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Abstract 

Due to the recent proliferation of large datasets collected on 

human behavior in digital environments, IDE-based learning 
analytics using supervised learning has emerged as a scientific 
field. However, due to its novelty, research methods tailored 
to the needs of IDE-based learning analytics are yet to be 

developed. In this paper, a methodology for evaluating features 
used in supervised learning models in relation to their effect 
on the model’s performance is presented. We show that 

correlation coefficients in combination with p-values can be 
used as a measure of a feature’s usefulness. The goal of the 
method is to enable researchers to understand and compare 

different features, allowing a higher degree of utilization of 
previous research, and increasing the overall research value of 
supervised learning in IDE-based learning analytics. 
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Sammendrag 

(Norwegian translation of the Abstract) 
 

Stor tilgang på data om menneskelig adferd på digitale 
plattformer, har gitt grobunn for IDE-basert læringsanalyse ved 
bruk av veiledet-læring. Grunnet forskingsfeltets korte fartstid 
finnes det få utarbeidede metodikker tilpasset IDE-basert 

læringsanalyse. I denne masteroppgaven presenterer vi en 
metodikk for å evaluere inndata i veiledet-læring sin påvirkning 
på modellens prestasjon. Vi viser at korrelasjonskoeffisienter 

i kombinasjon med sannsynlighetsverdier kan bli brukt som mål 
på nytteverdi av inndata. Målet med metoden er å øke forståelse 
av inndata sin nytteverdi og forenkle prosessen å sammenlikne 

ulike inndata. Dette for å øke gjenbrukbarheten av tidligere 
forskning, og på den måte forsterke forskningsverdien av 
veiledet-læring innen IDE-basert læringsanalyse. 
 





 V 

Preface 

This paper is a master thesis written at the Department of 
Computer Science (IDI), Norwegian University of Science and 

Technology (NTNU). The writing of the thesis, and all work 
related to it has been conducted between January 22nd and June 
15th, 2018. 
 
I would like to thank my supervisor, Hallvard Trætteberg, the 
support and feedback provided throughout the writing of this 
paper. In addition, I would like to thank Siddise Hirpa, Emil 

Henry Flakk, and Pernille Wangsholm for fruitful discussions and 
constructive feedback. 

 





 VII 

Table of Contents 

Abstract .................................................................. I 

Sammendrag .............................................................. III 

Preface ................................................................... V 

Table of Contents ....................................................... VII 

List of Figures and Tables ............................................... IX 

1 Introduction ............................................................ 1 

1.1 Context ............................................................. 1 

1.2 Problem ............................................................. 3 

1.3 Limitations ......................................................... 4 

2 Background .............................................................. 5 

2.1 Learning Analytics .................................................. 5 

2.2 Machine Learning .................................................... 6 
2.2.1 Supervised Learning ............................................. 7 
2.2.2 Evaluation ..................................................... 10 

2.3 Quality Assessment ................................................. 11 
2.3.1 Mean Square Error .............................................. 11 
2.3.2 Precision and Recall ........................................... 11 
2.3.3 F1-score ....................................................... 12 
2.3.4 Correlation Coefficient ........................................ 12 
2.3.5 P-value ........................................................ 15 

3 Related Work ........................................................... 17 

3.1 A Reference Model for Learning Analytics ........................... 17 

3.2 IDE-Based Learning Analytics ....................................... 18 

4 Methodology ............................................................ 21 

4.1 Target Analysis .................................................... 21 

4.2 Feature Analysis ................................................... 22 

4.3 Model Analysis ..................................................... 23 



5 Experimental Setup ..................................................... 25 

5.1 Data Description ................................................... 25 

5.2 Pre-Processing ..................................................... 27 

6 Experimental Results ................................................... 29 

6.1 Analysis of Distribution ........................................... 29 

6.2 Feature Description ................................................ 31 
6.2.1 Naïve Features ................................................. 32 
6.2.2 Complex Features ............................................... 33 

6.3 Feature Analysis ................................................... 34 

6.4 Classification ..................................................... 36 

6.5 Evaluation of Results .............................................. 39 

7 Discussion ............................................................. 41 

8 Conclusion ............................................................. 43 

References ............................................................... 45 

Appendix ................................................................. 49 

Data Analysis .......................................................... 49 

Feature and Classification Analysis .................................... 51 
 



 IX 

List of Figures and Tables 

Figure 1: Number of published articles each year containing the phrase 
"learning analytics" available from Google Scholar. .................... 2 

Figure 2: Number of students participating in TDT4100 at NTNU............. 2 

Figure 3: Visualization of bias and variance [1] .......................... 9 

Figure 4: Example of 4-fold cross-validation (Fabian Flöck CC BY-SA 3.0). 10 

Figure 5: Different sets of points (x, y) and the Pearson correlation 
coefficient of x and y for each set (Denis Boigelot, CC0, public domain).
 ...................................................................... 13 

Figure 6: Comparison of Pearson correlation coefficient and Spearman's rank 
correlation coefficient. .............................................. 14 

Figure 7: SRCC for non-monotonic correlation ............................. 15 

Figure 8: The p-value (shaded green) of an observation assumed to be drawn 
from a gaussian distribution when the null hypothesis is true (Chen-Pan 
Liao, CC BY-SA 3.0). .................................................. 16 

Figure 9: Learning analytics process by Chatti, et al. [2] ............... 17 

Figure 10: IDE-based learning analytics process model by Hundhausen, et al. 
[3] ................................................................... 19 

Figure 11: Number of students within each performance group.............. 29 

Figure 12: Number of programming problems within the different performance 
groups. ............................................................... 30 

Figure 13: Number of programming problems within each performance group after 
removing discarded problems. .......................................... 31 

