The price uncertainty of future
well-functioning reserve capacity markets shouldn’t in theory be very large anyway if they clear
at about the same time. The demand is known and the expectation of the future markets should
not change much between the clearing of the different reserve capacity markets.
To implement multiple scenarios for the spot market in the model we need a new index:

z − Spot price scenario z over the planning period

Some new parameters are also needed:
1It certainly is for the reserve capacity markets, since they only have one time period
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Z − Number of spot price scenarios
PXz − Probability for spot price scenario z

All the variables that are indexed over the time periods t must also be indexed over each spot
price scenario z.
The objective function is changed to:

max: Λ+
fnr × fnr

+
tot + Λ−fnr × fnr

−
tot + Λ+

fdr × fdr
+
tot + Λ−fdr × fdr

−
tot

+ Λ+
lfc × lfc

+
tot + Λ−lfc × lfc

−
tot + Λ+

rk × rk
+
tot + Λ−rk × rk

−
tot

+
Z∑
z=1

PXz ×
[ ∑
g∈G

T∑
t=1
×(Λspott × yg,t − Cstartg × startg,t − V Vg × qg,t − cδg,t)

]
(7.1)

The volume allocated as reserve capacity for the total period limits the units’ options in the
spot market for each scenario, so the allocated volume gives the optimal amount for all the
scenarios combined.
Bids with the multi-scenario deterministic model will in the following be illustrated and com-
pared to bids with the single-scenario deterministic model.

7.3 Model setup

We will look at bids seperately for RK+ and LFC+ where we assume no obligations and/or
no price in any of the other capacity markets. The product period is the same as earlier with
Monday-Friday 2000-2400(20 hours). This is usually hours with medium high spot demand, at
least in Norway, so there should normally be enough capacity both in and out of production
giving no price(or very low) for manual up-regulation reserves and all down-regulation reserves
for the period. Up-regulation primary control reserves would probably have some capacity price,
both due to the direct costs of primary control and the characteristics of up-regulation spinning
reserves, but we assume here for simplicity that the producer in question has no obligations
from this market. So the only active markets are either RK+ or LFC+ and the spot market.
The units owned by the producer is the same as earlier with the same parameters as in table 6.2.
Statkraft does not make multi-scenario spot price forecasts as a standard, so the scenarios used
here are generated with basis in the single-scenario price-forecast made by Statkraft each day
and week. The spot price forecasts by Statkraft are made with fundamental models, so these
forecasts are theoretically a bit different than the expected value forecasts talked about earlier.
The fundamental forecasts basically find the most likely scenario based on expected supply and
demand in the market. This can be differerent than the expected value of the prices since
the price uncertainty in the spot market can have different characteristics for different load
situations. But the principles of price uncertainty are the same and the uncertainty related to
these forecasts should be described as good as possible.
To generate the multi-scenario forecast we take the spot price forecast from Statkraft at the
time when the weekly capacity markets are assumed to clear. These forecasts are compared
with the actual spot prices for that week and the difference between the two for each hour is
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Figure 7.1: Spot price forecast

used as a scenario. Doing this for many weeks gives many scenarios and a good representation
of the spot price uncertainty related to the forecasts will at some point be captured. This has
been done for the Nord Pool system price for the 45 first weeks of 2011 giving 45 scenarios in
addition to the actual forecasted scenario in a week. Figure 7.1 shows the scenarios for a whole
week(168 hours, Saturday to Friday). The price forecast for week 45 in 2011 is the base scenario
here and is the black line in the figure.

The forecast is done just before hour 1 and it can be seen that the uncertainty of the prices
increases with time. This is expected. All scenarios generated here will not be used in the
optimizations mainly due to calculation time limitations since the calculation time increases with
each new scenario, but also because all the scenarios don’t really represent the uncertainty for the
situations we will optimize for later. So some of the very low price scenarios are removed since
they are generated in summer weeks with very low load where the uncertainty isn’t necessarily
representative for more normal weeks. Also removing some random scenarios brings the number
of scenarios used here to 20. Figure 7.2 shows the scenarios for the period Monday-Friday 2000-
2400. Table 7.1 and the black line in figure 7.2 shows the prices for the base scenario, which
is the price forecast that is used for the single-scenario model optimizations and the reference
scenario for the multi-scenario model optimizations.
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Figure 7.2: Spot price forecast

Table 7.1: Base scenario(single-scenario prices)
Time period Spot price Time period Spot price

(EUR/MW) (EUR/MW)
1 46.51 1 41.51
2 43.5 2 40.21
3 41.51 3 45.21
4 40.01 4 43
5 47.51 5 41.51
6 44.02 6 40.01
7 41.51 7 43.5
8 40.12 8 42.19
9 45.99 9 40.3
10 43.5 10 39.61

47



7.4 Results

7.4.1 RK+

Table 7.2 shows bids for RK+ with the single-scenario model, while table 7.3 shows RK+ bids
with the multi-scenario model. Comparing the bids shows that the multi-scenario model indeed
gives lower volume for some prices. 230 MW is e.g. offered for a price of 3 EUR/MW with
the single-scenario model, while the same volume requires 5 EUR/MW with the multi-scenario
model. The units supplying this volume are the units with the highest production costs and
these units have a higher expected profit from the spot market in the multi-scenario model than
the single-scenario model. This is because the scenarios with higher prices than the single(base)
scenario give higher unit profits, while the scenarios with lower prices often give the same profit
as the base scenario since unit profits in the spot market alone are non-negative. This increases
the expected profits. For higher prices we see that this tendency stops, and for the highest
prices it is actually the other way around with the single-scenario model requiring higher prices
for the same volume. The new volume that is offered for high prices comes from units with
low production costs, so low that they basically achieves a profit in the spot market for all
scenarios in all hours. The optionality effect is not present for these units and the difference
in the bid prices for these units between the two models would come from the distribution
differences of the multiple scenarios compared to the single scenario. The single-scenario price
forecast is forecasted by Statkraft using fundamental models, and it is obvious that the multiple
scenarios used here that are generated from the actual prices in selected weeks compared with
these forecasts are weighted a bit on the downside compared to the single-scenario forecast(base
scenario).

Table 7.2: RK+ bids, single-scenario model
Price Volume Price Volume

(EUR/MW) (MW) (EUR/MW) (MW)
0 0 45-48 517
1-2 48 49-69 583
3-7 230 70-146 681
8-10 453 147-153 686
11-22 456 154-189 710
23-25 479 190-197 716
26-44 501 198- 746

7.4.2 LFC+

For spinning up-regulation capacity reserves like LFC+ it is not so straight forward as with
RK+ or the other types. Down-regulation reserves will be the opposite of RK+ with the
scenarios above the expected prices creating a type of optionality effect and increasing the cost
of supply. Whenever the spot prices goes above the marginal production costs for a unit the
cost for down-regulation reserves is zero and further increasing the spot prices can’t reduce the
cost further2. So the lower price scenarios increases the cost compared to the single-scenario
while the higher price scenarios often will give the same cost(zero) which creates the same effect
as for RK+.

