
Feature Analysis of Supervised Machine
Learning Models in IDE-Based Learning
Analytics
Exploring the use of correlation coefficients

and p-values as feature utility measures

through estimating student performance in

an introductory programming course

Boye Borg Nygård

Master of Science in Computer Science

Supervisor: Hallvard Trætteberg, IDI

Department of Computer Science

Submission date: June 2018

Norwegian University of Science and Technology

 I

Abstract

Due to the recent proliferation of large datasets collected on

human behavior in digital environments, IDE-based learning
analytics using supervised learning has emerged as a scientific
field. However, due to its novelty, research methods tailored
to the needs of IDE-based learning analytics are yet to be

developed. In this paper, a methodology for evaluating features
used in supervised learning models in relation to their effect
on the model’s performance is presented. We show that

correlation coefficients in combination with p-values can be
used as a measure of a feature’s usefulness. The goal of the
method is to enable researchers to understand and compare

different features, allowing a higher degree of utilization of
previous research, and increasing the overall research value of
supervised learning in IDE-based learning analytics.

 III

Sammendrag

(Norwegian translation of the Abstract)

Stor tilgang på data om menneskelig adferd på digitale
plattformer, har gitt grobunn for IDE-basert læringsanalyse ved
bruk av veiledet-læring. Grunnet forskingsfeltets korte fartstid
finnes det få utarbeidede metodikker tilpasset IDE-basert

læringsanalyse. I denne masteroppgaven presenterer vi en
metodikk for å evaluere inndata i veiledet-læring sin påvirkning
på modellens prestasjon. Vi viser at korrelasjonskoeffisienter

i kombinasjon med sannsynlighetsverdier kan bli brukt som mål
på nytteverdi av inndata. Målet med metoden er å øke forståelse
av inndata sin nytteverdi og forenkle prosessen å sammenlikne

ulike inndata. Dette for å øke gjenbrukbarheten av tidligere
forskning, og på den måte forsterke forskningsverdien av
veiledet-læring innen IDE-basert læringsanalyse.

 V

Preface

This paper is a master thesis written at the Department of
Computer Science (IDI), Norwegian University of Science and

Technology (NTNU). The writing of the thesis, and all work
related to it has been conducted between January 22nd and June
15th, 2018.

I would like to thank my supervisor, Hallvard Trætteberg, the
support and feedback provided throughout the writing of this
paper. In addition, I would like to thank Siddise Hirpa, Emil

Henry Flakk, and Pernille Wangsholm for fruitful discussions and
constructive feedback.

 VII

Table of Contents

Abstract .. I

Sammendrag .. III

Preface ... V

Table of Contents ... VII

List of Figures and Tables ... IX

1 Introduction .. 1

1.1 Context ... 1

1.2 Problem ... 3

1.3 Limitations ... 4

2 Background .. 5

2.1 Learning Analytics .. 5

2.2 Machine Learning .. 6
2.2.1 Supervised Learning ... 7
2.2.2 Evaluation ... 10

2.3 Quality Assessment ... 11
2.3.1 Mean Square Error .. 11
2.3.2 Precision and Recall ... 11
2.3.3 F1-score ... 12
2.3.4 Correlation Coefficient .. 12
2.3.5 P-value .. 15

3 Related Work ... 17

3.1 A Reference Model for Learning Analytics 17

3.2 IDE-Based Learning Analytics 18

4 Methodology .. 21

4.1 Target Analysis .. 21

4.2 Feature Analysis ... 22

4.3 Model Analysis ... 23

5 Experimental Setup ... 25

5.1 Data Description ... 25

5.2 Pre-Processing ... 27

6 Experimental Results ... 29

6.1 Analysis of Distribution ... 29

6.2 Feature Description .. 31
6.2.1 Naïve Features ... 32
6.2.2 Complex Features ... 33

6.3 Feature Analysis ... 34

6.4 Classification ... 36

6.5 Evaluation of Results .. 39

7 Discussion ... 41

8 Conclusion ... 43

References ... 45

Appendix ... 49

Data Analysis .. 49

Feature and Classification Analysis 51

 IX

List of Figures and Tables

Figure 1: Number of published articles each year containing the phrase
"learning analytics" available from Google Scholar. 2

Figure 2: Number of students participating in TDT4100 at NTNU............. 2

Figure 3: Visualization of bias and variance [1] 9

Figure 4: Example of 4-fold cross-validation (Fabian Flöck CC BY-SA 3.0). 10

Figure 5: Different sets of points (x, y) and the Pearson correlation
coefficient of x and y for each set (Denis Boigelot, CC0, public domain).
 .. 13

Figure 6: Comparison of Pearson correlation coefficient and Spearman's rank
correlation coefficient. .. 14

Figure 7: SRCC for non-monotonic correlation 15

Figure 8: The p-value (shaded green) of an observation assumed to be drawn
from a gaussian distribution when the null hypothesis is true (Chen-Pan
Liao, CC BY-SA 3.0). .. 16

Figure 9: Learning analytics process by Chatti, et al. [2] 17

Figure 10: IDE-based learning analytics process model by Hundhausen, et al.
[3] ... 19

Figure 11: Number of students within each performance group.............. 29

Figure 12: Number of programming problems within the different performance
groups. ... 30

Figure 13: Number of programming problems within each performance group after
removing discarded problems. .. 31

Table 1: Definition of true positives, false positives, true negatives and

false negatives. .. 11

Table 2: Spearman’s ranked correlation coefficient with p-values for all
features. Significant features are bold. 35

Table 3: Confusion matrix of the prediction model using all features..... 36

Table 4: Precision, recall and F1-score of the different performance groups
using all features .. 37

Table 5: Confusion matrix of the prediction model using only significant
features .. 37

Table 6: Precision, recall and F1-score of the different performance groups
using only significant features 38

Table 7: Model accuracy when only trained on one feature. Significant features
are bold. ... 39

 1

1 Introduction

1.1 Context

With the recent proliferation of large datasets collected from
human behavior in digital environments, scientific disciplines
concerned with analyzing and understanding human behavior has
burgeoned. One such discipline is learning analytics, which
analyzes data from students and their environment to understand
and improve the learning process [4]. In 2012 the U.S. Department
of Education published an issue brief on the use of learning
analytics, which concerns itself with analyzing learning
processes, in the U.S. system of higher education [5]. This
issue brief highlighted the usefulness of predictive models
forecasting student performance and encouraged researches to
continue conducting research that would help instructors become
more efficient. Since then, the field of learning analytics has
sky rocketed, and the 2016 Horizon Report on higher education
said they expected “learning analytics to be increasingly
adopted by higher education institutions” [6].