 
Table 1: Definition of true positives, false positives, true negatives and 

false negatives. ...................................................... 11 

Table 2: Spearman’s ranked correlation coefficient with p-values for all 
features. Significant features are bold. .............................. 35 

Table 3: Confusion matrix of the prediction model using all features..... 36 

Table 4: Precision, recall and F1-score of the different performance groups 
using all features .................................................... 37 

Table 5: Confusion matrix of the prediction model using only significant 
features .............................................................. 37 

Table 6: Precision, recall and F1-score of the different performance groups 
using only significant features ....................................... 38 

Table 7: Model accuracy when only trained on one feature. Significant features 
are bold. ............................................................. 39 





 1 

1  Introduction 

1.1  Context 

With the recent proliferation of large datasets collected from 
human behavior in digital environments, scientific disciplines 
concerned with analyzing and understanding human behavior has 
burgeoned. One such discipline is learning analytics, which 
analyzes data from students and their environment to understand 
and improve the learning process [4]. In 2012 the U.S. Department 
of Education published an issue brief on the use of learning 
analytics, which concerns itself with analyzing learning 
processes, in the U.S. system of higher education [5]. This 
issue brief highlighted the usefulness of predictive models 
forecasting student performance and encouraged researches to 
continue conducting research that would help instructors become 
more efficient. Since then, the field of learning analytics has 
sky rocketed, and the 2016 Horizon Report on higher education 
said they expected “learning analytics to be increasingly 
adopted by higher education institutions” [6]. 
 
Yacef [7] showed the trends of using data gathered from learning 
processes in machine learning system as early as 2009, and in 
2011 the first International Conference on Learning Analytics 
and Knowledge was held. Aided by the rapid development of machine 
learning, learning analytics has grown from a niche to a well-
established research area. In 2010, only 118 research articles 
containing the phrase “learning analytics” were published [8]. 
This number has increased every year since then, and in 2017 
over 5500 articles were published (see Figure 1), an increase 
of over 4500%. 
 
 



 
 

Figure 1: Number of published articles each year containing the phrase 
"learning analytics" available from Google Scholar. 

Figure 2: Number of students participating in TDT4100 at NTNU. 
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In addition to the raise of learning analytics, the demand for 
programming in education is increasing [9]. At NTNU, the number 
of students enrolling in the introductory course to object 
oriented programming (TDT4100) has increased with over 87% since 
2008 (see Figure 2). In order to best meet this high demand for 
programming knowledge, teachers need insight on the learning 
process of their students. With the aid of learning analytics, 
a teacher could better understand how their students learn, and 
more easily identify students in need of assistance. 
 
Capturing data from a learning process is not trivial, as the 
learning environment usually consists of several sub-
environments that are not all easily monitored. For programming 
courses, these sub-environments might include online quizzes, 
lectures and Q&A sessions with a teaching assistant. However, 
studies has shown that most programming courses offered at 
universities are using an integrated development environment 
(IDE) [10, 11]. This makes the IDE a common sub-environment 
across many programming courses at different universities, thus 
making IDE-based learning analytics an important area of 
research. 
 

1.2  Problem 

When comparing the search results from Google Scholar1, we find 
that only 2% of articles published on learning analytics 
explores IDE-based learning analytics using classification [12, 
13] (about 4% explores IDE-based learning analytics without the 
mention of classification [14]). Within this small niche of 
learning analytics, most published research is not reproduceable 
nor follows any common research method [15-20]. When conducting 
learning analytics using classification, one of the main 

                     
1 https://scholar.google.no 



challenges is to find what features that will provide useful 
information to the classification model. Regardless, very few 
research articles published on IDE-based learning analytics 
discuss or analyze the usefulness of the features. Some articles 
do not even contain a complete list of the used features. This 
makes it difficult to compare, validate, reproduce and build 
upon the existing research, yielding low research value. 
 
A model for conducting IDE-based learning analytics was proposed 
by Hundhausen, et al. [3]. This method includes several features 
that might be used in a classification model. However, no 
approach on evaluating the usefulness of these features in 
relation to the model’s target, nor any methods for evaluating 
the learning analytics system as a whole, is described. To 
improve on this, and encourage research on IDE-based learning 
analytics, we want to extend the model by proposing a way to 
measure the features usefulness and statistical significance. 
In this paper, we seek to answer the following research question: 
 

Is an analysis evaluating the usefulness of features 

valuable to IDE-based learning analytics research? 
 
 

1.3  Limitations 

This paper is written as the master thesis required to receive 
a master’s degree in computer science (M.Sc.) at NTNU and is 
completed within a time limit of 20 weeks. Due to the time 
limitation, we were not able to collect new data for the 
experiment and had to use existing data previously collected. 
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2  Background 

 

2.1  Learning Analytics 

Most papers on learning analytics (LA) refer to the definition 
provided by the 1st International Conference on Learning 
Analytics and Knowledge 2011 when defining the field of LA [4]: 

“Learning analytics is the measurement, collection, 
analysis and reporting of data about learners and their 
contexts, for purposes of understanding and optimising 
learning and the environments in which it occurs”2 

The collection of educational data is often referred to as 
educational data mining (EDM) [7]. There are several ways of 
using EDM in learning analytics. An issue brief published by the 
U.S. Department of Education [5] propose five different learning 
analytics applications where EDM can be used: 
 

* Modeling knowledge, behavior, and experience 

* Profiling 

* Modeling domain knowledge components 

* Trend analysis 

* Adapting learning experience 

 
All learning analytics systems consists of three main steps [2]: 
 

                     
2 https://tekri.athabascau.ca/analytics/ 



1. Collect data from a learning environment 

2. Analyze the data 

3. Use the analysis to improve the learning environment 

 
When learning analytics are applied to improve the learning 
environment, that environment changes. This new, changed 
environment might contain information that is not currently 
collected nor analyzed, and therefore not used by the system. 
Imagine learning analytics is used to predict the final grade 
of students, and that this prediction is used by the teaching 
staff to decide which students to assist. The use of this system 
introduces new information to the learning environment that is 
currently not utilized by the system. For example, observing how 
students react to receive assistance might yield useful 
information that could improve the prediction. To include this 
new information, the three steps above must be executed on the 
new learning environment. However, this might result in the 
environment changing yet again. Thus, learning analytics is by 
many considered an iterative process [2, 3]. 
 

