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Problem Description

This study will develop performance models of one or more proxy applications within
the domain of computational fluid dynamics, based on experimental evaluations. Its ob-
jective is to evaluate the predictive power of the resulting models with respect to parallel
scalability, and relate their accuracy to the choice of applied modeling techniques.
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Supervisor: Jan Christian Meyer
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Abstract

In this thesis, we investigate the performance and scalability of two CFD proxy applica-
tions, based on the Lattice Boltzmann Method (LBM) and Smoothed Particle Hydrody-
namics (SPH). Two variants of LBM, workshare and task, are tested on two problems,
Moffatt vortices and Cylinder flow. Three variants of the neighbor finding routine (the
bottleneck of the SPH application) are studied on one problem, Dambreak. All variants
are analyzed on three platforms, Vilje, EPT and EPIC.

We develop performance models, for all variants, that recommend how to achieve good
scalability from the applications, enabling them to run on thousands of cores. This is partly
due to the fact that the cost of communication is very low in both applications, and because
most of the computational steps in both applications can be executed independently.

We validate our results by running the proxy applications on a machine outside of our
testing platforms: ARCHER. There, our models successfully predict that running 1 rank
per socket would be the better alternative for LBM, and that running 1 rank per node would
be the better alternative for the best performing variant of SPH.
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Chapter 1
Introduction

Computational Fluid Dynamics is an important area of research in the industry, particu-
larly in the maritime sector and the oil sector where simulation can reduce time and cost
of developing robust equipment for offshore conditions. However, such applications are
often very complicated and difficult to reason about. An alternative approach is to create
proxy applications, which extract parts of the application that exhibit the essential perfor-
mance characteristics of the real application. By co-designing such proxies together with
CFD domain experts and applying them to known problems, we can develop proxies that
are simple to reason about and analyze, and we can be confident that the data produced by
the proxies adhere to the physical restrictions of the domain.

In this thesis we develop and analyze two CFD proxy applications, LBM and SPH.
Two programming models are investigated for LBM, worksharing and tasking, to under-
stand how load balancing affects performance. For SPH, we examine the impact of three
neighbor finding algorithms. All applications and variants are tested empirically on three
clusters, Vilje, EPIC and EPT. Vilje is a national supercomputer, while EPIC and EPT are
local clusters at NTNU. With these machines, we create performance models based on
software/hardware interactions, which purpose is to predict or approximate the run time
characteristics and scalability of the proxy applications. A fourth supercomputer, Archer
(Edinburgh, UK), is used to validate the performance models.

In Chapter 2, we describe the motivation and scope for this project. In Chapter 3, we
present the fluid dynamics which our applications are based on, the programming models
used, the system architecture of the clusters and relevant performance models. In Chapter
4, we describe our proxy applications and our testing platforms. In Chapter 5, we develop
performance models and present and discuss our findings. In Chapter 6, we validate our
performance models on Archer. In Chapter 7, we summarize our findings and our work.
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Chapter 2
Motivation and Scope

In this chapter, we present our motivation for the different aspects of this project, as well
as the scope of the thesis.

2.1 Application Models

Proxy applications are program samples that extract critical parts of larger systems. Iso-
lating performance critical regions aids in reasoning and analysis of an application’s be-
haviour, as HPC programs often adhere to the phrase “Only as strong as the weakest link”.

In Cicotti et al. (2014), a proxy application for molecular dynamics is developed to
explore the trade-offs of multithreading.

Banerjee et al. (2016) describes a proxy application CMT-bone based on a large mul-
tiphase flow simulator CMT-nek. The proxy’s purpose is to mimic the computational
behaviour of CMT-nek in order to analyze certain performance metrics.

Dickson et al. (2016) presents a proxy application for replicating HPC I/O workloads
to address performance issues.

Karlin et al. (2012) creates multiple variations of a proxy application “LULESH” to
investigate the benefits of different programming models.

Lawson et al. (2015) investigates how dynamic voltage and frequency scaling affects
energy efficiency when code segments are offloaded to a co-processor.

This project features two such proxy applications named after the physical models they
are based on: LBM and SPH. The applications are chosen to highlight how load balance in
a dynamic system (SPH) can affect scalability differently than in a static system (LBM).

2.2 Programming Models

Programming models are techniques for developing on different types of hardware. Thre-
ads on multi core machines share memory, making programming models for shared mem-
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ory parallelism necessary. Servers and supercomputers use multiple processors, each of
which can have their own private memory depending on the architecture.

OMP and MPI are de facto standard models for shared memory programming and
distributed memory programming, respectively. In this work we have used them both to
create hybrid applications capable of running on supercomputers with multiple cores and
processors. By using proven frameworks, this work becomes relevant when discussing
highly scalable CFD applications.

2.3 Computer Architectures
Cluster systems with hybrid memory models are the most popular type of architectures,
according to top500.org (as of June 2018). By utilizing distributed and shared memory
systems, we can create applications that scale incredibly well.

In this thesis, what we refer to as “Computer Architecture” might better be understood
as “System Architecture”, and is used to describe the node configuration of the platforms
we use, e.g Vilje, EPIC, EPT, and ARCHER, all of which are clusters.

2.4 Performance and Communication Models
Supercomputers are expensive and complex machines, but the investment is wasted if the
target application is unable to exploit all of the systems resources. A program could be
memory bound and spending most of its time waiting for IO, making the investment fall
short.

Barker et al. (2009) present a methodology called Performance Modeling. This method
is used to predict the performance of a system, even if the system is not physically avail-
able. In our project we have developed a set of prototypes in the interest of modelling their
performance on large scale systems. Therefore, our use of performance modeling in this
thesis falls under the ”Implementation” life cycle stage.

4
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2.5 Scope
The LBM proxy application originates from a collaboration between PRACE (Partnership
for Advanced Computing in Europe) and the INTERTWinE project. The INTERTWinE
project focuses on programming model interoperability, and the collaboration project fo-
cuses on tasking. In order to do research on different aspects of tasking, a realistic program
implementing task constructs is needed. The design of the LBM program makes it vul-
nerable to load imbalance, as some computational units may be assigned to regions of the
domain where no interactions take place. Hence, it may be a good candidate for task based
programming.

The study of the SPH proxy application is motivated by the ongoing research of fuel
tank design at marine technology, NTNU. The research involves understanding how hor-
izontal sloshing affects the quality of fuel. This program executes for several hours even
on small program sizes making it time consuming to do research.

Both applications are serial programs and therefore not scalable, and scalable pro-
grams in addition to corresponding models will be beneficial for the previously mentioned
projects. The models will aid in understanding how to effectively scale the applications
for larger systems.

With this in mind, we chose to rewrite the programs with MPI and OpenMP to run on
shared and distributed memory hybrid systems, and develop models describing the most
effective way to execute the programs. Our preliminary studies involved: developing task
versions of LBM and SPH, comparing linked list and array versions of the SPH neigh-
bor algorithm, studying different approaches to minimize the executing time of the SPH
neighbor algorithm, comparing mutual exclusion mechanisms in OpenMP and a CUDA
version of the LBM application. At the end, we chose to continue to develop the following
versions.

For the LBM program, we chose to focus on implementing a task model in LBM, and
analyze its effect on a load imbalanced problem. We explore two problem domains: the
Moffatt vortices problem where a complex geometry results in an load imbalance, and the
Cylinder problem where the domain is load balanced. The task implementation of the
Cylinder problem is developed as a control point. The problems are visualized in Figure
2.1 and in Figure 2.2.

For SPH, we chose to investigate the neighbor finding algorithm; the bottleneck of
the program. We study how the algorithm impacts the scalability of the application. One
problem is explored: the Dambreak problem, where a fluid contained in a dam is simulated
when the dam breaks. A visualization of the process is shown in Figure 2.3.
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Figure 2.1: Time evolution of the Moffatt problem on LBM.

Figure 2.2: Time evolution of the Cylinder problem on LBM.

(a) Timestep 0 (b) Timestep 5 200 (c) Timestep 17 000

(d) Timestep 21 000 (e) Timestep 42 200 (f) Timestep 200 000

Figure 2.3: Time evolution of the Dambreak problem on SPH.

6



Chapter 3
Background and Related Work

In this chapter we introduce the theory which our work is based on.
In Section 3.1, we present the physics behind the two CFD applications, LBM and

SPH. In Section 3.2, we introduce the two tools used for parallelism, MPI and OpenMP.
In Section 3.3, the concepts of shared and distributed memory is described. In Section 3.4,
a set of useful performance models are displayed.

3.1 Application Models
In this section we present the physics behind the two CFD applications, LBM and SPH.

3.1.1 Lattice-Boltzmann method
The Lattice-Boltzmann method (LBM) was evolved from the lattice gas model (due to
Hardy et al. (1973)) after Frisch et al. (1986) introduced a Lattice Gas Automata with
Navier-Stokes dynamics. In the lattice gas model the fluid is composed of particles which
can reside at a lattice site. The main difference between the methods is that the Lattice
Boltzmann model replaces the particles with particle densities. McNamara and Zanetti
(1988) shows that this change mitigates the considerable fluctuations which occur in the
lattice gas model.

LBM is used to simulate a system of incompressible fluid by tracking particle density
distributions in a discrete, regular lattice. Particles move to neighboring lattice sites in
every discrete time step according to their velocity and direction. This process is governed
by kinetic rules that conserve mass, momentum and energy.

The choice of lattice structure dictates how particles are allowed to move through the
domain. The naming scheme DmQn describes the lattice structure with m being the num-
ber of dimensions and n being the number of directions. An example for a two dimensional
grid is D2Q9, where a particle can move to any of its eight neighbors or remain at rest,
giving it nine possible densities. D2Q9 is shown in Figure 3.1, and is an example of a
square lattice. D2Q7 (Figure 3.2) is an example of a hexagonal lattice, where each particle

7



e1

e5 e3

e7 e8

e4

e2e6
e0

Figure 3.1: D2Q9
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Figure 3.2: D2Q7
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Figure 3.3: D2Q6

can move in 6 directions or remain at rest. If the rest particle is removed, this becomes a
D2Q6 lattice, as in Figure 3.3.

At each time step, the streaming phase and the collision phase occur. During the
streaming phase, particle densities shift through the domain according to their velocities.
During the collision phase the distribution function fi(x, ξ, t) is computed for every lattice
point, where i is the lattice point index, x is the lattice site, ξ is the velocity and t is the time
step. Density and momentum are macroscopic fluid variables (Chen and Doolen (1998))
and are defined in Equation 3.1 and 3.2, respectively.

ρ =m∫ fi(x, ξ, t)dξ (3.1)

ρv = ∫ ξfi(x, ξ, t)dξ (3.2)

The discrete forms are similar (particle mass assumed to be unit mass m = 1):

ρ =
N

∑
i=0

fi (3.3)
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ρv =
N

∑
i=0

fiei (3.4)

v = 1

ρ

N

∑
i=0

fiei (3.5)

Here, N is the number of lattice velocities and e is the particle velocity. Equation 3.5
derives directly from Equation 3.4. For D2Q6, ei is defined as:

ei =
⎧⎪⎪⎨⎪⎪⎩

(0,0) i = 0

(cos θi ⋅ c, sin θi ⋅ c), θi = (i − 1)π
3
, i = 1,2, ...,5

(3.6)

The lattice Boltzmann equation is defined, for any lattice scheme, as the time evolution
of fi:

fi(x + ei, t +∆t) − fi(x, t) = Ωi(f(x, t)) (3.7)

The left-hand-side of Equation 3.7 covers the streaming phase. Conversely, the right-hand-
side covers the collision phase. The collision phase is complicated and difficult to compute
exactly. Because the LBM method aims to simulate macroscopic dynamics, a relaxation
towards some chosen equilibrium distribution is ideal. Therefore the collision operator Ωi
is approximated by a single-time-relaxation process:

Ωi(f(x, t)) =
feqi (x, t) − fi(x, t)

τ
(3.8)

This relaxation is due to Bhatnagar et al. (1954). Here, the equilibrium distribution is
denoted as feq . 1/τ is the approach rate to equilibrium. Note that Equation 3.8 assumes
no external force. If present, external force is applied to the collision operator. At each
time step, energy and momentum is conserved within the system, and consequently,

∑
i

Ωi = 0

and
∑
i

eiΩi = 0

must be true.

3.1.1.1 Equilibrium Derivation

Chen et al. (1994) define feqi for D2Q7 as Equation 3.9 and feq0 as 3.10.

feqi = ρ(1 − α)
6

+ ρ
3
ei ⋅ v +

2ρ

3
(ei ⋅ v)2 −

ρ

6
v2 (3.9)

feq0 = αρ − ρv2 (3.10)

Equation 3.9 is transformed to D2Q6 by removing the rest particle. This is achieved
by defining the free parameter α as 0, as shown in Equation 3.11. The transformation of
feqi is shown in Equations 3.12-3.15.
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α ∶= 0⇒ feq0 = −ρv2 (3.11)

6

∑
i=0

feqi =
6

∑
i=1

{ρ
6
+ ρ

3
eiv +

2ρ

3
(eiv)2 −

ρ

6
v2} − ρv2 (3.12)

=
6

∑
i=1

{ρ
6
+ ρ

3
eiv +

2ρ

3
(eiv)2 −

ρ

6
v2} −

6

∑
i=1

ρ

6
v2 (3.13)

=
6

∑
i=1

{ρ
6
+ ρ

3
eiv +

2ρ

3
(eiv)2 −

ρ

6
v2 − ρ

6
v2} (3.14)

= ρ
6

6

∑
i=1

{1 + 2 eiv
´¸¶

(*)

+4(eiv)2 − 2v2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(**)

} (3.15)

It is useful to express parts of Equation 3.15 in component form as this makes it easier
to translate to C. See Equations 3.16-3.20.

(*) = ev = exvx + eyvy (3.16)

(**) = 4(exvx + eyvy)2 − 2(v2x + v2y) (3.17)

= 4(e2xv2x + 2exeyvxvy + e2yv2y) − 2(v2x + v2y) (3.18)

= 4e2xv
2
x − 2v2x + 8exeyvxvy + 4e2yv

2
y − 2v2y (3.19)

= 4((e2x −
1

2
)v2x + 2exeyvxvy + (e2y −

1

2
)v2y) (3.20)

3.1.1.2 Boundaries

Boundary conditions are rules for particle interactions with walls in the domain. A com-
mon way to handle this type of interactions is through a bounce back condition. In our
approach, particles moving into solid cells are reflected back in the opposite direction.

3.1.2 Smoothed Particle Hydrodynamics
The Smoothed Particle Hydrodyamics (SPH) method was first introduced by Gingold and
Monaghan (1977) and B. Lucy (1977), who focused on simulating compressible flow prob-
lems in astrophysics. Monaghan (1994) later included a Weakly Compressible SPH ap-
proach (WCSPH), enabling simulation of incompressible free surface flows. This method
considered a fluid incompressible if the deviation in the fluid density was less than 1%.
There are a number of different SPH variations proposed so far. This thesis is based the
work done by Ozbulut et al. (2014), which applies the traditional, basic formulations of
the WCSPH method to the dam-break problem.

The SPH method represents the fluid as a pool of interpolation points called particles,
each having properties such as density, velocity and pressure. The particles are defined as
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small parts of the medium, with finite volume. Each particle interacts with all neighbour-
ing particles within a distance determined by the smoothing length (h). This can be seen in
Figure 3.4. Particle properties are derived as a sum of contributions from each neighbour-
ing particle, weighted by the analytical kernel/weighting function W(R,h). Ozbulut et al.
(2014) uses the kernel function stated in Equation 3.21.

Figure 3.4: The interactions between particles that are closer, are stronger.

W (R,h) = αd

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(3 −R)5 − 6(2 −R)5 + 15(1 −R)5, 0 ≤ R < 1

(3 −R)5 − 6(2 −R)5, 1 ≤ R < 2

(3 −R)5, 2 ≤ R < 3

0, R ≥ 3

(3.21)

R = rij/h (3.22)

In Equation 3.22, rij denotes the magnitude of the distance vector, rij = ri−rj between
a pair of particles. Hence, the equation expresses R in terms of the distance vector rij
between particle i and j, and the smoothing length h. In Equation 3.21, the coefficient αd
is determined by the dimensionality of the problem, αd = 7/(478πh2) for two dimensional
problems.

The WCSPH method links the density to the pressure through Equation 3.23, which
is an artificial equation of state to represent the speed of sound, Ozbulut et al. (2014);
Monaghan and Kos (1999).

p = ρ0c0
2

γ
[( ρ
ρ0

)
γ

− 1], (3.23)

In Equation 3.23, p and ρ are the pressure and density of particles, respectively, c0 is
the reference speed of sound, γ is the specific heat-ratio and ρ0 is the reference density.
γ=7 for water, and ρ0=100[kg/m3] for fresh water. By Equation 3.23, a small change
in density of the fluid particles will result in a large change in the pressure. To fulfill
the incompressiblity condition, the value of c0 must be large enough to keep the density
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fluctuations small ( 1%). Moreover, c0 has a direct effect on the allowed time-step though
the Courant-Friedrichs-Lewy (CFL) condition, the larger the value of c0, the smaller the
value of the allowed time step. In order to minimize the overall computation cost, the value
of c0 should be as small as possible while still maintaining the incompressibility condition.
In our dam-break simulation, c0=50 [m/s] as suggested by Ozbulut et al. (2014).

If we disregard the artificial viscosity term, the SPH method in Ozbulut et al. (2014)
discretizes the Euler’s equation of motion and the mass conservation as in Equations 3.24
and 3.25.

dui

dt
= −

N

∑
j=1

( pi
ρi2

+
pj

ρj2
)∇iWij (3.24)

dρi
dt

= ρi
N

∑
j=1

mj

ρj
(ui − uj) ⋅ ∇iWij (3.25)

In Equations 3.24 and 3.25, ui and uj are the velocities of particle i and j, respectively, and
∇i is the gradient operator where i indicates the evaluation point of the spatial derivative
at particle position i. mj in Equation 3.25 is the mass of particle j.

3.1.2.1 Boundary Conditions

In order to achieve physically meaningful results, the solid wall boundary condition needs
to be taken into account. In this thesis, we follow the model used in Ozbulut et al. (2014),
which utilizes a mirroring technique with ghost particles. Here, ghost particles are created
by mirroring the fluid particles lying within a vertical distance of 1.55h from the solid
boundary, and thereby producing particles lying outside the fluid domain. The particles
are mirrored about the solid wall. A boundary condition is implemented to determine the
field variables (e.g. velocity and pressure) of the ghost particles. Ozbulut et al. (2014) uses
the Neumann boundary condition. In the Neumann boundary condition, the field variables
of the ghost particles are the same as for the corresponding fluid particles. Hence, Λg = Λf ,
where Λg and Λf are the field variables of the ghost and fluid particles, respectively, when
considering the same fluid variable in both cases.

3.1.2.2 Time Integration

Ozbulut et al. (2014) represents the time integration as a predictor-corrector pattern where
the position, density and velocity of a particle is updated as in Equations 3.26, 3.27 and
3.28, respectively.

dri
dt

= ui (3.26)

dρi
dt

= ki (3.27)

dui

dt
= ai (3.28)
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In Equation 3.26, ri is the position of particle i, in Equation 3.27, ki represents Equa-
tion 3.25 and in Equation 3.28, ai is the acceleration of particle i.