Yacef [7] showed the trends of using data gathered from learning
processes in machine learning system as early as 2009, and in
2011 the first International Conference on Learning Analytics
and Knowledge was held. Aided by the rapid development of machine
learning, learning analytics has grown from a niche to a well-
established research area. In 2010, only 118 research articles
containing the phrase “learning analytics” were published [8].
This number has increased every year since then, and in 2017
over 5500 articles were published (see Figure 1), an increase
of over 4500%.

Figure 1: Number of published articles each year containing the phrase
"learning analytics" available from Google Scholar.

Figure 2: Number of students participating in TDT4100 at NTNU.

 3

In addition to the raise of learning analytics, the demand for
programming in education is increasing [9]. At NTNU, the number
of students enrolling in the introductory course to object
oriented programming (TDT4100) has increased with over 87% since
2008 (see Figure 2). In order to best meet this high demand for
programming knowledge, teachers need insight on the learning
process of their students. With the aid of learning analytics,
a teacher could better understand how their students learn, and
more easily identify students in need of assistance.

Capturing data from a learning process is not trivial, as the
learning environment usually consists of several sub-
environments that are not all easily monitored. For programming
courses, these sub-environments might include online quizzes,
lectures and Q&A sessions with a teaching assistant. However,
studies has shown that most programming courses offered at
universities are using an integrated development environment
(IDE) [10, 11]. This makes the IDE a common sub-environment
across many programming courses at different universities, thus
making IDE-based learning analytics an important area of
research.

1.2 Problem

When comparing the search results from Google Scholar1, we find
that only 2% of articles published on learning analytics
explores IDE-based learning analytics using classification [12,
13] (about 4% explores IDE-based learning analytics without the
mention of classification [14]). Within this small niche of
learning analytics, most published research is not reproduceable
nor follows any common research method [15-20]. When conducting
learning analytics using classification, one of the main

1 https://scholar.google.no

challenges is to find what features that will provide useful
information to the classification model. Regardless, very few
research articles published on IDE-based learning analytics
discuss or analyze the usefulness of the features. Some articles
do not even contain a complete list of the used features. This
makes it difficult to compare, validate, reproduce and build
upon the existing research, yielding low research value.

A model for conducting IDE-based learning analytics was proposed
by Hundhausen, et al. [3]. This method includes several features
that might be used in a classification model. However, no
approach on evaluating the usefulness of these features in
relation to the model’s target, nor any methods for evaluating
the learning analytics system as a whole, is described. To
improve on this, and encourage research on IDE-based learning
analytics, we want to extend the model by proposing a way to
measure the features usefulness and statistical significance.
In this paper, we seek to answer the following research question:

Is an analysis evaluating the usefulness of features

valuable to IDE-based learning analytics research?

1.3 Limitations

This paper is written as the master thesis required to receive
a master’s degree in computer science (M.Sc.) at NTNU and is
completed within a time limit of 20 weeks. Due to the time
limitation, we were not able to collect new data for the
experiment and had to use existing data previously collected.

 5

2 Background

2.1 Learning Analytics

Most papers on learning analytics (LA) refer to the definition
provided by the 1st International Conference on Learning
Analytics and Knowledge 2011 when defining the field of LA [4]:

“Learning analytics is the measurement, collection,
analysis and reporting of data about learners and their
contexts, for purposes of understanding and optimising
learning and the environments in which it occurs”2

The collection of educational data is often referred to as
educational data mining (EDM) [7]. There are several ways of
using EDM in learning analytics. An issue brief published by the
U.S. Department of Education [5] propose five different learning
analytics applications where EDM can be used:

* Modeling knowledge, behavior, and experience

* Profiling

* Modeling domain knowledge components

* Trend analysis

* Adapting learning experience

All learning analytics systems consists of three main steps [2]:

2 https://tekri.athabascau.ca/analytics/

1. Collect data from a learning environment

2. Analyze the data

3. Use the analysis to improve the learning environment

When learning analytics are applied to improve the learning
environment, that environment changes. This new, changed
environment might contain information that is not currently
collected nor analyzed, and therefore not used by the system.
Imagine learning analytics is used to predict the final grade
of students, and that this prediction is used by the teaching
staff to decide which students to assist. The use of this system
introduces new information to the learning environment that is
currently not utilized by the system. For example, observing how
students react to receive assistance might yield useful
information that could improve the prediction. To include this
new information, the three steps above must be executed on the
new learning environment. However, this might result in the
environment changing yet again. Thus, learning analytics is by
many considered an iterative process [2, 3].

2.2 Machine Learning

Machine learning is a field of artificial intelligence employing
statistical techniques to learn patterns in empirical data [21].
Machine learning systems are usually divided into three main
categories; supervised learning, reinforcement learning, and
unsupervised learning, depending on the feedback provided to the
system while learning [22]:

* Unsupervised learning: The system is not provided with
feedback, and the system has to find structure in the inputs
by itself. The system is often used to find unknown patterns

 7

and relations within data (clustering) or discover outliers
and abnormal data points.

* Supervised learning: Each input is accompanied with a
correct or desired output (feedback). The system has to
find patterns and relations between the input and output,
then use this to approximate a function that maps the inputs
to the outputs, called the hypothesis.

* Reinforcement learning: The system performs a set of
actions and is infrequently provided with feedback in the
form of reward or punishment in relation to its
performance.

In this paper, we will focus on supervised learning used in
conjunction with learning analytics. Hence, unsupervised and
reinforcement learning will not be discussed.

2.2.1 Supervised Learning

The goal of supervised learning is to approximate a target

function, !, that maps some set " to another set # (Equation

1). Both !, " and # are unknown.

!: " → # (1)

To be able to approximate the target function, the system is

given a set of observations,) (Equation 2). The observations

consist of * input-output pairs of the unknown function !.

