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Abstract

Simulation of multiphase flow and transport in porous rock formations gives

rise to large systems of strongly coupled nonlinear equations. Solving these

equations is computationally challenging because of orders of magnitude local

variations in parameters, mixed hyperbolic-elliptic character, grids with high

aspect ratios, and strong coupling between local and global flow effects.

The state-of-the-art solution approach is to use a Newton-type solver with

an algebraic multigrid preconditioner for the elliptic part of the linearized sys-

tem. Herein, we discuss the use and implementation of a full approximation

scheme (FAS), in which algebraic multigrid is applied on a nonlinear level. By

use of this method, global and semi-global nonlinearities can be resolved on

the appropriate coarse scale.

Improved nonlinear convergence is demonstrated on standard benchmark

cases from the petroleum literature. The method is implemented in the solver

framework of the open-source Matlab Reservoir Simulation Toolbox (MRST).

With this framework, the implemented FAS method can be applied on a broad

range of classes of discrete reservoir and fluid models.
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Sammendrag

Simulering av flerfaseflyt og transport i porøse steinformasjoner gir grunnlag

for store systemer med sterkt koblede ikkelineære ligninger. Løsningen av disse

ligningene er beregningsmessig utfordrende som følge av størrelsen på de lokale

variasjonene i parametre, blandet hyperbolsk-elliptiske karakter, grid med høye

størrelsesforhold, og sterke koblinger mellom lokale og globale flyteffekter.

En standard løsningsmetode for industrien er å anvende en Newton type

løser med en algebraisk flergrid prekondisjonering for den elliptiske delen av

det lineariserte systemet. Innunder dette diskuterer vi bruken og implemen-

tasjonen av full approximation scheme (FAS), hvor algebraisk flergrid blir an-

vendt på et ikkelineært nivå. Ved bruk av denne metoden, kan globale og semi-

globale ikkelineariteter bli løst på en tilfredsstillende grov skala.

Det er demonstrert forbedret ikkelineær konvergering ved standard refer-

ansemålinger hentet fra litteraturen innen petroleum. Metoden er implementert

i løsningsrammeverket fra den åpen-kilde Matlab Reservoir Simulation Tool-

box (MRST). Med dette rammeverket, kan den implementerte FAS metoden

annvendes på et bredt spekter av klasser med diskrete reservoir og fluidmod-

eller.
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Abbreviations and frequently used symbols

Abbreviations

NTNU Norwegian University of Science and Technology

MRST Matlab Reservoir Simulation Toolbox

FAS Full Approximation Scheme

AMG Algebraic Multigrid

CPR Constrained Pressure Residual

ILU(0) Incomplete LU factorization

GMRES Generalized Minimal Residual

FV Finite Volume

PDE Partial Differential Equation

QFS Quarter-five-spot

Frequently used symbols

ρ Density in kg/m3

φ Porosity, fraction of material allowing for fluid flow

ψ Flux, flow rate through a surface in kg/sm2

α Fluid phase

K Permeability, resistance to flow in a porous media in milli darcy (md)

kr Relative permeability, tension between phases and relation to the porous

media

S Saturation, fraction of volume occupied by each phase

λ Mobility, ratio of relative permeability to phase viscosity

µ Viscosity in kg/ms



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Sammendrag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Abbreviations and frequently used symbols . . . . . . . . . . . . . . . . iv

1 Introduction 3

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.6 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Theoretical Background 11

2.1 Mathematical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 Law of Mass Conservation . . . . . . . . . . . . . . . . . . . . 12

2.1.2 Darcy’s law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.3 Three-phase Flow Model . . . . . . . . . . . . . . . . . . . . 18

2.1.4 Initial and Boundary Conditions . . . . . . . . . . . . . . . . 20

v



vi CONTENTS

2.2 Numerical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.1 Finite Volume Method . . . . . . . . . . . . . . . . . . . . . . 23

2.2.2 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Solvers for Reservoir Simulation . . . . . . . . . . . . . . . . . . . . 28

2.3.1 Newton’s method . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.2 Constrained pressure Residual (CPR) . . . . . . . . . . . . . 29

2.3.3 Incomplete LU factorization (ILU(0)) . . . . . . . . . . . . . 32

2.3.4 General Minimal Residual (GMRES) . . . . . . . . . . . . . . 33

2.4 The Full Approximation Scheme (FAS) . . . . . . . . . . . . . . . . 35

2.4.1 The Fundamentals of Multigrid Methods . . . . . . . . . . . 35

2.4.2 Error smoothing . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4.3 Geometric Multigrid . . . . . . . . . . . . . . . . . . . . . . . 38

2.4.4 Algebraic Multigrid (AMG) . . . . . . . . . . . . . . . . . . . 39

2.4.5 Nonlinear Multigrid Method: FAS . . . . . . . . . . . . . . . 40

2.4.6 The Phases and Components of FAS . . . . . . . . . . . . . 44

2.4.7 FAS with Multiple Grids . . . . . . . . . . . . . . . . . . . . . 48

3 Implementation 51

3.1 Automatic Differentiation . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2 The Matlab Reservoir Simulation Toolbox (MRST) . . . . . . . . . 53

4 Numerical Experiments 59

4.1 Experimental Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 Simulation Set-Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3 Quarter-Five-Spot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3.1 Homogeneous permeability field . . . . . . . . . . . . . . . 62



CONTENTS 1

4.3.2 Heterogeneous permeability fields . . . . . . . . . . . . . . . 69

4.4 SPE10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.5 Olympus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5 Concluding Remarks 81

5.1 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . 81

5.2 Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Bibliography 84





Chapter 1

Introduction

Enormous amounts of oil and gas are pumped up every day offshore on the

Norwegian plateau. The world is still in need of stable supply of petroleum

resources until the technology of green sources can deliver enough energy to

completely phase them out (Zou et al. (2006), Demirbas (2009)). Every day, it

becomes harder to exhaust the petroleum reservoirs, and there is a continu-

ous search for new and better techniques to perform this in a better, safer and

more efficient manner. One part of these improvements is to develop ever bet-

ter simulations that can give fast and continuous prediction of the flow that

occurs during petroleum recovery. With the ability to run more and larger sim-

ulations to predict outcomes of retrieving the resources, companies can more

accurately take safety precautions and make decisions that are more economi-

cal. This may change which oil field to pursue, avoid blowouts and choose op-

timal extraction strategies. Mathematical models of oil reservoirs are strongly

nonlinear with large variations in the coefficients and constitute a highly inter-

esting problem to study. The same equations and methods are also adaptable

3
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to other fields of study besides petroleum. They can be applied to simulations

of storage of CO2, movement of ground water, geothermal energy, flow in fuel

cells and much more (Seternes (2015), Bastian et al. (2013), Jain et al. (2008)).

Modern numerical analysis and scientific computation are credited to start

with the paper by Von Neumann and Goldstine (1947). By the introduction of

electronic computers in the mid 20th century, the ability to simulate fluid flow

increased drastically. The increase of processing power allowed for simulations

on larger scales and with more complexity. For decades the growth of process-

ing power has closely followed Moore’s law of regularly doubling the transistor

density (Moore (1965), Mollick (2006)). This has not diminished the importance

of improving numerical techniques. By continuously improving the numerical

methods, there has been a tremendous gain in speed and accuracy in addition

to the improvement of pure processing power.

Testing a new method or algorithm usually takes considerably long time

and effort. Often the researcher needs extensive knowledge about the details

about the tools needed for implementing and testing new ideas. Within reser-

voir simulation, SINTEF has taken steps towards a more fluent process from

the forming of an idea to actually be able to produce test results of the con-

cept. With the Matlab Reservoir Simulation Toolbox, MRST, this process has

been reduced drastically (Lie (2016)). MRST provides a wide range of resources

towards research of new and existing methods within reservoir simulation. We

are thus relieved of much of what can be considered as the gritty details of pro-

gramming, and can instead focus on how to get the concept to work when de-

veloping new solution methods.

This thesis is a continuation of my project thesis on the same subject (Toft
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(2017)). In the project, I investigated the Full Approximation Scheme, FAS, for

a dead-oil immiscible and compressible two-phase subsea model. A simple

implementation was conducted with the MRST framework, and tested against

an industry standard Newton’s method.

Parts of this work was presented at the Norwegian Informatics Conference,

NIK (Toft et al. (2018)).

1.1 Motivation

Physical phenomena are often modeled by equations that relate several partial

derivatives of physical quantities. The typical way to solve such equations is

to discretize and approximate them by equations involving a finite number of

unknowns N . This gives rise to large and sparse matrix problems. There are

two strategies to solve such systems. A direct method such as Gauss elimina-

tion, requires O(N 3) arithmetic operations and solves the system exactly (Gauss

(1809),Süli and Mayers (2003)). Much research has been invested to reduce the

cost of solving linear systems. Iterative methods such as Jacobi or Gauss-Seidel

drastically reduce the computation cost to O(N 2) (Saad (2003)). These meth-

ods find an approximation of the solution of partial differentiation equations,

PDE’s, by using an initial guess to generate a sequence of improving solution

approximations. The development of the Krylov subspace methods gave rise to

many of the most important iterative methods used today (Trefethen and Bau

(1997)). These methods apply projections for solving linear systems. Among

these are the Generalized Minimal Residual, GMRES (Saad and Schultz (1986))

and Orthogonal Minimization, ORTHOMIN (Vinsome (1976)). For sparse sys-
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tems these methods can have a computation cost of O(N ). Krylov methods

use only the information given directly from the linear system Ax = b. GMRES

is also frequently used as preconditioner in solvers for nonsymmetrical sparse

systems to enhance the solution efficiency for the main solver. By precondi-

tioning, we transform the original linear problem into a similar system with the

same solution. This transformed system is likely to be easier to solve with an-

other iterative solver. A preconditioner well suited for systems derived from a

reservoir simulation has been shown to be the constrained-pressure-residual

preconditioning method, or CPR method (Wallis (1983), Wallis et al. (1985)).

One class of numerical methods that has become quite popular is the multi-

grid methods (Trottenberg et al. (2001), Saad (2003)). These methods take an-

other approach than the classic iterative methods and Krylov methods by ex-

ploiting the information given by the original problem, e.g the PDE, directly

instead. With this approach it is possible to take advantage of properties of the

problem not directly available from A and b. Multigrid methods were initially

developed to specifically solve elliptic PDE’s where there is a strong relation-

ship between eigenfunctions of the iterative matrix and the grid. This relation-

ship is exploited by applying multiple grid sizes. Multigrid methods have the

ability to, at least theoretically, maintain the convergence rate independently

of the grid size (Trottenberg et al. (2001)). Elliptic problems tend to be linear

and strongly connected systems. These systems are difficult to solve for many

iterative solvers. Multigrid methods are regarded as one of the fastest methods

available, and much research has been devoted to this class of numerical meth-

ods. A generalization of the multigrid methods is the algebraic multigrid, AMG,

developed to solve matrix equations using the principles of standard multi-
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grid methods (Ruge and Stüben (1987)). AMG provides a very robust solution

method and has an practical advantage since it can be applied directly to both

structured and unstructured grids. An enhancement of the AMG was made

by utilizing aggregation of the variables making it more robust than the classi-

cal AMG. This method, termed Aggregation-based Algebraic Multigrid Method,

AGMG, has become an promising and robust black-box solver (Notay (2010)).