2.2  Machine Learning 

Machine learning is a field of artificial intelligence employing 
statistical techniques to learn patterns in empirical data [21]. 
Machine learning systems are usually divided into three main 
categories; supervised learning, reinforcement learning, and 
unsupervised learning, depending on the feedback provided to the 
system while learning [22]: 
 

* Unsupervised learning: The system is not provided with 
feedback, and the system has to find structure in the inputs 
by itself. The system is often used to find unknown patterns 



 7 

and relations within data (clustering) or discover outliers 
and abnormal data points. 

* Supervised learning: Each input is accompanied with a 
correct or desired output (feedback). The system has to 
find patterns and relations between the input and output, 
then use this to approximate a function that maps the inputs 
to the outputs, called the hypothesis. 

* Reinforcement learning: The system performs a set of 
actions and is infrequently provided with feedback in the 
form of reward or punishment in relation to its 
performance. 

 
In this paper, we will focus on supervised learning used in 
conjunction with learning analytics. Hence, unsupervised and 
reinforcement learning will not be discussed. 
 
 
2.2.1  Supervised Learning 

The goal of supervised learning is to approximate a target 

function, !, that maps some set " to another set # (Equation 

1). Both !, " and # are unknown. 
 

!: " → # (1) 
 
To be able to approximate the target function, the system is 

given a set of observations, ) (Equation 2). The observations 

consist of * input-output pairs of the unknown function !. 
 

) = {(-., !(-.)), (-0, !(-0)),… , (-2, !(-2))} (2) 
 



The task of the supervised learning system is to create a new 

function, !5, that approximates ! based on the observations 
provided [22]. To do this, we need a function that measure how 
different the approximation is from the target function, called 
a loss function. This uses the input-output pairs from the 

observation to evaluate how closely !5 resembles !. By minimizing 
the loss, the approximation becomes as close as possible to the 
target function. 
 
Several different loss functions exists [23], as different 
machine learning models requires different loss functions. One 
deciding factor of which loss function to use is what kind of 
learning problem the model solves. Supervised learning is 
usually divided into two different problem categories: 
classification and regression. When the output is a number, such 
as a stock price, the problem is called regression; when the 
output consists of a finite set of classes, such as dog breeds, 
the problem is called classification [22]. 
 
When using supervised learning on certain problems, the data is 
not easily divided into inputs. For example, imagine predicting 
the sentiment of a movie review (classification) based on the 
content of the review. One could think it would be possible to 
use every word in the review as an input. However, this turns 
out to be difficult, since every review probably is of different 
lengths, resulting in each observation having a different number 
of inputs. In addition, it is natural to assume that not all 
words are relevant when trying to predict the sentiment, such 
as “a”, “to” and so on. A principle called Ockham’s razor states 
that there exist an optimal subset of the data, that is as small 
as possible while still providing the machine learning model 
with enough information to create the best possible model [24]. 
However, finding this subset is not trivial. 
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Extracting inputs from the data is often called feature 

engineering [25], and each extracted input is called a feature. 
An example of a feature from the above example might be the 
number of exclamation marks or the number of times the word 
“good” is used. Selecting features is often done by assumptions, 
meaning features that are assumed to be relevant are included. 
The bias is a measure of how dependent our model is on our prior 
beliefs and assumptions. A small feature set will often result 
in a high bias. When creating a supervised learning model, a low 
bias is desired, which can be achieved by adding more features. 
However, by adding more features, irrelevant information might 
be introduced into the system, which will increase the variance 
of the model. This is known as the bias-variance tradeoff [1]. 
The more features, the more complex the model becomes, and the 
variance goes up. However, too few features yield a high bias 
that might be equally as bad (see Figure 3). 
 
 
 

 
 
 

Figure 3: Visualization of bias and variance [1] 



2.2.2  Evaluation 

The process of optimizing the hypothesis function by minimizing 
the loss is called training. After training the model, we want 
to know how well it performs on new, unseen, inputs. This is 
called testing. To achieve this, the data is divided into two 

parts, ). and )0, such that ). ∪ )0 = ) and ). ∩ )0 = ∅. ). can be 

used to train the model and )0 to test the model afterward. 
However, different splits of ). and )0 can yield different 
results. A common way of reducing this variance is called k-fold 
cross-validation. Cross-validation is a technique where the data 
is split into k equal sections. Then the model is trained k 

times on 9 − 1 sections of the data, each time tested and 
evaluated on the section not used for training (see Figure 4). 
Each of the k sections are used exactly once for testing. The 
metric used for evaluating the performance of the model (see 
Section 2.3) is averaged over all tests completed. 
 
 

 
 
 

Figure 4: Example of 4-fold cross-validation (Fabian Flöck CC BY-SA 3.0). 
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2.3  Quality Assessment 

2.3.1  Mean Square Error 

A common metric for computing the error of a regression model 
is the mean square error (MSE). This measures the mean of the 

square errors of the system (see Equation 3), where ; is the 
output of the training data, ;< is the output of the regression 

model, and * is the number of training samples. 
 
 

=>?(;, ;<) = 	
1

*
A(;B − ;<B)

0

2

BC.

	 (3) 

 
When used in conjunction with k-fold cross-validation, the 
average of the mean square errors computed at each fold can also 
be used. 
 