) = {(-., !(-.)), (-0, !(-0)),… , (-2, !(-2))} (2)

The task of the supervised learning system is to create a new

function, !5, that approximates ! based on the observations
provided [22]. To do this, we need a function that measure how
different the approximation is from the target function, called
a loss function. This uses the input-output pairs from the

observation to evaluate how closely !5 resembles !. By minimizing
the loss, the approximation becomes as close as possible to the
target function.

Several different loss functions exists [23], as different
machine learning models requires different loss functions. One
deciding factor of which loss function to use is what kind of
learning problem the model solves. Supervised learning is
usually divided into two different problem categories:
classification and regression. When the output is a number, such
as a stock price, the problem is called regression; when the
output consists of a finite set of classes, such as dog breeds,
the problem is called classification [22].

When using supervised learning on certain problems, the data is
not easily divided into inputs. For example, imagine predicting
the sentiment of a movie review (classification) based on the
content of the review. One could think it would be possible to
use every word in the review as an input. However, this turns
out to be difficult, since every review probably is of different
lengths, resulting in each observation having a different number
of inputs. In addition, it is natural to assume that not all
words are relevant when trying to predict the sentiment, such
as “a”, “to” and so on. A principle called Ockham’s razor states
that there exist an optimal subset of the data, that is as small
as possible while still providing the machine learning model
with enough information to create the best possible model [24].
However, finding this subset is not trivial.

 9

Extracting inputs from the data is often called feature

engineering [25], and each extracted input is called a feature.
An example of a feature from the above example might be the
number of exclamation marks or the number of times the word
“good” is used. Selecting features is often done by assumptions,
meaning features that are assumed to be relevant are included.
The bias is a measure of how dependent our model is on our prior
beliefs and assumptions. A small feature set will often result
in a high bias. When creating a supervised learning model, a low
bias is desired, which can be achieved by adding more features.
However, by adding more features, irrelevant information might
be introduced into the system, which will increase the variance
of the model. This is known as the bias-variance tradeoff [1].
The more features, the more complex the model becomes, and the
variance goes up. However, too few features yield a high bias
that might be equally as bad (see Figure 3).

Figure 3: Visualization of bias and variance [1]

2.2.2 Evaluation

The process of optimizing the hypothesis function by minimizing
the loss is called training. After training the model, we want
to know how well it performs on new, unseen, inputs. This is
called testing. To achieve this, the data is divided into two

parts,). and)0, such that). ∪)0 =) and). ∩)0 = ∅.). can be

used to train the model and)0 to test the model afterward.
However, different splits of). and)0 can yield different
results. A common way of reducing this variance is called k-fold
cross-validation. Cross-validation is a technique where the data
is split into k equal sections. Then the model is trained k

times on 9 − 1 sections of the data, each time tested and
evaluated on the section not used for training (see Figure 4).
Each of the k sections are used exactly once for testing. The
metric used for evaluating the performance of the model (see
Section 2.3) is averaged over all tests completed.

Figure 4: Example of 4-fold cross-validation (Fabian Flöck CC BY-SA 3.0).

 11

2.3 Quality Assessment

2.3.1 Mean Square Error

A common metric for computing the error of a regression model
is the mean square error (MSE). This measures the mean of the

square errors of the system (see Equation 3), where ; is the
output of the training data, ;< is the output of the regression

model, and * is the number of training samples.

=>?(;, ;<) = 	
1

*
A(;B − ;<B)

0

2

BC.

	 (3)

When used in conjunction with k-fold cross-validation, the
average of the mean square errors computed at each fold can also
be used.

2.3.2 Precision and Recall

Two common metrics to test the quality of a classification model
is precision and recall. To calculate precision and recall we
need to categorize each classification of a given class into
four categories: true positive, false positive, true negative
and false negative (see Table 1).

Table 1: Definition of true positives, false positives, true negatives and

false negatives.

 Is of class A Is not of class A

Classified as A True positive False positive

Not classified as A False negative True negative

Precision is the number of samples correctly classified as a
given class (true positive), divided by the total number of
samples classified as that class (Equation 4). Precision is a
measure of how precise the system is when classifying a certain
class, i.e. how much you should trust it when it says something
is of a certain class.

EFGHIJIK* = 	
LFMG	EKJILINGJ

LFMG	EKJILINGJ + !PQJG	EKJGLINGJ
(4)

Recall is the number of samples correctly classified as a given
class (true positive), divided by the total number of samples
of that class (Equation 5). Recall is the ratio of correctly
classified samples within a certain class.

FGHPQQ =
LFMG	EKJILINGJ

LFMG	EKJILINGJ + !PQJG	*GSPLINGJ
(5)

2.3.3 F1-score

F1-score is a way to combine precision and recall into one
metric. This is done by computing the harmonic mean of the
precision and recall (Equation 6).

U1 = 2 ×
EFGHIJIK*	 × FGHPQQ

EFGHIJIK* + FGHPQQ
(6)

2.3.4 Correlation Coefficient

A correlation coefficient measures how correlated to variables,

X and Y, are. One such coefficient is called Pearson correlation
coefficient (PCC), and was introduced by Karl Person in the
1880s by ideas drawn from Francis Galton [26]. It ranges from
negative one to positive one and are calculated by comparing the
covariance of the two variables to the product of their standard

 13

deviations (see Equation 7). If the two variables have a positive

correlation, meaning X increases when Y increases and vice
versa, the correlation coefficient will be positive. When there

is a negative correlation, X decreases when Y increases and vice
versa, the coefficient is negative. If there is no correlation
between the two variables, the coefficient is zero. The farther
away from zero, the stronger the correlation.

Z[,\ =
HKN(X, Y)

][]\
(7)

The equation for calculating PCC (Equation 7) divides the
covariance of the two variables by the standard deviation of
both variables multiplied together. PCC can be used to test if
a feature (input) provide useful information in relation to the
output in a supervised learning problem. When computing PCC for
one feature and the output from the observations in a supervised
learning problem, the covariance and standard deviations are

Figure 5: Different sets of points (x, y) and the Pearson correlation
coefficient of x and y for each set (Denis Boigelot, CC0, public domain).

usually unknown and must be estimated. If the feature, X,

consists of * values, [-.,… , -2], and the output, Y, also contains

* values, [;.,… , ;2], then PCC can then be approximated through
Equation 8.