2Assuming no influence on the unit from up-regulation reserve prices
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Table 7.3: RK+ bids, multi-scenario model
Price Volume Price Volume

(EUR/MW) (MW) (EUR/MW) (MW)
0 0 49-52 517
1-3 48 53-69 583
4 143 70-142 681
5-9 230 143-149 686

10-14 453 150-185 710
15-26 456 186-193 716
27-30 479 194- 746
31-48 501

For LFC+ the costs related to the spot market may come from both sides of the spot price.
So scenarios with lower spot prices will decrease the costs for units where the expected spot
price from the single-scenario forecast is already above the marginal production costs, but as
soon as the spot price goes below the marginal production costs the costs will start to increase
due to the required minimum production level. The same is the case for scenarios with higher
spot prices where the costs decreases as long as the spot price is below the marginal production
costs, but increases on the other side when the unit could have profitable spot production. So
it would depend on the unit’s distance to the expected spot price in addition to the variance
of the uncertain prices. For units with production costs very close to the spot price it would
mean that price scenarios on both sides of the expected price quickly gives increased costs unlike
the other types where only one of the sides gives increased costs of supply, but with possible
changing unit commitments in each scenario for the same bid volume the effect of each scenario
can be hard to predict. The increased cost due to price uncertainty would probably be even
larger for station specific bids.

Table 7.4: LFC+ bids, single-scenario model
Price Volume Price Volume

(EUR/MW) (MW) (EUR/MW) (MW)
0 0 50-56 435
1-6 3 57-81 485
7-13 16 82-85 488
14 26 86-118 495

15-16 149 119-127 526
17-18 220 128-146 536
19-24 225 147-179 540
25-29 409 180-189 562
30-44 419 190-215 567
45-49 432 216- 593

Table 7.4 and 7.5 shows bids for LFC+ with the single-scenario model and the multi-scenario
model. It can be seen that the multi-scenario model with this setup consistently requires a
higher price for the same volume, which is the likely result for all realistic setups and price
scenarios. It is here just the highest bid that has a lower price for the multi-scenario model.
This is volume with low production costs, so the reasons are the same as for RK+ with multiple
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Table 7.5: LFC+ bids, multi-scenario model
Price Volume Price Volume

(EUR/MW) (MW) (EUR/MW) (MW)
0-7 0 67-68 474
8-12 3 69-83 485
13-14 5 84-89 488
15 26 90-120 495
16 81 121-132 526
17 136 133-156 536
18 209 156-175 540

19-21 214 176-177 552
22-25 220 178-181 557
26-28 225 182-189 562
29-34 398 190-212 567
35-51 419 213-220 583
52-59 435 221- 593
60-66 469

scenarios being weighted a bit on the down side compared to the single scenario.
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Chapter 8

Benchmarking

The optimal bid given under uncertainty is the bid that maximizes the expected profits for a
producer and it is the bid that would give the highest profits over time. This bid is not the
same as what the bid would be if the actual price outcome were known beforehand. So the bid
that would have given the highest profit after the fact is not the same as the optimal bid given
under uncertainty.
The optimal bid is of course hard to find and without perfect information for a given situation
so that all uncertainties can be perfectly described it can’t really ever be known. The challenge
for the producer is to find a bidding strategy and bids that are as close to the optimal bids
as possible so that the total profits over time can be maximized. To look at the ability of a
deterministic MIP-model to give decision support for bidding in weekly reserve capacity markets
we will benchmark some different bidding strategies against each other over a number of weeks.
The reserve capacity market in question is the LFC+ market and just as for the bids shown in
section 7.4.2 we assume that the only relevant future market is the spot market and that the
producer has no obligations from previous markets. The set of generating units available for
LFC+ supply is the same as earlier(section 6.1.
The obligation period is the evening product for weekdays (Monday-Friday, 20:00-24:00), which
is 20 hours and spot market clearings. We assume that the LFC+ market clears on the Friday
before, so it is about a week between the market clearing and the last obligation hour. The
weeks that that will be tested against are the weeks 2 to 30(except week 171) of 2011 and it is
the system spot prices for these weeks at Nord Pool and Statkraft’s forecasts for these prices
that will be used in the model.
The price forecasts are taken from the day when the weekly capacity market(LFC+) is assumed
to clear. We assume for simplicity that the LFC+ product clears for a price of 20 EUR/MW in
every week. For other capacity markets it would be more natural to relate the clearing price in
each week to the spot price forecast, but the LFC+ price is in principle just directly correlated
with the spot price in capacity constrained situations for the power system(up or down). We
assume here that all or at least many units in the power system can supply secondary control
so the clearing price would in unconstrained situations be independent of higher or lower spot
prices in a week, but depend on the supplying units’ production costs compared to the spot
price. The evening hours optimized for here are neither low or high load hours in any of the
weeks and it is plausible that the capacity price for LFC+ should be quite similar from week
to week. Bids are calculated with basis in the price forecasts in the same way as in section 6

1No price forecast was available at the desired day due to Easter holiday
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and the chosen bids are then used in the model together with the actual spot price outcomes
to look at the resulting profits for each week.
The water value of the units is based on real water values from Statkraft and are also taken
from the day when the weekly capacity market clears for each week.
Four different bidding strategies will be compared. Strategy 1(Str1) emphasizes the spot market
as the important market and is not interested in altering optimal spot commitments to provide
capacity reserves, unless the price is for reserves is really high. This strategy prices the reserve
supply out of the market and no volume is offered for 20 EUR/MW for any of the weeks.
Strategy 2(Str2) uses the single-scenario MIP-model to calculate the bids, but recognizes that
the bid volumes might be priced too low due to spot price uncertainty and adds 5 EUR/MW to
each bid level. This means that the offered volume for 20 EUR/MW would be the amount the
model offers for a price of 15 EUR/MW. Strategy 3(Str3) also uses the single-scenario model
version to calculate bids and offers this volume without adjustments. Strategy 4(Str4) uses the
multi-scenario model version to calculate bids and offer this volume without adjustments. The
scenarios are generated as before with the single-scenario forecast for each week used as the
base scenario. The strategies are summarized below:

Strategy 1 No offered volume

Strategy 2 Single-scenario model + 5 EUR/MW

Strategy 3 Single-scenario model

Strategy 4 Multi-scenario model

8.1 Results and discussion

Table 8.1 shows the results for each week. The magnitude of the objective function value(total
profits) in different weeks is a bit misleading since some of the units in certain weeks have very
low water values compared to the spot price level giving very high profits relative to the income
in other weeks and the income from the reserve market. These units could in those cases just as
well have been left out of the optimization since they are far from being able to supply reserves
for 20 EUR/MW and their contribution to the total profits are the same for all strategies. The
interesting result is the impact of the different bids and the comparison of the profits from the
different strategies in each week and this is separate from the differences of the total profit
between the weeks. A difference of 2 000 EUR between two strategies is just as important on
top of a total profit of 5 000 EUR as on top of a total profit of 40 000 EUR here since the
high total profit are randomly made up by irrelevant units. So the actual objective function
value is meaningless and is not included in the table2 Column COMP shows the profits in each
week compared with strategy 1 meaning of course that the relative profits of strategy 1 is zero
for all weeks. Column BID shows the offered and accepted bids for 20 EUR/MW and column
DIFF shows a rough estimate of how the spot price outcome of the weeks were relative to the
single-scenario price forecasts during the period.
In row Total it can be seen that strategy 2 gives the highest profits over the period, with strategy
1 performing the worst. That strategy 1 is by far the worst is quite natural. A demand and
price for capacity reserves increases the total demand and opportunities for profit in a power
system and should increase the producers potential profits. Not taking advantage of these