2.3.2  Precision and Recall 

Two common metrics to test the quality of a classification model 
is precision and recall. To calculate precision and recall we 
need to categorize each classification of a given class into 
four categories: true positive, false positive, true negative 
and false negative (see Table 1). 
 

 
Table 1: Definition of true positives, false positives, true negatives and 

false negatives. 
 

 Is of class A Is not of class A 

Classified as A True positive False positive 

Not classified as A False negative True negative 



Precision is the number of samples correctly classified as a 
given class (true positive), divided by the total number of 
samples classified as that class (Equation 4). Precision is a 
measure of how precise the system is when classifying a certain 
class, i.e. how much you should trust it when it says something 
is of a certain class.  
 

EFGHIJIK* = 	
LFMG	EKJILINGJ

LFMG	EKJILINGJ + !PQJG	EKJGLINGJ
(4) 

 
Recall is the number of samples correctly classified as a given 
class (true positive), divided by the total number of samples 
of that class (Equation 5). Recall is the ratio of correctly 
classified samples within a certain class. 
 

FGHPQQ =
LFMG	EKJILINGJ

LFMG	EKJILINGJ + !PQJG	*GSPLINGJ
(5) 

 
2.3.3  F1-score 

F1-score is a way to combine precision and recall into one 
metric. This is done by computing the harmonic mean of the 
precision and recall (Equation 6). 
 
 

U1 = 2 ×
EFGHIJIK*	 × FGHPQQ

EFGHIJIK* + FGHPQQ
(6) 

 
 
 
2.3.4  Correlation Coefficient 

A correlation coefficient measures how correlated to variables, 

X and Y, are. One such coefficient is called Pearson correlation 
coefficient (PCC), and was introduced by Karl Person in the 
1880s by ideas drawn from Francis Galton [26]. It ranges from 
negative one to positive one and are calculated by comparing the 
covariance of the two variables to the product of their standard 
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deviations (see Equation 7). If the two variables have a positive 

correlation, meaning X increases when Y increases and vice 
versa, the correlation coefficient will be positive. When there 

is a negative correlation, X decreases when Y increases and vice 
versa, the coefficient is negative. If there is no correlation 
between the two variables, the coefficient is zero. The farther 
away from zero, the stronger the correlation. 
 
 

Z[,\ =
HKN(X, Y)

][]\
(7) 

 
 

 
 
The equation for calculating PCC (Equation 7) divides the 
covariance of the two variables by the standard deviation of 
both variables multiplied together. PCC can be used to test if 
a feature (input) provide useful information in relation to the 
output in a supervised learning problem. When computing PCC for 
one feature and the output from the observations in a supervised 
learning problem, the covariance and standard deviations are 

Figure 5: Different sets of points (x, y) and the Pearson correlation 
coefficient of x and y for each set (Denis Boigelot, CC0, public domain). 



usually unknown and must be estimated. If the feature, X, 

consists of * values, [-.,… , -2], and the output, Y, also contains 

* values, [;.,… , ;2], then PCC can then be approximated through 
Equation 8. 
 
 

Z<[,\ =
HKNa (X, Y)

]<[]<\
=

∑ (-B − -̅)(;B − ;d)
2
BC.

e∑ (-B − -̅)0
2
BC. × e∑ (;B − ;d)0

2
BC.

(8) 

 
 

 
 
The PCC is only able to detect linear correlation (see Figure 
5). To counter this, a variation of PCC, called Spearman's rank 
correlation coefficient (SRCC) might be used instead. SRCC is 
similar to PCC, but instead of using the values from the two 

variables (X and Y) directly, their ranks, FS[ and FS\, are used 
(see Equation 9). Ranks are computed by individually sorting the 
values within each variable in ascending order. The rank of each 
value is its relative position within the sorted value list. The 

Figure 6: Comparison of Pearson correlation coefficient and Spearman's 
rank correlation coefficient. 
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use of ranks makes SRCC more suited to find non-linear 
correlations (see Figure 6). It is however not able to detect 
non-monotonic correlation (see Figure 7). 
 

Z<ghi,ghj =
HKNa (FS[, FS\)

]<ghi]<ghj
(9) 

 
 

 
 
2.3.5  P-value 

In addition to the correlation coefficient, a metric indicating 
how statistically significant the correlation is can be useful. 
This can be estimated through a p-value, estimating the 
probability of the results happening by chance. 
 
When evaluating the significance of a correlations in 
quantitative data, we start by assuming that there is no 
relationship. This is called the null hypothesis [27]. Then the 

Figure 7: SRCC for non-monotonic correlation 



probability of detecting the observed data if the null 
hypothesis is true, the p-value, is computed. Commonly, the null 
hypothesis is considered to stand if the p-value is greater than 
0.05, or 1 in 20 [27]. The correlating is said to be significant 
if the p-value is less than 0.05, meaning there is less than 5% 
chance of the observations happening by chance.  
 

 
 
To calculate the p-value, one must assume the results of the 
statistical model is drawn from a specific distribution. A 
common assumption is that the statistical model generates a 
gaussian distribution (see Figure 8). One should always keep in 
mind that if this assumption does not hold, the p-value is not 
statistically valid. Hence, p-values should only be considered 
an indication of significance, and not an absolute fact, unless 
the underlying distribution is known.

Figure 8: The p-value (shaded green) of an observation assumed to 
be drawn from a gaussian distribution when the null hypothesis is 

true (Chen-Pan Liao, CC BY-SA 3.0). 
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3  Related Work 

Over the past years, several papers have been published 
proposing different models for conducting learning analytics. 
In 2012, Chatti, et al. [2] presented a general process model 
for learning analytics. This is one of the most cited articles 
on learning analytics. Later, in 2017, Hundhausen, et al. [3] 
presented a similar model, tailored to the needs of IDE-based 
learning analytics. In this chapter, both models will be 
presented. 
 

