


5. The number of particles transferred during communication can be estimated by run-
ning the application until the number of particles transmitted per timestep stabilizes.

6. The brute-force implementation and the cell-linked pair and particle list implemen-
tation should be executed with 1 rank per node, while the cell-linked particle method
should be executed with 1 rank per socket.

Note that the computation models created in this section estimate the compute time in
terms of the most compute intensive method. Hence, there may be some variations in the
accuracy of the models. This is especially true for the cell-linked particle and pair lists
implementation. Here, the modeled subroutine does only represent about % of the com-
pute time of find neighbors, and the remaining methods of t ime_step account for
about % of time_step’s execution time. The methods of t ime_step does not contain
any critical sections. Methods outside of the t ime_step method, however, do contain
critical sections, and may therefore represent significant parts of the execution time once
the bottleneck on find_neighbours is removed. In addition, we need to be able to
execute the application on the thread count and architecture that we would like to model
in order to get accurate results. However, the findings of Sections 5.1.2.1 and 5.1.2.2 may
still be useful as they expose important characteristics about the application and how it per-
forms, not only for the Dambreak problem, but also for other problems. Furthermore, the
communication models include a parameter representing the number of transferred parti-
cles. This parameter is difficult to predict accurately. However, the communication time is
much larger than the computation time as a transfer of 3079 particles (were each particle
is 184B) is needed to exceed a computation time of 0.005s (with the slowest interconnect;
inter-node on EPIC). Hence, we claim that the communication models do not need to be
as accurate as the computation models for the SPH application.

5.4 Parameter Tabels

arch | the architecture that the application executes on.
B | The global width of the tank.

N

interaction radius
Ninreads
find_.neighbors

time_step

H
scale_k
neighbor loop

time_integration

The number of ranks.

If two particles are within each others
interaction radius, a pair is created.

The number of threads.

The most compute intensive method

in the SPH application.

The method where most of the computation
takes place.

The smoothing length, the interaction radius is
determined by this length.

A factor of the interaction radius.

The nested loop that iterates over all
particle combinations.

The method in the SPH application that
iterates through timesteps.
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timestep
SCALE

Nparticles
Npairs

N]oopjter

Ndala
Ndata, equilibrium, SCALE=1
betes

byte Sdata
(67

B

the brute-force implementation

the cell-linked particle
list implementation

the cell-linked particle
and pair lists implementation

stage

the_particles

count

The evolution of the SPH application

is discretized into small units of time
called timestep.

A variable used to change the size of the domain.
The number of particles present in a timestep.
The number of pairs present in a timestep.
The number of iterations of the neighbor
loop during a timestep.

The number of data units transferred
during communication.

The number of data units transferred
when the dam has reach an approximate
equilibrium, at SCALE=1.

The number of bytes transferred during
communication.

The size of the data unit in bytes.

Latency in the Hockney model.
Bandwidth in the Hockney model.

The naive detect neighbor implementation
that examines all particle combinations
for proximity.

Only the nine neighboring buckets are
examined during proximity checks.

The creation of a pair includes a critical section.
Only the nine neighboring buckets

are examined during proximity checks.
No critical section during pair creation.
Pairs across buckets are duplicated.

This term describes the correspondence
between the execution time of
MPI_Sendrecv and

MPI_Ssend. Itis 1 if they are

equal and 2 otherwise.

Can be either count (first stage:

the particle count is transferred)

or the_particles (second stage:

the particles are transferred).

Subscript that denotes the second

stage of the communication

(i.e. particles are transferred).

Subscript that denotes the first stage

of the communication

(i.e. the particles count is transferred).
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Exchanges the halo of each subdomain
border_exchange | in order to accommodate for distributed
memory parallelism.

Sends particles which have moved out
migrate_particles | of this subdomain, and receives particles
which have entered the subdomain.

Table 5.4: SPH Parameter table for chapter 5.
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SCALE
N
rank

N;
width_a
height_a
Ce

Cp
Teoltide
Tpropagate
Tcompute
Tcommunicate

Ttolal
neighbor
o

B
o

Wi
Hg
Wg

Pz

Py
w

Tborder,exchan ge

Tdirection (rank)

T(i,5)

Size of domain: (WIDTH - SCALE) - (HEIGHT - SCALE)
Number of ranks

Rank ID

Number of iterations/time steps

width of domain with scale a

height of domain with scale a

constant approximation of iteration time in collide method
constant approximation of iteration time in propagate method
Time for the collide step

Time for the propagate step

Time for the compute step

Time for the communication step

Time to perform compute and communication steps

Rank of neighbor

Latency

Inverse Bandwidth

Height of local subdomain

Width of local subdomain

Height of global domain

Width of global domain

Number of ranks in the x-direction

Number of ranks in the y-direction

Number of bytes

Time to complete border exchange

Time for rank to complete an exchange with

its neighbor in “direction”

Time for rank i and j to complete an exchange

Table 5.3: LBM Parameter table for chapter 5.
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Chapter

Validation

In order to evaluate the predictive power of our models with regards to scalability, we
run a set of experiments on an architecture not used during development, Archer, the UK
national supercomputer.