A property that has given multigrid methods much attention is that they

often have excellent parallel properties. This allows the usage of modern mas-

sively parallel computer architectures, to accelerate the computations and thus

speed up the simulation. Especially the usage of general-purpose graphical

processing units, generally referred as GPGPUs, have received much attention.

An example of this is AGMG with GPU acceleration, which has proven to be a

robust, efficient and scalable solver (Gandham et al. (2014)).

Another approach to the algebraic multigrid are the variants of geometric

multigrid. While algerbraic multigrid perform a linearization from the finest

grid to each grid level, the geometric methods conserves the nonlinearity of the

system on each grid. Herein, FAS is a nonlinear multigrid method which con-

siders the nonlinearity of the system on each grid level (Molenaar (1995), Hen-

son (2003), Trottenberg et al. (2001)). Within the research of multigrid methods,

FAS has been reintroduced to applications of reservoir simulation (Christensen

et al. (2016), Christensen (2016)). FAS is a part of the family of nonlinear multi-

grid aimed to perform the linearization locally instead of globally. This is well

suited for solving the mixed hyperbolic-elliptic equations arising from reser-

voir simulations. In reservoir simulations AMG is primarily used as a precondi-

tioner, see e.g. Bui et al. (2016). For the linear system in AMG, a preconditioned
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GMRES it is frequently used as the solver. The state-of-the-art approach is to

combine the CPR with AMG as a preconditioner for the elliptic part of the lin-

earized system. In this study we want to investigate the efficiency of FAS for

subsurface porous media flow with CPR-AMG to accelerate the solution pro-

cess.

1.2 Problem Formulation

As stated in the previous section, there is a continuous need for improving the

numerical methods for reservoir simulations. This thesis further investigates

applications of the FAS method for the black-oil equations, modeling immis-

cible three-phase flow in a subsurface porous media. The investigation will be

done by implementing the FAS method and comparing the performance with

the conventional method that applies a global linearization to the system of

equations. The reasoning for using methods such as FAS, is that the conser-

vation laws used for modeling flow in porous media are nonlinear. Usually, a

global linearization method such as Newton’s method is used to get an approx-

imate solution. The FAS method, on the other hand, is applied directly to the

nonlinear equations and has the ability to become more efficient than tradi-

tional methods (Christensen et al. (2016)). The goal is to implement the FAS

method with the object-oriented automatic derivation, AD-OO, framework of

MRST for a fully implicit and compressible three-phase flow model in a porous

media.
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1.3 Objectives

The main objectives of this thesis are:

1. Investigate the mathematical black-oil model for an immiscible and com-

pressible three-phase flow in a subsurface porous media.

2. Investigate the properties of the multigrid FAS method as a nonlinear

solver.

3. Become familiar with the object-oriented functionality of MRST.

4. Implement the FAS method in the AD-OO framework of MRST for the

chosen mathematical model.

5. Compare the performance of FAS with standard Newton’s method.

1.4 Limitations

This study further investigates the FAS method. It consists of a few simplifi-

cations of the three-phase model. Besides the assumptions presented for the

model, the effects of temperature and capillary pressure are neglected. These

limitations are common for modeling of reservoirs in the Nordic sea. The main

focus will be on the conceptual correctness and relative efficiency compared to

the standard Newton’s method.
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1.5 Approach

FAS is implemented in MATLAB. This is a scientific programming language that

is particular beneficial in mathematical applications. MRST is used as a foun-

dation for the implementation. The accompanying user guide (Lie (2016)) pro-

vides a detailed description of the basics of MRST and the implementation of

reservoir simulators. By applying MRST, we are given the freedom of apply-

ing already existing code that provides many of the basic tools and functions

needed in any numerical method. Functions from MRST will be used both as a

framework around, and in the core of the FAS method. In particular, a standard

Newton’s method solver will be used both as a core solver and as a source of

benchmark comparison.

1.6 Structure of the Thesis

The rest of the thesis is structured as follows: Chapter 2 provides the back-

ground of the mathematical model, a presentation of the basics of numerical

methods, and finally a presentation of the theory of the FAS method. Chap-

ter 3 presents the implementation details and an overview of MRST. Chapter 4

presents numerical experiments and comparisons with the standard Newton’s

method. Chapter 5 finalizes the thesis with a summary and conclusion of the

results, and brief discussion of further work.



Chapter 2

Theoretical Background

An petroleum reservoir consists of multiple components, representing individ-

ual species, e.g. methane, propane, and decane. These components may form

up to three different phases within the pores of the rock formation: aqueous,

gaseous and oleic. It is common to bundle heavy hydrocarbons occurring as a

liquid phase on the surface of an oil component, while the other components

occurring as gaseous is bundled as a gas component. In a reservoir both of

these components may occur as both a liquid and gas phase (Peaceman (1977)).

To simulate flow of the three-phase system when injecting water into a reser-

voir, we have to build a mathematical model. For each of the physical proper-

ties of the reservoir we will present and include a mathematical description.

Conservation of mass and Darcy’s law describe the behaviour of the flow and

the interaction between the three phases. In addition, one needs to account for

the rock’s ability to store and transmit fluids as well as how the rocks and fluids

compress and change with pressure.

After completing our mathematical model, we will explain the numerical

11
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method. This will be done in several steps, starting with the basics of the finite-

volume discretization. We then go through the building blocks forming a multi-

grid method. This includes restriction and interpolation, smoothing of the

residual, and how this affects and benefits the simulation. Finally, we present

the procedure of the FAS method.

2.1 Mathematical Model

2.1.1 Law of Mass Conservation

One of the most central principles of the physical world is the conservation of

mass, momentum and energy. A proper starting point to develop our mathe-

matical model is therefore the law of mass conservation. We will here follow

along the lines of Aziz and Settari (1979) and Trangenstein and Bell (1989), who

also provide a more detailed discussion of this topic. Observing that the reser-

voir is a closed volume, with only the wells as sources and sinks, we can describe

the conservation of mass for a single fluid phase within this volume. We start

by denoting the reservoir domain by Ω ∈ R3, and the boundary as ∂Ω. Conser-

vation of mass can then be written as

∂m

∂t
=

∫
Ω

∂ρ

∂t
dV =−

∮
∂Ω
ρψ ·nd A+

∫
Ω

qdV. (2.1)

Here, m represents the mass of the fluid in the control volume,ψ is the velocity

of the fluid or flux, giving the flow rate through a infinitesimal volume, ρ its

density,φ the rock porosity and n is a unit normal vector pointing outward from

the surface ∂Ω. The term q represents sources or sinks, which in our case will



2.1. MATHEMATICAL MODEL 13

be injection and production wells, respectively. Here the fluid velocity is not a

intrinsic velocity of the fluid, but rather the flux density through a infinitesimal

volume.

Porosity

A porous medium is a material that contains small pores or voids which allows

fluids to flow through. By introducing a porosity function φ, we take into ac-

count that only a fraction of the volume is open for fluid flow. Porosity may be

either homogeneous or vary throughout the domain. In addition, the porous

media is not a rigid material. It is thereby affected by pressure, causing it to ex-

pand and contract. The porosity can be written as a function of the pressure p

in the rock, φ=φ(
x, p

)
, where x is the spatial location.

Fluid compressibility

The above equation for mass conservation is currently in its basic form, and we

will now investigate the terms representing the compressibility of fluids. In a

subsurface reservoir we experience a high pressure and will thereby observe an

effect on how the fluids flow due to their compressibility. The compressibility

model for fluids is defined by

c f =− 1

V

∂V

∂p
= 1

ρ

∂ρ

∂p
. (2.2)

By integration we find the expression for the fluids density

ρ = ρ0e
[
c f (p−p0)

]
, (2.3)
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Figure 2.1: Illustration of the compressibility of the three phases water, oil and
gas as. As we see, the changes in density as a function of the pressure, is differ-
ent for each phase.

where ρ0 is the density at the reference pressure p0. A slightly compressible

fluid has a small, often constant compressibility in the range 10−6 to 10−5 psi−1.

In a reservoir, it is normal that water, dead oil and under saturated oil behave

as slightly compressible fluids. More compressible fluids usually have a com-

pressibility in the range 10−4 to 10−3 psi−1. In Figure 2.1 we see the compress-

ibility that is used for the three phases used for this thesis, water oil and gas.

The high compressibility of gas, especially compared to the small compress-

ibility of oil and water, leads to considerable volume changes at pressures nor-

mal in reservoirs. The black-oil model incorporates these volume changes by
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relating the reservoir volumes of each phase to the reference volume at stan-

dard surface conditions (Trangenstein and Bell (1989)). By assuming the fluids

are under constant temperature and thermodynamic equilibrium throughout

the reservoir, the formation volume factors may be expressed as:

Bα = [Vα]R

[Vα]S
, α ∈ {w,o, g }. (2.4)

Here, [Vα]R and [Vα]S are the phase volume under reservoir and standard con-

ditions, respectively. In the literature some authors prefer to work with recipro-

cal factors, i.e. b = 1/Bα. The densities of the three phases at reservoir condi-

tions are then related to densities at standard conditions:

ραR = 1

Bα
ραS . (2.5)

Rock compressibility

For non-rigid rock, the rock compressibility can be defined as

cr = 1

φ

∂φ

∂p
= ∂ln

(
φ

)
∂p

, (2.6)

where p is the pressure in the reservoir. We will apply rock with a constant

compressibility and integrate (2.6) to find the pressure dependent porosity

φ
(
p

)=φ0e[cr (p−p0)], (2.7)

where φ0 is the porosity at the reference pressure p0.

To relate flow through a surface of the volume to the flow within the volume
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we need to apply the divergence theorem, also known as Gauss’ theorem (Gauss

(1813)) ∫
V

(∇F )dV =
∮
∂V

F ·ndS. (2.8)

By applying this theorem to (2.1) and assuming sufficient smoothness, we can

write mass conservation in differential form

∂ρ
(
p

)
φ

(
x, p

)
∂t

+∇· f
(
p

)= q, (2.9)

where the f = ρψ is a vector-flux function.

2.1.2 Darcy’s law

As a result of the fluid flowing through a porous medium, there will be some

resistance to the flow. This is caused by physical forces such as shear stress

when some parts of the fluid are affected by friction causing different speeds

within the fluid. This resistance to the flow in a porous medium is described by

Darcy’s Law

ψ=−K

µ

(∇p −ρg∇z
)

(2.10)

whereψ is flux, K the permeability tensor, µ the viscosity, p the pressure and g

the gravitational acceleration (Darcy (1856), Whitaker (1986)).

Permeability

Permeability is the porous medium’s ability to let fluids pass through it. This

capacity if often referred to as absolute permeability. The permeability gener-

ally depends on location, and can vary with flow direction. It is represented as
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a positive definite symmetric tensor

K =


Kxx kx y Kxz

Ky x Ky y Ky z

Kzx Kz y kzz

 , (2.11)

but is commonly used as a diagonal tensor for modelling purposes:

K =


Kxx 0 0

0 Ky y 0

0 0 Kzz

 . (2.12)

Here, the diagonal terms represent how the flow rate in one axial direction de-

pends on the pressure drop in the same direction. A full tensor is needed to

model local flow in directions at an angle to the coordinate axes (Lie (2016)).