3.1  A Reference Model for Learning Analytics 

In 2012, Chatti, et al. [2] presented a general reference model 
for learning analytics. They described the learning analytics 
process using an iterative cycle containing three steps: data 
collection and pre-processing, analytics and action, and post-
processing (see Figure 9). 
 

Figure 9: Learning analytics process by Chatti, et al. 
[2] 



 
 
Data collection and pre-processing includes the collection of 
the data, and the preparation needed to use it in learning 
analytics methods. The pre-processing might include tasks such 
as data cleaning, data transformation and data reduction, but 
the paper does not elaborate on how to conduct such tasks. 
 
In the analytics and action step, the data collected and pre-
processed in the previous step is analyzed, and based on those 
results, actions are taken. Different method of analyzing is 
briefly mentioned, for instance clustering and classification, 
but evaluation of the results is not discussed. The actions can 
be viewed as the outcome of the learning analytics. Depending 
on the analysis conducted, an action might be making a teacher 
aware of students in need of assistance or providing feedback 
to students on how they should study towards the exam. 
 
The last step, post-processing, involves improving the data and 
system. This could be to adjust or collect a new dataset, finding 
new variables to extract from the data to be used in the 
following iteration, altering the method used in the analytics 
step, or similar tasks. 
 

3.2  IDE-Based Learning Analytics 

In 2017, Hundhausen, et al. [3] published an article on using 
learning analytics on data collected through an integrated 

development environment (IDE). The article presents a similar 
iterative process model to Chatti, et al. [2] (see Figure 10). 
 
The main difference from the model proposed by Chatti, et al. 
[2] (see Figure 9) is that the analytics and action step is 
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split into multiple steps. The analytics task is here its own 
step (step two), and the action task is split into two parts, 
design intervention, and deliver intervention. The model does 
not explicitly contain any post-processing step, though this 
might be included within the first step for every iteration 
after the first. 
 

 
 
In addition to the process model, the article presents different 
variables that could be extracted from the collected data and 
used in the analysis. These variables, often called features, 
are specific to IDE-based learning environments, such as BluJ, 
Eclipse and NetBeans. However, the article does not discuss how 
to evaluate the usefulness of each feature, nor the system as a 
whole.

Figure 10: IDE-based learning analytics process model by 
Hundhausen, et al. [3] 
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4  Methodology 

We are looking at the use of supervised learning in IDE-based 
learning analytics. One of the main challenges when using 
supervised learning is feature selection, hence quantifying the 
usefulness of different features in research conducted on IDE-
based learning analytics using supervised learning might be 
valuable. This could make it easier for others to understand how 
different features affect the results, which features work well 
and which do not. This makes it easier for others to identify 
and focus on promising features, allowing researchers to build 
and improve upon one another. 
 
However, the process model presented by Hundhausen, et al. [3] 
(see Section 3.1) does not address analysis of the extracted 
features. To improve this, we want to propose a method that can 
be used when conducting feature analysis on features used by 
supervised learning models in IDE-based learning analytics. The 
proposed methodology consists of three parts. First an initial 
analysis of the data is conducted. The extracted features are 
then analyzed. Last, we assess the performance of the resulting 
supervised learning model. 
 

4.1  Target Analysis 

When analyzing quantitative data, it is important to understand 
the structures and distributions within the data being analyzed, 
as this might affect the interpretation of the analysis [27]. 
Imagine trying to predict if a student is going to fail a course 
using supervised learning on data collected during the previous 
semester. If 10% of the students failed the course the previous 
semester, a supervised learning system would be able to achieve 
an accuracy of 90% by always predicting that students would 



pass. Although an overall accuracy of 90% might seem impressive 
by itself, the system has only learned that most students pass. 
Only by knowing the underlying distribution of the target data 
can the system be evaluated. Hence, an initial analysis of the 
target data is imperative, and should always be included. This 
will both deepen the readers understanding of the problem and 
enable the reader to evaluate the system in context of its target 
data. 
 

4.2  Feature Analysis 

The initial analysis provides the required knowledge of the data 
to start analyzing features (see Section 2.2.1). The goal of a 
feature is to provide useful information, improving the 
supervised learning model. A feature will only provide useful 
information if there exist some correlation between it and the 
output we want to predict. To test if this correlation exists, 
we can compute the Spearman's rank correlation coefficient 
(SRCC) (see Section 2.3.4). 
 
In addition to SRCC, we should also test if the two variables 
(the feature and the output) are correlated to a significant 
level [27]. This can be achieved by calculating the p-value (see 
Section 2.3.5) using a t-test [27]. This p-value will indicate 
how likely it is that the correlation indicated by SRCC happened 

by chance. If the likelihood of this is less that 5% (E < 0.05), 
the correlation is said to be significant [27]. 
 
Keep in mind that this only provides an indication of how useful 
a feature is. SRCC are for example unable to detect non-monotonic 
correlation (see Section 2.3.4). 
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4.3  Model Analysis 

After creating the desired features, they can be used to train 
a supervised learning model. How to measure the model’s 
performance depends on whether it is a classification or 
regression problem. Classification models can use precision, 
recall (Section 2.3.2) and f1-score (Section 2.3.3). In 
addition, a confusion matrix could be computed to provide a more 
in-depth understanding of how the model performs. Regression 
models can be evaluated by its mean square error (see Section 
2.3.1). Both classification and regression models should be 
evaluated as a whole and for different outputs. Are the models 
equally good at predicting the different outputs, or is it better 
at some? These are important questions to answer in order to 
understand the performance of the model and should be viewed in 
context of the analysis of the target data. 
 
When choosing what data to use for training and what to use for 
evaluating the model, randomness is introduced. To reduce this 
randomness, 10-fold cross-validation (see Section 2.2.1) should 
be used [22]. More folds are better, but also more computational 
expensive, and 10-fold cross-validation has proved to be 
sufficient in most cases [28]. 
 
