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Sammendrag

Bruk av Gaussisk prosess som en ikke-parametrisk regresjonsmodell, sammen med mod-
ell prediktiv kontroll har de siste årene vist lovende resultater ved å utnytte den forventede
usikkerheten som følger GP. Ved å bruke usikkerheten i begrensningene kan vi ta hen-
syn til regresjonsavvik direkte i MPC-begrensningene. Denne oppgaven har studert ef-
fektiviteten av å bruke GP med MPC-begrensninger, med særlig fokus på stabiliteten av
prediksjonene. Vi har sett på to forskjellige systemer, et stabilt system med fire tanker med
langsom dynamikk, og en kjøretøymodell med hindringsunngåelse ved hjelp av en hybrid-
GP-modell. Dette viste den interessante egenskapen at nøyaktigheten av prediksjonen er
bestemt av stabilitetsegenskapene i systemet vi ønsker å kontrollere. Vi var i stand til å
holde tanksystemet stabilt uten problemer, mens hybrid-GP i bil-systemet led av divergens
og eksponensiell vekst i usikkerhet, selv om regresjonsvalideringen viste at hybrid-GP
skulle hatt bedre nøyaktighet. Multi-trinns prediksjon i et marginalt stabilt eller ustabilt
system, kan resultere i divergens i prediksjonen på grunn av forsvinnende små regresjons-
feil. Dette tatt i betraktning, så viser det at GP viser seg til å være lovende innen adaptiv
kontroll som en effektiv metode for tilpasning til systemendringer, hvor usikkerheten gir
et godt estimat på feilen til prediksjonen.
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Abstract

Using Gaussian processes as a nonparametric regression model together with model pre-
dictive control has the recent years showed promising results by utilizing the expected
uncertainty that follows the GP. By utilizing the uncertainty in the constraints we are able
to take into account regression deviation directly in the MPC constraints. This thesis has
studied the effectiveness of using the GP with MPC constraints, with the special focus on
the stability of the predictions. We have looked at two different systems, a stable four-
tank system with slow dynamics, and a vehicle model with obstacle avoidance using a
hybrid-GP model. This showed the interesting property that the accuracy of the predic-
tion is determined by the stability properties in the system we like to control. We were
able to keep the tank system stable without any problems, while the hybrid-GP in the car
system suffered from divergence and exponential growth in uncertainty, even though the
regression validation showed that the hybrid-GP should had better accuracy. Multi-step
prediction in a marginally stable or unstable systems, can result in divergence in the pre-
dictions due to minuscule errors. Taken this into account, the GP show great promise in
the field of adaptive control as an effective method of adapting to system changes, where
the uncertainty can give a good estimate of the prediction error.
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Chapter 1
Introduction

Gaussian Processes has long been a standard method in probabilistic machine learning,
with e.g. text books like Murphy and Bach (2012) and Rasmussen and Williams (2006)
giving a comprehensive introduction in the field. This method as also long been used in
the field of geostatistics under the name of Krigin for interpolating points, Rasmussen and
Williams (2006). One of the interesting aspects of GPs is that it is nonparametrc, avoid-
ing the need of a prespecified finite-dimensional model class, and give a measure of the
uncertainty in each prediction. Using Bayesian inference enable us not only to get a prob-
ability score for one step estimations, but give a measure on the propagated uncertainty
in multi-step predictions. With this property we are able to utilize the uncertainty to give
cautious bound in the constraints, where we have a measure of the probable state-space re-
gion enclosing the predicted GP. The GP can then be used as the predictive model in model
predictive control, as shown in Murray-Smith et al. (2003) and Kocijan et al. (2004). The
aim of this project is then to investigate this further by building on the works of Girard
et al. (2003) and Hewing and Zeilinger (2017), by evaluating the effectiveness of both the
predictions and the use of the uncertainty for cautious control in a novel model predictive
control implementation.

1.1 Previous work
Gaussian processes has been shown to be a flexible way of estimating nonlinear dynamic
models, where Williams and Rasmussen (1996) show that the GPs have the advantage
over other liner regression methods like neural networks with that we know the probabil-
ity distribution of the regression. Girard et al. (2002) take this one step further by using
approximation methods to get an estimate of the distribution of the multi-step prediction.
By utilizing the propagated uncertainty Kocijan et al. (2004) show how the variance can be
used in MPC constraint. Klenske et al. (2016) show how Gaussian process based predic-
tive control can give a correction of periodic model errors by estimating unmodeled effects
using the GP with online learning of hyper-parameters. Hewing and Zeilinger (2017) use
the same principle and give the foundation for learning unmodeled effects using the GP
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together with a first principle model to get cautious model predictive control. In Hewing
et al. (2017) this is taken one step further using sparse approximation of GP, by estimating
model errors in nonlinar systems, to get real-time performance estimating model error in a
miniature-car MPC problem. Other noteworthy works is Boedecker et al. (2014) who use
sparse GP with together with a Linear Quadratic Regulator to get real-time performance
with the GP. Deisenroth and Rasmussen (2011) use online GP model learning and rein-
forcement control learning. Another interesting work is by Chowdhary et al. (2015) who
use GPs with Model Reference Adaptive Control (MRAC).

1.2 Contributions
The goal of this thesis is to display the effectiveness of using GP together with MPC. To do
this we explore the effectiveness and robustness on two different nonlinear dynamic sys-
tems. The first is a simple inherently stable system, without constraints in the MPC. The
other is an unstable vehicle model with obstacle avoidance requiring more robustness in
the model prediction, with both state and path constraints that will be active in the predic-
tion horizon of the MPC. In this a special focus has been on the stability of the predictions,
and how this affect the uncertainty. As a byproduct there was developed a python frame-
work GP-MPC for simulating and controlling nonlinear dynamic systems using Gaussian
Process and model predictive control. Built to be a flexible tool for experimentation with
machine learning and model predictive control.
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1.3 Structure of this thesis
This thesis is divided into 8 chapters and 5 appendices as given below

• chapter 1 - Introduction

• chapter 2 - Introduction to Gaussian process theory.

• chapter 3 - Background theory for Model Predictive Control.

• chapter 4 - Heuristics on how to best learn a dynamic model.

• chapter 5 - Model learning and control of a four-tank system.

• chapter 6 - Model learning and obstacle avoidance control of a vehicle model.

• chapter 7 - Discussion

• chapter 8 - Conclusion and future work.

• Appendix A - Mathematics that give faster and more robust computation.

• Appendix B - Information about the GP-MPC implementation and its dependencies.

• Appendix C - Documentation for the GP-MPC framework.

• Appendix D - Code examples on how to use GP-MPC with model learning and MPC
control.

• Apendix E - Source code for GP-MPC.
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Chapter 2
Theory: Gaussian Process

In the field of machine learning we have the concept of supervised learning, as a method
of learning input-output relations from empirical training data, to predict the output of
new unseen data. This may be classification of handwritten numbers in an image, by
using the pixels in an image as input to retrieve the correct number label. It could also
be a regression problem where we which to learn the dynamics of a robot arm, or predict
future stock prices using previous data. These types of machine learning problems has
been increasingly more popular in recent years as more computing power lead the way
for deep artificial neural networks. In another family branch in probabilistic machine
learning we have the Gaussian process as a probabilistic framework that similarly tackle
both classification and regression problems. The key difference between these methods are
that while neural networks in simple terms can be viewed as linear regression with weights,
Gaussian Process on the other hand instead use kernel functions to interpolate between
given training data, exploiting the probability of Gaussian distributed points. Having a
framework with Bayesian inference give not only the option of getting an uncertainty
score for one step predictions, but also the ability to propagate the uncertainty in multi-
step predictions, as shown in Girard et al. (2002). This chapter will look at the basics of
GP regression with Rasmussen and Williams (2006) as the main reference, and expand
this to multi-step predictions with uncertain inputs using Hewing and Zeilinger (2017) and
Girard et al. (2002).

2.1 Definition
As defined by Rawlings et al. (2017) in definition 2.1 the GP is a generalization of the
Gaussian probability distribution, as a collection of random variables with a joint Gaus-
sian distribution. While a multivariate probability distribution describes random vector
variables, a stochastic process describes the properties of functions. We can think of an
arbitrary function as an infinite long vector where each entry in the vector specifying the
function values f(x) with input x. Calculating the output using an infinite object is not
especially desirable, but the pleasant property of the Gaussian process is that the inference
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using a subsection with a finite amount of point will give the same answer as in the case
of the full space with infinite amount of points.

Definition 2.1. A Gaussian process is a collection of random variables, any finite number
of which have a joint Gaussian distribution. Rasmussen and Williams (2006)

In this chapter we will use the following notation with a set of training data defined as

D := {X := [x1, . . . ,xn]T ,y := [y1, . . . , yn]T }

where xi is an input vector, and the output given by yi = f(xi) + wi with f : RD → R
and Gaussian noise wi ∼ N (0, σ2

w). The GP is then specified by the mean function m(x)
and the covariance kernel k(x,x′) for a function f(x)

m(x) = E[f(x)], (2.1)
k(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′))] (2.2)

The Gaussian process can then be written as

f(x) ∼ GP(m(x), k(x,x′)) (2.3)

The fact that the Gaussian Process is defined as a collection of random variables with a
joit distribution also implies a consistency requirement. This property means that if the
GP specifies (y1, y2) ∼ N (µ,Σ), it must also specify y1 ∼ N (µ1,Σ11), where Σ11 is a
sub-matrix of Σ.

2.2 Bayesian Inference
In the next section we can begin by using the definition from Gelman et al. (2013) where
Bayesian inference can be defined as the process of fitting a probability model to a given
set of data D, and summarize the result with a probability distribution in the unknown
function f(x). In such we will use the terms prior and posterior inference, as the inference
with and without data.

2.2.1 Prior
In the introduction it was given a simplistic explanation of GP as a way of interpolating
data, using training data directly. It is true that the training data is used directly, but to
be able to have good interpolation it is also necessary to have a good prior. The prior
inference is a guess of the system without any training points, or so far away from any
training data that the prior is the best guess. The priors we will look at is the mean and
covariance functions in (2.1), with a set of hyper-parameters that can fit any model. Most
often the mean function m(x) is chosen to be zero, and instead let the kernel pick up
the features. It can however be an advantage to include a mean function if there is little
training data or you have prior knowledge of the shape of the dynamics. If the system has
a linear behaviour a linear mean function would be able to give a good prior guess of the
system. The most important prior is regardless the choice of covariance function, where
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2.2 Bayesian Inference

Rasmussen and Williams (2006) specify a range of different covariance functions k(x,x′)
that can be used, and how these can be combined to best fit the dynamics of the desired
system. By far the most common is the squared exponential (SE) kernel, together with the
special case of Squared Exponential Automatic Relevance Determination (SEard), with a
length scale for each input to the GP. The SE covariance function between pairs of random
variables is given as

cov(f(xp), f(xq)) = k(xp,xq) = exp
(
−1

2 |xp−xq |2
)
, xp,xq ∈ RD (2.4)

For this specific covariance function we see that the covariance is close to one when the
inputs are close, and decrease exponentially as the distance between the inputs increase.
The prior covariance is between the two points is then defined as 1. This can again be
generalized as

k(xp,xq) = σ2
fexp

(
−1

2(xp−xq)M(xp−xq)
)

(2.5)

with θ = ({M}, σ2
f , σ

2
n)T as the vector containing the hyper-parameters, where {M}

give the set of parameters in the symmetric matrix M . The SE kernel can again take many
shapes with many different choices for the matrix M , where Rasmussen and Williams
(2006) give a selection of the most popular choices

M1 = diag([`21, . . . , `2D]), M2 = `−1I, M3 = ΛΛT + diag(`)−2 (2.6)

where ` is a vector with positive values, and Λ given by a D × k matrix with k < D.
Using hyper-parameters in the SE kernel with distance measure M1, the ` interprets as the
characteristic length scales. Determining how far along an axis in input-space before the
function values become uncorrelated. This particular distance measure is called Automatic
Relevance Determination, Neal (1996), as the inverse of the length-scale determine how
relevant a signal is. With a high length-scale value, the covariance will be independent
of the corresponding input. This give the property that irrelevant inputs have no effect
on the inference. Examples of this is shown by Williams and Rasmussen (1996). A high
length-scale then means that there is a low weight on the training data, as `d → ∞ for
a dimension d, the function f would vary less and less on the input xd, which would be
irrelevant. The opposite case is if the length scale for a given dimension is close to zero,
giving a high weight on the mentioned dimension.

In general terms we can view the distance measure as the square Mahalanobis distance,
Murphy and Bach (2012), where the M matrix can be interpreted as the covariance in a
Gaussian multivariate distribution

N (x |µ,Σ) = 1
(2π)D/2|Σ|1/2

exp
[
−1

2(x−µ)TΣ−1(x−µ)
]

(2.7)

with the square Mahalanobis distance defined as r2 = (x−µ)TΣ−1(x−µ). The Ma-
halanobis distance give the surface of which the Gaussian probability density is constant.
The probability is high close to the mean, and decays as the input strays further away. If we
view the mean µ as the training data, we would expect to find new data x within the square
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Figure 2.1: The Mahalanobis distance shown as
a ellipse give the surface of which the probability
density for a Gaussian in a two-dimensional space
(x1, x2) is constant. The axis on the ellipse are
defined by the eigenvectors ui and eigenvalues λi
of the covariance matrix Σ. Based on Figure 2.7
from Bishop (2006)

Mahalanobis distance, an ellipsoidal-shaped with principal axes given by the eigenvectors
and the corresponding eigenvalues of the covariance matrix, as shown in Figure 2.1. With
a diagonal matrix like with M1, the eigenvalues are given as each diagonal element, while
the eigenvectors are unit vectors with the same direction as the input vectors. This means
that depending on the choice of length scales, we can adjust how far and in which direction
from the training data in the input space the expected predicted values would fall.

2.2.2 Posterior
With the prior we have an estimate of the model with only the hyper-parameters as the
basis. The prior functions are important building blocks in the GP, but it is of limited value
without additional data. In Figure 2.2 we see a comparison of the difference between
a prior and posterior distribution representing a sine curve. The prior has a zero mean
and variance of σ2

f = 0.5, while the posterior has an additional 9 data points. In the
prior we only know that the sine curve would be within the 99%-percentile from the zero
mean, visualized by ten random samples using the prior distribution. In the posterior we
use the same random samples, but by using the posterior distribution we also know that
the signal should be close to the points we already know. If a new point lay close to a
known point there is a high probability that a new point lay close to the spline between
known points, while if there is the new point too far away the information is reduced to
the prior zero mean and variance. This is visualized in Figure 2.3 where we see how the
uncertainty grows when there is a long distance between known points. This also brings
out the importance of having a set of known points that are able to represent the whole
state space of interest. Since the GP only add splines between known point and the prior
mean, there is no number of data points that could give a good model estimation if there
isn’t any points close to the operating region.

To further see the how the different hyper-parameters affect the model estimation, we
will again use the posterior on a simple scalar sine curve. The free hyper-parameters in a
one dimensional square exponential covariance function for a noisy signal y is given by
the signal variance σ2

f , length-scale `, and noise variance σ2
n.

ky(xp, xq) = σ2
fexp

(
−1

2
(xp − xq)2

`2

)
+ σ2

nδpq (2.8)

The noise variance parameter let us avoid over-fitting the model on the noise, where we
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(a) (b)

Figure 2.2: Ten random samples with the prior distributions in a), and the posterior in b). The prior
use a zero mean function given by the read dashed line, and a signal variance of 0.5 represented as
the 99-percentile in the grey area. The posterior use the training data to give a good estimate of the
dynamics in the signal through the kernel.

(a) (b)

(c) (d)

Figure 2.3: Adding new data. In the left column we have 5 initial data points with a high uncertainty
between the points. When four new points is added in the right column we see quite good fit of the
sine curve. The top row show the mean prediction with the 99-percentile, while the bottom row show
the posterior distribution using random signals.
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(a) (b)

Figure 2.4: Adjusting the noise variance, with length scale and signal variance fixed at values
`2 = 1, σ2

f = 1. In a) we assume that the data is noisy and set the noise variance to σ2
n = 1, while

in b) be assume that there is no noise and set σ2
n = 0.

assume the noise is Gaussian distributed, such that the Gaussian process mean acts as a
smoothing filter. In Figure 2.4 is is shown one example where it assumed that there is lot
of noise in the data, with a noise variance of σ2

n = 1, and one example where the noise
is assumed to zero. In the case with the zero noise, we see that the mean fit all the data
points perfectly with zero posterior variance at the training points. In the case of assumed
noisy data, we are more uncertain where the actual signal is, leading to a high posterior
variance at the training points, while the mean try to fit the simplest path without having
to go through all the training points.

The most important hyper-parameters are the length-scales as they shape the spline
between the points. A low length-scale will give a high weight on the known points with
an aggressive and steep behaviour, while larger length-scales focus on a larger region
around the known points. This is visualized in Figure 2.5, and as discussed previously
with the analog to the Mahalanobis distance we can use the length scale to decide how far
and in what direction from the training data we want the predictions to fall. With values
close to zero we have a very small region of interest before the prediction is reduces to the
prior, while a larger length-scales put less weight in the known data and has a larger region
in which we would expect to find new data.

The signal variance σ2
f will not affect the mean prediction, as we can see from equation

(2.5) that this is independent from the training data. The signal variance is however quite
important when we want to know the certainty of the prediction. Far from the training
data, the prediction reduces to the prior where the mean is defined as the given prior mean
function, and the variance to the signal variance. In Figure 2.6 we see two cases from
the same system as above further away from the training data. With a signal variance of
σ2
f = 0.01 the uncertainty is too naive far away from training data, where the sine wave

oscillate between −1 and 1 while the prior is a zero mean with the variance reduced to
the signal variance. In Figure 2.6b the variance is a lot more conservative, with a signal
variance of σ2

f = 0.5. The prior has now a lot higher variance, with the interpretation that
we don’t know where the signal is, other than that it is within the 99-percentile from the
zero-mean.
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(a) (b)

(c) (d)

Figure 2.5: Adjusting the length scale, with fixed signal variance σ2
f = 1. The baseline is set in a)

with `2 = 1. In b) we try a low value of `2 = 0.1, resulting in an on-off behaviour with a too high
weight on the data points. The estimated signal is either at the known points or at the prior mean. In
c) we try a higher value with `2 = 10, resulting in a less aggressive behaviour with larges splines.
In d) we reduce the value a litle to better fit the actual sine curve `2 = 7.

(a) (b)

Figure 2.6: Adjusting the signal variance. In a) we set the signal variance σ2
f = 0.01, resulting in a

naive and saturated posterior uncertainty that don’t represent reality. In b) we increase the variance
up to σ2

f = 0.5. We now see that the real signal is captured within the 99-percentile of the posterior
distribution.
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2.2.3 Learning Hyper-parameters
In the previous section we looked at how different hyper-parameter values affected the
posterior prediction by manually setting the values. This is a rather cumbersome even for
small systems like the toy example we have looked at until now. Since the GP is non-
parametric we have marginalized out all parameters weights w, and are left with a level
2 Bayesian inference. To be able to optimize the hyper-parameters we will then utilize
Maximum Likelihood Estimate (MLE) with the log marginal likelihood as evidence, given
by Rasmussen and Williams (2006) as

logp(y |X,θ) = log
∫
p(y |w, X,θ) dw

=− 1
2(y−m(X))T (Ky + σ2

εI)(y−m(X))

− 1
2 log|Ky + σ2

εI| −
n

2 log(2π)

(2.9)

whit the covariance Gram matrix Ky = k(X,X) + σ2
nI and mean function m(X). If

we simplify to use a zero-mean function to shorten the expression , each of the following
terms have interpretative roles.

logp(y |X,θ) = − 1
2 yT (Kθ + σ2

εI) y︸ ︷︷ ︸
Data fit

− 1
2 log|Kθ + σ2

εI|︸ ︷︷ ︸
Complexity term

− n

2 log(2π)︸ ︷︷ ︸
Normalisation constant

(2.10)

The only term that use observations is the Data-fit term which decrease with the length-
scales as the model get less flexible. The complexity term penalize complex models as
the term increase with the lenth-scales, as the model become less complex with larger
length-scales. The last term is a normalization constant.

If we now use the negative log marginal likelihood (NLL), we can use any nonlin-
ear solvers, e.g. conjugate gradient (CG), to minimize the value subject to the hyper-
parameters. In optimizing the hyper-parameters is is important to note that the NLL is
non-convex. To lessen the risk of local minima it is possible to use a multi-start process
with different initial guesses and choose the hyper-parameters with the lowest NLL as the
optimal solution.

θ∗ = argmin(−logp(y |X,θ)) (2.11)

With small amounts of data is often difficult to find a global minima, and as a re-
sult the optimal hyper parameters for the model. To account for this we can use the log
marginal posterior instead of the log marginal likelihood by adding a hyper-prior p(θ) to
equation (2.10) and use Maximum á posteriori probability estimate (MAP),Murphy and
Bach (2012), instead of maximum likelihood estimate (MLE). By adding a hyper-prior we
would add an additional cost such that the prior are constrained within the region set by
the priors.

As a small side note it is worth mentioning that Cao et al. (2017) propose to minimize
the Mean Squared Error in the hyper-parameter learning instead of using the negative log
marginal likelihood (NLL). Since the NLL is nonconvex there is a high probability to end
up in a local minima or at a plateau, while MSE is a simple convex function. This means
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there will be examples where MSE give a better validation score than NLL, as shown in
Cao et al. (2017).

2.2.4 Overfitting

Compared to many other regression methods, e.g. neural networks, the hyper-parameters
in Gaussian Process regression are in general less prone to overfitting. But this is still
important to note that overfitting is a problem, where the model is fine tuned to the training
data and do not generalize to unseen data. This is especially the case when using an ARD
covariance kernel. This method is good for estimating nonlinearities for different states,
where the covariance function automatically determine which inputs are relevant, but this
also means that there is a higher chance of overfitting the model by adding unwanted
nonlinearities. If overfitting is suspected a simple test is then to replace the ARD kernel
with a non-ARD covariance function and see if the validation score increase. An review
of this effect is presented in Cawley and Talbot (2010) and Cawley and Talbot (2007).

2.3 Prediction with Deterministic Inputs

For prediction of a noise free model, we will use f∗ to represent the prediction using
unseen data x∗ with a zero mean function and the distribution

f∗ ∼ N (m(x∗),K(x∗,x∗)) (2.12)

We can then combine this with the distribution of the GP with known observations.[
f
f∗

]
∼ N

(
m(x∗),

[
K(X,X) K(X,x∗)
K(x∗,X) K(x∗,x∗)

])
(2.13)

This can again be generalized with prediction using noisy observations by adding the
noise variance to the covariance

cov(y) = K(X,X) + σ2
nI (2.14)

with the new similar distribution[
y
f∗

]
∼ N

(
m(x∗),

[
K(X,X) + σ2

n K(X,x∗)
K(x∗,X) k(x∗,x∗)

])
(2.15)

The mean and variance prediction for unseen data x∗ is then given by Rasmussen and
Williams (2006) as

f̄∗ = m(x∗) + kT∗ (K + σ2
nI)−1(y−m(X)), (2.16)

V(f∗) = k(x∗,x∗)− kT∗ (K + σ2
nI)−1 k∗ (2.17)

with the covariance function k∗ = k(X,x∗) and Gram matrix K = k(X,X).
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2.3.1 Computational complexity
Computing the inverse covariance matrix K−1

y = (K + σ2
n)−1 is numerically unstable.

The recommended algorithm is to use cholesky decomposition (Ky = LLT ) of the matrix
instead, as shown in algorithm 1, Rasmussen and Williams (2006). To speed up the com-
putation it is possible to pre-compute both the cholesky L and the linear term α, as both
of these are the most costly operations.

Algorithm 1: Gaussian Process prediction, Rasmussen and Williams (2006)

Input: X (inputs), y (targets), k (covariance function), σ2
n (noise level),

x∗ (test input)
L := cholesky(K + σ2

nI)
α := LT \ (L \ y)
f̄∗ := kT∗ α
v := L \ k∗
V[f∗] := k(x∗,x∗)− vTv
return f̄∗ (mean), V[f∗] (variance)

2.4 Prediction with Uncertain Inputs
Until now, we have asumed that the input to the GP is deterministic, while the output is
Gaussian distributed. This is often true in the case of one step predictions, but if we want
to predict several steps forward, we have to use the the stochastic output as input in the
next prediction. If we assume a Gaussian distributed input x∗ ∼ N (µ,Σ), this gives the
exact predictive distribution

p(f(x∗)|µ,Σ) =
∫
p(f(x∗)|x∗)p(x∗ |µ,Σ) dx∗ (2.18)

In general this distribution is non-Gaussian and therefore cannot be computed analyti-
cally since the Gaussian distribution input is mapped through a nonlinear function. Instead
we will use different methods of approximating this distribution, to be able to propagate
the uncertainty. In the following section we will switch notation to that of Hewing and
Zeilinger (2017), and use the zi = [xi, ui] ∈ Rnz , where nz = nx+nu, as input to the GP
function d(zi) at time step i, with the distribution d(zi) ∼ N (µd(z),Σd(z)). The mean
vector has the states µd = [µd1, . . . , µdnd

] and covariance matrix Σd = diag(Σd1, . . . ,Σdnd
),

where the mean µda and variance Σda are given by equation (2.16).
Instead of using the GP to predict a single state, we will expand to a generalized state

space model. As in Hewing and Zeilinger (2017), we will consider control of a dynamical
systems of the discrete-time form

xi+1 = Axi +Bui +Bd(g(xi, ui) + wi) (2.19)

where g(xi, ui) is an unknown nonlinear function with uncorrelated process noise wi ∼
N (0,Σw). The linear part is usually easy to find, so this part will use the GP function
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d(zi) to estimate the nonlinear function g(xi, ui) assumed to lie in the subspace spanned
by Bd. If we assume an ancillary feedback controller ui = Kµxi + vi, the distribution of
the full state space model is given byxiui

di

 ∼ N (µi,Σi) = N
([
µzi
µdi

]
,

[
Σzi Σzdi
S Σdi

])

= N

 µxi
Kµxi + vi

µdi

 ,
 Σxi ΣxiKT

i Σxdi
KiΣxi KiΣxiKT

i Σudi
Σxdi

T Σudi
T Σdi

 (2.20)

The update equations for the full system can then be found based on linear transformations
of Gaussian distributions

µxi+1 = [A B Bd]µi, (2.21a)

Σxi+1 = [A B Bd]Σi[A B Bd]T (2.21b)

2.4.1 Approximate Uncertainty Propagation
To be able to define µdi ,Σdi and Σzdi we have to use an approximation of the posterior
GP with Gaussian input in equation (2.18). This section will give a short overview, while
further details are referred to Deisenroth and Rasmussen (2011), Girard et al. (2002), and
Deisenroth (2010). A further comparison of the different methods can also be found in
Deisenroth et al. (2015).

Mean Equivalence Approximation

The first one is a cheap approach where the uncertainty of the input variable µzi = [µxi , ui]
is neglected. This is a computationally cheap method, where the multiplication of the ma-
trices is the most expensive operation giving a one step prediction complexity ofO(ndM2).
Girard et al. (2002) show that this can lead to poor approximations, as it neglects the ac-
cumulation of uncertainty over the prediction horizon.

µdi = µd(µzi ), (2.22a)

Σdi = Σd(µzi ), (2.22b)

Σzdi = 0 (2.22c)

Taylor Approximation

A first-order Taylor approximation can be applied to µd and Σd to give the following pre-
dicted mean, variance, and covariance. This has a slightly higher complexity ofO(ndnzM2),
as it also takes into account the gradient of the posterior mean and variance of the input.
Higher order approximations can be done, e.g. second order in Girard et al. (2002), but at
the expense of computational cost.
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µdi = µd(µzi ), (2.23a)

Σdi = Σd(µdi ) +∇µd(µzi )Σzi (∇µd(µzi ))T , (2.23b)

Σzdi = Σzi (∇µd(µzi ))T (2.23c)

Exact Moment Matching

If we assume a zero prior mean function and SEard covariance kernel, it is shown by
Girard et al. (2003) that the mean and covariance can be analytically computed by using
the first and second moments of the posterior distribution. Since this method match exactly
the first and second moments of the posterior distribution. The computational complexity
of this method is by Deisenroth (2010) given as O(n2

dnzM
2). The equations used for the

implementation in this thesis can be found in Deisenroth and Rasmussen (2011).

µdi = E[d(N (µzi ,Σzi ))], (2.24a)

Σdi = var(d(N (µzi ,Σzi ))), (2.24b)

Σzdi = cov(N (µzi ,Σzi ), d(N (µzi ),Σzi )) (2.24c)

In all the approximations, the computational complexity is influenced directly by the
input and output dimensions, and the number of training point. this limits the use of model
predictive control with Gaussian process to relatively small and slow systems, Kocijan
et al. (2004); Maciejowski and Yang (2013). This can however be overcome if the nonlin-
ear dynamics only depend on a subset of states, such that the GP can be evaluated on this
subset. For Mean Equivalence and Taylor Approximation, this can easily be seen from
(2.22) and (2.23). Evaluating Exact Moment Matching on a subsets of inputs is given by
Hewing and Zeilinger (2017).

2.5 Sparse Approximation

To account for the increasing computational complexity given by the training data, it is
possible to use inducing point to get a sparse approximation of the GP. Sparse approxi-
mation has the advantage of potentially quite large reduction in computational cost. The
downside is that it depends on getting a set of inducing points that can essentially repre-
sent the entire original input space. In the context of MPC this can be partially overcome
by using the reasonable assumption that prediction horizon lay within a local region and
a known trajectory. This means that inducing points can be chosen locally within this
region at each sampling time. Numerous different approximation methods are presented
by Rasmussen and Williams (2006), but we will only look closer at Fully Independent
Training Conditional (FITC) from Snelson and Ghahramani (2006) and use the notation
in Hewing et al. (2017). With the selection of inducing inputs zind and shorthand notation
Qa
ξξ̃

:= Ka
ξzind

(Ka
zindzind

)−1Ka
zindξ̃

the approximate posterior distribution for a state a
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and input z is given as

µ̃da(z) = Qazz(Qazz + Λ)−1[y·,a], (2.25a)

Σ̃da(z) = Ka
zz −Qazz(Qazz + Λ)−1Qzz (2.25b)

where Λ given as a diagonal matrix with the diagonal fromKa
zz−Qazz+Iσ2

a. Since several
matrices can be precomputed, the resulting complexity is independent of the original num-
ber of data points. By using M̃ inducing points the computational cost is reduced from
O(ndnzM) and O(ndn2

z) for predictive mean and variance respectively to O(ndnzM̃)
and O(ndnzM̃2).

2.6 Validation

2.6.1 Validation score

When we have optimized a model it is important to be able to evaluate the quality of the
predictions. The simplest and intuitive choice is using the mean square error (MSE)

MSE = 1
N

N∑
i=0

(y∗,i − f̄(x∗,i)2) (2.26)

where we compute the residual loss between the the predicted value and a test point. As
this method is sensitive to the overall scale of the target values, a good practice is to
normalize the data and instead use standardized mean squared error (SMSE)

SMSE = MSE
σy

(2.27)

where σy is the standard deviation in the training data. A low score would then indicate
an accurate model, while a higher score would give the opposite.

In addition it is possible to use the predictive distribution to compute the log loss as
the negative log probability of the target under the model

−logp(y∗|D,x∗) = 1
2 log(2πσ2

∗) + (y∗ − f̄(x∗))2

2σ2
∗

(2.28)

where σ2
∗ = V(f∗) + σ2

n. To get the an estimate of the negative log probability over the
whole training set, we can use the mean negative log probability (MNLP)

MNLP = 1
N

N∑
i=0

1
2 log(2πσ2

∗,i) + (y∗,i − f̄(x∗,i))2

2σ2
∗,i

(2.29)

A high negative score would with this method equal an accurate model.
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Chapter 2. Theory: Gaussian Process

2.6.2 Validation data
Having methods of evaluating a score is all well and good, but an equally important part
of validation is the test data we use to validate the model with. If we used the same data as
the training data, we would normally always get a perfect score, and missing the point of
validation. That means there are two different strategies for choosing test data. The first
and best option is to use a completely different data set than the training data, and use this
to validate the hyper-parameters. If it is difficult to get enough test data it is possible to
use cross-validation on the training data by using k-fold validation. The training data is
then divided into k number of subsets, such that one set is left out for validation while the
rest k − 1 sets are used in the optimization. This procedure is then repeated k times with
different subsets.
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Chapter 3
Theory: Model Predictive Control

In control theory, the go-to controller is normally a simple PID controller. Often just for the
simple reason that is simple to implement and analyze. And have an intuitive explanation
how it works, making it easy to tune. So why bother with an advanced control algorithm
like Model Predictive Control? The general motivation behind MPC is the systematic way
constraints are handled. Using knowledge of the system dynamics with MPC, we are able
to handle long dead time in feedback measurements, or even the lack of measurements
using an open loop MPC.

Model predictive control can be used on both continuous and discrete time system,
while only the discrete time methods will be used in this thesis. This chapter will also only
take a closer look at nonlinear MPC, meaning that all mentions of MPC in this chapter
refers to nonlinear MPC. In the case of linear MPC, the same theory, with the difference
that linear systems in general are convex, while nonlinear are generally non-convex. This
is further discussed in section 3.2.2. One assumption that will be used throughout this
chapter is that the all states can be measured directly. This is often not the case, but as this
can be accounted for using state estimation, the general theory in this chapter will apply.
The main reference in this chapter is the comprehensive MPC book from Rawlings et al.
(2017).