2It is included in table A.5 in appendix A if it should be of interest.
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Table 8.1: Comparison of total profits between the different strategies.
Week Str1 Str2 SING+5 Str3 SING Str4 MULT DIFF

BID COMP BID COMP BID COMP BID COMP
(MW) (EUR) (MW) (EUR) (MW) (EUR) (MW) (EUR)

2 - - 0 0 132 -1 194 132 -1 194 LOW
3 - - 5 -172 138 -608 136 -497 LOW
4 - - 8 33 141 459 133 424 UNDER
5 - - 0 0 133 387 133 387 UNDER
6 - - 0 0 133 864 133 864 HIGH
7 - - 133 872 469 2 104 133 872 OVER
8 - - 133 1 487 469 2 627 146 1 534 OVER
9 - - 136 789 396 929 146 764 UNDER
10 - - 136 1 034 396 1 283 141 1 042 UNDER
11 - - 127 171 311 -5 250 209 -1 297 HIGH
12 - - 157 879 157 879 133 1 170 LOW
13 - - 153 2 289 159 2 280 133 2 029 UNDER
14 - - 138 313 214 75 133 687 LOW
15 - - 0 0 209 1 125 133 956 OVER
16 - - 133 1 352 209 1 361 133 1 352 UNDER
18 - - 209 484 209 484 209 484 OVER
19 - - 133 1 118 209 435 209 435 OVER
20 - - 74 1 316 334 1 124 91 1 427 UNDER
21 - - 64 1 033 324 445 90 1 133 UNDER
22 - - 134 584 139 538 102 753 OVER
23 - - 134 2 246 134 2 246 76 1 253 UNDER
24 - - 51 902 51 902 51 902 OVER
25 - - 48 633 133 831 82 645 UNDER
26 - - 133 673 393 -163 133 669 LOW
27 - - 0 0 138 730 133 886 OVER
28 - - 138 831 138 831 133 797 UNDER
29 - - 336 2 732 474 2 969 296 1 937 UNDER
30 - - 260 -1 656 393 -2 869 260 -1 656 VERY LOW

Total 0 19 944 15 824 18 758
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opportunities is not optimal and the results for strategy 1 shows the consequences of pricing
too much capacity too high and out of the market. With a price of 20 EUR/MW some part of
the offered volume for the producer in question will often have a quite good buffer with regard
to the price. E.g. for the situation in table 8.1 we see that 3 MW is offered for a minimum price
of 8 EUR/MW. This is the price where this part of the capacity(3 MW) basically is indifferent
between selling the capacity or not. For a minimum price of 13 EUR/MW the offered volume
is 5 MW, but only 2 MW of this capacity is indifferent between selling or not. 3 MW of this
capacity now receives a quite healthy profit in the LFC+ market with the 13 EUR/MW price
compared to the expected profit this part of the capacity has in the spot market. With a price
of 20 EUR/MW there will in most weeks exist enough capacity with a good enough buffer to
make strategy 1 quite bad compared to the other strategies.

That strategy 2 and 4 beats strategy 3 shows that the single-scenario model with the price
forecasts from Statkraft indeed prices the bids too low. The offered volumes is for strategy 2
and 4 equal or lower than the offered volume for strategy 3 for all the weeks. Some variance
is of course present here due to the sample size, especially because of the large size of some
of the units. E.g in week 8 it can be seen that the sold volume is 469 MW for strategy 2,
which is much larger than for the other strategies. This volume difference is mostly due to the
utilization of unit SyS in strategy 2. The consequence of the spot price outcome, both good
and bad, related to the forecast would then monetary wise be much larger than for weeks where
the volume difference between the strategies were made up by smaller units or smaller parts of
the capacity. One good(or bad) week when the volume differences is especially large could thus
skew the results a bit, but the sample size seems large enough here to conclude that strategy 2
doesn’t give the best bids.

Column DIFF shows as mentioned rough estimate of how the spot price outcome of the weeks
was relative to the single-scenario price forecasts during the period. LOW means that the
actual spot price was on average more than 2.5 EUR/MW under the forecast in each hour
during the week. UNDER means less than 2.5 EUR/MW under the forecast. HIGH means
that the actual spot price on average was more than 2.5 EUR/MW over the forecast, while
OVER means less than 2.5 EUR/MW over the forecast. VERY LOW means on average
more than 5 EUR/MW under the forecast in each hour during the week. By taking a look at
week 1 and week 11 it can be seen how both sides of the forecast can give increased cost for
up-regulation spinning reserves. In both these weeks the profit is higher for strategy 1 than for
strategy 3. This could not be the case for other types of reserves. Only one of those weeks could
then have shown a higher profit for strategy 1 than strategy 3 depending on the type. Week
1 could e.g for manual up-regulation reserves(RK+) not show a higher profit with strategy 1
since lower spot prices than the forecast could only reduce the cost of supply for the offered
capacity.

That strategy 2 beats strategy 4 here is probably mostly luck and variance. Strategy 4 would
give the best results over time if the scenarios perfectly match the statistical properties of the
prices. This is not necessarily the case here of course, but the scenarios should be good enough
to beat an arbitrary addition to bid price as was the case for strategy 2. The guaranteed buffer
of 5 EUR/MW for all the offered capacity was apparently a good(lucky) number to account for
the spot price uncertainty in these weeks, but it does show that a single-scenario deterministic
MIP can provide good bids if the bids are adjusted to account for price uncertainty. The single-
scenario model finds suitable units and volume blocks to offer as reserves even though they are
priced too low. It is actually strategy 3 that shows the highest profits for the highest number
of weeks in table 8.1. This is mostly for the weeks where the difference between the forecast
and the actual spot prices were small. So strategy 3 gives good bids in situations with low price
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uncertainty. The multiple scenarios in strategy 4 should of course be adjusted for situations
with lower uncertainty and the natural conclusion is that the buffer for strategy 2 should be
lower for situations with lower price uncertainty and higher for situations with higher price
uncertainty.
Under 20 000 EUR extra profit compared to not selling any reserves may not sound like much
when selling over 100 MW each week for 28 weeks, and it really isn’t a lot of money in this
respect. The low price of 20 EUR/MW is to blame for this, but we see that a lot of MW is
offered for this price so the price doesn’t need to be higher. Other periods of the week may
have higher prices than the evening period used here, but that would be accompanied by higher
costs for the units and the profits wouldn’t necessarily be higher. The volume segments given
in bids for markets with marginal pricing are supposed to be given for prices where the volume
is indifferent between supplying or not, and when the demand in the market can be fulfilled
by very few volume segments it does not leave much room for high profits in the market. So
assuming correct and efficient bids from producers in Norway it is absolutely plausible that
the capacity reserve markets for secondary control won’t be very lucrative when demand is low
compared to unit and station sizes.
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Chapter 9