Viscosity

The viscosity of a fluid is a measure of its resistance to deformation by shear-

ing forces. Later we will look into how the difference between the viscosity of

several phases affects the behaviour of the displacement front.

With Equations (2.1) and (2.10), we have a complete mathematical model

for a single-phase flow in a reservoir. The next step is to account for the inter-

action between multiple fluid phases.
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2.1.3 Three-phase Flow Model

When more than one fluid is present in a reservoir, we need to consider the

interaction between the phases. In three-phase systems, one of the fluids is

more strongly attracted by the solid than the others. This phase is known as

the wetting phase and are indicated with the subscript w . In general, water is

the wetting fluid relative to oil and gas. There exists exceptions based on the

composition of the hydrocarbons. The nonwetting phases are indicated with

o and g for oil and gas, respectively. For our simulations we assume that the

fluids do not dissolve into each other.

In essence, we are trying to find the pressure and saturation for the three

phases for each time step. The saturation Sα with α ∈ {w,o, g }, is defined as

the fraction of the pore volume that is filled with each fluid. The saturation

constraint is given as

Sw +So +Sg = 1. (2.13)

We can then rewrite the law of mass conservation (2.1):

∂
(
Sαρα(p)φ

(
p

))
∂t

+∇· fα
(
Sα, p

)= qα. (2.14)

To account for the interaction between the three phases, we need to in-

clude a relative permeability function krα (Sα) into Darcy’s law. The function

accounts for the friction between the phases and is thereby a part of the de-

scription of the mobility of the fluids. The presence of another fluid causes

more friction, and the corresponding shear forces lower the mobility of the flu-

ids. The mobility therefore depends on saturation. Relative permeability mea-

sures the tension between the phases and how they relate to the pores of the
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Figure 2.2: Relative permeability curves for the three phases water, oil and gas.

rock (Muskat and Wyckoff (1937)). It is common to represent relative perme-

ability with a tabulated or simplified analytic relationships. In this thesis, we

use a simple power-law relative permeability function also called a Corey model

krα(Sα) = Snα
α , (2.15)

with the exponents nα ≥ 1. This is a simplification of the model presented

by Brookes and Corey (1964) which also used capillary pressure. In (2.15) we

neglect the residual saturation that is often used to normalize the saturation.

The residual saturation represent the volume fraction of phases trapped in the

pores. This can be water enclosed in the pores during the formation of the rock.

An example of relative permeability curves is shown in Figure 2.2.
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Equation (2.10) then becomes

ψα =−λαK
(∇pα−ραg∇z

)
, (2.16)

where the mobility function λα is the ratio of relative permeability krα and vis-

cosity µα,

λα = krα(Sα)

µα
. (2.17)

The densities ρα = ρα
(
p

)
of the fluids are the same as in (2.3).

By inserting Equation (2.16) and (2.17) into (2.14), we can rewrite the law

of mass conservation to account for a three-phase flow in a subsurface porous

medium:

∂
(
Sαραφ

)
∂t

= qα−∇·
(
−K

krα(Sα)

µα

(∇pα−ραg∇z
))

. (2.18)

2.1.4 Initial and Boundary Conditions

To close the coupled conservation equations for the three phases, we require

proper boundary and initial conditions. For a reservoir where the petroleum

has been trapped for millions of years, it is natural to use a no-flow boundary

conditions. We let the boundary ∂Ω= ∂Ω+∪∂Ω−∪∂Ω0 be the boundary of the

domain, where ∂Ω+,∂Ω−,∂Ω0 is inflow, outflow, and no flow boundary, respec-

tively. No flow is modeled by providing a homogeneous Neumann condition

for the external boundary,

ϕα×n = 0 ∀ x ∈ ∂Ω0. (2.19)
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With the presents of wells, we also need to pose condition for the fluxes of in-

jection and production wells.For the injection well we set a inhomogeneous

Neumann condition

ψw ×n = qw ∀ x ∈Ω−, (2.20)

where qw is injection rate and ∂Ω− is influx boundary. For the production wells,

it is common to account for the boundary condition with a static pressure. In

this thesis this is modeled in terms of a Dirichlet condition in the form

p(x, t ) = p0 ∀ x ∈Ω+, (2.21)

where p0 is the constant external pressure and ∂Ω+ is the boundary for the pro-

duction well.

Since we have compressible fluids, we need to specify an initial pressure

distribution. This pressure is set to be hydrostatic, and can then be given by the

ordinary differential equation

d pα
d z

= ραg , pα(z0) = p0. (2.22)

Finally we need to specify a initial saturation for the different phases such that

Sw0 +So0 +Sg 0 = 1. (2.23)

Combined, Equation (2.13) and (2.18), the boundary conditions (2.19 -2.21)

and initial conditions (2.22 - 2.23 ) form a complete model for a three-phase

compressible flow in a sub-surface reservoir simulation.
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2.2 Numerical Methods

We now have established the mathematical model of the system. For our nu-

merical approach we will first look into the spatial and then the temporal dis-

cretization. There are presently three primary approaches used to discretize

the flow problem in space:

• Finite-difference methods (FDM),

• Finite-volume methods (FVM),

• Finite-element methods (FEM).

See e.g., Schäfer (2006) for more details of the discretization schemes. FDM

is the simplest of the three, whereas FEM and FVM are most used in practice.

FEM is mainly used in structural computations such as stress and elasticity.

The FVM is very well suited for flow simulation as it is geared towards solution

of conservation laws, and is thereby the discretization method we will apply as

a foundation for our numerical method.

There are two main classes of temporal discretization, implicit and explicit

methods. The simplest and most intuitive method is the forward Euler method

(Euler (1768)), in which one takes the current phase velocities and compute

directly where the phases are moving during the next time step. A simple illus-

tration of this can be drawn from (2.14):

Sn+1
α = Sn

α+
∆t

ραφ

(
qn
α+∇· fn

α

)
, (2.24)

where n is the time step. Here, approximations to ∆t qn
α and ∆t fn

α can be com-

puted directly and added to the saturation from the previous time step. This
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leads to a simple and cost effective scheme for each time step. The downside is

the requirement of small time steps to obtain stability. Another approach is to

apply implicit methods. These methods are much more costly as they compute

sequences of improving approximations. There are several implicit methods,

where one of the simplest and most used is the backward Euler method. This

can similarly be illustrated by

Sn+1
α = Sn

α+
∆t

ραφ

(
qn+1
α +∇· fn+1

α

)
. (2.25)

In this case, qn+1
α and fn+1

α are unknown and we need to apply an iterative solver

such as Newton’s method to get an approximation. In other words, the implicit

method produces a system of nonlinear equations that we have to solve for

each time step. We will apply the backward Euler due to its simplicity and sta-

bility.

2.2.1 Finite Volume Method

The FVM uses control volumes, or cells, in which the values are averaged. This

means that the domain Ω is divided into several smaller sub-domains Ωi . A

example of this subdivision is shown in Figure 2.3. These sub-domains are what

FVM denotes as control volumes or cells, as illustrated in Figure 2.4.

The geometrical shape of the control volume can be specified for each ap-

plication, and can vary from simple cubes to more complex shapes such as a

polyhedral as in Figure 2.4. The cell average for a 2D rectangular cell Fi (t ) is

defined as

Fi (t ) = 1

|Ωi |
∫
Ωi

F (x, t )dx (2.26)
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Figure 2.3: A FV division ofΩ into sub-domainsΩi for a uniform grid.

Figure 2.4: A FV control volume

With the cell average as a basis for the approximation of the values within each

cell, we now turn to the discretization of the governing equations.

2.2.2 Discretization

By applying the discretization method as described above, we can discretize the

governing equations in two steps. First, we perform the spatial discretization,

where we utilize the finite-volume method with cell centering. We use N dis-
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tinct grid cells and denote the i th cell by Ωi , i ∈ C = {1, ..., N } with the surface

∂Ωi of each cell.

For the spatial discretization we need to approximate the flux between each

cell. We start by considering Equation 2.1 for an arbitrary control volumeΩi ∈Ω
∫
Ωi

∂ρα

∂t
dV =−

∮
∂Ωi

ραψα ·nd A+
∫
Ωi

qαdV. (2.27)

This relation is the basis of the finite volume discretization. To simplify the

equation, the volume of the right-hand side integral is approximated with the

porosity and saturation. In addition as long as the entire non-zero source func-

tion is completely embedded within one grid block, the value of the total source

strength

Qα,i =
∫
Ωi

qα,i dV (2.28)

is independent of the actual distribution of the source within the block. With

this we write 2.27 as

∂
(
φραSα

)
∂t

dV =−
∮
∂Ωi

ραψα ·nd A+Qα,i . (2.29)

Here, where we write the contour integral as a sum of the integrals over all cell

faces j
∂
(
φραSα

)
∂t

dV =− ∑
j∈N(i )

∮
∂Ωi j

ραψα ·nd A+Qα,i , (2.30)

where N(i ) is the set of neighboring cells of cell i . For the next step we use 2.26

to let the value of ψα be approximated by an cell average ψ̄α. In addition we
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denote Ai j the surface between two neighbouring cells i and j .

∂
(
φραSα

)
∂t

dV =− ∑
j∈N(i )

ραψ̄αi j Ai j +Qα,i , (2.31)

By rewriting the terms of 2.31 the spatial discretization of the conservation law

then becomes

∂
(
VpραSα,i

)
∂t

=Qα,i −
∑

j∈N(i )
ραTi jλα,i j

(
∆p −ραg∆z

)
i j , i ∈C , j ∈N(i ), (2.32)

with the pressure difference

∆pi j = pi −p j (2.33)

and vertical spatial coordinate difference

∆zi j = zi − z j . (2.34)

Instead of explicitly working with the porosity, the equation has been multi-

plied with the pore volume, Vp =φV . The movement of the flow is represented

by the mobility λα,i j and transmissibility Ti j . The latter measures the fluid’s

efficiency in flowing and are a combination of geometric quantities. For a uni-

form Cartesian grid we express the transmissibility as:

Ti j =
Ai j ki j

∆h
, i ∈C , j ∈N(i ), (2.35)

where ∆h denotes the mesh width, and the permeability between the cells is
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approximated by the harmonic mean

ki j =
2ki k j

ki +k j
. (2.36)

Other discretizatons of the transmissibuility is used in the literature, although

this is the most commonly used (Toronyi and Ali (1974)).

The solution of fluid flow problems can be strongly influenced by the orien-

tation of the underlying grid (Brand et al. (1991)). The mobility may mathemat-

ically be midpoint weighted between two cells, but physically this is incorrect.

This may lead to different solutions depending on whether the line drawn from

the source to the sink are parallel or diagonal to the underlying grid. This is

called the grid orientation effect and is a problem in numerical simulations.