3.1 Linear Quadratic Regulator

With a linear system (A,B), we wish to find a stabilizing gain K such that x converge to
zero as time limit infinity. Using a quadratic cost function J with positive definite penalty
matrices Q and R, the infinite horizon linear quadratic regulator can be viewed as a linear
optimization problem, where the goal is to minimize the cost subject to the input u, finding
the optimal gain K.
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Chapter 3. Theory: Model Predictive Control

min
u J = 1

2

∞∑
k=0

xTkQxk + uTkRuk (3.1a)

s.t. xk+1 = Axk +Buk (3.1b)

This then leads to the next lemma by Rawlings et al. (2017), where an infinite horizon
LQR is convergent for any system that is controllable with positive definite cost matrices.

Lemma 3.1. LQR Convergence. For (A,B) controllable, the infinite horizon LQR with
Q,R � 0 gives a convergent closed-loop system

xi+1 = Ax+BK∞

Another property of LQR is that the optimal solution of equation (3.1) can be solved
analytically by solving the discrete-time algebraic Riccati equation (DARE). The optimal
solution use

u(x) = Kx, V (x) = 1
2x

TPx (3.2)

where K is the linear gain, V (x) is the terminal cost function and P the solution to the
discrete-time algebraic Riccati equation

K = −(BTPB +R)−1BTPA

P = Q+ATPA−ATPB(BTPB +R)−1BTPA
(3.3)

Rawlings et al. (2017) shows that for (A,B) controllable and Q,R � 0, there exists a
positive definite solution to the DARE, where the eigenvalues of (A+BK) are asymptot-
ically stable for the corresponding linear gain K. This means that the LQR is an optimal
controller for the linear system (A,B).

3.2 Model Predictive Control
While the LQR is optimal for a linear system, in the case for nonlinear systems f(x, u)
we would have to approximate the dynamics with linearization around an operating point.
If we stray to far from the operating point, there is no guarantee that the system remains
stable. In addition LQR also assumes that we have an unconstrained problem to be able to
solve the DARE.

To account for both nonlinear systems and constrained problems, we can generalize
equation (3.1) into the minimization problem in equation (3.6) with respect to the decision
variables x and u. Similar as with the LQR cost we can choose the quadratic stage cost
function

l(xi, ui,∆ui) = xTi Qxi + uTi Rui + ∆uTi S∆ui (3.4)

with Q,R, S � 0, and a Lyapunov function as the terminal cost

Vf = xTNPxN (3.5)
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3.2 Model Predictive Control

for a finite prediction horizon of N steps. The optional cost for change in inputs ∆u can
be beneficial to reduce strain on actuators, but not necessary for stability. The control
inputs in the prediction horizon u = [u0, u1, . . . , uN−1] and predicted state trajectories
x = [x0, x1, . . . , xN ] are all constrained in the respective sets U and X with the terminal
set Xf . The added constraints could lead to an infeasible solution, but as long as a solution
is feasible with xN ∈ Xf , the system is stable. Further discussion about existence of
solution and stability is referred to Rawlings et al. (2017).

minx,u VN =
N−1∑
k=0

l(xk, uk,∆uk) + Vf (xN ) (3.6a)

subject to x0, ui−1 given (3.6b)
xi+1 = f(xk, uk), i = 0, 1, . . . , N − 1 (3.6c)
xi ∈ X , i = 0, 1, . . . , N − 1 (3.6d)
ui ∈ U , i = 0, 1, . . . , N − 1 (3.6e)
xN ∈ Xf (3.6f)

The above discussion looked into how the optimization problem differs between LQR
and MPC. The real difference is however that LQR find an optimal solution to a fixed time
window, using a single stabilizing gain for the whole time window, while MPC optimize in
a receding time window where the solution is recalculated at each time step, using only the
first optimal input as the next control input. MPC often use a smaller window compared
to the infinite horizon LQR as optimizing over an infinite horizon is not really tractable.
This lead to a possible sub-optimal solution, but has the benefit that it can handle hard
constraints in real-time. Because of this finite horizon we are not able to guarantee nominal
stability similar to LQR, but has instead a systematic way of handling constraints at each
time step. This leads us to the nonlinear MPC algorithm 2, visualized in Figure 3.1. For
each time step we get the current state xi and use this as the initial state in the optimization
problem in (3.6). The first control input u∗i from the optimal solution is then applied as the
next control move. This is then repeated throughout the receding control window. This
chapter only discuss nonlinear MPC with state feedback, but it is worth mentioning that
the difference from linear MPC algorithm is that the nonlinear model (3.6d) is replaced by
a linear model. Linear MPC can then be solved using quadratic programming (QP), while
NMPC is non-convex and has to be solved using a nonlinear solver. Using state feedback
may be a strict requirement, but this step can easily be replaced by output measurements
and the added step of state estimation.

3.2.1 Dual mode MPC

Infinite horizon LQR guarantee stability for any unconstrained linear problem, while the
finite MPC algorithm can stabilize an arbitrary constrained nonlinear problem. The dif-
ference to note is that LQR stabilize the system in the infinite horizon, while MPC has a
finite control horizon. In dual mode MPC both of these are combined, where the MPC
horizonN represent the degrees of freedom for constraint handling and deviation from the

21
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Algorithm 2: Nonlinear MPC with state feedback, Foss and Heirung (2016)
1: for t = 1, 2, . . . do
2: Get current state xi.
3: Solve the optimization problem in (3.6) on the prediction horizon from

i to i+N with xi as the initial condition.
4: Apply the first control move ui from the solution above.
5: end for

Figure 3.1: Model predictive control with prediction and control horizon the same length. The first
input (ui) of the solution is applied as the next control move.
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3.3 Stochastic MPC

linear system with the optimal input vi, while the LQR feedback Kxi is used as an ancil-
lary feedback controller. The solution of the DARE, P , can then be used as the penalty
matrix in the terminal cost function Vf (3.5). After the control horizon in the MPC, the
LQR remains as the only control input. Adding feedback instead of using pure open loop
predictions have the advantage that we reduce the uncertainty in the predictions. More
details is given by Rawlings et al. (1994).

ui = Kxi + vi, i = 0, . . . , N − 1 (3.7a)
ui = Kxi, i ≥ N (3.7b)

3.2.2 Convexity
In optimization the concept of convexity is fundamental. To reach a global minimum it is
a requirement that the optimization problem is convex. A convex problem is usually easy
to compute, while a nonconvex problem may end up in an infeasible solution, even if a
locally feasible point exist. The term convex is used for both sets and functions. A set
S ∈ Rn is defined by Wright and Nocedal (2006) as convex if it is possible to connect
two arbitrary points in S with a straight line segment that lies entirely inside the set, as
shown in Figure 3.2. The convexity requirement is then that for all λ ∈ [0, 1], the point
λy + (1− λ)x has to be contained in S for any two points x and y in S. A function f is
defined as a convex function if its domain S is a convex set, and if for any two points x
and y in S, the following is satisfied:

f(λx +(1− λ)y) ≤ λf(x) + (1− λ)f(y), ∀ λ ∈ [0, 1] (3.8)

The objective function can usually be designed to be convex, e.g. a quadratic cost
l(x, u) = xTQx + uTRu, with positive definite matrices Q and R. The terminal set Xf
can also normally be chosen to be convex, for example the ellipsoid Xf = {x | xTPx ≤ 1}
for a positive definite matrix P . If you are lucky the constraints X may also be convex,
such as a box set on xi and ui. The system dynamics on the other hand may not always
describe a convex set. They are convex if the system model describe a linear system on
the form f(xk, uk) = Axk +Buk + c, but are generally nonconvex in a nonlinear system.

The assumption is then that linear MPC implies convex linear MPC, while nonlinear
usually implies a nonconvex MPC problem, where the convexity is lost due to the nonlinear
dynamics. The major problem with nonconvex problems is the case of local minima,
where the stability theory require a global minima, leading to sub-optimal MPC. A further
discussion on how to handle this is referred to Rawlings et al. (2017).

3.3 Stochastic MPC
Until now, we have looked at deterministic systems where we are able to predict the exact
behaviour of the system. Noise and inaccurate system models with known disturbance can
be accounted for by robust and adaptive methods, while in the case of random disturbance
with known probability distributions we have to look to stochastic MPC. In this case the

23



Chapter 3. Theory: Model Predictive Control

Figure 3.2: Convex and nonconvex sets

uncertainty is not necessarily bounded within a constrained set, which e.g. is the case of
a Gaussian distribution as there exist a probability that any Gaussian distributed function
lay anywhere between plus and minus infinity with a given arbitrary mean. Since the
random disturbance may be unbounded, it may not be possible to satisfy the constraints
x ∈ X , u ∈ U , especially the terminal constraint xN ∈ Xf . To account for this Rawlings
et al. (2017) propose two different strategies, either replace hard constraints on the form
φ(x) ∈ X with average constraints on the form E[φ(x) ∈ X ], where φ(x) represent the
state x with a random disturbance. Or in the second case, replace the constraint by a
probabilistic constraint on the form

P (φ(x) ∈ X ) ≥ 1− εx (3.9)

where ε ∈ (0, 1) is the probability of violation. To account for rapidly growing uncertainty
in the predictions, a recommended approach (Rawlings et al. (2017)) is to use dual mode
MPC with an ancillary feedback controller. The LQR feedback will counteract the growing
uncertainty in the predictions, while the MPC algorithm optimize over the deviation from
the linear feedback control law.

minx,u V̄N =
N−1∑
i=0

l̄(xi, ui) + V̄f (xN ) (3.10a)

s.t. x0 given (3.10b)
xi+1 = f(xi, ui) (3.10c)
ui = Kxi + vi (3.10d)
P (φ(xi) ∈ X ) ≥ 1− εx (3.10e)
P (u(φ(xi)) ∈ U) ≥ 1− εu (3.10f)
P (φ(xN ) ∈ Xf ) ≥ 1− εx (3.10g)

for i = 0, 1, . . . , N−1. It should be noted that the stabilizing condition from deterministic
MPC with the use of a local Lyapunov function Vf and terminal constraint set Xf cannot
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easily be extended to stochastic MPC. Without these conditions the resulting control law
κf from the optimal control problem in (3.10) using a finite horizon N is neither optimal
or stabilizing. A further discussion about stability using a local Lyapunov function with
unbounded disturbance is referred to Kouvaritakis and Cannon (2016) and Rawlings et al.
(2017).

3.3.1 Cost function

The constraints in equation (3.6) has in equation (3.10) been replaced by the probabilistic
constraints, where we will allow a small probability ε of transgression in the constrains.
The other part that has changed is that the cost function has been replaced by the expected
value of the cost function.

V̄N (x,u) = E[VN (x,u)] (3.11)

For a system with Gaussian distributed uncertainty this expected value can be com-
puted analytically for both quadratic cost and saturating cost. We will use the following
notation to represent the new cost

V̄f (xN = c(·)(xN , P ), (3.12a)

l̄(xi, ui) = c(·)(xi, Q) + c(·)(ui, R) (3.12b)

where c(·) is given as the general cost function.

Expected Value of Quadratic Cost

The most common cost function used with MPC, with weighted quadratic cost on state
and inputs.

cq(ξ,M) = E[‖ξ‖2M ] =
∥∥µξ∥∥2

M
+ tr(MΣξ) (3.13)

where µξ is the mean of a Gaussian distributed vector ξ with a covariance Σξ. This func-
tion is convex in µξ and Σξ as long as M is positive semi-definite. Hewing and Zeilinger
(2017)

Expected Value of Saturating Cost

For systems with high uncertainty, such as a GP model with little data, having saturation
on the cost has been observed by Deisenroth (2010) to benefit exploitation. A generalized
saturation cost has been formulated by Hewing and Zeilinger (2017)

cs(ξ,M) = E[1− exp(−‖ξ‖2M )]

= 1− |I + 2ΣξM |− 1
2 exp(−

∥∥µξ∥∥
S

) (3.14a)

S := M(I + 2ΣξM)−1 (3.14b)
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3.3.2 Chance constraints
The probabilistic constraints in equation (3.10) result in general to an intractable optimiza-
tion problem. For a Gaussian Process with polytopic input and state constraint on the form

X := x ∈ {Rn|Hxx ≤ bx} (3.15a)
U := u ∈ {Rnu |Huu ≤ bu} (3.15b)

we can however make approximations where Hewing and Zeilinger (2017) show how the
joint chance constraints in the shape

P (N (Hxµxi , H
xΣxi (Hx)T ) < bx) > 1− εx (3.16)

can be reduced to conservative individual chance constraints using Boole’s inequality:

P (N (Hxµxi , H
xΣxi (Hx)T ) < bx)

≤
p∑
j=1

P (N ([Hx]j·µxi ), [Hx]Tj·) < [bx]j)
(3.17)

It can further be shown trough equivalence that the individual probabilities can be
expressed in terms of the mean µx and covariance Σx

P (N (Hxµxi , [Hx]j·Σxi ([Hx]j·)T ) < [bx]j) ≥ 1− εxj

⇔ [Hx]j·µxi + rxj

√
[Hx]j·Σxi [Hx]Tj· ≤ [bx]j

(3.18)

where rxj represent the quantile function Φ−1(1− εx) of the standard normal distribution.
Similarly the same result can be shown for the input chance constrains

[Hu]j·(Kµxi + vi) + ruj

√
[Hu]j·KΣxiKT [Hu]Tj· ≤ [bu]j (3.19)

In the case of Mean Equivalent or Taylor Approximation, Hewing and Zeilinger (2017)
also show how it is possible to decompose the covariance matrix Σxi = LkL

T
k using

Cholesky decomposition, such that the chance constraints can be expressed as

[Hx]j·µxi + rxj ‖[Hx]j·Lxi ‖2 ≤ [bx]j , (3.20a)

[Hu]j·(Kµxi + vi) + ruj ‖[Hu]j·KLxi ‖2 ≤ [bu]j , (3.20b)

For probabilities of violations under 50%, i.e. rxj , r
u
j > 0, these formulations are convex

second-order cone constraints.
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Chapter 4
Learning the Dynamic Model

In chapter 2 we got an introduction on the theory behind Gaussian Process, and how the
model is affected by different hyper-parameters and number of data points. The model has
good accuracy close to sampled data points, while further away will reduce the model to
the prior. More points will increase the chance of an unseen point having a neighboring
data point, and thus the desire of having as many points as possible. The naive approach is
then to brute force and sample all you can get of random data points and hope for the best.
This chapter will look closer at why this may not the best suited method. We will look at
different sampling strategies, and how the stability properties of the dynamic model itself
may play a part in the considerations when sampling data for the model.

4.1 Acquisition of new Observations
The method we will look at is based on the idea that we need a good spread of data
points for a good enough representation of the real dynamics. This leads us to design of
experiments, Sacks et al. (1989), where we use methods for cherry-picking the samples we
need to get the necessary representation. One of such methods is Latin Hyper-cube, where
the goal is to maximize the minimum distance between points. An example of a Latin
Hyper-cube distribution with a two dimensional problem is given in Figure 4.1 with 50
points distributed in the plane between x1 and x2. In Figure 4.2 we try to estimate the same
sine curve as in chapter 2 with different observation distributions. All four distributions
use 10 points to estimate the same signal and the same hyper-parameters, with one random
distribution, two distributions with manually selected best and worst case points, and one
with Latin Hyper-cube. Using a random uniform distribution would be a good initial guess
on how to sample the observations, but as seen in the example in Figure 4.2a, the random
sampling resulted in clustering of points, representing only a small section of the signal.
Using a deterministic uniform selection instead avoids possible clustering. Since we are
estimating a stationary signal, a uniform can give a quite good result as seen in Figure 4.2d
with the observations chosen at the minima and maxima of the sine curve. On the other
hand, if the uniform selection is slightly offset to only sample the midpoints at zero, the
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Figure 4.1: Latin Hypercube with 50 samples distributed maximizing the minimum distance be-
tween points in a two dimensional problem.

resulting prediction is not surprising only zeros as seen in Figure 4.2b. Manually selecting
points is not desirable, and not really tractable in higher dimensions, so even if figure 4.2c
is not the optimal solution, it result in an adequate prediction, where Latin Hyper-cube
give a random distribution without clustering points.

Latin Hyper-cube guarantee that there is an even spread of data. This may look good,
but the actual goal is to get the best possible representation of the real system. Disadvan-
tages to take into account is then that you may end up sampling points that are unnecessary.
Certain sections in the hyper-cube representing fast dynamics can also end up having too
few samples, with points wasted on sections with slower dynamics. It is tempting to just in-
crease the number of observations, but that will also increase the computation cost. Given
a system withN states, we would need to distribute enough points to fill anN dimensional
hyper-cube, resulting in xN number of points.

4.2 Stability of prediction

Earlier in section 2.2.3 we learned that that the accuracy of the model prediction is deter-
mined by the number of observations, and how well the hyper-parameters fit the data. This
was further explored in section 4.1 where also the spread in the data had a huge impact on
the prediction. This section will look closer at another factor that may affect the accuracy.
Section B.2.1 looked at the stability of different integrator methods. The stability of these
methods are determined by the stability properties of the dynamic system and the accuracy
of the integrator. The same should hold for the GP, where a slight model error could make
the prediction unstable.

To explore this we will look at a simple dynamic model, and only change one parameter
to adjust the stability properties. The Van der Pol equation (4.1) represent an unstable
system with a limit cycle, where the parameter µ determine the eigenvalues, and thus the
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(a) (b)

(c) (d)

Figure 4.2: Result of using different distributions of better or worse observations. All have the
same hyper-parameters and 10 data points. a) has a random uniform distribution, b) has a worst
case uniform distribution, c) has data points distributed using Latin Hypercube design, while d) has
observations chosen manually to cover the min/max of both the inputs and outputs.

stability properties.

ẋ = y, (4.1a)

ẏ = −x+ µ(1− x2)y (4.1b)

To test the stability of the GP in an open loop system we will look into three cases
where we adjust the parameter µ. Van der Pol is interesting in the case where it has
a limit cycle, such that any solution that starts on the limit cycle will stay on it for all
time Jordan and Smith (2007). In Figure 4.3 we see a stability analysis of the system,
where the solution will converge towards the limit cycle with an arbitrary initial point if
the parameter µ = 2. If the parameter sign is changed to a negative, the whole system
is reversed, such that the system behaves as if the time t was reversed. The former limit
cycle is then changed to the limit between diverging, or converging towards origin which
is a degenerated stable node. With µ = 0 the system has pure imaginary eigenvalues
and behaving as a centre. Without the damping function it is a simple harmonic oscillator
where all the energy is conserved. It is the same system with equality point a the centre,
where the only difference is that the stability properties of the system changes by adjusting
the parameter µ.

In Figure 4.4 these three systems are estimated using a Gaussian process. The GP is
trained using 40 data points, sampled from Latin Hyper-cube Design Sacks et al. (1989),
at a sampling time of 0.01s. The simulated data points is added Gaussian noise with a
variance of 10−6. The testing set is designed the same way, also with 40 data points. All
GP models have a prediction horizon of 2000 steps using Mean Equivalence, neglecting
the propagated uncertainty.
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(a) (b)

(c)

Figure 4.3: Stability analysis with the phase plots showing the vector fields of the Van der Pol
equation (4.1). a) µ = 2, b) µ = −2, and c) µ = 0

The GP predicts the limit cycle in Figure 4.4a quite well, without any noticeable de-
viation. In 4.4a the GP is struggling more, with a clear deviation from the real solution.
In Figure 4.4b we would expect to see the GP in a constant circle, but because of small
perturbations from the real system it diverge instead. The GP was robust when estimating
the limit cycle, but struggles more with the other two systems.

This example highlights the problem of only looking at the SMSE as validation. The
score is well suited to trow away results that don’t fit the model, but with a system that is
close to the stability region, even small errors less than the added noise can cause small
perturbations that will make the prediction unstable. It is also worth noting that the pre-
diction horizon of 2000 steps is an exaggeration in the context of model predictive control.
The horizon was chosen to show the dynamics of the stability region, and also to show the
strength of the GP when used on a system that don’t diverge as in the case of Figure 4.4a.

How much each GP would diverge from the real system is dependant on the training
data along the path from the initial point to the stable equilibrium or limit cycle. More data
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(a) (b)

(c) (d)

Figure 4.4: Van der Pol equation (4.1), with initial point x0 = [−0.5, 0.5]T . In a) µ = 2, b) µ = 0,
c) µ = −2 and d) µ = −2 where the initial point was chosen to be at the border of the stability
region. In all the cases the standardized mean squared error is of the order of 10−5 or less, tested
against 40 unseen samples. All GP models have a prediction horizon of 2000 steps using Mean
Equivalence, neglecting the propagated uncertainty.

Table 4.1: Standardized mean squared error for different parameter values, corresponding to the
models in Figure 4.4.

x y

a) µ = 2 0.000000 0.000001
b) µ = 0 0.000000 0.000000
c) µ = −2 0.000003 0.000010
d) µ = −2 0.000000 0.000010
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points in the prior results in a closer fit. The plots in Figure 4.4 represents a typical result.

In the Figure 4.4d the initial point was chosen at the border of the stability region,
seen in Figure 4.3b. A small deviation from the real model in the order of 10−5 is enough
that the GP leaves the stability region and diverge. This figure also highlights the effect
where the GP has different stability properties than the real system. While the van der
Pol equation has only one equality point in the origin, the GP has a stable spiral close to
(−2,−30).

It is interesting to note that the model used in Figure 4.4b has a slightly lower SMSE
score than the model in Figure 4.4a, but still performs worse. Note also that both c) and
d) have worse SMSE score than a) and b) with the same number of training data, where it
seems it is easier to fit a stable system.

4.3 Online Learning

In the previous sections we have looked at how to acquire data points that best represent
our model using Latin Hypercube with the principle that we need a good spread in the
data. The challenge of using this method is that we are required to actually sample the
output from the optimal states given either by the Latin Hypercube. This works fine in
computer simulations, but is most often not a tractable option for real life measurements
as it would require us to be able to have complete control over every possible state. If this
where the case, using a Gaussian Process in the control loop would be a little unnecessary.
This means that we instead have to measure data and then find the most suitable points
that can represent the model. In this section present three different strategies for online
learning and adaption.

Learn model

The first method is the simplest where the strategy is to add measurement data to the
training set and optimize the hyper-parameters based on all collected data, validate the
model based on a different set of measurement data, and repeat until a satisfactory model
is gained. It is possible to add all measurement data to the training data collection, but
this quickly leads to a prohibitive model size for use in control methods. If this naive ap-
proach doesn’t give a satisfactory validation result within a maximum number of points,
another approach is to use Bayesian Optimization, Brochu et al. (2010), where each new
point is chosen based on the acquisition function by maximizing the expected utility us-
ing state-space subset consisting of the collection of new measurement data, testing each
new point to find the points with highest utility. Another simple approach is to just use
exploration by using the points with the highest predicted variance. As re-computing the
hyper-parameters with an increasing number of data points quickly reach a computation
cost that is prohibitive for real-time control, this methods is best suited for offline system
identification. For adaptation of system changes in real-time the following is more suited.
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4.3 Online Learning

Update model

The observant reader would by now have noticed by the equations in chapter 2 that train-
ing data is used directly for predicting the mean and variance, as opposed to e.g. an
artificial neural network where the training data is used to train weights. We use the train-
ing data to optimize the covariance function hyper-parameters, but as discussed earlier,
having a representative collection of training data is the most important part of the GP
model. Where the hyper-parameters are used to get the optimal interpolation between the
sample points. This means that if have optimized the hyper-parameters well enough, we
could in theory be able to update out model with new data without having to re-optimize
the hyper-parameters. Depending on the size of the model, optimizing hyper-parameters
could take several minutes on larger problems, while updating the training data is only a
matter of updating the Gram matrix where the heaviest operation is to inverse the Gram
matrix. Compared to a nonlinear optimization problem, this is a significantly easier prob-
lem, where several methods are available to efficiently update the Gram matrix without
having to recompute the entire matrix and its inverse by using low rank updates of the
Cholesky decomposition of the Gram matrix. See Appendix A for more details. This has a
computational cost that enable us to use the update with real-time control. The new update
data can be chosen the same way as with the previous method, either using all data or
cherry-picking the optimal points that give the best expected probability of improvement.
It is important to note that if the hyper-parameters are not trained on a reasonably rep-
resentative collection of points, adding new data can actually give a worse performance.
Meaning that this method is most suitable to update or replace training data on an existing
model with reasonable hyper-parameters.

Example of adding random data as update is showed in Figure 4.5. Similar to the pre-
vious example the goal is to estimate the dynamics in the Van der Pol equation (4.1). The
difference in this example is that we only use 5 samples to optimize the hyper-parameters
and use an additional 50 samples to update the training data without updating the hyper-
parameters. Using only 5 samples give a quite bad fit, as observed in Figure 4.5a, as there is
not enough data to represent the model. While adding 50 new samples and updating only
the Gram matrix give a more reasonable fit in 4.5b, even though the hyper-parameters
where trained on a quite small data set. This show that it is reasonable to only update
the training data without re-optimizing the hyper-parameters. With the remark that it is
important that the hyper-parameters are trained on a set that reasonably represent the sys-
tem. Using only 5 samples is in general too few to represent this type of system, so it
was only by chance that the hyper-parameters where well fitted in Figure 4.5a. Using a
different set of random data again give a quite different result in Figure 4.5d where the
hyper-parameters was trained on a sub-optimal set of sample points in Figure 4.5c.

So far we have covered how to update the model to fit an existing system. If how-
ever the system changes due to parameter perturbations, e.g. the center of gravity in a car
model has changed, it would not be advisable just update the existing data with new mea-
surements. A GP model can only fit one system at a time, but as long as the perturbations
are not to large it is possible to use the same hyper-parameters, while all the training data
can be replaced with new measurements. In Figure 4.6 we look at the Van der Pol system
again with the perturbation from µ = 2 to µ = 5. From Figure 4.5d it is obvious that
we cannot use data sampled with µ = 2 to predict a system where µ = 5, they are two
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(a) (b)

(c) (d)

Figure 4.5: The GP model in a) has optimized hyper-parameters using 5 samples from the Van der
Pol equation in (4.1), while b) use the same hyper-parameters as in a) and update the Gram matrix
with 50 new samples. The same is repeated in c) where the hyper-parameters are optimized on a
different set of 5 samples, while d) use the hyper-parameters from c) and updating the Gram matrix
with 50 new samples, giving a quite different result.

different systems with different dynamics. Using 40 samples on a system with µ = 2 to
train the hyper-parameters give a good result in Figure 4.6a as we try to predict the same
system. If we then replace all the training data with 40 new measurements from a system
with µ = 5 in Figure 4.6a, we are able to re-use the hyper-parameters and still give a good
result.

Adapt model

In complex systems with high nonlinearity, there pose a problem with finding a collection
of points that give a good enough representation of the system, at the same time that it is
possible to compute the predictions in real time. Increasing the number of sample points
increase the accuracy of the model, but at a computational burden that can be prohibitive.
This leads us to the use of sparse GP models, where a small collection of inducing points
can be used to represent the model. Finding such points can be difficult, but Hewing
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4.3 Online Learning

(a) (b)

(c)

Figure 4.6: If the system has small perturbations from the original system it is possible to replace
all the training data without re-optimizing the hyper-parameters. This example use the Van der Pol
equation again with µ = 2 in a) and µ = 5 in b). The hyper-parameters are trained on 40 samples
in a), where b) replace these samples with 40 new points. As a comparison the GP model in c) has
training data where µ = 2, while the simulated system has µ = 5.
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Chapter 4. Learning the Dynamic Model

et al. (2017) claim that any random collection of measurements are valid locally at each
sampling time. The idea is that the area of interest at each sampling time lay close to
a known trajectory in the stat-action space. This let us train the hyper-parameters on a
large collection of data, while the online mean predictions and model adaption only us
a small subset consisting of the inducing points. In Hewing et al. (2017) they used 300
measurement points to estimate the error from the dynamic model, while only 10 inducing
points was chosen at each sampling time, based on the first 10 points in the MPC trajectory
solution.
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Chapter 5
Control of a Four-Tank System

This section will begin to look closer at how to use a Gaussian Process together with
MPC. As a case study we will use a well-known example in MPC literature with a system
consisting of four connected water tanks, where the purpose is to control the water level in
all the tanks. This is a system with relatively slow nonlinear dynamics with a limited and
known range, offering good conditions for training a GP model. This chapter will then
look at how we can use a GP model to estimate the tank system, and use this as prediction
to control the water level with a model predictive controller.

5.1 Tank System Model

This system is a widely used example of MPC application, where we will use the system
formulation and parameters from Raff et al. (2006). The system consists of four tanks,
two valves, and two pumps that are interconnected as shown in Figure 5.1. Both valves
are three way valves, where we will assume that the valve openings are constant, with
parameters given as γ1 = γ2 = 0.4. Tank one and four are supplied with water from pump
1, while pump 2 supply tank 2 and three. Tank three and four then have outlets that fill up
respectively tank one and two, which again have outlets to a sink. The system equations
are then given by Raff et al. (2006) as

ẋ1 = − a1

A1

√
2gx1 + a3

A1

√
2gx3 + γ1

A1
u1 (5.1a)

ẋ2 = − a2

A2

√
2gx2 + a4

A2

√
2gx4 + γ2

A2
u2 (5.1b)

ẋ3 = − a3

A3

√
2gx3 + (1− γ2)

A3
u2 (5.1c)

ẋ3 = − a4

A4

√
2gx4 + (1− γ1)

A4
u1 (5.1d)
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Figure 5.1: Tank system based on Figure 2 in Raff et al. (2006). The valve opening γ1 and γ1 is set
at a fixed value, while the only actuation is from the pumps u1 and u2.

where g is the gravity, Ai is the cross-section of tank i, and ai is the cross-section of the
outlet hole of tank i, with parameters given in table 5.1.

Table 5.1: Model parameters from Raff et al. (2006)

Ai ai

i = 1 50.27 cm2 0.233 cm2

i = 2 50.27 cm2 0.233 cm2

i = 3 28.27 cm2 0.127 cm2

i = 4 28.27 cm2 0.127 cm2

5.2 Learning Dynamics

To estimate the system model we will use a single GP model for all the tanks as a single
system. The full GP model will then have four states and two control inputs, analog to
(5.1). The model will use a zero mean function, and a SEard covariance kernel, optimized
using 60 data points sampled using Latin Hyper-cube with a sampling time of ∆ = 3 sec-
onds. Measurement noise with a Gaussian distribution ofN (0,diag([10−5, 10−5, 10−5, 10−5]))
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5.3 MPC formulation

is added to the samples. Validation of the model is also done using Latin Hyper-cube with
100 samples.

To propagate the uncertainty we will use first order Taylor Approximation given by
equation (2.23), such that for each time step we estimate both the mean µxi+1 and the state
covariance Σxi+1, given the input mean µzi = [µxi ;ui] and input covariance

Σzi =
[

Σxi ΣxiKT

KΣxi KΣxiKT

]
(5.2)

where K is the linear gain in the ancillary LQR feedback controller.

5.3 MPC formulation
The MPC formulation in equation (3.10) written in terms of propagated uncertain states
and inputs. The numerical optimization use simultaneous multiple shooting such that the
predicted means µx and covariance Σx is minimized together with the optimal inputs v.

min
v,µx,Σx

Vf (µxN − xref,ΣxN ) +
N−1∑
i=0

l(µxi − xref,Σxi , vi) (5.3a)

s.t. µx0 = x0 (5.3b)
Σx0 = 0 (5.3c)
µxi+1,Σxi+1 acc. to (2.23) (5.3d)
ui = Kµxi + vi (5.3e)
P (xi ∈ X ) ≥ 1− ε acc. to (3.20) (5.3f)
P (ui ∈ U) ≥ 1− ε acc. to (3.20) (5.3g)

(5.3h)

Both the stage cost l(·) and terminal cost Vf (·) use the expected value of quadratic
cost (3.12). The constraint sets X and U are given by the input and state limits in table 5.2.
The linear gain K for the LQR feedback is calculated using (3.3) with the linearized GP
model using the initial state x0 as operating point and the same cost matrices Q and R as
the MPC problem. The terminal cost P is given as the solution of the DARE (3.3). Both
prediction and control horizon is set at 30 steps.

5.4 Simulation
To simulate the experiment we will use the GP-MPC framework developed for this thesis.
The underlying backbone is CasADi, Andersson et al. (2018) for automatic Algorithmic
differentiation, together with CVODES, Hindmarsh et al. (2005), for simulation, IPOPT,
Wächter and Biegler (2006), as the nonlinear solver in the optimal control problem, and
ma27 (HSL) as the linear solver. The prediction horizon is 30 steps, where the prediction
is done using GP Taylor Approximation, and RK4 for comparison. The system is then
simulated for 250 seconds, equivalent to 80 control moves. The parameters for the control
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Table 5.2: Control problem parameters.

Param Value Units

Q diag([10, 10, 1, 1]) - State penalty matrix
R diag([10−3, 10−3]) - Input penalty matrix
S diag([10−2, 10−2]) - Change in input penalty matrix
Cov(w) diag([10−5, 10−5,

10−5, 10−5]) - Noise covariance matrix
ε 0.05 - Probability of violation
∆t 3 s Sampling time
Hc 30 - Number of steps in control horizon
Hp 30 - Number of steps in prediction horizon
x0 [8.0, 10.0, 8.0, 19.0] cm Initial state
xref [14.0, 14.0, 14.2, 21.3] cm Desired set point
xmin [7.5, 7.5, 3.5, 4.5] cm Lower tank limit
xmax [28., 28., 28., 28.] cm Upper tank limit
umin [10.0, 10.0] ml/s Minimum input
umax [60.0, 60.0] ml/s Maximum input

problem is listed in table 5.2. All simulations are done on a laptop from 2011, with i5
processor and 8GB of memory.

