
Towards Faster Development of Deep
Learning Models Using Meta-Learning

Martin Baklid
Nils Barlaug

Master of Science in Computer Science

Supervisor: Magnus Lie Hetland, IDI

Department of Computer Science

Submission date: July 2018

Norwegian University of Science and Technology

i

Abstract

Deep learning has, in relatively few years, improved significantly the performance
of many machine learning applications. Even though its popularity has surged, it’s
not always easy to apply deep learning to a real-world problem. Developing a good
deep learning model is a process that most likely will include several iterations
of data collection, training and hyperparameter tuning. One big obstacle in this
process is the hunger for data and compute power. Supervised learning often
requires a massive amount of annotated examples, and training usually extends
over hours or days. This makes the process of developing deep learning models
very time and resource consuming. In this thesis we investigate if recent advances
in few-shot learning can be used to speed up this process, and look specifically at
object detection as an example. Such methods could potentially decrease both the
necessary number of examples and the training time.

MAML (Finn et al. 2017) is a promising few-shot learning method based on meta-
learning that optimizes the initial parameters of a model to be best possibly suited
for fine-tuning. It’s model-agnostic by nature and can in principle be applied to
most deep learning models. But through extensive exploration we show that it’s far
from trivial to apply MAML to object detection on natural images. However, we are
able to use a simpler method inspired by MAML, Reptile (Nichol et al. 2018b). We
show that a model pretrained using Reptile can be fine-tuned considerably faster
than a model pretrained normally on object detection, but surprisingly it does not
enable using fewer examples. In addition, we show that Reptile is able to speed up
the development of deep learning models in practice. This is done by building a
proof of concept tool and use this to test some example use cases.

ii

iii

Sammendrag

Dyp læring har, på relativt få år, forbedret ytelsen betydelig for mange applikasjoner
av maskinlæring. Selv om populariteten har eksplodert, er det ikke alltid enkelt å
anvende dyp læring på reelle problemer. Å utvikle en god modell med dyp læring
er en prosess som mest sannsynlig vil involvere flere iterasjoner av datainnsamling,
trening og justering av hyperparametere. Et stort hinder i denne prosessen er
apetitten på data og beregningskraft. Veiledet læring trenger ofte massive mengder
annoterte eksempler, og trening strekker seg ofte over timer eller dager. Dette gjør
utviklingsprosessen for modeller lagd med dyp læring veldig tids- og ressurskrevende.
I denne oppgaven undersøker vi om nylige framskritt innen få-forsøks-læring kan bli
brukt til å gjøre denne prosessen raskere, og ser spesifikt på objekt-detektering som
et eksempel. Slike metoder kan potensielt redusere både det nødvendige antallet
eksempler og tiden det tar å trene en modell.

MAML (Finn et al. 2017) er en lovende få-forsøks-lærings-metode basert på meta-
læring som optimaliserer de initielle parameterne til en modell så de er best mulig
egnet til finjustering. Den er modell-agnostisk i sin natur og kan i prinsippet
bli anvendt på de fleste modeller innen dyp læring. Men gjennom omfattende
utforskning viser vi at det er langt fra trivielt å anvende MAML til objekt-detektering
på naturlige bilder. Derimot er vi i stand til å bruke en enklere metode som er
inspirert av MAML, Reptile (Nichol et al. 2018b). Vi viser at en modell som er
forhåndstrent ved hjelp av Reptile kan bli finjustert vesentlig raskere enn en modell
som er forhåndstrent normalt på objekt-detektering, men overraskende nok så
muliggjør den ikke å bruke færre eksempler. I tillegg viser vi at Reptile er i stand til
å gjøre utviklingen av modeller med dyp læring raskere i praksis. Dette gjøres ved
å lage et eksempelverktøy og så bruke dette til å teste noen eksempelbruksmønste.

iv

v

Preface

Before starting the work on this thesis, we did our specialization project. We
did preliminary work and explored the literature on few-shot learning and the
possibility of applying it to object detection. The project focused on MAML (Finn
et al. 2017), a novel few-shot learning approach based on meta-learning. To explore
the characteristics of MAML, we did a comprehensive study of few-shot sinusoid
regression.

Since this thesis is a continuation of the specialization project, and we cannot expect
the reader to have read our earlier report, we adapt and include some parts of the
text from this earlier work into this thesis. Note that this is common practice at our
institution, but not commonly mentioned in theses. The large majority of the thesis
is new (even though the list below seems long), but some of the more introductory
parts are partially reused. We now list which parts are reused and to which degree.