Further discussion

9.1 Not a pricetaker

9.1.1 Spinning requirement issue

The producer has in the bid optimizations been assumed to be a pure price taker on all markets.
This means that his actions in the different markets can’ effect market prices. This may be a
reasonable assumption for the spot market, but the demand on the reserve markets are much
lower compared to the capacity available in a power system. The demand for secondary control
reserves is especially low compared to the size and supply capability of generating units and
the notion of pure price takers on these markets seems farfetched. The total requirement for
automatic secondary control(LFC) in Norway are also likely to be split into several price areas
based on geographical locations and limitations making the demand in the price areas even
smaller compared to unit and station sizes. The unit SyS or e.g. the unit Gry can probably
supply this quantity for specific price areas alone, so it is likely that not even a single unit can
be said to be a price taker on these markets.
Even so, there is competition on the markets and any market power for single producers is not
supposed to be used anyway. Low demand compared to the possible supply actually ensures
that there is healthy competition with no market power for single producers. So the bids given
by the method is in principle still a good strategy since it offers the optimal volume for given
prices and obligations. A problem with the method when not a pure price taker arises due to
the characteristics of spinning reserves though.
In section 6.2.2 we saw that units with an obligation for primary control reserves must be
spinning and available capacity for up-regulation secondary control can be supplied from this
unit without accumulating the ’fixed’ costs from hours where the spot price is too low. Assume
that the power system is not capacity constrained in any direction meaning that the capacity
price for tertiary control reserves and down-regulation reserves should be zero. This should be
the case for normal load situations in a power system. Consider the unit Gry and consider
for simplicity a period where the spot price is below this unit’s production costs for all hours.
The accumulated ’fixed’ costs to keep the unit spinning during this period are 500 EUR. To
illustrate the point we consider that the unit is bidding for FNR+ supply and ignore direct
costs connected to primary control supply. We also assume that the demand for FNR+ is
high compared to the supply capability of individual units and that the LFC+ demand can be
fulfilled by few or even single units. With a droop setting of 2% the unit can supply 14 MW of
FNR+. To cover the ’fixed’ cost with this supply alone the unit would require a compensation of
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500/14 ≈ 36 EUR/MW. The unit still has 109 MW available for spinning up-regulation capacity
though. The same unit bidding for LFC+ would offer 133 MW for a required compensation
of 500/133 ≈ 3.8 EUR/MW. We assume that this volume would fulfill most of the demand
and that the unit would have been the marginal unit in the LFC+ market giving an expected
price of 3.8 EUR/MW. So instead of requiring a compensation 36 EUR/MW for FNR+, the
unit could now offer 14 MW for 3.8 EUR/MW. This bid would almost certainly be accepted
since with the unit being competitive for LFC+ a lot of other units with higher opportunity
costs would have to be used to fulfill the total FNR+ demand. In addition to Gry consider
the unit Bjol. This unit can supply 9 MW of FNR+ with a droop setting of 2%. Let this unit
have accumulated ’fixed’ costs during the period of 500 EUR too. To cover the ’fixed’ cost with
FNR+ supply alone the required compensation would be 500/9 ≈ 56 EUR/MW. The unit still
has 67 MW available for spinning up-regulation capacity though. Bidding for LFC+ the unit
would have offered 76 MW for 500/76 ≈ 6.6 EUR/MW. This is above the expected price, but
any income from the available capacity could contribute to cover the ’fixed’ costs if supplying
FNR+. With an expected price of 3.8 EUR/MW for LFC+ the required compensation for
FNR+ would be (500−67∗3.8)/9 ≈ 27 EUR/MW for the 9 MW. We assume that also this bid
would be accepted and that it would be the final price for FNR+. With the obligations from the
FNR+ market the subsequent bids for the two units would be the remaining available capacity
for 0 EUR/MW since the ’fixed’ cost now would be a sunk cost with the units obligated to be
spinning during the period. This is perfectly fine for price takers since the costs are truly sunk
with the FNR+ market being history and any income at all from the LFC+ market, even 1
EUR, will now contribute to increased profits. The problem comes when the units are not price
takers. The volume from these units offered at 0 EUR/MW would completely destroy the price
for LFC+ since this volume alone would fulfill the demand and the bids from the units would
be the marginal bids. The unit Bjol wouldn’t even have supplied anything for the expected
price of 3.8 EUR/MW without the obligation from the FNR+ market and clearly lowers the
price. So the units would now actually have lost respectively 500 − 14 ∗ 27 = 122 EUR and
500− 9 ∗ 27 = 257 EUR in the markets since the bid in the LFC+ market put the price at zero
instead of the expected 3.8 EUR/MW.

Using the expected price for the subsequent LFC+ bid is not really an alternative since the
volume could then possibly not be accepted, and using an expected price of zero for LFC+,
which actually is the expected price with the FNR+ obligations, would give too high bids for
FNR+. Not having the obligations from FNR+ wouldn’t give the cost free bids for LFC+

that reduced the price to zero. Unit Gry would in this case still have been accepted with the
bid of 3.8 EUR/MW though. So there could be no expected price and price forecast in this case
since the price would be zero if the ’expected price’ was forecasted and the ’expected price’ if
the forecast was zero. The price forecast in the model would ultimately have to be zero in this
case though so that the units would give safe bids on all markets. For the power system as a
whole it would mean that the demand isn’t met in the most effective way that would maximize
the social surplus. Normally, a price forecast that changed with the supply in the model could
account for not being a price taker. E.g. very simplified, 0 MW of LFC+ supply from the
unit Gry would give a price of 3 EUR/MW, 50 MW - 2 EUR/MW, 80 MW - 1 EUR/MW and
109 MW - 0 EUR/MW. This does not give the desired effect here since the ’fixed’ cost is not
coupled to the supply. The optimization would just choose the amount that gave the highest
profits, 50 ∗ 2 = 100 EUR, so that the required compensation for the 14 MW for the FNR+

market would be (500 − 50 ∗ 2)/14 ≈ 29 EUR/MW. If this was accepted, the bid for LFC+

would still be 109 MW for 0 EUR/MW.

This is an extreme example of course, and with more than one unit in the set of generating
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units in the bid optimization it becomes a bit more complex since the FNR obligation of e.g.
14 MW could possibly be fulfilled by other unit combinations for a lower cost than unit Gry
could without getting the expected income from LFC+. The point is that any price forecast
other than zero from the future LFC+ market leads to bids from the units on the two markets
that combined will not cover the accumulated ’fixed’ costs by itself. The bid in the first market
will be based on the forecast and the bid in the future market will always be lower than the
forecast if the bid in the first market is accepted, which is problematic when the bid sets the
price in the future market. To not have this problem the markets would basically have to be
organized differently than the markets assumed here, for example with bids for both markets
given together. Unit Gry could e.g. offer 14 MW for FNR+ and 109 MW for LFC+ under
the condition that the average price per MW sold was above 3.8 EUR/MW. This would not be
sequential market auctions and is different from the assumptions in the model, so we will not
discuss such subjects further here.
There is no real solution in the model for the problem since the bid strategy is theoretically
sound for the units. The accumulated ’fixed’ costs should not be considered if it is already known
that the unit is spinning. The issue here is that units with spinning obligations from the first
market are setting the price in the second market . A practical solution in this case is to change
the market order of primary and secondary up-regulation capacity reserves so that the market
for secondary control clears first, even though the same mechanism exist the other way too.
The important factor is the assumptions that few units may cover the LFC+ demand, while
several units are required to cover the FNR+ demand. We use the price of 27 EUR/MW from
before as the expected price for FNR+. Unit Gry would now require (500− 14 ∗ 27)/109 ≈ 1.1
EUR/MW for LFC+, while unit Bjol would require (500 − 9 ∗ 27)/67 ≈ 3.8 EUR/MW. Unit
Gry offers thus 109 MW for 1.1 EUR/MW and we assume that this fulfills the demand with
unit Bjol being rejected in the market. So Gry would be the only unit with sunk costs in the
FNR market, the FNR+ price should not be affected much and Bjol is not duped by false
hopes from the future market.