5.5 Results
Model Learning

The hyper-parameters optimized for the GP model used is given in table 5.3, with the
validation score in table 5.4. The estimated noise is slightly to naive, except in the case of
Tank 1 where the noise variance is matched exactly to the real measurement noise. Note
also how the length-scales fit the different dimensions according to equation (5.1). ẋ1 is
dependent on x1, u1, x3, which again depend on u2, which is reflected on the length-scales.
A lower value mean that that input dimension has a higher weight on in the prediction
of state. In this case the hyper-parameters had a lower bound at 10. This should have
been lower, but since the validation score gave a good result, ths models was chosen. The
validation is based on 100 random samples from Latin Hypercube, where the result is given
by table 5.4. For validation score we use both standardized mean square error (SMSE) and
mean negative log probability (MNLP) as two different measures of model quality. Both
give the indication that tank 1 has the worst accuracy, while the other tanks has relatively
similar scores. The uncertainty is also too naive where the 95% confidence interval don’t
enclose the actual signal in tank 4. In the open loop prediction in Figure 5.2 we that in
this combination of state and inputs case tank four has the highest model deviation. The
inputs are fixed at u = [45, 45] with the initial state x0 = [8.0, 10.0, 8.0, 19.0], with an
open loop prediction horizon of 30 steps. In all the predictions both Expected Moment
matching (EM) and Taylor Approximation (TA) performs equally with overlap on both
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Table 5.3: Hyper-parameters fitted for the tank model using 60 normalized samples.

σ2
f `x1 `x2 `x3 `x4 `u1 `u2 σ2

n

x1 4.60 10.0 29.81 14.58 1878 26.02 27.15 1.09 · 10−5

x2 6.88 36.10 10.0 44.31 10.0 24.13 65.36 6.77 · 10−6

x3 4.97 28.58 41.87 10.0 26.94 24.44 26.25 6.71 · 10−6

x4 4.97 29.30 21.87 31.49 10.0 30.5 41.65 6.29 · 10−6

Table 5.4: Validation of the hyper-parameters in table 5.3, using 100 randomized samples produced
by Latin Hypercube design.

SMSE MNLP

x1 5.7 · 10−5 −3.606
x2 1.8 · 10−5 −4.074
x3 2.4 · 10−5 −4.131
x4 2.0 · 10−5 −4.010

the mean and variance, while Mean Equivalence (ME) have no propagation of uncertainty,
with the result that it is not able to catch the propagated model error in the predictions.

In Figure 5.3 we see the eigenvalue plots for both the real discrete system and the GP
model. To find the eigenvalues we linearized both the discrete model equations and the
GP model using x0 = [8., 10., 8., 19.] and u0 = [45, 45] as the linearized operating point.
With this we are able to get an estimate of the stability properties, where the open loop
system is stable if all eigenvalues is enclosed by the unit circle and unstable otherwise.
This is also another way validating the model, where similar eigenvalues would indicate
similar dynamics. In this case we see that both the linearized discrete model and the
linearized GP model have eigenvalues that are close, where the GP model has eigenvalues
that are slightly shifted along the real axis, resulting in one destabilizing pole.

Control

In Figure 5.4 and 5.5 we see the result of solving the MPC problem in 80 iterations,
using respectively RK4 and the GP model. If we use RK4 as the baseline we see that
the GP model performs quite well with similar results as RK4. In the penalty matrix Q
we put a greater cost on tank one and two, which is observed in both the RK4 and GP
model. There is an overshoot in both the upper tanks in the beginning, that again can fill
the lower tanks. In Figure 5.4 we see that the first optimal state trajectory is followed
closely. With negligible noise levels this is to be expected, as there is no new information
to be gained in in future states if the first iteration gave the true optimal solution with an
accurate prediction. In both RK4 and GP there is about 1mm deviation from the set point
in all the tanks, where both model have some oscillation around the set point. The GP
model has as shown earlier a small model error that we can recognize in Figure 5.5. Tank
two and three follow the read model closely, while there is some deviation from the first
prediction in tank one and four from the measured levels. The deviation from thre true
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Figure 5.2: Open loop prediction of GP model, comparing Expected Moments (EM), Taylor Ex-
pansion (TA) and Mean Equivalence (ME) for uncertainty propagation. The prediction horizon is 30
steps with a fixed input u = [45, 45] and initial state x0 = [8.0, 10.0, 8.0, 19.0]. The vertical bar
represent the 95% confidence interval of the uncertainty. Both EM and TA give similar results with
increased uncertainty, while ME has no uncertainty propagation

(a) (b)

Figure 5.3: Eigenvalue plot for the linearized discretized dynamic model in a) and the linearized
GP model in b). Both use x0 = [8., 10., 8., 19.] and u0 = [45, 45] as the linearized operating point.
Both models have similar eigenvalues with the exception that the GP model has one destabilizing
pole.
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model in all the tanks is covered by the 95% confidence interval.

5.5.1 Computational cost
Both predictions with RK4 and GP relatively similar predictions performance, so it is also
relevant to look at the computational cost of each of these. An explicit Runga-Kutta solver
is a cheap way of integrating the system, with a worst case of 376ms in the first iteration,
and an average of 25ms with the use of warm start. The GP model is more computationally
expensive with a worst case of 38 seconds in the first iteration and an average of around
one second later.

5.6 Discussion
Model Learning

From the result it is interesting to note that a good model validation is only as good as
the test data used. In the model used in this chapter tank 1 had the worst validation score,
but from the open loop prediction we see that tank 4 has more deviation error than the
other tanks. This show how important it is to have a data set of test data that accurately
represent the the whole state-input space. Since the computational cost of the Gaussian
model increase with the number of states and inputs, it could be beneficial to see how we
can reduce the model. It is then interesting to note from Figure 5.1 that tank one and three
is decoupled from tank two and four, where only the inputs are common. Instead of one
model with with four states and two inputs, we could potentially reduce this to two models
with two states and two inputs. This means that we reduce from a six dimensional state-
input space down to only four dimensions, a substantial reduction in terms of how much
data we need. A single state system only need to fill up point along the one dimension,
while with two states we would need to fill up a two dimensional space, three dimensional
space for three space and so on. This means that there can be quite the difference between
using the same number of data point on a GP model with six inputs, and one with four
inputs. We can see from the hyper-parameters that the length-scales mostly reflect the
dependencies in equation (5.1). The cases that are off tell us that these are not the optimal
hyper-parameters, even if they give a decent fit. The dependencies between the states are
mostly accurate where a length scale less than 10 indicate a relation, while a higher number
indicate states that are not important for the prediction. For the inputs this is not as clear
as the inputs are directly or indirectly connected to all the states.

Control

With a relatively accurate GP model, the important question to ask is whether it is suited
control purposes, and if the ability to propagate uncertainty can give a cautious control.
With the RK4 integrator as a baseline for prediction we see that a simple GP model, with
relatively little training data is able to follow closely to real system. The small devia-
tion is not as important since only the first control input is used for each iteration. The
consequence is however that longer predictions could destabilize the system, where each
control iteration would have to compensate for the prediction errors. In this example we
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(a) Simulated states

(b) Control inputs

Figure 5.4: MPC simulation for 250 seconds using LQR feedback, and RK4 for prediction. The
red line show the first prediction horizon while the blue line show the first predicted step for each
iteration.
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(a) Simulated states

(b) Control inputs

Figure 5.5: MPC simulation for 250 seconds using LQR feedback, and TA GP for prediction. The
red line show the first prediction horizon with 95% confidence interval. The blue line show the first
predicted step for each iteration.
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can see that tank three and four overshoot from the set point due the higher cost in the
lower tanks. This is also the strength of using MPC that we are able to predict future states
to optimize the pump actuation by taking into account that the upper tanks also will fill up
the lower tanks. Without this consideration it would be difficult to reach the set point in
all the tanks. In the RK4 model this works seamlessly with smooth changes in the control
inputs. With the model error in tank one, with a higher measured level compared to the
predicted level, the MPC controller has to act by lowering the expected actuation in pump
2, to avoid overfilling tank one and three. This give a more aggressive control behaviour
with rapid drop in actuation from pump two compared to the RK4 model. We have put a
very low cost in control input change for this problem to allow for this type of actuation. If
such rapid changes would strain the pump, it would be advisable to increase the penalty S.
Even though an imperfect model give more aggressive control it is clear that the GP model
works as an alternative for first principle dynamic models. In the terms of investigating if
the uncertainty lead to a more cautious control, this example can not say for certain as no
state constraints are active, but it seems promising that the real signal is within the 95%
confidence interval of the predicted mean. The chance constraints would then make sure
that the tank don’t overflow by underestimating the water level. The controller would then
always err on the safe side, such that we would not necessary reach the desired set point if
we are close to the constraints, and avoid overflowing the tank.
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Chapter 6
Vehicle Obstacle Avoidance

In the field of vehicle control there are two major concerns. The first is the balance between
using simple computationally cheap models that may violate system constraints, while
using an accurate nonlinear model could be too computationally demanding for real-time
application. The other concern is the presence of noise and modelling errors that are
sources of uncertainty in the state predictions that might prevent the vehicle from keeping
the desired path. To handle the first issue there are real-time MPC strategies that could be
used, Diehl (2014). One of the more promising is the use of hierarchical MPC where a
simple model is optimized on a long horizon to avoid sudden obstacles, such that the more
complex model can be warm started with a feasable trajectory, as done in Gao et al. (2010).
Handling the uncertainties is a more challenging problem, but if the noise is assumed to
be bounded it is possible to use methods like tube-based robust nonlinear MPC showed in
Gao et al. (2014) or estimate the noise and model error with a Gaussian Process model as
presented in Hewing et al. (2017). This field of GP use show the real potential using GP
models with control, leading the way for adaptive control. In this chapter we will look at
exactly how effective a Gaussian Process is to estimate not just the noise and model error,
but all the dynamics in the car model.

6.1 Car model

This thesis use the same model as Gao et al. (2014), where the car is modelled as the
bicycle model in Figure 6.1 where each wheel represent two merged wheels. In this model
the dynamic equations are functions of the forces in the lateral and longitudinal directions
of the vehicle Fx∗ and Fy∗, and the momentumMz = Izψ̈ exerted on the center of gravity.
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mẍ = mẏψ̇ + 2Fxf + 2Fxr, (6.1a)

mÿ = −mẋψ̇ + 2Fyf + 2Fyr, (6.1b)

Izψ̈ = 2lfFyf − 2lrFyr (6.1c)

ėψ = ψ̇ − ψ̇d, (6.1d)
ėy = ẏ cos(eψ) + ẋ sin(eψ), (6.1e)
ṡ = ẋ cos(eψ)− ẏ sin(eψ) (6.1f)

In these equations ẋ and ẋ denotes the longitudinal and lateral velocity of the vehicle,
while ψ̇ give the yaw rate around the vehicle’s center of gravity. The deviation error
from the desired path eψ and ey is respectively given by the vehicle orientation and lateral
position relative to the road aligned coordinate frame. ψd denote the angle of the tangent
to the road centerline in the origin frame, and s give the distance traveled as the vehicle
longitudinal position along the desired road path. Fyf and Fyr represent front and rear tire
forces along the vehicle lateral axis, while Fxf and Fxr give the forces acting along the
longitudinal axis.

Assumption 1. Assuming that the vehicle will drive on a horizontal plane, where the pitch
and roll components of the vehicle can be neglected.

Assumption 2. Assuming that the vertical load Fz is distributed evenly between the front
and rear tires, such that the normal forces Fz∗ are assumed constant and given by the
steady state weight distribution of the vehicle.

Fzf = lrmg

2(lr + lf ) , Fzr = lfmg

2(lr + lf ) (6.2)

The friction forces are modelled as

Fx∗ = Fl∗ cos(δ∗)− Fc∗ sin(δ∗), (6.3a)
Fy∗ = Fl∗ sin(δ∗) + Fc∗ cos(δ∗), ∗ ∈ {f, r} (6.3b)

where ∗ represent f or r for front and rear tire, and δ∗ the steering angle in the wheel.

Assumption 3. Assuming that only the steering angle at the front wheels can be con-
trolled, giving δf = δ and δr = 0.

The tire forces Fl∗ and Fc∗ respectively in the longitudinal and lateral direction relative
to the tires are given by the MAGIC formulas by Pacejka (2012). They are a highly non-
linear semi-empirical functions determined by the tire slip angle α∗, slip ratio σ∗, normal
forces Fz∗ and friction coefficient between the tire and road µ∗.

Fl∗ = fl(α∗, σ∗, Fz∗, µ∗) (6.4a)
Fc∗ = fc(α∗, σ∗, Fz∗, µ∗) (6.4b)

The full generalized MAGIC formula reads

Y (X) = D sin[C arctan{B(X+Sh)−E(B(X+Sh)−arctanB(X+Sh))}]+Sv (6.5)
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6.1 Car model

Figure 6.1: Car model simplified as a bicycle model in the horizontal plane. The vehicle move
along a desired path where s denotes the position along this path. The deviation from the path in
the lateral direction relative to the path is given by ey , while the deviation in the orientation of the
vehicle relative relative to the path is given by eψ .
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where Y represent either Fl∗ or Fc∗, while X is given either as the slip angle α∗ or the
slip ratio σ∗. The parameters are the stiffness factor B, shape factor C, peak value D,
curvature factor E, horizontal shift Sh, and vertical shift Sv . It is not desirable to have
this level of non-linearity in the optimal control problem, so to ease the computation the
following section will instead use a linearized approximation.

The slip ratio is a ratio of how much the tires are slipping in the longitudinal direction
of the tire, and is given as

σ∗ =
{
rω
vl
− 1, if vl > rω, vl 6= 0 for breaking

1− vl

rω , if vlr < ω, ω 6= 0 for driving
(6.6)

where r is the effective radius of the tire, ω the angular velocity of the tire, and vl the
longitudinal velocity of the vehicle. This ratio will however be assumed negligible in the
approximated tire force. The slip angle is a measure of the difference between the steering
angle δ and the actual direction of the vehicle, and is given by Yoon et al. (2009) as

αf = tan−1
(
ẏ + lf ψ̇

ẋ

)
− δ, (6.7a)

αr = tan−1
(
ẏ − lrψ̇
ẋ

)
(6.7b)

Assumption 4. The side slip angle α∗ is assumed to be small α∗ � 1rad, where ẏ � ẋ.
The same assumption can be made for the vehicle orientation error eψ � 1 giving the
approximations sin(eψ) ' eψ and cos(eψ) ' 1rad. Yoon et al. (2009) show that any loss
of accuracy against the full nonlinear model is negligible.

With the small angle assumption, the slip angles in equation (6.7) can be approximated
as

αf = ẏ + lf ψ̇

ẋ
− δ, (6.8a)

αr = ẏ − lrψ̇
ẋ

(6.8b)

With the ability to control both the torque and angle in the front wheel we are able to
control all forces in the full circle around the wheel, controlling both the slip angle and
slip ratio. This means we have the choice of using a lower level force controller and using
the front wheel forces Fxf and Fyf directly as inputs to the model in the optimal control
problem, as done in Gao et al. (2014). This is however not an option for the rear tires due to
the fixed wheel angle, where we are only able to control the longitudinal breaking/throttle
force Flr, with a linearized tire model. To keep it simple this thesis will also use the
same approximation for the front wheel. It is assumed that simple low level controllers
can control the breaking and throttle in Fl∗, and steering angle δ. The linearization of the
Pacejka model in (6.5) is then given by Gao et al. (2014) as

Fl∗ = β∗µFzr, (6.9a)
Fc∗ = C∗α∗, ∗ ∈ {f, r} (6.9b)
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where Gao et al. (2014) show that the approximation is valid for small values of α∗. The
longitudinal tire forces are linear with the breaking and throttle ratio β∗, where β∗ = −1
correspond to full throttle and β∗ = −1 max breaking. With moderate breaking, Gao et al.
(2014) show that the side force Fc∗ has low sensitivity with respect to β∗, thus the linear
gain will be constricted to β∗ ∈ [−0.5, 0.5]. The constant parameter C∗ is the cornering
stiffness, a measure of how resistant the tire is to deform while the vehicle corners.

The resulting full model where the approximated tire forces are inserted in (6.1) is
presented in equation (6.10). In these equations the first three states represent the dynamics
of the vehicle, while the last three give the kinematic relationship.

ẍ = 1
m

(
mẏψ̇ + 2βfµFzf + 2δ2Cf

− 2δCf
(ẏ + lf ψ̇)

ẋ
+ 2βrµFzr

)
(6.10a)

ÿ = 1
m

(
−mẋψ̇ + 2δβfµFzf + 2Cf

(ẏ + lf ψ̇)
ẋ

− 2δCf + 2δCr
(ẏ − lrψ̇)

ẋ

)
(6.10b)

ψ̈ = 1
Iz

(
2lfδβfµFzf + 2lfCf

(ẏ + lf ψ̇)
ẋ

− 2lfδCf − 2lrCr
(ẏ − lrψ̇)

ẋ

)
(6.10c)

ėψ = ψ̇ − ψ̇d (6.10d)
ėy = ẋ sin(eψ) + ẏ cos(eψ) (6.10e)
ṡ = ẋ cos(eψ)− ẏ sin(eψ) (6.10f)

We want to keep the dimensions of the GP model as low as possible, to reduce compu-
tational cost. This means we simplify our model with the following assumption, resulting
in two instead of three inputs.

Assumption 5. Both rear and front tires break and apply force at the same time, such that
β = βr = βf .

Our model is then given by the states ξ = [ẋ, ẏ, ψ̇, eψ, ey, s]T , with inputs u = [β, δ]T .

6.2 Model learning
Having six states, of which three are integrating states that could potentially give any real
value pose a problem when learning the GP model. In simple terms the GP model is only a
form of interpolating between known training data to get an estimate of unseen points. The
farther away from the training data we get, the less accurate the prediction is, as discussed
earlier in chapter 2. This means that we are not able to properly train our model unless
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Table 6.1: Car parameters from Gao et al. (2014),

Param. Value Units

g 9.81 m/s2 Gravity
m 2050 kg Vehicle mass
Iz 3344 kgm2 Yaw inertia
Cr 65000 N/rad Rear tire cornering stiffness
Cf 65000 N/rad Front tire cornering stiffness
µ 0.5 - Tire friction coefficient
l 4.0 m Vehicle length
lf 2.0 m Distance from CoG to the front tire
lr 2.0 m Distance from CoG to the rear tire

(a)

(b)

Figure 6.2: Eigenvalue plot for the linearized discretized dynamic model in a) and the linearized
GP model in b). Both use µd0 = [13.89, 0, 0] and u0 = [0, 0] as the linearized operating point. Both
have practically identical eigenvalues, one marginally stable and two destabilizing points.
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we constrain our model to a very limited area. The workaround in this thesis is to use a
hybrid model where the GP model estimate the dynamics within a known operating region,
while the rest of the states are given directly by kinematic relations, and is not necessary
to be estimated. These can then be integrated by a standard integrator, e.g. RK4, using the
estimated dynamic states as inputs.

µdi+1 = d(µdi , ui), (6.11a)

µηi+1 = η(µηi , µ
d
i ) (6.11b)

The dynamic states are then given by µdi , with the kinematic states µηi , and the new com-
bined hybrid state vector given as µξi = [µdi ;µ

η
i ]T . The mean of the dynamic states µdi+1 is

computed using first-order Taylor approximation (2.23), while the kinematic states µηi+1
are computed using equations (6.10d)-(6.10f). By linear transformations of Gaussian dis-
tributions, the update equation for the covariance of the full system is given as

Σξi+1 =
[
Σdi+1 0

0 BΣdi+1B
T

]
(6.12)

where B = ∇dη(µηi , µdi ), and Σdi+1 is given by equation (2.23). The input covariance
matrix to the GP function (2.23) is given similarly as

Σzi =
[

Σdi ΣdiKT

KΣdi KΣdiKT

]
(6.13)

where K is the linear gain in the ancillary feedback controller. To train the GP model
we will use 200 samples from the Latin Hypercube limited to the range of the dynamic
states and input boundaries given in table 6.2. The model is then validated using with 500
random samples.

6.3 Safety constraints

The main objective of the controller is to make sure that the vehicle maintain stability and
follow the road while avoiding obstacles. To achieve this we will use the same strategy as
Gao et al. (2014) of using state constraints.

Road boundary

The center of gravity of the vehicle is constrained within the road bounds by using road
boundary constraints that take into account the vehicle width.

eymin ≤ ey ≤ eymax (6.14)

where ey is the lateral distance relative to the road from the road center line, and eymin , eymax

are the distance to the road boundaries from the center line, accounted for the car width.
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Obstacle avoidance

We will assume all obstacles can be written as ellipsoidal in the form(
(s− sobs)
aobs

)2
+
(

(ey − yobs)
bobs

)2
≤ 1 (6.15)

where sobs is the distance to the obstacle in the longitudinal direction from the car, while
yobs is the distance in the lateral direction. The obstacle constraint can then be written as(

(s− sobs)
aobs + lf

)2
+
(

(ey − yobs)
bobs + lw

)2
≥ 1 (6.16)

such that the vehicle movement is constrained outside of the ellipsoidal obstacle. To take
into account the shape of the vehicle the elliptical shape is enlarged with the vehicle length
lf and width lw from the vehicle CoG. The length of the ellipsoidal is also further increased
to ensure a smooth turning radius.

Slip Constraints

To allow for an easy operation of the vehicle the slip angle will be constrained to the linear
region of the tire forces. This will ensure that the car actually follow the direction set by
the steering angle and avoid approximation errors due to the linearization of the tire forces.

αmin ≤ α∗ ≤ αmax, ∗ ∈ {f, r} (6.17)

The constraints (6.14), (6.16) and (6.17) can then be written in shorthand as

h(ξ, u) ≤ 0 (6.18)

To ease the feasibility of the optimal control problem we will relax the constraints by
using slack variables ε to let us use soft constraints. This enables the controller to violate
the constraints, but increase the chance of finding a solution.

h(ξ, u) ≤ ε (6.19)

6.4 MPC formulation
By utilizing the hybrid GP model in the predictions we are able to use the following op-
timal control formulation. As previously mentioned earlier, an ancillary LQR feedback
controller will be used with the same cost matrices Q and R as the MPC problem. The
terminal constraint set is chosen to be Xf = {ξ | ξTPξ ≤ 10}, where P is the infi-
nite horizon cost matrix in (3.3), the same matrix used in the terminal cost Vf . To take
into account the stochastic property of the predicted states we will constrain the states to
be within the expected value of the terminal set, using the expected value of a Gaussian
distributed quadratic function.
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min
v, µξ,Σξ Vf (µξN − ξref,ΣξN ) +

N−1∑
i=0

l(µξi − ξref,Σξi , vi) + ‖∆ui‖2S + λT εi (6.20a)

s.t. µξ0 = ξk (6.20b)

Σξ0 = 0 (6.20c)

µξi+1,Σ
ξ
i+1 acc. to (6.11), (6.12) (6.20d)

µdi+1,Σdi+1 acc. to (2.23) (6.20e)

ui = Kµξi + vi (6.20f)

h(µξi , ui) ≤ εi (6.20g)
P (ξi ∈ X ) ≥ 1− ε acc. to (3.20) (6.20h)
P (ui ∈ U) ≥ 1− ε acc. to (3.20) (6.20i)

||µξN ||P + tr(PΣξN ) ≤ 10 (6.20j)

The expected value of the terminal cost VN (·) and the stage cost l(·) is given by equation
(3.12) using quadratic cost functions. The optimal control law is then given as κ(ξk) =
Kξk + v∗0 .

6.5 Simulation
As with the tank model we will use GP-MPC to simulate the experiment. CasADi, Anders-
son et al. (2018) is used for automatic Algorithmic differentiation, together with CVODES,
Hindmarsh et al. (2005), for simulation, IPOPT, Wächter and Biegler (2006), as the non-
linear solver in the optimal control problem, and ma27 (HSL) as the linear solver. The
prediction horizon is 17 steps, where the prediction is done using hybrid GP model, where
Taylor Approximation predicts the dynamics while a RK4 integrator give the kinematic
states. For comparison we will use an RK4 integrator for predicting the whole system.
The system is then simulated for 12.5 seconds, equivalent to 250 control moves. The car
will start in the initial state of driving 50km/h along the X axis, while all other states
are zero. The obstacle avoidance see just the closest obstacle and is able to see obstacles
within a radius of 40m. The parameters for the control problem is listed in table 5.2. All
simulations are done on a laptop from 2011, with i5 processor and 8GB of memory.

6.6 Results
Model learning

For the hybrid-GP model we use the three dynamic states to generate 200 training samples
using Latin Hypercube, and 500 samples for validation. The hyper-parameters optimized
for the resulting GP model used is then given by table 5.3, with the validation score in table
5.4. In Figure 6.2 we see the eigenvalue plot of both the linearized discrete dynamic states
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Table 6.2: Control problem parameters.

Param Value Units

Q diag(10−3, 5.0, 1.0,
0.1, 10−10, 1.0) - State penalty matrix

R diag(0.1, 1) - Input penalty matrix
S diag(1, 10) - Change in input penalty matrix
Cov(w) diag(10−5, 10−8, 10−8,

10−8, 10−5, 10−5) - Noise covariance matrix
λ 500 - Slack variable penalty
ε 0.05 - Probability of violation
∆t 50 ms Sampling time
Hc 17 - Number of steps in control horizon
Hp 17 - Number of steps in prediction horizon
ξ0 [13.89, 0, 0, 0, 0, 0] - Initial state
ξref [13.89, 0, 0, 0, 100, 0] - Desired set point
ξmin [10.0,−0.5,−0.2,−0.3, 0.0,−10.0] - Lower state boundary
ξmin [30.0, 0.5, 0.2, 0.3, 0.0, 10.0] - Upper state boundary
αmin −4 deg Minimum slip angle
αmax 4 deg Maximum slip angle
umin [−0.5,−2] - Minimum input
umax [0.5, 2] - Maximum input
eymin −3.5 m Lower road boundary
eymax 3.5 m Top road boundary
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Table 6.3: Validation of GP model using 500 randomized samples using Latin Hyper-cube.

SMSE MNLP

ẋ 4 · 10−6 −4.015
ẏ 0 · 10−6 −7.027
ψ̇ 3 · 10−6 −6.047

Table 6.4: Hyper-parameters for GP model.

State σf `0 `1 `2 `3 `4 σn

ẋ 266.86 11.47 7.66 1.75 3.02 1.73 2.19 · 10−6

ẏ 15.18 8.80 4.31 3.89 6.69 5.68 3.06 · 10−8

ψ̇ 18.28 9.13 4.89 2.06 6.28 1.80 6.67 · 10−8

and the linearized GP model, with µd0 = [13.89, 0, 0] and u0 = [0, 0] as the linearized oper-
ating point. Both models have similar eigenvalues, with practically identical eigenvalues,
one marginally stable and two destabilizing points. In 6.3 the GP model use Expected mo-
ments (EM), Taylor Approximation (TA), and Mean Equivalence (ME) compared against
the simulated system, both unforced open loop and closed loop with a LQR feedback con-
troller, with a prediction horizon of 17 steps. Even though the validation indicated a good
model, the open loop prediction results in an exponential growth in the uncertainty and
mean predictions that are way off. The mean don’t diverge from the simulated states, but
has an error bias that is far outside the safety region, equal to the car spinning in circles. To
reduce the uncertainty we introduce feedback with the LQR controller, giving a substantial
better result where all states and uncertainty are within the safety constraints.

Control

To test the GP effectiveness in a MPC setting we will again use the RK4 integrator as a
baseline comparison, with and without terminal constraints. In Figure 6.4 we see the car
avoiding obstacles using RK4 and no terminal constraints. In this case the MPC solver
can’t find any feasable solutions after the first obstacle, resulting in the instability that
breaks the CVODES simulator after around six seconds, with the yaw rate growing at an
exponential rate. In Figure 6.5 we again use RK4, but turn on the terminal constraints. We
now see a far better performance, where the car avoids all the obstacles, follow the path
and keep to the road middle line except when avoiding obstacles. We can also see from
the optimal control inputs that the driving is quite aggressive with saturation in both steer-
ing and throttle. To explain the instability using the RK4 method we replay the optimal
control inputs from 6.5 again to compare the open-loop simulation between RK4 and an
implicit method in Figure 6.6. Here it is clear that RK4 is numerically unstable in the car
predictions, where the MPC controller struggle to compensate and regain stability.

The vehicle path avoiding obstacles in the RK4 simulations together with the hybrid-
GP is given in Figure 6.7. Here we see that the slow control due to the infeasable solutions
using RK4 without terminal constraints, resulting in the simulated breaking after around
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(a) Open loop GP prediction

(b) Closed loop GP prediction using LQR feedback.

Figure 6.3: Comparison between open loop and closed loop with the GP model predicting 17 steps.
In the open loop the GP model is a unforced system with initial state at ξ = [13.89, 0, 0]. The
uncertainty in the open loop predictions quickly explode, while in the closed loop the LQR feedback
controller reduce the uncertainty and keep the system stable.
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(a) Simulated states

(b) Optimal control inputs

Figure 6.4: RK4 MPC with noise and no terminal constraint.
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(a) Simulated states

(b) Optimal control inputs

Figure 6.5: RK4 MPC with noise and terminal constraint.
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Figure 6.6: The 17 first control inputs from Figure6.7b with RK4 as integrator are replayed with
both RK4 and an exact implicit integrator. The exact simulation behaves as expected while the RK4
is unstable. This is also not unexpected as the eigenvalues of the model, as seen in Figure 6.2, is
outside of the stability region of the RK4 method.
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80 meters. In Figure 6.7b we see that the car is able to avoid all obstacles, and is able to
drive longer than the hybrid-GP simulations due to the aggressive driving, which results
in a small constraint violation in the second obstacle. Both hybrid-GP simulations with
and without terminal constraints are qualitatively identical, where the terminal constraint
doesn’t seem to have an effect. The car is able to avoid all the obstacles without violating
any constraints.

We were not able to get a GP model that returned a feasable solution in the MPC prob-
lem, due to the high variance, even with the use of feedback. Instead we use a deterministic
hybrid-GP model, where the covariance is defined as zero. This enables us to solve the
MPC problem without terminal constraints in Figure 6.8, and with terminal constraints in
Figure 6.9. As shown in the car path in Figure 6.7, both of these problems give qualita-
tively similar control input solutions, with practically identical resulting state simulations.
The car is able to avoid all the obstacles, and follow the road path, without violating any
constraint. Compared to the RK4 solutions, the d-hybrid-GP solution give more smooth
transitions in the control inputs, avoiding saturation of the control inputs.

Computational cost

For the RK4 with terminal constraints the computation time is around 500ms when avoid-
ing obstacles, and down to around 50ms when driving on a straight line. The deterministic
hybrid-GP use around one second or more to avoid obstacles, and runs within 100ms when
driving a straight line, and 38 seconds in the first iteration without warm-start. Both use
more than one second if the solver is unable to find a feasable solution.

6.7 Discussion
Vehicle Model

It is not really necessary to simplify the nonlinear model, which was only done in this
thesis to use the same parameters as in Gao et al. (2014), where the simplification where
done to reduce computational cost in the optimal control problem. This simplification
only makes sense if the goal was to use the approximated system in the MPC controller,
not so much if we want an accurate model to learn the car dynamics from. However since
the goal was never to use this model on an actual car, using the approximated model give
a simpler implementation. An interesting continuation would be to comparison the GP
model trained on the full nonlinear model with the simplified mechanical model presented
in this thesis, where the goal would be to control the full nonlinear model with the presence
of noise. In theory, the GP model would be more robust and the computational cost would
be about the same as when trained on the simplified model. The question to investigate
would then be to see if the added non-linearity to the model would require more training
data, and how much more data are needed.

One other point is that the obstacle constraints used in this thesis is far from optimal,
and chosen by their easy implementation. The dimensions of the car is indirectly taken
into account by incorporating them in the elliptic constraint. An alternative way is to use
the parallax information from the vehicle about the detected obstacles, as done in Yoon
et al. (2009).
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(a) RK4 simulation with no terminal constraints used.

(b) RK4 simulation with terminal constraints.

(c) Hybrid-GP without terminal constraints.

(d) Hybrid-GP with terminal constraints.

Figure 6.7: Comparison of RK4 and deterministic hybrid-GP with and without terminal constraints.
The vehicle drive along the road path, constrained within the road path, and try to avoid three obsta-
cles along the way. The simulated feedback measurements are added Gaussian noise.
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(a) Simulation of states.

(b) Optimal control inputs

Figure 6.8: Deterministic hybrid-GP MPC without terminal constraint.
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(a) Simulation of states.

(b) Optimal control inputs

Figure 6.9: Deterministic hybrid-GP MPC with terminal constraint.
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Model Learning

Using 200 samples gave a very good validation score, where all the estimated states have
quite good validation with both SMSE and MNLP compared to the tank model. But as this
chapter has presented, a good validation score is not enough to have a robust prediction.
If the system we try to estimate is unstable, or borderline unstable, a slight deviation from
the real model could lead to divergence in the predictions.

One of the major issues in this project was getting the GP model of the car accurate
enough to be able to run the MPC solver. With the hybrid-GP model we were able to get
a very good validation score, but due to the exponential growth of the variance, using the
model in a MPC problem was infeasable. Adding a LQR feedback controller reduced the
uncertainty substantially when the prediction was close to the operating point, but was not
enough to be able to find a feasable solution in the MPC problem. To be able to use a GP
model we had to define the covariance as zero, giving deterministic hybrid-GP instead.
Using this we were able to get good results, except for the fact that we unable to utilize the
covariance.