Z<[,\ =
HKNa (X, Y)

]<[]<\
=

∑ (-B − -̅)(;B − ;d)
2
BC.

e∑ (-B − -̅)0
2
BC. × e∑ (;B − ;d)0

2
BC.

(8)

The PCC is only able to detect linear correlation (see Figure
5). To counter this, a variation of PCC, called Spearman's rank
correlation coefficient (SRCC) might be used instead. SRCC is
similar to PCC, but instead of using the values from the two

variables (X and Y) directly, their ranks, FS[and FS\, are used
(see Equation 9). Ranks are computed by individually sorting the
values within each variable in ascending order. The rank of each
value is its relative position within the sorted value list. The

Figure 6: Comparison of Pearson correlation coefficient and Spearman's
rank correlation coefficient.

 15

use of ranks makes SRCC more suited to find non-linear
correlations (see Figure 6). It is however not able to detect
non-monotonic correlation (see Figure 7).

Z<ghi,ghj =
HKNa (FS[, FS\)

]<ghi]<ghj
(9)

2.3.5 P-value

In addition to the correlation coefficient, a metric indicating
how statistically significant the correlation is can be useful.
This can be estimated through a p-value, estimating the
probability of the results happening by chance.

When evaluating the significance of a correlations in
quantitative data, we start by assuming that there is no
relationship. This is called the null hypothesis [27]. Then the

Figure 7: SRCC for non-monotonic correlation

probability of detecting the observed data if the null
hypothesis is true, the p-value, is computed. Commonly, the null
hypothesis is considered to stand if the p-value is greater than
0.05, or 1 in 20 [27]. The correlating is said to be significant
if the p-value is less than 0.05, meaning there is less than 5%
chance of the observations happening by chance.

To calculate the p-value, one must assume the results of the
statistical model is drawn from a specific distribution. A
common assumption is that the statistical model generates a
gaussian distribution (see Figure 8). One should always keep in
mind that if this assumption does not hold, the p-value is not
statistically valid. Hence, p-values should only be considered
an indication of significance, and not an absolute fact, unless
the underlying distribution is known.

Figure 8: The p-value (shaded green) of an observation assumed to
be drawn from a gaussian distribution when the null hypothesis is

true (Chen-Pan Liao, CC BY-SA 3.0).

 17

3 Related Work

Over the past years, several papers have been published
proposing different models for conducting learning analytics.
In 2012, Chatti, et al. [2] presented a general process model
for learning analytics. This is one of the most cited articles
on learning analytics. Later, in 2017, Hundhausen, et al. [3]
presented a similar model, tailored to the needs of IDE-based
learning analytics. In this chapter, both models will be
presented.

3.1 A Reference Model for Learning Analytics

In 2012, Chatti, et al. [2] presented a general reference model
for learning analytics. They described the learning analytics
process using an iterative cycle containing three steps: data
collection and pre-processing, analytics and action, and post-
processing (see Figure 9).

Figure 9: Learning analytics process by Chatti, et al.
[2]

Data collection and pre-processing includes the collection of
the data, and the preparation needed to use it in learning
analytics methods. The pre-processing might include tasks such
as data cleaning, data transformation and data reduction, but
the paper does not elaborate on how to conduct such tasks.

In the analytics and action step, the data collected and pre-
processed in the previous step is analyzed, and based on those
results, actions are taken. Different method of analyzing is
briefly mentioned, for instance clustering and classification,
but evaluation of the results is not discussed. The actions can
be viewed as the outcome of the learning analytics. Depending
on the analysis conducted, an action might be making a teacher
aware of students in need of assistance or providing feedback
to students on how they should study towards the exam.

The last step, post-processing, involves improving the data and
system. This could be to adjust or collect a new dataset, finding
new variables to extract from the data to be used in the
following iteration, altering the method used in the analytics
step, or similar tasks.

3.2 IDE-Based Learning Analytics

In 2017, Hundhausen, et al. [3] published an article on using
learning analytics on data collected through an integrated

development environment (IDE). The article presents a similar
iterative process model to Chatti, et al. [2] (see Figure 10).

The main difference from the model proposed by Chatti, et al.
[2] (see Figure 9) is that the analytics and action step is

 19

split into multiple steps. The analytics task is here its own
step (step two), and the action task is split into two parts,
design intervention, and deliver intervention. The model does
not explicitly contain any post-processing step, though this
might be included within the first step for every iteration
after the first.

In addition to the process model, the article presents different
variables that could be extracted from the collected data and
used in the analysis. These variables, often called features,
are specific to IDE-based learning environments, such as BluJ,
Eclipse and NetBeans. However, the article does not discuss how
to evaluate the usefulness of each feature, nor the system as a
whole.

Figure 10: IDE-based learning analytics process model by
Hundhausen, et al. [3]

 21

4 Methodology

We are looking at the use of supervised learning in IDE-based
learning analytics. One of the main challenges when using
supervised learning is feature selection, hence quantifying the
usefulness of different features in research conducted on IDE-
based learning analytics using supervised learning might be
valuable. This could make it easier for others to understand how
different features affect the results, which features work well
and which do not. This makes it easier for others to identify
and focus on promising features, allowing researchers to build
and improve upon one another.

However, the process model presented by Hundhausen, et al. [3]
(see Section 3.1) does not address analysis of the extracted
features. To improve this, we want to propose a method that can
be used when conducting feature analysis on features used by
supervised learning models in IDE-based learning analytics. The
proposed methodology consists of three parts. First an initial
analysis of the data is conducted. The extracted features are
then analyzed. Last, we assess the performance of the resulting
supervised learning model.

4.1 Target Analysis

When analyzing quantitative data, it is important to understand
the structures and distributions within the data being analyzed,
as this might affect the interpretation of the analysis [27].
Imagine trying to predict if a student is going to fail a course
using supervised learning on data collected during the previous
semester. If 10% of the students failed the course the previous
semester, a supervised learning system would be able to achieve
an accuracy of 90% by always predicting that students would

pass. Although an overall accuracy of 90% might seem impressive
by itself, the system has only learned that most students pass.
Only by knowing the underlying distribution of the target data
can the system be evaluated. Hence, an initial analysis of the
target data is imperative, and should always be included. This
will both deepen the readers understanding of the problem and
enable the reader to evaluate the system in context of its target
data.