Archer consists of 4920 compute nodes, with 64 GB of memory per node. Each node
contains two Intel Xeon 12 core processors, which is a different core density than the ones
already seen in Vilje, EPIC and EPT. For the purpose of validation, this is positive because
the platform has not been a part of the design of the models.

In this chapter, we test the optimal configuration for scalability in terms of threads and
ranks, as recommended by our performance models from Chapter 5. In Section 6.1, we
describe the experiments we performed, and their results. In Section 6.2, we evaluate the
predictive power of our models based on the experimental results.

6.1 Test procedure and results

In order to test our predictions, we ran both our applications with multiple thread/rank
configurations to see if the scalability is predicted by our models.

6.1.1 LBM

In our model, whether worksharing or tasking is faster depends on the architecture. There-
fore, we test Moffatt on a single node on SCALE=20 for both methods. On Archer, this
results in worksharing being slightly faster (0.01s per iteration) than tasking. Based on
this, the following tests are performed with worksharing.

The performance model for LBM indicate that running one rank per socket is the
optimal configuration. To test this, we ran LBM Moffatt on SCALE = 40 on 2, 4, 8
and 16 nodes for two cases. The “good case” has one rank per socket, the “bad case” has
one rank per node. The result is illustrated in Figure 6.1, the baseline is the best result on
two nodes. As predicted, using one rank per socket is optimal.
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8 1 rank per socket

1 rank per node

speedup

#nodes

Figure 6.1: LBM Moffatt speedup with SCALE=40 on Archer.

6.1.2 SPH

Our performance model for SPH indicate that running one rank per node is the optimal
configuration, because the speedup only grows as the thread count increases, and the num-
ber of ranks we can have is bounded by the SCALE parameter. This is tested by running
two variants of SPH, brute force and cell linked list for pairs and particles, on SCALE 1
with 2, 4, 8 and 16 nodes. The result is shown in Figure 6.2. The baseline is the best
result on two nodes. Both variants achieve speedups with one rank per node, indicating
that the sockets are not saturated even with full thread parallelism. The cell list variant is
predictably faster than the brute force variant.

6.2 Evaluation

Through our analysis of the proxy applications, we have achieved a set of performance
models that can predict the characteristics of our proxy applications. The modelled effects
are shown to be accurate, even when running on Archer, which is an architecture outside
of our of testing platforms. We opted not to test any of the communication characteristics
as our analysis indicated that it would not be the dominating effect on this scale.

Latency and Bandwidth heat maps for Archer can be found in Figure C.9 and Figure
C.10, respectively.
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Figure 6.2: SPH speedup with SCALE=1 on Archer.
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Chapter

Conclusion and Future Work

In this thesis we have developed and analyzed two CFD proxy applications in six variants
on four machines. From these we have created performance models of the interactions
between software and hardware which are common between architectures.

We have discovered that the effect of using tasking constructs over worksharing con-
structs for LBM is dependent on the system architecture. We have learned that the LBM
application is memory bound which can lead to diminishing returns in speedup if one rank
per node is used instead of one rank per socket.

In the SPH application we have discovered that models based on the number of loop
iterations, pairs or particles is sufficient to create models which accurately describe the
application behaviour. Surprisingly, the execution time grows predictably with the size of
the problem, even though the dambreak problem starts with an unbalanced work load.

The communication models of both LBM and SPH are similar and their impact is small
compared to the computational models. Both applications only exchange small amounts of
data per iteration. Combined with the fast interconnects on Vilje, EPIC, EPT and Archer,
the applications are well suited for running with large problem sizes on a large number of
cores.

7.1 Future work

There are plenty of interesting ways this work could continue.

Dominguez et al. (2011) describes and evaluates many algorithms for neighbor finding
in SPH. Performance of our proxy application could improve by implementing some their
recommendations.

Replacing the linked lists with arrays in the cell linked list methods would be interest-
ing to investigate, especially in terms of cache performance.

Because the neighbor finding routine in the “cell-linked list for particles and pairs”
method only accounts for about % of the t ime_step method, it would be interesting to
model the other methods of the t ime_step method as well.
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The neighbor finding routine in SPH could be further improved by offloading it to a
GPGPU.