In Hewing et al. (2017) they used 300 samples to estimate just the modelling error
from the simplified vehicle equations. Pointing to that using 200 samples like we do is
not enough. The relatively low number is because of hardware constraints, as a larger
number is more difficult to optimize and especially to use with the MPC problem. The
other difference from Hewing et al. (2017) is that we use an optimal data spread with Latin
Hypercube, while they only used random measurement data, resulting in the need for more
data to be able to represent to whole state space. If we would use a larger model, we need
to use sparse approximation with a small set of inducing points in the MPC problem. In
the case of Hewing et al. (2017), they use a set of 10 inducing points instead of the full
model with 300 samples, picked from the previous optimal MPC trajectory. Using the full
GP model would be intractable for larger models due to the computational cost.

Chance constraints

The observant reader might have noticed that the safety constraints do not utilize the vari-
ance in the predictions. This was mostly just a simplification to neglect this part, but a
naive solution could be to use a three standard deviation distance in the constraints to be
able to be within the 99% confidence interval, similar to the approach in the other chance
state constraints. The same go for some of the state constraints that was not really nec-
essary for stability. These were mostly added to tighten the state-space to confine the
nonlinear solver to a set of states that are within the stability region.

Simulation Stability

Using a RK4 integrator in an open-loop unstable system is not the best idea, where the
the eigenvalues of the system is far outside of the stability region in the explicit Runga-
Kutta method, given by (B.2). We are however still able to use this method instead of
needing to turn to implicit methods because the MPC controller handles all constraints,
even though is struggles more when the integrator diverge from the real system, as it need
to do large changes in teh control inputs at each iteration to compensate for the prediction
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error. The GP-MPC framework also supports using CVODES/IDAS as the discretization
method inside the MPC problem, as an alternative to RK4, but the current implementations
has problems where the gradient of the integrator returns NaN values, and is slower than
the GP model in the cases it is able to run. This thesis then only focus on using the RK4
as a comparison to the GP model, even though it is unstable in this particular case. Due to
the slip angle constrain there is a possibility if a singularity if the longitudinal velocity ẋ is
zero, which is a possibility when using a interior point method. To avoid to much trouble
in the optimization a simple fix in this thesis is to just constrain the velocity to be strictly
positive. This could be handles better if we used the reasonable assumption that the slip
angle to be zero at low velocities, but since the simulation only use high velocities, this fix
was neglected.

System Stability

As a stabilizing condition, the terminal constraints help with making sure that the state
trajectories reach a terminal region in each iteration. For the RK4 method this was clear
where the terminal constraint made sure that the prediction didn’t diverge due to the in-
stability. Since the hybrid-Gp don’t diverge when using LQR feedback, the addition of
a terminal constraint did not add much value since it was already stable. In general this
show that a terminal constraint help with stabilization of a system. The drawback of using
this is that it increase the chance of infeasable solutions, when the MPC solver can not find
a solution that bring the state trajectory to the terminal region within the control horizon.
A longer prediction horizon would ensure better stability with more time to react to obsta-
cles, and more time to reach the terminal region, but the drawback of using long horizons
is the increased computational cost. It doesn’t matter if we find a feasable solution if we
can’t actuate the control within the sampling interval.

Even though we were able to get a stable solution using a GP model, we were not able
to utilize the propagated uncertainty to get cautious control. Vehicle control is the type
of problem that have a need for cautious control, as small deviations due to model error
or noise can lead to instability. Having an estimate of the uncertainty directly from the
predictions would ensure that the states are kept within the stability region. The alternative
is to use methods from robust MPC like tube-based methods that rely on that we know the
bounds of the noise.
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Chapter 7
Discussion

7.1 Prediction Stability

One of the things we have observed in this thesis is that even though the car has smaller
state-input space than the tank, more data points and better validation score, it still has a
substantially worse multi-step predication performance. As discussed in section 4.2 with
the Van der Pol system, the validation score is not enough to give an indication on how
well the prediction will turn out. The validation score is only a regression evaluation,
and can not say anything about the stability of the prediction. If the model is open-loop
stable, there should not be any problems as long as the GP model is also stable. If on the
other hand the open-loop system is unstable, a slight error could lead to divergence in the
prediction. This is a property that the GP model share with other simulation methods. In
appendix B.2 there is a discussion on the numerical stability of explicit integrators like
Runga-Kutta. In the car example we saw that the GP had better prediction stability than
the RK4, given by the fact that the vehicle system has eigenvalues outside of the stability
region of RK4. This then means that we cannot use a standard regression validation alone,
and instead look to the stability analysis of simulation methods to learn more about how
we can find sensitivity analysis methods suitable for Gaussian Process models.

7.2 Computational cost

One point that has not been the focus of this thesis is the computational cost of using a GP
model over a cheaper RK4 model. The focus of this thesis has mainly been to investigate
how effective the GPs are to estimate nonlinear dynamics, and how we can use utilize the
uncertainty. This question can however not be neglected completely. If the solver cannot
find a feasable solution within the sample interval, we would not be able to use the result.
In both cases with the tank system and the car we observed a quite high computation time,
a factor of ten higher or more than RK4 in both cases. It should be noted that RK4 alone
would not be a realistic comparison, as the GP model would not be a direct alternative to
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first principle models. The real value lay in being able to to adapt the model online, either
using the GP as the full model, or using the GP to estimate model errors and noise. For
direct comparison we would need to compare with state of the art system identification
methods or adaptive controllers. In addition to the fact that more stable implicit solvers
are computationally more expensive than RK4.

It should also be noted that even tough an effort has been made to optimize the code
for speed, using warm start, optimizing the math for numerical stability and speed, and
picked solver options and solvers that are optimal for the problems, the main goal of the
GP-MPC has been to create a flexible framework to ease experimentation. At the cost of
performance.

7.3 Stability

The condition for stability with the use of MPC is the that the terminal state is constrained
within an invariant set. Since GP models in theory have unbounded uncertainty distribu-
tions, such set is not tractable so we have to consider the probability that the system will
converge within the terminal set. In this thesis we have used the uncertainty propagation
with the GP model to constrain the model within the 95th percentile from the predicted
mean.

This method will in theory give us a probabilistic condition for stability, but there are
a few issues that have to be discussed. The most important one is that there is by no
means a guarantee that the actual system lays within the 2 sigma bound from the mean. If
the GP has to little data or has a bad fitting, the predicted variance would not necessarily
give a correct estimate of the distance between the real value and the predicted mean. A
bad fitting of the hyper-parameters could give saturation of the predicted variance that is
too small, while training data consisting of points that don’t represent the system would
give an unrealistic estimate of the variance. Both of these conditions are exemplified in
Figure 4.2, where ten sample points can give an accurate estimate of both the mean and
the uncertainty if the data is chosen wisely, or predict a constant zero mean where the 95th
percentile of the predicted variance is not even close to enclose the real system in the worst
case scenario. This problem should be accounted for be satisfactory model validation, but
as discussed earlier it is important to note that there is no guarantee that the validation is
good enough. As with the trained model, the validation is only as good as the data it has,
in addition to the stability region of the prediction.

On the opposite site there could be a problem with unrealistic high uncertainty, with
growing uncertainty in long predictions, even though the prediction stay close to the real
value. This is problematic with the use of terminal constrained set as it become difficult
to find a feasable solution. Removing the terminal set would also remove the stability
condition, and only relying on the cost functions, while keeping the set could cause in-
feasable solutions and almost guarantee instability if a re-initialization is not able to bring
a feasable solution within reasonable time. This has the same fundamental problem as
above where there is not enough training data, or the data does not represent the actual
system well enough.
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7.4 System Identification and Online Adaption
Even though system identification is the main objective for using Gaussian Process with
control, this thesis has barely looked into this topic. System identification present us with
the option of using measurement data to better estimate the our model, which if done
online can be implemented as an adaptive controller. This thesis has presented use cases
where first principle models work better, as a way of investigating the effectiveness of
the PG prediction in MPC. The strength of using GP in control is when we can use it
on systems where we either do not know the first principle models, or it is difficult to
gen an accurate model based on coefficients that change or is difficult to find. Hewing
and Zeilinger (2017) use this method to estimate the model error while Chowdhary et al.
(2015) use GP together with Model reference adaptive control (MRAC) to account for
changing model parameters.
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Chapter 8
Conclusion and Future Work

8.1 Conclusion

In previous works like Kocijan et al. (2004) and Hewing and Zeilinger (2017) we have
seen that Gaussian Process has the interesting property that we can utilize the uncertainty
for cautious model predictive control. This thesis has then been an extension of this to
investigate the effectiveness og GPs in control. By using two different use cases, a slow
stable tank system against a marginally stable vehicle model with fast dynamics we have
observed that we are able to stabilize and meet the constraints without any violation. That
we are able to propagate the uncertainty seems promising where the uncertainty can com-
pensate for the model error in the constraints. What we have observed in the this thesis
is however that just using the uncertainty is by no means a guaranty that the constraints
are not going to be violated. In this thesis we have discussed three points. The two first
are that it is necesary to have an accurate model, with well fitted hyper-parameters t be
able to trust the uncertainty. With sub-optimal hyper-parameters, and a sub-optimal repre-
sentation of the system in the training data, we risk both a naive variance that don’t cover
the model error within the 95% confidence interval, or 99% for that matter, and the op-
posite case where the uncertainty grows out of bounds, far beyond the actual model error.
Meaning that it is not possible to meet the chance constraints due to the unrealistic high
variance. A badly fitted model is often due to lack in model validation. and is the topic
of the third point. Normal validation scores for GPs are meant to validate a regression
model for one step predictions. In multi-step predictions we also have to take into account
the stability of the system we want to estimate. In systems that are chaotic we know that
any small perturbations can lead to instability. The same must also be considered even for
marginally stable systems, as even a minuscule model error can propagate and change the
stability properties, resulting in divergence. Similar to well known numerical methods like
explicit Runga-Kutta, it is essential that we have methods for sensitivity analysis. Without
this there is always the danger of instability in the predictions, and as a result instability in
the system we want to control.

Given these considerations it is still clear that Gaussian processes show great potential
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in the field of control. Problems that have been discussed can be handled by a large enough
representation of data, while using sparse GP with inducing point can take care of the
computational cost. This thesis has looked into offline learning of the whole system, but
the real value lays by using the GPs online in an adaptive manner. Gaussian process is a
powerful method for regression, and can be utilized both with adaptive, robust control by
learning the whole model like in this thesis, or as a way of estimating noise and model
errors in the system.

8.2 Future work
This thesis has given an introduction to the use of Gaussian processes with model predic-
tive control. One interesting continuation of this project would be to implement sparse GPs
with a greater number of data to see if it is possible to get a cautious control of the vehicle
model. A path that could give a great deal of value would be in the sensitivity analysis
of GP prediction, to have a real measure of the numerical stability in the prediction. As
mentioned previously, the power of using GPs with control is not to replace first principle
models with a machine learning model. The potential is in the combination, where the
GPs can compensate for inaccurate, or changing model parameters, where the estimated
uncertainty can give a cautious method with both robust and adaptive control. Researching
this field further would be very interesting.
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Appendix A
Linear Algebra

This chapter will contain mathematics that are nontrivial and mathematical tricks that may
speed up the computation or ensure better numerical stability,

Matrix Inversion Lemma

If we have done the effort of obtaining the inverse matrix A−1 of a square n × n matrix
A, it would be beneficial to be able to avoid recomputing the whole inverse matrix if we
are only want a small change in A, e.g. one element aij or a column. To do this efficiently
we can use the matrix inversion lemma, also known as Woodbury, Sherman and Morrison
formula Press et al. (1992) if our change is on the form

A→ (A + UWVT ) (A.1)

where U and V both have the shape n ×m, W is a n × n matrix. For low rank pertuba-
tions (m < n) to A, considerable speed up may be achieved. The lemma then states the
following

(A + UWVT )−1 = A−1 −A−1U(W−1 + VTA−1U)−1VTA−1 (A.2)

Cholesky factorization

With a positive definite matrix A, the factorization is given as A = LLT , where L is a
lower triangular matrix with all positive elements. Lay (2012).

QR decomposition

Given a m×n matrix A with independent columns, the factorization is given as A = QR.
R is an upper triangular matrix, while Q contain the orthogonalized columns from A.
Strang (2006).
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Gram Matrix

Given a set of vectors V = {v1, . . . ,vn}, the Gram matrix G is the matrix of all possible
inner products of V with each element given as

gij = vTi vj (A.3)

where i and j denotes the row and column respectively. The Gram matrix of a m × n
matrix A is given as G = ATA, where all the elements in the Gram matrix are the inner
products of the columns of A. Properties of the Gram matrix is that it is positive definite
and symmetric. Lay (2012).

Determinant computation using QR Decomposition

To speed up the determinant computation of the covariance matrix we can take advantage
of the fact the the matrix is symmetric and positive definite, using the QR decomposition,
K = QR. This means we can reduce the computation of the determinant to a rather cheap
computational problem.

det(K) = det(Q)det(R) (A.4)

The resulting Q matrix is orthogonal, so det(Q) = 1, and since R is triangular, the
determinant is just the multiplication of the diagonal elements. If we want that log deter-
minant, this can be simplified further with the log determinant given as the trace of the log
of R

log(det(K)) = log(det(R)) = trace(log(R)) (A.5)

Update Cholesky decomposition of the Gram matrix

Instead of recompute the Gram matrix at each update Nguyen-Tuong et al. (2009) instead
propose an efficient method of updating the Cholesky decomposition of the Gram matrix
K. If L is the Cholesky decomposition, then the new matrices Lnew and Knew are obtained
by adding additional row and columns

Lnew =
[

L 0
lT l∗

]
, Knew =

[
K kTnew

knew knew

]
(A.6)

where knew = k(X,xnew) and knew = k(xnew,xnew). l and l∗ can then be solved using

Ll = knew, (A.7)

l∗ =
√
knew − ‖l‖2 (A.8)

Nguyen-Tuong et al. (2009) also discuss how to delete old data points when a max-
imum number of training points is reached using a permutation matrix R = I − (δm −
δn)(δm − δn)T , where δi is a zero vector with element i equal to 1. New data can then be
inserted in the nth row, while the mth data can be removed. Instead of using the cholesky
matrix directly, we can use the adjusted matrix RLnewLTnewR.
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Appendix B
GP-MPC: Implementation

This chapter give the detials of the implementation of GP-MPC. A framework written as
a part of this thesis for using Gaussian Process together with Model Predictive Control
for optimal control. The framework has been implemented with the principles of being
flexible enough to experiment with different GP methods, optimization of GP models. and
using different MPC schemes and constraints.

The GP methods has been implemented using Hewing and Zeilinger (2017) and Deisen-
roth and Rasmussen (2011) as references while the MPC algorithm is a nonlinear stochas-
tic MPC implementation based on Rawlings et al. (2017), with probabilistic constraints
given by Hewing and Zeilinger (2017) . As a backbone in this framework lay CasADi,
Andersson et al. (2018), as a symbolic framework for large scale optimization. For sim-
ulation this framework support the solvers provided by CasADi and Sundails, Hindmarsh
et al. (2005), for both ODEs (CVODES), and DEAs (IDAS). In addition this framework
has implemented a simple RK4 method in CasADi for faster computation of the optimal
control problem.

As a model in the MPC algorithm it is possible to use an exact integrator from Sundails
(CVODES, IDAS), RK4, GP, a hybrid model consisting of a GP estimating the dynamics
and RK4 to integrate the kinematic equation based on the dynamic GP model, or a hy-
brid where the GP model estimates the noise and modeling error, similar to Hewing and
Zeilinger (2017).

Requirements

• Python > 3.5

• CasADi (tested with version 3.4)

B.1 GP model
The Gaussian Process is implemented with the support for only the SEard covariance
function (2.5), and the following mean functions: zero, constant, linear, and polynomial.
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Approximations of the uncertainty propagation is implemented using Mean Equivalence,
first order Taylor expansion, and Expected Moments.

Optimization of hyper-parameters can be done using interior-point method (IPOPT)
with CasADi or Sequential Least SQuares Programming (SLSQP) using SciPy. Both
are constrained nonlinear solvers where a uniform prior (li ∈ (1e−2, 1e2)) on the hyper-
parameters is implemented using the constraints. The optimization can also be done with-
out using a prior on the hyper-parameters using conjugate gradient (CG), but this usually
give a worse result so long as we have an idea of which prior to use. To avoid negative
hyper-parameters, the CG method require the change to optimize over the log-value of
the hyper-parameters. CasADi has the advantage that it give the derivatives automatically,
but has problems where the symbolic expression of the Hessian grows out of hand when
optimizing the GP model, even for relatively small GP models. For 32bit python the GP
model is constricted to less than 50 samples, while 64bit struggle with sample sizes larger
than 100. SciPy use finite differences to estimate the derivatives and do not suffer from
the same problem with exponential memory use, and is the recommended choice.

B.2 Numerical simulation
The GP-MPC framework supports both DEA and ODE equations using IDAS integrator
from Sundails Hindmarsh et al. (2005) . For ODEs it is also implemented an explicit
Runga-Kutta 4 (RK4) integrator to be used as a less computational expensive integration
method. IDAS and CVODES are implicit methods that can be used as an exact simulation
reference, while RK4 can be used to discretize the system model for use in the MPC
problem. It is also support for IDAS and CVODES as the discrete model in the MPC
problem, where CasADi is able to provide the derivative of these solvers, but while these
are more stable it come to the expense of computation cost.

B.2.1 Explicit Runga-Kutta

A simple discrete integrator where the fourth order method in equation (B.1) is abbreviated
to RK4. It is one of the most widely used methods for simulating ordinary differential
equations, Rawlings et al. (2017), as it is simple to implement and computationally cheap.

k1 = f(t,x)
k2 = f(t+ h/2,x +(h/2)k1)
k3 = f(t+ h/2,x +(h/2)k2)
k4 = f(t+ h,x +hk2)
Φ = (h/6)k1 + (h/3)k2 + (h/3)k3 + (h/6)k4

(B.1)

From Egeland and Gravdahl (2002) we can get that the numerical method is stable if
the magnitude of the stability function is less than or equal to one for all the eigenvalues
λi

|R(hλi)| ≤ 1, i = 1, . . . , d (B.2)
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Figure B.1: Stability regions for Runga-Kutta methods with a step size of h = 1.

of the Jacobian J , evaluated at the solution x∗

J = ∂f(x)
∂xT

∣∣∣∣
x=x∗

(B.3)

the stability function for a general explicit Runga-Kutta function

R(hλ) = det
[
I − λh

(
A− 1bT

)]
(B.4)

where A and b is the matrices from the Butcher array. For explicit Runga-Kutta methods
of order σ and stages p less than or equal to four, the stability function is given as the
polynomial

R(λh) = 1 + hλ+ (hλ)2

2! + · · ·+ (hλ)p

p! , p = σ ≤ 4 (B.5)

RK4 is a forth order method, giving σ = p = 4.
The drawback of using Runga Kutta and other explicit methods in general is that they

are conditionally stable. Equation (B.5) gives the stability for a certain values of time
steps, where an integration method could by this stability definition be stable for systems,
and unstable for a different one. To give a more strict stability formulation Egeland and
Gravdahl (2002) gives the following definitions for A- and L-stability. A method that is
A-stable is then stable for all test systems that are stable. Systems that are A-stable will be
stable even if the system dynamics are faster than the time step h.

Definition B.1. A method is A-stable if |R(λh)| ≤ 1 for all Reλ ≤ 0.

Even if an A-stable method is stable with fast dynamics it cannot give an accurate es-
timate of dynamics that are faster than the Nyquist frequency of π/h, resulting in aliasing.
To avoid this it is useful to dampen the fast dynamics, giving the definition of L-stability.

Definition B.2. A method is L-stable if it is A-stable and, in addition. if |R(jωh)| → 0
when ω →∞ for all systems ẏ = λy where λ = jω.
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B.2.2 Implicit Methods
According to Egeland and Gravdahl (2002), with explicit RK methods, the time step h
can not be chosen such that h|λmax| is significantly larger than the unity. This means
that no explicit methods can be A-stable. With the explicit methods, the time-step must
be selected such that stability is ensured. If the system has a large spread in eigenvalues,
the small eigenvalues result in a lot of small time steps to compute both the fast and slow
dynamics. This is problematic in terms of time and accuracy. Stiff systems are problems
where explicit methods don’t work, where there is presence of rapidly damped mode, with
time constant small compared to the time scale of the solution.Hairer and Wanner (1996)

To account for this we can use an implicit solver. They are more expensive than the
explicit solvers, but are more robust to numerical instability even for relatively large val-
ues of time steps. Examples of implicit solvers are implicit Runga-Kutta, or multi-step
methods such as Adam-Moulton, or Backward Differentiation Formulas (BDFs). Further
reading is referred to Hairer et al. (1993), while their stability analysis on stiff systems is
referred to Hairer and Wanner (1996).

B.2.3 SUNDAILS
The SUNDAILS suite from Hindmarsh et al. (2005), is a suite of equation solvers for
nonlinear ODE, DAE and algebraic equations, where the following implicit solvers are
supported by the GP-MPC framework.

CVODES

CVODES is a part of the SUNDAILS suite, and solves ODE initial value problem in N
dimensional space

ẏ = f(t, y), y(t0) = y0 (B.6)

with y ∈ RN , solving both stiff and non-stiff systems. For non-stiff problems Adams-
Moulton formulas is used, while for stiff problems CVODES use Backward Differentiation
Formulas (BDFs) in fixed-leading coefficient form.

IDAS

Solve differential-algebraic equations (DAE)

F (t, y, ẏ) = 0, y(t0) = y0 ẏ(t0) = ẏ0 (B.7)

IDEAS is a part of the SUNDAILS suite from Hindmarsh et al. (2005) and use a variable-
order, variable-coefficient BDF in fixed-leading-coefficient form as the integration method.

B.3 Numerical optimization

B.3.1 Linear solver
For problems in the form

x = A−1y (B.8)
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The default linear solver in CasADi is the built in direct sparse solver CSparse. For the
most cases in this thesis it has been used the plugin for direct sparse linear solver for
symmetric systems, ma27 from Harwell Subroutine Library (HSL).

B.3.2 Nonlinear solver
For constrained nonlinear optimization problems the nonlinear solver used within CasADi
is the interior-point method IPOPT from Wächter and Biegler (2006), a primal-dual interior-
point algorithm with filter line-search built for large scale optimization. An introduction
to interior-point methods is provided by Wright and Nocedal (2006).

B.3.3 Computing derivatives using CasADi
The framework used in GP-MPC is CasADi from Andersson et al. (2018), a symbolic
framework with Algorithmic differentiation (AD). CasADi provide AD on user-defined
symbolic expressions, interface to simulation of ODE and IDEs (e.g. Sundails Hindmarsh
et al. (2005)) and optimization (e.g. IPOPT Wächter and Biegler (2006)). Every user
defined CasADi function passed to a numerical solver automatically provide the necessary
derivatives to the solver. For many of the solvers, CasADi also support the derivatives of
the solvers themselves. This enables the use of e.g. the CVODES integrator as a constraint
in an optimization problem.

B.3.4 Linearization
Approximation of a nonlinear system with a linear system

xk+1 = f(xk, uk) (B.9a)
xk+1 ≈ Axk +Buk (B.9b)

where f(x, u) is linearized with the Jacobian evaluated around a local operating point

A = ∂f(x, u)
∂xT

∣∣∣∣
x0,u0

, B = ∂f(x, u)
∂uT

∣∣∣∣
x0,u0

(B.10)

The Jacobian is provided automatically by CasADi, where the linearization is implemented
for both the system model (ODE/DEA) and GP model.

B.4 MPC
The GP-MPC framework has implemented the stochastic MPC problem in (3.10) using
the simultaneous approach, multiple shooting, with optional terminal constraint and op-
tional feedback using LQR on the approximated linearized system. For cost function both
expected value of quadratic and saturated cost has been implemented. The optimization
problem is solved using IPOPT as nonlinear solver Wächter and Biegler (2006) with ma27
as a linear solver HSL. The first and second derivatives are automatically provided by
CasADi. For prediction models it is support for RK4, CVODES, GP, hybrid-GP, and de-
terministic hybrid-GP where the variance is defined as zero.
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Appendix C
GP-MPC: Documentation

This appendix contain all the code used in this thesis, where it all is implemented as the
python package gp mpc. See https://github.com/helgeanl/GP-MPC for the
most recent updates.

Requirements

• Python > 3.5

• CasADi (tested with version 3.4)

C.1 gp class
Available class functions:

GP.__init__(...)
GP.optimize(...)
GP.validate(...)
GP.set_method(...)
GP.predict(...)
GP.get_size()
GP.get_hyper_parameter()
gp.print_hyper_parameters()
GP.covSEard(...)
GP.covar(...)
GP.update_data(...)
GP.covSEard(...)
GP.standardize(...)
GP.normalize(...)
GP.inverse_mean(...)
GP.inverse_variance(...)
GP.discrete_linearize(...)
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GP.jacobian(...)
GP.noise_variance()
GP.__to_dict()
GP.save_model(...)
GP.load_model(...)
GP.predict_compare(...)
GP.inverse_variance(...)

C.2 gp functions
Available functions:

covSEard(...)
get_mean_function(...)
build_gp(...)
build_TA_cov(...)
gp(...)
gp_taylor_approx(...)
gp_exact_moment(...)
maha(...)

C.3 optimize
Available functions:

calc_NLL(...) # CasADi
train_gp(...) #CasADi
calc_cov_matrix(...) # Numpy/Scipy
calc_NLL_numpy(...) # Numpy/Scipy
train_gp_numpy(...) # Numpy/Scipy
validate(...)

C.4 model class
Available class functions:

Model.__init__(...)
Model.linearize(...)
Model.discrete_linearize(...)
Model.discrete_rk4_linearize(...)
Model.rk4_jacobian_x(...)
Model.rk4_jacobian_u(...)
Model.check_rk4_stability(...)
Model.sampling_time()
Model.size()
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Model.integrate(...)
Model.sim(...)
Model.generate_training_data(...)
Model.plot(...)
Model.predict_compare(...)

C.5 mpc class
Available class functions:

MPC.__init__(...)
MPC.solve(...)
MPC.__set_cost_function(...)
MPC.__cost_saturation_lf(...)
MPC.__cost_saturation_l(...)
MPC.__cost_l(...)
MPC.__constraint(...)
MPC.__debug(...)
MPC.plot(...)
lqr(...)
plot_eiq(...)
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Appendix D
GP-MPC: Code Example

This chapter contain the following examples:

• Use a Gussian Process to estimate the Van der Pol equations.

• Train a GP model on data from a four-tank system and control the system using
MPC with the GP as model in the prediction horizon.

• Train GP model on a car model and use this with MPC to avoid obstacles and follow
a road path.

D.1 Van der Pol
# -*- coding: utf-8 -*-
"""
Example of predicting the Van der Pol equation with a Gaussian Process

@author: Helge-André Langåker
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from sys import path
path.append(r"./../") # Add gp_mpc pagkage to path

import numpy as np
import casadi as ca
import matplotlib.pyplot as plt
from gp_mpc import Model, GP, MPC, plot_eig, lqr

def plot_van_der_pol():
""" Plot comparison of GP prediction with exact simulation

on a 2000 step prediction horizon
"""
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Nt = 2000
x0 = np.array([2., .201])

cov = np.zeros((2,2))
x = np.zeros((Nt,2))
x_sim = np.zeros((Nt,2))

x[0] = x0
x_sim[0] = x0

gp.set_method('ME') # Use Mean Equivalence as GP method
for i in range(Nt-1):

x_t, cov = gp.predict(x[i], [], cov)
x[i + 1] = np.array(x_t).flatten()
x_sim[i+1] = model.integrate(x0=x_sim[i], u=[], p=[])

plt.figure()
ax = plt.subplot(111)
ax.plot(x_sim[:,0], x_sim[:,1], 'k-', linewidth=1.0, label='Exact')
ax.plot(x[:,0], x[:,1], 'b-', linewidth=1.0, label='GP')
ax.set_ylabel('y')
ax.set_xlabel('x')
plt.legend(loc='best')
plt.show()

def ode(x, u, z, p):
""" Van der Pol equation
"""
mu = 2
dxdt = [

x[1],
-x[0] + mu * (1 - x[0]**2) * x[1]

]
return ca.vertcat(*dxdt)

""" System Parameters """
dt = .01 # Sampling time
Nx = 2 # Number of states
Nu = 0 # Number of inputs
R_n = np.eye(Nx) * 1e-6 # Covariance matrix of added noise

# Limits in the training data
ulb = [] # No inputs are used
uub = [] # No inputs are used
xlb = [-4., -6.]
xub = [4., 6.]

N = 40 # Number of training data
N_test = 100 # Number of test data

""" Create simulation model and generate training/test data"""
model = Model(Nx=Nx, Nu=Nu, ode=ode, dt=dt, R=R_n, clip_negative=True)
X, Y = model.generate_training_data(N, uub, ulb, xub, xlb, noise=True)
X_test, Y_test = model.generate_training_data(N_test, uub, ulb, xub, xlb, noise=True)
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""" Create GP model and optimize hyper-parameters"""
gp = GP(X, Y, mean_func='zero', normalize=True, xlb=xlb, xub=xub, ulb=ulb,

uub=uub, optimizer_opts=None)
gp.validate(X_test, Y_test)

""" Predict and plot the result """
plot_van_der_pol()

D.2 Control of a Four-Tank System
This script provide an example of using GP-MPC for fitting a GP model to a system
consisting of four tanks, and solving the MPC problem for 80 iterations using simulated
measurements.

# -*- coding: utf-8 -*-
"""
@author: Helge-André Langåker
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from sys import path
path.append(r"./../") # Add gp_mpc pagkage to path

import numpy as np
import casadi as ca
from gp_mpc import Model, GP, MPC

def ode(x, u, z, p):
# Model Parameters (Raff, Tobias et al., 2006)
g = 981
a1 = 0.233
a2 = 0.242
a3 = 0.127
a4 = 0.127
A1 = 50.27
A2 = 50.27
A3 = 28.27
A4 = 28.27
gamma1 = 0.4
gamma2 = 0.4

dxdt = [
(-a1 / A1) * ca.sqrt(2 * g * x[0] + 1e-3) + (a3 / A1 )

* ca.sqrt(2 * g * x[2] + 1e-3) + (gamma1 / A1) * u[0],
(-a2 / A2) * ca.sqrt(2 * g * x[1] + 1e-3) + a4 / A2

* ca.sqrt(2 * g * x[3]+ 1e-3) + (gamma2 / A2) * u[1],
(-a3 / A3) * ca.sqrt(2 * g * x[2] + 1e-3) + (1 - gamma2) / A3 * u[1],

(-a4 / A4) * ca.sqrt(2 * g * x[3] + 1e-3) + (1 - gamma1) / A4 * u[0]
]

return ca.vertcat(*dxdt)
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""" System parameters """
dt = 3.0
Nx = 4
Nu = 2
R = np.eye(Nx) * 1e-5 # Noise covariance

""" Limits in the training data """
ulb = [0., 0.]
uub = [60., 60.]
xlb = [.0, .0, .0, .0]
xub = [30., 30., 30., 30.]

N = 60 # Number of training data
N_test = 100 # Number of test data

""" Create Simulation Model """
model = Model(Nx=Nx, Nu=Nu, ode=ode, dt=dt, R=R, clip_negative=True)
X, Y = model.generate_training_data(N, uub, ulb, xub, xlb, noise=True)
X_test, Y_test = model.generate_training_data(N_test, uub, ulb, xub, xlb, noise=True)

if 1:
""" Create GP model and optimize hyper-parameters on training data """
gp = GP(X, Y, mean_func='zero', normalize=True, xlb=xlb, xub=xub, ulb=ulb,

uub=uub)
gp.save_model('models/gp_tank')

else:
""" Or Load Example Model"""
gp = GP.load_model('models/gp_tank_example')

gp.validate(X_test, Y_test)
gp.print_hyper_parameters()

""" Limits in the MPC problem """
ulb = [10., 10.]
uub = [60., 60.]
xlb = [7.5, 7.5, 3.5, 4.5]
xub = [28., 28., 28., 28.]

""" Initial state, input and set point """
x_sp = np.array([14.0, 14.0, 14.2, 21.3])
x0 = np.array([8., 10., 8., 19.])
u0 = np.array([45, 45])

""" Penalty matrices """
Q = np.diag([20, 20, 10, 10]) # State penalty
R = np.diag([1e-3, 1e-3]) # Input penalty
S = np.diag([.01, .01]) # Input change penalty

""" Options to pass to the MPC solver """
solver_opts = {

# 'ipopt.linear_solver' : 'ma27', # Plugin solver from HSL
'ipopt.max_cpu_time' : 30,
'expand' : True,

}
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""" Build MPC solver """
mpc = MPC(horizon=30*dt, gp=gp, model=model,

gp_method='TA',
ulb=ulb, uub=uub, xlb=xlb, xub=xub, Q=Q, R=R, S=S,
terminal_constraint=None, costFunc='quad', feedback=True,
solver_opts=solver_opts, discrete_method='gp',
inequality_constraints=None
)

""" Solve and plot the MPC solution, simulating 80 iterations """
x, u = mpc.solve(x0, u0=u0, sim_time=80*dt, x_sp=x_sp, debug=False, noise=True)
mpc.plot(xnames=['Tank 1 [cm]', 'Tank 2 [cm]','Tank 3 [cm]','Tank 4 [cm]'],

unames=['Pump 1 [ml/s]', 'Pump 2 [ml/s]'])

D.3 Vehicle Obstacle Avoidance
This script provide an example of using GP-MPC for training a GP model on a bicycle
car model, predicting open/closed loop, building MPC constraints, and solve the MPC
problem for 50 iterations using simulated measurements.