4.2 Feature Analysis

The initial analysis provides the required knowledge of the data
to start analyzing features (see Section 2.2.1). The goal of a
feature is to provide useful information, improving the
supervised learning model. A feature will only provide useful
information if there exist some correlation between it and the
output we want to predict. To test if this correlation exists,
we can compute the Spearman's rank correlation coefficient
(SRCC) (see Section 2.3.4).

In addition to SRCC, we should also test if the two variables
(the feature and the output) are correlated to a significant
level [27]. This can be achieved by calculating the p-value (see
Section 2.3.5) using a t-test [27]. This p-value will indicate
how likely it is that the correlation indicated by SRCC happened

by chance. If the likelihood of this is less that 5% (E < 0.05),
the correlation is said to be significant [27].

Keep in mind that this only provides an indication of how useful
a feature is. SRCC are for example unable to detect non-monotonic
correlation (see Section 2.3.4).

 23

4.3 Model Analysis

After creating the desired features, they can be used to train
a supervised learning model. How to measure the model’s
performance depends on whether it is a classification or
regression problem. Classification models can use precision,
recall (Section 2.3.2) and f1-score (Section 2.3.3). In
addition, a confusion matrix could be computed to provide a more
in-depth understanding of how the model performs. Regression
models can be evaluated by its mean square error (see Section
2.3.1). Both classification and regression models should be
evaluated as a whole and for different outputs. Are the models
equally good at predicting the different outputs, or is it better
at some? These are important questions to answer in order to
understand the performance of the model and should be viewed in
context of the analysis of the target data.

When choosing what data to use for training and what to use for
evaluating the model, randomness is introduced. To reduce this
randomness, 10-fold cross-validation (see Section 2.2.1) should
be used [22]. More folds are better, but also more computational
expensive, and 10-fold cross-validation has proved to be
sufficient in most cases [28].

Most supervised learning models have a lot of hyperparameters
(parameters used by the model, in addition to the training data,
while learning). A common approach is to use a grid- or random-
search to discover good parameter settings [29]. However,
choosing the best parameters is a difficult task, and an area
of active research [29, 30] that will not be explored in this
paper.

 25

5 Experimental Setup

NTNU offers an introductory course to object-oriented
programming, TDT4100. To test the proposed method, we want to
conduct a learning analytics experiment on this course where we
perform analysis of the data, feature and classification.

Throughout the course, students are to solve mandatory
programming assignments using the Eclipse IDE and the Java
programming language. Within each assignment, the students can
choose between multiple programming problems of varying
difficulty. Each programming problem has a corresponding set of
unit tests, allowing the students to test their solution against
the requirements of the problem. We want to use data collected
through the used IDE to predict student performance on the final
exam.

5.1 Data Description

During the spring of 2017, 610 students at NTNU enrolled in
TDT4100. During the semester, data was collected for each
programming problem within four different assignments (5, 6, 8
and 9). The students used the Eclipse IDE to write, run and test
their code, and an Eclipse plug-in was used to capture the
students programming process3. This plugin was made to trigger
on events within the editor, and store data related to the event.
In this experiment, we focus on four different events:

* Edit – Triggers when files are saved. Stores a snapshot of
the current file contents.

3 https://github.com/hallvard/jexercise/tree/master/no.hal.learning

* Debug – Triggers at certain points during a debugging
session, e.g. when breakpoints are hit. Stores breakpoints
and other debugging data.

* Test – Triggers when the tests are executed. Stores the
number of succeeded and failed tests.

* Compiler warning and errors – Triggers on builds. Stores
the position of the warning and the warning category and
type.

The plug-in stores the data as XML files containing all events
captured by the plug-in, one file for each programming problem
and student. This produced a total of 2012 XML data files. In
addition, the number of points (0-100) and the grade (A-F)
achieved by each student on the final exam was recorded and
stored as a CSV file. Both the XML files and each exam result
are associated with a randomized anonymous id, unique to each
student (this cannot be traced back to identifiers used in the
learning management system used at NTNU). This makes it possible
to map each programming problem to a specific exam result.

The dataset is fairly small, only 610 students. Predicting a
student’s performance based on all programming problems solved
by that student throughout the course would result in a dataset
of 610 samples. To increase this, we want to instead predict the
student performance based on a single programming problem. This
would allow us to use each programming problem individually,
yielding a larger dataset. This means we want to create a
supervised learning model using features computed based on a
single programming problem as input. The output of the model
should be the performance of the student that solved the problem.
Limitations to this decision are discussed later in Section 6.5.

 27

5.2 Pre-Processing

The result achieved by each student are solely based on their
score on the final exam. This result might vary from day to day
based on how the student feel the day of the exam. To reduce
this variance, and get a more performance oriented measure, we
group students into three different groups, based on their final
grade: low, medium and high. Students that got an E or F on the
final exam are placed in the low performance group, C and D
students are in the medium performance group, and students with
A or B are in the high performance group.

 29

6 Experimental Results

6.1 Analysis of Distribution

Most students, around 47.1%, are in the medium performance
group, while around 30% of the students reside in the high
performance group, and 23% within the low performance group (see
Figure 11). This distribution shows that a classifier optimized
for accuracy within this distribution should prefer to predict
the medium performance group.

However, since each student completes several assignments,
containing multiple programming problems, the distribution shown
in Figure 11 will not necessarily show the correct distribution
for our task of predicting performance using a single
programming problem. In fact, the distributions will only be
equal if each performance group has the same distribution of
solved programming problems per student. The total number of
programming problems solved within the assignments is 1905,

Figure 11: Number of students within each performance group.

which yields an average of 3.12 programming problems per
student. From Figure 12 we can see that this is not equally
distributed within the different performance groups. The high
performance group has an average of approximately 4.28 problems
per student, the medium performance group has an average of
approximately 2.85, and the low performance group has an average
of approximately 2.14.