Most supervised learning models have a lot of hyperparameters 
(parameters used by the model, in addition to the training data, 
while learning). A common approach is to use a grid- or random-
search to discover good parameter settings [29]. However, 
choosing the best parameters is a difficult task, and an area 
of active research [29, 30] that will not be explored in this 
paper. 
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5  Experimental Setup 

NTNU offers an introductory course to object-oriented 
programming, TDT4100. To test the proposed method, we want to 
conduct a learning analytics experiment on this course where we 
perform analysis of the data, feature and classification. 
 
Throughout the course, students are to solve mandatory 
programming assignments using the Eclipse IDE and the Java 
programming language. Within each assignment, the students can 
choose between multiple programming problems of varying 
difficulty. Each programming problem has a corresponding set of 
unit tests, allowing the students to test their solution against 
the requirements of the problem.  We want to use data collected 
through the used IDE to predict student performance on the final 
exam. 
 

5.1  Data Description 

During the spring of 2017, 610 students at NTNU enrolled in 
TDT4100. During the semester, data was collected for each 
programming problem within four different assignments (5, 6, 8 
and 9). The students used the Eclipse IDE to write, run and test 
their code, and an Eclipse plug-in was used to capture the 
students programming process3. This plugin was made to trigger 
on events within the editor, and store data related to the event. 
In this experiment, we focus on four different events: 
 

* Edit – Triggers when files are saved. Stores a snapshot of 
the current file contents. 

                     
3 https://github.com/hallvard/jexercise/tree/master/no.hal.learning 



* Debug – Triggers at certain points during a debugging 
session, e.g. when breakpoints are hit. Stores breakpoints 
and other debugging data. 

* Test – Triggers when the tests are executed. Stores the 
number of succeeded and failed tests. 

* Compiler warning and errors – Triggers on builds. Stores 
the position of the warning and the warning category and 
type. 

 
The plug-in stores the data as XML files containing all events 
captured by the plug-in, one file for each programming problem 
and student. This produced a total of 2012 XML data files. In 
addition, the number of points (0-100) and the grade (A-F) 
achieved by each student on the final exam was recorded and 
stored as a CSV file. Both the XML files and each exam result 
are associated with a randomized anonymous id, unique to each 
student (this cannot be traced back to identifiers used in the 
learning management system used at NTNU). This makes it possible 
to map each programming problem to a specific exam result. 
 
The dataset is fairly small, only 610 students. Predicting a 
student’s performance based on all programming problems solved 
by that student throughout the course would result in a dataset 
of 610 samples. To increase this, we want to instead predict the 
student performance based on a single programming problem. This 
would allow us to use each programming problem individually, 
yielding a larger dataset. This means we want to create a 
supervised learning model using features computed based on a 
single programming problem as input. The output of the model 
should be the performance of the student that solved the problem. 
Limitations to this decision are discussed later in Section 6.5. 
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5.2  Pre-Processing  

The result achieved by each student are solely based on their 
score on the final exam. This result might vary from day to day 
based on how the student feel the day of the exam. To reduce 
this variance, and get a more performance oriented measure, we 
group students into three different groups, based on their final 
grade: low, medium and high. Students that got an E or F on the 
final exam are placed in the low performance group, C and D 
students are in the medium performance group, and students with 
A or B are in the high performance group. 
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6  Experimental Results 

6.1  Analysis of Distribution 

Most students, around 47.1%, are in the medium performance 
group, while around 30% of the students reside in the high 
performance group, and 23% within the low performance group (see 
Figure 11). This distribution shows that a classifier optimized 
for accuracy within this distribution should prefer to predict 
the medium performance group. 
 

 
 
However, since each student completes several assignments, 
containing multiple programming problems, the distribution shown 
in Figure 11 will not necessarily show the correct distribution 
for our task of predicting performance using a single 
programming problem. In fact, the distributions will only be 
equal if each performance group has the same distribution of 
solved programming problems per student. The total number of 
programming problems solved within the assignments is 1905, 

Figure 11: Number of students within each performance group. 



which yields an average of 3.12 programming problems per 
student. From Figure 12 we can see that this is not equally 
distributed within the different performance groups. The high 
performance group has an average of approximately 4.28 problems 
per student, the medium performance group has an average of 
approximately 2.85, and the low performance group has an average 
of approximately 2.14. 
 

 
 
The students can choose between several different problems of 
varying difficulty in each assignment, meaning some students 
might start on one programming problem, but then change their 
mind and do another. In addition, the students do not need to 
complete all assignments to satisfy the course requirements, 
hence some might start on a programming problem, but then decide 
not to complete it. These discarded programming problems might 
introduce a lot of noise. If we regard programming problems 
where only one third or less of the tests has passed as 

Figure 12: Number of programming problems within the different 
performance groups. 



 31 

discarded, we can try to remove these to reduce the noise (see 
Figure 13). 

 
 
When removing the discarded programming problems, the total 
number of programming problems are reduced to 1515, a reduction 
of around 20%. The number of programming problems within the 
high performance group is reduced by 16.5%, the medium 
performance group is reduced by 22.1% and the low performance 
group by 26.5%. This shows that the high performance group on 
average completes twice as many programming problems as the low 
performance group. In addition, a lower performance level yields 
a higher probability of the student discarding the programming 
problem. 
 

6.2  Feature Description 

Twelve features were extracted from each of the 1515 programming 
problems. These fall into two categories. Half of the features 
are naïve features, mainly computed by counting, and without the 

Figure 13: Number of programming problems within each 
performance group after removing discarded problems. 



use of domain knowledge. The other half are complex features, 
where both domain knowledge of the course and general 
programming knowledge are utilized. To extract features, a 
general feature extraction system was developed4. This was used 
to extract all features mentioned, and the code is available on 
GitHub5. 
 