# -*- coding: utf-8 -*-
"""
@author: Helge-André Langåker
"""
from sys import path
path.append(r"./../") # Add gp_mpc pagkage to path

import numpy as np
import casadi as ca
import scipy.linalg
import matplotlib.pyplot as plt
from matplotlib.patches import Ellipse, Rectangle
from gp_mpc import Model, GP, MPC, plot_eig, lqr

def ode(x, u, z, p):
""" Full Bicycle Model
"""
# Model Parameters (Gao et al., 2014)
g = 9.18 # Gravity [m/sˆ2]
m = 2050 # Vehicle mass [kg]
Iz = 3344 # Yaw inertia [kg*mˆ2]
Cr = 65000 # Tyre corning stiffness [N/rad]
Cf = 65000 # Tyre corning stiffness [N/rad]
mu = 0.5 # Tyre friction coefficient
l = 4.0 # Vehicle length
lf = 2.0 # Distance from CG to the front tyre
lr = l - lf # Distance from CG to the rear tyre
Fzf = lr * m * g / (2 * l) # Vertical load on front wheels
Fzr = lf * m * g / (2 * l) # Vertical load on rear wheels
eps = 1e-20 # Small epsilon to avoid dividing by zero

dxdt = [
1/m * (m*x[1]*x[2] + 2*mu*Fzf*u[0] + 2*Cf*u[1]**2
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- 2*Cf*u[1] * (x[1] + lf*x[2]) / (x[0] + eps) + 2*mu*Fzr*u[0]),
1/m * (-m*x[0]*x[2] + 2*mu*Fzf*u[1]*u[0]

+ 2*Cf*(x[1] + lf*x[2]) / (x[0] + eps) - 2*Cf*u[1]
+ 2*Cr*(x[1] - lf*x[2]) / (x[0] + eps)),

1/Iz * (2*lf*mu*Fzf*u[0]*u[1] + 2*lf*Cf*(x[1] + lf*x[2]) / (x[0] + eps)
- 2*lf*Cf*u[1] - 2*lr*Cr*(x[1] - lf*x[2]) / (x[0] + eps)),

x[2],
x[0]*ca.cos(x[3]) - x[1]*ca.sin(x[3]),
x[0]*ca.sin(x[3]) + x[1]*ca.cos(x[3])

]
return ca.vertcat(*dxdt)

def ode_gp(x, u, z, p):
""" Dynamic equation of Bicycle model for use with GP model
"""
# Model Parameters (Gao et al., 2014)
g = 9.18 # Gravity [m/sˆ2]
m = 2050 # Vehicle mass [kg]
Iz = 3344 # Yaw inertia [kg*mˆ2]
Cr = 65000 # Tyre corning stiffness [N/rad]
Cf = 65000 # Tyre corning stiffness [N/rad]
mu = 0.5 # Tyre friction coefficient
l = 4.0 # Vehicle length
lf = 2.0 # Distance from CG to the front tyre
lr = l - lf # Distance from CG to the rear tyre
Fzf = lr * m * g / (2 * l) # Vertical load on front wheels
Fzr = lf * m * g / (2 * l) # Vertical load on rear wheels
eps = 1e-10 # Small epsilon to avoid dividing by zero

dxdt = [
1/m * (m*x[1]*x[2] + 2*mu*Fzf*u[0] + 2*Cf*u[1]**2

- 2*Cf*u[1] * (x[1] + lf*x[2]) / (x[0] + eps) + 2*mu*Fzr*u[0]),
1/m * (-m*x[0]*x[2] + 2*mu*Fzf*u[1]*u[0]

+ 2*Cf*(x[1] + lf*x[2]) / (x[0] + eps) - 2*Cf*u[1]
+ 2*Cr*(x[1] - lf*x[2]) / (x[0] + eps)),

1/Iz * (2*lf*mu*Fzf*u[0]*u[1] + 2*lf*Cf*(x[1] + lf*x[2]) / (x[0] + eps)
- 2*lf*Cf*u[1] - 2*lr*Cr*(x[1] - lf*x[2]) / (x[0] + eps)),

]
return ca.vertcat(*dxdt)

def ode_hybrid(x, u, z, p):
""" Kinematic equations of Bicycle model for use with hybrid model
"""
dxdt = [

u[2],
u[0]*ca.cos(x[0]) - u[1]*ca.sin(x[0]),
u[0]*ca.sin(x[0]) + u[1]*ca.cos(x[0])

]
return ca.vertcat(*dxdt)

def constraint_parameters(x):
""" Constraint parameters to send to the solver at each iteration
"""
car_pos = x[4:]
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dist = np.sqrt((car_pos[0] - obs[:,0])**2
+ (car_pos[1] - obs[:, 1])**2 )

if min(dist) > 40:
return np.hstack([car_pos * 1000, [0,0]])

return obs[np.argmin(dist)]

def inequality_constraints(x, covar, u, eps, par):
""" Inequality constraints to send to the MPC builder
"""
con_ineq = []
con_ineq_lb = []
con_ineq_ub = []

""" Slip angle constraint """
dx_s = ca.SX.sym('dx')
dy_s = ca.SX.sym('dy')
dpsi_s = ca.SX.sym('dpsi')
delta_f_s = ca.SX.sym('delta_f')
lf = 2.0
lr = 2.0

slip_f = ca.Function('slip_f', [dx_s, dy_s, dpsi_s, delta_f_s],
[(dy_s + lf*dpsi_s)/(dx_s + 1e-6) - delta_f_s])

slip_r = ca.Function('slip_r', [dx_s, dy_s, dpsi_s],
[(dy_s - lr*dpsi_s)/(dx_s + 1e-6)])

con_ineq.append(slip_f(x[0], x[1], x[2], u[1]) - slip_max - eps[0])
con_ineq_ub.append(0)
con_ineq_lb.append(-np.inf)

con_ineq.append(slip_min - slip_f(x[0], x[1], x[2], u[1]) - eps[0])
con_ineq_ub.append(0)
con_ineq_lb.append(-np.inf)

con_ineq.append(slip_r(x[0], x[1], x[2]) - slip_max - eps[0])
con_ineq_ub.append(0)
con_ineq_lb.append(-np.inf)

con_ineq.append(slip_min - slip_r(x[0], x[1], x[2]) - eps[0])
con_ineq_ub.append(0)
con_ineq_lb.append(-np.inf)

""" Add road boundry constraints """
con_ineq.append(x[5] - eps[1])
con_ineq_ub.append(road_bound)
con_ineq_lb.append(-road_bound)

""" Obstacle avoidance """
Xcg_s = ca.SX.sym('Xcg')
Ycg_s = ca.SX.sym('Ycg')
obs_s = ca.SX.sym('obs', 4)
ellipse = ca.Function('ellipse', [Xcg_s, Ycg_s, obs_s],

[ ((Xcg_s - obs_s[0]) / (obs_s[2] + car_length))**2
+ ((Ycg_s - obs_s[1]) / (obs_s[3] + car_width))**2] )

con_ineq.append(1 - ellipse(x[4], x[5], par) - eps[2])
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con_ineq_ub.append(0)
con_ineq_lb.append(-np.inf)

cons = dict(con_ineq=con_ineq,
con_ineq_lb=con_ineq_lb,
con_ineq_ub=con_ineq_ub

)
return cons

""" Dynamic Model options"""
dt = 0.05
Nx = 3
Nu = 2
R_n = np.diag([1e-5, 1e-8, 1e-8])

""" Training data options """
N = 200 # Number of training data
N_test = 500 # Number of validation data

normalize = False # Option to normalize data in GP model

""" Limits in the training data """
ulb = [-.5, -.04]
uub = [.5, .04]
xlb = [10.0, -.6, -.2]
xub = [30.0, .6, .2]

""" Create simulation model """
model_gp = Model(Nx=Nx, Nu=Nu, ode=ode_gp, dt=dt, R=R_n)

""" Generate training and test data """
X, Y = model_gp.generate_training_data(N, uub, ulb, xub, xlb, noise=True)
X_test, Y_test = model_gp.generate_training_data(N_test, uub, ulb, xub, xlb, noise=False)

""" Options for hyper-parameter optimization """
solver_opts = {}
solver_opts['ipopt.linear_solver'] = 'ma27' # Faster plugin solver than default
solver_opts['expand']= False # Choise between SX or MX graph

if 0:
""" Create GP model estimating dynamics from car model """
gp = GP(X, Y, ulb=ulb, uub=uub, optimizer_opts=solver_opts, normalize=normalize)
SMSE, MNLP = gp.validate(X_test, Y_test)
gp.save_model('models/gp_car')

else:
""" Load example model """
gp = GP.load_model('models/gp_car_example')

""" Predict GP open/closed loop """
# Test data
x0 = np.array([13.89, 0.0, 0.0])
x_sp = np.array([13.89, 0., 0.001])
u0 = [0.0, 0.0]
cov0 = np.eye(Nx+Nu)
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t = np.linspace(0,20*dt, 20)
u_i = np.sin(0.01*t) * 0
u_test = np.vstack([0.5*u_i, 0.02*u_i]).T

# Penalty matrices for LQR
Q = np.diag([.1, 10., 50.])
R = np.diag([.1, 1])

# Name of states for use with plotting
xnames = [r'$\dot{x}$', r'$\dot{y}$', r'$\dot{\psi}$']

# Predict and plot open loop GP using fixed inputs
gp.predict_compare(x0, u_test, model_gp, feedback=False, x_ref=x_sp, Q=Q, R=R,

methods = ['TA','ME'], num_cols=1, xnames=xnames)
# Predict and plot closed loop GP using LQR feedback
gp.predict_compare(x0, u_test, model_gp, feedback=True, x_ref=x_sp, Q=Q, R=R,

methods = ['TA', 'ME'], num_cols=1, xnames=xnames)

""" Create hybrid model with state integrator """
Nx = 6
R_n = np.diag([1e-5, 1e-8, 1e-8, 1e-8, 1e-5, 1e-5])
model_hybrid = Model(Nx=3, Nu=3, ode=ode_hybrid, dt=dt, R=R_n)
model = Model(Nx=Nx, Nu=Nu, ode=ode, dt=dt, R=R_n)

""" Options for MPC solver"""
solver_opts = {}
#solver_opts['ipopt.linear_solver'] = 'ma27' # Plugin solver from HSL
solver_opts['ipopt.max_cpu_time'] = 20
solver_opts['expand']= True
solver_opts['ipopt.expect_infeasible_problem'] = 'yes'

# Constraint parameters
slip_min = -4.0 * np.pi / 180
slip_max = 4.0 * np.pi / 180
road_bound = 2.0
car_width = 1.2
car_length = 5.

# Position and size of eliptical obsticles [x, y, a, b]
obs = np.array([[20, .3, 0.01, 0.01],

[60, -0.3, .01, .01],
[100, 0.3, .01, .01],
])

# Limits in the MPC problem
ulb = [-.5, -.04]
uub = [.5, .04]
xlb = [10.0, -.5, -.2, -.3, .0, -10]
xub = [30.0, .5, .2, .3, 500, 10]

# Penalty matrices
Q = np.diag([.001, 5., 1., .1, 1e-10, 1])
R = np.diag([.1, 1])
S = np.diag([1, 10])

# Penalty in soft constraint

XXI



lam = 500

# Initial value and set point
x0 = np.array([13.89, 0.0, 0.0, 0.0,.0 , 0.0])
x_sp = np.array([13.89, 0., 0., 0., 100., 0. ])

""" Build MPC object"""
mpc = MPC(horizon=17*dt, model=model,gp=gp, hybrid=model_hybrid,

discrete_method='hybrid', gp_method='ME',
ulb=ulb, uub=uub, xlb=xlb, xub=xub, Q=Q, R=R, S=S, lam=lam,
terminal_constraint=None, costFunc='quad', feedback=True,
solver_opts=solver_opts,
inequality_constraints=inequality_constraints, num_con_par=4
)

""" Simulate measurments and solve MPC problem with constraints for 50 steps"""
x, u = mpc.solve(x0, sim_time=50*dt, x_sp=x_sp, debug=False, noise=True,

con_par_func=constraint_parameters)
""" Plot """
mpc.plot()
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Appendix E
GP-MPC: Code

This appendix contain all the code used in this thesis, where it all is implemented as the
python package gp mpc. See https://github.com/helgeanl/GP-MPC for the
most recent updates.

Requirements

• Python > 3.5

• CasADi (tested with version 3.4)

E.1 gp class
# -*- coding: utf-8 -*-
"""
Gaussian Process Model
Copyright (c) 2018, Helge-André Langåker
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import time
import numpy as np
import casadi as ca
import matplotlib.pyplot as plt
from matplotlib.font_manager import FontProperties
from .gp_functions import gp_exact_moment, gp_taylor_approx, gp
from .gp_functions import build_gp, build_TA_cov, get_mean_function
from .optimize import train_gp, train_gp_numpy
from .mpc_class import lqr

class GP:
def __init__(self, X, Y, mean_func="zero", gp_method="TA",

optimizer_opts=None, hyper=None, normalize=True, multistart=1,
xlb=None, xub=None, ulb=None, uub=None, meta=None,
optimize_nummeric=True):
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""" Initialize and optimize GP model

"""

X = np.array(X).copy()
Y = np.array(Y).copy()
self.__X = X
self.__Y = Y
self.__Ny = Y.shape[1]
self.__Nx = X.shape[1]
self.__N = X.shape[0]
self.__Nu = self.__Nx - self.__Ny

self.__gp_method = gp_method
self.__mean_func = mean_func
self.__normalize = normalize

if meta is not None:
self.__meanY = np.array(meta['meanY'])
self.__stdY = np.array(meta['stdY'])
self.__meanZ= np.array(meta['meanZ'])
self.__stdZ = np.array(meta['stdZ'])
self.__meanX = np.array(meta['meanX'])
self.__stdX = np.array(meta['stdX'])
self.__meanU = np.array(meta['meanU'])
self.__stdU = np.array(meta['stdU'])

""" Optimize hyperparameters """
if hyper is None:

self.optimize(X=X, Y=Y, opts=optimizer_opts, mean_func=mean_func,
xlb=xlb, xub=xub, ulb=ulb, uub=uub,
multistart=multistart, normalize=normalize,
optimize_nummeric=optimize_nummeric)

else:
self.__hyper = np.array(hyper['hyper'])
self.__invK = np.array(hyper['invK'])
self.__alpha = np.array(hyper['alpha'])
self.__chol = np.array(hyper['chol'])
self.__hyper_length_scales = np.array(hyper['length_scale'])
self.__hyper_signal_variance = np.array(hyper['signal_var'])
self.__hyper_noise_variance = np.array(hyper['noise_var'])
self.__hyper_mean = np.array(hyper['mean'])

# Build GP
self.__mean, self.__var, self.__covar, self.__mean_jac = \

build_gp(self.__invK, self.__X, self.__hyper,
self.__alpha, self.__chol)

self.__TA_covar = build_TA_cov(self.__mean, self.__covar,
self.__mean_jac, self.__Nx, self.__Ny)

self.set_method(gp_method)

def optimize(self, X=None, Y=None, opts=None, mean_func='zero',
xlb=None, xub=None, ulb=None, uub=None,
multistart=1, normalize=True, warm_start=False,
optimize_nummeric=True):
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self.__mean_func = mean_func
self.__normalize = normalize

if normalize and X is not None:
self.__xlb = np.array(xlb)
self.__xub = np.array(xub)
self.__ulb = np.array(ulb)
self.__uub = np.array(uub)
self.__lb = np.hstack([xlb, ulb])
self.__ub = np.hstack([xub, uub])
self.__meanY = np.mean(Y, 0)
self.__stdY = np.std(Y, 0)
self.__meanZ = np.mean(X, 0)
self.__stdZ = np.std(X, 0)
self.__meanX = np.mean(X[:, :self.__Ny], 0)
self.__stdX = np.std(X[:, :self.__Ny], 0)
self.__meanU = np.mean(X[:, self.__Ny:], 0)
self.__stdU = np.std(X[:, self.__Ny:], 0)

if X is not None:
X = np.array(X).copy()
if normalize and X is not None:

self.__X = self.standardize(X, self.__meanZ, self.__stdZ)
else:

self.__X = X.copy()
else:

X = self.__X.copy()
if Y is not None:

Y = np.array(Y).copy()
if normalize and X is not None:

self.__Y = self.standardize(Y, self.__meanY, self.__stdY)
else:

self.__Y = Y.copy()
else:

Y = self.__Y.copy()

if warm_start:
hyp_init = self.__hyper
lam_x = self.__lam_x

else:
hyp_init = None
lam_x = None

if optimize_nummeric:
opt = train_gp_numpy(self.__X, self.__Y, meanFunc=self.__mean_func,

optimizer_opts=opts, multistart=multistart,
hyper_init=hyp_init)

else:
opt = train_gp(self.__X, self.__Y, meanFunc=self.__mean_func,

optimizer_opts=opts, multistart=multistart,
hyper_init=hyp_init, lam_x0=lam_x)

self.__hyper = opt['hyper']
self.__lam_x = opt['lam_x']
self.__invK = opt['invK']
self.__alpha = opt['alpha']
self.__chol = opt['chol']
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self.__hyper_length_scales = self.__hyper[:, :self.__Nx]
self.__hyper_signal_variance = self.__hyper[:, self.__Nx]**2
self.__hyper_noise_variance = self.__hyper[:, self.__Nx + 1]**2
self.__hyper_mean = self.__hyper[:, (self.__Nx + 1):]

def validate(self, X_test, Y_test):
""" Validate GP model with test data
"""

Y_test = Y_test.copy()
X_test = X_test.copy()
if self.__normalize:

Y_test = self.standardize(Y_test, self.__meanY, self.__stdY)
X_test = self.standardize(X_test, self.__meanZ, self.__stdZ)

N, Ny = Y_test.shape
loss = 0
NLP = 0

for i in range(N):
mean = self.__mean(X_test[i, :])
var = self.__var(X_test[i, :]) + self.noise_variance()
loss += (Y_test[i, :] - mean)**2
NLP += 0.5*np.log(2*np.pi * (var)) + ((Y_test[i, :] - mean)**2)/(2*var)

loss = loss / N
SMSE = loss/ np.std(Y_test, 0)
MNLP = NLP / N

print('\n________________________________________')
print('# Validation of GP model ')
print('----------------------------------------')
print('* Num training samples: ' + str(self.__N))
print('* Num test samples: ' + str(N))
print('----------------------------------------')
print('* Mean squared error: ')
for i in range(Ny):

print('\t- State %d: %f' % (i + 1, loss[i]))
print('----------------------------------------')
print('* Standardized mean squared error:')
for i in range(Ny):

print('\t* State %d: %f' % (i + 1, SMSE[i]))
print('----------------------------------------')
print('* Mean Negative log Probability:')
for i in range(Ny):

print('\t* State %d: %f' % (i + 1, MNLP[i]))
print('----------------------------------------\n')

self.__SMSE = np.max(SMSE)

return np.array(SMSE).flatten(), np.array(MNLP).flatten()

def set_method(self, gp_method='TA'):
""" Select wich GP function to use
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# Arguments:
gp_method: Method for propagating uncertainty.

'ME': Mean Equivalence (normal GP),
'TA': 1st order Tayolor Approximation,
'EM': 1st and 2nd Expected Moments,
'old_ME': non-optimized ME function,
'old_TA': non-optimzed TA function. Use 2nd order

TA, but don't take into account covariance
between states.

"""

x = ca.MX.sym('x', self.__Ny)
covar_s = ca.MX.sym('covar', self.__Nx, self.__Nx)
u = ca.MX.sym('u', self.__Nu)
self.__gp_method = gp_method

if gp_method is 'ME':
self.__predict = ca.Function('gp_mean', [x, u, covar_s],

[self.__mean(ca.vertcat(x,u)),
self.__covar(ca.vertcat(x,u))])

elif gp_method is 'TA':
self.__predict = ca.Function('gp_taylor', [x, u, covar_s],

[self.__mean(ca.vertcat(x,u)),
self.__TA_covar(ca.vertcat(x,u), covar_s)])

elif gp_method is 'EM':
self.__predict = ca.Function('gp_exact_moment', [x, u, covar_s],

gp_exact_moment(self.__invK, ca.MX(self.__X),
ca.MX(self.__Y), ca.MX(self.__hyper),
ca.vertcat(x, u).T, covar_s))

elif gp_method is 'old_ME':
self.__predict = ca.Function('gp_mean', [x, u, covar_s],

gp(self.__invK, ca.MX(self.__X), ca.MX(self.__Y),
ca.MX(self.__hyper),
ca.vertcat(x, u).T, meanFunc=self.__mean_func))

elif gp_method is 'old_TA':
self.__predict = ca.Function('gp_taylor_approx', [x, u, covar_s],

gp_taylor_approx(self.__invK, ca.MX(self.__X),
ca.MX(self.__Y), ca.MX(self.__hyper),
ca.vertcat(x, u).T, covar_s,
meanFunc=self.__mean_func, diag=True))

else:
raise NameError('No GP method called: ' + gp_method)

self.__discrete_jac_x = ca.Function('jac_x', [x, u, covar_s],
[ca.jacobian(self.__predict(x,u, covar_s)[0], x)])

self.__discrete_jac_u = ca.Function('jac_x', [x, u, covar_s],
[ca.jacobian(self.__predict(x,u,covar_s)[0], u)])

def predict(self, x, u, cov):
""" Predict future state

# Arguments:
x: State vector (Nx x 1)
u: Input vector (Nu x 1)
cov: Covariance matrix of input z=[x, u] (Nx+nu x Nx+Nu)

"""

XXVII



if self.__normalize:
x_s = self.standardize(x, self.__meanX, self.__stdX)
u_s = self.standardize(u, self.__meanU, self.__stdU)

else:
x_s = x
u_s = u

mean, cov = self.__predict(x_s, u_s, cov)
if self.__normalize:

mean = self.inverse_mean(mean, self.__meanY, self.__stdY)
# cov = self.inverse_covariance(cov, self.__stdY)

return mean, cov

def get_size(self):
""" Get the size of the GP model

# Returns:
N: Number of training data
Ny: Number of outputs
Nu: Number of control inputs

"""
return self.__N, self.__Ny, self.__Nu

def get_hyper_parameters(self):
""" Get hyper-parameters

# Return:
hyper: Dictionary containing the hyper-parameters,

'length_scale', 'signal_var', 'noise_var', 'mean'
"""
hyper = dict(

length_scale = self.__hyper_length_scales,
signal_var = self.__hyper_signal_variance,
noise_var = self.__hyper_noise_variance,
mean = self.__hyper_mean

)
return hyper

def print_hyper_parameters(self):
""" Print out all hyperparameters
"""
print('\n________________________________________')
print('# Hyper-parameters')
print('----------------------------------------')
print('* Num samples:', self.__N)
print('* Ny:', self.__Ny)
print('* Nu:', self.__Nu)
print('* Normalization:', self.__normalize)
for state in range(self.__Ny):

print('----------------------------------------')
print('* Lengthscale: ', state)
for i in range(self.__Ny + self.__Nu):

print(('-- l{a}: {l}').format(a=i,l=self.__hyper_length_scales[state, i]))
print('* Signal variance: ', state)
print('-- sf2:', self.__hyper_signal_variance[state])
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print('* Noise variance: ', state)
print('-- sn2:', self.__hyper_noise_variance[state])

print('----------------------------------------')

def covSEard(self, X, Z, ell, sf2):
""" GP Squared Exponential Kernel

# Arguments:
X: Input matrix or vector (n_x x D)
Z: Input matrix or vector (n_z x D)
ell: Lengthscale vector (D x 1)
sf2: Signal variance (scalar)

# Returns:
k(X,Z): Covariance between X and Z.

"""
dist = 0

if X.ndim > 1:
n1, D = X.shape

else:
D = X.shape[0]
n1 = 1
X.shape = (n1, D)

if Z.ndim > 1:
n2, D2 = Z.shape

else:
D2 = Z.shape[0]
n2 = 1
Z.shape = (n2, D2)

if D != D2:
raise ValueError('Input dimensions are not the same! D_x=' + str(D)

+ ', D_z=' + str(D2))
for i in range(D):

x1 = X[:, i].reshape(n1, 1)
x2 = Z[:, i].reshape(n2, 1)
dist = (np.sum(x1**2, 1).reshape(-1, 1) + np.sum(x2**2, 1) -

2 * np.dot(x1, x2.T)) / ell[i]**2 + dist
return sf2 * np.exp(-.5 * dist)

def covar(self, X_new):
""" Compute covariance of input data

# Arguments:
X_new: Input matrix or vector of size (n x D), with n samples,

and D inputs.
# Returns:

covar: Covariance between the samples for all the inputs
(D x (n x n)).

"""

if X_new.ndim > 1:
n, D = X_new.shape
covar = np.zeros((D,n,n))

XXIX



else:
D = X_new.shape[0]
n = 1
X_new.shape = (n, D)
covar = np.zeros((D,n))

for output in range(self.__Ny):
ell = self.__hyper_length_scales[output]
sf2 = self.__hyper_signal_variance[output]
L = self.__chol[output]
ks = self.covSEard(self.__X, X_new, ell, sf2)
kss = sf2
v = np.linalg.solve(L, ks)
covar[output] = kss - v.T @ v

return covar

def update_data(self, X_new, Y_new, N_new=None):
""" Update training data with new observations

Will update training data with N_new samples, updating the
cholesky covariance matrix, alpha, inverse covariance, and re-build
the GP functions with the updated matrices.

# Arguments:
X_new: Input matrix with (n x Nx) new observations.
Y_new: Corresponding measurments (n x Ny) from input X_new.
N_new: Number of new samples to pick, default to N_new=n.

# NOTE: NOT working as intended...
"""

X_new = np.array(X_new).copy()
Y_new = np.array(Y_new).copy()
n, D = X_new.shape
if N_new is None:

N_new = n

if self.__normalize:
Y_new = self.standardize(Y_new, self.__meanY, self.__stdY)
X_new = self.standardize(X_new, self.__meanZ, self.__stdZ)

print('\n________________________________________')
print('# Updating training data with ' + str(N_new) + ' new samples')
print('----------------------------------------')
for k in range(N_new):

""" Explore point with highest combined variance """
n, D = X_new.shape

covar = self.covar(X_new)
covar = np.sum(covar, 0) # Sum covariance of all states
var = np.diag(covar)

max_var_index = np.argmin(var)
x_new = X_new[max_var_index]
y_new = Y_new[max_var_index]
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X_new = np.delete(X_new, max_var_index, 0)
Y_new = np.delete(Y_new, max_var_index, 0)

""" Update matrices """
N, D = self.__X.shape
hyper = self.__hyper
invK = np.zeros((self.__Ny, N + 1, N + 1))
alpha = np.zeros((self.__Ny, N + 1))
chol = np.zeros((self.__Ny, N + 1, N + 1))
chol[:, :N, :N] = self.__chol

for output in range(self.__Ny):
ell = self.__hyper_length_scales[output]
sf2 = self.__hyper_signal_variance[output]
sn2 = self.__hyper_noise_variance[output]
K_new = self.covSEard(self.__X, x_new, ell, sf2)
k_new__ = self.covSEard(x_new, x_new, ell, sf2) + sn2
L = self.__chol[output]
l_new = np.linalg.solve(L, K_new)
l_new__ = np.sqrt(k_new__ - np.linalg.norm(l_new))
chol[output, N:, :N] = l_new.T
chol[output, N, N] = l_new__
invL = np.linalg.solve(chol[output], np.eye(N + 1))
invK[output, :, :] = np.linalg.solve(chol[output].T, invL)

self.__X = np.vstack([self.__X, x_new])
self.__Y = np.vstack([self.__Y, y_new])
self.__N = self.__X.shape[0]

for output in range(self.__Ny):
m = get_mean_function(ca.MX(hyper[output, :]),

self.__X.T, func=self.__mean_func)
mean = np.array(m(self.__X.T)).reshape((self.__N + 1,))
alpha[output] = np.linalg.solve(chol[output].T,

np.linalg.solve(chol[output],
self.__Y[:, output] - mean))

self.__alpha = alpha
self.__chol = chol
self.__invK = invK

# Rebuild GP with the new data
self.__mean, self.__var, self.__covar, self.__mean_jac = \

build_gp(self.__invK, self.__X, self.__hyper,
self.__alpha, self.__chol)

print('* Update ' + str(k) + ' with new data point ' +str(max_var_index))
self.__TA_covar = build_TA_cov(self.__mean, self.__covar,

self.__mean_jac, self.__Nx, self.__Ny)
self.set_method(self.__gp_method)

def update_data_all(self, X_new, Y_new):
""" Update training data with all new observations

Will update training data with all samples, updating the
cholesky covariance matrix, alpha, inverse covariance, and re-build
the GP functions with the updated matrices.
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# Arguments:
X_new: Input matrix with (n x Nx) new observations.
Y_new: Corresponding measurments (n x Ny) from input X_new.

"""

X_new = np.array(X_new).copy()
Y_new = np.array(Y_new).copy()
n, D = X_new.shape

N_new = n

if self.__normalize:
Y_new = self.standardize(Y_new, self.__meanY, self.__stdY)
X_new = self.standardize(X_new, self.__meanZ, self.__stdZ)

print('\n________________________________________')
print('# Updating training data with ' + str(N_new) + ' new samples')
print('----------------------------------------')

""" Explore point with highest combined variance """
n, D = X_new.shape

""" Update matrices """
self.__X = np.vstack([self.__X, X_new])
self.__Y = np.vstack([self.__Y, Y_new])
self.__N = self.__X.shape[0]

N, D = self.__X.shape
hyper = self.__hyper

invK = np.zeros((self.__Ny, N , N ))
alpha = np.zeros((self.__Ny, N ))
chol = np.zeros((self.__Ny, N , N ))

for output in range(self.__Ny):
ell = self.__hyper_length_scales[output]
sf2 = self.__hyper_signal_variance[output]
sn2 = self.__hyper_noise_variance[output]
K_new = self.covSEard(self.__X, self.__X, ell, sf2)

K = K_new + sn2 * np.eye(self.__N)
K = (K + K.T) * 0.5 # Make sure matrix is symmentric
try:

L = np.linalg.cholesky(K)
except np.linalg.LinAlgError:

print("K matrix is not positive definit, adding jitter!")
K = K + np.eye(N) * 1e-8
L = np.linalg.cholesky(K)

invL = np.linalg.solve(L, np.eye(self.__N))
invK[output, :, :] = np.linalg.solve(L.T, invL)
chol[output] = L
m = get_mean_function(ca.MX(hyper[output, :]), self.__X.T,

func=self.__mean_func)
mean = np.array(m(self.__X.T)).reshape((self.__N,))
alpha[output] = np.linalg.solve(L.T,

np.linalg.solve(L, self.__Y[:, output] - mean))
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self.__alpha = alpha
self.__chol = chol
self.__invK = invK

# Rebuild GP with the new data
self.__mean, self.__var, self.__covar, self.__mean_jac = \

build_gp(self.__invK, self.__X, self.__hyper,
self.__alpha, self.__chol)

self.__TA_covar = build_TA_cov(self.__mean, self.__covar,
self.__mean_jac, self.__Nx, self.__Ny)

self.set_method(self.__gp_method)

def replace_data_all(self, X_new, Y_new):
""" Replace training data with new observations

Will replace training data with new samples, replacing the
cholesky covariance matrix, alpha, inverse covariance, and re-build
the GP functions with the updated matrices.

# Arguments:
X_new: Input matrix with (n x Nx) new observations.
Y_new: Corresponding measurments (n x Ny) from input X_new.

"""

X_new = np.array(X_new).copy()
Y_new = np.array(Y_new).copy()
n, D = X_new.shape

N_new = n

if self.__normalize:
Y_new = self.standardize(Y_new, self.__meanY, self.__stdY)
X_new = self.standardize(X_new, self.__meanZ, self.__stdZ)

print('\n________________________________________')
print('# Replacing training data with ' + str(N_new) + ' new samples')
print('----------------------------------------')

""" Update matrices """
self.__X = X_new
self.__Y = Y_new
self.__N = self.__X.shape[0]

N, D = self.__X.shape
hyper = self.__hyper

invK = np.zeros((self.__Ny, N , N ))
alpha = np.zeros((self.__Ny, N ))
chol = np.zeros((self.__Ny, N , N ))

for output in range(self.__Ny):
ell = self.__hyper_length_scales[output]
sf2 = self.__hyper_signal_variance[output]
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sn2 = self.__hyper_noise_variance[output]
K_new = self.covSEard(self.__X, self.__X, ell, sf2)

K = K_new + sn2 * np.eye(self.__N)
K = (K + K.T) * 0.5 # Make sure matrix is symmentric
try:

L = np.linalg.cholesky(K)
except np.linalg.LinAlgError:

print("K matrix is not positive definit, adding jitter!")
K = K + np.eye(N) * 1e-8
L = np.linalg.cholesky(K)

invL = np.linalg.solve(L, np.eye(self.__N))
invK[output, :, :] = np.linalg.solve(L.T, invL)
chol[output] = L
m = get_mean_function(ca.MX(hyper[output, :]), self.__X.T,

func=self.__mean_func)
mean = np.array(m(self.__X.T)).reshape((self.__N,))
alpha[output] = np.linalg.solve(L.T,

np.linalg.solve(L, self.__Y[:, output] - mean))

self.__alpha = alpha
self.__chol = chol
self.__invK = invK

# Rebuild GP with the new data
self.__mean, self.__var, self.__covar, self.__mean_jac = \

build_gp(self.__invK, self.__X, self.__hyper,
self.__alpha, self.__chol)

self.__TA_covar = build_TA_cov(self.__mean, self.__covar,
self.__mean_jac, self.__Nx, self.__Ny)

self.set_method(self.__gp_method)

def standardize(self, Y, mean, std):
return (Y - mean) / std

def normalize(self, u, lb, ub):
return (u - lb) / (ub - lb)

def inverse_mean(self, x, mean, std):
""" Inverse standardization of the mean
"""
return (x * std) + mean

def inverse_variance(self, variance):
""" Inverse standardization of the variance
"""

# return (covariance[..., np.newaxis] * self.__stdY**2)
return variance * self.__stdY**2

def discrete_linearize(self, x0, u0, cov0):
""" Linearize the GP around the operating point

x[k+1] = Ax[k] + Bu[k]
# Arguments:

x0: State vector
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u0: Input vector
cov0: Covariance

"""
if self.__normalize:

x0 = self.standardize(x0, self.__meanX, self.__stdX)
u0 = self.standardize(u0, self.__meanU, self.__stdU)

Ad = np.array(self.__discrete_jac_x(x0, u0, cov0))
Bd = np.array(self.__discrete_jac_u(x0, u0, cov0))

return Ad, Bd

def jacobian(self, x0, u0, cov0):
""" Jacobian of posterior mean

J = dmu/dx
# Arguments:

x0: State vector
u0: Input vector
cov0: Covariance

"""
return self.__discrete_jac_x(x0, u0, cov0)

def noise_variance(self):
""" Get the noise variance
"""
return self.__hyper_noise_variance

#TODO: Fix this
def sparse(self, M):

""" Sparse Gaussian Process
Use Fully Independent Training Conditional (FITC) to approximate
the GP distribution and reduce computational complexity.