The students can choose between several different problems of
varying difficulty in each assignment, meaning some students
might start on one programming problem, but then change their
mind and do another. In addition, the students do not need to
complete all assignments to satisfy the course requirements,
hence some might start on a programming problem, but then decide
not to complete it. These discarded programming problems might
introduce a lot of noise. If we regard programming problems
where only one third or less of the tests has passed as

Figure 12: Number of programming problems within the different
performance groups.

 31

discarded, we can try to remove these to reduce the noise (see
Figure 13).

When removing the discarded programming problems, the total
number of programming problems are reduced to 1515, a reduction
of around 20%. The number of programming problems within the
high performance group is reduced by 16.5%, the medium
performance group is reduced by 22.1% and the low performance
group by 26.5%. This shows that the high performance group on
average completes twice as many programming problems as the low
performance group. In addition, a lower performance level yields
a higher probability of the student discarding the programming
problem.

6.2 Feature Description

Twelve features were extracted from each of the 1515 programming
problems. These fall into two categories. Half of the features
are naïve features, mainly computed by counting, and without the

Figure 13: Number of programming problems within each
performance group after removing discarded problems.

use of domain knowledge. The other half are complex features,
where both domain knowledge of the course and general
programming knowledge are utilized. To extract features, a
general feature extraction system was developed4. This was used
to extract all features mentioned, and the code is available on
GitHub5.

6.2.1 Naïve Features

Debugger Used
This feature checks if the student used the debugger within
the IDE while solving the programming problem. The feature
value is one if the debugger was used, zero if not.

Completion

The ratio of passed tests. Keep in mind that programming
problems with completion less than or equal to one third
are removed, thus the value of this feature falls between
one third and one.

Debug Runs

The number of times the debugger was used by the student
while solving the programming problem. Zero if the debugger
was not used, otherwise the number of times it was used.

Compiler Warnings and Errors

The total number of warnings and errors, accumulated on
each build. If a warning is persistent between two builds,
it will be counted twice. This is intentional, as the value
should be higher for students that do not bother resolving
the warnings and errors prompted by the IDE.

4 https://github.com/openwhale/spritz
5 https://github.com/boyeborg/tdt4100-exercise-feature-extraction

 33

Average Edit Size
The average size of an edit within a programming problem.
This measures how much, on average, the student modifies
the code between saves.

Final Size
The total size of the student’s code after the last edit.

6.2.2 Complex Features

Total Time
An estimation of the total time spent on solving the
programming problem. The students had approximately 14 days
to complete each assignment, therefore we have to remove
pauses from the programming processes. We estimate this by
removing the time between two consecutive edits exceeding
10 minutes. This is not accurate but gives an estimation
of the time spent on solving the problem.

Work After Completion

The size of all edits made after all tests has passed. Here
we attempt to measure the amount of work done after the
problem is completed. If the student does not complete the
problem, the value is set to zero.

Edit Center of Mass

Computes the center of mass for all edits within a
programming problem weighted by their size, relative to the
first and last day of the assignment. This is done by
plotting a graph of all edits relative to their timestamp.
Each edit is then weighted by their size, and the center
of mass of the graph is computed. The result is scaled
between zero and one, where a value of 0 indicates the
start of the assignment, 1 indicates the end of the

assignment deadline and 0.5 indicates half way through the
assignment deadline. A feature value of 0.5 indicated that
the student has distributed the work evenly over the
duration of the assignment, while a number larger than 0.5
indicates the student has done more work after the half way
point of the deadline.

Non-Profitable Work Sessions

This measures the number of times the student has worked
on the programming problem without it leading to an
increase of passed tests. This is measured comparing the
number of passing testes of two consecutive test runs where
the student has made edits to the codebase in-between.

Complexity

This compares the McCabe cyclomatic complexity [31] of the
student’s final solution and the proposed solution by the
teaching staff.

Indentation Errors

This counts the number of indentation errors found when
passing the student’s source code to the java style checker
checkstyle6.

6.3 Feature Analysis

To better understand the relationship between features and the
performance groups, Spearman’s ranked correlation coefficient
(SRCC) (see Section 2.3.4) and p-values (see Section 2.3.5) are
computed for all features (see Table 2). Only two of the naïve
features are significant, while four of the complex features are

6 https://github.com/checkstyle/checkstyle

 35

significant. This results in a total of six features with a
significant correlation to the performance groups.

Feature SRCC p-value

Debugger Used -0.02765 0.28220

Completion 0.07923 0.00203

Debug Runs -0.02647 0.30326

Warnings -0.01443 0.57461

Average Edit Size -0.05405 0.03541

Final Size 0.00459 0.85817

Total Time -0.14543 0.00000

Work After Completion -0.01923 0.45447

Edit Center of Mass -0.26000 0.00000

Non-Profitable Work Sessions -0.11573 0.00001

Complexity -0.02622 0.30774

Indentation Errors -0.10174 0.00007

Table 2: Spearman’s ranked correlation coefficient with p-values for all

features. Significant features are bold.

Of the significant features, the direction of the correlation
is not very surprising. For example, a higher completion
indicates higher performance, and more indentation errors
indicates lower performance. The two naïve features have both
the lowest SRCC values and the highest p-values. This indicates
that the naïve features are perhaps too simple to contain
valuable information.

One should keep in mind that even though a feature might get a
high probability value, it does not necessarily mean that the
concept the feature is meant to represent is void. It might
simply mean that the way the concept is estimated and measured
does not correlate with the performance levels. For example,
just because the feature measuring complexity has a high p-value
does not mean the concept of code complexity is irrelevant. It
just means that the way the complexity is estimated in this
paper does not provide a significant correlation.

6.4 Classification

A support vector machine [22] is used as the supervised learning
model, and all features are scaled to have a mean of 1, and unit
variance. When training the model on all extracted features
using 10-fold cross validation (see Section 2.2.2), an accuracy
of 53.5% is achieved (see Table 3).

Table 3: Confusion matrix of the prediction model using all features

 Predicted Performance

Low Medium High

 Low 25 124 70

Medium 37 376 225

High 12 236 410

Tr
ue
 P
er
fo
rm
an
ce

 37

The model struggles to identify low performing students, with a
recall of only 11.9% and precision of 34.6% for the low
performance group (see Table 4). In the original data, less than
15% of the programming problems were solved by students
belonging to the low performance group. This might explain why
the model struggles with this group.