The time integration is performed in two steps, a prediction step and a correction step.
During the prediction step, the positions and densities of the particles are updated by Equa-
tions 3.29 and 3.30, respectively.

ri
n+1/2 = ri

n + 0.5ui
n∆t (3.29)

ρi
n+1/2 = ρin + 0.5ki

n∆t (3.30)

Utilizing these intermediate density values, the pressures of the particles are updated by
Equation 3.23. Similarly, the velocities of the particles are calculated with the acceleration
values computed in the prediction step.

In the correction step, the positions and densities of the particles are updated using the
corresponding intermediate values by Equations 3.31 and 3.32.

ri
n+1 = ri

n+1/2 + 0.5ui
n+1∆t (3.31)

ρi
n+1 = ρin+1/2 + 0.5ki

n+1∆t (3.32)

3.1.2.3 Density Correction Algorithm

In order to keep the pressure fields from oscillating at a high rate because of noise, Ozbulut
et al. (2014) includes a density correction algorithm. This is presented in Equation 3.33.

ρ̂i = ρi − σ
∑Nj=1(ρi − ρj)Wij

∑Nj=1Wij

(3.33)

In Equation 3.33, N denotes the number of particles that are neighbors of particle i,
ρ denotes a constant and ρ̂ denotes the corrected density. Following the work of Ozbulut
et al. (2014), ρ=1.

3.2 Programming Models
In this section we describe two programming models: MPI and OpenMP.

3.2.1 MPI
Message-Passing Interface (referred to as MPI) is an API for developing parallel software
targeting distributed memory architectures. A process is an instance of a process con-
trol block and is spawned by the operating system when an application is started. Each
block is associated with a private address space to avoid being disrupted by other pro-
cesses. Message-passing is used to enable communication between processes, as data can
be transferred between private memory by sending and receiving messages.

When a program is launched by submitting
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MPI_COMM_WORLD

rank 0

rank 1

rank 2 

rank 3

rank 4
rank 5

my_communicator

rank 0 rank 1

rank 5 rank 3 rank 4

rank 2 

Figure 3.5: MPI Communicators. “my communicator” is a communicator created with
MPI Cart create and has a two-dimensional topology.

$ ./my_program

in the command line, a single process is spawned to manage the program. Using MPI, we
can spawn multiple processes like this

$ mpirun ./my_program

The number of processes spawned is called size and each process is given a unique id,
called rank, between 0 and size−1.

All communication in MPI takes place inside a communicator. All processes are part
of the default communicator MPI COMM WORLD, which is initiated when the program
calls MPI Init. All transfer-functions must include a communicator to specify which
“universe” the communication occurs in. It is possible to create application specific com-
municators with topology information attached. MPI Cart create can be used to ini-
tiate a two-dimensional array of processes. MPI will provide all ranks with coordinates
which can be retrieved with the function MPI Cart coords. This is useful for appli-
cations where communication primarily takes place between neighbors. Two example
communicators are shown in Figure 3.5.

The transfer operations of MPI fall into two categories, point-to-point operations and
collective operations. Point-to-point operations involve two ranks, examples are MPI Send
and MPI Recv. Collective operations involve all ranks in a communicator, examples are
MPI Reduce and MPI Broadcast.

One useful point-to-point function is MPI Sendrecv. Standard send and receive
operations can be blocking (depending on the implementation) and must be scheduled to
avoid the scenario where both ranks are sending and none are receiving. Sendrecv will
take care of the scheduling so that deadlocks are avoided.

Latency is the constant delay that occurs each time a message is sent and is caused by
the overhead getting a message ready before it is submitted. Therefore it is cheaper to send
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#pragma omp parallel 
thread 0

thread 1

thread 2

Structured block

Figure 3.6: #pragma omp parallel spawns multiple threads to execute a stuctured block.
Threads are joined after the structured block (also known as a synchronization point) is completed
by all threads

all the data in one large message than to send many smaller messages. MPI provides tools
for combining multiple elements into singular MPI datatypes, known as derived datatypes.
In Listing 3.1 we see an example of a derived datatype. MPI Type vector is used to
define a datatype representing columns in a two dimensional array.

1 int data[10][20];
2 MPI_Datatype column_type;
3 MPI_Type_vector(10, 1, 20, MPI_INT, &column_type);
4 MPI_Type_commit(&column_type);

Listing 3.1: MPI Derived Types. The data array has a column size of 10. The column type can be
used in all types of communication.

3.2.2 OpenMP
OpenMP is an API for developing parallel software with a shared memory architecture, for
example within the nodes of a cluster. A higher throughput can be achieved by utilizing all
available cores in a multi-core architecture and OMP provides us with useful abstractions
for running threads on such cores. In this section we describe the OpenMP for loop, which
is often referred to as a worksharing construct, and the OpenMP task, which is often
referred to as a tasking construct.

OMP enables parallelism through compiler directives known as pragmas, which work
on structured blocks of code. For example, the function foo() can be executed by mul-
tiple threads in the following way:

#pragma omp parallel
foo();

The event is pictured in Figure 3.6. In this example the number of threads is determined
by the environment variable OMP NUM THREADS. If the variable is unset, the number of
threads is defined by the OpenMP implementation.

Parallelizing a loop is done by adding a similar directive:
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#pragma omp parallel for
for (int i = 0; i < N; i++) {...}

The work of the loop is evenly divided among the threads, so each thread will perform N/T
iterations, where T is the number of threads. This method is referred to as worksharing.

Usage of parallel for is limited to for loops which adhere to canonical form1.
OpenMP must be able to determine the number of iterations from the for statement, and
therefore no break can occur in the body of the loop. This makes work-sharing constructs
unsuitable for applications with irregular memory access patterns, such as traversing and
processing nodes of a linked list.

The task construct covers the need for parallel execution of regions with unknown size.
The following directive declares foo() as a task ready to be executed by a thread.

#pragma omp task
foo();

A common pattern is to use tasks in conjunction with the single directive, as shown
in Listing 3.2. One thread creates tasks while the others execute tasks as they are made
available. The task generating thread will join the others in completing tasks after all
tasks have been generated. The threads that are not generating tasks will be waiting at the
implicit barrier on line 10 before they start executing tasks.

1 #pragma omp parallel
2 #pragma omp single nowait
3 {
4 node* p = linked_list_head;
5 while (p) {
6 #pragma omp task
7 foo(p);
8 p=p->next;
9 }

10 } // Implicit barrier at the end of parallel region

Listing 3.2: Linked list iteration with OpenMP tasks.

Tasks can also be used to execute loops in parallel by prepending the taskloop construct
to the loop, which is the task counterpart of omp parallel for. A single thread will
create tasks of the loop iterations, and the others will execute them.

#pragma omp parallel
#pragma omp single
#pragma omp taskloop
for (int i = 0; i < N; i++) {...}

3.2.2.1 Mutual Exclusion

Race conditions occur when multiple threads are working on the same memory address
and at least one thread is writing. Access to such regions of memory must be serialized
to avoid non-deterministic bugs. OpenMP provides three mechanisms for ensuring mutual
exclusion: critical, atomic and locks.

1OpenMP Architecture Review Board (2015), p. 53
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#pragma omp critical ensures that a structured block of code can only be en-
tered by at most one thread simultaneously.

#pragma omp atomic makes use of hardware instructions for updating memory
in a single instruction. This can only be used on load/store expressions, but is potentially
faster than critical sections.

Locks are invoked with OpenMP library functions and are more general that the pre-
viously mentioned alternatives. They allow for fine grained control over memory access
and are useful when locking parts of an array. In Listing 3.3, the array secret can be
accessed simultaneously because each index has its own lock, so no thread will update the
same memory address.

1 int secret[10] = {0};
2 omp_lock_t lock[10];
3 for (int i = 0; i < 10; i++) { omp_init_lock(&(lock[i])); }
4 #pragma omp parallel for
5 for (int i = 0; i < N; i++) {
6 if (isPrime(i)) {
7 digit = i%10
8 omp_set_lock(&(lock[digit]));
9 secret[digit]++;

10 omp_unset_lock(&(lock[digit]));
11 }
12 }

Listing 3.3: OpenMP Locks makes it possible to update elements of the array without placing the
entire memory region in a critical section.

3.2.3 OpenMP MPI Hybrids

Using MPI and OpenMP in conjuction enables us to exploit clusters where distributed
nodes have private memory and the cores within the nodes share memory. In Rabenseifner
(2003), the author describes different strategies for hybrid programming, with pure MPI
and pure OpenMP at each their ends for the spectrum. In between we find Hybrid mas-
teronly, where all calls to MPI are made outside parallel regions. The article highlight two
drawbacks with Hybrid masteronly: The first is being that most threads are idle during
the communication phase, except for the master thread. The second is that one thread
will struggle to saturate the interconnect when sending messages. However, the master
only approach is easier to program compared to overlapping communication with many
threads, which, according to the author, “needs extreme programming effort”.

3.3 Computer Architectures
In this section, we describe some useful classifications of computer architectures.

The von Neumann architecture was one of the earliest computer architectures ever
proposed. It consists of a memory unit, CPU and an interconnection connecting the two.
The main memory contains both data and instructions which must be fetched by the CPU.

In terms of Flynn’s taxonomy (introduced in Flynn (1966)), a von Neumann machine
fits into the category SISD, single instruction single data because only a single instruction
can be executed at a time, and only a single data element can be fetched or stored at a time.
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Figure 3.7: Illustration of a shared-memory system

Most modern architectures are MIMD systems, multiple instruction multiple data. Off-
the-shelf desktop systems have multi-core processors which execute hundreds of processes
seemingly simultaneously through multitasking, all potentially working on different data
streams. The processors in a MIMD system are self contained and can execute instructions
independently of each other.

MIMD systems use either shared memory, distributed memory or a hybrid of both. In
shared memory systems the compute units can access all memory, while compute units in
distributed memory systems only has access to private memory. In hybrid systems there
are individual nodes of shared memory, connected by a network forming a distributed
systems. Illustrations of shared, distributed and hybrid memory systems are shown in
Figure 3.7, Figure 3.8 and Figure 3.9, respectively.

SPMD, single program multiple data, is a subcategory of MIMD which is relevant for
MPI programs. As mentioned in Section 3.2.1, MPI spawns multiple processes from one
program binary. Parallelism is achieved by branching on the rank and size attributes,
and further by using threads to share work or tasks.

3.4 Performance Models
In this section we describe some useful communication and performance models.

3.4.1 Communication Models
3.4.1.1 Hockney

A kernel running on a distributed memory architecture will require some form of commu-
nication. The Hockney model, described in Lastovetsky et al. (2010), is used to approx-
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Figure 3.8: Illustration of a distributed memory system

Figure 3.9: Illustration of a hybrid memory system
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imate the time needed for message transmissions. The communication time for a single
message can be decomposed into its start-up time or latency α and its transfer time or
bandwidth β, see Equation 3.34. The latency is the time required for packing and unpack-
ing the data (Wilkinson (2005)), as well as the overhead in establishing a communication
channel. This value will stay close to constant during the lifetime of a kernel, and can be
approximated by sending messages with no data. The bandwidth is the time required for
sending a single data element (usually a byte) multiplied by the number of data elements
M. The total communication time is the sum of the individual communication times, as
seen in Equation 3.35.

tcomm,i = α +Miβ (3.34)

tcomm =
N

∑
i=1

tcomm,i (3.35)

The Heterogeneous Hockney model defined in Lastovetsky et al. (2010) distinguishes
processors and links that are distinct, by introducing different parameters αij and βij for
different processor pairs (i,j). Hence, the parameters α and β can be organized as p × p
matrices, where p is the number of processors.

3.4.1.2 BSP

The Bulk-Synchronous Parallel model (BSP) is a bridging model between software and
hardware for parallel computation proposed by Valiant (1990). It aims to be a universal
standard, and consists of three attributes: a set of processor or memory components, a
router delivering point-to-point messages, and a synchronization functionality for periodic
synchronization of one or a subset of the components. A computation consists of a se-
quence of supersteps. During a superstep, each component performs local computation
and communicates with the other components through sending and receiving messages as
shown in Figure 3.10. Each component can only send or receive a maximum of h mes-
sages within a superstep. This communication pattern is called a h-relation. The barrier
synchronization concludes the superstep. In Valiant (1990), a global check is performed
after L time units to determine if a superstep is completed. In the case of completion, the
machine proceeds to the next superstep. Otherwise, the machine allocates L additional
time units to the unfinished superstep.

3.4.1.3 LogP

The LogP model is a communication model developed by Culler (1993) in which the pro-
cessors communicate though point-to-point messages. The model characterizes a parallel
machine through four main parameters; the processor/memory module count (P), an upper
bound on the communication latency during a transmission of a small word (or a few small
words) (L), the communication overhead during transmission or reception of a message
(o), and the gap defined as the time duration between successive message transmissions or
successive message receptions (g). Moreover, the model assumes that the network has a
finite capacity of ⌈L

g
⌉.
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Figure 3.10: A superstep in the BSP model.

The time duration of a point-to-point message transmission can be estimated as L+2o.
Furthermore, Lastovetsky et al. (2010) presents the transmission of a large message as
consecutive transmissions of small messages as described in Equation 3.36. The term M
in Equation 3.36 is the number of small messages. Note that Equation 3.36 assumes that
g >= o. A visualization of Equation 3.36 is shown in Figure 3.11.

l + 2o + (M − 1)g (3.36)

There are several extensions to the LogP model. Alexandrov et al. (1997) introduces
the LogGP model where messages can be of an arbitrary size through the inclusion of a
gap per byte parameter. Kielmann et al. (2000) describes a parameterized LogP model
(PlogP) where some of the parameters are piecewise linear functions of the message size
and the meaning of the parameters differ slightly from those in LogP.

3.4.2 Computation Models
3.4.2.1 Roofline

Kernel performance is constrained by the hardware that executes it. Depending on the
memory access pattern, a kernel is either compute-bound or memory-bound. Kernels that
rarely load/store data and spend most of their time operating on data are compute-bound.
Inversely, kernels that spend most of their time waiting for memory will stall the CPU and
are therefore memory-bound. The Roofline model, introduced in Williams et al. (2009),
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Figure 3.11: Consecutive message transmissions with the LogP model.
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Figure 3.12: Roofline Visual Model

models the performance of kernels, highlighting whether the kernel is memory or compute
bound. The Roofline model consists of a flat ceiling indicating peak floating-point perfor-
mance, and a skewed ceiling indicating peak memory bandwidth. An example can be seen
in Figure 3.12. The graph is based on Equation 3.37. The term operational intensity is
defined as operations per byte of DRAM traffic. That is, the number of flops that we are
able to execute per byte that is loaded from memory.

Attainable
GFlops/sec = min( Peak Floating-Point

Performance
,

Peak Memory
Bandwidth

× Operational
Intensity )

(3.37)
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COPY: a(i) = b(i)
SCALE: a(i) = q ⋅ b(i)

SUM: a(i) = b(i) + c(i)
TRIAD: a(i) = b(i) + q ⋅ c(i)

Table 3.1: The four kernels of STREAM

3.4.2.2 Dgemm

dgemm is part of the level 3 Basic Linear Algebra Subprograms (BLAS), as described by
Dongarra et al. (1990). It performs a “double general matrix matrix multiply”, to solve
Equation 3.38. In Equation 3.38, A, B and C are matrices, while α and β are scalars.

C = αAB + βC (3.38)

dgemm is useful for establishing peak floating point performance on a system as it is
commonly used in scientific computing.

3.4.2.3 STREAM

STREAM is a benchmark proposed by McCalpin (1995) that is used to measure memory
bandwidth. It does so by computing four vector operations, as shown in Table 3.1.

The data rate for an operation can be retrieved by counting the number of bytes loaded
per operation and dividing it by the execution time of the operation.

3.4.3 Scalability
In this section, we present some concepts that are useful when discussing parallel scala-
bility.

3.4.3.1 Speedup and Parallel Efficiency

The terms speedup and efficiency are useful when discussing the scalability of a program.
Pacheco (2011) defines the speedup S as the execution time of a serial program divided by
the execution time of the program in parallel as presented in Equation 3.39.

S = Tserial
Tparallel

(3.39)

If a parallel program is run on p cores, the optimal value of speedup is p, meaning that
a program being executed on p cores will be p times faster than a serial program. This
is called linear speedup, and happens when all work is divided equally among the cores,
without any added work being introduced as a result of the cores running together. In
practice, however, linear speedup is unlikely. The overhead of running multiple cores in
parallel is significant. Furthermore, this overhead often increases as the number of cores
being exploited increases, resulting in a decrease in speedup per core. This notion of
speedup per core is called efficiency. Given Equation 3.39, the efficiency E of a program
can be presented as in Equation 3.40.
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E = S
p
= Tserial
p ⋅ Tparallel

(3.40)

3.4.3.2 Amdahl’s Law

In Amdahl (1967), Gene Amdahl presented an observation that was later known as Am-
dahl’s law. Amdahl’s law is often used to determine the theoretical speedup when using
several processors. It states that, unless the entire program can be perfectly parallelized,
the speedup will be limited regardless of the number of processors being used.

The overall parallel execution time, Tparallel, can be formulated as shown in Equation
3.41.

Tparallel = f ⋅
Tserial
s

+ (1 − f) ⋅ Tserial (3.41)

In Equation 3.41, f is the fraction of the serial execution time that can be parallelized,
s is this part’s speedup, and Tserial is the execution time of the inherently serial part of
the program. If the parallel part can be perfectly parallelized, s can be replaced by p, the
number of cores being used. This is shown in Equation 3.42.

Tparallel = f ⋅
Tserial
p

+ (1 − f) ⋅ Tserial (3.42)

Given, Equations 3.41 and 3.39, the theoretical speedup can be presented as in Equa-
tion 3.43.

S = 1
f
s
+ (1 − f)

(3.43)

Equation 3.43 shows that the speedup will always be limited by the non-parallelizable
part. Hence, even if the parallel part can be perfectly parallelized as in Equation 3.42, the
speedup will always be S <= 1

1−f
.

In Gustafson (1988) (Gustafson’s law), the author reevaluates Amdahl’s law to take
problem size into the consideration. The serial fraction of a program tends to decrease as
the problem size increases.
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Chapter 4
Methodology

This chapter describes our implementation of two proxy applications. Both applications
use a similar structure to the one depicted in Figure 4.1. The initialization step consists
of allocating memory and distributing the domain across ranks. The latter is necessary
because the programs are parallelized using MPI, and each rank will only perform com-
putation on its own subdomain. The time integration step is the main loop of the program,
where time is discretized into time steps. Each time step consists of computation and com-
munication, with IO occuring periodically. The computation is parallelized with OpenMP.
During the finalize step, memory is deallocated.

Both applications are OpenMP + MPI hybrids, using the masteronly strategy described
in Section 3.2.3. Because each time step consists of computation and communication, the
applications follow the BSP model, as described in Section 3.4.1.2

The rest of the chapter is structured as follows: In Section 4.1 we show our LBM
application which simulates fluid flowing through a channel with a wedge. In Section
4.2 we present our SPH application which simulates a fluid released from a rectangular
starting position. In Section 4.3, we discuss the platforms Vilje, EPIC and EPT.

Note that the iterations of the outer loop of SPH are referred to as time steps, and that
the iterations of the outer loop of LBM are referred to as iters/iterations/time steps.