# Arguments:
M: Reduce the model size from N to M.

"""

def __to_dict(self):
""" Store model data in a dictionary """

gp_dict = {}
gp_dict['X'] = self.__X.tolist()
gp_dict['Y'] = self.__Y.tolist()
gp_dict['hyper'] = dict(

hyper = self.__hyper.tolist(),
invK = self.__invK.tolist(),
alpha = self.__alpha.tolist(),
chol = self.__chol.tolist(),
length_scale = self.__hyper_length_scales.tolist(),
signal_var = self.__hyper_signal_variance.tolist(),
noise_var = self.__hyper_noise_variance.tolist(),
mean = self.__hyper_mean.tolist()

)

XXXV



gp_dict['mean_func'] = self.__mean_func
gp_dict['normalize'] = self.__normalize
if self.__normalize:

gp_dict['xlb'] = self.__xlb.tolist()
gp_dict['xub'] = self.__xub.tolist()
gp_dict['ulb'] = self.__ulb.tolist()
gp_dict['uub'] = self.__uub.tolist()
gp_dict['meta'] = dict(

meanY = self.__meanY.tolist(),
stdY = self.__stdY.tolist(),
meanZ = self.__meanZ.tolist(),
stdZ = self.__stdZ.tolist(),
meanX = self.__meanX.tolist(),
stdX = self.__stdX.tolist(),
meanU = self.__meanU.tolist(),
stdU = self.__stdU.tolist()

)
return gp_dict

def save_model(self, filename):
""" Save model to a json file"""
import json
output_dict = self.__to_dict()
with open(filename + ".json", "w") as outfile:

json.dump(output_dict, outfile)

@classmethod
def load_model(cls, filename):

""" Create a new model from file"""
import json
with open(filename + ".json") as json_data:

input_dict = json.load(json_data)
return cls(**input_dict)

def predict_compare(self, x0, u, model, num_cols=2, xnames=None,
title=None, feedback=False, x_ref = None,
Q=None, R=None, methods=None):

""" Predict and compare all GP methods
"""
# Predict future
Nx = self.__Nx
Ny = self.__Ny

dt = model.sampling_time()
Nt = np.size(u, 0)
sim_time = Nt * dt
initVar = self.__hyper[:,Nx + 1]**2
if methods is None:

methods = ['EM', 'TA', 'ME']
color = ['k', 'y', 'r']
mean = np.zeros((len(methods), Nt + 1 , Ny))
var = np.zeros((len(methods), Nt + 1, Ny))
covar = np.eye(Nx) * 1e-6 # Initial covar input matrix
if Q is None:
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Q = np.eye(Ny)
if R is None:

R= np.eye(Nx - Ny)

if x_ref is None and feedback:
x_ref = np.zeros((Ny))

if feedback:
A, B = self.discrete_linearize(x0, u[0], covar)
K, S, E = lqr(A, B, Q, R)

for i in range(len(methods)):
self.set_method(methods[i])
mean_t = x0
covar[:Ny, :Ny] = ca.diag(initVar)
mean[i, 0, :] = x0
u_t = u[0]

A, B = self.discrete_linearize(mean_t, u_t, covar)
K, P, E = lqr(A, B, Q, R)

for t in range(1, Nt + 1):
if feedback:

u_t = K @ (mean_t - x_ref)
else:

u_t = u[t-1, :]
mean_t, covar_x = self.predict(mean_t, u_t, covar)
mean[i, t, :] = np.array(mean_t).reshape((Ny,))
var[i, t, :] = np.diag(covar_x)
if self.__normalize:

var[i, t, :] = self.inverse_variance(var[i, t, :])

if feedback:
covar_u = K @ covar_x @ K.T

cov_xu = covar_x @ K.T
covar[Ny:, Ny:] = covar_u
covar[Ny:, :Ny] = cov_xu.T
covar[:Ny, Ny:] = cov_xu

covar[:Ny, :Ny] = covar_x

#TODO: Fix feedback
if feedback:

A, B = model.discrete_linearize(x0, u[0])
K, P, E = lqr(A, B, Q, R)
y_sim = np.zeros((Nt + 1 , Ny))
y_sim[0] = x0
y_t = x0
for t in range(1, Nt + 1):

if 0: #feedback:
u_t = K @ (y_t - x_ref)

else:
u_t = u[t-1, :]

y_t = model.integrate(x0, u_t, []).flatten()
y_sim[t] = y_t

else:
y_sim = model.sim(x0, u)
y_sim = np.vstack([x0, y_sim])

XXXVII



t = np.linspace(0.0, sim_time, Nt + 1)

if np.any(var < 0):
var = var.clip(min=0)

num_rows = int(np.ceil(Ny / num_cols))
if xnames is None:

xnames = ['State %d' % (i + 1) for i in range(Ny)]
if x_ref is not None:

x_sp = x_ref * np.ones((Nt+1, Ny))

fontP = FontProperties()
fontP.set_size('small')
fig = plt.figure(figsize=(9.0, 6.0))
for i in range(Ny):

ax = fig.add_subplot(num_rows, num_cols, i + 1)
ax.plot(t, y_sim[:, i], 'b-', label='Simulation')
if x_ref is not None:

ax.plot(t, x_sp[:, i], color='g', linestyle='--', label='Setpoint')

for k in range(len(methods)):
mean_i = mean[k, :, i]
sd_i = np.sqrt(var[k, :, i])
ax.errorbar(t, mean_i, yerr=2 * sd_i, color = color[k],

label='GP ' + methods[k])
ax.set_ylabel(xnames[i])
ax.legend(prop=fontP, loc='best')
ax.set_xlabel('Time [s]')

# ax.set_ylim([-20,20])
if title is not None:

fig.canvas.set_window_title(title)
else:

fig.canvas.set_window_title(('Training data: {x}, Mean Function: {y}, '
'Normalize: {q}, Feedback: {f}'
).format(x=self.__N, y=self.__mean_func,
q=self.__normalize, f=feedback))

plt.tight_layout()
plt.show()

E.2 gp functions
# -*- coding: utf-8 -*-
"""
Gaussian Process functions
Copyright (c) 2018, Helge-André Langåker, Eric Bradford
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import casadi as ca
import matplotlib.pyplot as plt
from matplotlib.font_manager import FontProperties
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def covSEard(x, z, ell, sf2):
""" GP squared exponential kernel

Copyright (c) 2018, Helge-André Langåker
"""
dist = ca.sum1((x - z)**2 / ell**2)
return sf2 * ca.SX.exp(-.5 * dist)

def get_mean_function(hyper, X, func='zero'):
""" Get mean function

Copyright (c) 2018, Helge-André Langåker

# Arguments:
hyper: Matrix with hyperperameters.
X: Input vector or matrix.
func: Option for mean function:

'zero': m = 0
'const': m = a
'linear': m(x) = aT*x + b
'polynomial': m(x) = aT*xˆ2 + bT*x + c

# Returns:
CasADi mean function [m(X, hyper)]

"""

Nx, N = X.shape
X_s = ca.SX.sym('x', Nx, N)
Z_s = ca.MX.sym('x', Nx, N)
m = ca.SX(N, 1)
hyp_s = ca.SX.sym('hyper', *hyper.shape)
if func == 'zero':

meanF = ca.Function('zero_mean', [X_s, hyp_s], [m])
elif func == 'const':

a = hyp_s[-1]
for i in range(N):

m[i] = a
meanF = ca.Function('const_mean', [X_s, hyp_s], [m])

elif func == 'linear':
a = hyp_s[-Nx-1:-1].reshape((1, Nx))
b = hyp_s[-1]
for i in range(N):

m[i] = ca.mtimes(a, X_s[:,i]) + b
meanF = ca.Function('linear_mean', [X_s, hyp_s], [m])

elif func == 'polynomial':
a = hyp_s[-2*Nx-1:-Nx-1].reshape((1,Nx))
b = hyp_s[-Nx-1:-1].reshape((1,Nx))
c = hyp_s[-1]
for i in range(N):

m[i] = ca.mtimes(a, X_s[:, i]**2) + ca.mtimes(b, X_s[:,i]) + c
meanF = ca.Function('poly_mean', [X_s, hyp_s], [m])

else:
raise NameError('No mean function called: ' + func)

return ca.Function('mean', [Z_s], [meanF(Z_s, hyper)])

XXXIX



def build_gp(invK, X, hyper, alpha, chol, meanFunc='zero'):
""" Build Gaussian Process function

Copyright (c) 2018, Helge-André Langåker

# Arguments
invK: Array with the inverse covariance matrices of size (Ny x N x N),

with Ny number of outputs from the GP and N number of training points.
X: Training data matrix with inputs of size (N x Nx), with Nx number of

inputs to the GP.
alpha: Training data matrix with invK time outputs of size (Ny x N).
hyper: Array with hyperparame|ters [ell_1 .. ell_Nx sf sn].

# Returns
mean: GP mean casadi function [mean(z)]
var: GP variance casadi function [var(z)]
covar: GP covariance casadi function [covar(z) = diag(var(z))]
mean_jac: Casadi jacobian of the GP mean function [jac(z)]

"""

Ny = len(invK)
X = ca.SX(X)
N, Nx = ca.SX.size(X)

mean = ca.SX.zeros(Ny, 1)
var = ca.SX.zeros(Ny, 1)

# Casadi symbols
x_s = ca.SX.sym('x', Nx)
z_s = ca.SX.sym('z', Nx)
m_s = ca.SX.sym('m')
ell_s = ca.SX.sym('ell', Nx)
sf2_s = ca.SX.sym('sf2')
X_s = ca.SX.sym('X', N, Nx)
ks_s = ca.SX.sym('ks', N)
v_s = ca.SX.sym('v', N)
kss_s = ca.SX.sym('kss')
alpha_s = ca.SX.sym('alpha', N)

covSE = ca.Function('covSE', [x_s, z_s, ell_s, sf2_s],
[covSEard(x_s, z_s, ell_s, sf2_s)])

ks = ca.SX.zeros(N, 1)
for i in range(N):

ks[i] = covSE(X_s[i, :], z_s, ell_s, sf2_s)
ks_func = ca.Function('ks', [X_s, z_s, ell_s, sf2_s], [ks])

mean_i_func = ca.Function('mean', [ks_s, alpha_s, m_s],
[ca.mtimes(ks_s.T, alpha_s) + m_s])

L_s = ca.SX.sym('L', ca.Sparsity.lower(N))
v_func = ca.Function('v', [L_s, ks_s], [ca.solve(L_s, ks_s)])

var_i_func = ca.Function('var', [v_s, kss_s,],
[kss_s - v_s.T @ v_s])

for output in range(Ny):
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ell = ca.SX(hyper[output, 0:Nx])
sf2 = ca.SX(hyper[output, Nx]**2)
alpha_a = ca.SX(alpha[output])
ks = ks_func(X_s, z_s, ell, sf2)
v = v_func(chol[output], ks)
m = get_mean_function(ca.MX(hyper[output, :]), z_s, func=meanFunc)
mean[output] = mean_i_func(ks, alpha_a, m(z_s))
var[output] = var_i_func(v, sf2)

mean_temp = ca.Function('mean_temp', [z_s, X_s], [mean])
var_temp = ca.Function('var_temp', [z_s, X_s], [var])

mean_func = ca.Function('mean', [z_s], [mean_temp(z_s, X)])
covar_func = ca.Function('var', [z_s], [ca.diag(var_temp(z_s, X))])
var_func = ca.Function('var', [z_s], [var_temp(z_s, X)])

mean_jac_z = ca.Function('mean_jac_z', [z_s],
[ca.jacobian(mean_func(z_s), z_s)])

return mean_func, var_func, covar_func, mean_jac_z

def build_TA_cov(mean, covar, jac, Nx, Ny):
""" Build 1st order Taylor approximation of covariance function

Copyright (c) 2018, Helge-André Langåker

# Arguments:
mean: GP mean casadi function [mean(z)]
covar: GP covariance casadi function [covar(z)]
jac: Casadi jacobian of the GP mean function [jac(z)]
Nx: Number of inputs to the GP
Ny: Number of ouputs from the GP

# Return:
cov: Casadi function with the approximated covariance

function [cov(z, covar_x)].
"""
cov_z = ca.SX.sym('cov_z', Nx, Nx)
z_s = ca.SX.sym('z', Nx)
jac_z = jac(z_s)
cov = ca.Function('cov', [z_s, cov_z],

[covar(z_s) + jac_z @ cov_z @ jac_z.T])

return cov

def gp(invK, X, Y, hyper, inputmean, alpha=None, meanFunc='zero', log=False):
""" Gaussian Process

Copyright (c) 2018, Helge-André Langåker

# Arguments
invK: Array with the inverse covariance matrices of size (Ny x N x N),

with Ny number of outputs from the GP and N number of training points.
X: Training data matrix with inputs of size (N x Nx), with Nx number of

inputs to the GP.
Y: Training data matrix with outpyts of size (N x Ny).
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hyper: Array with hyperparame|ters [ell_1 .. ell_Nx sf sn].
inputmean: Input to the GP of size (1 x Nx)

# Returns
mean: The estimated mean.
var: The estimated variance

"""
if log:

X = ca.log(X)
Y = ca.log(Y)
inputmean = ca.log(inputmean)

Ny = len(invK)
N, Nx = ca.MX.size(X)

mean = ca.MX.zeros(Ny, 1)
var = ca.MX.zeros(Ny, 1)

# Casadi symbols
x_s = ca.SX.sym('x', Nx)
z_s = ca.SX.sym('z', Nx)
ell_s = ca.SX.sym('ell', Nx)
sf2_s = ca.SX.sym('sf2')

invK_s = ca.SX.sym('invK', N, N)
Y_s = ca.SX.sym('Y', N)
m_s = ca.SX.sym('m')
ks_s = ca.SX.sym('ks', N)
kss_s = ca.SX.sym('kss')
ksT_invK_s = ca.SX.sym('ksT_invK', 1, N)
alpha_s = ca.SX.sym('alpha', N)

covSE = ca.Function('covSE', [x_s, z_s, ell_s, sf2_s],
[covSEard(x_s, z_s, ell_s, sf2_s)])

ksT_invK_func = ca.Function('ksT_invK', [ks_s, invK_s],
[ca.mtimes(ks_s.T, invK_s)])

if alpha is not None:
mean_func = ca.Function('mean', [ks_s, alpha_s],

[ca.mtimes(ks_s.T, alpha_s)])
else:

mean_func = ca.Function('mean', [ksT_invK_s, Y_s],
[ca.mtimes(ksT_invK_s, Y_s)])

var_func = ca.Function('var', [kss_s, ksT_invK_s, ks_s],
[kss_s - ca.mtimes(ksT_invK_s, ks_s)])

for output in range(Ny):
m = get_mean_function(hyper[output, :], inputmean, func=meanFunc)
ell = ca.MX(hyper[output, 0:Nx])
sf2 = ca.MX(hyper[output, Nx]**2)

kss = covSE(inputmean, inputmean, ell, sf2)
ks = ca.MX.zeros(N, 1)
for i in range(N):

ks[i] = covSE(X[i, :], inputmean, ell, sf2)
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ksT_invK = ksT_invK_func(ks, ca.MX(invK[output]))
if alpha is not None:

mean[output] = mean_func(ks, ca.MX(alpha[output]))
else:

mean[output] = mean_func(ksT_invK, Y[:, output])
var[output] = var_func(kss, ks, ksT_invK)

if log:
mean = ca.exp(mean)
var = ca.exp(var)

covar = ca.diag(var)
return mean, covar

def gp_taylor_approx(invK, X, Y, hyper, inputmean, inputcovar,
meanFunc='zero', diag=False, log=False):

""" Gaussian Process with Taylor Approximation
Copyright (c) 2018, Helge-André Langåker

This uses a first order taylor for the mean evaluation (a normal GP mean),
and a second order taylor for estimating the variance.

# Arguments
invK: Array with the inverse covariance matrices of size (Ny x N x N),

with Ny number of outputs from the GP and N number of training points.
X: Training data matrix with inputs of size NxNx, with Nx number of

inputs to the GP.
Y: Training data matrix with outpyts of size (N x Ny).
hyper: Array with hyperparameters [ell_1 .. ell_Nx sf sn].
inputmean: Mean from the last GP iteration of size (1 x Nx)
inputvar: Variance from the last GP iteration of size (1 x Ny)

# Returns
mean: Array with estimated mean of size (Ny x 1).
covariance: The estimated covariance matrix with the output variance in the

diagonal of size (Ny x Ny).
"""
if log:

X = ca.log(X)
Y = ca.log(Y)
inputmean = ca.log(inputmean)

Ny = len(invK)
N, Nx = ca.MX.size(X)
mean = ca.MX.zeros(Ny, 1)
var = ca.MX.zeros(Nx, 1)
v = X - ca.repmat(inputmean, N, 1)
covar_temp = ca.MX.zeros(Ny, Ny)

covariance = ca.MX.zeros(Ny, Ny)
d_mean = ca.MX.zeros(Ny, 1)
dd_var = ca.MX.zeros(Ny, Ny)

# Casadi symbols
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x_s = ca.SX.sym('x', Nx)
z_s = ca.SX.sym('z', Nx)
ell_s = ca.SX.sym('ell', Nx)
sf2_s = ca.SX.sym('sf2')
covSE = ca.Function('covSE', [x_s, z_s, ell_s, sf2_s],

[covSEard(x_s, z_s, ell_s, sf2_s)])

for a in range(Ny):
ell = hyper[a, :Nx]
w = 1 / ell**2
sf2 = ca.MX(hyper[a, Nx]**2)
m = get_mean_function(hyper[a, :], inputmean, func=meanFunc)
iK = ca.MX(invK[a])
alpha = ca.mtimes(iK, Y[:, a] - m(inputmean)) + m(inputmean)
kss = sf2

ks = ca.MX.zeros(N, 1)
for i in range(N):

ks[i] = covSE(X[i, :], inputmean, ell, sf2)

invKks = ca.mtimes(iK, ks)
mean[a] = ca.mtimes(ks.T, alpha)
var[a] = kss - ca.mtimes(ks.T, invKks)
d_mean[a] = ca.mtimes(ca.transpose(w[a] * v[:, a] * ks), alpha)

#BUG: This don't take into account the covariance between states
for d in range(Ny):

for e in range(Ny):
dd_var1a = ca.mtimes(ca.transpose(v[:, d] * ks), iK)
dd_var1b = ca.mtimes(dd_var1a, v[e] * ks)
dd_var2 = ca.mtimes(ca.transpose(v[d] * v[e] * ks), invKks)
dd_var[d, e] = -2 * w[d] * w[e] * (dd_var1b + dd_var2)
if d == e:

dd_var[d, e] = dd_var[d, e] + 2 * w[d] * (kss - var[d])

mean_mat = ca.mtimes(d_mean, d_mean.T)
covar_temp[0, 0] = inputcovar[a, a]
covariance[a, a] = var[a] + ca.trace(ca.mtimes(covar_temp, .5

* dd_var + mean_mat))

return [mean, covariance]

def gp_exact_moment(invK, X, Y, hyper, inputmean, inputcov):
""" Gaussian Process with Exact Moment Matching
Copyright (c) 2018, Eric Bradford, Helge-André Langåker

The first and second moments are used to compute the mean and covariance of the
posterior distribution with a stochastic input distribution. This assumes a
zero prior mean function and the squared exponential kernel.

# Arguments
invK: Array with the inverse covariance matrices of size (Ny x N x N),

with Ny number of outputs from the GP and N number of training points.
X: Training data matrix with inputs of size NxNx, with Nx number of

inputs to the GP.
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Y: Training data matrix with outpyts of size (N x Ny).
hyper: Array with hyperparameters [ell_1 .. ell_Nx sf sn].
inputmean: Mean from the last GP iteration of size (1 x Nx)
inputcov: Covariance matrix from the last GP iteration of size (Nx x Nx)

# Returns
mean: Array of the output mean of size (Ny x 1).
covariance: Covariance matrix of size (Ny x Ny).

"""

hyper = ca.log(hyper)
Ny = len(invK)
N, Nx = ca.MX.size(X)
mean = ca.MX.zeros(Ny, 1)
beta = ca.MX.zeros(N, Ny)
log_k = ca.MX.zeros(N, Ny)
v = X - ca.repmat(inputmean, N, 1)

covariance = ca.MX.zeros(Ny, Ny)

#TODO: Fix that LinsolQr don't work with the extended graph?
A = ca.SX.sym('A', inputcov.shape)
[Q, R2] = ca.qr(A)
determinant = ca.Function('determinant', [A], [ca.exp(ca.trace(ca.log(R2)))])

for a in range(Ny):
beta[:, a] = ca.mtimes(invK[a], Y[:, a])
iLambda = ca.diag(ca.exp(-2 * hyper[a, :Nx]))
R = inputcov + ca.diag(ca.exp(2 * hyper[a, :Nx]))
iR = ca.mtimes(iLambda, (ca.MX.eye(Nx) - ca.solve((ca.MX.eye(Nx)

+ ca.mtimes(inputcov, iLambda)), (ca.mtimes(inputcov, iLambda)))))
T = ca.mtimes(v, iR)
c = ca.exp(2 * hyper[a, Nx]) / ca.sqrt(determinant(R)) \

* ca.exp(ca.sum2(hyper[a, :Nx]))
q2 = c * ca.exp(-ca.sum2(T * v) * 0.5)
qb = q2 * beta[:, a]
mean[a] = ca.sum1(qb)
t = ca.repmat(ca.exp(hyper[a, :Nx]), N, 1)
v1 = v / t
log_k[:, a] = 2 * hyper[a, Nx] - ca.sum2(v1 * v1) * 0.5

# covariance with noisy input
for a in range(Ny):

ii = v / ca.repmat(ca.exp(2 * hyper[a, :Nx]), N, 1)
for b in range(a + 1):

R = ca.mtimes(inputcov, ca.diag(ca.exp(-2 * hyper[a, :Nx])
+ ca.exp(-2 * hyper[b, :Nx]))) + ca.MX.eye(Nx)

t = 1.0 / ca.sqrt(determinant(R))
ij = v / ca.repmat(ca.exp(2 * hyper[b, :Nx]), N, 1)
Q = ca.exp(ca.repmat(log_k[:, a], 1, N)

+ ca.repmat(ca.transpose(log_k[:, b]), N, 1)
+ maha(ii, -ij, ca.solve(R, inputcov * 0.5), N))

A = ca.mtimes(beta[:, a], ca.transpose(beta[:, b]))
if b == a:

A = A - invK[a]
A = A * Q
covariance[a, b] = t * ca.sum2(ca.sum1(A))
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covariance[b, a] = covariance[a, b]
covariance[a, a] = covariance[a, a] + ca.exp(2 * hyper[a, Nx])

covariance = covariance - ca.mtimes(mean, ca.transpose(mean))

return [mean, covariance]

def maha(a1, b1, Q1, N):
"""Calculate the Mahalanobis distance
Copyright (c) 2018, Eric Bradford
"""
aQ = ca.mtimes(a1, Q1)
bQ = ca.mtimes(b1, Q1)
K1 = ca.repmat(ca.sum2(aQ * a1), 1, N) \

+ ca.repmat(ca.transpose(ca.sum2(bQ * b1)), N, 1) \
- 2 * ca.mtimes(aQ, ca.transpose(b1))

return K1

E.3 optimize
# -*- coding: utf-8 -*-
"""
Optimize hyperparameters for Gaussian Process Model
Copyright (c) 2018, Helge-André Langåker
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import time
import pyDOE
import numpy as np
import casadi as ca
from scipy.spatial import distance
from .gp_functions import get_mean_function, gp, gp_exact_moment
from scipy.optimize import minimize

# -----------------------------------------------------------------------------
# Optimization of hyperperameters as a constrained minimization problem
# -----------------------------------------------------------------------------
def calc_NLL(hyper, X, Y, squaredist, meanFunc='zero', prior=None):

""" Objective function

Calculate the negative log likelihood function using Casadi SX symbols.

# Arguments:
hyper: Array with hyperparameters [ell_1 .. ell_Nx sf sn], where Nx is the

number of inputs to the GP.
X: Training data matrix with inputs of size (N x Nx).
Y: Training data matrix with outpyts of size (N x Ny),

with Ny number of outputs.

# Returns:
NLL: The negative log likelihood function (scalar)

"""
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N, Nx = ca.MX.size(X)
ell = hyper[:Nx]
sf2 = hyper[Nx]**2
sn2 = hyper[Nx + 1]**2

m = get_mean_function(hyper, X.T, func=meanFunc)

# Calculate covariance matrix
K_s = ca.SX.sym('K_s',N, N)
sqdist = ca.SX.sym('sqd', N, N)
elli = ca.SX.sym('elli')
ki = ca.Function('ki', [sqdist, elli, K_s], [sqdist / elli**2 + K_s])
K1 = ca.MX(N, N)
for i in range(Nx):

K1 = ki(squaredist[:, (i * N):(i + 1) * N], ell[i], K1)

sf2_s = ca.SX.sym('sf2')
exponent = ca.SX.sym('exp', N, N)
K_exp = ca.Function('K', [exponent, sf2_s], [sf2_s * ca.SX.exp(-.5 * exponent)])
K2 = K_exp(K1, sf2)

K = K2 + sn2 * ca.MX.eye(N)
K = (K + K.T) * 0.5 # Make sure matrix is symmentric

A = ca.SX.sym('A', ca.MX.size(K))
cholesky = ca.Function('cholesky', [A], [ca.chol(A).T])
L = cholesky(K)

B = 2 * ca.sum1(ca.SX.log(ca.diag(A)))
log_determinant = ca.Function('log_det', [A], [B])
log_detK = log_determinant(L)

Y_s = ca.SX.sym('Y', ca.MX.size(Y))
L_s = ca.SX.sym('L', ca.Sparsity.lower(N))
sol = ca.Function('sol', [L_s, Y_s], [ca.solve(L_s, Y_s)])
invLy = sol(L, Y - m(X.T))

invLy_s = ca.SX.sym('invLy', ca.MX.size(invLy))
sol2 = ca.Function('sol2', [L_s, invLy_s], [ca.solve(L_s.T, invLy_s)])
alpha = sol2(L, invLy)

alph = ca.SX.sym('alph', ca.MX.size(alpha))
detK = ca.SX.sym('det')

# Calculate hyperpriors
theta = ca.SX.sym('theta')
mu = ca.SX.sym('mu')
s2 = ca.SX.sym('s2')
prior_gauss = ca.Function('hyp_prior', [theta, mu, s2],

[-(theta - mu)**2/(2*s2) - 0.5*ca.log(2*ca.pi*s2)])
log_prior = 0
if prior is not None:

for i in range(Nx):
log_prior += prior_gauss(ell[i], prior['ell_mean'], prior['ell_std']**2)

log_prior += prior_gauss(sf2, prior['sf_mean'], prior['sf_std']**2)
log_prior += prior_gauss(sn2, prior['sn_mean'], prior['sn_std']**2)
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NLL = ca.Function('NLL', [Y_s, alph, detK],
[0.5 * ca.mtimes(Y_s.T, alph) + 0.5 * detK])

return NLL(Y - m(X.T), alpha, log_detK) + log_prior

def train_gp(X, Y, meanFunc='zero', hyper_init=None, lam_x0=None, log=False,
multistart=1, optimizer_opts=None):

""" Train hyperparameters using CasADi/IPOPT

Maximum likelihood estimation is used to optimize the hyperparameters of
the Gaussian Process. The optimalization use CasADi to find the gradients
and use the interior point method IPOPT to find the solution.

A uniform prior of the hyperparameters are assumed and implemented as
limits in the optimization problem.

NOTE: This function use the symbolic framework from CasADi to optimize the
hyperparameters, where the gradients are found using algorithmic
differentiation. This gives the exact gradients, but require a lot
more memory than the nummeric version 'train_gp_numpy' and have a
quite horrible scaling problem. The memory usage from the symbolic
gradients tend to explode with the number of observations.

# Arguments:
X: Training data matrix with inputs of size (N x Nx),

where Nx is the number of inputs to the GP.
Y: Training data matrix with outpyts of size (N x Ny),

with Ny number of outputs.
meanFunc: String with the name of the wanted mean function.

Possible options:
'zero': m = 0
'const': m = a
'linear': m(x) = aT*x + b
'polynomial': m(x) = xT*diag(a)*x + bT*x + c

# Return:
opt: Dictionary with the optimal hyperparameters

[ell_1 .. ell_Nx sf sn].
"""

if log:
X = np.log(X)
Y = np.log(Y)

N, Nx = X.shape
Ny = Y.shape[1]
# Counting mean function parameters
if meanFunc == 'zero':

h_m = 0
elif meanFunc == 'const':

h_m = 1
elif meanFunc == 'linear':

h_m = Nx + 1
elif meanFunc == 'polynomial':

h_m = 2 * Nx + 1
else:
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raise NameError('No mean function called: ' + meanFunc)

h_ell = Nx # Number of length scales parameters
h_sf = 1 # Standard deviation function
h_sn = 1 # Standard deviation noise
num_hyp = h_ell + h_sf + h_sn + h_m
prior = None

# prior = dict(
# ell_mean = 10,
# ell_std = 10,
# sf_mean = 10,
# sf_std = 10,
# sn_mean = 1e-5,
# sn_std = 1e-5
# )

# Create solver
Y_s = ca.MX.sym('Y', N)
X_s = ca.MX.sym('X', N, Nx)
hyp_s = ca.MX.sym('hyp', 1, num_hyp)
squaredist_s = ca.MX.sym('sqdist', N, N * Nx)
param_s = ca.horzcat(squaredist_s, Y_s)

NLL_func = ca.Function('NLL', [hyp_s, X_s, Y_s, squaredist_s],
[calc_NLL(hyp_s, X_s, Y_s, squaredist_s,

meanFunc=meanFunc, prior=prior)])
nlp = {'x': hyp_s, 'f': NLL_func(hyp_s, X, Y_s, squaredist_s), 'p': param_s}

# NLP solver options
opts = {}
opts['expand'] = True
opts['print_time'] = False
opts['verbose'] = False
opts['ipopt.print_level'] = 1
opts['ipopt.tol'] = 1e-8
opts['ipopt.mu_strategy'] = 'adaptive'
if optimizer_opts is not None:

opts.update(optimizer_opts)

warm_start = False
if hyper_init is not None:

opts['ipopt.warm_start_init_point'] = 'yes'
warm_start = True

Solver = ca.nlpsol('Solver', 'ipopt', nlp, opts)

hyp_opt = np.zeros((Ny, num_hyp))
lam_x_opt = np.zeros((Ny, num_hyp))
invK = np.zeros((Ny, N, N))
alpha = np.zeros((Ny, N))
chol = np.zeros((Ny, N, N))

print('\n________________________________________')
print('# Optimizing hyperparameters (N=%d)' % N )
print('----------------------------------------')
for output in range(Ny):

meanF = np.mean(Y[:, output])
lb = -np.inf * np.ones(num_hyp)
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ub = np.inf * np.ones(num_hyp)

lb[:Nx] = 1e-2
ub[:Nx] = 1e2
lb[Nx] = 1e-8
ub[Nx] = 1e2
lb[Nx + 1] = 10**-10
ub[Nx + 1] = 10**-2

if hyper_init is None:
# hyp_init = pyDOE.lhs(num_hyp, samples=1).flatten()

hyp_init = np.zeros((num_hyp))
hyp_init[:Nx] = np.std(X, 0)
hyp_init[Nx] = np.std(Y[:, output])
hyp_init[Nx + 1] = 1e-5

# hyp_init = hyp_init * (ub - lb) + lb
else:

hyp_init = hyper_init[output, :]

if meanFunc is 'const':
lb[-1] = -1e2
ub[-1] = 1e2

elif meanFunc is not 'zero':
lb[-1] = meanF / 10 -1e-8
ub[-1] = meanF * 10 + 1e-8
lb[-h_m:-1] = -1e-2
ub[-h_m:-1] = 1e-2

squaredist = np.zeros((N, N * Nx))
for i in range(Nx):

d = distance.pdist(X[:, i].reshape(N, 1), 'sqeuclidean')
squaredist[:, (i * N):(i + 1) * N] = distance.squareform(d)

param = ca.horzcat(squaredist, Y[:, output])

obj = np.zeros((multistart, 1))
hyp_opt_loc = np.zeros((multistart, num_hyp))
lam_x_opt_loc = np.zeros((multistart, num_hyp))

for i in range(multistart):
solve_time = -time.time()
if warm_start:

res = Solver(x0=hyp_init, lam_x0=lam_x0[output],
lbx=lb, ubx=ub, p=param)

else:
res = Solver(x0=hyp_init, lbx=lb, ubx=ub, p=param)

status = Solver.stats()['return_status']
obj[i] = res['f']
hyp_opt_loc[i, :] = res['x']
lam_x_opt_loc = res['lam_x']
solve_time += time.time()
print("* State %d: %s - %f s" % (output, status, solve_time))

# With multistart, get solution with lowest decision function value
hyp_opt[output, :] = hyp_opt_loc[np.argmin(obj)]
lam_x_opt[output, :] = lam_x_opt_loc[np.argmin(obj)]
ell = hyp_opt[output, :Nx]
sf2 = hyp_opt[output, Nx]**2
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sn2 = hyp_opt[output, Nx + 1]**2

# Calculate the inverse covariance matrix
K = np.zeros((N, N))
for i in range(Nx):

K = squaredist[:, (i * N):(i + 1) * N] / ell[i]**2 + K
K = sf2 * np.exp(-.5 * K)
K = K + sn2 * np.eye(N) # Add noise variance to diagonal
K = (K + K.T) * 0.5 # Make sure matrix is symmentric
try:

L = np.linalg.cholesky(K)
except np.linalg.LinAlgError:

print("K matrix is not positive definit, adding jitter!")
K = K + np.eye(N) * 1e-8
L = np.linalg.cholesky(K)

invL = np.linalg.solve(L, np.eye(N))
invK[output, :, :] = np.linalg.solve(L.T, invL)
chol[output] = L
m = get_mean_function(ca.MX(hyp_opt[output, :]), X.T, func=meanFunc)
mean = np.array(m(X.T)).reshape((N,))
alpha[output] = np.linalg.solve(L.T, np.linalg.solve(L, Y[:, output] - mean))

print('----------------------------------------')

opt = {}
opt['hyper'] = hyp_opt
opt['lam_x'] = lam_x_opt
opt['invK'] = invK
opt['alpha'] = alpha
opt['chol'] = chol
return opt

# -----------------------------------------------------------------------------
# Optimization of hyperperameters using scipy
# -----------------------------------------------------------------------------

def calc_cov_matrix(X, ell, sf2):
""" Calculate covariance matrix K

Squared Exponential ARD covariance kernel

# Arguments:
X: Training data matrix with inputs of size (N x Nx).
ell: Vector with length scales of size Nx.
sf2: Signal variance (scalar)

"""
dist = 0
n, D = X.shape
for i in range(D):

x = X[:, i].reshape(n, 1)
dist = (np.sum(x**2, 1).reshape(-1, 1) + np.sum(x**2, 1) -

2 * np.dot(x, x.T)) / ell[i]**2 + dist
return sf2 * np.exp(-.5 * dist)
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def calc_NLL_numpy(hyper, X, Y):
""" Objective function

Calculate the negative log likelihood function.