Table 4: Precision, recall and F1-score of the different performance groups

using all features

 Low Medium High

Precision 0.346 0.509 0.581

Recall 0.119 0.587 0.621

F1 0.171 0.543 0.599

 Predicted Performance

Low Medium High

 Low 10 143 66

Medium 14 388 236

High 8 264 386

Table 5: Confusion matrix of the prediction model using only
significant features

Tr
ue
 P
er
fo
rm
an
ce

After removing the insignificant features (E ≥ 0.05), the model
performs slightly worse, with an accuracy of 51.8% (see Table
5). This shows that insignificant features can provide useful
information to a prediction model and should not be discarded
just based on correlation coefficient and significant values.
It seems feature reduction affected the model’s performance on
the low performance group the most, resulting in a 56.1%
reduction of the F1-score. The F1-score of the medium and high
performance groups only decreased by 0.04% and 4.7% respectively
(see Table 6).

However, when we remove all the significant features, only
keeping the insignificant ones, the model has an accuracy of
43.7%. In comparison, our target data consists of 658 high
performance samples, hence a model always predicting the high
performance group, regardless of its input, would achieve an
accuracy of 43.4%.

To test which features contains the most information, the model
can be trained using each feature individually (see Table 7).
As shown, the significant features tend to achieve a higher
accuracy.

 Low Medium High

Precision 0.273 0.489 0.560

Recall 0.045 0.609 0.586

F1 0.075 0.541 0.571

Table 6: Precision, recall and F1-score of the different performance groups
using only significant features

 39

Feature Accuracy

Edit Center of Mass 0.495

Total Time 0.485

Non-Profitable Work Sessions 0.471

Debugger Used 0.452

Average Edit Size 0.449

Indentation Errors 0.442

Complexity 0.442

Work After Completion 0.438

Debug Runs 0.436

Completion 0.434

Warnings 0.434

Final Size 0.426

Table 7: Model accuracy when only trained on one feature. Significant

features are bold.

6.5 Evaluation of Results

There could be several reasons for the achieved accuracy of
53.5%. The task of predicting student performance based on a
single programming problem is probably very hard. Capturing
student progress and development by only using a single problem
is impossible. This could rather be achieved by computing
features for each student as opposed to for each programming

problem individually. Doing this would however reduce the
dataset further. Another approach would be to create features
for each assignment. An assignment as a whole can contain more
information than each individual programming problem. This could
also be extended to create one classifier for each assignment.
Each assignment can contain different information, as the
students are tested in different parts of the curriculum in the
different assignments. In addition, the students’ programming
skills increase throughout the course, which would be better
captured by individual classifiers for each assignment. This
would however require a larger dataset.

In addition, the number of collected features are low in
comparison to similar research. For example, Vihavainen [19] is
able to achieve an accuracy of 78%, but uses almost 200 features.
We believe that the accuracy would increase by computing more
features and by using a larger dataset.

 41

7 Discussion

The purpose of the experiment is to test if correlation
coefficients and p-values can be used to evaluate the utility
of a feature. A low p-value and high correlation coefficient
should indicate high utility. Similarly, a high p-value and low
correlation coefficient should indicate low utility.

When training the model using only the features with high p-

values (E	 ≥ 0.05), an accuracy of 43.7% was achieved, only 0.3
percentage points higher than a model always predicting the most
common performance group (high). On the other hand, when

training the model using only significant features (E < 0.05), an
accuracy of 51.8% was achieved. This suggests significant
features contain more information than the insignificant ones,
hence their utility is greater.

By training the model on each feature individually (see Table
7), an estimate of each feature’s usefulness is derived. The
three best performing feature corresponds to the significant
features with the highest correlation coefficient, appearing
ordered by their correlation coefficients. This indicates that
not only does a significant feature provide more information
than an insignificant one, but a higher correlation coefficient
implies higher utility.

The best classification results are achieved using all the
features, both significant and insignificant. This may be
because some features might not provide useful information by
themselves but might prove useful in combination with others
[32]. The p-values and correlation coefficients should therefore
only be considered an estimation of a feature’s utility, and not
an absolute fact. However, as shown, the significant features

affect the accuracy of the model more than the insignificant
features. Even though the p-values and SRCC are not useful when
selecting features in the conducted experiment, others might use
these values to decide what features they want to use and compare
feature utilities. If all research on IDE-based learning
analytics contained this kind of analysis, researchers would be
able to compare different ways of measuring concepts and build
upon each other’s ideas.

The dataset used in the experiment only consists of 1515
programming problems. In context of machine learning, this can
be considered a fairly small dataset [22]. To ensure the results
presented here are valid, a similar experiment should be
conducted on a larger dataset to validate the results. We
encourage further research to conduct such an experiment.

In the experiment, only one supervised learning model is used,
namely a support vector machine. The experiment should
preferably have been conducted using several different models,
but due to time limitations we were unable to do this. We will
however encourage others to conduct similar experiments using
different machine learning models to validate the results
presented. For replicability, all code used to produce the
presented results are included in the appendix. In addition, the
code used to extract each feature is available on GitHub7. The
dataset used is however not publicly available due to privacy
concerns.

7 https://github.com/boyeborg/tdt4100-exercise-feature-extraction

 43

8 Conclusion

Due to the large variation of learning environments, no single
strategy for collecting learning data exists. Because of this,
collecting the data might be a difficult task and pose a
hindrance for many to apply learning analytics on their learning
environment. Hence, good insight into which features might
provide useful information is valuable, as this will enable
researchers to focus on collecting the data needed to compute
useful features. As shown, the proposed analysis provides the
information needed to identify and compare the usefulness of
different features, enabling researchers to more easily build
upon previous work.

With this, we conclude that the proposed feature analysis is
valuable and encourage future research to include this kind of
analysis.

 45

References

[1] S. Fortmann-Roe, "Understanding the bias-variance
tradeoff," 2012.

[2] M. A. Chatti, A. L. Dyckhoff, U. Schroeder, H. Th, and
#252, "A reference model for learning analytics," Int. J.
Technol. Enhanc. Learn., vol. 4, no. 5/6, pp. 318-331,
2012.