Initialize

Time Integration

Finalize

Computation

Communication

Figure 4.1: General execution pattern for LBM and SPH
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Figure 4.2: The lifecycle of the LBM application

4.1 LBM

This section describes the test problems, as well as our implementation of the time integra-
tion routine in the LBM application. Its structure can be seen in Figure 4.2. The program
is based on the D2Q6 model: The problem domain is a two dimensional grid where each
element is a lattice point. A lattice point is a structure containing six densities and two
velocities. The grid is distributed over a two dimensional set of processing units (ranks)
using MPI.

The geometry of the domain is specified with a boolean ghost map, where a value of
’1’ indicates a solid point, and ’0’ indicates a liquid lattice point. No computation takes
place on a solid point, and the ghost map makes it simple to evaluate a lattice site.

The size of the domain is decided by a parameter SCALE. The width and height of the
domain is decided by Equations 4.1 and 4.2, respectively.

WIDTH = 300 ⋅ SCALE (4.1)
HEIGHT = 300 ⋅ SCALE (4.2)

Both the collision and the propagation step are parallelized at the thread level with
OMP. As the bulk of the work is done in loops, they are particularly easy to modify with
the omp parallel for pragma or the omp taskloop pragma.

4.1.1 Moffatt Vortices and The Cylinder Problem

LBM is developed and tested with two geometries; the Moffatt problem and the Cylinder
problem.

When water flows in a straight channel with a wedge where the angle of the wedge is
less than 146°, Moffatt vortices will begin to form as described by Moffatt (1964). This is
depicted in Figure 2.1.

The Cylinder problem describes flow through a straight channel with a cylinder placed
in the middle. This is depicted in Figure 2.2.
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4.1.2 Implementation
4.1.2.1 Collision

The collision method iterates over every lattice point in the subdomain and performs local
computations on particle velocities and densities for the next time step. A lattice only in-
teracts with it’s neighbors, making the program similar to a classic stencil application (see
dwarf number five in Asanović et al. (2006) for more information about stencil applica-
tions).

Lattice point velocity v Velocity is determined by applying Equation 3.5 at every lattice
point, as shown in Listing 4.1. The density ρ and the sum of fiei is computed at lines 4-9,
and the velocity v is computed at lines 11-12.

1 /* Compute velocity unless lattice site is a ghost */
2 if ( ! ghost[GY(y)][GX(x)] )
3 {
4 for ( int i=0; i<6; i++ )
5 {
6 rho += lattice[LIB(x, y)].density[i][NOW];
7 lattice[LIB(x, y)].velocity[0] += c[i][0] * lattice[LIB(x, y)].density[i][:

NOW];
8 lattice[LIB(x, y)].velocity[1] += c[i][1] * lattice[LIB(x, y)].density[i][:

NOW];
9 }

10 /* rho*u = sum_i( Ni*ci ), so divide by rho to find u: */
11 lattice[LIB(x, y)].velocity[0] /= rho;
12 lattice[LIB(x, y)].velocity[1] /= rho;
13 }

Listing 4.1: The velocity is computed at non-ghost points. Note that there are six particle densities,
hence the inner loop.

Equilibrium distribution feqi The equilibrium function introduced in Equation 3.15
has many components and is therefore split into three parts, see Listing 4.2 The variable
qi uaub contains the result of Equation 3.20 (divided by four), while uc contains the
result of Equation 3.16. feqi is stored in the variable N eq.

1 for ( int i=0; i<6; i++ )
2 {
3 float qi_uaub, N_eq, delta_N;
4 qi_uaub =
5 ( c[i][1] * c[i][1] - 0.25 ) * lattice[LIB(x, y)].velocity[1] * lattice[LIB:

(x, y)].velocity[1] +
6 ( c[i][1] * c[i][0] ) * lattice[LIB(x, y)].velocity[1] * lattice[LIB(:

x, y)].velocity[0] +
7 ( c[i][0] * c[i][1] ) * lattice[LIB(x, y)].velocity[0] * lattice[LIB(:

x, y)].velocity[1] +
8 ( c[i][0] * c[i][0] - 0.25 ) * lattice[LIB(x, y)].velocity[0] * lattice[LIB:

(x, y)].velocity[0];
9 uc = lattice[LIB(x, y)].velocity[0] * c[i][0] + lattice[LIB(x, y)].velocity[1] :

* c[i][1];
10

11 // Equilibrium
12 N_eq = ( rho / 6.0 ) * ( 1.0 + 2.0 * uc + 4.0 * qi_uaub );

Listing 4.2: The Equilibrium Distribution
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Collision Operator Ωi(f(x, t)) With the Equilibrium function computed, we can de-
termine the result of the collision step as shown in Listing 4.3. delta N holds the result
of Equation 3.8. LAMBDA is defined to be −1.

External force is applied at lines 4-5 to emulate a pump pushing fluid into the domain
from west. At lines 8-11, the particle density of the lattice points are set to be the collision
operator plus the external force.

1 delta_N = LAMBDA * ( lattice[LIB(x, y)].density[i][NOW] - N_eq );
2

3 // Apply external force at one end of the domain
4 if ( FORCE_COND )
5 delta_N += (1.0/3.0) * (c[i][0]*force[0] + c[i][1]*force[1]);
6

7 // Reflections at ghosts
8 if( ! ghost[GY(y)][GX(x)] )
9 lattice[LIB(x, y)].density[i][NEXT] = lattice[LIB(x, y)].density[i][NOW] + :

delta_N;
10 else
11 lattice[LIB(x, y)].density[(i+3)%6][NEXT] = lattice[LIB(x, y)].density[i][NOW];

Listing 4.3: The last piece of the collision step. The densities at ghost sites are mirrored back into
the domain, emulating a bounce-back condition.

4.1.2.2 Border Exchange

The edges of a subdomain must be transferred to the neighboring ranks before the propa-
gation step can begin. All ranks must create ’halos’, which purpose is to store the neigh-
boring lattice sites. The halos are updated every iteration. To minimize the amount of
required messages, row and column types are created in MPI. These are contiguous mem-
ory types which enable us to send a halo as a single message, keeping the overhead of
communication low. The process is shown in Listing 4.4.

The corner element of the subdomain must also be communicated for the simulation
to be correct. This is done by sending the vertical borders first. The horizontal borders are
sent only after the vertical exchange have completed. The horizontal border must include
the halo element on both sides to ensure that corner elements are transferred diagonally.
Note that this process incurs a cost in the form of two implicit synchronizations, while
sending corners individually would only result in one synchronization after all the mes-
sages have been dispatched. The process is depicted in Figure 4.3.

4.1.2.3 Propagate

The propagate method iterates over all lattice sites and transfers the new density of a lattice
point out to its six neighbors. This is the opposite of traditional stencil applications, where
the value of a point is decided by a function of its neighbors. This is why the halos must
be exchanged before propagation can occur. The primary usage of the halos is to influence
the local lattice sites, not vice versa. The method is shown in Listing 4.5.

1 void propagate ( void ) {
2 for( int y=0; y<local_grid_height_halo; y++ ) {
3 for( int x=0; x<local_grid_width_halo; x++ ) {
4 for( int i=0; i<6; i++ ) {
5 int n_x = local_neighbor_x(y, x, i);
6 int n_y = local_neighbor_y(y, i);
7
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(a) Before the exchange. (b) After column exchange.

(c) After the row exchange

Figure 4.3: LBM Border Exchange. The data elements are colored to illustrate which rank they
originate from. The outermost regions represents the halos. Notice that the corners are successfully
transferred diagonally.

1 void border_exchange() {
2 MPI_Sendrecv (
3 &lattice[LI(local_grid_width_halo-2, 1)], 1, border_col, east, 0,
4 &lattice[LI(0, 1)], 1, border_col, west, 0,
5 MPI_COMM_WORLD, MPI_STATUS_IGNORE
6 );
7

8 MPI_Sendrecv (
9 &lattice[LI(1, 1)], 1, border_col, west, 1,

10 &lattice[LI(local_grid_width_halo-1, 1)], 1, border_col, east, 1,
11 MPI_COMM_WORLD, MPI_STATUS_IGNORE
12 );
13

14 MPI_Sendrecv (
15 &lattice[LI(0, 1)], 1, border_row, north, 0,
16 &lattice[LI(0, local_grid_height_halo-1)], 1, border_row, south, 0,
17 MPI_COMM_WORLD, MPI_STATUS_IGNORE
18 );
19 MPI_Sendrecv (
20 &lattice[LI(0, local_grid_height_halo-2)], 1, border_row, south, 0,
21 &lattice[LI(0, 0)], 1, border_row, north, 0,
22 MPI_COMM_WORLD, MPI_STATUS_IGNORE
23 );
24 }

Listing 4.4: Border Exchange in LBM
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8 if (n_x <= -1 || n_y <= -1 || n_x >= local_grid_width_halo || n_y :
>= local_grid_height_halo) {

9 continue;
10 }
11

12 lattice[LI(n_x, n_y)].density[i][NOW] = lattice[LI(x, y)].density[i:
][NEXT];

13 }
14 }
15 }
16 }

Listing 4.5: The propagation step of LBM

4.2 SPH
This section describes the CFD problem, Dambreak, that our program computes, and our
implementation of the time integration routine in the SPH application.

4.2.1 Dam Break
The initial geometry of the simulated fluid is a box representing a dam, as shown in the
dark red region of Figure 4.5. The dam will immediately begin to collapse on itself as
there is no solid wall on the east side of the dam, creating an event called dam break.

The dam can be scaled by adjusting the parameter SCALE. Because the dam is in two
dimensions, a linear increase of the SCALE parameter will result in a quadratic increase
of the area of the dam.

4.2.2 Implementation
Each time step in Time Integration can be broken into 5 parts: particle preparation, gen-
erating virtual particles, neighbor exchanging, node local physics, and particle migration.
An overview can be found in Figure 4.4.

All particles are stored in a hash map to avoid array fragmentation when particles move
to other ranks. At the particle preparation step, particles are copied from the hash map into
a contiguous array, which makes it easier to iterate through the elements.

Virtual particles are generated for every particle close to a wall. These virtual particles
mimick the actual particles and provide a bounce back effect when particles hit the wall.

In ’Border Exchange’ the halo of each rank is sent to its neighbors. A halo is a set of
particles (including virtual particles) which interaction radius (cf. Section 3.1.2) overlaps
with a subdomain border. As such, all ranks must send and receive both to their left
and their right neighbor. The exception is the leftmost and rightmost ranks, which has a
maximum of one neighbor. The concept is illustrated in Figure 4.6. For simplicity, only
the halos of the purple region is shown.

The border exchange routine executes a total of four message exchanges per rank.
First, the ranks need to communicate the number of particles they intend to send to their
neighbors. This enables the ranks to allocate space for their receive buffers. Rank n will
send particle counts to n-1 and n+1 and likewise receive particle counts from n-1 and n+1.
This accounts for the first two exchanges.
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Figure 4.4: The lifecycle of the SPH application
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Figure 4.5: The scaling of the dam size.
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Figure 4.6: The halo of a subdomain contains a copy of the nearby particles of the neighbouring
subdomains.

Then, the ranks prepare their send buffers so that the emigrating particles reside in con-
tiguous memory. This memory is then sent to the neighboring ranks with two messages.
The halo particles received from other ranks are referred to as mirror particles.

After borders have been exchanged, the particle dynamics are computed. First, we
need to determine which particles interact. This is the main objective for the find nei-
ghbors routine. This routine is the subject of much of our later analysis and is therefore
described in detail in Section 4.2.2.1. The output of find neighbors is a list of par-
ticle pairs. The routines kernel, cont density, correction, int force and
ext force all operate on the pairs, resulting in updated particles positions.

After the physical properties of the particles have been updated, they are written back
to the hash map of the subdomain. Particles that have moved outside of the subdomain are
now migrated to neighboring ranks.

4.2.2.1 Finding Neighbors

This Section describes three methods for finding neighbors: brute force, particle cell-
linked list and pair/particle cell-linked list. Within these, thread parallelism is imple-
mented with worksharing.

Brute Force The brute force method, as seen in Listing 4.6, checks the euclidean dis-
tance between every possible pair of particles. A new pair is created if the distance is
within the interaction radius. All pairs are assigned a unique index kk, and this index
must be updated atomically to avoid race conditions in the thread pool. Furthermore, each
particle tracks the number of interactions it is part of at any given iteration. This number
must also be updated atomically, as multiple threads can operate on the same particle si-
multaneously. The cost of updating the interaction number is delayed by creating a thread
local list interactions where threads can read and write without blocking each other.
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1 #pragma omp parallel
2 {
3 int interactions[n_total];
4 for ( int_t i=0; i<n_total; i++ )
5 interactions[i] = 0;
6

7 #pragma omp barrier
8 #pragma omp for
9 for ( int_t i=0; i<n_total-1; i++ ) {

10 for ( int_t j=i+1; j<n_total; j++ ) {
11 real_t dist_sq =
12 (X(i)-X(j))*(X(i)-X(j)) + (Y(i)-Y(j))*(Y(i)-Y(j));
13

14 if ( dist_sq < (scale_k*H)*(scale_k*H) ) {
15 int_t kk;
16

17 #pragma omp atomic capture
18 kk = n_pairs++;
19

20 interactions[i] += 1;
21 interactions[j] += 1;
22 pairs[kk].i = i;
23 pairs[kk].j = j;
24 pairs[kk].r = sqrt(dist_sq);
25 pairs[kk].q = pairs[kk].r / H;
26 pairs[kk].w = 0.0;
27 pairs[kk].dwdx[0] = pairs[kk].dwdx[1] = 0.0;
28 }
29 }
30 }
31

32 #pragma omp barrier
33 for ( int_t i=0; i<n_total; i++ ) {
34 #pragma omp atomic
35 INTER(i) += interactions[i];
36 }
37 }

Listing 4.6: Finding pairs through brute force
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Figure 4.7: The bucket datastructure.

The interactions arrays are combined after all pairs have been discovered.

Cell-linked list for particles The idea of the cell-linked list is to only check for possible
pairs in the close proximity of a particle. This requires some setup. First, the subdomain
is divided into a grid of buckets1 as seen in Figure 4.7. The width and height of a bucket
is defined to equal the interaction radius. Therefore, the interaction space of a particle
within a bucket does not extend beyond the neighboring buckets. Before populating the
buckets we iterate through all particles and compute which bucket they belong to, as seen
in Listing 4.7. The variables N BUCKETS X and N BUCKETS Y represent the number of
buckets in the x/y direction. They are computed with Equations 4.3–4.5.

The subdomain is closed in the x-direction, meaning there is a finite width to create
buckets. We get the number of buckets in the horizontal direction by adding 2R (2 times
the interaction radius) to the subdomain width, and dividing the result by the bucket width.
We add 2R to create bucket space for halo particles, or virtual particles at the west or east
global border, assuming that halo width (R = 3.0 times H) is larger than the width of the
virtual particles boundary (1.55 times H).

The height of the subdomain is not closed. Instead of creating an infinite number of
buckets in the y-direction, we settle on a height which is 50% taller than the height of the
dam prior to the dam break, represented as 1.5T . Particles moving higher than 1.5T are
placed in the end row buckets. We add 1.55H to accommodate for virtual particles at the

1What we call buckets if often referred to as cells in the literature. See Mattson and Rice (1999)
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1 /* Compute bucket_x and bucket_y for all particles */
2 #pragma omp for
3 for (int i = 0; i < n_total; ++i) {
4 particle_t *particle = &list[i];
5

6 int actual_x = MIN((int) (((particle->x[0] - subdomain[0])+RADIUS) / :
BUCKET_RADIUS) , N_BUCKETS_X-1);

7 int actual_y = MIN((int) ((particle->x[1]+1.55*H) / BUCKET_RADIUS),N_BUCKETS_Y:
-1);

8

9 particle->local_idx = i;
10 particle->bucket_x = actual_x;
11 particle->bucket_y = actual_y;
12 }

Listing 4.7: All particles are assigned to a bucket coordinate. Note that the particles are not inserted
into a bucket yet.

bottom of the tank. 1.55H is the virtual particle boundary.

R = Interaction Radius = Bucket Width = Bucket Height (4.3)

N BUCKETS X = ⌈
xend − xbegin + 2R

R
⌉ (4.4)

N BUCKETS Y = ⌈1.5T + 1.55H

R
⌉ (4.5)

The co-ordinates of the bucket which a particle belongs to are represented as bucket x
and bucket y. They are computed with Equation 4.6–4.7. px and py represent a parti-
cles global x and global y position, respectively. The minimum is taken to ensure that no
particle is assigned to an out of range bucket. R and 1.55H is added to make sure that the
position does not come out negative for halo particles or virtual particles, respectively. We
subtract xbegin from px to attain the local x-position of particle p.

bucket x = min(
px − xbegin +R

R
,N BUCKETS X − 1) (4.6)

bucket y = min(
py + 1.55H

R
,N BUCKETS Y − 1) (4.7)

The fill buckets method is shown in Listing 4.8. Each thread is given it’s own set
of buckets to populate. As each bucket is the head of a linked list, insertion must happen
atomically. However, since there is at max one thread operating at a particular bucket, no
conflicts occur.

An alternative approach would be to distribute particles among threads. This would
bring the complexity down fromO(N BUCKETS X ⋅ N BUCKETS Y ⋅ n total) toO(n total),
but would incur a serial region for updating buckets, as multiple threads would attempt to
update the same bucket. The penalty of the serial region is mitigated by using OpenMP
locks, which ultimately results in this approach being faster.

In Figure 4.8, we see how the particles are distributed to buckets illustrated by a heat
map. One realization to draw from this is that iteration over the bucket domain should be
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1 #define BID(X,Y) (Y + N_BUCKETS_Y * X)
2

3 /* Populate Buckets */
4 #pragma omp for
5 for (int x = 0; x < N_BUCKETS_X; ++x) {
6 for (int y = 0; y < N_BUCKETS_Y; ++y) {
7 bucket_t* bucket = buckets[BID(x, y)];
8

9 for (int i = 0; i < n_total; ++i) {
10 particle_t* particle = &list[i];
11

12 if (particle->bucket_x != x || particle->bucket_y != y) {
13 continue;
14 }
15

16 if(bucket->particle == NULL) {
17 bucket->particle = particle;
18 } else {
19 bucket_t* new_bucket = (bucket_t*)malloc(sizeof(bucket_t));
20 new_bucket->particle = particle;
21 new_bucket->next = bucket;
22

23 buckets[BID(x, y)] = new_bucket;
24 }
25 }
26 }
27 }

Listing 4.8: Buckets are populated without introducing any critical sections.

1 #define BID(X,Y) (Y + N_BUCKETS_Y * X)
2

3 /* Populate Buckets */
4 #pragma omp for
5 for (int i = 0; i < n_total; ++i) {
6 /* Give particle a local index */
7 list[i].local_idx = i;
8

9 /* Compute bucket coordinates */
10 int bucket_x = list[i].bucket_x;
11 int bucket_y = list[i].bucket_y;
12

13 /*Lock possible critical section*/
14 omp_set_lock(&(lock[BID(bucket_x,bucket_y)]));
15

16 /* Pointer to relevant bucket */
17 bucket_t* bucket = buckets[BID(bucket_x, bucket_y)];
18

19 if (bucket->particle == NULL) {
20 bucket->particle = &list[i];
21 bucket->next = NULL;
22 } else {
23 bucket_t* new_bucket = (bucket_t*)malloc(sizeof(bucket_t));
24 new_bucket->particle = &list[i];
25 new_bucket->next = bucket;
26

27 buckets[BID(bucket_x, bucket_y)] = new_bucket;
28 }
29 /*Unlock*/
30 omp_unset_lock(&(lock[BID(bucket_x,bucket_y)]));
31 }

Listing 4.9: Race conditions are handled by introducing a lock .
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(a) The large wave is apparent, timestep 9 300, SCALE 1.