6.2.1  Naïve Features 

Debugger Used 
This feature checks if the student used the debugger within 
the IDE while solving the programming problem. The feature 
value is one if the debugger was used, zero if not. 

 
Completion 

The ratio of passed tests. Keep in mind that programming 
problems with completion less than or equal to one third 
are removed, thus the value of this feature falls between 
one third and one. 

 
Debug Runs 

The number of times the debugger was used by the student 
while solving the programming problem. Zero if the debugger 
was not used, otherwise the number of times it was used. 

 
Compiler Warnings and Errors 

The total number of warnings and errors, accumulated on 
each build. If a warning is persistent between two builds, 
it will be counted twice. This is intentional, as the value 
should be higher for students that do not bother resolving 
the warnings and errors prompted by the IDE. 

 

                     
4 https://github.com/openwhale/spritz 
5 https://github.com/boyeborg/tdt4100-exercise-feature-extraction 
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Average Edit Size 
The average size of an edit within a programming problem. 
This measures how much, on average, the student modifies 
the code between saves. 
 

Final Size 
The total size of the student’s code after the last edit. 

 
6.2.2  Complex Features 

Total Time 
An estimation of the total time spent on solving the 
programming problem. The students had approximately 14 days 
to complete each assignment, therefore we have to remove 
pauses from the programming processes. We estimate this by 
removing the time between two consecutive edits exceeding 
10 minutes. This is not accurate but gives an estimation 
of the time spent on solving the problem. 

 
Work After Completion 

The size of all edits made after all tests has passed. Here 
we attempt to measure the amount of work done after the 
problem is completed. If the student does not complete the 
problem, the value is set to zero. 

 
Edit Center of Mass 

Computes the center of mass for all edits within a 
programming problem weighted by their size, relative to the 
first and last day of the assignment. This is done by 
plotting a graph of all edits relative to their timestamp. 
Each edit is then weighted by their size, and the center 
of mass of the graph is computed. The result is scaled 
between zero and one, where a value of 0 indicates the 
start of the assignment, 1 indicates the end of the 



assignment deadline and 0.5 indicates half way through the 
assignment deadline. A feature value of 0.5 indicated that 
the student has distributed the work evenly over the 
duration of the assignment, while a number larger than 0.5 
indicates the student has done more work after the half way 
point of the deadline. 

 
Non-Profitable Work Sessions 

This measures the number of times the student has worked 
on the programming problem without it leading to an 
increase of passed tests. This is measured comparing the 
number of passing testes of two consecutive test runs where 
the student has made edits to the codebase in-between. 

 
Complexity 

This compares the McCabe cyclomatic complexity [31] of the 
student’s final solution and the proposed solution by the 
teaching staff. 

 
Indentation Errors 

This counts the number of indentation errors found when 
passing the student’s source code to the java style checker 
checkstyle6. 

 

6.3  Feature Analysis 

To better understand the relationship between features and the 
performance groups, Spearman’s ranked correlation coefficient 
(SRCC) (see Section 2.3.4) and p-values (see Section 2.3.5) are 
computed for all features (see Table 2). Only two of the naïve 
features are significant, while four of the complex features are 

                     
6 https://github.com/checkstyle/checkstyle 
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significant. This results in a total of six features with a 
significant correlation to the performance groups. 
 

Feature SRCC p-value 

Debugger Used -0.02765 0.28220 

Completion 0.07923 0.00203 

Debug Runs -0.02647 0.30326 

Warnings -0.01443 0.57461 

Average Edit Size -0.05405 0.03541 

Final Size 0.00459 0.85817 

Total Time -0.14543 0.00000 

Work After Completion -0.01923 0.45447 

Edit Center of Mass -0.26000 0.00000 

Non-Profitable Work Sessions -0.11573 0.00001 

Complexity -0.02622 0.30774 

Indentation Errors -0.10174 0.00007 

 
Table 2: Spearman’s ranked correlation coefficient with p-values for all 

features. Significant features are bold. 
 
Of the significant features, the direction of the correlation 
is not very surprising. For example, a higher completion 
indicates higher performance, and more indentation errors 
indicates lower performance. The two naïve features have both 
the lowest SRCC values and the highest p-values. This indicates 
that the naïve features are perhaps too simple to contain 
valuable information. 



One should keep in mind that even though a feature might get a 
high probability value, it does not necessarily mean that the 
concept the feature is meant to represent is void. It might 
simply mean that the way the concept is estimated and measured 
does not correlate with the performance levels. For example, 
just because the feature measuring complexity has a high p-value 
does not mean the concept of code complexity is irrelevant. It 
just means that the way the complexity is estimated in this 
paper does not provide a significant correlation. 
 

6.4  Classification 

A support vector machine [22] is used as the supervised learning 
model, and all features are scaled to have a mean of 1, and unit 
variance. When training the model on all extracted features 
using 10-fold cross validation (see Section 2.2.2), an accuracy 
of 53.5% is achieved (see Table 3). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3: Confusion matrix of the prediction model using all features 
 

 Predicted Performance 

Low Medium High 

 Low 25 124 70 

Medium 37 376 225 

High 12 236 410 
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The model struggles to identify low performing students, with a 
recall of only 11.9% and precision of 34.6% for the low 
performance group (see Table 4). In the original data, less than 
15% of the programming problems were solved by students 
belonging to the low performance group. This might explain why 
the model struggles with this group. 
 