To ensure stability, the flux over the interface between cells are approximated

with a upstream mobility weighting. In reservoir simulation, a single-point up-

stream is a commonly used scheme (Aziz and Settari (1979),Chen (2007)) where

the flow direction determines which side the approximation made:

λi j =


λ j if

(
∆p −ραg∆z

)
i j < 0

λi otherwise.
(2.37)

As discussed above, for the temporal discretization we apply the backward

Euler method and Equation (2.32) becomes

Sn+1
α,i = Sn

α,i +
∆t

Vpρα

(
Qn+1
α,i + f n+1

α,i

)
, (2.38)
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with the residuals

rα,i (Sα) = ∆t

Vpρα

(
sn+1
α,i + f n+1

α,i

)
+Sn

α,i −Sn+1
α,i , (2.39)

rv,i =
(∑
α

Sα

)n+1

−1. (2.40)

When we solve the system, we rewrite (2.23) and use

So = 1−Sw −Sg (2.41)

to eliminate a variable.

Finally, we have completed the discretization of the mass conservation equa-

tions. Next, we need to simultaneously solve for the primary unknowns Sw , Sg

and p. With the discretization and boundary conditions (2.19 - 2.21) we have a

well posed problem that admits a unique solution.

2.3 Solvers for Reservoir Simulation

Now that we have established the mathematical model of the three-phase flow

and discretized it, we turn our attention towards examining the standard meth-

ods used to solve our system of nonlinear equations. These methods will also

form the subroutines of our main method as we will discuss later. Because of

the implicit nature of the discretization we have chosen, we need an iterative

solver. Our discussion will thereby start with Newton’s method.
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2.3.1 Newton’s method

As with most any multigrid methods, at the core of FAS we need a fast itera-

tive solver to solve the system of nonlinear equations. Newton’s method and

its variations have in many ways become the gold standard for many appli-

cations (Newton (1687), Süli and Mayers (2003)). It has been proven to be a

robust method and have a quadratic convergence if the initial guess is suffi-

ciently close to the solution. We will use the Newton-Raphson method, which

for multiple dimensions can be written as

uk+1 = uk +αpk = uk − J (∇fk)−1 fk. (2.42)

Here, the step length α by default is set to one and the search direction pk is set

to the function evaluated at the previous step, multiplied with the inverse of the

Jacobian. The Jacobian matrix is defines as

Ji j = ∂ fi

∂u j
. (2.43)

The gradient is found by automatic differentiation which we will look at in the

discussion of the implementation.

2.3.2 Constrained pressure Residual (CPR)

The linear systems of equations arising from the linearization by use of New-

ton’s method can be denoted by

Au = f, A ∈Rn×n . (2.44)
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The matrix corresponding to a simultaneous fully implicit discretization is of-

ten highly non-symmetric and not necessarily diagonally dominant. These two

features are central for the efficiency of many solution methods. In addition

there is multiple unknowns per grid cell. The computational effort required to

solve the linear systems is often substantially greater than any other part of a

simulation (Wallis (1985)). A common approach to accelerate the convergence

rate is to precondition to system (Saad (2003)). As mentioned in the introduc-

tion, this is performed by replacing the original problem (2.44) with an easier

problem with the same solution,

M Au = M f. (2.45)

Here, M is called the preconditioning matrix or preconditioner. This is a left

preconditioning, while there are other variants such as right preconditioning

reading as AMu = fM . In the literature 2.45 is often written as P−1 A = P−1f.

Since the matrix P is rearly formed, we denote M = P−1 and name M the pre-

conditioner. The ideal is to find an M such that it is close to the inverse of A or

at least converting the system matrix such that the product M A is diagonally

dominant. A linear problem with a strongly diagonal dominant matrix is easier

to solve as the eigenvalues is close to the diagonal elements.

The global linearization arising from the discretization of 2.44 and use of

Newton-Raphson can be written as

Ju =
 Jpp Jps

Jsp Jss

 up

us

= r =
 rp

rs

 (2.46)
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where Jpp is the pressure block coefficients, Jss is the saturation block coeffi-

cients, and Jps and Jsp is the respective coupling coefficients. up and us repre-

sent the increments in respectively the pressure and saturation variables. The

CPR preconditioner recognize that (2.46) is a mixed hyperbolic-elliptic system

type (Wallis (1983)). CPR targets the elliptic part of the system in a separate

stage by an predictor-corrector strategy on the pressure (Cusini et al. (2014)).

The precondition matrix for the pressure written with Schur complement (Haynsworth

(1968), Zhang (2005)) of the matrix block Jss , is on the form

M =
 I −Q

0 I

 . (2.47)

By multiplying the original system (2.46) with the preconditioner M we obtain

 Jpp −Q Jsp Jps −Q Jss

Jsp Jss

 up

us

= r =
 rp −Qrs

rs

 (2.48)

It is assumed that

Q = Jps J−1
ss ≈QI (2.49)

where the matrices Jps and Jss are replaced with vectors where the elements

are the sums of each column. This simplifies the Schur complement procedure

and implies that Jps is close to zero such that

J∗pp up = r∗p (2.50)

where J∗pp = Jpp −Q Jsp and r∗p = rp −Qrs. Alternatively the pressure matrix can
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be derived by

J∗pp =C T M JC , C T = [I 0] (2.51)

The effectiveness of CPR methods relies heavily on the quality of the pressure

matrix J∗pp (Cusini et al. (2014)). The pressure Equation (2.50) forms an approx-

imation of the elliptic part of the discrete system and is considered separately

from the remaining hyperbolic part. With the preconditioning of the elliptic

part, the CPR method improves the convergence rate of the full linear system

(Wallis et al. (1985)). CPR is commonly a part of a two-step preconditioning,

where AMG is used to approximate the pressure solution of 2.50. In the second

stage, another preconditioner, e.g. the ILU(0) is applied to the full system 2.46.

The resulting preconditioned linear system is then solved by GEMRES, which

will be further explained later in the thesis

2.3.3 Incomplete LU factorization (ILU(0))

One of the simplest methods to define a preconditioner is to perform an in-

complete factorization of the system matrix A (Saad (2003)). This admits a de-

composition of the form

A = LU −R, (2.52)

where L and U are lower and upper triangular matrices, respectively. R is here

the residual error of the factorization. The LU is formed with a variant of the

Gaussian elimination were some elements are dropped. The dropped elements

are nonpositive entries outside the main diagonal, and is transformed into ze-

ros. This gives an incomplete LU factorization. The dropped elements follows
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a specified pattern determined in advance. A zero pattern is written such that

P ⊂ {(i , j ) | i 6= j ; 1 ≤ i , j ≤ n}, (2.53)

where i , j is the matrix indexes of An×n . The elements dropped in the Gaussian

elimination construct the R matrix in 2.52. The simplest variant of the ILU fac-

torization takes the zero pattern to be the exact zero pattern of A, and uses no

fill-in. This variant is noted as ILU(0).

2.3.4 General Minimal Residual (GMRES)

GEMRES is a projection method based on Krylov subspaces

Kn = 〈f, Af, ..., An−1f〉 (2.54)

( Saad and Schultz (1986),Trefethen and Bau (1997)). The method approximates

the solution of the system u by the vector un ∈Kn that minimizes the Euclidean

norm of the residual

rn = f− Aun. (2.55)

Since the vectors forming the basis of the Krylov space might be close to lin-

ear dependent, Arnoldi iterations is used to find orthogonal vectors q1,q2, ...qn

forming a basis for Kn (Arnoldi (1951)). By writing the basis as an Krylov matrix

Qm×n
n we write 2.55 as an least square problem

J (y) = ‖AQny− f‖, (2.56)
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where un =Qnyn with ∈Kn , yn ∈ R and J (y) the minimum value. The Arnoldi

process also produces an upper Hessenberg matrix H̃ (n+1)×n
n , that is, a matrix

with zeros below the first subdiagonal (Hessenberg (1942)):

AQn =Qn+1H̃n . (2.57)

Since the columns of Qn is orthogonal, we have

‖Aun − f‖ = ‖H̃nyn −QT
n+1f‖ = ‖H̃nyn −βe1‖, (2.58)

where e1 = (1,0,0, ...,0)T is the first vector in the standard basis of Rn+1 and

β = ‖f− Au0‖. With this we find xn by minimizing the Euclidean norm of the

residual

rn = H̃nyn −βe1. (2.59)

The Eucledean norm, also known as the 2-norm is defined for vectors as

‖x‖2 =
(

n∑
i=1

| xi |2
) 1

2

. (2.60)

This yields the final step of the GMRES method. When yn minimizing ‖rn‖ is

found, we set

un =Qnyn, (2.61)

and update the solution.



2.4. THE FULL APPROXIMATION SCHEME (FAS) 35

2.4 The Full Approximation Scheme (FAS)

Now that we have discussed the standard solvers for reservoir simulations, we

will first investigate the multigrid methods in general, and finally the full ap-

proximation scheme.

2.4.1 The Fundamentals of Multigrid Methods

Multigrid methods have become a common approach for solving many linear

problems of the form

Au = f. (2.62)

The methods have gained popularity as a result of the characteristics of hav-

ing converging speed independently of the discretization mesh size h, and the

number of arithmetic operations are proportional with the number of grid points

(Briggs et al. (2000),Trottenberg et al. (2001)). The multigrid idea is based on the

two principles of error smoothing and coarse grid correction. The initial steps

consists of an iterative relaxation to remove highly oscillatory error modes. This

step is often referred as smoothing or application of a smoother. The error is

defined as e = u−v, where v is the approximation of the exact solution u. The

residual is defined to be

r = f− Av. (2.63)

By inserting (2.63) into (2.62), we can write the residual equation as

Ae = r. (2.64)
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The method can be described as a recursive two-layered grid (h, H) process.

The error is smoothed on the fine grid and restricted to a coarse grid where

the residual equation is solved. The classic iterative methods have a strong

smoothing effect on the error of nonlinear systems and are effective in remov-

ing the local error modes. Jacobi’s method, variants of Gauss-Seidel, and in-

complete LU factorization are all iterative solvers for which convergence rates

are highly problem dependent. With the errors sufficiently smooth, we can ac-

curately represent them on a coarser grid. Since the coarse problem is much

smaller, solving it becomes far less expensive than on the fine grid. The resid-

ual (2.63) on the fine gridΩh is restricted to the coarse gridΩH

rh = I H
h rh. (2.65)

It is then used as the right-hand side for the coarse grid residual equation

AH eH = rH. (2.66)

The solution of this equation then gives the error and is interpolated back to

the fine grid. Here it is used to correct the fine-grid approximation

vh ←− vh + I h
H eh. (2.67)

By recursively solving the coarse grid problem with this two-grid process, we

have established the multigrid algorithm.
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2.4.2 Error smoothing

The error occurring in a system can be classified as high and low frequency er-

rors (Briggs et al. (2000),Trottenberg et al. (2001)). The high frequency error is

relatively easy to remove with a few iterations, and we say that the system is

relaxed or smoothed. A smooth error is one of the governing requirements al-

lowing for an approximation of a system on a coarser grid without any essential

loss of information. The low frequency error is not visible on the fine grid, but

with the high frequency error removed, the low frequency error becomes visible

on the coarser grid. This is illustrated in Figure 2.5.

As we can see from the illustration, the high frequency errors are effectively

removed, leaving the low frequency. Further iterations on the fine grid is less ef-

fective since the low frequency error is not visible for the smoother on the fine

grid. On the coarse grid, the low frequencies are made visible for the smoother,

and are effectively removed. The fact that the different frequencies are visible

Figure 2.5: The smoothing of error frequencies performs different on fine and
coarse grids. The high frequencies are first removed on the fine grid. The low
frequency is then smoothed on both coarse and fine grids with different result.
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on their respective grids is called aliasing of the frequencies. High frequencies

that are not smoothed away first, may lead to insufficient convergence and con-

struction of artifacts when the coarse system is solved and interpolated back to

the fine grid.