(b) The wave has almost settled, timestep 25 000, SCALE 1.

Figure 4.8: Number of particles per bucket (shown as a square) on different timesteps.
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1 /* Create neighbors */
2 #pragma omp for
3 for (int_t i = 0; i < n_total-1; ++i) {
4 particle_t* particle = &list[i];
5 int bx = particle->bucket_x;
6 int by = particle->bucket_y;
7

8 /* Center */
9 create_pairs(bx, by, buckets, particle, &n_pairs, interactions);

10 /* North West */
11 create_pairs(bx-1, by+1, buckets, particle, &n_pairs, interactions);
12 /* North */
13 create_pairs(bx, by+1, buckets, particle, &n_pairs, interactions);
14 /* North East */
15 create_pairs(bx+1, by+1, buckets, particle, &n_pairs, interactions);
16 /* East */
17 create_pairs(bx+1, by, buckets, particle, &n_pairs, interactions);
18 /* South East */
19 create_pairs(bx+1, by-1, buckets, particle, &n_pairs, interactions);
20 /* South */
21 create_pairs(bx, by-1, buckets, particle, &n_pairs, interactions);
22 /* South West */
23 create_pairs(bx-1, by-1, buckets, particle, &n_pairs, interactions);
24 /* West */
25 create_pairs(bx-1, by, buckets, particle, &n_pairs, interactions);
26 }

Listing 4.10: The create pairs routine is called for all nine buckets of interest.

done vertically. This way, all threads will have similar work loads. If the bucket domain
were split horizontally, the thread with the top rows of buckets would have no particles to
compute!

With the buckets fully populated, we are ready to create pairs. All particles are dis-
tributed among threads, and therefore the concerns regarding race conditions mentioned
in Section 4.2.2.1 still apply for the pair array and the interaction attribute of the parti-
cles. However, there are less potential pairs to evaluate because of the bucket design, and
therefore less contention for memory.

The pair creation process is detailed in Listing 4.10 and Listing 4.11. Any given parti-
cle is compared to other particles in the bucket they share, and to all particles in the eight
neighboring buckets. The global index (idx) of the particles are compared to ensure that
a pair is not added twice.

As before, the thread local interactions array is collected after all pairs are dis-
covered.

Cell-linked list for particles and pairs This method extends the previous design by
distributing pairs to buckets. This eliminates the need for critical sections in the ’Local
Physics Computation’ stage.

A two dimensional array similar to the one depicted in 4.7 is created to hold pairs.
Each cell in this new array is the head of a linked list of pairs.

A base particle is checked against child particles in the same bucket and all particles
in the eight neighboring buckets. The resulting pairs are inserted into the linked list which
share the same bucket co-ordinates as the base particle.

As opposed to the previous pair creation routine, the threads are responsible for a set
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1 void create_pairs(int bx, int by, bucket_t** buckets,
2 particle_t* particle, int_t* n_pairs,
3 int_t* interactions) {
4 if (bx >= N_BUCKETS_X || bx < 0 || by >= N_BUCKETS_Y || by < 0 || particle == :

NULL) {
5 return;
6 }
7

8 bucket_t* current = buckets[BID(bx, by)];
9 while (current != NULL && current->particle != NULL) {

10 if (current->particle->idx < particle->idx) {
11 double distance = sqrt(
12 pow(particle->x[0] - current->particle->x[0], 2):

+
13 pow(particle->x[1] - current->particle->x[1], 2)
14 );
15 if (distance <= RADIUS) {
16 interactions[particle->local_idx]++;
17 interactions[current->particle->local_idx]++;
18

19 int pair_idx;
20 #pragma omp atomic capture
21 pair_idx = (*n_pairs)++;
22

23 pairs[pair_idx].i = particle->local_idx;
24 pairs[pair_idx].j = current->particle->local_idx;
25 pairs[pair_idx].ip = particle;
26 pairs[pair_idx].jp = current->particle;
27 pairs[pair_idx].r = distance;
28 pairs[pair_idx].q = distance / H;
29 pairs[pair_idx].w = 0.0;
30 pairs[pair_idx].dwdx[0] = pairs[pair_idx].dwdx[1] = 0.0;
31

32 }
33 }
34 current = current->next;
35 }
36 }

Listing 4.11: Pair creation with buckets.
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of buckets instead of a set of particles. This means that pair creation can be done without
locks. However, pairs across buckets will be created twice. This produces some trouble
for the methods kernel, cont density, correction and int force as they all
work through the pair arrays. To accommodate, they are modified so that work done on
the “non-base” part of a pair is only written back if the “non-base” particle have the same
bucket co-ordinates as the “base particle”. This modification takes care of any duplicate
forces, and makes the local physics routine completely lockless. Note that a “base
particle” is a particle we find when iterating through buckets, and a “non base particle” is
a particle we find when we search for neighbors of the “base particle”.

The interaction attribute of the base particle is incremented for every pair it participates
in. The other particle is only updated if it shares the same bucket as the base particle, as
this pair is not evaluated again later.

The complete pair creation routine is shown in Listing A.1.

4.3 Computer Architectures

In this section we describe the computer architectures used to analyze our applications.
In Subsections 4.3.1 and 4.3.2, the supercomputers Vilje and Idun are introduced, respec-
tively.

4.3.1 Vilje

Vilje is a cluster machine procured by NTNU, met.no and UNINETT Sigma. It is a SGI
Altix ICE X with a total of 22464 cores. The details are listed in Table 4.1, and its topology
is depicted in Figure 4.9.

Nodes 1404
Processors per node 2
Cores per processor 8
Processor type Intel Xeon E5-2670
Processor Clock Frequency 2.6 GHz
L1 Instruction Cache (private) 32 KB
L1 Data cache (private) 32 KB
L2 Cache (private) 256 KB
L3 Cache (shared) 20 MB
Primary Memory per node 32 GB
Interconnect Infiniband
Theoretical peak performance 467 Teraflop/s
LINPACK rating 396.70 Teraflop/s

Table 4.1: Vilje Specification
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Figure 4.9: The topology of Vilje
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EPT EPIC
Nodes 27 8
Processors per node 2 2
Cores per processor 10 18
Processor type E5-2630 v4 E5-2695 v4
Processor Clock Frequency 2.2 GHz 2.1 GHz
L1 Instruction Cache (private) 32 KB 32 KB
L1 Data cache (private) 32 KB 32 KB
L2 Cache (private) 256 KB 256 KB
L3 Cache (shared) 25 MB 45 MB
Primary Memory per node 64 GB 64 GB
Interconnect Infiniband Infiniband
Theoretical peak performance N/A N/A
LINPACK rating N/A N/A

Table 4.2: IDUN Specification

4.3.2 Idun
IDUN is a cluster machine at NTNU with multiple queues. The two queues used in this
project are EPT and EPIC, detailed in Table 4.2. EPT is a homogeneous cluster, while
EPIC is a heterogeneous cluster where each node contains two Tesla P100 GPUs in addi-
tion to Xeon CPUs. The GPUs are not used in this project. The topologies of EPT and
EPIC are shown in Figure 4.10 and in Figure 4.11, respectively.

42



Machine (128GB total)

NUMANode P#0 (64GB)

Package P#0

L3 (25MB)

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#0

PU P#0

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#1

PU P#2

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#2

PU P#4

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#3

PU P#6

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#4

PU P#8

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#8

PU P#10

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#9

PU P#12

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#10

PU P#14

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#11

PU P#16

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#12

PU P#18

NUMANode P#1 (64GB)

Package P#1

L3 (25MB)

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#0

PU P#1

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#1

PU P#3

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#2

PU P#5

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#3

PU P#7

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#4

PU P#9

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#8

PU P#11

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#9

PU P#13

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#10

PU P#15

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#11

PU P#17

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#12

PU P#19

Figure 4.10: The topology of IDUN EPT
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Figure 4.11: The topology of IDUN EPIC
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Chapter 5
Results and Discussion

In this chapter, we develop our performance models and present and discuss our results.
In Section 5.1, we discuss our application models on intra and inter node level. In Section
5.2, we present the networking parameters of our testing platforms, in terms of the het-
erogeneous Hockney model. In Section 5.3, we summarize the work in Sections 5.1 and
5.2 into a set of performance models and recommendations. In Section 5.4, we list some
useful parameters and their meaning.

5.1 Application Models
In this section we analyze and discuss the characteristics of our proxy applications on intra
and inter node level.

5.1.1 LBM
The total computation time of LBM is composed of the computation time and the commu-
nication time. In Section 5.1.1.1, we discuss the computation part and in Section 5.1.1.2,
we discuss the communication part.

5.1.1.1 Intra-Node Parallelism

Collision and propagation are the sole contributors to the computational load of the LBM
application. On Vilje, the collide function is responsible for 62.6 % of the computational
load while running with 8 threads. Similarly, the collide function is 53.7 % of the compu-
tational load on EPIC while running with 18 threads. Both measured with 2 ranks on one
node and SCALE = 20. These results are depicted in Figure 5.3.

Both Collide and Propagate is profiled with high resolution to capture the behaviour of
the compute steps in the application. The wall time spent per iteration is close to constant,
which means that early iterations are equally costly as late iterations. This can be attributed
to the static nature of the application; lattice sites are immovable, and each thread must
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compute the same number of lattice sites for all iterations. This effect is shown in Figures
5.4, 5.5 and 5.6, for the Moffatt problem on EPIC, EPT and Vilje, respectively. The results
for the Cylinder problem are similar.

Because the time per iteration is constant, the total run time can be easily computed by
Equation 5.1, where the constants cc and cp can be measured by running the application
for a small number of iterations. Nit is the number of iterations.

Tcompute = (Tcollide + Tpropagate)Nit ≈ (cc + cp)Nit (5.1)

Note that the constants in Equation 5.1 are specific for a given thread count, archi-
tecture and number of lattice points. Therefore, the result from the execution must be
retrieved with the same thread count and on the same architecture as the one we wish to
model. We claim that the execution time on different number of lattice points, can be ob-
tained by multiplying the average execution time per lattice point by the number of lattice
points. This approximation is captured in Equation 5.2.

Tcompute, height b, width b =
width b ⋅ height b
width a ⋅ height a

⋅ Tcompute, height a, width a (5.2)

In Equation 5.2, the terms width a and height a are the width and height of the lattice
that the execution result is drawn from (baseline), while width b and height b are the width
and height of the lattice that we wish to predict the computation time of.

Speedup and efficiency is measured for all architectures with three configurations:
Moffatt work-share, Cylinder work-share and Moffatt with taskloops. The baseline for
the measurements is execution time on a single thread.

EPIC and EPT enjoy a healthy speedup across all three problem configurations af-
ter maximizing the number of threads per node. However, some configurations lead to
speedup peaks before all cores are utilized, as shown in Figure B.8a and Figure B.9a.

Speedup on Vilje is particularly bad for the propagate step across all configurations,
with speedup decreasing rapidly as seen in Figure B.4 and in Figure B.1a.

The early peaks and the decreasing speedup can be explained by the access pattern of
the propagate method, and the node configuration on the test platform.

In Listing 4.5, we see that the propagate method makes 12 memory accesses per lattice
site, with no floating point operations. This leads to diminishing returns when the number
of threads grows because much of the CPU time will be spent waiting for memory access.
In comparison, the collide method makes 14 memory accesses and performs 242 floating
point operations. In terms of the Roofline model, the application is memory bound because
of its low operational intensity (floating point operations per byte retrieved). The Roofline
model is further explained in Section 3.4.2.1.

The testing platforms all have nodes with two sockets, where each socket has its own
private level 3 cache. The primary memory attached to the socket is shared. With a com-
pact affinity setting, threads will be scheduled together on a socket (as opposed to scat-
tered, where threads are evenly spread on sockets). A job running with a thread count of 8
on Vilje will fill up a single socket, saturating its memory bus. Increasing the thread count
will populate the free socket, resulting in a rapid increase in speedup. The general pattern
is shown in 5.1, and the pattern is mimicked by the results in Figures B.2, B.3, B.5, and
B.6. The results were gathered with a compact affinity configuration.
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Figure 5.1: Saturation of sockets

To better utilize the available resources of a node, we measure running one process
on each socket and only using threads within sockets. The speedup and efficiency of
this configuration and a problem SCALE of 20 is shown in Figure 5.7. The efficiency
of propagate and collide is maintained on both sockets, as opposed to getting decreased
performance because of idle cores that are under utilizing the memory channels.

Because the application is memory bound, all the following results and models are
executed with one rank per socket, and a problem size of SCALE=20.

Comparison of Workshare and Task implementations As mentioned in Section 3.1.1,
the LBM application maintains a ghost array which is used to track solid points in the
domain. There is less work to be done at solid points for the collision method, which can
lead to an unbalanced amount of work if some threads carry more ghost points than others.

The motivation behind using tasks with OpenMP is to achieve load balance by creating
tasks and deciding the task-thread mapping at run time. In this sub section, we compare
traditional worksharing constructs with OpenMP tasks.

Figure 5.2 shows the wall time of a single iteration of LBM for two problems, Cylin-
der and Moffatt, running on two architectures, Vilje and EPIC, with two programming
models, work sharing and task. The Cylinder problem with tasks is included as a control
point. With tasks on Vilje we see an improvement of 31.2 % with the Cylinder problem,
and an improvement of 26.5 % with the Moffatt problem. On EPIC the introduction of
tasks seems to increase the time per iteration slightly. The fact that tasks has an impact
dependent on the architecture indicate that the iteration time is controlled by factors like
the memory hierarchy, processor features and thread scheduling or other things which are

47



Figure 5.2: Single iteration time of workshare and task

out of the scope of this project.
With regards to performance modelling, the solution is to determine the architectural

parameters of the machine under evaluation by running a small instance of the problem in
order to capture the behaviour of the system.
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(a) Vilje, 8 threads (b) EPIC, 18 threads

Figure 5.3: The workload of LBM’s time integration phase split between Collision and Propagation

(a) EPIC Collide (b) EPIC Propagate

Figure 5.4: EPIC. The time per iteration on multiple numbers of threads.

(a) EPT Collide (b) EPT Propagate

Figure 5.5: EPT. The time per iteration on multiple numbers of threads.
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(a) VILJE Collide (b) VILJE Propagate

Figure 5.6: VILJE. The time per iteration on multiple numbers of threads.

(a) Propagate Speedup (b) Collide speedup

(c) Propagate Efficiency (d) Collide Efficiency

Figure 5.7: Moffatt VILJE Speedup and Efficiency on SCALE 20 with 2 ranks
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5.1.1.2 Inter Node Communication

In this section we discuss the distributed memory parallelism of the LBM application. As
described in Section 4.1.2.2, the problem domain is split into a two dimensional grid of
subdomains, where each part of the grid belongs to an MPI rank. In the following analysis,
we assume a square number of ranks N > 1 and a square topology. The exact topology
is dependent on the MPI implementation, as certain rank sizes (like primes greater than
2) will result in a one dimensional topology. However, the one dimensional case is a
degenerate class of the two dimensional case and is easier to reason about. For non-square
two dimensional topologies, the analysis is more specific to the rank layout as it requires
knowledge about the width and height of the topology.

The communication pattern of the LBM application on 64 ranks is depicted in Figure
5.8. Each rank has two close neighbors and two far neighbors. Assuming a row major
topology, the close neighbors are computed with Equations 5.3 and 5.4, and the far neigh-
bors are computed with Equations 5.5 and 5.6. The domain is periodic in the horizontal
direction, and therefore rank 0 must communicate with rank N − 1.

neighborwest = (rank − 1) mod N (5.3)
neighboreast = (rank + 1) mod N (5.4)

neighbornorth = (rank +
√
N) (5.5)

neighborsouth = (rank −
√
N) (5.6)

Figure 5.8: The communication pattern of the LBM application represented as an adjacency matrix,
where red squares are neighbors. A square processor topology is assumed.

One message is sent for each direction, resulting in four messages per rank per itera-
tion. The one exception is that the ranks placed in the top or bottom of the grid topology
will not exchange messages north or south, meaning they only exchange three messages.
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However, the exception is irrelevant for the execution time of the exchange routine because
of the implicit synchronization in the routine (cf. Section 4.1.2.2). All ranks must wait for
the slowest rank to finish communicating before execution can continue.

Each message consist of a row or column of lattice points, where each lattice point has
a size of 64 bytes. The size of a subdomain column Hl (height local) and a subdomain
row Wl (width local) is computed with Equation 5.7 and Equation 5.8, respectively. Hg

and Wg represent the global height and width of the domain, while px and py is the width
and height of the rank topology.

Hl =
Hg

py
(5.7)

Wl =
Wg

px
(5.8)

The number of bytes w to send in the horizontal directions is described by Equation
5.9.

weast = wwest = 64Hl = 64
Hg

py
(5.9)

Similarly, the number of bytes to send in the vertical directions is described by Equa-
tion 5.10. We add two elements to the width to cover the corner elements, as described in
Section 4.1.2.2.

wnorth = wsouth = 64(Wl + 2) = 64(
Wg

px
+ 2) (5.10)

The time required for completing the exchange phase is dependent on the number
of bytes per message, the number of messages and architecture specific parameters. We
model the total running time of the border exchange routine as the maximum of horizontal
communication across all ranks, plus the maximum of vertical communication across all
ranks, because the horizontal communication must finish before the vertical. The model is
described by Equation 5.11.

Tborder exchange ≈ max
rank∈N

[Teast(rank) + Twest(rank)] + max
rank∈N

[Tnorth(rank) + Tsouth(rank)]
(5.11)

Note that if we are unable to send and receive at the same time, the time for each term
will double.

Each term of the expression is a function of bytes to be exchanged, and the latency (α)
and bandwidth (β) of the architecture. The latency and the bandwidth are parts of the Het-
erogeneous Hockney model, as described in Section 3.4.1.1. The expression is described
in Equation 5.12, where i and j represent rank i and rank j. The indices implicitly decide
which w to be used. For example, Teast(rank) would translate to T(i, j) where i is “rank”
and j is the eastern neighbor of “rank”. In this case, weast should be used.

T(i, j) ≈ αij +wdirectionβij , i ≠ j (5.12)
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5.1.2 SPH
The total computation time of SPH is composed of the computation time and the commu-
nication time. In Section 5.1.2.1, we discuss the computation part and in Section 5.1.2.2,
we discuss the communication part.

5.1.2.1 Intra-Node Parallelism

This section studies the computation time of three different variations of the SPH pro-
gram; the brute-force method described in Section 4.2.2.1, the method with cell-linked
lists for particles described in Section 4.2.2.1, and the method with cell-linked lists for
both particles and pairs described in Section 4.2.2.1.

The computation time in the SPH program is dominated by the time step method
where the particle positions are updated. Profiles of the time step method of the three
implementations are shown in Figure 5.9.