• Section 1.1 — Motivation: Our motivation has not changed much, and
so this text originates from the motivation in the specialization project report
but has been reworked heavily.

• Section 2.1 — A brief history of deep learning: This text remains
largely the same as for the specialization project report.

• Section 2.2 — Fundamentals of deep learning: Figures have been
reworked to fit the format of this thesis, but the text remains mostly the
same.

• Section 2.3 — Convolutional Neural Networks: While originating from
the specialization project report, it has been heavily adapted and extended.
For the most part, this content is new.

• Section 2.4 — Few-shot learning and meta-learning: The specific parts
about MAML and Meta-SGD remain largely the same (mostly just adapted
to new notation), but everything else is mainly new content.

• Section 3.1 — Deep learning frameworks: While our use of the PyTorch
deep learning framework has increased in complexity since the specialization
project, the considerations and background regarding deep learning frameworks
are the same. Most of this section stays the same but has been reworked to
reflect major updates in the PyTorch API.

• Section 5.1 — Functional PyTorch: The actual implementation of our
extension to PyTorch to support our special use case has been extensively
reworked, but the motivation behind it and the high-level explanation of it
remains to a large degree the same.

vi

vii

We would like to thank our supervisor Magnus Lie Hetland for invalueable support
and guidance. In addition, we would like to thank Anne C. Elster for access to
hardware resources.

viii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Related Work . 4
1.3 Research Questions and Goals . 6
1.4 Contributions . 7
1.5 Outline . 8

2 Background Theory 9
2.1 A Brief History of Deep Learning . 9
2.2 Fundamentals of Deep Learning . 10

2.2.1 Goal . 11
2.2.2 Representation . 12
2.2.3 Optimization . 13
2.2.4 Backpropagation . 14
2.2.5 Generalization . 17

2.3 Convolutional Neural Networks . 19
2.3.1 Building Blocks . 20
2.3.2 Image Classification . 25
2.3.3 Object Detection . 28

2.4 Few-Shot Learning and Meta-Learning 39
2.4.1 Few-Shot Learning . 39
2.4.2 Meta-Learning . 42
2.4.3 MAML and its Descendants 45

3 Tools and Environment 51
3.1 Deep Learning Frameworks . 51

3.1.1 Framework Variation . 52
3.1.2 Popular Frameworks . 55
3.1.3 PyTorch . 56
3.1.4 TensorBoard . 58

3.2 Hardware . 58
3.3 Proof of Concept Tool . 59

3.3.1 React . 59
3.3.2 Flask . 61

ix

x CONTENTS

3.3.3 SQLite . 61

4 Exploration 63

5 Implementation 71
5.1 Functional PyTorch . 71

5.1.1 Extending PyTorch . 71
5.2 LettersOD . 75
5.3 Proof of Concept Tool . 76

5.3.1 Client . 77
5.3.2 Worker . 79
5.3.3 Server . 79

6 Experimental Setup 81
6.1 Reptile Evaluation . 82

6.1.1 Meta-Learning and Few-Shot Learning for Object Detection . 82
6.1.2 Benchmarks . 84
6.1.3 Baselines . 90
6.1.4 Setup . 91

6.2 Proof of Concept Tool Evaluation . 94

7 Results 97
7.1 Reptile Evaluation . 97
7.2 Proof of Concept Tool Evaluation . 101

8 Discussion and Conclusion 103

Appendix A FS-COCO Folds 113

Appendix B Proof of Concept Tool Screenshots 117

CONTENTS xi

xii CONTENTS

Chapter 1

Introduction

We will now first present our research motivation. Then we briefly discuss related
work, before introducing our research questions and goals. Finally, we list our main
contributions and outline the rest of this thesis.

1.1 Motivation

Deep learning has in few years become a major driver of innovative solutions. This is
made possible by an increasing amount of available data, increasing computational
resources and improved techniques for training deep neural networks. The key
to the success of deep learning is in its ability to learn hierarchical features from
massive amounts of relatively unprocessed data (LeCun et al. 2015) — for example,
images, audio and text. Learned features from deep learning models have proven
to be superior to hand engineered features across many tasks, being both more
accurate and less resource demanding to develop.