The residual found on the fine grid is corrected by restricting the domain

into a coarser grid in which the relaxation is continued. On the coarse grid,

the residual equation is solved to acquire a correction term. The grid solution

is then interpolated back to the fine grid, where the approximate solution is

corrected. This basic recursive method works as a result of the linearity of the

residual equation. For nonlinear problems, on the other hand, a slightly dif-

ferent approach is needed. The conventional technique is to apply a global

linearization such as Newton’s method and utilize multigrid for the solution of

the Jacobian system in each iteration. We will look into FAS which applies the

multigrid procedure directly to the nonlinear problem.

2.4.3 Geometric Multigrid

The multigrid methods can be divided into two classes, geometric and alge-

braic multigrid. This classification is based on how the method apply the smoothers

and coarsening steps as illustrated in Figure 2.6. For geometric algebra, the

coarsening steps are fixed. A hierarchy of grids and discretization are defined

prior to the simulation and conserves the nonlinearity of the system on each

grid level. The coarsening process is fixed and kept as simple as possible. This

fixation of the hierarchy leads to special requirements on the properties of the

smoothers. The error components that is unaffected on the coarse grid prob-

lem needs to be effectively reduced during the smoothing process (Trotten-
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Requirements for any
multigrid approach

Efficient interplay be-
tween smoothing and
coarse-grid correction

Geometric
multigrid

Algebraic
multigrid

Fixed coarsening
Adjusted smoother

Fixed smoother
Adjusted coarsening

Grid equations∑
j ah

i j uh
j = f h

i
(No hierarchy given)

Grid equations
Ahuh = f h

(Hierarchy given)

Figure 2.6: Geometric versus algebraic multigrid

berg et al. (2001)). The simple classical iterations may by this have issues with

smoothing the nonlinearity properly and more sophisticated methods are re-

quired. We will look further into this when we discuss nonlinear multigrid in

the next section.

2.4.4 Algebraic Multigrid (AMG)

The second approach to the application multiple grids are the algebraic multi-

grid (Ruge and Stüben (1987)). This approach is contrasting from geometric

multigrid as it attempts to maintain the smoothers simple and operate without

any given hierarchy of predetermined grids. The smoother is usually a simple

iterative method. In AMG methods the coarse grid correction is fully defined

when the prolongation is known. This leads to a flexible method where the

coarsening process is automatically adjusted to coarsen only in the direction

where the smoother really smoothens the error. This ability to adapt to specific
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problem requirements is the main reason for AMG’s robustness for solving large

classes of problems despite using very simple pointwise smoothers (Trotten-

berg et al. (2001)). The downside of this flexibility is the extra cost of the setup

phase where the problem is analyzed, the coarse levels are constructed and op-

erators are assembled. This leads to extra overhead, which is why AMG in gen-

eral is less effective than geometric multigrid approaches. This is of course de-

pendent on the problem where geometric multigrid can be applied effectively.

2.4.5 Nonlinear Multigrid Method: FAS

Similar to the linear case, the nonlinear FAS multigrid method computes a coarse-

grid correction term by use of the residual from the finer grids (Brandt (1982),Mole-

naar (1995),Henson (2003)). Even though the mechanics are very similar to

many other multigrid methods, the FAS is actually computing a full approxi-

mate solution on the coarsest grid, rather than only acting on the residual as

in linear multigrid. The FAS method is performed in cycles and uses multiple

layers of grids that are determined in advance. The number of levels is noted as

l and the method starts at the finest level k = 1. Here, we note the sequence of

grids asΩk .

In the case of a nonlinear problem, we can write (2.62) onΩh as

N (u) = f, (2.68)

where N is the nonlinear operator on u. Frequently, the nonlinearity of a system

is written as A(u), but in this thesis we choose to use N for simplicity and clarity.

Here we define the error e = u − v and the residual r = f − N (v) in the same
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manner as in the linear case. Since N is nonlinear, N (e) 6= r in general. This

means we can not determine the error by solving a simple linear equation on

the coarse grid as with linear multigrid. The residual equation must thereby be

written as

N (u)−N (v) = r. (2.69)

By using this error relation we can rewrite (2.69) to

N (v+e)−N (v) = r. (2.70)

Suppose we have an appropriate discretization Nh and found an approxima-

tion, vh, then (2.70) onΩh becomes

Nh(vh +eh)−Nh(vh) = rh. (2.71)

The coarse grid correction onΩH is then

NH (vH +eH)−NH (vH) = rH (2.72)

where the coarse grid residual is the restriction of the residual on the fine grid

rH = I H
h rh = I H

h (fh −Nhvh). (2.73)

Here, I H
h is the restriction operator. In the same way, the fine-grid approxima-

tion is restricted to the coarse grid with vH = I H
h vh. This restriction of the ap-

proximation is what makes this method different from linear multigrid, where

only the residual is restricted. By substituting the restriction into the coarse-
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grid residual equation (2.72), we can write it as

NH (I H
h vh +eH︸ ︷︷ ︸

uH

) = NH (I H
h vh)+ I H

h (fh −Nh(vh))︸ ︷︷ ︸
fH

. (2.74)

Here, the right-hand side of the equation is known and on the same form as

(2.68). If we assume that we find a solution uH to the system, we can then com-

pute the coarse grid correction term

eH = uH − I H
h vh. (2.75)

This can then be interpolated back to the fine grid and used to correct the fine-

grid approximation vh :

vh ←− vh + I h
H eH. (2.76)

If Nh and NH are linear operators, it is easy to see that the FAS two-grid method

is equivalent to the linear multigrid correction scheme introduced in section

2.4.1. FAS is by this regarded as a generalization of coarse-grid correction for

nonlinear problems. A variation of FAS is written to view the method as an

enhancement of the coarse-grid equations (Henson (2003)). The coarse grid

equations (2.74) then takes the form

NH (uH) = fH +τH
h , (2.77)

where

τH
h = NH (I H

h vh)− I H
h (Nh(vh)) (2.78)

defines the tau correction τH
h . In the literature, τH

h is also called the (h, H)-
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relative truncation error since it is closely related to the role of the truncation

error τh, which is the local discretization error between the continuous solu-

tion on Ω and the discretized approximation on Ωh . By this analogy we see

that since τH
h 6= 0 in general, the solution uH of the coarse grid,is not the same

as the solution of the original equation. The solution uH is actually converg-

ing towards an accuracy that matches the solution of the fine grid, but with the

resolution of the the coarse grid.

As described earlier, the method received its name since the coarse-grid

problem is solved for the full approximation rather than only the error eH . A

complete summary of the FAS multigrid cycle is described in pseudocode in

Algorithm 2.1.

Algorithm 2.1 : Pseudocode of the FAS multigrid cycle

procedure FASCYCLE(um
k , Nk , fk,ν1,ν2,k, l )

ūm
k = SMOOTHRESIDUALS(um

k , Nk , fk,ν1)

r̄m
k+1 = Î k+1

k

(
fk −Nk ūm

k

)
ūm

k+1 = I k+1
k ūm

k

fk+1 = r̄m
k+1 +Nk+1

(
ūm

k+1

)
if k < l then

v̂m
k+1 = FASCYCLE(ūm

k+1, Nk+1, fk+1,ν1,ν2,k +1, l ))

else

v̂m
k+1 = SOLVE(Nk+1,vm

k+1, fk+1)

end if

um
k = ūm

k + I k
k+1

(
ūm

k+1 − v̂m
k+1

)
um+1

k = SMOOTHRESIDUALS(um
k , Nk , fk,ν2)

return um+1
k

end procedure
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2.4.6 The Phases and Components of FAS

The FAS algorithm can be divided into three main phases. Two smoothing

phases and a main phase in which the coarse grid correction is performed. For

FAS to be effective as an multigrid method, we need a relaxation scheme that

is effective for nonlinear systems. The conventional smoothers mentioned for

the linear case may have difficulties with smoothing nonlinear modes. Instead,

one frequently uses the nonlinear Gauss-Seidel method (Ortega and Rhein-

boldt (2000)). In our case we apply Newton with CPR-AMG as a smoother to

achieve a semi-global linearization.

We will now look into the details of each phase of a single step in the FAS-

cycle:

(1) Presmoothing: The first step of the cycle is to run ν1(≥ 0) smoothing steps

on the system where ūn
k is the residual smoothed approximation of un

k . Here,

we apply a single or at most a few iterations of a smoother to ensure that the

system is properly smooth. It is not necessary for the errors to become small in

this step.

(2) Coarse-grid correction: This is executed in several steps, where each vari-

able is restricted from the fine grid Ωk to Ωk−1. First the current residual r̄n
k of

the smoothed approximation is computed

r̄n
k = fk −Nk

(
ūn

k

)
, (2.79)
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where Nk is an appropriate discrete operator on Ωk and fk . Then, we restrict

the residual by applying a restriction function I

r̄n
k−1 = I k−1

k r̄n
k . (2.80)

In addition, we need to restrict the smoothed approximation

ūn
k−1 = Î k−1

k ūn
k , (2.81)

where Î is the restriction function for the solution approximation. These two

restriction functions may in general be identical.The next step is to compute

the right-hand side

fk−1 = r̄n
k−1 +Nk−1

(
ūn

k−1

)
. (2.82)

Now that fk−1 is established, we compute the coarse-grid approximate solution

v̂n
k−1 in one of two ways depending on the current value of k. If k > 1, the cycle

is restarted with ūn
k−1 as the initial approximation. Otherwise, if k = 1, a fast

solver is applied to compute the approximate solution v̂n
k−1 of

N n
k−1

(
vn

k−1

)= fk−1. (2.83)

Finally, the correction is computed and interpolated back into the finer grid by

en
k−1 = ūn

k−1 − v̂n
k−1, (2.84)

en
k = I n

k−1en
k−1. (2.85)
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When the correction term is brought back to Ωk , it is applied to the previous

approximation

uk = ūn
k +en

k . (2.86)

(3) Post-smoothing: When the coarse-grid correction is completed, the so-

lution for the next time step is computed by applying ν2(≥ 0) smoothing steps

to uk .

Restriction and prolongation operators

The most basic and often used choice for operators between different grids is

the standard coarsening in which the mesh size h is doubled in each direc-

tion (Trottenberg et al. (2001)). In some cases, there is also of interest to utilize

semi-coarsening in which the mesh size in one dimension is not doubled. This

is especially useful in reservoir simulation, where the domain is very thin in the

z-direction compared to the other axes. We will thereby use H = 2h for each

coarsening step in the x- and y-direction. For the restriction operator I H=2h
h ,

there is a broad spectrum of functions to choose from. From MRST, we will use

a simple summing function for structured grids in the same way as in Chris-

tensen et al. (2016). This is called full-weighting of the restriction operator. In

the two-dimensional case, this can be written in stencil notation as

I H
h = 1

4

 1 1

1 1

H

h

. (2.87)



2.4. THE FULL APPROXIMATION SCHEME (FAS) 47

If we want higher resolution of the restriction operator, we can write the full

weighting operator as

I H
h = 1

16


1 2 1

2 4 2

1 2 1


H

h

. (2.88)

For simplicity, we choose the same restriction functions for both the ap-

proximation and the residual. For the interpolation, we utilize a simple injec-

tion function that mirrors the restriction function.