9.1.2 Marginal effect in the spot market

The model uses fixed spot price forecasts and assumes thus that actions in the capacity markets
won’t affect the spot price when calculating bids. This is true for manual reserves since the
reserve requirements always are fulfilled in the same way with regard to the consequences for
the spot market. For spinning reserves this isn’t necessarily true.
The requirement for up-regulation spinning reserves will as we have seen be fulfilled by either
units that are profitable in the spot market and are likely decreasing spot production to make
room for the reserves, or by units that aren’t profitable in the spot market, but are increasing
spot production to at least the minimum production level to fulfill the spinning requirement.
These two types are competing on equal terms in the model and the competitive bids from
the producer would be made up by volume from the units that can supply the reserves for the
required low cost with the given fixed spot price forecast. The price in the spot market is set by
the matching of supply and demand and is of course affected by changes to the supply curve.
Putting uncompetitive spot supply at the bottom of the supply curve would normally lower
the price and taking competitive spot supply out of the curve would normally raise the price
compared to the same situation with the default supply curve. So fulfilling the up-regulation
spinning reserve demand with units that wouldn’t otherwise have produced anything for the spot
market would probably lower the resulting spot price compared to fulfilling the demand with
units that otherwise would have produced more for the spot market. The producer supplying
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these reserves would also normally have much more spot production from other units which
gets a lower profit when the spot price is lowered. The price forecast in the model may be the
correct forecast, or not, but it doesn’t matter since the actual spot price outcome would change
depending on the type of unit supplying the spinning reserves.
This effect cannot be accounted for in the model, but it is clear that supplying up-regulation
spinning reserves from units that otherwise wouldn’t have any spot production potentially could
give huge cost if the spot price is altered. For a supply of 80 MW of up-regulation spinning
reserves and units with minimum production levels of 20 MW it could mean a difference of
100 MW in the supply curve below the spot price. This shouldn’t be significant but if it has a
marginal effect on the spot price, it could be that accumulated costs in the model for units in
hours with expected spot price below the productions costs are way too low, and bids from the
producer utilizing these units would thus be too low. With the same logic it goes the other way
too of course. Accumulated costs for units that otherwise should produce would be too high
giving too high bids from these units. So the effect shifts the cost balance between units with
higher and lower production costs, which, if it exists, aren’t accounted for in the model.

9.2 Max/min bid volumes

9.2.1 Minimum bid sizes

The model presented so far does not restrict bids on any of the markets to any specific bid
size, and capacity bids from the model may in theory have any size from zero to the maximum
available capacity. System operators will in reality often put size restrictions on bids though.
Minimum bid sizes in the capacity markets is not a problem since bids can just be chosen to be
above this size, but minimum bid sizes in energy reserve markets needs to be represented in the
model also for the capacity supply. For primary control reserves there is no point in minimum
bid sizes since the reserves are activated automatically and locally, but the system operator in
Norway, Statnett, operates with minimum bid sizes in the energy markets for tertiary control
reserves. These bids are activated manually over telephone and Statnett requires station specific
bids of minimum 25 MW for most participants with a option of 10 MW for small participants[5]
in the energy market. For the capacity reserve market that ensures that enough capacity is
made available for the energy reserve market it means that the bid must be made up of stations
that contributes at least 25 MW each. A producer using the model and offering 50 MW in the
capacity market where the model calculated that 40 MW would come from station 1 and 10
MW from station 2 in the capacity constrained situations during the obligation period would
possibly price this volume incorrectly since station 2 would have to bid 25 MW and not 10
MW in the relevant hours during the period. To model minimum bid sizes in the model would
require additional binary variables in much the same way that the binary variables are included
for minimum spot production. The meaning of station specific minimum bid sizes for capacity
reserves in the model is, when we assume that each station consists of only one unit, exactly
the same as the meaning of units’ minimum production levels. A unit can supply either zero
reserves or more than the minimum requirement, just as a unit can produce either zero or more
than the minimum production level(requirement).

9.2.2 Maximum bid sizes

Maximum bid sizes is not a point for energy reserve markets, but it might be a point for capacity
reserve markets. For manual reserves where the reserve requirement in an area is reasonable
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large compared to station(unit) sizes it shouldn’t be necessary, but especially for secondary
control it might have some use. As shown earlier in this report a unit will due to the ’fixed’ cost
often want to supply the maximum capacity for a given price. With the reserve requirement
for up-regulation secondary control in an area being quite small compared to station sizes, at
least in Norway, the risk is that the requirement will be fulfilled by only one unit and that the
volume offered from this unit even exceeds the reserve demand. That secondary control is only
provided by one unit might increase the risk for the system operator, especially if the energy
reserve market for secondary control in each hour during the obligation period isn’t open to
bids from unit/producers that haven’t been accepted in the capacity market.
The issue that volume is offered in large discrete blocks so that supply can’t be matched with
the demand is a more interesting issue. Assume that the system operator wants to buy 100
MW of LFC+ capacity in an area. The bids available in the market is the same as the bids
in table 7.4. There is a huge jump between 26 MW and 149 MW and with the bids having
to be accepted in full or not at all, the system operator would have to buy 149 MW to fulfill
his demand of 100 MW. That the supply of capacity reserves doesn’t match demand is of
course not a problem like it is if spot supply and demand doesn’t match. Increased supply of
reserves can only improve the power system security, but buying 149 MW for 15 EUR/MW
instead of 100 MW increases the total cost for the system operator. Requiring that producers
supplies bids in maximum volume step sizes would ensure that a volume closer to 100 MW
could be bought. The problem is the possible falling supply curves of individual units supplying
secondary control. Take as an example unit Gry with a minimum production(Y min) of 10 MW
and maximum(Y max) at 143 MW. During an obligation period assume that this unit can’t
make a profit in the spot market and accumulates ’fixed’ costs at minimum production over the
period of 1000 EUR. A producer providing bids from this unit in maximum steps of 25 MW
would then require 1000/25 = 40 EUR/MW for 25 MW, 1000/50 = 20 EUR/MW for the next
25 MW and finally 1000/133 ≈ 7.5 EUR/MW for the final step. So we see that the bid curve
from the producer wouldn’t necessarily be strictly increasing. This is not theoretically sound
when creating market equilibriums using marginal pricing as any bids below the clearing price
should be accepted. So any maximum bid sizes for secondary control would with a free market
solution ideally have to be station specific with one maximum size for each station.
Still, the system operator is at liberty to create the market rules he deems to be the best.
Including any type of maximum bid size is not a problem for the method though. Constraints
are just added in the model for bids with maximum sizes, and removed for bids without. The
constraints would just be upper constraints and no binary variables are needed. A market
solution for secondary control where units had to provide at least one maximum size bid, but
at the same time could provide bids of optional size would mean that it would be important
for the secondary control capacity markets to clear first. Price forecasts where it is impossible
to know how much volume a unit actually would sell creates problems when pricing bids for
previous markets.