Figure 5.9 shows that the find neighbors method dominates the execution time
of time step in all three variations. For the brute force version presented in Figures
5.9a and 5.9b, the dominance increases with SCALE, occupying 88.9% and 94.3% of the
total execution time of time step at SCALE 1 and SCALE 2, respectively. The share
increases in proportion to the particle count, as a linear increase in particles result in a
quadratic increase in the number of particle combinations in the nested for loop shown
in Line 9 of Listing 4.6 (henceforth, the neighbor loop). The other methods in time -
step consist of single loops that iterate through either particles or pairs. In contrast,
the pair finding routine of the cell-linked particle list version visualized in Figures 5.9c
and 5.9d, explores only particles in neighboring buckets as described in Section 4.2.2.1.
Hence, the differences between SCALEs are minimal, at 89.3% and 88.9% at SCALE 1
and SCALE 2, respectively. In Figures 5.9e and 5.9f where particles and pairs are orga-
nized as cell-linked lists, the find neighbors method is less dominant and decreasing
with increasing SCALE, from 74.8% at SCALE 1 to 50.8% at SCALE 2. We attribute
this effect to the absence of critical sections in this implementation as described in Section
4.2.2.1.

Profiling on Vilje shows a similar dominance from the find neighbors method.
84.8%, 82.0% and 38.2% of the compute time is occupied by find neighbors in brute-
force, cell-linked particle list and cell-linked pair and particle lists, respectively (at SCALE
1 with 16 threads). For cell-linked pair and particle lists, the next largest term is kernel
on 18.1%. In all cases, find neighbors is the largest contributor to time step’s
overall execution time for all three implementations. Hence, the computation time of all
three SPH implementations can be approximated as in Equation 5.13.

Tcompute ≈ Tfind neighbors (5.13)

Note that the execution times of kernel, cont density, correction and int -
force are significant in cell-linked lists for pairs and particles. However, an analysis of
these methods are beyond the scope of this study. In addition, we have only examined
time step as most compute time is spent here. However, profiling on the entire time -
integration method described in Section 4.2.2, shows that time step takes up at
least 95.5% of the total execution time at SCALE 1 for the brute force method. We argue
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(a) Brute-force, SCALE 1. (b) Brute-force, SCALE 2.

(c) Cell-linked list for particles, SCALE 1. (d) Cell-linked list for particles, SCALE 2.

(e) Cell-linked list for particles and pairs,
SCALE 1.

(f) Cell-linked list for particles and pairs,
SCALE 2.

Figure 5.9: Distribution in execution time of methods in time step, for three different SPH imple-
mentations. The numbers are collected by running on 36 threads on EPIC.
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(a) 36 threads, EPIC (b) 16 threads, Vilje

Figure 5.10: Distribution in execution time of different parts of the find neighbors method
(brute-force), SCALE=1.

that this percentage is less for cell-linked lists for pairs and particles as the only occur-
rences of critical sections are in methods other than time step. These considerations
are important because these methods may become the bottleneck if the compute time of
find neighbors becomes low enough so that the other methods become more sub-
stantial in terms of compute time. Detailed explanations are however beyond the scope of
this thesis.

In addition, the number of particles mentioned in this section is the sum of actual par-
ticles, virtual particles and mirror particles (cf. Section 4.2.2) that are generated in the
border exchange phase as a result of distributed memory parallelism. This section, how-
ever, studies the effect of varying thread counts on one node, without considering inter-
node communication. Therefore, there are no distributed memory parallelism and hence
no mirror particles. However, the discussion in this section does not differentiate between
different types of particles, and can therefore also be utilized when mirror particles are
present. In addition, the graphs and equations used in the following discussions are func-
tions of the particle count or the pair count. We therefore consider the findings of this
section to be relevant for other flow problems, and not limited to the dambreak problem.

Sections 5.1.2.1, 5.1.2.1 and 5.1.2.1, analyze and discuss the compute time of the
find neighbors methods of the three implementations on different thread counts,
SCALEs and Vilje, EPT and EPIC node architectures. EPIC and EPT were chosen out
of the architectures on IDUN because they have the greatest and smallest number of cores
per node. EPIC is treated as the point of reference.

Brute-Force A study of the computation time of the find neighbors method shows
the dominance of the neighbor loop, as shown in Figure 5.10. The neighbor loop executed
on 16 threads on Vilje, visualized in Figure 5.10b, and 36 threads on EPIC, visualized
in Figure 5.10a, dominates by 97.7% and 95.5%, respectively. As a nested loop iterating
over particles combinations will occupy a larger percentage as the SCALE increases, this
tendency will be valid and even more apparent on larger SCALEs. Therefore, we claim
that a detailed analysis of the neighbor loop will be sufficient to predict the total execution
time of the find neighbors method. This relationship is described in Equation 5.14.
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(a) SCALE=1 (b) SCALE=2

Figure 5.11: The relationship between number of pairs and the execution time of the neighbor loop
in find neighbors brute-force, 18 threads on EPIC, 200 000 timesteps.

Tfind neighbors ≈ Tneighbor loop (5.14)

The neighbor loop iterates through all particle combinations by comparing every par-
ticle by every other particle that has not been examined. This relationship between the
number of iterations of the neighbor loop and the particle count is captured in Equation
5.15. When two particles are within each others interaction radius, the pair count is up-
dated atomically, and a new pair is created and initialized. The particle count influences
the overall computation time by affecting the number of iterations where pairs are tested
for proximity, while the number of pairs can be associated with the number of times the
body of the if statement in Lines 15-27 of Listing 4.6 where the critical section is lo-
cated, is reached. Therefore, the execution time of the neighbor loop depends on both the
number of pairs and the number of iterations of the neighbor loop. Figure 5.11 shows the
relationship between execution time and the pair count. Figure 5.12 shows the relationship
between execution time and the number of neighbor loop iterations.

Nloop iter = (Nparticle

2
) =

Nparticle ⋅ (Nparticle − 1)
2

(5.15)

Figure 5.11 shows the execution time of the neighbor loop when the pair count per
timestep increases at different SCALEs. The increase in the number of pairs, both due to
variations within a SCALE as showed in Figure 5.11a and to variations caused by increas-
ing the SCALE as shown in Figure 5.11b, results in an increase in compute time. Both
graphs present an approximately linear relationship between the number of pairs and the
overall execution time with a few outliers that are especially noticeable when the number
of pairs are low.

Figure 5.12 presents the execution time with increasing iteration count at SCALE 1
and SCALE 2. When executing on 18 threads on EPIC at the two SCALE configurations,
the iteration count seems to be more close-coupled with the execution time of the neighbor
loop than the pair count, as the linear relationship between iterations and execution time
is clearer (see Figures 5.11 and 5.12). We attribute this effect to the number of iterations
being much larger than the number of pairs, meaning that most iterations proceed without
entering the body of the if statement. In fact, a pair is detected for every 164 iterations at
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(a) SCALE=1 (b) SCALE=2

Figure 5.12: The relationship between number of iterations of the body of the neighbor loop and
the execution time in find neighbors brute-force, 18 threads on EPIC, 200 000 timesteps.

SCALE 1, were 164 is the median over 200 000 timesteps. At SCALE 2 this number is
even greater, at 630 iterations

pair , and increasing for even larger SCALEs. At SCALE 2 there
are nearly 22 = 4 times the particles at SCALE 1 as specified in Subsection 4.2.1. The
factor is slightly less than 4 because the number of actual particles increases by a factor of
4 while the virtual particle count increases approximately linearly (because the width of
virtual particle generation boundary stays unchanged while the width of the tank doubles).
As the particle count is 4 time greater at SCALE 2, the iterations count is approximately
16 times greater by Equation 5.15. As with the particle count, the number of pairs are
increased by a factor of 4 when the SCALE is incremented to 2. This results in the number
of iterations

pair increasing by approximately 16
4
= 4 times (from 164 to 630 iterations

pair )).
Both Figure 5.11 and Figure 5.12 are obtained by measuring walltime for every timestep

from 0 to 200 000, sorting by number of pairs and iterations, respectively, and reporting
in averages of 500 timesteps. The duration of the simulation is set to 200 000 timesteps
because an approximate equilibrium for the fluid in the dam break problem is reached at
that point. Executions from timestep 0 to 20 000 will we presented in the rest of this sub-
section as these, in addition to Figures 5.11 and 5.12, are adequate to see a clear pattern of
the total execution time.

Notice that the first data point in Figures 5.11 and 5.12 deviates significantly from the
rest of the data points. The first data point in the graph is produced by timestep 0 and is
therefore not an average of 500 timesteps. We attribute these and similar deviations on the
first data point on graphs in Section 5.1.2.1, to a difference in the measuring method for
timestep 0 along with start-up costs, and omit it from further discussion.

Figure 5.13 shows the relationship between execution time of the neighbor loop and
the pair count on different number of threads on EPIC, and Figure 5.14 shows the rela-
tionship between execution time and iteration count on the same configuration. The linear
relationship in Figure 5.14 between iterations and compute time is apparent on EPIC re-
gardless of the number of threads being utilized, confirming the findings of Figure 5.12.
The pair count in Figure 5.13 is however not as closely linked to the execution time. The
graphs in this figure seem to fluctuate more than the graphs of Figure 5.11, because the
fluctuations are greater on lower pair counts as is the case when only executing 20 000
timesteps.
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Figure 5.13: The relationship between number of pairs and execution time of the neighbor loop in
find neighbors brute-force. Executed on EPIC, 20 000 timestep, SCALE=1.

Note that the size of the particle list is independent of the thread count as no particles
are generated or removed as a consequence of the introduction of thread parallelism. How-
ever, the number of particles varies slightly between executions of our program because
of cumulative floating point errors causing differences in the virtual particle count. These
deviations can be seen in Figures 5.13 and 5.14 where the data points, even though they
are collected as averages of the same number of timesteps, are not aligned vertically.

Given Figures 5.12 and 5.14 we can identify a linear relationship between the neighbor
loop and the iteration count as expressed in Equation 5.16.

Tneighbor loop(Nthread,Nloop iter) ≈ slope(Nthread) ⋅Nloop iter + base(Nthread) (5.16)

In Equation 5.16, the term slope is the gradient given as time
loop iter

and base is the inter-
cept when disregarding the first data point. Both slope and base vary with the number of
threads utilized.

Figure 5.15 presents the speedup and efficiency calculated for one of the iteration
counts in Figure 5.14, chosen by finding an iteration number common for all threads. The
speedup on EPIC increases for all 36 threads. Thus, executing on one more thread will
result in a decrease in execution time. However, the efficiency graph deflects significantly
on 5 threads. This is why the graphs of greater thread counts in Figure 5.14 are clustered
closer together. All speedup graphs in Subsection 5.1.2.1 are presented with 1 thread as
the baseline.

The similar linear pattern can be observed when executing on Vilje, shown in Fig-
ure 5.16. A comparison of EPIC and Vilje for equal thread counts are shown in Figure
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Figure 5.14: The relationship between number of iterations and execution time in find neig-
hbors brute-force. Executed on EPIC, 20 000 timesteps, SCALE=1.

(a) Speedup (b) Efficiency

Figure 5.15: Speedup and Efficiency of find neighbors brute-force on EPIC, SCALE=1.
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Figure 5.16: The relationship between
the thread count and the execution time
in find neighbors brute-force on Vilje,
SCALE=1 and 20 000 timesteps.

Figure 5.17: Comparison of execution time
for various thread counts on Vilje and Epic for
find neighbors brute-force, SCALE=1
and 20 000 timesteps.

(a) Speedup (b) Efficiency

Figure 5.18: Speedup and Efficiency of find neighbors brute-force on Vilje, at SCALE=1.

5.17. The gradient of the curves of both clusters on equal thread counts are approximately
similar and decreasing with increasing thread counts. The height of the graph, however,
deviates on Vilje and EPIC within the same thread count, but the difference decreases with
increasing thread counts. The speedup for Vilje, presented in Figure 5.18a, increases for
all threads within a node, while the efficiency in Figure 5.18b has a significant deflection
point when running on two threads, and another one on 5 threads.

The linear relationship is likewise visible on EPT, shown in Figure 5.19. A comparison
of EPT and EPIC is visualized in Figure 5.20. Figure 5.20 indicates smaller variations
in compute time between EPT and EPIC compared to EPT and Vilje. We believe this
variation is a result of the processors on EPT and EPIC being nearly equal, while the
processors on Vilje are of an older model (cf. Section 4.3.1). The speedup and efficiency
on EPT, shown in Figure 5.21, are very similar to the results of Vilje.

Equation 5.16 can be extended as a result of the analysis of Figures 5.17 and 5.20
which demonstrate that the compute time of the neighbor loop varies with the architecture
being utilized during program execution. Equation 5.17 describes this extension. The term
arch in Equation 5.17 denotes the architecture.
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Figure 5.19: The relationship between num-
ber of threads and execution time in fi-
nd neighbors brute-force. Executed on
EPT at SCALE=1, 20 000 timesteps.

Figure 5.20: Comparison of execution time
on various thread counts on EPT and Epic for
find neighbors brute-force, SCALE=1
and 20 2000 timesteps.

(a) Speedup (b) Efficiency

Figure 5.21: Speedup and Efficiency of find neighbors brute-force on EPT, on SCALE=1.
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(a) Scale 1.5. (b) Scale 2.

Figure 5.22: The execution time of find neighbors brute-force as the iterations count increases
at SCALE=1.2 and SCALE=2, EPIC.

Tneighbor loop(Nthread, arch,Nloop iter) ≈ slope(Nthread) ⋅Nloop iter+
base(Nthread, arch) (5.17)

The execution time on EPIC at SCALE 1.5 and SCALE 2 are shown in Figure 5.22,
and presented along with SCALE 1 in Figure 5.23. The height of the graphs at SCALE
1.5 and SCALE 2 are greater than those of SCALE 1 (for the same thread count) by
a factor of (1.52)2 ≈ 5 and (22)2 = 16, respectively, because the number of particles
are approximately SCALE2 times the particle count at SCALE 1. Following the graphs
of same color, we observe that the gradients are approximately equal, while the length
increases with increasing SCALE as the virtual particle counts varies to a greater extent
with increasing SCALE. Hence, the compute time of the neighbor loop on SCALEs other
than 1 can be predicted by the results from SCALE 1 (on the same thread count), together
with the iteration count on the specific SCALE as Equation 5.18 describes. This makes it
possible to predict the behaviour without executing the program on greater SCALEs. The
speedup and efficiency graphs at SCALE 1.5 and SCALE 2 are shown in Figure 5.24 and
5.25, respectively.

Tneighbor loop(Nthread, arch,Nloop iter) ≈ slopeSCALE1(Nthread) ⋅Nloop iter+
baseSCALE1(Nthread, arch) (5.18)
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Figure 5.23: Comparison of the execution time of brute-force find neighbors at various
SCALEs on EPIC, 20 2000 timesteps.

(a) Speedup (b) Efficiency

Figure 5.24: Speedup and Efficiency of brute-force find neighbors on EPIC, at SCALE=1.5.
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(a) Speedup (b) Efficiency

Figure 5.25: Speedup and Efficiency of brute-force find neighbors on EPIC, at SCALE=2.
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(a) 18 threads, EPIC, SCALE=1 (b) 18 threads, EPIC, SCALE=2

(c) 16 threads, Vilje, SCALE=1

Figure 5.26: Distribution in execution time of different parts of the find neighbors method
(cell-linked particle list)

Cell-Linked List for Particles Profiling results of the find neighbors method of
cell-linked particle lists are shown in Figures 5.26a and 5.26b for EPIC at SCALE 1
and 2, respectively, and Figure 5.26c for Vilje at SCALE 1. The figures show that the
create neighbors1 method dominates the execution time of find neighbors for
all three executions. The share increases slightly, from 88.8% to 89.8%, when the SCALE
is incremented from 1 to 2 on EPIC. On one node on Vilje at SCALE 1, this number is
92.7%. As a result of Figure 5.26, we consider create neighbors as the only bottle-
neck of the find neighbors method and omit other components of the method from
further discussion. This relationship is given in Equation 5.19.

Tfind neighbors ≈ Tcreate pairs (5.19)

The create neighbors method iterates through all particles and for each of them
examines the neighboring buckets (cf. Section 4.2.2.1 ) for proximity. With small bucket
sizes (set approximately to the interaction radius × interaction radius in our implementa-
tion), the number of particles inspected for closeness is remarkably decreased compared
to the brute-force implementation. Because the probability of detecting a pair is increased,
the impact of pairs will be more prominent on the execution time. In fact, a pair is found for
every 2.7 proximity check performed at SCALE 1 (2.7 is the median over all timesteps).
At SCALE 2, there is a hit for every 2.8 check. The small difference in the hit rate on

1We use the terms create neighbors and create pairs interchangeably.
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(a) SCALE=1 (b) SCALE=2

Figure 5.27: The relationship between number of pairs and the execution time of the create pair
method in the cell-linked particle implementation, 200 000 timesteps, EPIC.

(a) SCALE=1 (b) SCALE=2

Figure 5.28: The relationship between number of particles and the execution time of the
create pair method in the cell-linked particle implementation, 200 000 timesteps, EPIC.

SCALE 1 and SCALE 2 may be caused by changes in virtual particles and pairs between
executions or by measuring uncertainty. As the bucket size is kept constant while increas-
ing the SCALE, the number particles examined for closeness is constant if the particle
density within the buckets is approximately unchanged. Nevertheless, the probability of
detecting a pair is much higher than for brute-force. Figure 5.27 shows how the execution
time is effected by the number of pairs when executing the program until timestep 200
000.

Apart from some fluctuations on lower pair counts at SCALE 1 (see Figure 5.27a), the
graphs of all thread counts in Figure 5.27 are approximately linear. The particle count,
however, seen in Figure 5.28, is not as dominating as pairs in terms of the execution time.

Figure 5.29 presents how the execution time behaves as the pair count is increased for
various thread counts. The figure shows that the execution time remains approximately
constant when the pair count increases. However, the graph does only present the execu-
tion times for the lower end of the x-axis in Figure 5.27, and the linearly increasing pattern
is therefore is not visible. An interesting remark in Figures 5.29 and 5.27 is that execu-
tion time is the lowest with 10 threads. This observation can also be seen in Figure 5.30
showing the speedup and efficiency graphs for a cross-section of Figure 5.29. Increasing
the thread count above 10 threads will lead to an increase in the overall execution time
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Figure 5.29: The relationship between number of pairs and the execution time of the create pair
method in find neighbors cell-linked particles. Executed on EPIC, 20 000 timestep, SCALE=1.

of create pairs. Note that the standard deviation in the data points presented in this
section (out of 30 sample executions) is of order 10−3. Thus, the execution times of the
graphs clustered together within this deviation may vary from execution to execution.

Given Figure 5.29, the compute time of the create pairs method can be modeled
as in Equation 5.20.

Tcreate pairs(Nthread,Npairs) ≈ slope(Nthread) ⋅Npairs + base(Nthread) (5.20)

Figure 5.31 shows the relationship between pairs and compute time on Vilje, and Fig-
ure 5.32 compares the result with EPIC on equal thread counts. In Figure 5.31 the linearly
increasing pattern observed in Figure 5.27 is visible. In addition, the gradient is decreas-
ing as the thread count increases. The impact of utilizing processors of an older model
is visible in Figure 5.32 as was the case with brute force. The speedup and efficiency on
Vilje is presented in Figure 5.33. The global maximum on the speedup in Figure 5.33a is,
as with EPIC, reached when executing on 10 threads. In addition, the efficiency on both
EPIC and Vilje drop significantly as the thread count is increased.