I h
H =

 1 1

1 1

h

H

. (2.89)

The brackets are reversed to indicate that it is a distribution process. Here, the

values from a single cell is distributed into four cells on the finer grid. Since

there is no overlap between the distributions from any coarse cell to the cells

on the finer grid, it is not necessary to weight the cells. Here as well, a higher

resolution of the interpolation operator gives the full weighting as

I H
h = 1

4


1 2 1

2 4 2

1 2 1


h

H

. (2.90)
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2.4.7 FAS with Multiple Grids

Now that we have described a single cycle, it is time to investigate how multiple

cycles can be performed. There are two main cycles that form the basis of more

sophisticated cycles. V- and W-cycle are the simplest and most common cycles

(Saad (2003)). The V-cycle can be described as a simple recursive restriction

of the grid until the coarsest level is reached. The approximated solution is

then interpolated back up to the finest level. The W-cycle starts off in the same

manner as the V-cycle and restricts the grid down to the coarsest level. Then it

interpolates up a level, before it restricts the grid again. This is repeated such

that it forms a ’W’ as illustrated in Figure 2.7. To indicate which cycle type is

applied, a cycle index γ is used. Usually, the cases are γ = 1 for V-cycle and

γ= 2 for W-cycle.

Figure 2.7: Illustration of the basic multigrid cycles. The three on top represent
V-cycles with two, three, and four grids. The two lower represent W-cycle for
three and four grids.

It is convenient that the number of smoothing steps ν1, ν2 and the cycle

index γ are fixed numbers. Another approach is to let γ = γk depend on the

grid level k. Here, we mention only the F-cycle which is a combination of the

V- and W-cycle and is illustrated in Figure 2.8. In this thesis, we only apply the
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Figure 2.8: Illustration of the structure of an F-cycle with two to five grids.

V-cycle in the numerical experiments.

With this, we have finally established the full method. We have described

the three-phase flow model based on mass conservation and Darcy’s motion

equation, discretized the equations with the finite-volume method, and de-

scribed the FAS-cycle with Newton’s method at the core.





Chapter 3

Implementation

As stated in the introduction, we implement FAS by using the scientific pro-

gramming language MATLAB. We also apply the framework provided by MRST

(Lie (2016)). The standard Newton method that is used as a reference in the

testing of FAS is also provided from the MRST library. We start with presenting

the automatic differentiation algorithm, which is one of the core tools in MRST.

We then present MRST and how we utilized it in the implementation of FAS.

3.1 Automatic Differentiation

Automatic differentiation, AD, is a technique developed to simplify the evalu-

ation of differential functions (Bücker et al. (2006), Nocedal (2006), Lie (2016)).

The foundation of AD is built upon the observation that any function regardless

of how complicated it is, can be broken down to an evaluation of a limited set of

elementary and arithmetic operations such as addition, subtraction, multipli-

cation, and division. In MATLAB we also have fundamental binary evaluation

51
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of unary functions, e.g. exp, si n, cos, l og , etc. These all have simple and well-

known differentiation rules. Combined with the chain rule and by taking into

consideration that any computer code consists of a sequence of instructions,

we see that automatic differentiation of functions is a powerful tool. This can

be illustrated with the evaluation of the function

f (x, y) = (
3x2 +x y − y

)(
cos

(
y
)+4

)
(3.1)

as a code list:

s1 = x, s6 = s4 + s5,

s2 = y, s7 = s6 − s2,

s3 = power(s1,2) , s8 = cos(s2) , (3.2)

s4 = 3× s3, s9 = s7 +4

s5 = s1 × s2, s10 = s7 × s9.

Here the function power(a,b) = ab has been included as it is one of the basic

operations in MATLAB.

The key idea of automatic differentiation is to keep track of the function

quantities and derivatives simultaneously. Every time an operation is performed

on one of the functions, the corresponding differential operation is applied to

its derivative. There are two main approaches to how AD is executed. The sim-

plest of the two is known as the forward mode. Here, a directional derivative

of each variable xi in a given direction p ∈ R, is evaluated and carried forward

simultaneously with the evaluation of xi itself. This gives a repeatedly substi-
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tuting of the derivative of the inner functions in the chain rule:

∂y

∂x
= ∂y

∂w1

∂w1

∂x
= ∂y

∂w1

(
∂w1

∂w2

∂w2

∂x

)
= ∂y

∂w1

(
∂w1

∂w2

(
∂w2

∂w3

∂w3

∂x

))
= ... (3.3)

The second method is the reverse mode in which the function f is evaluated

first, and then the partial derivatives are recovered with respect to each vari-

able xi . In the end of the process, the gradient vector is combined from the

partial derivatives with respect to the independent variables. There are several

software tools developed for the execution of automatic differentiation. MRST

provides a variant of the forward mode.

3.2 The Matlab Reservoir Simulation Toolbox (MRST)

MRST is a open-source project developed at SINTEF Digital (Lie et al. (2012),

Krogstad et al. (2015), Lie (2016), Sintef (2018)). It consists of a large num-

ber of modules, and functionality from several third-party developers. In ad-

dition, there is functionality that supports external third party code in com-

piling languages. This is primarily aimed against highly effective implemen-

tation of solvers that outperforms similar implementation in high-level script-

ing languages such as Matlab. An example of this is the implementation of the

aggregation-based algebraic multigrid, AGMG (Notay (2010)), which is applied

in our FAS-framework.

The main goal of MRST is to provide a toolbox for rapid prototyping of new

methods (Krogstad et al. (2015), Lie (2016)). It is a research tool that supports

modeling and simulation of flow in porous media and provides a large set of

mathematical models, computational methods, visualization tools and utility
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Matlab Reservoir Simulation Toolbox

Basic
functionality

Discretizations
and solvers Workflow tools

Core: data
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Figure 3.1: The MATLAB Reservoir Simulation Toolbox, MRST, is primarily de-
veloped at SINTEF. It is module-based and the functionality can be divided into
three sections.

routines. It utilizes Matlab’s highly vecorized syntax and support for a wide

range of mathematical functions that enable compact and efficient programs

(Alberty et al. (1999), Aarnes et al. (2007)).

MRST can be divided into three sections as illustrated in Figure 3.1. The first

section makes the foundation of MRST and consists of the basic functionality.

It provides the main data structures, generic functionality, a vectorized AD li-

brary, visualization tools and access to public data sets. The second section is a

collection of discretizations and solvers. Much of the functionality we use is lo-

cated in the third section, the workflow tools. Here we have functions providing
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grid coarsening, flow diagnostics, upscaling tools and black-oil simulators.

MRST

MRST-ADMultiscale Visualization

Core

ad-props

ad-core ad-blackoil

coarsegrid mrst-gui

AGMG

Figure 3.2: MRST modules, in ellipses, applied for the implementation of FAS.
The isolated module is a third-party module supported by MRST. All modules
are add-ons to the core module that provides the basic data structures and util-
ity functions.

To ensure the independence of the functionality of MRST it is divided into

modules. Each module consists of a set of functions and scripts that extend

or modify the existing capabilities of MRST. These modules can easily be used

as add-ons for the simulations. The modules applied in the implementation

and execution of FAS are shown in Figure 3.2. As the figure illustrate, we have

used a module named ad-core. This is an example of an add-on module that

alternate the basic functionality of the core module as it implements the base

classes for a object oriented framework for implicit and sequential simulators.

In our implementation we have applied the object oriented automatic differen-

tiation, (AD-OO), based solvers. These solvers are written as a object oriented
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framework that makes it easy to implement new methods. The main part of

our implementation consists of two classes in which one inherits from an exist-

ing class in MRST. The class FullApproximationModel inherits from the main

model class named PhysicalModel. Our second class ModelHierarchy is an

independent class that connects FAS to the models generated by a subclass of

PhysicalModel. Figure 3.3 shows how these classes are connected and how

they are integrated in the workflow of MRST. As we see from the figure, the

workflow of an simulation starts with the set up of the models and other param-

eters. These are then passed to the Simulator that calls the Nonlinear Solver for

each timestep. The solver further calls FAS which performs the approximation

of the timestep.

To solve the system, we use a state-of-the-art CPR-AMG preconditioner to

accelerate the solution process (Notay (2010)). This solution strategy is applied

for both FAS and standard Newton. In FAS, CPR-AMG is applied in the sub-

routines of the smoothing processes and main solver at the coarsest grid.

By applying the modularity of MRST, we are able to construct a general non-

linear solver that can be applied on a broad range of classes of discrete reser-

voir and fluid models. This use of generic components makes it easy to switch

subroutines such as the smoother and core solver. This provides the freedom

and flexibility of testing the effect on the performance by each individual com-

ponent. The approach also supports the extension of future testing for more

advanced flow systems.
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Figure 3.3: Simulation workflow for MRST with the expansion of FAS.





Chapter 4

Numerical Experiments

This chapter presents the experimental setting and the numerical results from

Simulations. For all tests, two different solvers are compared. The industry-

standard solution method is referred as the standard Newton, (SN), or Newton,

and the FAS method is conventionally referred as FAS(l ), where l indicates the

number of used grid levels.

4.1 Experimental Setting

Three different reservoir models are used for the numerical experiments. The

initial tests are with the classical quarter-five-spot well-pattern, QFS, with a

single injector and producer (Willhite (1986)). We also consider simulations

with the top layers of the SPE 10, Model 2 (Christie and Blunt (2010)). This is

a standard benchmark model with significant variance in the permeability and

porosity fields. The model is corresponding to the Tarbert formation. The sig-

nificant heterogeneity of the permeability field makes the simulation problem
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more challenging than the QFS problem. Our final tests are performed with a

realization of the OLYMPUS reservoir model (Fonseca et al. (2017)). This op-

timization benchmark model uses a synthetic 3D reservoir, inspired by an oil

field in the North Sea. The model is an unstructured grid with a permeability

field consisting of multiple layers, several faults, and two zones separated by an

impermeable shale layer. This provides a challenging test case and is the largest

model in our tests with a few hundred thousand cells.

4.2 Simulation Set-Up

This setup is inspired from the litterature and represent common values for the

fluids and reservoir (Lie (2016), Christensen et al. (2016)). For all the simula-

tions, the stopping criteria and tolerances for the nonlinear solver are the same

for both standard Newton and FAS. The final stopping criteria for the residual

is set to an absolute tolerance of tolabs = 10−5 and the relative tolerance is set

to tolrel = 10−4. The residual is computed with the 2-norm. The initial pressure

of the reservoir is set to 250 bar. In addition, the pressure at the production

well is held at a constant level of 200 bar. The injection rate is a constant func-

tion of 100m3/day. The properties of the fluids and rock are presented in Table

4.1. For all the tests, FAS is executed with V-cycles where the initial number

of presmoothings and postsmoothings is set to a maximum of 1. The num-

ber of smoothing steps is doubled on each coarsening step. Experimentation

show that this is a satisfactory approach to the number of smoothing steps. In

addition a second smoothing step is performed after each cycle. A small con-

vergence check is conducted after each presmoothing phase to avoid applying
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more grid levels than necessary. The maximum number of outer iterations is

set to the MRST default of 25.