9.3 Energy reserve markets

In the model we have not included any effects of the energy reserve markets. This is a sim-
plification. Profits from activation of reserves are just as valuable as profits from any other
markets, and opportunities in these markets should be accounted for when valuing capacity for
other markets. The connection between the spot market and the reserves markets(capacity and
energy) are for manual reserves more thoroughly investigated in [3], but to put it shortly the
total market equilibriums also includes the income and costs from the energy reserve markets.
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If the expected value in the energy reserve markets for enough capacity is higher than the value
in the spot market, there should be no need for capacity reserve markets. Expected profit for
a unit in an energy reserve market should then contribute to lower this unit’s required com-
pensation in the connected capacity market, but it is not really quite so easy since this unit
must consider energy markets for other reserve types also, just as the capacity markets for other
reserve types must be accounted for.
Consider now up- and down-regulation tertiary control reserves for a single hour and ignore
other control types. The energy markets for these reserves are real-time markets with marginal
pricing and we assume for this hour that the need for regulation is symmetric for up- and down-
regulation. This is natural, but we also assume here that the resulting prices from the regulation
are symmetric for up- and down-regulation. There is a capacity price for up-regulation manual
reserves in this hour and the marginal price-setting capacity for these reserves is thus indifferent
between producing for the spot market or not. This unit would in this hour be the first activated
unit for up-regulation and would definitely have an expected profit from the up-regulation
energy reserve market, but the unit would also have been the first activated unit for down-
regulation had he produced for the spot market instead. So the unit has the same expected
profit from the down-regulation energy market and the unit’s expected profits from the up-
regulation market would thus not influence his required compensation in the capacity market
for up-regulation reserves. The markets for up-regulation and down-regulation regulation are
not likely to be completely symmetric very often though, and the expected regulation profits will
for the marginal capacity in situations with a capacity price for up-regulation reserves probably
be higher for up-regulation lowering the required capacity compensation for the marginal unit.
But the down-regulation energy market and other energy reserve markets are still part of the
equation for units bidding for the capacity reserves.
Including all real-time markets correctly in the model to include expected profits for all units
on all markets is a huge challenge though. The demand in the real-time energy reserve markets
is stochastic in each hour during a period and the price will with marginal pricing depend on
the demand. So the price in each hour can only be described with a probability distribution for
several outcomes. And even though the price for a certain regulation type is fixed it doesn’t help
the fact that the demand is uncertain. The payment in the real-time energy reserve markets is
for activated energy and the quantity of activated energy is stochastic in each hour. So a unit’s
income from real-time energy reserve markets in an hour will be highly uncertain even if prices
are fixed and known. Challenges of including these type of markets in an optimization model is
to some degree covered in [3], but it seems clear that including such markets accurately in a MIP-
model used for bidding can give unacceptable calculation times compared to the significance of
these markets on the capacity bids.
These markets have as mentioned been completely ignored in the optimizations in this report
and the reasoning is that the potential profits from these markets have been assumed to be
negligible. The need for regulation is in Norway most of the time quite small in each price area
compared to the units normally available for regulation. With the units bidding their marginal
costs and e.g only one unit being activated in each hour it leaves little room for profit. The
probability for price spikes in the regulating markets has also most of the time been quite low.
The importance of these markets might increase though and should be accounted for in capacity
bids and thus also accounted for in some way in the model.
A primitive simplification in the model could be to just adjust the bids by adding an income or
cost per MW1 supplied in each market representing the expected profit in the connected energy

1Primary control activation are not compensated for, but activation for down- and up-regulation are mostly
expected to even out for a unit. Even so there could be a cost connected to primary control activation
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market for the marginal capacity in the different capacity markets. All capacity offered for a
reserve market in the model is offered for a price where this capacity in principle is indifferent
towards supplying for some other reserve market. So the bids would be adjusted by the difference
of the added income or cost for the two reserve markets. This simplification has a number of
different weaknesses for all the different markets that we will not study further in this report,
but we will consider a case for secondary control where both this primitive simplification and
neglecting the secondary control energy markets will give very wrong results from the model.

So far we have assumed open energy markets for secondary control with marginal pricing where
any available capacity can be offered for the energy market in every hour during the period.
This is a natural assumption when we have assumed that the producers offering capacity in
the capacity market can choose how this obligation is met by changing the supplying units
during the obligation period. In this case the energy markets for secondary control could be
neglected for the capacity bids in the same way as for the other reserve types without causing
too much trouble for the bids. In practice it might be hard for the system operator to have open
energy markets for secondary control in each hour under an obligation period, and it can be
understandable if secondary control energy markets are restricted to capacity procured in the
capacity markets and even that the capacity bids are station specific. This gives isolated energy
markets for secondary control and this is where bids for secondary control in the weekly market
that consists of both a capacity price and an energy price comes into play. For up-regulation
secondary control it wouldn’t be so important since the spinning requirement and capacity
considerations alone makes sure that the best units overall are used for regulation in each hour,
and the capacity price should be sufficient as a selection criteria like it is for manual reserves.
For down-regulation it is a bit different. When the power system is not capacity constrained on
the down side there will be more than enough capacity available for down-regulation reserves
without a capacity price. So competitive capacity bids for secondary control could and would
come from units with marginal production costs way below the spot price. The best units to use
for secondary control down-regulation should be the units offering capacity that has the highest
marginal production costs and the offered energy price should thus be part of the selection
criteria. This is does not create problems for the model or the method since one just checks the
production costs of the units behind the bids. With marginal pricing in the energy markets it
could still be ok to neglect the effects on the capacity bid if the expected profits are low.

The problem arises when a fixed price is used for secondary control activation, and especially so
for station specific capacity bids. This fixed price would typically be connected to the spot price
with the spot price plus some fixed amount for up-regulation and the spot price minus some
fixed amount for down-regulation. For isolated energy markets it means that the bids in the
capacity markets for secondary control doesn’t need to consist of both a capacity price and an
energy price. The fixed price should secure the best units in the capacity market with just the
capacity price as selection criteria. For the model it means that bids can be badly calculated.
If we consider the case with station specific bids we see that different units will have production
costs with different distances to the fixed activation price for each hour. This distance can be
large and the expected profit or loss from this distance must be accounted in the bids from the
units. If we look at LFC− in a situation where the power system is not capacity constrained on
the down side, the producer in the model may have many units with production costs far below
the spot price in all hours during a period. Without energy markets in the model all these units
would offer LFC− control capacity for the same low price. With a fixed price in the secondary
control energy market connected to the spot price many of these units would take a loss if and
when down-regulated. This loss should have been reflected in the bids in the capacity market.
Units with lower marginal production costs should get a higher cost of supply so that the bids
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from the producer are priced correctly. This does not happen in the model without the energy
market correctly included. This market solution for secondary control energy markets is the
most probable solution Statnett will use in the implementation of secondary control[source], so
it is crucial for producers that these markets are accounted even though other energy reserve
markets can be neglected due to very low profit. An isolated energy market with fixed prices
connected to the spot price would be the least problematic market to model though, but we
will not go further with this here.

A curiosity with isolated energy markets for secondary control where activated capacity must
have been accepted in an earlier capacity market is the possibility for negative bids or prices.
If expected profits for a unit in an energy market for secondary control were higher than the
expected profits for any other possible use of the capacity, the unit would in theory be willing
to pay for the ability to supply the reserves and thus give a negative bid in the capacity market
for the control type.

9.4 Changing water values

The model here uses constant water values for the units during the obligation period to calculate
the bids. Together with the other simplifications in the unit descriptions it basically means that
the units in the model aren’t specifically hydro units. They are just production units described
with a resource cost and efficiency curves. For hydro units the resource cost, i.e the water value,
can change depending on reservoir levels and thus the water use during a period.