The linear, slightly increasing pattern is also detectable on EPT. This is shown in Fig-
ure 5.34, and shown together with EPIC in Figure 5.35. The maximum speedup when
executing on 10 threads, and the dropping efficiency is also present on EPT as shown in
Figure 5.36. The execution on EPT and Vilje show that the execution time vary with the
architecture being utilized. The height of the graphs are different for each architecture
while the gradient is approximately the same. This is described in Equation 5.21.
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(a) Speedup (b) Efficiency

Figure 5.30: Speedup and Efficiency of find neighbors cell-linked particle lists on EPIC, cell-
linked particle list, SCALE=1.

Figure 5.31: The relationship between the
thread count and the execution time in cr-
eate pairs on Vilje, SCALE=1 and 20 000
timesteps.

Figure 5.32: Comparison of execution time
for various thread counts on Vilje and Epic
for create pairs, SCALE=1 and 20 000
timesteps.

(a) Speedup (b) Efficiency

Figure 5.33: Speedup and Efficiency of find neighbors cell-linked particle lists on Vilje, at
SCALE=1.
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Figure 5.34: The relationship between the
thread count and the execution time in cr-
eate pairs on EPT, SCALE=1 and 20 000
timesteps.

Figure 5.35: Comparison of execution time
for various thread counts on EPT and Epic
for create pairs, SCALE=1 and 20 000
timesteps.

(a) Speedup (b) Efficiency

Figure 5.36: Speedup and Efficiency of find neighbors cell-linked particle lists on EPT, at
SCALE=1.

Tcreate pairs(Nthread, arch,Npairs) ≈ slope(Nthread) ⋅Npairs + base(Nthread, arch) (5.21)

Figure 5.37 shows the execution time at SCALE 1.5 and SCALE 2. As previously dis-
cussed, the ratio between a check for proximity and a detection of a pair is approximately
constant from one SCALE to the next if the particle density inside a bucket is nearly con-
stant. As a result, the maximum of speedup graph at Scale 1.5 and SCALE 2 shown in
Figures 5.38a and 5.39a, respectively, remain at 10 threads.

A comparison of different SCALEs shown in Figure 5.40 shows that a regression line
at SCALE 1 can be sufficient in order to describe the execution time of SCALEs greater
than 1. By Figure 5.27 the linearity of the graphs will be more evident as more timesteps
are executed and more pair counts with respective execution times are obtained. Equation
5.22 captures this relationship.

Tcreate pairs(Nthread, arch,Npairs) ≈ slopeSCALE1(Nthread) ⋅Npairs+
baseSCALE1(Nthread, arch) (5.22)
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(a) Scale 1.5. (b) Scale 2.

Figure 5.37: The execution time of find neighbors cell-linked particle lists as the iterations
count increases at SCALE=1.2 and SCALE=2, EPIC.

(a) Speedup (b) Efficiency

Figure 5.38: Speedup and Efficiency of find neighbors cell-linked particle lists, at
SCALE=1.5.

(a) Speedup (b) Efficiency

Figure 5.39: Speedup and Efficiency of find neighbors cell-linked particle lists on EPIC, on
SCALE=2.
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Figure 5.40: Comparison of the execution time of create pairs in find neighbors cell-
linked particle lists at various SCALEs on EPIC, 20 2000 timesteps.
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(a) 36 threads, EPIC, SCALE=1 (b) 36 threads, EPIC, SCALE=2

(c) 16 threads, Vilje, SCALE=1

Figure 5.41: Distribution in execution time of different parts of the find neighbors method
(cell-linked pair and particle lists)

Cell-Linked List for Particles and Pairs Figure 5.41 shows the profiling results of the
find neighbors method for cell-linked pair and particle lists. The figure show that
the create pair subroutine dominates the execution time in find neighbors. In
addition, create pairs’s share of the compute time is equal (86.1%) at both SCALE 1
and SCALE 2 on 36 threads on EPIC, as shown in Figures 5.41a and 5.41b, respectively.
On 16 threads on Vilje, the share is smaller (77.7%). However, the create pairs
subroutine dominates the compute time in all three cases and is therefore analyzed further
in this section. Equation 5.23 presents this relationship.

Tfind neighbors ≈ Tcreate pairs (5.23)

In the find neighbors method of the cell-linked pair and particle list implemen-
tation, the critical section present in the cell-linked particle list implementation is avoided
(cf. Section 4.2.2.1). When a thread detects a pair, no other thread will do computation
that may interrupt this thread from creating the pair. Hence, the time spent inside the body
of the if statement in Line 47 of Listing A.1 is decreased compared to the cell-linked par-
ticle method. However, in order to avoid any critical sections, all pairs across buckets are
duplicated. This increases a thread’s probability of executing the body of the if statement.
In addition, the proximity check is carried out for all particles in all buckets. Thus, the
compute time of the create pairs subroutine is dependent on the particle count, the
real pair count and the created pair count (real pairs and duplicates).

Figure 5.42 shows how the compute time varies with the number of particles. The
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execution time is greater on lower particle counts, which occur in the beginning on an exe-
cution (that is, on low timesteps), as a result of start-up costs. As the timestep increases, the
graphs stabilize. In fact, the the graphs of higher thread counts can be treated as constants
after the effect of the start-up cost is invisible, which means that adding particles within
a given SCALE does not increase the execution time significantly. In the brute-force im-
plementation discussed previously, adding a particle means that all other particles in the
domain have to be compared with this particle. Hence, the execution time increases by
the square of the particle count. In both cell-linked implementations, proximity checks are
solely performed between particles within neighboring buckets. However, in cell-linked
particles, when a pair is detected on higher thread counts, contention on the atomically
updated pair count increases significantly, ”wasting” computation power. When the thread
count in the cell-linked particle and pair lists implementation is increased, however, the
contention on the pair counter is not present and the threads can ”maximize” their compu-
tation power. Note that the execution time for each particle count is of a smaller magnitude
than the ones of the other two implementations. This and other factors may contribute to
the more visible fluctuations in Figures 5.42a and 5.42b.

Figures 5.44 and 5.43 show how the execution time varies with the number of real
pairs (henceforth referred to as actual pairs) and created pairs, respectively, during 200
000 timesteps. Similar to Figure 5.42, all graphs except the one utilizing two threads reach
an approximately constant value as the timestep increases. The graphs in both Figures 5.44
and 5.43 have a similar stabilizing pattern and are therefore equally good candidates for
the prediction of compute time. However, the number of particles is easier to retrieve than
the number of pairs as the pairs are organized in buckets, exclusively, while the particles
are located in a one dimensional array in addition to buckets. Furthermore, the smooth out
effect of the particle graph is visible on as little as 20 000 timeteps, while the same amount
of timesteps in both of the pair graphs show no such effect. Therefore, we choose the
particle count to describe the computation time of the create pairs subroutine. Note
that the approximate iteration count could have been used to predict the computation time.
Each particle is compared to all particles in the 9 neighboring buckets. Hence, the iteration
count could be described as the number of buckets times the average number of particles
in each bucket. This way, the bucket size would be included in the model. However, the
effect of changing the bucket size is not examined in this thesis and is therefore omitted
from further discussion.

The execution time as the number of particles is increased on EPIC at SCALE 1 is
presented in Figure 5.45. The figure shows that all graphs are clustered together and
smoothed out as the number of particles per timestep increases. The compute time on
each thread count can therefore be approximated to a constant as given in Equation 5.24.
In Equation 5.24, the term base is constant for a given thread count at SCALE 1. Note
that the equation omits the linearly increasing compute time for lower thread counts and
considers all computation times to be constant. This choice was made in order to simplify
the model.

Tcreate pairs(Nthreads) ≈ base(Nthreads) (5.24)

The speedup and efficiency on EPIC at SCALE 1 is visualized in Figure 5.46. The
speedup shown in Figure 5.46a is increasing for most thread counts. Hence, the compute
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(a) SCALE=1 (b) SCALE=2

Figure 5.42: The relationship between number of particles and the execution time of the
create pair method in the cell-linked pair and particle list implementation, 200 000 timesteps,
EPIC.

(a) SCALE=1 (b) SCALE=2

Figure 5.43: The relationship between number of created pairs and the execution time of the
create pair method in the cell-linked pair and particle list implementation, 200 000 timesteps,
EPIC.

(a) SCALE=1 (b) SCALE=2

Figure 5.44: The relationship between number of actual pairs and the execution time of the
create pair method in the cell-linked pair and particle lists implementation, 200 000 timesteps,
EPIC.
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Figure 5.45: The relationship between number of pairs and the execution time of the create pair
method in find neighbors cell-linked particle and pair lists. Executed on EPIC, 20 000
timestep, SCALE=1.

time will decrease as the number of threads is increased within a node on EPIC. This is not
the case for the previously discussed cell-linked particle implementation. We attribute this
effect to the critical section updating the number of pairs being removed. Furthermore, the
gradient of the speedup graph is low, which may indicate that the subroutine is memory
bound. Note that there is a local maximum on 18 threads, which may be a result of
measurement uncertainty as the standard deviation is 0.001 (drawn out of a sample size of
30). An complete analysis of this effect will however be omitted from further discussion.

Figures 5.47 and 5.48 show the compute time as a function of the particle count on
Vilje, and a comparison between Vilje and EPIC, respectively. As on EPIC, the tail of the
graphs on Vilje are approximately constant. The comparison shows that the compute time
on Vilje is greater than EPIC for lower threads counts, and lower than EPIC for greater
thread counts. These differences may be cause by measurement uncertainties as mentioned
above. The fluctuations, however, are mostly similar. The speedup and efficiency of the
create pairs subroutine on Vilje at SCALE 1 is shown in Figure 5.49. The speedup
in Figure 5.49a increases at a greater rate than the one of EPIC in Figure 5.46a. In addi-
tion, the speedup increases as the thread count is increased. The compute time on EPT is
presented in Figure 5.50 and combined with the compute time on EPIC in 5.51. Figure
5.51 indicates that the computation time on EPT is slightly greater than on EPIC on equal
thread counts. The speedup and efficiency on EPT is shown in 5.52. The speedup curve in
Figure 5.52a drops at 2 threads. This effect is also seen in the speedup graph of EPIC in
Figure 5.46a. We attribute this effect to increased overhead as a result of the introduction
of threads (cf. Section 3.4.3.2). Furthermore, the speedup decreases slightly at 20 threads.
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(a) Speedup (b) Efficiency

Figure 5.46: Speedup and Efficiency on EPIC, cell-linked particle and pair lists, SCALE=1.

Figure 5.47: The relationship between the
thread count and the execution time in
create pairs in find neighbors cell-
linked particle and pair lists on Vilje, SC-
ALE=1 and 20 000 timesteps.

Figure 5.48: Comparison of execution time
for various thread counts on Vilje and Epic for
create pairs in find neighbors cell-
linked particle and pair lists, SCALE=1 and
20 000 timesteps.

However, as we have not seen this effect on either Vilje or the more similar in terms of
processor type, EPIC, we attribute this deviation to measuring uncertainty. An Equation
combining these findings is expressed in Equation 5.25.

Tcreate pairs(Nthreads, arch) ≈ base(Nthreads, arch) (5.25)

Equation 5.25 estimates the compute time of create pairs to be approximately
equal to a constant given by the thread count and the architecture.

The compute times at SCALE 1.5 and SCALE 2 on EPIC are shown in Figure 5.53.
The respective speedup and efficiency graphs are shown in Figure 5.54 and 5.55. These
figures correspond with the smooth out effect observed at SCALE 1. A comparison at
SCALE 1, 1.5 and 2 is illustrated in Figure 5.56. The figure shows that the execution
time increases proportionally to the number of particles at different SCALEs. Hence, the
execution time increases approximately by a factor of SCALE2 compared to SCALE 1.
Note that Figure 5.56 shows that the execution time varies with the number of particles.
However, we estimate the execution time on a specific SCALE as a constant. As the
number of particles across SCALEs vary to a much larger degree compared to within
the same SCALE (i.e. variations in the number of virtual particles), this effect can be
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(a) Speedup (b) Efficiency

Figure 5.49: Speedup and Efficiency of find neighbors cell-linked pair and particle lists on
Vilje, at SCALE=1.

Figure 5.50: The relationship between the
thread count and the execution time in cre-
ate pairs on EPT, SCALE=1 and 20 000
timesteps.

Figure 5.51: Comparison of execution time
for various thread counts on EPT and Epic for
for create pairs in find neighbors
cell-linked particle and pair lists, SCALE=1
and 20 000 timesteps.

(a) Speedup (b) Efficiency

Figure 5.52: Speedup and Efficiency for create pairs in find neighbors cell-linked parti-
cle and pair lists on EPT, on SCALE=1.
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(a) Scale 1.5. (b) Scale 2.

Figure 5.53: The execution time of find neighbors cell-linked particle and pair lists as the
iterations count increases at SCALE=1.2 and SCALE=2, EPIC.

(a) Speedup (b) Efficiency

Figure 5.54: Speedup and Efficiency of find neighbors cell-linked particle and pair lists on
EPIC, at SCALE=1.5.

disregarded. Equation 5.26 reevaluates Equation 5.25 by including SCALE.

Tcreate pairs(Nthreads, arch,SCALE) ≈ baseSCALE1(Nthreads, arch) ⋅ SCALE2 (5.26)
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(a) Speedup (b) Efficiency

Figure 5.55: Speedup and Efficiency of find neighbors cell-linked particle and pair lists on
EPIC, on SCALE=2.

Figure 5.56: Comparison of the execution time of create pairs in find neighbors cell-
linked particle and pair lists at various SCALEs on EPIC, 20 2000 timesteps.
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Figure 5.57: The communication pattern of the SPH program. A red square indicates exchanged
between the corresponding ranks.

5.1.2.2 Inter Node Parallelism

In this section we will discuss the distributed memory parallelism of the SPH program.
Contrary to the tripartite intra node discussion of Section 5.1.2.1, this section is relevant
for all three implementations of the program, because the communication pattern and the
number of bytes communicated for each of the variations are the same.

There are two methods in the SPH program were communication is carried out; the
border exchangemethod and the migrate particlesmethod (see Section 4.2.2).
In both methods, the data units being exchanged are particles. The total communication
time is a combination of the communication time of these two methods as captured in
Equation 5.27. Both border exchange and migrate particles have the same,
one dimensional, near neighbor communication pattern shown in Figure 5.57. As each
rank only sends data to and receives data from its neighbor rank in east and west, given
by Equation 5.28, the communication pattern is clustered on both sides of the diagonal in
Figure 5.57.

Tcommunication = Tmigrate particles + Tborder exchange (5.27)

neighbor(rank)east =(rank + 1) mod N (5.28)
neighbor(rank)west =(rank +Nrank − 1) mod N (5.29)

The communication is performed in two stages during the execution of border e-
xchange and migrate particles. In the first stage, each rank transfers an integer
indicating the number of particles that is going to be transferred during the next stage.
In the second stage, the particles are transferred (cf. Section 4.2.2). This is described in
Equations 5.30 and 5.31. The term bexchange in Equation 5.30 denotes border exchange.
The terms border exchange count and border exchange the particles denotes the first and
second stage of the border exchange, respectively.
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Tborder exchange = Tbexchange count + Tbexchange the particles (5.30)

Tmigrate particles = Tmigrate count + Tmigrate the particles (5.31)

All ranks communicate concurrently during a data exchange phase. Hence, the rank
performing the most time consuming communication determines the phase’s communica-
tion time. The sends and receives are carried out by the MPI library function MPI Sen-
drecv, described in Section 3.2.1. In our MPI implementation, the communication time
of one MPI Sendrecv corresponds to the communication time of one synchronized send
(MPI Ssend). However, depending on the implementation, the MPI Sendrecv con-
struct may correspond to one or two synchronized sends. Thus, the communication time
of each stage of border exchange and migrate particles can be described as
in Equations 5.32 and 5.33, respectively.

Tbexchange stage ≈ s ⋅ max
rank∈N

(T(rank,neighbor(rank)east) + T(rank,neighbor(rank)west)))
(5.32)

Tmigrate stage ≈ s ⋅ max
rank∈N

(T(rank,neighbor(rank)east)+T(rank,neighbor(rank)west))) (5.33)

The term N in both Equations 5.32 and 5.33 is defined as the number of ranks. The term
s is captured in Equation 5.34, and the term stage is either the particle count transfer or the
particle transfer (i.e. stage ∈ {count, the particles}). Hence, T(rank,neighbor(rank)east/west
is defined in terms of one synchronized send.

s =
⎧⎪⎪⎨⎪⎪⎩

1 if TSendrecv = TSsend

2 otherwise.
(5.34)

The Heterogeneous Hockney model, described in Section 3.4.1.1, can be used to deter-
mine the communication time of a data transfer in terms of latency (α) and bandwidth (β).
The number of bytes exchanged, is the product of the particle count being exchanged and
the size of a particle, as given by Equation 5.35. The exchange time between neighboring
ranks, introduced in Equations 5.32 and 5.33, is described in Equation 5.36 by applying
the Heterogeneous Hockey model on data transfers.

Nbytes = Ndata ⋅ bytesdata (5.35)

T(rank,neighbor(rank)east/west) ≈ α(rank,neighbor(rank)east/west)+
Nbytes ⋅ β(rank,neighbor(r)east/west) (5.36)

In the first stage of the communication (i.e. the count transfer), a MPI LONG is trans-
ferred. The size of a MPI LONG is on most MPI standards equal to 4B. The size of the
particles sent during the second stage varies between 160B in the brute-force implementa-
tion, and 184B in the two cell-linked list versions. The increase in size for the cell-linked
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implementations is due to the introduction of bucket indices defining the x and y coordi-
nates of the bucket that the particle resides in.

In addition to the data size (bytesdata), the number of data elements (Ndata) trans-
ferred need to be determined in order to identify Nbytes. The number of data elements
sent during the first stage is one MPI LONG. Figure 5.58 presents the maximum num-
ber of particles being sent to east and west across all ranks during the second stage of
border exchange, for different rank counts at SCALE 1. The figure shows that the
number of particles transferred, smooths out when timestep increases and the system
reaches an approximate equilibrium. This approximately constant value is similar, in-
dependent of the rank count, because the height of the dam is constant at a given SCALE.
The fluctuations increase along with increasing rank counts because the domain is be-
ing decomposed into more narrow rectangles and new subdomain boundaries are created.
These new and potentially taller boundaries of the wave increases the maximum number of
particles being transferred between the ranks that borders the tallest subdomain boundary.
However, this maximum will stop increasing when a subdomain boundary is placed at the
tallest point on the wave. Note that, for easier modeling purposes, the effects over several
timesteps were smoothed out by averaging 1000 timesteps.

Figure 5.59 shows how the number of particles being exchanged increases with SCA-
LE. In fact, the particle count increases approximately by a factor of SCALE compared to
SCALE 1, on equal rank counts. The linear increase occurs because the height of the halos
that are transferred between ranks increase by SCALE (cf. Figure 4.6 of Section 4.2.2),
while the width is not affected as the interaction radius is not changed (cf. Section 4.2.2).
In addition, the particle density within the halo is not changed significantly because there
is a physical boundary on how many particles that can be placed within a certain region.
Furthermore, the leveling effect as the timestep increases, observed in Figure 5.58, is also
visible in Figure 5.59, because the dam reaches an approximate equilibrium. Hence, it is
possible to model the maximum number of particles sent across all ranks in each timestep
by the constant value derived from the right end of Figure 5.59. Then, at SCALE 1 with 72
ranks, the difference between this constant and the global maximum is about 210 particles
as shown in Figure 5.58b, which may lead to an inaccuracy in the predicted communication
time. However, we claim that this error is negligible because the difference is small, and
not present when the dam has reached equilibrium.