Most breakthroughs come from supervised learning, and its ability to leverage vast
amounts of annotated data. But for many tasks, there do not exist large annotated
datasets — a significant obstacle for solving new tasks. Training a supervised
machine learning model for a new task is usually an iterative process. Several
rounds of data collection, annotation and model adjustment might be necessary
to achieve the desired performance. A simplified view of this process is shown in
Figure 1.1. In this thesis, we will refer to this as the user–model feedback loop. In
each iteration of the loop, the user1 adjusts the model and/or provide data, train
the model, and then evaluate the model somehow. The evaluation is provided as
feedback to the user, and depending on the user’s decision a new iteration might be
initiated.

1 Note that user in this context need not be a single person. It could be (and often is) a team
of individuals.

1

2 CHAPTER 1. INTRODUCTION

Data

User

Train

Evaluate

Model

Adjust model/data

Feedback

Figure 1.1: The process of developing a supervised machine learning model for a
new task shown in a simplified manner. We call this the user–model feedback loop.

Usually, the most resource-demanding part in this process is the user. The user
is responsible for model adjustment, data collection and annotation. All these
tasks can be very time and resource demanding — and therefore expensive. This
is especially true for specialized domains, like medical image analysis. Collecting
images might depend on using expensive medical equipment and getting one or
more doctors’ opinion on every image. Thus budgets can limit the number of images
you can collect and annotate. There might even be hard limits on the number of
images available if they rely on patients with rare conditions. Getting a model to
work on a new task can involve a significant amount of fiddling and tuning of the
hyperparameters and model architecture, resulting in potentially many iterations.
It’s no surprise that if the training of the model takes a long time, the whole process
will be very lengthy.

With the above in mind, we argue that speeding up the user–model feedback loop
could potentially be significantly resource-saving and even enable new applications.
If we ignore ways to improve the user’s decisions, there are two ways to speed up
the feedback loop:

1. Decrease the model’s need for examples: If less data is needed, the user
can spend less time collecting and annotating data. Annotating thousands of
examples can easily take days or weeks for a single person.

2. Decrease the time used to train and evaluate the model: If the model
can be trained faster, the user can get feedback earlier. Deep learning models
are notoriously slow to train, with training times often ranging from hours to

1.1. MOTIVATION 3

days.

Traditionally, the user–model feedback loop is somewhat decoupled into distinct
stages because each step usually takes at least a day, and other work is often
done in parallel. This on-and-off workflow can in itself make the feedback loop
slower. Ideally, the feedback loop would be so fast that it can be performed in one
continuous user session. There exist interactive tools for annotating data and tools
for evaluating models, but a single tool usually doesn’t do both — at least not in
the same session.

Humans have the ability to adapt to new tasks from very few examples. Since most
real-world tasks don’t come with countless examples of correct behavior (and never
will), humans have no choice but to learn from few examples. We call the machine
learning problem of learning from few examples few-shot learning. In the last couple
of years, several methods for doing few-shot learning in a deep learning context
has been proposed (see Chapter 2). While not achieving human-level accuracy or
accuracy on a level suitable for most fully-automatic real-world applications, they
still perform significantly better than random guessing. Low-accuracy methods are
not necessarily useless, they might still be used to assist humans in exploring and
annotating data in earlier iterations more efficiently — and then achieve higher
accuracy in later iterations. These methods might also be able to train considerably
faster than other methods. Therefore we argue that it would be interesting to see
if recent advances in few-shot learning can be used to speed up the user–model
feedback loop. Such methods have the potential to both decrease the model’s need
for examples and the training time.

Most new few-shot methods are primarily concerned with classification tasks — and
focus especially on image classification. We think it would be more interesting to
investigate problems that require more manual annotation labor — making gains in
efficiency more valuable. One such problem, closely related to image classification
but with more intensive annotation needs, is object detection. Having both a large
appetite for annotations and large complex models with long training time, we argue
object detection is a good candidate for a problem that needs a faster user–model
feedback loop.

4 CHAPTER 1. INTRODUCTION

1.2 Related Work

We note that the most relevant work for this thesis will be covered in greater detail
in Chapter 2.

Object detection is a central problem in computer vision, which has been worked on
for many years. The goal is to classify, localize and decide the extent of objects in an
image. Deep learning based methods have in recent years replaced methods based
on handcrafted features as state of the art. We cover object detection extensively
in Chapter 2.