Table 4.1: Properties of the three phases and the rock formation.

Medium Property Symbol Value unit
Water Viscosity µw 1 kg/sm

Compressibility cw 10−8 1/bar
Density ρw 1022 kg/m3

Initial Saturation Sw 0.2 -
Corey-exponent - 2 -

Oil Viscosity µo 5 kg/sm
Compressibility co 10−5 1/bar

Density ρo [800 - 940] kg/m3

Initial Saturation So 0.7 -
Corey-exponent - 3 -

Gas Viscosity µo 0.1 kg/sm
Compressibility co 10−4 1/bar

Density ρo 100 kg/m3

Initial Saturation Sg 0.1 -
Corey-exponent - 5 -

Rock Permeability K [0.1 - 3000] md
Porosity φ 0.3 -

When we are testing for the algorithmic efficiency, we primarily look at the

number of outer iterations required to achieve convergence. For FAS, a single V-

cycle corresponds to one outer iteration. The timings are measured for only the

simulation in it self, and excludes the time used for simulation setup. For FAS

this includes the restriction and interpolations as a part of the solver. It is also

worth noting that the timings are the total wall-time during the simulation, in-

cluding many subroutines of the simulation algorithm not affected by FAS. For

this project we look at the performance sensitivity against changes in grid size,

mobility ratio and homogeneous as well as heterogeneous permeability. The
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same generated heterogeneous permeability fields is used for both methods.

4.3 Quarter-Five-Spot

The QFS test is a standard benchmark in reservoir simulation due to its sym-

metry and well known reference solution. The model is also used to show dif-

ference in scalability properties between Newton and FAS. An illustration of the

model is shown in Figure 4.1. The first step in our tests is to validate the correct-

ness of our implementation of FAS. This is done by computing and comparing

the oil production for both FAS and the reference industry-standard Newton

method. To provide a solid verification, we let the MRST simulation run for 30

years with constant injection rate. This assures that most of the cells are subject

to phase displacement. Figure 4.2 shows the validation of FAS with the oil pro-

duction. We observe that the two methods have produced the same amount of

oil for each timestep, and thus verifies the correctness of FAS.

4.3.1 Homogeneous permeability field

For the initial tests we use a homogeneous permeability field. With this simula-

tion set up we test how the methods are affected by change in grid size and for

different permeability values.

Scalability

For the first test we compare the number of outer iterations for the two methods

with different grid sizes. The results are presented in Table 4.2. As we can see

the algorithmic efficiency for FAS is higher than for the standard Newton since
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Figure 4.1: Water saturation after injection of 40% pore volume for the quarter-
five-spot model with homogeneous permeability field. A well in the top-right
corner injects water and a production well is in the bottom-left corner. The
domain size is 1000×500×20m .

Figure 4.2: Validation of FAS against an industry standard Newton solver for the
QFS model.
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it requires fewer outer iterations. This difference grows in favor for FAS as the

grid size is increased. This implies that the scalability of FAS is better than with

Newton. For FAS(2) the change in outer iterations is close to negligible, and

with three grid levels a second cycle is never performed. This is as expected

with regard to the fact that multigrid methods are theoretically less affected by

changes in grid sizes on the coarser grids.

Table 4.2: Test of algorithmic efficiency with the QFS-model. Displays the aver-
age number of outer iterations for both Newton and FAS. Simulation duration
is 5 years with 200 steps.

Problem Size
Method 16×16×10 32×32×10 64×64×10 128×128×10
Newton 2.05 2.07 2.09 2.16
FAS(2) 1.00 1.00 1.01 1.03
FAS(3) 1.00 1.00 1.00 1.00

In Figure 4.3 we see that the runtime of FAS is lower than for Newton for

growing grid size. For the homogeneous permeability field the difference be-

tween applying two and three grids are close to negligible. FAS(3) is only slightly

faster than FAS(2).

Permeability

In addition to scalability, we are also interested in the sensitivity of increasing

permeability. As described in the theory chapter, higher permeability means

the flow is less hindered. This causes the flow to go faster, and the increased

flux may make the computations more challenging. From Figure 4.4 we ob-

serve that the two methods have similar, if not identical reactions to the change

in permeability. The results show that FAS outperforms Newton in runtime ef-
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Figure 4.3: Runtime comparison between Newton and FAS for different grid
sizes. The Permeability field was set to 100md with domain dimension of 1000×
500×20m. Simulation duration was 5 years with 100 timesteps.
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Figure 4.4: Runtime comparison between Newton and FAS(2) for different
permeability. The grid size is set to 48 × 48 × 10 with domain dimension of
1000 × 500 × 20m. The duration of the simulation is 150 days with 100 time
steps.
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Mobility ratio

The mobility ratio has a significant impact on the fluid flow. Figure 4.5 illus-

trate the effect of different mobility ratios between water and oil. As we see,

the front interface between the two phases become less sharp with decreasing

mobility ratio. When comparing the sensitivity for the mobility ratio between

water and oil, we observe from Figure 4.6, that there is a slight reaction differ-

ence between Newton and FAS. Here we see that both react relatively similar

for the higher mobility ratios. The largest difference is observed for the lower

mobility ratio, where the standard Newton have much higher increase in run

time compared to FAS. When the mobility ratio becomes smaller we expect to

get a shock within the reservoir between the two fluids and the system becomes

more stiff. The fact that FAS have less increase in run time for the lowest mo-

bility ratio, suggests that Newton is relatively more sensitive to stiff systems.

FAS on the other hand, seems to have a slower degeneration of computation

efficiency when the system become increasingly stiff.

When we perform the same tests for a longer time period, we see a change

in the results between the two methods. With a simulation duration of 5 years

we see in Figure 4.7 that Newton have a slightly shorter simulation runtime

than FAS(2). At the same time, we observe the same tendency in algorithmic

efficiency as in the scaling tests in Table 4.3. FAS is on average converging af-

ter only a single iteration, while Newton requires up to three iterations. Upon

closer inspection of the runtime report from each timestep, we observe that

FAS have a tendency to require less computation time for the first part of the

simulation. About a hundred days into the simulation, Newton begins to have

a shorter computation time than FAS. This coinside closely with the timesteps
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(a) Mobility ratio 10:1 (b) Mobility ratio 1:1 (c) Mobility ratio 1:15

Figure 4.5: Illustration of the effect on fluid flow with different mobility ratio
between water and oil. Water saturation after injection of 20% pore volume for
the quarter-five-spot model with homogeneous permeability field. A well in
the bottom-right corner injects water and a production well is in the top-left
corner. The domain size is 1000×500×20m. The duration of the simulation is
150 days with 100 time steps.

where Newton begins to require only two iterations. During this part of the

simulation Newton alternate mostly between using three and four iterations for

each timestep. After the initial simulation time, Newton stabilizes on two itera-

tions for each timestep and is slightly more time efficient than FAS. In the final

year of the simulation time, Newton drops down to requiring a single iteration.

In this time period we observe that FAS again is slightly more time efficient than

Newton. These observations may be a result of the degree of nonlinearity in the

system. Typically, we expect the nonlinearity to be stonger in the beginning of

the simulation when water is injected into a stable system. As expected the

semi-linearization with FAS perform better than the global linearization with
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Figure 4.6: Runtime comparison between Newton and FAS for different mo-
bility ratios between water and oil. The grid size is 48× 48× 10 with domain
dimension of 1000×500×20m. The duration of the simulation is 150 days with
100 time steps.
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Figure 4.7: Runtime comparison between Newton and FAS for different mo-
bility ratios between water and oil. The grid size is 48× 48× 10 with domain
dimension of 1000×500×20m. The duration of the simulation is 5 years with
100 time steps.
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Newton in handling the system when the nonlinearity is stongest.

These results suggests that the simulation may be optimized by first ap-

plying FAS for the first time period of the simulation when the nonlinearity is

strongest, and then switch to standard Newton. When Newton starts to con-

verge after a single iterations, our observations suggests to switch back to FAS

for acceleration of the computation for the final simulation duration.

Table 4.3: Test of algorithmic efficiency for different mobility ratios between
water and oil. Displays the average number of outer iterations and runtime
for both Newton and FAS. The duration of the simulation is 5 years with 100
timesteps.

Iterations Runtime
Mobility ratio Newton FAS(2) Newton FAS(2)

10:1 2.85 1.00 334.12 338.93
1:1 2.90 1.00 337.74 344.26
1:5 3.00 1.00 330.78 336.01

1:10 2.73 1.00 308.06 325.16
1:15 2.77 1.00 317.57 328.01

4.3.2 Heterogeneous permeability fields

With MRST we create a randomized heterogeneous permeability field within

a given range, as displayed in Figure 4.8. This causes the phases to flow more

irregularly through the domain.

Scalability

We also test scalability for heterogeneous permeability fields. Figure 4.9 dis-

plays the runtime for FAS and Newton, for different grid sizes for a fixed per-

meability field with range K ∈ [10−1000]md. Here as well, we observe that FAS
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Figure 4.8: Heterogeneous permeability field for a QFS model with domain size
1000×500×20m.
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Figure 4.9: Runtime comparison between Newton and FAS for different grid
sizes. The Permeability range was set to K ∈ [10−1000]md with domain dimen-
sion of 1000×500×20m. he duration of the simulation is 5 years with 100 time
steps.
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is less affected by an increase in grid size. When comparing the results for the

scaling tests with homogeneous and heterogeneous permeability fields, we see

that the two methods have similar increase in runtime. This indicates that nei-

ther method has an advantage when computing on heterogeneous permeabil-

ity fields. We also observe that the runtime for heterogeneous permeability field

is slightly higher than for the homogeneous case. This confirms that the hetero-

geneous case is more challenging, but grid size is more prominent in affecting

the performance. When looking into the algorithmic efficiency, we observe the

same tendency as for the homogeneous case in Table 4.2. While Newton re-

quires between 2.00 and 2.14 with a steady increase according to the grid size,

FAS(2) requires only 1.00 to 1.03 outer iterations for the same grid sizes.

Permeability ranges

To further investigate the sensitivity of heterogeneous permeability fields, we

performed tests with different ranges of permeability. The results are displayed

in Figure 4.10. Here we see as before that FAS outperforms Newton in run-

time efficiency. We also observe that the difference in runtime between the two

varies relatively little with the difference in permeability ranges. This indicates

that the two methods react relatively equally to the change in the permeability

field. This confirms our previous observations that none of the methods have

an advantage concerning the permeability field itself. We also observe, as ex-

pected, that the permeability field with the largest span proves to be the most

challenging case for both FAS and Newton.
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Figure 4.10: Runtime comparison between Newton and FAS for different per-
meability ranges. The grid size is set to 48× 48× 10 with domain dimension
of 1000×500×20m. The duration of the simulation is 150 days with 100 time
steps.

4.4 SPE10

The case derived from Model 2 of SPE10 provides an appropriate benchmark

test with its highly variable permeability field. Originally intended as an upscal-

ing benchmark, the significant variation and freely available data set has made

it a de-facto benchmark for any novel solver. Figure 4.11 shows the permeability

field of the top layer of SPE10, whereas Figure 4.12 illustrates the water satura-

tion after injection of 40% of the pore volume. The impact of the permeability

field is clearly seen on the displacement front. As in the QFS example, FAS and

standard Newton were tested for algorithmic efficiency.
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Figure 4.11: Permeability field of the top layer of the SPE10 model. The high
variance in permeability makes it a challenging model to simulate on. The per-
meability distribution is plotted in the unit millidarcy.