Figure 5.60 shows the number of particles transferred to the neighbors in migr-
ate particle. Compared to the border exchange case in Figure 5.58, the number of
particles being sent in migrate particle is considerably less. This is because each
increment in timestep does only result in a small change in a particle’s position. However,
the number increases with increasing rank counts as the subdomain border may be located
at a place were the wave is taller, as was the case during border exchange. In addition,
the number approaches zero as timestep increases and the movements of the dam slows
down. Figure 5.61 shows the case for several SCALEs. As with border exchange,
the number of particles being transferred increases by a factor of SCALE compared to
SCALE=1. Note, however, that this number is of a much smaller magnitude than in
border exchange, and we claim that this number will be dominated by the latency.
The number of data transfers to west is slightly greater than the number of transfers to
east in both border exchange migrate particle, because the dam is placed on
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(a) Border exchange east. (b) Border exchange west

Figure 5.58: Maximum of all ranks on each timestep, averages of 1000 timesteps. From 0 to 200
000 timesteps, SCALE=1.

(a) Border exchange east. (b) Border exchange west

Figure 5.59: Maximum of all ranks on each timestep, averages of 1000 timesteps. From 0 to 200
000 timesteps, SCALE=1, SCALE=2 and SCALE=4.
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(a) Migrate east. (b) Migrate west

Figure 5.60: Maximum of all ranks on each timestep, averages of 1000 timesteps. From 0 to 200
000 timesteps, SCALE=1.

(a) Migrate east. (b) Migrate west

Figure 5.61: Maximum of all ranks on each timestep, averages of 1000 timesteps. From 0 to 200
000 timesteps, SCALE=1, SCALE=2 and SCALE=4.

the left side of the domain before the dam breaks. Equation 5.37 describes the number of
particles being exchanged during migrate particle and border exchange.

Ndata ≈ Ndata, equilibrium, SCALE=1 ⋅ SCALE (5.37)

In order to utilize the results from Figures 5.58-5.61, Equations 5.32 and 5.33 can be
reevaluated to be the maximum of the its individual components. Even though this may
result in a larger communication cost, it will simplify the modeling process. Equations
5.38-5.39 and 5.40-5.41 modify Equations 5.32-5.33 and 5.36.

Tbexchange stage ≈ s ⋅ Tbexchange stage east + s ⋅ Tbexchange stage west (5.38)

Tmigrate stage ≈ s ⋅ Tmigrate stage east + s ⋅ Tmigrate stage west (5.39)
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Tbexchange stage east/west ≈ max
rank∈N

α(rank,neighbor(rank)east/west)+

max
rank∈N

Nbytes, east/west ⋅ max
rank∈N

β(rank,neighbor(rank)east/west (5.40)

Tmigrate stage ≈ max
rank∈N

α(rank,neighbor(rank)east/west)+

max
rank∈N

Nbytes, east/west ⋅ max
rank∈N

β(rank,neighbor(rank)east/west (5.41)

In Equations 5.38 and 5.39, the terms Tbexchange stage east/west Tmigrate stage east/west denote
the maximum transfer time in border exchange and migrate particles. respec-
tively.

Finally, there is an important restriction on the number of ranks than can be utilized.
In order to prevent particles from interacting with particles that are not in the subdomain
of one of the neighboring ranks, the subdomain width (i.e. fracBN ) has to be larger than
the interaction radius. The number of ranks are constrained by Equation 5.42.

N < B
interation radius

= B
scale k ⋅H

(5.42)
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5.2 Architectural Model
Knowledge of a platforms interconnection is necessary to understand how the communi-
cation step affects our application models. Different levels of latency and bandwidth is
expected in a large cluster. For example, the latency between cores on a single socket
should be lower than for cores on different sockets. Cores on different nodes adds another
layer of connections.

To measure the parameters of the interconnect, a small benchmark was created to per-
form ping pong tests on all pairs of nodes. The benchmark is detailed in Listing 5.1.

1 double
2 time_pingpong ( int source, int peer, int n_tests, int msg_size, MPI_Comm pair_comm:

)
3 {
4 double start, end;
5 MPI_Barrier ( pair_comm );
6 start = MPI_Wtime();
7 if ( source == rank )
8 {
9 for ( int i=0; i<n_tests; i++ )

10 MPI_Ssend ( message, msg_size, MPI_CHAR, peer, 0, MPI_COMM_WORLD );
11 for ( int i=0; i<n_tests; i++ )
12 MPI_Recv ( message, msg_size, MPI_CHAR,
13 peer, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE
14 );
15 }
16 else if ( peer == rank )
17 {
18 for ( int i=0; i<n_tests; i++ )
19 MPI_Recv ( message, msg_size, MPI_CHAR,
20 source, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE
21 );
22 for ( int i=0; i<n_tests; i++ )
23 MPI_Ssend ( message, msg_size, MPI_CHAR, source, 0, MPI_COMM_WORLD );
24 }
25 end = MPI_Wtime();
26 return (end-start)/(2.0*n_tests*msg_size);
27 }

Listing 5.1: Ping pong benchmark

The function time pingpong takes two ranks as parameters, the number of tests to be
performed, the message size and a custom communicator. The custom communicator is a
communicator which only holds the two ranks which are currently executing the function.
This enables us to create a barrier with only the relevant ranks. The two ranks exchange
n tests number of messages and the time required is measured with MPI Wtime().
After the all messages are sent and received, the average time spent per test is returned.

By adjusting the parameters n tests and msg size, we can retrieve either the la-
tency or the inverse bandwidth. For example, when the number of tests is low (< 30) and
the message size is large (> 64 MB), then the bandwidth will be the dominating factor of
the time spent per message. The unit of the inverse bandwidth is [s/byte].

By setting the number of tests high (>10 000) and the message size low (< 1 byte),
the latency will be the dominating factor of the time spent per message. The unit of the
latency is [s].

In our experiments, the time pingpong function is used to find the inverse band-
width and latency for all pairs of nodes. The results for Vilje, EPIC and EPT are shown in
Figures 5.62-5.67.

86



Figure 5.62: Vilje, Latency, 18 Nodes, 16 ranks per node. min:9.612437e-07 max:1.662683e-05
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Figure 5.62 shows the latency result of a ping pong test with 18 nodes on Vilje, running
16 ranks per node. As predicted, there are multiple visible levels of latencies. The light
blocks along the diagonal represent communication within a one node. Within the light
blocks, there is two shades of light red, which indicate the difference between intra-socket
communication and inter-socket communication.

The latency of intra-socket communication on Vilje is about 1.04 ⋅ 10−6s, while the
inter-socket latency is about 1.74 ⋅ 10−6s. Inter node communication is in the order of
10−5s. These values represents three classes of architectural parameters which can be used
as part of the heterogeneous Hockney model for Vilje. Table 5.1 shows latencies for EPIC
and EPT. Inverse bandwidths for all architectures are listed in Table 5.2.

Intra Socket Inter Socket Inter Node
Vilje 7.15 ⋅ 10−7s 1.52 ⋅ 10−6s 1.66 ⋅ 10−5s
EPT 5.29 ⋅ 10−7s 1.43 ⋅ 10−6s 7.59 ⋅ 10−6s
EPIC 5.35 ⋅ 10−7s 2.62 ⋅ 10−6s 8.12 ⋅ 10−6s

Table 5.1: Latency parameters for our test platforms

Intra Socket Inter Socket Inter Node
Vilje 1.66 ⋅ 10−10s/byte 6.07 ⋅ 10−10s/byte 5.54 ⋅ 10−9s/byte
EPT 2.60 ⋅ 10−10s/byte 3.84 ⋅ 10−10s/byte 4.13 ⋅ 10−9s/byte
EPIC 2.54 ⋅ 10−10s/byte 4.46 ⋅ 10−10s/byte 8.81 ⋅ 10−9s/byte

Table 5.2: Inverse bandwidth parameters for our test platforms

18 ranks is equal to one rack unit (IRU), which consists of two half IRUs. The half
IRUs are connected by a separate connection, however, this is not apparent in our mea-
surements.

Appendix C contains a variety of heat maps on smaller scales than those in this section.

5.3 Performance Models

5.3.1 LBM
This section summarizes the models conceived in Sections 5.1.1.1, 5.1.1.2 and 5.2.

The total execution time of the application is expressed as the computation time and
the communication time, as seen in Equation 5.43.

Ttotal = Tcompute + Tcommunicate (5.43)

In Section 5.1.1.1, we learned that the execution time per iteration of LBM is close
to constant. Meaning Tcompute can be approximated by measuring the constants for the
methods collide (cc) and propagate (cp), and multiplying by the number of iterations one
wishes to execute for, as shown in Equation 5.44. In Equation 5.44, the terms cc and cp
are dependant on the thread count, the architecture and the number of lattice points.
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Figure 5.63: Vilje, Beta Inverse, 18 Nodes, 16 ranks per node. min:1.625543e-10 max:5.536014e-
09

Figure 5.64: EPT, Latency, 10 Nodes, 20 ranks per node. min:5.296946e-07 max:7.599199e-06
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Figure 5.65: EPT, Beta Inverse, 10 Nodes, 20 ranks per node. min:2.59738e-10 max:4.134643e-09

Figure 5.66: EPIC, Latency, 6 Nodes, 36 ranks per node, min:5.356431e-07 max:8.119893e-06
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Figure 5.67: EPIC, Beta Inverse, 6 Nodes, 36 ranks per node, min:2.17188e-10 max:8.808944e-09

Tcompute ≈ (cc + cp)Nit (5.44)

The communication time is the time to perform a border exchange, and is modelled in
Equation 5.45.

Tborder exchange ≈ max
rank∈N

[Teast(rank) + Twest(rank)] + max
rank∈N

[Tnorth(rank) + Tsouth(rank)]
(5.45)

Where each term is based on the heterogeneous Hockney model, as shown in Equation
5.46. For example, Teast(rank) would translate to T(i, j) where i is “rank” and j is the
eastern neighbor of “rank”.

T(i, j) ≈ αij +wdirectionβij , i ≠ j (5.46)

Based on our results, we can make four recommendations.

1. The effectiveness of tasks compared to worksharing constructs must be determined
for the architecture.

2. To avoid saturating the memory channels of a socket, the application should run
with one rank per socket.

3. In order to estimate the total execution time of Nit iterations, run for a small amount
of iterations and capture the constants for propagate and collide. The total time is
then estimated by multiplying Nit by the sum of the constants.

4. The total execution time is dominated by the computational step, because the num-
ber of messages in the communication step is small, the number of bytes per mes-
sage low, and the latency and bandwidth of the interconnects we have used are fa-
vorable for fast communication.
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Note that in order to predict the application’s execution time on an unknown machine,
the unknown machine must be available for test runs so that it’s possible to establish the
constants cc and cp. However, one can still obtain an understanding of the application’s
characteristics through the model.

5.3.2 SPH
This section summarizes the model equations described in Sections 5.1.2.1 and 5.1.2.2.

Three implementation of the SPH program have been analyzed; the brute-force imple-
mentation where all particle combinations are checked for proximity (cf. Section 4.2.2.1),
the cell-linked particle implementation were the particles are placed in buckets and only
neighboring buckets are examined for proximity (cf. Section 4.2.2.1), and the cell-linked
particle and pair implementation were both particles and pairs are located in buckets
to avoid the critical sections present in both of the other implementations (cf. Section
4.2.2.1).

The total execution time of a program consist of the communication time and the com-
putation time, in addition to any overlap between them. In our SPH application, there is
no overlap between communication and computation. Hence, the total execution time can
be described as in Equation 5.47.

Ttotal execution time = Tcommunication time + Tcomputation time (5.47)

The computation time is dominated by the find neighbors method in all three
implementations. The neighbor loop (i.e. a nested loop iterating over all particle combi-
nations) dominates the computation time of the find neighbors method in the brute-
force implementation, while the create pairs method and subroutine dominate fin-
d neighbors in cell-linked particle lists and cell-linked particle and pair lists, respec-
tively. In the brute-force implementation, the compute time is represented through the
number of iterations of the neighbor loop as the number of iterations is much greater than
the pair count, and therefore closely coupled with the execution time. There is a linear
relationship between the iteration count and the execution time. In the cell-linked particle
list method, the pair count is a more accurate representation of the execution time because
the probability of detecting a pair (i.e. the critical section) during a proximity check is
high. However, the critical section prevents the speedup from increasing beyond a socket.
There is a linear relationship between the pair count and the computation time. The cell-
linked particle and pair lists method is not bounded by any critical sections and is not
significantly effected by the increase in particle count within a SCALE. Hence, the com-
putation in cell-linked particle and pair lists can be represented as a constant. Furthermore,
the brute-force implementation and the cell-linked particle and pair lists implementation
can be executed on threads filling the entire node without a decrease in speedup.

The computation times of the brute-force implementation, the cell-linked particle list
implementation and the cell-linked particle and pair lists implementation are captured in
Equations 5.48, 5.49 and 5.50, respectively.

Tcomputation time bf ≈ Tneighbor loop(Nthread, arch,Nloop iter)
≈ slopeSCALE1(Nthread) ⋅Nloop iter + baseSCALE1(Nthread, arch)

(5.48)
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Tcomputation time clpl ≈ Tcreate pairs(Nthread, arch,Npairs)
≈ slopeSCALE1(Nthread) ⋅Npairs + baseSCALE1(Nthread, arch)

(5.49)

Tcomputation time clppl ≈ Tcreate pairs(Nthreads, arch,SCALE)
≈ baseSCALE1(Nthreads, arch) ⋅ SCALE2

(5.50)

In Equations 5.48, 5.49 and 5.50, the term loop iter denotes the number of iterations of
the neighbor loop, the term arch denotes the architecture, the term slope denotes the gradi-
ent of the linear relationship and base denotes the intercept. In addition, the abbreviations
bf, clpl and clppl denote brute-force implementation, the cell-linked particle implementa-
tion and the cell-linked particle and pair lists implementation, respectively. Both base and
slope are drawn by executing the program for about 20 000 timesteps at SCALE 1 on a
given architecture with a given thread count.

In contrast to the computation time, the communication time of the SPH application
is equivalent for all implementations. There are two methods in the SPH application were
communication is performed; border exchange and migrate particles. This
is captured in Equation 5.51. The communication in both of these methods are one di-
mensional and performed in two stages. During the first stage, an integer representing the
number of particles that will be transferred during the second stage is communicated. The
particles are sent during the second stage. This is shown in Equations 5.52 and 5.53. The
term s in Equations 5.52 and 5.53 is 1 if the execution time of one MPI Sendrecv cor-
responds to one MPI Ssend, and 2 otherwise. The four different communication stages
in the SPH application are approximated in Equations 5.54-5.57.

Tcommunication = Tmigrate particles + Tborder exchange (5.51)

Tborder exchange = s ⋅ Tbexchange count + s ⋅ Tbexchange the particles (5.52)

Tmigrate particles = s ⋅ Tmigrate count + s ⋅ Tmigrate the particles (5.53)

Tbexchange count ≈ max
rank∈N

α(rank,neighbor(rank)east)+4B ⋅ max
rank∈N

β(rank,neighbor(rank)east

+ max
rank∈N

α(rank,neighbor(rank)west) + 4B ⋅ max
rank∈N

β(rank,neighbor(rank)west

(5.54)

Tbexchange the particles ≈ max
rank∈N

α(rank,neighbor(rank)east)

+ max
rank∈N

Nbytes, east ⋅ max
rank∈N

β(rank,neighbor(rank)east

+ max
rank∈N

α(rank,neighbor(rank)west)

+ max
rank∈N

Nbytes, west ⋅ max
rank∈N

β(rank,neighbor(rank)west (5.55)
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Tmigrate count ≈ max
rank∈N

α(rank,neighbor(rank)east) + 4B ⋅ max
rank∈N

β(rank,neighbor(rank)east

+ max
rank∈N

α(rank,neighbor(rank)west) + 4B ⋅ max
rank∈N

β(rank,neighbor(rank)west

(5.56)

Tmigrate the particles ≈ max
rank∈N

α(rank,neighbor(rank)east)

+ max
rank∈N

Nbytes, east ⋅ max
rank∈N

β(rank,neighbor(rank)east

+ max
rank∈N

α(rank,neighbor(rank)west)

+ max
rank∈N

Nbytes, west ⋅ max
rank∈N

β(rank,neighbor(rank)west (5.57)

In Equations 5.54-5.57, the term Nbytes,east denote the number of bytes transferred to
the neighbor in east when the dam has reach an approximate equilibrium. This number
is retrieved by multiplying the number of particles that are transferred, by the size of a
particle. The term N is the number of ranks, and α and β are constants denoting the
latency and bandwidth in the Heterogeneous Hockney model (cf. Section 3.4.1.1). The
the particle and count subscripts denote the two stages of the communication. The factor
4B found in Equations 5.54 and 5.56 are is the size of an MPI LONG.

Note that the number of ranks is constrained by the interaction radius as described in
Equation 5.58.

N < B
interaction radius

= B
scale k ⋅H

(5.58)

Based on these results, we can make 6 recommendations:

1. As the number of ranks that can be utilize on a given SCALE is limited, we have to
utilize as many threads as possible in order to obtain maximum speedup.

2. Brute-force: In order to estimate slope and base on a given thread count and archi-
tecture, run the application on that thread count and architecture until a linear pattern
between neighbor loop iterations (Nloop iter) in each timestep and execution time is
observed.

3. Cell-linked particle list: In order to estimate slope and base on a given thread count
and architecture, run the application on that thread count and architecture until a
linear pattern between the number of pairs (Npairs) in each timestep and execution
time is observed.

4. Cell-linked pair and particle list: In order to estimate base on a given thread count
and architecture, run the application on that thread count and architecture until the
fluctuations in execution time per particle count is almost non-existent.
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5. The number of particles transferred during communication can be estimated by run-
ning the application until the number of particles transmitted per timestep stabilizes.

6. The brute-force implementation and the cell-linked pair and particle list implemen-
tation should be executed with 1 rank per node, while the cell-linked particle method
should be executed with 1 rank per socket.

Note that the computation models created in this section estimate the compute time in
terms of the most compute intensive method. Hence, there may be some variations in the
accuracy of the models. This is especially true for the cell-linked particle and pair lists
implementation. Here, the modeled subroutine does only represent about 4

5
of the com-

pute time of find neighbors, and the remaining methods of time step account for
about 1

3
of time step’s execution time. The methods of time step does not contain

any critical sections. Methods outside of the time step method, however, do contain
critical sections, and may therefore represent significant parts of the execution time once
the bottleneck on find neighbours is removed. In addition, we need to be able to
execute the application on the thread count and architecture that we would like to model
in order to get accurate results. However, the findings of Sections 5.1.2.1 and 5.1.2.2 may
still be useful as they expose important characteristics about the application and how it per-
forms, not only for the Dambreak problem, but also for other problems. Furthermore, the
communication models include a parameter representing the number of transferred parti-
cles. This parameter is difficult to predict accurately. However, the communication time is
much larger than the computation time as a transfer of 3079 particles (were each particle
is 184B) is needed to exceed a computation time of 0.005s (with the slowest interconnect;
inter-node on EPIC). Hence, we claim that the communication models do not need to be
as accurate as the computation models for the SPH application.

5.4 Parameter Tabels

arch the architecture that the application executes on.
B The global width of the tank.
N The number of ranks.

interaction radius
If two particles are within each others
interaction radius, a pair is created.