The CUDA version of LBM performs extremely well, and it would be intriguing to
create performance models for it. In the current CUDA version, all data is transferred
back from the GPU for each border exchange. Implementing a CUDA-aware MPI version
of LBM would probably be faster and more efficient, because data can be transferred from
GPU device memory directly to the interconnect (requires GPUDirect) without copying to
host memory first.
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Appendix

Selected Source Code

omp

x = 0; x < N_BUCKETS_X; ++x) {

or (int y = 0; y < N_BUCKETS_Y; ++y) {

4 pair_t* base_pair = &pairs([BID(x, y)];

5 bucket_t+ base_bucket = buckets[BID(x, y)]l;

6 particle_tx base_particle;

7 if (base_bucket != NULL) { //kan kanskje fjernes
8 base_particle = base_bucket->particle;

9 if (base_particle == NULL) {

10 continue;

11 }

12 }

1 else

1 ntinue;

15

16 while (base_bucket != NULL && base_bucket->particle != NULL) {

17 base_particle = base_bucket->particle;

19 int noffsets[8][2] = {

20 {-1, 1}, // Top left
2 {0, 1}, // Top center
2 {1, 1}, // Top right

” {1, 0}, // Right
2 {1, -1}, // Bottom right
» {0, -1}, // Bottom center
26 {-1, -1}, // Bottom left
7 {-1, 0}, // Left

30 for (int 1 = 0; 1 < 9; ++1i) {

31 bucket_t* current_bucket;

32 i (il = @) {

33 current_bucket = base_bucket->next;
34 } else {

35 int bx = x+noffsets[i-1][
36 int by = y+tnoffsets[i-1]][
3 if (bx >= N_BUCKETS_X bx < 0
38 by >= N_BUCKETS_Y by < 0) continue;

1i

0
11;

39 current_bucket =

40 buckets [BID (bx, by)];

41 }

42 while (current_bucket != NULL && current_bucket->particle != NULL) <«
{

43 particle_t* current_particle = current_bucket->particle;
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ble distance_s
pow (base_part
pow (base_part
(distance_squa

if

1f (base_pair
base_pair
base_pair
base_pair
base_pair
base_pair
base_pair
base_pair
base_pair

2 {

base_pair
base_pair
base_pair
base_pair
base_pair
base_pair
base_pair
base_pair
base_pair

0.0;
base_pair
base_pair

}

base_particle
L (1 ==0) {
current_p

}

current_bucket

}
}

base_bucket

base_bucket

quared =

icle->x[0] - current_particle->x[0], 2) +
icle->x[1] - current_particle->x[1], 2);
red <= RADIUSxRADIUS) {

->ip == NULL) {

->i = base_particle->local_idx;

->j = current_particle->local_idx;

->ip = base_particle;

->jp = current_particle;

->r = sqrt (distance_squared) ;

->q = base_pair->r / H;

-—>w = 0.0;

—>dwdx [0] = base_pair->dwdx[1l] = 0.0;
—->next = (pair_t*)malloc(sizeof (pair_t));
—->next->1 = base_particle->local_idx;
->next->j = current_particle->local_idx;

—->next->ip = base_particle;
—->next->Jjp current_particle;

—->next->r = sqrt (distance_squared) ;
->next->q = base_pair->next->r / H;
—>next->w = 0.0;

—>next->dwdx [0] base_pair->next->dwdx[1]

—>next->next NULL;
base_pair->next;

—>interactions++;

article->interactions++;

current_bucket->next;

—->next;

Listing A.1: Create neighbors for the lockless bucket method. The method iterates through all of
the particles in the current bucket (i=0), and then the particles neighboring buckets (i=1..9). A pair is
added to a linked list of pairs if the distance between the particles is lower than the interaction radius.
The interaction attribute of a particle is only updated if the particle belongs to the base bucket. This
is to avoid counting the interaction twice.
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Appendix B

LBM Speedup and Efficiency
graphs
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Figure B.4: Vilje Cylinder speedup and efficiency
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Figure B.6: EPIC Cylinder speedup and efficiency
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Appendix C

Latency and Inverse Bandwidth
Heatmaps
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Figure C.1: Vilje, Latency, 8 Nodes, 16 ranks per node. min:9.750016e-07 max:1.789225e-05
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Figure C.2: VILJE, Beta Inverse, 8 Nodes, 16 ranks per node. min:1.662708e-10 max:3.360967e-
09
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Figure C.3: Vilje, Beta Inverse, 1 Node, 16 ranks per node. min:1.669952e-10 max:6.072257e-10

rank

0 2 4 6 8 10 12 14
rank

Figure C.4: Vilje, Latency, 1 Node, 16 ranks per node. min:7.157778e-07 max:1.521244e-06
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Figure C.5: EPT, Latency, 1 Nodes, 20 ranks per node. min:5.405903e-07 max:1.430154e-06
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Figure C.6: EPT, Beta Inverse, 1 Nodes, 20 ranks per node. min:2.602089¢-10 max:3.849905¢e-10
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Figure C.7: EPIC, Latency, 1 Nodes, 36 ranks per node. min:5.350947e-07 max:2.622306e-06
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Figure C.8: EPIC, Beta Inverse, 1 Nodes, 36 ranks per node. min:2.435713e-10 max:4.464687e-10
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Figure C.9: Archer, Latency, 16 Nodes, 24 ranks per node. min:1.286399¢-06 max:8.888543e-06
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Figure C.10: Archer, Beta Inverse, 16 Nodes, 24 ranks per node.
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