Time step size

Compared to the previous case, we observe from Table 4.4 that FAS(2) requires

more iterations than standard Newton for small timesteps. It is interesting to

observe that only Newton needs additional iterations when longer time-steps

are used. This is in contrast with FAS, which converges at approximately the

same rate when the length of the time-steps increases, indicating a better treat-

ment of the nonlinearity of the problem. It is worth noting that the linear

systems do not generally become more difficult to solve for longer time-steps.

Longer time-steps are typically a source of reduced convergence, or even con-

vergence failure in reservoir simulation. As before we see that FAS with three

grids converges after only a single cycle. It is also worth noting that by inves-

tigation of runtime, FAS(3) uses approximately half the time FAS(2) requires to
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Figure 4.12: Illustration of the water saturation in the top SPE10 layer after in-
jection of 40% pore volume. An injection well is placed in the bottom right
corner and a production well is in the top left corner. A highly heterogeneous
permeability field significantly impacts the flow direction.

complete the simulation. This leads towards to the conclusion that FAS(3) is

much more efficient than FAS(2) and Newton in terms of numerical efficiency.

Table 4.4: Test of algorithmic efficiency for the top SPE10 layer for different
length of timesteps. Displays the average number of outer iterations for both
Newton and FAS. The duration of the simulation is 5 years.

Step size in days
Method 1

2 1 2 4 8 16
Newton 2.04 2.19 2.67 2.40 2.81 3.15
FAS(2) 2.99 2.99 2.98 2.97 2.95 2.93
FAS(3) 1.00 1.00 1.00 1.00 1.00 1.00
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Initial saturation

In the following tests we want to investigate how the placement of different oils

affect the simulation efficiency. We apply a light oil with density of ρ0,l = 800

and a heavy oil with density ρ0,h = 940. In the first saturation test, we place a

light oil in the top layer, and a heavy oil in the lower layer. In each oil section the

initial saturation of the respective oil is set to 70% and water to 30%. As before,

we place an injection and production well in opposite corners of the reservoir

model. In Figure 4.13 we see the saturation flow of water after injection of 40%

pore volume in the first saturation test. From Table 4.5 we observe that both

methods require more iterations to solve the three phase system with two dif-

ferent oil phases. As before we see that FAS have an advantage over Newton and

on average require fewer outer iterations for each timestep. Compared with the

results in Table 4.4, we see that Newton have a larger increase in outer iterations

than FAS. This may indicate that Newton is more affected by the presence of a

second oil phase than by a gas phase in three phase systems. We also see that

FAS(3) converges faster than FAS(2) and converges after a single cycle for the

cases where the oils are placed in separate ends of the reservoir.

Table 4.5: Test of algorithmic efficiency for different initial saturation for the
top two SPE10 layers. Displays the average number of outer iterations for both
Newton and FAS. The simulation duration is 150 days.

Method
Oil placement Newton FAS(2) FAS(3)

Light oil on top, heavy oil below 3.91 2.91 2.52
Light oil to the right, heavy oil to the left 3.3 2.91 1.00
Light oil to the left, heavy oil to the right 3.73 2.85 1.00
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Figure 4.13: Water saturation in the top two SPE10 layers after injection of 40%
pore volume. A light oil is placed in the top layer, and a heavy oil is placed in
the lower layer. An injection well is placed in the bottom right corner and a
production well is in the top left corner.

Wells

In the recovery process of hydrocarbons, multiple wells are used in the same

reservoir. For the tests with multiple wells, the two top layers of SPE10 was used

with simulation duration of 5 years and 200 timesteps. The constant injection

rate was chosen such that during the simulation the volume of the injected wa-

ter equals the total pore volume of the reservoir. The production wells were

placed in corners of the reservoir, and furthest away from the corner of the in-

jection well. With four production wells, the injection well was placed in the

center of the reservoir, see Figure 4.14. In Table 4.6 we see the effect on the

performance of the methods for growing number of production wells. As be-

fore we see that FAS requires fewer iterations than Newton. For a single and
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two production wells, we see that FAS(2) only uses slightly fewer iterations than

Newton. The difference become more significant for three and four production

wells. We also observe that FAS converges after only one iteration with three

grid levels. In addition FAS(3) completes the simulation in approximately half

the time of FAS(2). This is the case for all well configurations. This suggests

that FAS with three grids has a significant benefit for cases where two grids only

have a slight algorithmic improvement compared with Newton.

Figure 4.14: Water saturation in the top two SPE10 layers after injection of 40%
pore volume. An injection well is placed in the center, and four production
wells are in the corners of the reservoir.

4.5 Olympus

The Olympus reservoir simulation model is an artificial model based on exist-

ing fields in the Nordic Sea (Fonseca et al. (2017)). The field is 9km by 3km
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Table 4.6: Test of algorithmic efficiency for growing number of wells. Displays
the average number of outer iterations for both Newton and FAS. The produc-
tion wells are placed in corners furthest away from the injection well. The sim-
ulation duration is 5 years with 100 timesteps on the two top SPE10 layers.

Production wells
Method 1 2 3 4
Newton 3.18 3.08 2.55 2.82
FAS(2) 2.94 2.91 1.15 2.18
FAS(3) 1.00 1.00 1.00 1.00

and is 50m thick. It consists of 16 layers and 6 faults. A fault is a displace-

ment of the layers. This gives a discontinuity in the permeability fields and is

frequently occurring in oil reservoirs. In reservoirs, one can often observe large

differences in permeability between different rock types. The permeability field

seen in Figure 4.15 is a typical example of high permeable channel deposits

interbedded on a low-permeable background flood-plaine deposit. Here, the

main flow will follow the high-permeable river channels, while at the same time

the background flood-plain deposits have sufficient permeability to transmit

fluids. This gives an gives a complex model that are challenging to simulate

and is an excellent benchmark test for the robustness of numerical algorithms.

Time step size

In table 4.7 we see the algorithmic efficiency for the two methods with different

length of the time step. The duration of the simulations is 100 days with an

injection rate of 100m3 per day. As we have seen before, FAS requires few cycles

for each simulation. It is interesting to see that FAS(2) on average uses only a

single cycle to compute each timestep. When we investigated the behaviour of

the cycles closer, we observed that FAS often did not enter the second grid level.
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Figure 4.15: Illustration of the permeability field of the Olympus model. The
grid consists of 118×181×16 cells approximately 50m×50m×3m each. The
injection and production wells are paced in each end of the reservoir.

This was caused by an ’premature’ convergence during the smooting step. This

coincided with the reference Newton solver converging in a single step at the

same timesteps. This behaviour is exactly as intended since it is undesirable to

continue with the cycle if convergence is already met during the presmoothing

phase. This enhances the earlier observations that in periods of the simulation

it is sufficient to apply standard Newton.

Table 4.7: Test of algorithmic efficiency for an Olympus model with different
step lengths. Displays the average number of outer iterations for both Newton
and FAS. The simulation duration is 100 days.

Timesteps
Method 50 100 150 200
Newton 2.76 2.18 2.07 2.01
FAS(2) 1.00 1.00 1.00 1.00
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Injection rate

The injection rate indicates the speed and stress on the phases in the reservoir.

In Table 4.8 we see the results from 150 days of simulation with 100 timesteps.

As we observe, Newton have an increasing amount of outer timesteps for the

corresponding increase of injection rate. The only exception seems to be with

an injection rate of 80m3/day, where it is a drop in the average number of it-

erations. For the same injection rate, we see that FAS(2) also have the lowest

amount of iterations. The tendency we see with Newton is not present for

FAS(2). There seems to be no particular pattern or correspondence between

increasing injection rate and the algorithmic efficiency of FAS(2). The results

show that FAS(2) on average needs only slightly more than a single cycle to

reach convergence for the different cases. As with most of the other results, we

see that FAS have a significant advantage in algorithmic efficiency in reservoir

simulation compared with the standard Newton.

Table 4.8: Test of algorithmic efficiency for an Olympus model with different in-
jection rates. Displays the average number of outer iterations for both Newton
and FAS. The simulation duration is 150 days with 100 timesteps.

Injection rate (m3/day)
Method 40 60 80 100 120 140
Newton 2.32 2.34 2.31 2.35 2.37 2.38
FAS(2) 1.01 1.03 1.00 1.05 1.01 1.03



Chapter 5

Concluding Remarks

The main purpose of this work was to investigate and implement the multigrid

method FAS for a immiscible and compressible three-phase black-oil model.

For comparison we have used standard Newton from the MRST framework as a

benchmark for the efficiency of FAS. For the numerical experiments we applied

the quarter-five-spot, SPE10, and a realization of the Olympus model.

5.1 Summary and Conclusions

In this work, we have investigated the applicability of the nonlinear multigrid

method FAS for three-phase subsurface reservoir simulations. To investigate

the method, we have studied three conceptual test cases with immiscible and

compressible black-oil fluids. With the standard Newton solvers for three-phase

flow as a starting point, we have implemented the method in a generic manner.

This will later allow us to incorporate more advanced fluid behavior, reusing

the already proven components of MRST. Our approach, favoring reuse and

81
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generic components, resulted in a semi-global linearization that was bench-

marked against a standard Newton method with global linearization. For both

solvers, we used a state-of-the-art CPR-AMG preconditioner to accelerate the

solution process. The numerical experiments where performed with the quarter-

five-spot, SPE10 and the Olympus model.

We have demonstrated that for the given model equations and problems

considered, FAS outperforms standard Newton in terms of algorithmic effi-

ciency. In the experiments we have also observed that for some cases there

is an alternation between which of Newton and FAS that is the most efficient

for different parts of the simulation. For the tests, both homogeneous and het-

erogeneous permeability fields have been applied. We have also demonstrated

that the FAS method can easily be implemented with already existing solution

methods in MRST as building blocks.

5.2 Further Work

Following this preliminary work for the application of FAS for reservoir simula-

tion, there are several possible avenues for further research. One possible and

natural direction is to extend the method to more advanced flow systems from

MRST. E.g. black-oil flow with dissolution and/or fully compositional problems

containing strong nonlinearities, for which the FAS methodology may prove

beneficial. Further investigation of an hybrid between FAS and standard New-

ton would also be of interest, where one alternate between the two depending

on the state and strength of the nonlinearity of the simulation. Another consid-

eration is systematic benchmarking of different choices for interpolation, re-
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striction, smoothers, and other solver components.

A challenge in working with multigrid methods is finding a proper number

of smoothing steps. This is often not directly addressed in articles on multigrid

methods other than stating what where applied. Since it is critical that the error

is sufficiently smooth, it would be interesting to look further into optimizing the

number of smoothing steps. In addition one could expand the investigation

into other cycle schemes, such as W- and F-cycles. This may further improve

the efficiency of the method.

One could also consider implementing parts of the algorithm in a compiled

language for a more accurate runtime assessment in a parallel environment.

Another consideration could also be to take advantage of the support of parallel

computations on GPU’s with Matlab.
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