 
Table 4: Precision, recall and F1-score of the different performance groups 

using all features 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 Low Medium High 

Precision 0.346 0.509 0.581 

Recall 0.119 0.587 0.621 

F1 0.171 0.543 0.599 

 Predicted Performance 

Low Medium High 

 Low 10 143 66 

Medium 14 388 236 

High 8 264 386 

Table 5: Confusion matrix of the prediction model using only 
significant features 
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After removing the insignificant features (E ≥ 0.05), the model 
performs slightly worse, with an accuracy of 51.8% (see Table 
5). This shows that insignificant features can provide useful 
information to a prediction model and should not be discarded 
just based on correlation coefficient and significant values. 
It seems feature reduction affected the model’s performance on 
the low performance group the most, resulting in a 56.1% 
reduction of the F1-score. The F1-score of the medium and high 
performance groups only decreased by 0.04% and 4.7% respectively 
(see Table 6). 
 
 

 
 
However, when we remove all the significant features, only 
keeping the insignificant ones, the model has an accuracy of 
43.7%. In comparison, our target data consists of 658 high 
performance samples, hence a model always predicting the high 
performance group, regardless of its input, would achieve an 
accuracy of 43.4%. 
 
To test which features contains the most information, the model 
can be trained using each feature individually (see Table 7). 
As shown, the significant features tend to achieve a higher 
accuracy. 
 

 Low Medium High 

Precision 0.273 0.489 0.560 

Recall 0.045 0.609 0.586 

F1 0.075 0.541 0.571 

Table 6: Precision, recall and F1-score of the different performance groups 
using only significant features 



 39 

Feature Accuracy 

Edit Center of Mass 0.495 

Total Time 0.485 

Non-Profitable Work Sessions 0.471 

Debugger Used 0.452 

Average Edit Size 0.449 

Indentation Errors 0.442 

Complexity 0.442 

Work After Completion 0.438 

Debug Runs 0.436 

Completion 0.434 

Warnings 0.434 

Final Size 0.426 

 
Table 7: Model accuracy when only trained on one feature. Significant 

features are bold. 
 
 
 

6.5  Evaluation of Results 

There could be several reasons for the achieved accuracy of 
53.5%. The task of predicting student performance based on a 
single programming problem is probably very hard. Capturing 
student progress and development by only using a single problem 
is impossible. This could rather be achieved by computing 
features for each student as opposed to for each programming 



problem individually. Doing this would however reduce the 
dataset further. Another approach would be to create features 
for each assignment. An assignment as a whole can contain more 
information than each individual programming problem. This could 
also be extended to create one classifier for each assignment. 
Each assignment can contain different information, as the 
students are tested in different parts of the curriculum in the 
different assignments. In addition, the students’ programming 
skills increase throughout the course, which would be better 
captured by individual classifiers for each assignment. This 
would however require a larger dataset. 
 
In addition, the number of collected features are low in 
comparison to similar research. For example, Vihavainen [19] is 
able to achieve an accuracy of 78%, but uses almost 200 features. 
We believe that the accuracy would increase by computing more 
features and by using a larger dataset.
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7  Discussion 

The purpose of the experiment is to test if correlation 
coefficients and p-values can be used to evaluate the utility 
of a feature. A low p-value and high correlation coefficient 
should indicate high utility. Similarly, a high p-value and low 
correlation coefficient should indicate low utility. 
 
When training the model using only the features with high p-

values (E	 ≥ 0.05), an accuracy of 43.7% was achieved, only 0.3 
percentage points higher than a model always predicting the most 
common performance group (high). On the other hand, when 

training the model using only significant features (E < 0.05), an 
accuracy of 51.8% was achieved. This suggests significant 
features contain more information than the insignificant ones, 
hence their utility is greater. 
 
By training the model on each feature individually (see Table 
7), an estimate of each feature’s usefulness is derived. The 
three best performing feature corresponds to the significant 
features with the highest correlation coefficient, appearing 
ordered by their correlation coefficients. This indicates that 
not only does a significant feature provide more information 
than an insignificant one, but a higher correlation coefficient 
implies higher utility. 
 
The best classification results are achieved using all the 
features, both significant and insignificant. This may be 
because  some features might not provide useful information by 
themselves but might prove useful in combination with others 
[32]. The p-values and correlation coefficients should therefore 
only be considered an estimation of a feature’s utility, and not 
an absolute fact. However, as shown, the significant features 



affect the accuracy of the model more than the insignificant 
features. Even though the p-values and SRCC are not useful when 
selecting features in the conducted experiment, others might use 
these values to decide what features they want to use and compare 
feature utilities. If all research on IDE-based learning 
analytics contained this kind of analysis, researchers would be 
able to compare different ways of measuring concepts and build 
upon each other’s ideas. 
 
The dataset used in the experiment only consists of 1515 
programming problems. In context of machine learning, this can 
be considered a fairly small dataset [22]. To ensure the results 
presented here are valid, a similar experiment should be 
conducted on a larger dataset to validate the results. We 
encourage further research to conduct such an experiment. 
 
In the experiment, only one supervised learning model is used, 
namely a support vector machine. The experiment should 
preferably have been conducted using several different models, 
but due to time limitations we were unable to do this. We will 
however encourage others to conduct similar experiments using 
different machine learning models to validate the results 
presented. For replicability, all code used to produce the 
presented results are included in the appendix. In addition, the 
code used to extract each feature is available on GitHub7. The 
dataset used is however not publicly available due to privacy 
concerns. 
 

                     
7 https://github.com/boyeborg/tdt4100-exercise-feature-extraction 
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8  Conclusion 

Due to the large variation of learning environments, no single 
strategy for collecting learning data exists. Because of this, 
collecting the data might be a difficult task and pose a 
hindrance for many to apply learning analytics on their learning 
environment. Hence, good insight into which features might 
provide useful information is valuable, as this will enable 
researchers to focus on collecting the data needed to compute 
useful features. As shown, the proposed analysis provides the 
information needed to identify and compare the usefulness of 
different features, enabling researchers to more easily build 
upon previous work. 
 
With this, we conclude that the proposed feature analysis is 
valuable and encourage future research to include this kind of 
analysis. 
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