The whole basis behind the need for capacity prices for reserves is the altering of the optimal
production commitments during a period. For hydro units this means that supplying reserves
can change the expected water use during the period and thus change the water values. For
up-regulation manual reserves the need for a capacity price for a unit means that the water
use during the period will be lower than expected. This means that the reservoir level for the
connected reservoir at the end of the period will be higher than expected and the water value
has changed during the period to be lower. A lower water value and resource cost for the unit
during the obligation period means that the required capacity price for the unit would increase
compared to a constant water value. For down-regulation reserves it would be the other way
around with the need for a capacity price for a unit giving more production than expected and
a higher water value, increasing the required capacity price for the unit.

For up-regulation spinning reserves the supply can both increase the units expected production
during the period and decrease it. In hours where the unit is not supposed to produce the
spinning requirement increases the expected production and in hours where the unit is supposed
to produce the reserves decreases the expected production. For a unit that is not supposed to
produce at all during the period the water value will increase and the required compensation
will increase too compared to a constant water value. For a unit that is supposed to produce
in the whole period, the water value will decrease and the required compensation will increase
also for this unit. For a unit that is in both situations during the period it will depend on which
mechanism that is the dominating factor.

So it is better if the water values aren’t constant in the model when using a MIP-model to
calculate bids.
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9.5 Calculation times

Part of the appeal of a single-scenario deterministic model used as decision support for bidding
in the markets talked about in this report is fast calculation times. MIP-models or short-term
hydro optimization models that realistically would be used for the purpose of bidding with
the method shown here would be infinitely more complex than the model in this report and
high calculation times is a real concern that would limit the methods value for operational use.
The single-scenario model used here does not require much computational effort at all and the
calculation times are very fast and even though only 20 hours have been used for optimizations
in this report, it is no problem to calculate bids for far longer obligation periods. The inclusion
of reserve markets should in single-scenario deterministic models not increase the calculation
time significantly compared to just describing the spot market.
The multi-scenario model requires a lot of computational effort which was the reason to cut
down the segments on the PQ-curve from 4 to 2 segments, and the reason to use a relative
short obligation period of 20 hours for illustrations of the model. The computer used for the
optimizations ran out of memory quite fast and the calculations time used for the multi-scenario
model runs had to be limited and was limited to 9 minutes. So the solutions of the multi-scenario
model runs in this report can’t actually be guaranteed to be the optimal solution, but they are
close and the objective function value are at least within 0.1% of the objective function value
for the optimal solution. Not all optimizations required the maximum time, but the bid levels
close to volume jumps required a lot of branch and bound nodes. Price levels where the optimal
commitment is clearer were a lot faster. E.g just running the spot market without any reserve
prices was quite fast.

9.6 Further work

The markets assumed for the illustrations of the model and method and the benchmarking in
this report were for general and ideal markets with no specific restrictions. Modeling specific
market solutions and looking at realistic situations where realistic price forecasts for all markets
are given could give more interesting analysis.
It is natural to expand the model to better represent hydro-units and reservoir systems. All
units presented here are 100% flexible and all supply is just a matter of individual unit capacity.
The logical final step is of course to include reserve capacity markets in existing short-term
hydro-optimization models that are used on a daily basis by power producers and use this for
analysis.
How to include energy reserve markets in the model and in general how different energy reserve
markets should be accounted for in different capacity reserve markets is absolutely something
that can be expanded on. The real need for a method that accounts for opportunity costs from
all capacity markets comes with significant prices and volumes in these markets. With a need
for significant volumes in capacity markets one could probably also assume that the need for
regulation in energy reserve markets would be significant. With hydro-units being well suited
for reserve supply it could also be interesting to investigate how and if significant reserve prices
will impact water values in the long term.
With regard to price uncertainty in future markets it could be interesting to look at how this
uncertainty should be accounted if a deterministic model that doesn’t include price uncertainty
is used to calculate bids.
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Chapter 10

Conclusion

In this report we have shown how a MIP-model can be used for bidding in sequential capacity
reserve markets. The method takes into account costs and opportunity costs for all markets
included in the model and find the optimal allocation of capacity on the different markets. This
way bids can be calculated that represents the actual cost of supply for a market.
The reason why mixed-integer programming is suitable in this respect is the spinning require-
ment for fast automatic reserves and the minimum production levels of production units. Start-
up costs for units are also something that can influence the cost of supplying capacity reserves.
The method is really only limited by what it is possible to model and describe in a MIP-model.
With a perfect description of reality in the model the method produces optimal bids. A perfect
description of reality is not easy or even possible, but as long as one is aware of weaknesses in
the modeling and method it is nothing that says the results can’t have value.
It has been shown in this report how important price uncertainty and volatility in future markets
is for the valuation of capacity. The bid optimizations proved that capacity bids that don’t
consider price uncertainty are priced too low. The bid optimizations considered only price
uncertainty in the spot market, but price uncertainty for future capacity reserve markets is also
important for the valuation of capacity in previous markets. Considering price uncertainty of
future competing markets is crucial for capacity reserve supply regardless of how the capacity
bids are calculated.
Modeling of capacity reserve markets is not overly complex and in its purest form basically
reduces to the constraints 4.20-4.22 in the model. A unit’s capacity must be split between the
different markets which should be decided by the most profitable allocation. So the inclusion
of capacity reserve markets in MIP-models that describes the spot market should not increase
the complexity of the models dramatically. The two different types of primary control for the
assumed units here could not really successfully be correctly modeled in this report, but it
should be possible to model a great variety of market solutions for capacity reserve markets in a
MIP-model. Handling station specific bids, location specific bids, max/min bid sizes and similar
restrictions is not a problem. A bidding method must in general adjust to the reigning market
solutions, but it can also be an idea that market solutions adjusts to suit bidding methods that
can provide efficient bids.
Modeling of energy reserve markets is more complex and no effort has been done to do so in
this report. These markets can however play an important role for the market equilibriums
and for specific bids, and it is something that must be considered in capacity reserve bids. The
importance of these markets will likely increase in the future and the opportunity costs they
create should be considered.
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The method has been presented under the assumptions of perfect markets where good price
forecasts can be given on all markets and market participants are pure price-takers. This is
not always the case especially for capacity reserve markets. The minimum production level for
units cannot be sold as spinning reserves and costs to keep a unit spinning during a period is
thus not coupled to the amount of spinning reserves that can be sold. This can possibly give
falling supply curves for individual units and the implications of this are important to consider
in markets that are not perfect markets.
The biggest strength of the method is the ability to consider opportunity costs of all markets
simultaneously and the ability to identify suitable units and bid volumes that will give the best
unit commitment for spinning reserve supply in every hour during an obligation period. The
last part is important for primary and secondary control when units contributing to the reserve
supply are allowed to change from hour to hour.
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Appendix A

Referred tables

Table A.1: Specified unit commitment for the up-regulation part (FDR+) of the 50 EUR/MW
bid(96 MW) in table 6.3

Hour Adam Aura Bjol Gry Leir Mar SyS
(MW) (MW) (MW) (MW) (MW) (MW) (MW)