# Arguments:
hyper: Array with hyperparameters [ell_1 .. ell_Nx sf sn], where Nx is the

number of inputs to the GP.
X: Training data matrix with inputs of size (N x Nx).
Y: Training data matrix with outpyts of size (N x Ny), with Ny number of outputs.

# Returns:
NLL: The negative log likelihood function (scalar)

"""

n, D = X.shape
ell = hyper[:D]
sf2 = hyper[D]**2
lik = hyper[D + 1]**2
#m = hyper[D + 2]
K = calc_cov_matrix(X, ell, sf2)
K = K + lik * np.eye(n)
K = (K + K.T) * 0.5 # Make sure matrix is symmentric
try:

L = np.linalg.cholesky(K)
except np.linalg.LinAlgError:

print("K is not positive definit, adding jitter!")
K = K + np.eye(n) * 1e-8
L = np.linalg.cholesky(K)

logK = 2 * np.sum(np.log(np.abs(np.diag(L))))
invLy = np.linalg.solve(L, Y)
alpha = np.linalg.solve(L.T, invLy)
NLL = 0.5 * np.dot(Y.T, alpha) + 0.5 * logK
return NLL

def train_gp_numpy(X, Y, meanFunc='zero', hyper_init=None, lam_x0=None, log=False,
multistart=1, optimizer_opts=None):

""" Train hyperparameters using scipy / SLSQP

Maximum likelihood estimation is used to optimize the hyperparameters of
the Gaussian Process. The optimization use finite differences to estimate
the gradients and Sequential Least SQuares Programming (SLSQP) to find
the optimal solution.

A uniform prior of the hyperparameters are assumed and implemented as
limits in the optimization problem.

NOTE: Unlike the casadi version 'train_gp', this function use finite
differences to estimate the gradients. To get a better result
and reduce the computation time the explicit gradients should
be implemented. The gradient equations are given by
(Rassmussen, 2006).

NOTE: This version only support a zero-mean function. To enable the use of
other mean functions, this has to be included in the calculations
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in the 'calc_NLL_numpy' function.

# Arguments:
X: Training data matrix with inputs of size (N x Nx),

where Nx is the number of inputs to the GP.
Y: Training data matrix with outpyts of size (N x Ny),

with Ny number of outputs.
meanFunc: String with the name of the wanted mean function.

Possible options:
'zero': m = 0
'const': m = a
'linear': m(x) = aT*x + b
'polynomial': m(x) = xT*diag(a)*x + bT*x + c

# Return:
opt: Dictionary with the optimal hyperparameters [ell_1 .. ell_Nx sf sn].

"""
# if log:
# X = np.log(X)
# Y = np.log(Y)

N, Nx = X.shape
Ny = Y.shape[1]

# Counting mean function parameters
if meanFunc == 'zero':

h_m = 0
elif meanFunc == 'const':

h_m = 1
elif meanFunc == 'linear':

h_m = Nx + 1
elif meanFunc == 'polynomial':

h_m = 2 * Nx + 1
else:

raise NameError('No mean function called: ' + meanFunc)

h_ell = Nx # Number of length scales parameters
h_sf = 1 # Standard deviation function
h_sn = 1 # Standard deviation noise
num_hyp = h_ell + h_sf + h_sn + h_m

options = {'disp': True, 'maxiter': 10000}
if optimizer_opts is not None:

options.update(optimizer_opts)

hyp_opt = np.zeros((Ny, num_hyp))
invK = np.zeros((Ny, N, N))
alpha = np.zeros((Ny, N))
chol = np.zeros((Ny, N, N))

print('\n________________________________________')
print('# Optimizing hyperparameters (N=%d)' % N )
print('----------------------------------------')
for output in range(Ny):

meanF = np.mean(Y[:, output])
lb = -np.inf * np.ones(num_hyp)
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ub = np.inf * np.ones(num_hyp)
lb[:Nx] = 1-2
ub[:Nx] = 2e2
lb[Nx] = 1e-8
ub[Nx] = 1e2
lb[Nx + 1] = 10**-10
ub[Nx + 1] = 10**-2
bounds = np.hstack((lb.reshape(num_hyp, 1), ub.reshape(num_hyp, 1)))

if hyper_init is None:
hyp_init = np.zeros((num_hyp))
hyp_init[:Nx] = np.std(X, 0)
hyp_init[Nx] = np.std(Y[:, output])
hyp_init[Nx + 1] = 1e-5

else:
hyp_init = hyper_init[output, :]

if meanFunc is 'const':
lb[-1] = -1e2
ub[-1] = 1e2

elif meanFunc is not 'zero':
lb[-1] = meanF / 10 -1e-8
ub[-1] = meanF * 10 + 1e-8
lb[-h_m:-1] = -1e-2
ub[-h_m:-1] = 1e-2

obj = np.zeros((multistart, 1))
hyp_opt_loc = np.zeros((multistart, num_hyp))
for i in range(multistart):

solve_time = -time.time()
res = minimize(calc_NLL_numpy, hyp_init, args=(X, Y[:, output]),

method='SLSQP', options=options, bounds=bounds, tol=1e-12)
obj[i] = res.fun
hyp_opt_loc[i, :] = res.x

solve_time += time.time()
print("* State %d: %f s" % (output, solve_time))

# With multistart, get solution with lowest decision function value
hyp_opt[output, :] = hyp_opt_loc[np.argmin(obj)]
ell = hyp_opt[output, :Nx]
sf2 = hyp_opt[output, Nx]**2
sn2 = hyp_opt[output, Nx + 1]**2

# Calculate the inverse covariance matrix
K = calc_cov_matrix(X, ell, sf2)
K = K + sn2 * np.eye(N)
K = (K + K.T) * 0.5 # Make sure matrix is symmentric
try:

L = np.linalg.cholesky(K)
except np.linalg.LinAlgError:

print("K matrix is not positive definit, adding jitter!")
K = K + np.eye(N) * 1e-8
L = np.linalg.cholesky(K)

invL = np.linalg.solve(L, np.eye(N))
invK[output, :, :] = np.linalg.solve(L.T, invL)
chol[output] = L
m = get_mean_function(ca.MX(hyp_opt[output, :]), X.T, func=meanFunc)
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mean = np.array(m(X.T)).reshape((N,))
alpha[output] = np.linalg.solve(L.T, np.linalg.solve(L, Y[:, output] - mean))

print('----------------------------------------')

opt = {}
opt['hyper'] = hyp_opt
opt['lam_x'] = 0 # Warm start not implemented
opt['invK'] = invK
opt['alpha'] = alpha
opt['chol'] = chol
return opt

# -----------------------------------------------------------------------------
# Validation of model
# -----------------------------------------------------------------------------

def validate(X_test, Y_test, X, Y, invK, hyper, meanFunc, alpha=None):
""" Validate GP model with new test data
"""
N, Ny = Y_test.shape
Nx = np.size(X, 1)
z_s = ca.MX.sym('z', Nx)

gp_func = ca.Function('gp', [z_s],
gp(invK, ca.MX(X), ca.MX(Y), ca.MX(hyper),

z_s, meanFunc=meanFunc, alpha=alpha))
loss = 0
NLP = 0

for i in range(N):
mean, var = gp_func(X_test[i, :])
loss += (Y_test[i, :] - mean)**2
NLP += 0.5*np.log(2*np.pi * (var)) + ((Y_test[i, :] - mean)**2)/(2*var)
print(NLP)
print(var)

loss = loss / N
SMSE = loss/ np.std(Y_test, 0)
MNLP = NLP / N

print('\n________________________________________')
print('# Validation of GP model ')
print('----------------------------------------')
print('* Num training samples: ' + str(np.size(Y, 0)))
print('* Num test samples: ' + str(N))
print('----------------------------------------')
print('* Mean squared error: ')
for i in range(Ny):

print('\t- State %d: %f' % (i + 1, loss[i]))
print('----------------------------------------')
print('* Standardized mean squared error:')
for i in range(Ny):

print('\t* State %d: %f' % (i + 1, SMSE[i]))
print('----------------------------------------\n')
print('* Mean Negative log Probability:')
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for i in range(Ny):
print('\t* State %d: %f' % (i + 1, MNLP[i]))

print('----------------------------------------\n')
return SMSE, MNLP

"""-----------------------------------------------------------------------------
# Preprocesing of training data
-----------------------------------------------------------------------------"""

def normalize(X, lb, ub):
""" Normalize data between 0 and 1
# Arguments:

X: Input data (scalar/vector/matrix)
lb: Lower boundry (scalar/vector)
ub: Upper boundry (scalar/vector)

# Return:
X normalized (scalar/vector/matrix)

"""

return (X - lb) / (ub - lb)

def normalize_inverse(X_scaled, lb, ub):
# Scale input and output variables
# Normalize input data to [0 1]
return X_scaled * (ub - lb) + lb

def standardize(X_original, meanX, stdX):
# Scale input and output variables
return (X_original - meanX) / stdX

def standardize_inverse(X_scaled, meanX, stdX):
# Scale input and output variables
return X_scaled * stdX + meanX

E.4 model class
# -*- coding: utf-8 -*-
"""
Dynamic System Model
Copyright (c) 2018, Helge-André Langåker
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import pyDOE
import numpy as np
import casadi as ca
import scipy.linalg
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import matplotlib.pyplot as plt
from matplotlib.font_manager import FontProperties

class Model:
def __init__(self, Nx, Nu, ode, dt, R=None,

alg=None, alg_0=None, Nz=0, Np=0,
opt=None, clip_negative=False):

""" Initialize dynamic model

# Arguments:
Nx: Number of states
Nu: Number of inputs
ode: ode(x, u, z, p)
dt: Sampling time

# Arguments (optional):
R: Noise covariance matrix (Ny, Ny)
alg: alg(x, z, u)
alg_0: Initial value of algebraic variables
Nz: Number of algebraic states
Np: Number of parameters
opt: Options dict to pass to the IDEAS integrator
clip_negative: If true, clip negative simulated outputs to zero

"""

# Create a default noise covariance matrix
if R is None:

self.__R = np.eye(self.__Ny) * 1e-3
else:

self.__R = R

self.__dt = dt
self.__Nu = Nu
self.__Nx = Nx
self.__Nz = Nz
self.__Np = Np
self.__clip_negative = clip_negative

""" Create integrator """
# Integrator options
options = {

"abstol" : 1e-5,
"reltol" : 1e-9,
"max_num_steps": 100,
"tf" : dt,

}
if opt is not None:

options.update(opt)

x = ca.MX.sym('x', Nx)
u = ca.MX.sym('u', Nu)
z = ca.MX.sym('z', Nz)
p = ca.MX.sym('p', Np)
par = ca.vertcat(u, p)

dae = {'x': x, 'ode': ode(x,u,z,p), 'p':par}
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if alg is not None:
self.__alg0 = ca.Function('alg_0', [x, u],

[alg_0(x, u)])
dae.update({'z':z, 'alg': alg(x, z, u)})
self.Integrator = ca.integrator('DEA_Integrator', 'idas', dae, options)

else:
self.Integrator = ca.integrator('ODE_Integrator', 'cvodes', dae, options)

#TODO: Fix discrete DAE model
if alg is None:

""" Create discrete RK4 model """
ode_casadi = ca.Function("ode", [x, u, p], [ode(x,u,z,p)])
k1 = ode_casadi(x, u, p)
k2 = ode_casadi(x + dt/2*k1, u, p)
k3 = ode_casadi(x + dt/2*k2, u, p)
k4 = ode_casadi(x + dt*k3,u, p)
xrk4 = x + dt/6*(k1 + 2*k2 + 2*k3 + k4)
self.rk4 = ca.Function("ode_rk4", [x, u, p], [xrk4])

# Jacobian of continuous system
self.__jac_x = ca.Function('jac_x', [x, u, p],

[ca.jacobian(ode_casadi(x,u,p), x)])
self.__jac_u = ca.Function('jac_x', [x, u, p],

[ca.jacobian(ode_casadi(x,u,p), u)])

# Jacobian of discrete RK4 system
self.__discrete_rk4_jac_x = ca.Function('jac_x', [x, u, p],

[ca.jacobian(self.rk4(x,u,p), x)])
self.__discrete_rk4_jac_u = ca.Function('jac_x', [x, u, p],

[ca.jacobian(self.rk4(x,u,p), u)])

# Jacobian of exact discretization
self.__discrete_jac_x = ca.Function('jac_x', [x, u, p],

[ca.jacobian(self.Integrator(x0=x,
p=ca.vertcat(u,p))['xf'], x)])

self.__discrete_jac_u = ca.Function('jac_u', [x, u, p],
[ca.jacobian(self.Integrator(x0=x,

p=ca.vertcat(u,p))['xf'], u)])

def linearize(self, x0, u0, p0=[]):
""" Linearize the continuous system around the operating point

dx/dt = Ax + Bu
# Arguments:

x0: State vector
u0: Input vector
p0: Parameter vector (optional)

"""
A = np.array(self.__jac_x(x0, u0, p0))
B = np.array(self.__jac_u(x0, u0, p0))
return A, B

def discrete_linearize(self, x0, u0, p0=[]):
""" Linearize the exact discrete system around the operating point

x[k+1] = Ax[k] + Bu[k]
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# Arguments:
x0: State vector
u0: Input vector
p0: Parameter vector (optional)

"""
Ad = np.array(self.__discrete_jac_x(x0, u0, p0))
Bd = np.array(self.__discrete_jac_u(x0, u0, p0))
return Ad, Bd

def discrete_rk4_linearize(self, x0, u0, p0=[]):
""" Linearize the discrete rk4 system around the operating point

x[k+1] = Ax[k] + Bu[k]
# Arguments:

x0: State vector
u0: Input vector
p0: Parameter vector (optional)

"""
Ad = np.array(self.__discrete_rk4_jac_x(x0, u0, p0))
Bd = np.array(self.__discrete_rk4_jac_u(x0, u0, p0))
return Ad, Bd

def rk4_jacobian_x(self, x0, u0, p0=[]):
""" Return state jacobian evaluated at the operating point

x[k+1] = Ax[k] + Bu[k]
# Arguments:

x0: State vector
u0: Input vector
p0: Parameter vector (optional)

"""
return self.__discrete_rk4_jac_x(x0, u0, p0)

def rk4_jacobian_u(self, x0, u0, p0=[]):
""" Return input jacobian evaluated at the operating point

x[k+1] = Ax[k] + Bu[k]
# Arguments:

x0: State vector
u0: Input vector
p0: Parameter vector (optional)

"""
return self.__discrete_rk4_jac_u(x0, u0, p0)

def check_rk4_stability(self, x0, u0, d=.1, plot=False):
""" Check if Runga Kutta 4 method is stable around operating point

# Return True if stable, False if not stable
"""
A, B = self.linearize(x0, u0, p0=[])
eigenvalues, eigenvec = scipy.linalg.eig(A)
h = self.sampling_time()
for eig in eigenvalues:

R = 1 + h*eig + (h*eig)**2/2 + (h*eig)**3/6 + (h*eig)**4/24
if np.abs(R) >= 1:

return False
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# if plot:
# h = d
## N = 1000;
## th = np.linspace(0, 2*np.pi, N);
## r = np.exp(1j*th);
## f = lambda r: 1 + h*r + (h*r)**2/2 + (h*r)**3/6 + (h*r)**4/24
# plt.figure()
# x = np.arange(-3.0, 3.0, 0.01)
# y = np.arange(-3.0, 3.0, 0.01)
# X, Y = np.meshgrid(x, y)
# print(h)
# z = X + 1j*Y;
# R = 1 + h*z + (h*z)**2/2 + (h*z)**3/6 + (h*z)**4/24
# print(R.shape)
# zlevel4 = abs(R);
# plt.contour(x,y, zlevel4)
# plt.show()

return True

def sampling_time(self):
""" Get the sampling time
"""
return self.__dt

def size(self):
""" Get the size of the model

# Returns:
Nx: Number of states
Nu: Number of inputs
Np: Number of parameters

"""
return self.__Nx, self.__Nu, self.__Np

def integrate(self, x0, u, p):
""" Integrate one time sample dt

# Arguments:
x0: Initial state vector
u: Input vector
p: Parameter vector

# Returns:
x: Numpy array with x at t0 + dt

"""
par=ca.vertcat(u, p)
if self.__Nz is not 0:

z0 = self.__alg0(x0, u)
out = self.Integrator(x0=x0, p=u, z0=z0)

else:
out = self.Integrator(x0=x0, p=par)

return np.array(out["xf"]).flatten()

#TODO: Fix this or remove
def set_method(self, method='exact'):
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""" Select wich discrete time method to use """

def sim(self, x0, u, p=None, noise=False):
""" Simulate system

# Arguments:
x0: Initial state (Nx, 1)
u: Input matrix with the input for each timestep in the

simulation horizon (Nt, Nu)
p: Parameter matrix with the parameters for each timestep

in the simulation horizon (Nt, Np)
noise: If True, add gaussian noise using the noise covariance matrix

# Output:
Y_sim: Matrix with the simulated outputs (Nt, Ny)

"""

Nt = np.size(u, 0)

# Initial state of the system
x = x0

# Predefine matrix to collect noisy state outputs
Y = np.zeros((Nt, self.__Nx))

for t in range(Nt):
u_t = u[t, :] # control input for simulation
if p is not None:

p_t = p[t, :] # parameter at step t
else:

p_t = []
try:

x = self.integrate(x, u_t, p_t).flatten()
except RuntimeError:

print('----------------------------------------')
print('** System unstable, simulator crashed **')
print('** t: %d **' % t)
print('----------------------------------------')
return Y

Y[t, :] = x

# Add normal white noise to state outputs
if noise:

Y[t, :] += np.random.multivariate_normal(
np.zeros((self.__Nx)), self.__R)

# Limit values to above 1e-8 to avvoid to avvoid numerical errors
if self.__clip_negative:

if np.any(Y < 0):
print('Clipping negative values in simulation!')
Y = Y.clip(min=1e-6)

return Y

def generate_training_data(self, N, uub, ulb, xub, xlb,
pub=None, plb=None, noise=True):
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""" Generate training data using latin hypercube design

# Arguments:
N: Number of data points to be generated
uub: Upper input range (Nu,1)
ulb: Lower input range (Nu,1)
xub: Upper state range (Ny,1)
xlb: Lower state range (Ny,1)

# Returns:
Z: Matrix (N, Nx + Nu) with state x and inputs u at each row
Y: Matrix (N, Nx) where each row is the state x at time t+dt,

with the input from the same row in Z at time t.
"""
# Make sure boundry vectors are numpy arrays
uub = np.array(uub)
ulb = np.array(ulb)
xub = np.array(xub)
xlb = np.array(xlb)

# Predefine matrix to collect noisy state outputs
Y = np.zeros((N, self.__Nx))

# Create control input design using a latin hypecube
# Latin hypercube design for unit cube [0,1]ˆNu
if self.__Nu > 0:

U = pyDOE.lhs(self.__Nu, samples=N, criterion='maximin')
# Scale control inputs to correct range
for k in range(N):

U[k, :] = U[k, :] * (uub - ulb) + ulb
else:

U = []

# Create state input design using a latin hypecube
# Latin hypercube design for unit cube [0,1]ˆNy
X = pyDOE.lhs(self.__Nx, samples=N, criterion='maximin')

# Scale state inputs to correct range
for k in range(N):

X[k, :] = X[k, :] * (xub - xlb) + xlb

# Create parameter matrix
par = pyDOE.lhs(self.__Np, samples=N)
if pub is not None:

for k in range(N):
par[k, :] = par[k, :] * (pub - plb) + plb

for i in range(N):
if self.__Nu > 0:

u_t = U[i, :] # control input for simulation
else:

u_t = []
x_t = X[i, :] # state input for simulation
p_t = par[i, :] # parameter input for simulation

# Simulate system with x_t and u_t inputs for deltat time
Y[i, :] = self.integrate(x_t, u_t, p_t)
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# Add normal white noise to state outputs
if noise:

Y[i, :] += np.random.multivariate_normal(
np.zeros((self.__Nx)), self.__R)

# Concatenate previous states and inputs to obtain overall input to GP model
if self.__Nu > 0:

Z = np.hstack([X, U])
else:

Z = X
return Z, Y

def plot(self, x0, u, numcols=2):
""" Simulate and plot model

# Arguments:
x0: Initial state
u: Matrix with inputs for all time steps (Nt, Nu)
numcols: Number of columns in the plot

"""
y = self.sim(x0, u, noise=True)
Nt = np.size(u, 0)
t = np.linspace(0.0, (Nt - 1)* self.__dt, Nt )
numrows = int(np.ceil(self.__Nx / numcols))

fig_x = plt.figure()
for i in range(self.__Nx):

ax = fig_x.add_subplot(numrows, numcols, i + 1)
ax.plot(t, y[:, i], 'b-', marker='.', linewidth=1.0)
ax.set_ylabel('x_' + str(i + 1))
ax.set_xlabel('Time')

fig_x.canvas.set_window_title('Model simulation')
plt.show()

def predict_compare(self, x0, u, num_cols=2, xnames=None, title=None,):
""" Predict and compare dicrete RK4 model and linearized model against

the exact model.
"""
# Predict future
Nx = self.__Nx

dt = self.sampling_time()
Nt = np.size(u, 0)
sim_time = Nt * dt

# Exact model with no noise
y_exact = self.sim(x0, u, noise=False)
y_exact = np.vstack([x0, y_exact])

# RK4
y_rk4 = np.zeros((Nt + 1 , Nx))
y_rk4[0] = x0
for t in range(Nt):

y_rk4[t + 1]= np.array(self.rk4(y_rk4[t], u[t-1, :], [])).reshape((Nx,))
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# Linearized Model of Exact discretization
Ad, Bd = self.discrete_linearize(x0, u[0])
y_lin = np.zeros((Nt + 1, Nx))
y_lin[0] = x0
for t in range(Nt):

y_lin[t+1] = Ad @ y_lin[t] + Bd @ u[t]

# Linearized Model of RK4 discretization
Ad, Bd = self.discrete_rk4_linearize(x0, u[0])
y_rk4_lin = np.zeros((Nt + 1, Nx))
y_rk4_lin[0] = x0
for t in range(Nt):

y_rk4_lin[t+1] = Ad @ y_rk4_lin[t] + Bd @ u[t]

t = np.linspace(0.0, sim_time, Nt + 1)

num_rows = int(np.ceil(Nx / num_cols))
if xnames is None:

xnames = ['State %d' % (i + 1) for i in range(Nx)]

fontP = FontProperties()
fontP.set_size('small')
fig = plt.figure(figsize=(9.0, 6.0))
for i in range(Nx):

ax = fig.add_subplot(num_rows, num_cols, i + 1)
ax.plot(t, y_exact[:, i], 'b-', label='Exact')
ax.plot(t, y_rk4[:, i], 'r-', label='RK4')

# ax.plot(t, y_lin[:, i], 'g--', label='Linearized')
# ax.plot(t, y_lin[:, i], 'y--', label='Linearized RK4')

ax.set_ylabel(xnames[i])
ax.legend(prop=fontP, loc='best')
ax.set_xlabel('Time [s]')

if title is not None:
fig.canvas.set_window_title(title)

else:
fig.canvas.set_window_title('Compare approximations of system model')

plt.tight_layout()
plt.show()

E.5 mpc class
# -*- coding: utf-8 -*-
"""
Model Predictive Control with Gaussian Process
Copyright (c) 2018, Helge-André Langåker
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import time
import numpy as np
import matplotlib.pyplot as plt
import casadi as ca
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import casadi.tools as ctools
from scipy.stats import norm
import scipy.linalg

class MPC:
def __init__(self, horizon, model, gp=None,

Q=None, P=None, R=None, S=None, lam=None, lam_state=None,
ulb=None, uub=None, xlb=None, xub=None, terminal_constraint=None,
feedback=True, percentile=None, gp_method='TA', costFunc='quad',
solver_opts=None, discrete_method='gp', inequality_constraints=None,
num_con_par=0, hybrid=None, Bd=None, Bf=None
):

""" Initialize and build the MPC solver

# Arguments:
horizon: Prediction horizon with control inputs
model: System model

# Optional Argumants:
gp: GP model
Q: State penalty matrix, default=diag(1,...,1)
P: Termial penalty matrix, default=diag(1,...,1)

if feedback is True, then P is the solution of the DARE,
discarding this option.

R: Input penalty matrix, default=diag(1,...,1)*0.01
S: Input rate of change penalty matrix, default=diag(1,...,1)*0.1
lam: Slack variable penalty for constraints, defalt=1000
lam_state: Slack variable penalty for violation of upper/lower

state boundy, defalt=None
ulb: Lower boundry input
uub: Upper boundry input
xlb: Lower boundry state
xub: Upper boundry state
terminal_constraint: Terminal condition on the state

* if None: No terminal constraint is used

* if zero: Terminal state is equal to zero

* if nonzero: Terminal state is bounded within +/- the constraint

* if not None and feedback is True, then the expected value of
the Lyapunov function E{xˆTPx} < terminal_constraint
is used as a terminal constraint.

feedback: If true, use an LQR feedback function u= Kx + v
percentile: Measure how far from the contrain that is allowed,

P(X in constrained set) > percentile,
percentile= 1 - probability of violation,
default=0.95

gp_method: Method of propagating the uncertainty
Possible options:

'TA': Second order Taylor approximation
'ME': Mean equivalent approximation

costFunc: Cost function to use in the objective
'quad': Expected valaue of Quadratic Cost
'sat': Expected value of Saturating cost

solver_opts: Additional options to pass to the NLP solver
e.g.: solver_opts['print_time'] = False
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solver_opts['ipopt.tol'] = 1e-8
discrete_method: 'gp' - Gaussian process model

'rk4' - Runga-Kutta 4 Integrator
'exact' - CVODES or IDEAS (for ODEs or DEAs)
'hybrid' - GP model for dynamic equations, and RK4

for kinematic equations
'd_hybrid' - Same as above, without uncertainty
'f_hybrid' - GP estimating modelling errors, with

RK4 computing the the actual model
num_con_par: Number of parameters to pass to the inequality function
inequality_constraints: Additional inequality constraints

Use a function with inputs (x, covar, u, eps) and
that returns a dictionary with inequality constraints and limits.

e.g. cons = dict(con_ineq=con_ineq_array,
con_ineq_lb=con_ineq_lb_array,
con_ineq_ub=con_ineq_ub_array

)

# NOTES:

* Differentiation of Sundails integrators is not supported with SX graph,
meaning that the solver option 'extend_graph' must be set to False
to use MX graph instead when using the 'exact' discrete method.