[3] C. D. Hundhausen, D. M. Olivares, and A. S. Carter, "IDE-
Based Learning Analytics for Computing Education: A
Process Model, Critical Review, and Research Agenda," ACM
Trans. Comput. Educ., vol. 17, no. 3, pp. 1-26, 2017.

[4] G. Siemens, "Learning Analytics:The Emergence of a
Discipline," American Behavioral Scientist, vol. 57, no.
10, pp. 1380-1400, 2013.

[5] T. E. D. Mining, "Enhancing teaching and learning through
educational data mining and learning analytics: An issue
brief," in Proceedings of conference on advanced
technology for education, 2012.

[6] L. Johnson, S. Adams Becker, M. Cummins, V. Estrada, A.
Freeman, and C. Hall, "NMC Horizon Report: 2016 Higher
Education Edition," The New Media Consortium, Austin,
Texas2016.

[7] R. B. a. K. Yacef, "The State of Educational Data Mining
in 2009: A Review and Future Visions," JEDM, vol. 1, no.
1, pp. 3-17, Oct. 2009 2009.

[8] (2018-05-27). Articles available on Google Sholar from
2010 containing "learning analytics". Available:
https://scholar.google.no/scholar?q=%22learning+analytics
%22&as_sdt=0%2C5&as_ylo=2010&as_yhi=2010

[9] T. N. Government. (2016, 2018-04-24). Koding blir valgfag
på 146 skoler. Available:
https://www.regjeringen.no/no/aktuelt/koding-blir-
valgfag-pa-146-skoler/id2481962/

[10] R. Mason, G. Cooper, and M. Raadt, Trends in Introductory
Programming Courses in Australian Universities –
Languages, Environments and Pedagogy. 2012.

[11] E. Murphy, T. Crick, and J. H. Davenport, "An Analysis of
Introductory University Programming Courses in the UK,"
arXiv preprint arXiv:1609.06622, 2016.

[12] (2018-05-29). Search results for "learing analytics" on
Google Scholar. Available:
https://scholar.google.no/scholar?as_q=&as_epq=learning+a
nalytics

[13] (2018-05-29). Search results for "learning analytics",
"IDE" and "classification" on Google Scholar. Available:
https://scholar.google.no/scholar?as_q=IDE+classification
&as_epq=learning+analytics

[14] (2018-08-06). Search results for "IDE" and "learning
analytics" on Google Scholar. Available:
https://scholar.google.no/scholar?as_q=IDE&as_epq=learnin
g+analytics

[15] A. Ahadi, R. Lister, H. Haapala, and A. Vihavainen,
"Exploring Machine Learning Methods to Automatically
Identify Students in Need of Assistance," presented at
the Proceedings of the eleventh annual International
Conference on International Computing Education Research,
Omaha, Nebraska, USA, 2015.

[16] P. Blikstein, M. Worsley, C. Piech, M. Sahami, S. Cooper,
and D. Koller, "Programming Pluralism: Using Learning
Analytics to Detect Patterns in the Learning of Computer
Programming," Journal of the Learning Sciences, vol. 23,
no. 4, pp. 561-599, 2014/10/02 2014.

[17] A. S. Carter, C. D. Hundhausen, and O. Adesope, "The
Normalized Programming State Model: Predicting Student
Performance in Computing Courses Based on Programming
Behavior," presented at the Proceedings of the eleventh
annual International Conference on International
Computing Education Research, Omaha, Nebraska, USA, 2015.

[18] A. S. Carter, C. D. Hundhausen, and O. Adesope, "Blending
Measures of Programming and Social Behavior into
Predictive Models of Student Achievement in Early
Computing Courses," ACM Trans. Comput. Educ., vol. 17,
no. 3, pp. 1-20, 2017.

[19] A. Vihavainen, "Predicting Students' Performance in an
Introductory Programming Course Using Data from Students'
Own Programming Process," in 2013 IEEE 13th International
Conference on Advanced Learning Technologies, 2013, pp.
498-499.

[20] C. Watson, F. W. B. Li, and J. L. Godwin, "Predicting
Performance in an Introductory Programming Course by
Logging and Analyzing Student Programming Behavior," in

 47

2013 IEEE 13th International Conference on Advanced
Learning Technologies, 2013, pp. 319-323.

[21] P. Domingos, "A few useful things to know about machine
learning," Commun. ACM, vol. 55, no. 10, pp. 78-87, 2012.

[22] S. J. Russell and P. Norvig, Artificial Intelligence: A
Modern Approach. Pearson Education, 2003.

[23] L. Rosasco, E. D. Vito, A. Caponnetto, M. Piana, and A.
Verri, "Are loss functions all the same?," Neural
Comput., vol. 16, no. 5, pp. 1063-1076, 2004.

[24] P. Domingos, "The Role of Occam's Razor in Knowledge
Discovery," Data Mining and Knowledge Discovery, journal
article vol. 3, no. 4, pp. 409-425, December 01 1999.

[25] S. Scott and S. Matwin, "Feature engineering for text
classification," in ICML, 1999, vol. 99, pp. 379-388.

[26] S. M. Stigler, "Francis Galton's Account of the Invention
of Correlation," Statistical Science, vol. 4, no. 2, pp.
73-79, 1989.

[27] B. J. Oates, Researching information systems and
computing. Sage, 2005.

[28] T. Fushiki, "Estimation of prediction error by using K-
fold cross-validation," Statistics and Computing, journal
article vol. 21, no. 2, pp. 137-146, April 01 2011.

[29] J. Bergstra and Y. Bengio, "Random search for hyper-
parameter optimization," Journal of Machine Learning
Research, vol. 13, no. Feb, pp. 281-305, 2012.

[30] J. Bergstra, D. Yamins, and D. D. Cox, "Making a science
of model search: Hyperparameter optimization in hundreds
of dimensions for vision architectures," 2013.

[31] T. J. McCabe, "A Complexity Measure," IEEE Transactions
on Software Engineering, vol. SE-2, no. 4, pp. 308-320,
1976.

[32] I. Guyon and A. Elisseeff, "An introduction to variable
and feature selection," Journal of machine learning
research, vol. 3, no. Mar, pp. 1157-1182, 2003.

 49

Appendix

Data Analysis

 51

Feature and Classification Analysis

 53

 55