1 - - 23.04 57.2 16.1 - -
2 - - 23.04 57.2 16.1 - -
3 - - 23.04 57.2 16.1 - -
4 - - 23.04 57.2 16.1 - -
5 - - 23.04 57.2 16.1 - -
6 - - 23.04 57.2 16.1 - -
7 - - 23.04 57.2 16.1 - -
8 - - 23.04 57.2 16.1 - -
9 - - 23.04 57.2 16.1 - -
10 - - 23.04 57.2 16.1 - -
11 - - 23.04 57.2 16.1 - -
12 - - 23.04 57.2 16.1 - -
13 - - 23.04 57.2 16.1 - -
14 - - 23.04 57.2 16.1 - -
15 - - 23.04 57.2 16.1 - -
16 - - 23.04 57.2 16.1 - -
17 - - 23.04 57.2 16.1 - -
18 - - 23.04 57.2 16.1 - -
19 - - 23.04 57.2 16.1 - -
20 - - 23.04 57.2 16.1 - -
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Table A.2: Specified unit commitment for the down-regulation part (FDR−) of the 50
EUR/MW bid(96 MW) in table 6.3

Hour Adam Aura Bjol Gry Leir Mar SyS
(MW) (MW) (MW) (MW) (MW) (MW) (MW)

1 - 6.1069 35.6 - 40.2331 14.4 -
2 - 6.1069 35.6 - 40.2331 14.4 -
3 - 6.1069 35.6 - 40.2331 14.4 -
4 - 6.1069 35.6 - 40.2331 14.4 -
5 - 6.1069 35.6 - 40.2331 14.4 -
6 - 6.1069 35.6 - 40.2331 14.4 -
7 - 6.1069 35.6 - 40.2331 14.4 -
8 - 6.1069 35.6 - 40.2331 14.4 -
9 - 6.1069 35.6 - 40.2331 14.4 -
10 - 6.1069 35.6 - 40.2331 14.4 -
11 - 6.1069 35.6 - 40.2331 14.4 -
12 - 6.1069 35.6 - 40.2331 14.4 -
13 - 6.1069 35.6 - 40.2331 14.4 -
14 - 6.1069 35.6 - 40.2331 14.4 -
15 - 6.1069 35.6 - 40.2331 14.4 -
16 - 6.1069 35.6 - 40.2331 14.4 -
17 - 6.1069 35.6 - 40.2331 14.4 -
18 - 6.1069 35.6 - 40.2331 14.4 -
19 - 6.1069 35.6 - 40.2331 14.4 -
20 - 6.1069 35.6 - 40.2331 14.4 -
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Table A.3: Specified unit commitment for the up-regulation part (FDR+) of the 50 EUR/MW
bid in table 6.4

Hour Adam Aura Bjol Gry Leir Mar SyS
(MW) (MW) (MW) (MW) (MW) (MW) (MW)

1 3 - 29 57 16 - -
2 - - 36 57 13 - -
3 - - 36 57 13 - -
4 - - 36 57 13 - -
5 3 - - - - - 103
6 3 - 29 57 16 - -
7 - - 36 57 13 - -
8 - - 36 57 13 - -
9 - - - - - - 105
10 3 - - - - - 103
11 3 - 29 57 16 - -
12 - - 36 57 13 - -
13 - - - - - - 105
14 3 - - - - - 103
15 3 - 29 57 16 - -
16 - - 36 57 13 - -
17 3 - 29 57 16 - -
18 3 - 29 57 16 - -
19 3 - 29 57 16 - -
20 - - 36 57 13 - -
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Table A.4: Specified unit commitment for the down-regulation part (FDR−) of the 50
EUR/MW bid(105 MW) in table 6.4

Hour Adam Aura Bjol Gry Leir Mar SyS
(MW) (MW) (MW) (MW) (MW) (MW) (MW)

1 4 12 36 - 40 14 -
2 - 12 36 - 44 14 -
3 - 12 36 - 44 14 -
4 - 12 36 - 44 14 -
5 3 7 36 - 46 14 -
6 4 12 36 - 40 14 -
7 - 12 36 - 44 14 -
8 - 12 36 - 44 14 -
9 2 2 0 - 8 0 94
10 3 7 36 - 46 14 -
11 4 12 36 - 40 14 -
12 - 12 36 - 44 14 -
13 - 0 6 - 0 0 105
14 3 7 36 - 46 14 -
15 4 12 36 - 40 14 -
16 - 12 36 - 44 14 -
17 4 12 36 - 40 14 -
18 4 12 36 - 40 14 -
19 4 12 36 - 40 14 -
20 - 12 36 - 44 14 -

Table A.5: Benchmarking including objective function value
Week Str1 Str2 SING+5 Str3 SING Str4 MULT Diff

BID OBJ COMP BID OBJ COMP BID OBJ COMP BID OBJ COMP
(MW) (EUR) (EUR) (MW) (EUR) (EUR) (MW) (EUR) (EUR) (MW) (EUR) (EUR)

2 - 2963 - 0 2963 0 132 1770 -1194 132 1770 -1194 LOW
3 - 405 - 5 233 -172 138 -203 -608 136 -92 -497 LOW
4 - 1170 - 8 1203 33 141 1629 459 133 1593 424 UNDER
5 - 604 - 0 604 0 133 991 387 133 991 387 UNDER
6 - 3578 - 0 3578 0 133 4442 864 133 4442 864 HIGH
7 - 6466 - 133 7338 872 469 8570 2104 133 7338 872 OVER
8 - 8424 - 133 9911 1487 469 11051 2627 146 9957 1534 OVER
9 - 2633 - 136 3422 789 396 3563 929 146 3398 764 UNDER
10 - 1791 - 136 2826 1034 396 3074 1283 141 2833 1042 UNDER
11 - 33867 - 127 34038 171 311 28617 -5250 209 32570 -1297 HIGH
12 - 3295 - 157 4174 879 157 4174 879 133 4465 1170 LOW
13 - 11456 - 153 13745 2289 159 13736 2280 133 13485 2029 UNDER
14 - 2888 - 138 3201 313 214 2963 75 133 3575 687 LOW
15 - 830 - 0 830 0 209 1954 1125 133 1786 956 OVER
16 - 3680 - 133 5032 1352 209 5041 1361 133 5032 1352 UNDER
18 - 8678 - 209 9162 484 209 9162 484 209 9162 484 OVER
19 - 9152 - 133 10271 1118 209 9588 435 209 9588 435 OVER
20 - 5731 - 74 7047 1316 334 6856 1124 91 7159 1427 UNDER
21 - 10914 - 64 11947 1033 324 11359 445 90 12047 1133 UNDER
22 - 38327 - 134 38911 584 139 38865 538 102 39080 753 OVER
23 - 18855 - 134 21101 2246 134 21101 2246 76 20108 1253 UNDER
24 - 47585 - 51 48487 902 51 48487 902 51 48487 902 OVER
25 - 25600 - 48 26233 633 133 26431 831 82 26245 645 UNDER
26 - 9080 - 133 9753 673 393 8917 -163 133 9749 669 LOW
27 - 138789 - 0 138789 0 138 139519 730 133 139675 886 OVER
28 - 69463 - 138 70294 831 138 70294 831 133 70261 797 UNDER
29 - 44897 - 336 47629 2732 474 47866 2969 296 46834 1937 UNDER
30 - 59874 - 260 58219 -1656 393 57005 -2869 260 58219 -1656 VERY LOW
Total 570996 0 590940 19944 586820 15824 589754 18758
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