* At the moment the f_hybrid option is not finished implemented...
"""

build_solver_time = -time.time()
dt = model.sampling_time()
Ny, Nu, Np = model.size()
Nx = Nu + Ny
Nt = int(horizon / dt)

self.__dt = dt
self.__Nt = Nt
self.__Ny = Ny
self.__Nx = Nx
self.__Nu = Nu
self.__num_con_par = num_con_par
self.__model = model
self.__hybrid = hybrid
self.__gp = gp
self.__feedback = feedback
self.__discrete_method = discrete_method

""" Default penalty values """
if P is None:

P = np.eye(Ny)
if Q is None:

Q = np.eye(Ny)
if R is None:

R = np.eye(Nu) * 0.01
if S is None:

S = np.eye(Nu) * 0.1
if lam is None:

lam = 1000
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self.__Q = Q
self.__P = P
self.__R = R
self.__S = S
self.__Bd = Bd
self.__Bf = Bf

if xub is None:
xub = np.full((Ny), np.inf)

if xlb is None:
xlb = np.full((Ny), -np.inf)

if uub is None:
uub = np.full((Nu), np.inf)

if ulb is None:
ulb = np.full((Nu), -np.inf)

""" Default percentile probability """
if percentile is None:

percentile = 0.95
quantile_x = np.ones(Ny) * norm.ppf(percentile)
quantile_u = np.ones(Nu) * norm.ppf(percentile)
Hx = ca.MX.eye(Ny)
Hu = ca.MX.eye(Nu)

""" Create parameter symbols """
mean_0_s = ca.MX.sym('mean_0', Ny)
mean_ref_s = ca.MX.sym('mean_ref', Ny)
u_0_s = ca.MX.sym('u_0', Nu)
covariance_0_s = ca.MX.sym('covariance_0', Ny * Ny)
K_s = ca.MX.sym('K', Nu * Ny)
P_s = ca.MX.sym('P', Ny * Ny)
con_par = ca.MX.sym('con_par', num_con_par)
param_s = ca.vertcat(mean_0_s, mean_ref_s, covariance_0_s,

u_0_s, K_s, P_s, con_par)

""" Select wich GP function to use """
if discrete_method is 'gp':

self.__gp.set_method(gp_method)
#TODO:Fix

if solver_opts['expand'] is not False and discrete_method is 'exact':
raise TypeError("Can't use exact discrete system with expanded graph")

""" Initialize state variance with the GP noise variance """
if gp is not None:

#TODO: Cannot use gp variance with hybrid model
self.__variance_0 = np.full((Ny), 1e-10) #gp.noise_variance()

else:
self.__variance_0 = np.full((Ny), 1e-10)

""" Define which cost function to use """
self.__set_cost_function(costFunc, mean_ref_s, P_s.reshape((Ny, Ny)))

""" Feedback function """
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mean_s = ca.MX.sym('mean', Ny)
v_s = ca.MX.sym('v', Nu)
if feedback:

u_func = ca.Function('u', [mean_s, mean_ref_s, v_s, K_s],
[v_s + ca.mtimes(K_s.reshape((Nu, Ny)),
mean_s-mean_ref_s)])

else:
u_func = ca.Function('u', [mean_s, mean_ref_s, v_s, K_s], [v_s])

self.__u_func = u_func

""" Create variables struct """
var = ctools.struct_symMX([(

ctools.entry('mean', shape=(Ny,), repeat=Nt + 1),
ctools.entry('L', shape=(int((Ny**2 - Ny)/2 + Ny),), repeat=Nt + 1),
ctools.entry('v', shape=(Nu,), repeat=Nt),
ctools.entry('eps', shape=(3,), repeat=Nt + 1),
ctools.entry('eps_state', shape=(Ny,), repeat=Nt + 1),

)])
num_slack = 3 #TODO: Make this a little more dynamic...
num_state_slack = Ny
self.__var = var
self.__num_var = var.size

# Decision variable boundries
self.__varlb = var(-np.inf)
self.__varub = var(np.inf)

""" Adjust hard boundries """
for t in range(Nt + 1):

j = Ny
k = 0
for i in range(Ny):

# Lower boundry of diagonal
self.__varlb['L', t, k] = 0
k += j
j -= 1

self.__varlb['eps', t] = 0
self.__varlb['eps_state', t] = 0
if xub is not None:

self.__varub['mean', t] = xub
if xlb is not None:

self.__varlb['mean', t] = xlb
if lam_state is None:

self.__varub['eps_state'] = 0

""" Input covariance matrix """
if discrete_method is 'hybrid':

N_gp, Ny_gp, Nu_gp = self.__gp.get_size()
Nz_gp = Ny_gp + Nu_gp
covar_d_sx = ca.SX.sym('cov_d', Ny_gp, Ny_gp)
K_sx = ca.SX.sym('K', Nu, Ny)
covar_u_func = ca.Function('cov_u', [covar_d_sx, K_sx],

# [K_sx @ covar_d_sx @ K_sx.T])
[ca.SX(Nu, Nu)])

covar_s = ca.SX(Nz_gp, Nz_gp)
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covar_s[:Ny_gp, :Ny_gp] = covar_d_sx
# covar_s = ca.blockcat(covar_x_s, cov_xu, cov_xu.T, cov_u)

covar_func = ca.Function('covar', [covar_d_sx], [covar_s])
elif discrete_method is 'f_hybrid':

#TODO: Fix this...
N_gp, Ny_gp, Nu_gp = self.__gp.get_size()
Nz_gp = Ny_gp + Nu_gp

# covar_x_s = ca.MX.sym('covar_x', Ny_gp, Ny_gp)
covar_d_sx = ca.SX.sym('cov_d', Ny_gp, Ny_gp)
K_sx = ca.SX.sym('K', Nu, Ny)

#
covar_u_func = ca.Function('cov_u', [covar_d_sx, K_sx],

# [K_sx @ covar_d_sx @ K_sx.T])
[ca.SX(Nu, Nu)])

# cov_xu_func = ca.Function('cov_xu', [covar_x_sx, K_sx],
# [covar_x_sx @ K_sx.T])
# cov_xu = cov_xu_func(covar_x_s, K_s.reshape((Nu, Ny)))
# cov_u = covar_u_func(covar_x_s, K_s.reshape((Nu, Ny)))

covar_s = ca.SX(Nz_gp, Nz_gp)
covar_s[:Ny_gp, :Ny_gp] = covar_d_sx

# covar_s = ca.blockcat(covar_x_s, cov_xu, cov_xu.T, cov_u)
covar_func = ca.Function('covar', [covar_d_sx], [covar_s])

else:
covar_x_s = ca.MX.sym('covar_x', Ny, Ny)
covar_x_sx = ca.SX.sym('cov_x', Ny, Ny)
K_sx = ca.SX.sym('K', Nu, Ny)
covar_u_func = ca.Function('cov_u', [covar_x_sx, K_sx],

[K_sx @ covar_x_sx @ K_sx.T])
cov_xu_func = ca.Function('cov_xu', [covar_x_sx, K_sx],

[covar_x_sx @ K_sx.T])
cov_xu = cov_xu_func(covar_x_s, K_s.reshape((Nu, Ny)))
cov_u = covar_u_func(covar_x_s, K_s.reshape((Nu, Ny)))
covar_s = ca.blockcat(covar_x_s, cov_xu, cov_xu.T, cov_u)
covar_func = ca.Function('covar', [covar_x_s], [covar_s])

""" Hybrid output covariance matrix """
if discrete_method is 'hybrid':

N_gp, Ny_gp, Nu_gp = self.__gp.get_size()
covar_d_sx = ca.SX.sym('covar_d', Ny_gp, Ny_gp)
covar_x_sx = ca.SX.sym('covar_x', Ny, Ny)
u_s = ca.SX.sym('u', Nu)

cov_x_next_s = ca.SX(Ny, Ny)
cov_x_next_s[:Ny_gp, :Ny_gp] = covar_d_sx
#TODO: Missing kinematic states
covar_x_next_func = ca.Function( 'cov',

#[mean_s, u_s, covar_d_sx, covar_x_sx],
[covar_d_sx],
[cov_x_next_s])

""" f_hybrid output covariance matrix """
elif discrete_method is 'f_hybrid':

N_gp, Ny_gp, Nu_gp = self.__gp.get_size()
# Nz_gp = Ny_gp + Nu_gp

covar_d_sx = ca.SX.sym('covar_d', Ny_gp, Ny_gp)
covar_x_sx = ca.SX.sym('covar_x', Ny, Ny)

# L_x = ca.SX.sym('L', ca.Sparsity.lower(Ny))
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# L_d = ca.SX.sym('L', ca.Sparsity.lower(3))
mean_s = ca.SX.sym('mean', Ny)
u_s = ca.SX.sym('u', Nu)

# A_f = hybrid.rk4_jacobian_x(mean_s[Ny_gp:], mean_s[:Ny_gp])
# B_f = hybrid.rk4_jacobian_u(mean_s[Ny_gp:], mean_s[:Ny_gp])
# C = ca.horzcat(A_f, B_f)
# cov = ca.blocksplit(covar_x_s, Ny_gp, Ny_gp)
# cov[-1][-1] = covar_d_sx
# cov_i = ca.blockcat(cov)
# cov_f = C @ cov_i @ C.T
# cov[0][0] = cov_f

cov_x_next_s = ca.SX(Ny, Ny)
cov_x_next_s[:Ny_gp, :Ny_gp] = covar_d_sx

# cov_x_next_s[Ny_gp:, Ny_gp:] =
#TODO: Pre-solve the GP jacobian using the initial condition in the solve iteration
# jac_mean = ca.SX(Ny_gp, Ny)
# jac_mean = self.__gp.jacobian(mean_s[:Ny_gp], u_s, 0)
# A = ca.horzcat(jac_f, Bd)
# jac = Bf @ jac_f @ Bf.T + Bd @ jac_mean @ Bd.T

# temp = jac_mean @ covar_x_s
# temp = jac_mean @ L_s
# cov_i = ca.SX(Ny + 3, Ny + 3)
# cov_i[:Ny,:Ny] = covar_x_s
# cov_i[Ny:, Ny:] = covar_d_s
# cov_i[Ny:, :Ny] = temp
# cov_i[:Ny, Ny:] = temp.T

#TODO: This is just a new TA implementation... CLEAN UP...
covar_x_next_func = ca.Function( 'cov',

[mean_s, u_s, covar_d_sx, covar_x_sx],
#TODO: Clean up
#[A @ cov_i @ A.T])
#[Bd @ covar_d_s @ Bd.T + jac @ covar_x_s @ jac.T])
#[ca.blockcat(cov)])
[cov_x_next_s])

# Cholesky factorization of covariance function
# S_x_next_func = ca.Function( 'S_x', [mean_s, u_s, covar_d_s, covar_x_s],
# [Bd @ covar_d_s + jac @ covar_x_s])

L_s = ca.SX.sym('L', ca.Sparsity.lower(Ny))
L_to_cov_func = ca.Function('cov', [L_s], [L_s @ L_s.T])
covar_x_sx = ca.SX.sym('cov_x', Ny, Ny)
cholesky = ca.Function('cholesky', [covar_x_sx], [ca.chol(covar_x_sx).T])

""" Set initial values """
obj = ca.MX(0)
con_eq = []
con_ineq = []
con_ineq_lb = []
con_ineq_ub = []
con_eq.append(var['mean', 0] - mean_0_s)
L_0_s = ca.MX(ca.Sparsity.lower(Ny), var['L', 0])
L_init = cholesky(covariance_0_s.reshape((Ny,Ny)))
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con_eq.append(L_0_s.nz[:]- L_init.nz[:])
u_past = u_0_s

""" Build constraints """
for t in range(Nt):

# Input to GP
mean_t = var['mean', t]
u_t = u_func(mean_t, mean_ref_s, var['v', t], K_s)
L_x = ca.MX(ca.Sparsity.lower(Ny), var['L', t])
covar_x_t = L_to_cov_func(L_x)

if discrete_method is 'hybrid':
N_gp, Ny_gp, Nu_gp = self.__gp.get_size()
covar_t = covar_func(covar_x_t[:Ny_gp, :Ny_gp])

elif discrete_method is 'd_hybrid':
N_gp, Ny_gp, Nu_gp = self.__gp.get_size()
covar_t = ca.MX(Ny_gp + Nu_gp, Ny_gp + Nu_gp)

elif discrete_method is 'gp':
covar_t = covar_func(covar_x_t)

else:
covar_t = ca.MX(Nx, Nx)

""" Select the chosen integrator """
if discrete_method is 'rk4':

mean_next_pred = model.rk4(mean_t, u_t,[])
covar_x_next_pred = ca.MX(Ny, Ny)

elif discrete_method is 'exact':
mean_next_pred = model.Integrator(x0=mean_t, p=u_t)['xf']
covar_x_next_pred = ca.MX(Ny, Ny)

elif discrete_method is 'd_hybrid':
# Deterministic hybrid GP model
N_gp, Ny_gp, Nu_gp = self.__gp.get_size()
mean_d, covar_d = self.__gp.predict(mean_t[:Ny_gp], u_t, covar_t)
mean_next_pred = ca.vertcat(mean_d, hybrid.rk4(mean_t[Ny_gp:],

mean_t[:Ny_gp], []))
covar_x_next_pred = ca.MX(Ny, Ny)

elif discrete_method is 'hybrid':
# Hybrid GP model
N_gp, Ny_gp, Nu_gp = self.__gp.get_size()
mean_d, covar_d = self.__gp.predict(mean_t[:Ny_gp], u_t, covar_t)
mean_next_pred = ca.vertcat(mean_d, hybrid.rk4(mean_t[Ny_gp:],

mean_t[:Ny_gp], []))
#covar_x_next_pred = covar_x_next_func(mean_t, u_t, covar_d,
# covar_x_t)
covar_x_next_pred = covar_x_next_func(covar_d )

elif discrete_method is 'f_hybrid':
#TODO: Hybrid GP model estimating model error
N_gp, Ny_gp, Nu_gp = self.__gp.get_size()
mean_d, covar_d = self.__gp.predict(mean_t[:Ny_gp], u_t, covar_t)
mean_next_pred = ca.vertcat(mean_d, hybrid.rk4(mean_t[Ny_gp:],

mean_t[:Ny_gp], []))
covar_x_next_pred = covar_x_next_func(mean_t, u_t, covar_d,

covar_x_t)
else: # Use GP as default

mean_next_pred, covar_x_next_pred = self.__gp.predict(mean_t,
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u_t, covar_t)

""" Continuity constraints """
mean_next = var['mean', t + 1]
con_eq.append(mean_next_pred - mean_next )

L_x_next = ca.MX(ca.Sparsity.lower(Ny), var['L', t + 1])
covar_x_next = L_to_cov_func(L_x_next).reshape((Ny*Ny,1))
L_x_next_pred = cholesky(covar_x_next_pred)
con_eq.append(L_x_next_pred.nz[:] - L_x_next.nz[:])

""" Chance state constraints """
cons = self.__constraint(mean_next, L_x_next, Hx, quantile_x, xub,

xlb, var['eps_state',t])
con_ineq.extend(cons['con'])
con_ineq_lb.extend(cons['con_lb'])
con_ineq_ub.extend(cons['con_ub'])

""" Input constraints """
# cov_u = covar_u_func(covar_x_t, K_s.reshape((Nu, Ny)))

cov_u = ca.MX(Nu, Nu)
# cons = self.__constraint(u_t, cov_u, Hu, quantile_u, uub, ulb)
# con_ineq.extend(cons['con'])
# con_ineq_lb.extend(cons['con_lb'])
# con_ineq_ub.extend(cons['con_ub'])

if uub is not None:
con_ineq.append(u_t)
con_ineq_ub.extend(uub)
con_ineq_lb.append(np.full((Nu,), -ca.inf))

if ulb is not None:
con_ineq.append(u_t)
con_ineq_ub.append(np.full((Nu,), ca.inf))
con_ineq_lb.append(ulb)

""" Add extra constraints """
if inequality_constraints is not None:

cons = inequality_constraints(var['mean', t + 1],
covar_x_next,
u_t, var['eps', t], con_par)

con_ineq.extend(cons['con_ineq'])
con_ineq_lb.extend(cons['con_ineq_lb'])
con_ineq_ub.extend(cons['con_ineq_ub'])

""" Objective function """
u_delta = u_t - u_past
obj += self.__l_func(var['mean', t], covar_x_t, u_t, cov_u, u_delta) \

+ np.full((1, num_slack),lam) @ var['eps', t]
if lam_state is not None:

obj += np.full((1,num_state_slack),lam_state) @ var['eps_state', t]
u_t = u_past

L_x = ca.MX(ca.Sparsity.lower(Ny), var['L', Nt])
covar_x_t = L_to_cov_func(L_x)
obj += self.__lf_func(var['mean', Nt], covar_x_t, P_s.reshape((Ny, Ny))) \

+ np.full((1, num_slack),lam) @ var['eps', Nt]
if lam_state is not None:
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obj += np.full((1,num_state_slack),lam_state) @ var['eps_state', Nt]

num_eq_con = ca.vertcat(*con_eq).size1()
num_ineq_con = ca.vertcat(*con_ineq).size1()
con_eq_lb = np.zeros((num_eq_con,))
con_eq_ub = np.zeros((num_eq_con,))

""" Terminal contraint """
if terminal_constraint is not None and not feedback:

con_ineq.append(var['mean', Nt] - mean_ref_s)
num_ineq_con += Ny
con_ineq_lb.append(np.full((Ny,), - terminal_constraint))
con_ineq_ub.append(np.full((Ny,), terminal_constraint))

elif terminal_constraint is not None and feedback:
con_ineq.append(self.__lf_func(var['mean', Nt],

covar_x_t, P_s.reshape((Ny, Ny))))
num_ineq_con += 1
con_ineq_lb.append(0)
con_ineq_ub.append(terminal_constraint)

con = ca.vertcat(*con_eq, *con_ineq)
self.__conlb = ca.vertcat(con_eq_lb, *con_ineq_lb)
self.__conub = ca.vertcat(con_eq_ub, *con_ineq_ub)

""" Build solver object """
nlp = dict(x=var, f=obj, g=con, p=param_s)
options = {

'ipopt.print_level' : 0,
'ipopt.mu_init' : 0.01,
'ipopt.tol' : 1e-8,
'ipopt.warm_start_init_point' : 'yes',
'ipopt.warm_start_bound_push' : 1e-9,
'ipopt.warm_start_bound_frac' : 1e-9,
'ipopt.warm_start_slack_bound_frac' : 1e-9,
'ipopt.warm_start_slack_bound_push' : 1e-9,
'ipopt.warm_start_mult_bound_push' : 1e-9,
'ipopt.mu_strategy' : 'adaptive',
'print_time' : False,
'verbose' : False,
'expand' : True

}
if solver_opts is not None:

options.update(solver_opts)
self.__solver = ca.nlpsol('mpc_solver', 'ipopt', nlp, options)

# First prediction used in the NLP, used in plot later
self.__var_prediction = np.zeros((Nt + 1, Ny))
self.__mean_prediction = np.zeros((Nt + 1, Ny))
self.__mean = None

build_solver_time += time.time()
print('\n________________________________________')
print('# Time to build mpc solver: %f sec' % build_solver_time)
print('# Number of variables: %d' % self.__num_var)
print('# Number of equality constraints: %d' % num_eq_con)
print('# Number of inequality constraints: %d' % num_ineq_con)
print('----------------------------------------')

LXXIII



def solve(self, x0, sim_time, x_sp=None, u0=None, debug=False, noise=False,
con_par_func=None):

""" Solve the optimal control problem

# Arguments:
x0: Initial state vector.
sim_time: Simulation length.

# Optional Arguments:
x_sp: State set point, default is zero.
u0: Initial input vector.
debug: If True, print debug information at each solve iteration.
noise: If True, add gaussian noise to the simulation.
con_par_func: Function to calculate the parameters to pass to the

inequality function, inputs the current state.

# Returns:
mean: Simulated output using the optimal control inputs
u: Optimal control inputs

"""

Nt = self.__Nt
Ny = self.__Ny
Nu = self.__Nu
dt = self.__dt

# Initial state
if u0 is None:

u0 = np.zeros(Nu)
if x_sp is None:

self.__x_sp = np.zeros(Ny)
else:

self.__x_sp = x_sp

self.__Nsim = int(sim_time / dt)

# Initialize variables
self.__mean = np.full((self.__Nsim + 1, Ny), x0)
self.__mean_pred = np.full((self.__Nsim + 1, Ny), x0)
self.__covariance = np.full((self.__Nsim + 1, Ny, Ny), np.eye(Ny) * 1e-8)
self.__u = np.full((self.__Nsim, Nu), u0)

self.__mean[0] = x0
self.__mean_pred[0] = x0
#TODO: cannot use variance_0 with a hybrid model
self.__covariance[0] = np.eye(Ny)*1e-10 #np.diag(self.__variance_0)
self.__u[0] = u0

# Initial guess of the warm start variables
#TODO: Add option to restart with previous state
self.__var_init = self.__var(0)

#TOTO: Add initialization of cov cholesky
cov0 = self.__covariance[0]
self.__var_init['L', 0] = cov0[np.tril_indices(Ny)]
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self.__lam_x0 = np.zeros(self.__num_var)
self.__lam_g0 = 0

""" Linearize around operating point and calculate LQR gain matrix """
if self.__feedback:

if self.__discrete_method is 'exact':
A, B = self.__model.discrete_linearize(x0, u0)

elif self.__discrete_method is 'rk4':
A, B = self.__model.discrete_rk4_linearize(x0, u0)

elif self.__discrete_method is 'hybrid':
N_gp, Ny_gp, Nu_gp = self.__gp.get_size()
A_f, B_f = self.__hybrid.discrete_rk4_linearize(x0[Ny_gp:], x0[:Ny_gp])
A_gp, B_gp = self.__gp.discrete_linearize(x0[:Ny_gp],

u0, np.eye(Ny_gp+Nu_gp)*1e-8)
A = np.zeros((Ny, Ny))
B = np.zeros((Ny, Nu))
A[:Ny_gp, :Ny_gp] = A_gp

# A[Ny_gp:, Ny_gp:] = A_f
# A[Ny_gp:, :Ny_gp] = B_f

B[:Ny_gp, :] = B_gp

elif self.__discrete_method is 'd_hybrid':
N_gp, Ny_gp, Nu_gp = self.__gp.get_size()
A_f, B_f = self.__hybrid.discrete_rk4_linearize(x0[Ny_gp:], x0[:Ny_gp])
A_gp, B_gp = self.__gp.discrete_linearize(x0[:Ny_gp],

u0, np.eye(Ny_gp+Nu_gp)*1e-8)
A = np.zeros((Ny, Ny))
B = np.zeros((Ny, Nu))
A[:Ny_gp, :Ny_gp] = A_gp

# A[Ny_gp:, Ny_gp:] = A_f
# A[Ny_gp:, :Ny_gp] = B_f

B[:Ny_gp, :] = B_gp

# A = self.__Bf @ A_f @ self.__Bf.T + self.__Bd @ A_gp @ self.__Bd.T
# B = self.__Bf @ B_f + self.__Bd @ B_gp

elif self.__discrete_method is 'gp':
N_gp, Ny_gp, Nu_gp = self.__gp.get_size()
A, B = self.__gp.discrete_linearize(x0,

u0, np.eye(Ny_gp+Nu_gp)*1e-8)

K, P, E = lqr(A, B, self.__Q, self.__R)
else:

K = np.zeros((Nu, Ny))
P = self.__P

self.__K = K

print('\nSolving MPC with %d step horizon' % Nt)
for t in range(self.__Nsim):

solve_time = -time.time()

# Test if RK4 is stable for given initial state
if self.__discrete_method is 'rk4':

if not self.__model.check_rk4_stability(x0,u0):
print('-- WARNING: RK4 is not stable! --')

""" Update Initial values with measurment"""
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self.__var_init['mean', 0] = self.__mean[t]

# Get constraint parameters
if con_par_func is not None:

con_par = con_par_func(self.__mean[t, :])
else:

con_par = []
if self.__num_con_par > 0:

raise TypeError(('Number of constraint parameters ({x}) is '
'greater than zero, but no parameter '
'function is provided.'

).format(x=self.__num_con_par))

param = ca.vertcat(self.__mean[t, :], self.__x_sp,
cov0.flatten(), u0, K.flatten(),
P.flatten(), con_par)

args = dict(x0=self.__var_init,
lbx=self.__varlb,
ubx=self.__varub,
lbg=self.__conlb,
ubg=self.__conub,
lam_x0=self.__lam_x0,
lam_g0=self.__lam_g0,
p=param)

""" Solve nlp"""
sol = self.__solver(**args)
status = self.__solver.stats()['return_status']
optvar = self.__var(sol['x'])
self.__var_init = optvar
self.__lam_x0 = sol['lam_x']
self.__lam_g0 = sol['lam_g']

""" Print status """
solve_time += time.time()
print("* t=%f: %s - %f sec" % (t * self.__dt, status, solve_time))

if t == 0:
for i in range(Nt + 1):

Li = ca.DM(ca.Sparsity.lower(self.__Ny), optvar['L', i])
cov = Li @ Li.T
self.__var_prediction[i, :] = np.array(ca.diag(cov)).flatten()
self.__mean_prediction[i, :] = np.array(optvar['mean', i]).flatten()

v = optvar['v', 0, :]

self.__u[t, :] = np.array(self.__u_func(self.__mean[t, :], self.__x_sp,
v, K.flatten())).flatten()

self.__mean_pred[t + 1] = np.array(optvar['mean', 1]).flatten()
L = ca.DM(ca.Sparsity.lower(self.__Ny), optvar['L', 1])
self.__covariance[t + 1] = L @ L.T

if debug:
self.__debug(t)

""" Simulate the next step """
try:
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self.__mean[t + 1] = self.__model.sim(self.__mean[t],
self.__u[t].reshape((1, Nu)), noise=noise)

except RuntimeError:
print('----------------------------------------')
print('** System unstable, simulator crashed **')
print('----------------------------------------')
return self.__mean, self.__u

"""Initial values for next iteration"""
x0 = self.__mean[t + 1]
u0 = self.__u[t]

return self.__mean, self.__u

def __set_cost_function(self, costFunc, mean_ref_s, P_s):
""" Define stage cost and terminal cost
"""

mean_s = ca.MX.sym('mean', self.__Ny)
covar_x_s = ca.MX.sym('covar_x', self.__Ny, self.__Ny)
covar_u_s = ca.MX.sym('covar_u', self.__Nu, self.__Nu)
u_s = ca.MX.sym('u', self.__Nu)
delta_u_s = ca.MX.sym('delta_u', self.__Nu)
Q = ca.MX(self.__Q)
R = ca.MX(self.__R)
S = ca.MX(self.__S)

if costFunc is 'quad':
self.__l_func = ca.Function('l', [mean_s, covar_x_s, u_s,

covar_u_s, delta_u_s],
[self.__cost_l(mean_s, mean_ref_s, covar_x_s, u_s,
covar_u_s, delta_u_s, Q, R, S)])

self.__lf_func = ca.Function('lf', [mean_s, covar_x_s, P_s],
[self.__cost_lf(mean_s, mean_ref_s, covar_x_s, P_s)])

elif costFunc is 'sat':
self.__l_func = ca.Function('l', [mean_s, covar_x_s, u_s,

covar_u_s, delta_u_s],
[self.__cost_saturation_l(mean_s, mean_ref_s,

covar_x_s, u_s, covar_u_s, delta_u_s, Q, R, S)])
self.__lf_func = ca.Function('lf', [mean_s, covar_x_s, P_s],

[self.__cost_saturation_lf(mean_s,
mean_ref_s, covar_x_s, P_s)])

else:
raise NameError('No cost function called: ' + costFunc)

def __cost_lf(self, x, x_ref, covar_x, P, s=1):
""" Terminal cost function: Expected Value of Quadratic Cost
"""
P_s = ca.SX.sym('Q', ca.MX.size(P))
x_s = ca.SX.sym('x', ca.MX.size(x))
covar_x_s = ca.SX.sym('covar_x', ca.MX.size(covar_x))

sqnorm_x = ca.Function('sqnorm_x', [x_s, P_s],
[ca.mtimes(x_s.T, ca.mtimes(P_s, x_s))])

trace_x = ca.Function('trace_x', [P_s, covar_x_s],
[s * ca.trace(ca.mtimes(P_s, covar_x_s))])
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return sqnorm_x(x - x_ref, P) + trace_x(P, covar_x)

def __cost_saturation_lf(self, x, x_ref, covar_x, P):
""" Terminal Cost function: Expected Value of Saturating Cost
"""
Nx = ca.MX.size1(P)

# Create symbols
P_s = ca.SX.sym('P', Nx, Nx)
x_s = ca.SX.sym('x', Nx)
covar_x_s = ca.SX.sym('covar_z', Nx, Nx)

Z_x = ca.SX.eye(Nx) + 2 * covar_x_s @ P_s
cost_x = ca.Function('cost_x', [x_s, P_s, covar_x_s],

[1 - ca.exp(-(x_s.T @ ca.solve(Z_x.T, P_s.T).T @ x_s))
/ ca.sqrt(ca.det(Z_x))])

return cost_x(x - x_ref, P, covar_x)

def __cost_saturation_l(self, x, x_ref, covar_x, u, covar_u, delta_u, Q, R, S):
""" Stage Cost function: Expected Value of Saturating Cost
"""
Nx = ca.MX.size1(Q)
Nu = ca.MX.size1(R)

# Create symbols
Q_s = ca.SX.sym('Q', Nx, Nx)
R_s = ca.SX.sym('Q', Nu, Nu)
x_s = ca.SX.sym('x', Nx)
u_s = ca.SX.sym('x', Nu)
covar_x_s = ca.SX.sym('covar_z', Nx, Nx)
covar_u_s = ca.SX.sym('covar_u', ca.MX.size(R))

Z_x = ca.SX.eye(Nx) + 2 * covar_x_s @ Q_s

Z_u = ca.SX.eye(Nu) + 2 * covar_u_s @ R_s

cost_x = ca.Function('cost_x', [x_s, Q_s, covar_x_s],
[1 - ca.exp(-(x_s.T @ ca.solve(Z_x.T, Q_s.T).T @ x_s))

/ ca.sqrt(ca.det(Z_x))])
cost_u = ca.Function('cost_u', [u_s, R_s, covar_u_s],

[1 - ca.exp(-(u_s.T @ ca.solve(Z_u.T, R_s.T).T @ u_s))
/ ca.sqrt(ca.det(Z_u))])

return cost_x(x - x_ref, Q, covar_x) + cost_u(u, R, covar_u)

def __cost_l(self, x, x_ref, covar_x, u, covar_u, delta_u, Q, R, S, s=1):
""" Stage cost function: Expected Value of Quadratic Cost
"""
Q_s = ca.SX.sym('Q', ca.MX.size(Q))
R_s = ca.SX.sym('R', ca.MX.size(R))
x_s = ca.SX.sym('x', ca.MX.size(x))
u_s = ca.SX.sym('u', ca.MX.size(u))
covar_x_s = ca.SX.sym('covar_x', ca.MX.size(covar_x))
covar_u_s = ca.SX.sym('covar_u', ca.MX.size(R))
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sqnorm_x = ca.Function('sqnorm_x', [x_s, Q_s],
[ca.mtimes(x_s.T, ca.mtimes(Q_s, x_s))])

sqnorm_u = ca.Function('sqnorm_u', [u_s, R_s],
[ca.mtimes(u_s.T, ca.mtimes(R_s, u_s))])

trace_u = ca.Function('trace_u', [R_s, covar_u_s],
[s * ca.trace(ca.mtimes(R_s, covar_u_s))])

trace_x = ca.Function('trace_x', [Q_s, covar_x_s],
[s * ca.trace(ca.mtimes(Q_s, covar_x_s))])

return sqnorm_x(x - x_ref, Q) + sqnorm_u(u, R) + sqnorm_u(delta_u, S) \
+ trace_x(Q, covar_x) + trace_u(R, covar_u)

def __constraint(self, mean, covar, H, quantile, ub, lb, eps):
""" Build up chance constraint vectors
"""

r = ca.SX.sym('r')
mean_s = ca.SX.sym('mean', ca.MX.size(mean))
S_s = ca.SX.sym('S', ca.MX.size(covar))
H_s = ca.SX.sym('H', 1, ca.MX.size2(H))
S = covar
con_func = ca.Function('con', [mean_s, S_s, H_s, r],

[H_s @ mean_s + r * H_s @ ca.diag(S_s)])

con = []
con_lb = []
con_ub = []
for i in range(ca.MX.size1(mean)):

con.append(con_func(mean, S, H[i, :], quantile[i]) - eps[i])
con_ub.append(ub[i])
con_lb.append(-np.inf)
con.append(con_func(mean, S, H[i, :], -quantile[i]) + eps[i])
con_ub.append(np.inf)
con_lb.append(lb[i])

cons = dict(con=con, con_lb=con_lb, con_ub=con_ub)
return cons

def __debug(self, t):
""" Print debug messages during each solve iteration
"""

print('_______________ Debug ________________')
print('* Mean_%d:' %t)
print(self.__mean[t])
print('* u_%d:' % t)
print(self.__u[t])
print('* covar_%d:' % t)
print(self.__covariance[t, :])
print('----------------------------------------')

def plot(self, title=None,
xnames=None, unames=None, time_unit = 's', numcols=2):

""" Plot MPC
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# Optional Arguments:
title: Text displayed in figure window, defaults to MPC setting.
xnames: List with labels for the states, defaults to 'State i'.
unames: List with labels for the inputs, default to 'Control i'.
time_unit: Label for the time axis, default to seconds.
numcols: Number of columns in the figure.

# Return:
fig_x: Figure with states
fig_u: Figure with control inputs

"""

if self.__mean is None:
print('Please solve the MPC before plotting')
return

x = self.__mean
u = self.__u
dt = self.__dt
Nu = self.__Nu
Nt_sim, Nx = x.shape

# First prediction horizon
x_pred = self.__mean_prediction
var_pred = self.__var_prediction

# One step prediction
var = np.zeros((Nt_sim, Nx))
mean = self.__mean_pred
for t in range(Nt_sim):

var[t] = np.diag(self.__covariance[t])

x_sp = self.__x_sp * np.ones((Nt_sim, Nx))

if x_pred is not None:
Nt_horizon = np.size(x_pred, 0)
t_horizon = np.linspace(0.0, Nt_horizon * dt -dt, Nt_horizon)

if xnames is None:
xnames = ['State %d' % (i + 1) for i in range(Nx)]

if unames is None:
unames = ['Control %d' % (i + 1) for i in range(Nu)]

t = np.linspace(0.0, Nt_sim * dt -dt, Nt_sim)
u = np.vstack((u, u[-1, :]))
numcols = 2
numrows = int(np.ceil(Nx / numcols))

fig_u = plt.figure(figsize=(9.0, 6.0))
for i in range(Nu):

ax = fig_u.add_subplot(Nu, 1, i + 1)
ax.step(t, u[:, i] , 'k', where='post')
ax.set_ylabel(unames[i])
ax.set_xlabel('Time [' + time_unit + ']')

fig_u.canvas.set_window_title('Control inputs')
plt.tight_layout()
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fig_x = plt.figure(figsize=(9, 6.0))
for i in range(Nx):

ax = fig_x.add_subplot(numrows, numcols, i + 1)
ax.plot(t, x[:, i], 'k-', marker='.', linewidth=1.0, label='Simulation')
ax.errorbar(t, mean[:, i], yerr=2 * np.sqrt(var[:, i]), marker='.',

linestyle='None', color='b', label='One step prediction')
if x_sp is not None:

ax.plot(t, x_sp[:, i], color='g', linestyle='--', label='Setpoint')
if x_pred is not None:

ax.errorbar(t_horizon, x_pred[:, i], yerr=2 * np.sqrt(var_pred[:, i]),
linestyle='None', marker='.', color='r',
label='1st prediction horizon')

plt.legend(loc='best')
ax.set_ylabel(xnames[i])
ax.set_xlabel('Time [' + time_unit + ']')

if title is not None:
fig_x.canvas.set_window_title(title)

else:
fig_x.canvas.set_window_title(('MPC Horizon: {x}, Feedback: {y}, '

'Discretization: {z}'
).format( x=self.__Nt,

y=self.__feedback,
z=self.__discrete_method

))
plt.tight_layout()
plt.show()
return fig_x, fig_u

def lqr(A, B, Q, R):
"""Solve the infinite-horizon, discrete-time LQR controller

x[k+1] = A x[k] + B u[k]
u[k] = -K*x[k]
cost = sum x[k].T*Q*x[k] + u[k].T*R*u[k]

# Arguments:
A, B: Linear system matrices
Q, R: State and input penalty matrices, both positive definite

# Returns:
K: LQR gain matrix
P: Solution to the Riccati equation
E: Eigenvalues of the closed loop system

"""

P = np.array(scipy.linalg.solve_discrete_are(A, B, Q, R))
K = -np.array(scipy.linalg.solve(R + B.T @ P @ B, B.T @ P @ A))

eigenvalues, eigenvec = scipy.linalg.eig(A + B @ K)

return K, P, eigenvalues

def plot_eig(A, discrete=True):
""" Plot eigenvelues

# Arguments:
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A: System matrix (N x N).

# Optional Arguments:
discrete: If true the unit circle is added to the plot.

# Returns:
eigenvalues: Eigenvelues of the matrix A.

"""
eigenvalues, eigenvec = scipy.linalg.eig(A)
fig,ax = plt.subplots()
ax.axhline(y=0, color='k', linestyle='--')
ax.axvline(x=0, color='k', linestyle='--')
ax.scatter(eigenvalues.real, eigenvalues.imag)
if discrete:

ax.add_artist(plt.Circle((0,0), 1, color='g', alpha=.1))
plt.ylim([min(-1, min(eigenvalues.imag)), max(1, max(eigenvalues.imag))])
plt.xlim([min(-1, min(eigenvalues.real)), max(1, max(eigenvalues.real))])
plt.gca().set_aspect('equal', adjustable='box')

fig.canvas.set_window_title('Eigenvalues of linearized system')
plt.show()
return eigenvalues
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