Nthreads The number of threads.

find neighbors
The most compute intensive method
in the SPH application.

time step
The method where most of the computation
takes place.

H
The smoothing length, the interaction radius is
determined by this length.

scale k A factor of the interaction radius.

neighbor loop
The nested loop that iterates over all
particle combinations.

time integration
The method in the SPH application that
iterates through timesteps.

95



timestep
The evolution of the SPH application
is discretized into small units of time
called timestep.

SCALE A variable used to change the size of the domain.
Nparticles The number of particles present in a timestep.

Npairs The number of pairs present in a timestep.

Nloop iter
The number of iterations of the neighbor
loop during a timestep.

Ndata
The number of data units transferred
during communication.

Ndata, equilibrium, SCALE=1

The number of data units transferred
when the dam has reach an approximate
equilibrium, at SCALE=1.

Nbytes
The number of bytes transferred during
communication.

bytesdata The size of the data unit in bytes.
α Latency in the Hockney model.
β Bandwidth in the Hockney model.

the brute-force implementation
The naive detect neighbor implementation
that examines all particle combinations
for proximity.

the cell-linked particle
list implementation

Only the nine neighboring buckets are
examined during proximity checks.
The creation of a pair includes a critical section.

the cell-linked particle
and pair lists implementation

Only the nine neighboring buckets
are examined during proximity checks.
No critical section during pair creation.
Pairs across buckets are duplicated.

s

This term describes the correspondence
between the execution time of
MPI Sendrecv and
MPI Ssend. It is 1 if they are
equal and 2 otherwise.

stage

Can be either count (first stage:
the particle count is transferred)
or the particles (second stage:
the particles are transferred).

the particles
Subscript that denotes the second
stage of the communication
(i.e. particles are transferred).

count
Subscript that denotes the first stage
of the communication
(i.e. the particles count is transferred).
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border exchange
Exchanges the halo of each subdomain
in order to accommodate for distributed
memory parallelism.

migrate particles
Sends particles which have moved out
of this subdomain, and receives particles
which have entered the subdomain.

Table 5.4: SPH Parameter table for chapter 5.
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SCALE Size of domain: (WIDTH ⋅ SCALE) ⋅ (HEIGHT ⋅ SCALE)
N Number of ranks

rank Rank ID
Nit Number of iterations/time steps

width a width of domain with scale a
height a height of domain with scale a

cc constant approximation of iteration time in collide method
cp constant approximation of iteration time in propagate method

Tcollide Time for the collide step
Tpropagate Time for the propagate step
Tcompute Time for the compute step

Tcommunicate Time for the communication step
Ttotal Time to perform compute and communication steps

neighbor Rank of neighbor
α Latency
β Inverse Bandwidth
Hl Height of local subdomain
Wl Width of local subdomain
Hg Height of global domain
Wg Width of global domain
px Number of ranks in the x-direction
py Number of ranks in the y-direction
w Number of bytes

Tborder exchange Time to complete border exchange

Tdirection(rank) Time for rank to complete an exchange with
its neighbor in “direction”

T(i, j) Time for rank i and j to complete an exchange

Table 5.3: LBM Parameter table for chapter 5.
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Chapter 6
Validation

In order to evaluate the predictive power of our models with regards to scalability, we
run a set of experiments on an architecture not used during development, Archer, the UK
national supercomputer.

Archer consists of 4920 compute nodes, with 64 GB of memory per node. Each node
contains two Intel Xeon 12 core processors, which is a different core density than the ones
already seen in Vilje, EPIC and EPT. For the purpose of validation, this is positive because
the platform has not been a part of the design of the models.

In this chapter, we test the optimal configuration for scalability in terms of threads and
ranks, as recommended by our performance models from Chapter 5. In Section 6.1, we
describe the experiments we performed, and their results. In Section 6.2, we evaluate the
predictive power of our models based on the experimental results.

6.1 Test procedure and results

In order to test our predictions, we ran both our applications with multiple thread/rank
configurations to see if the scalability is predicted by our models.

6.1.1 LBM

In our model, whether worksharing or tasking is faster depends on the architecture. There-
fore, we test Moffatt on a single node on SCALE=20 for both methods. On Archer, this
results in worksharing being slightly faster (0.01s per iteration) than tasking. Based on
this, the following tests are performed with worksharing.

The performance model for LBM indicate that running one rank per socket is the
optimal configuration. To test this, we ran LBM Moffatt on SCALE = 40 on 2, 4, 8
and 16 nodes for two cases. The “good case” has one rank per socket, the “bad case” has
one rank per node. The result is illustrated in Figure 6.1, the baseline is the best result on
two nodes. As predicted, using one rank per socket is optimal.
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Figure 6.1: LBM Moffatt speedup with SCALE=40 on Archer.

6.1.2 SPH
Our performance model for SPH indicate that running one rank per node is the optimal
configuration, because the speedup only grows as the thread count increases, and the num-
ber of ranks we can have is bounded by the SCALE parameter. This is tested by running
two variants of SPH, brute force and cell linked list for pairs and particles, on SCALE 1
with 2, 4, 8 and 16 nodes. The result is shown in Figure 6.2. The baseline is the best
result on two nodes. Both variants achieve speedups with one rank per node, indicating
that the sockets are not saturated even with full thread parallelism. The cell list variant is
predictably faster than the brute force variant.

6.2 Evaluation
Through our analysis of the proxy applications, we have achieved a set of performance
models that can predict the characteristics of our proxy applications. The modelled effects
are shown to be accurate, even when running on Archer, which is an architecture outside
of our of testing platforms. We opted not to test any of the communication characteristics
as our analysis indicated that it would not be the dominating effect on this scale.

Latency and Bandwidth heat maps for Archer can be found in Figure C.9 and Figure
C.10, respectively.
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Figure 6.2: SPH speedup with SCALE=1 on Archer.
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Chapter 7
Conclusion and Future Work

In this thesis we have developed and analyzed two CFD proxy applications in six variants
on four machines. From these we have created performance models of the interactions
between software and hardware which are common between architectures.

We have discovered that the effect of using tasking constructs over worksharing con-
structs for LBM is dependent on the system architecture. We have learned that the LBM
application is memory bound which can lead to diminishing returns in speedup if one rank
per node is used instead of one rank per socket.

In the SPH application we have discovered that models based on the number of loop
iterations, pairs or particles is sufficient to create models which accurately describe the
application behaviour. Surprisingly, the execution time grows predictably with the size of
the problem, even though the dambreak problem starts with an unbalanced work load.

The communication models of both LBM and SPH are similar and their impact is small
compared to the computational models. Both applications only exchange small amounts of
data per iteration. Combined with the fast interconnects on Vilje, EPIC, EPT and Archer,
the applications are well suited for running with large problem sizes on a large number of
cores.

7.1 Future work

There are plenty of interesting ways this work could continue.
Domı́nguez et al. (2011) describes and evaluates many algorithms for neighbor finding

in SPH. Performance of our proxy application could improve by implementing some their
recommendations.

Replacing the linked lists with arrays in the cell linked list methods would be interest-
ing to investigate, especially in terms of cache performance.

Because the neighbor finding routine in the “cell-linked list for particles and pairs”
method only accounts for about 3

4
of the time step method, it would be interesting to

model the other methods of the time step method as well.
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The neighbor finding routine in SPH could be further improved by offloading it to a
GPGPU.

The CUDA version of LBM performs extremely well, and it would be intriguing to
create performance models for it. In the current CUDA version, all data is transferred
back from the GPU for each border exchange. Implementing a CUDA-aware MPI version
of LBM would probably be faster and more efficient, because data can be transferred from
GPU device memory directly to the interconnect (requires GPUDirect) without copying to
host memory first.
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Domı́nguez, J. M., Crespo, A. J. C., Gómez-Gesteira, M., and Marongiu, J. C. (2011).
Neighbour lists in smoothed particle hydrodynamics. International Journal for Numer-
ical Methods in Fluids, 67(12):2026–2042.

Dongarra, J. J., Du Croz, J., Hammarling, S., and Duff, I. S. (1990). A set of level 3 basic
linear algebra subprograms. ACM Trans. Math. Softw., 16(1):1–17.

Flynn, M. J. (1966). Very high-speed computing systems. Proceedings of the IEEE,
54(12):1901–1909.

Frisch, U., Hasslacher, B., and Pomeau, Y. (1986). Lattice-gas automata for the navier-
stokes equation. Physical Review Letters, 56(14):1505–1508.

Gingold, R. A. and Monaghan, J. J. (1977). Smoothed particle hydrodynamics: theory and
application to non-spherical stars. Monthly Notices of the Royal Astronomical Society,
181(3):375–389.

Gustafson, J. L. (1988). Reevaluating amdahl’s law. Commun. ACM, 31(5):532–533.

Hardy, J., Pomeau, Y., and de Pazzis, O. (1973). Time evolution of a two-dimensional
classical lattice system. Phys. Rev. Lett., 31:276–279.

Karlin, I., Bhatele, A., Keasler, J., Cohen, J., Devito, Z., Haque, R., Laney, D., Luke, E.,
Wang, F., Richards, D., Schulz, M., and Still, C. H. (2012). Exploring traditional and
emerging parallel programming models using a proxy application. Presented at: 27th
IEEE International Parallel & Distributed Processing Symposium, Boston, MA, United
States.

Kielmann, T., Bal, H. E., and Verstoep, K. (2000). Fast measurement of logp parameters
for message passing platforms. In Rolim, J., editor, Parallel and Distributed Processing,
pages 1176–1183, Berlin, Heidelberg. Springer Berlin Heidelberg.

Lastovetsky, A., Rychkov, V., and O’Flynn, M. (2010). Accurate heterogeneous commu-
nication models and a software tool for their efficient estimation. International Journal
of High Performance Computing Applications, 24(1):34–48.

Lawson, G., Sosonkina, M., and Shen, Y. (2015). Changing cpu frequency in comd
proxy application offloaded to intel xeon phi co-processors. Procedia Computer Sci-
ence, 51(1):100–109.

106



Mattson, W. and Rice, B. M. (1999). Near-neighbor calculations using a modified cell-
linked list method. Computer Physics Communications, 119(2):135–148.

McCalpin, J. (1995). Memory bandwidth and machine balance in high performance com-
puters.

McNamara, G. and Zanetti, G. (1988). Use of the boltzmann equation to simulate lattice-
gas automata. Physical Review Letters, 61(20):2332–2335.

Moffatt, H. K. (1964). Viscous and resistive eddies near a sharp corner. Journal of Fluid
Mechanics, 18(1):1–18.

Monaghan, J. (1994). Simulating free surface flows with sph. Journal of Computational
Physics, 110(2):399–406.

Monaghan, J. J. and Kos, A. (1999). Solitary waves on a cretan beach. Journal of Water-
way, Port, Coastal, and Ocean Engineering, 125(3):145–155.

OpenMP Architecture Review Board (2015). OpenMP application program interface ver-
sion 4.5. https://www.openmp.org/wp-content/uploads/openmp-4.
5.pdf, [accessed 2018-06-27].

Ozbulut, M., Yildiz, M., and Goren, O. (2014). A numerical investigation into the cor-
rection algorithms for sph method in modeling violent free surface flows. International
Journal of Mechanical Sciences, 79:56–65.

Pacheco, P. (2011). An introduction to parallel programming. Morgan Kaufmann, Ams-
terdam Boston.

Rabenseifner, R. (2003). Hybrid parallel programming on hpc platforms. In proceedings
of the Fifth European Workshop on OpenMP, EWOMP, volume 3, pages 185–194.

Valiant, L. (1990). A bridging model for parallel computation. Communications of the
ACM, 33(8):103–111.

Wilkinson, B. (2005). Parallel programming : techniques and applications using net-
worked workstations and parallel computers.

Williams, S., Waterman, A., and Patterson, D. (2009). Roofline: An insightful visual
performance model for multicore architectures. Communications of the ACM, 52(4):65.

107

https://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
https://www.openmp.org/wp-content/uploads/openmp-4.5.pdf


108



Appendices

109





Appendix A
Selected Source Code

1 #pragma omp for
2 for (int x = 0; x < N_BUCKETS_X; ++x) {
3 for (int y = 0; y < N_BUCKETS_Y; ++y) {
4 pair_t* base_pair = &pairs[BID(x, y)];
5 bucket_t* base_bucket = buckets[BID(x, y)];
6 particle_t* base_particle;
7 if (base_bucket != NULL) { //kan kanskje fjernes
8 base_particle = base_bucket->particle;
9 if (base_particle == NULL) {

10 continue;
11 }
12 }
13 else
14 continue;
15

16 while(base_bucket != NULL && base_bucket->particle != NULL) {
17 base_particle = base_bucket->particle;
18

19 int noffsets[8][2] = {
20 {-1, 1}, // Top left
21 {0, 1}, // Top center
22 {1, 1}, // Top right
23 {1, 0}, // Right
24 {1, -1}, // Bottom right
25 {0, -1}, // Bottom center
26 {-1, -1}, // Bottom left
27 {-1, 0}, // Left
28 };
29

30 for (int i = 0; i < 9; ++i) {
31 bucket_t* current_bucket;
32 if (i == 0) {
33 current_bucket = base_bucket->next;
34 } else {
35 int bx = x+noffsets[i-1][0];
36 int by = y+noffsets[i-1][1];
37 if (bx >= N_BUCKETS_X bx < 0
38 by >= N_BUCKETS_Y by < 0) continue;
39 current_bucket =
40 buckets[BID(bx, by)];
41 }
42 while (current_bucket != NULL && current_bucket->particle != NULL) :

{
43 particle_t* current_particle = current_bucket->particle;
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44 double distance_squared =
45 pow(base_particle->x[0] - current_particle->x[0], 2) +
46 pow(base_particle->x[1] - current_particle->x[1], 2);
47 if (distance_squared <= RADIUS*RADIUS) {
48

49 if (base_pair->ip == NULL) {
50 base_pair->i = base_particle->local_idx;
51 base_pair->j = current_particle->local_idx;
52 base_pair->ip = base_particle;
53 base_pair->jp = current_particle;
54 base_pair->r = sqrt(distance_squared);
55 base_pair->q = base_pair->r / H;
56 base_pair->w = 0.0;
57 base_pair->dwdx[0] = base_pair->dwdx[1] = 0.0;
58 } else {
59 base_pair->next = (pair_t*)malloc(sizeof(pair_t));
60 base_pair->next->i = base_particle->local_idx;
61 base_pair->next->j = current_particle->local_idx;
62 base_pair->next->ip = base_particle;
63 base_pair->next->jp = current_particle;
64 base_pair->next->r = sqrt(distance_squared);
65 base_pair->next->q = base_pair->next->r / H;
66 base_pair->next->w = 0.0;
67 base_pair->next->dwdx[0] = base_pair->next->dwdx[1] = :

0.0;
68 base_pair->next->next = NULL;
69 base_pair = base_pair->next;
70 }
71

72 base_particle->interactions++;
73 if (i == 0) {
74 current_particle->interactions++;
75 }
76

77 }
78 current_bucket = current_bucket->next;
79 }
80 }
81 base_bucket = base_bucket->next;
82 }
83 }
84 }

Listing A.1: Create neighbors for the lockless bucket method. The method iterates through all of
the particles in the current bucket (i=0), and then the particles neighboring buckets (i=1..9). A pair is
added to a linked list of pairs if the distance between the particles is lower than the interaction radius.
The interaction attribute of a particle is only updated if the particle belongs to the base bucket. This
is to avoid counting the interaction twice.
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Appendix B
LBM Speedup and Efficiency
graphs
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(a) Vilje Moffatt Propagate Speedup (b) Vilje Moffatt Collide Speedup

(c) Vilje Moffatt Propagate Efficiency (d) Vilje Moffatt Collide Efficiency

Figure B.1: Vilje Moffatt peedup and efficiency
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(a) EPT Moffatt Propagate Speedup (b) EPT Moffatt Collide Speedup

(c) EPT Moffatt Propagate Efficiency (d) EPT Moffatt Collide Efficiency

Figure B.2: EPT Moffatt speedup and efficiency

115



(a) EPIC Moffatt Propagate Speedup (b) EPIC Moffatt Collide Speedup

(c) EPIC Moffatt Propagate Efficiency (d) EPIC Moffatt Collide Efficiency

Figure B.3: EPIC Moffatt speedup and efficiency
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(a) Vilje Cylinder Propagate Speedup (b) Vilje Cylinder Collide Speedup

(c) Vilje Cylinder Propagate Efficiency (d) Vilje Cylinder Collide Efficiency

Figure B.4: Vilje Cylinder speedup and efficiency

117



(a) EPT Cylinder Propagate Speedup (b) EPT Cylinder Collide Speedup

(c) EPT Cylinder Propagate Efficiency (d) EPT Cylinder Collide Efficiency

Figure B.5: EPT Cylinder speedup and efficiency
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(a) EPIC Cylinder Propagate Speedup (b) EPIC Cylinder Collide Speedup

(c) EPIC Cylinder Propagate Efficiency (d) EPIC Cylinder Collide Efficiency

Figure B.6: EPIC Cylinder speedup and efficiency
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(a) Vilje Moffatt Task Propagate Speedup (b) Vilje Moffatt Task Collide Speedup

(c) Vilje Moffatt Task Propagate Efficiency (d) Vilje Moffatt Task Collide Efficiency

Figure B.7: Vilje Moffatt Task speedup and efficiency
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(a) EPT Moffatt Task Propagate Speedup (b) EPT Moffatt Task Collide Speedup

(c) EPT Moffatt Task Propagate Efficiency (d) EPT Moffatt Task Collide Efficiency

Figure B.8: EPT Moffatt Task speedup and efficiency
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(a) EPIC Moffatt Task Propagate Speedup (b) EPIC Moffatt Task Collide Speedup

(c) EPIC Moffatt Task Propagate Efficiency (d) EPIC Moffatt Task Collide Efficiency

Figure B.9: EPIC Moffatt Task speedup and efficiency
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Appendix C
Latency and Inverse Bandwidth
Heatmaps
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Figure C.1: Vilje, Latency, 8 Nodes, 16 ranks per node. min:9.750016e-07 max:1.789225e-05
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Figure C.2: VILJE, Beta Inverse, 8 Nodes, 16 ranks per node. min:1.662708e-10 max:3.360967e-
09
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Figure C.3: Vilje, Beta Inverse, 1 Node, 16 ranks per node. min:1.669952e-10 max:6.072257e-10

Figure C.4: Vilje, Latency, 1 Node, 16 ranks per node. min:7.157778e-07 max:1.521244e-06
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Figure C.5: EPT, Latency, 1 Nodes, 20 ranks per node. min:5.405903e-07 max:1.430154e-06

Figure C.6: EPT, Beta Inverse, 1 Nodes, 20 ranks per node. min:2.602089e-10 max:3.849905e-10
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Figure C.7: EPIC, Latency, 1 Nodes, 36 ranks per node. min:5.350947e-07 max:2.622306e-06

Figure C.8: EPIC, Beta Inverse, 1 Nodes, 36 ranks per node. min:2.435713e-10 max:4.464687e-10
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Figure C.9: Archer, Latency, 16 Nodes, 24 ranks per node. min:1.286399e-06 max:8.888543e-06
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Figure C.10: Archer, Beta Inverse, 16 Nodes, 24 ranks per node.
min:1.371288e-10 max:2.839602e-08
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