The cost of acquiring annotated datasets have been acknowledged for a long time.
Different approaches have been made to either reduce the need for annotations or
the cost of annotating. Some approaches are quite general, while others are more
problem- or model-specific.

Active learning (see Settles 2010, for an extensive review of earlier work) aims to
choose the most valuable examples to annotate next in order to improve performance.
The idea is that some new annotated examples might not add much beyond the
annotated examples you already have, while others might be more informative and
make a more significant difference when added to the training set. A common
approach is to quantify how uncertain the model is on different unannotated examples
and choose the examples the model is least certain about. Active learning has been
used on object detection (Bietti 2012; Kao et al. 2018; Roy et al. 2016; Sivaraman
& Trivedi 2014; Vijayanarasimhan & Grauman 2014), although more frequently
on image classification (e.g. Joshi et al. 2009; Sener & Savarese 2018; Wang et al.
2017). Some methods rely on more traditional computer vision techniques, while
other depend on deep learning. While these methods can reduce the number of
annotations necessary, they still operate in the scale of thousands of examples

— which in practice is still a quite slow user–model feedback loop. Many of the
methods also require time-consuming training of the model before new requests for
annotations are made.

Semi-supervised learning (see Zhu 2008, for an extensive review of earlier work)
makes use of both annotated and unannotated examples. Even though some
examples are not annotated, they may still be useful. Semi-supervised learning has
not been widely applied to object detection. A more common related approach is
weakly supervised learning, where the goal is to leverage incomplete or inaccurate
annotations. Image-level annotations from humans or image classification models
are often used since these are easier to obtain (Bazzani et al. 2016; Bilen et al.
2014; Oquab et al. 2015). Such methods reduce the labor cost because they rely on
cheaper annotations, but they still need massive amounts of annotations — which
can result in time consuming or expensive iterations in the user–model feedback
loop for new or specialized domains. Work is being done to fuse few-shot learning

1.2. RELATED WORK 5

with weakly supervised learning (Keren et al. 2018), and might be promising in the
future.

Few-shot learning is an extreme form of transfer learning where the model has already
been trained on data from similar tasks. Recent methods have shown promising
performance for regression, image classification and reinforcement learning tasks
(see more in Chapter 2). These methods can be extremely valuable if they are able
to learn from domains with lots of available annotated data and transfer efficiently
to new or specialized domains.

Crowdsourcing has been used effectively to annotate large-scale datasets (Deng et al.
2009; Lin et al. 2014). The idea is to use volunteers or paid workers online to col-
laborate annotating large amounts of data. It’s important to have clear instructions
for workers and good routines for quality assurance. Quality is often controlled
by letting users verify each other’s annotations and by comparing annotations
between users and to ‘gold standard’ annotations. While crowdsourcing might be a
cost-effective method, it’s often not feasible for datasets which require extensive
domain knowledge, are regulated by strict privacy regulations or are considered
industry secrets. If annotation demands heavy domain knowledge (e.g. need doctors
or engineers), one cannot simply let arbitrary workers annotate. Strict privacy
regulations might make it illegal and/or unethical to share data (e.g. medical
records) with external persons. And businesses may not be willing to share their
data with external personnel because they see their data as an important asset for
which they need to control access.

Various steps have been taken to reduce the annotation effort with the help of
specialized tools. Papadopoulos et al. (2017), for example, show that bounding
boxes can be annotated faster by letting the user click on the right-, left-, bottom-
and topmost point of an object. And there has been a considerable amount of
work on easing the annotation of videos — often trying to incorporate and make
use of motion so not every frame has to be annotated (Ali et al. 2011; Mihalcik &
Doermann 2003; Vondrick et al. 2013; Yuen et al. 2009). All of these tools help
speed up the annotation process, but they are not able to give any sort of feedback
during a session on the impact your new annotations have on the model you want
to train.

6 CHAPTER 1. INTRODUCTION

1.3 Research Questions and Goals

Both object detection and few-shot learning are complex topics. If we want to
investigate the use of few-shot learning to speed up the user–model feedback loop
for object detection, we do not have time to do extensive testing of all methods.
Instead, we think it would be wise to single out a suitable few-shot learning method
and try to adapt it to a suitable object detection method — trying to answer if it
is possible to do few-shot object detection.

Research question 1. Can few-shot learning methods be used to do object
detection on natural images?

Goal 1.1. Choose and adapt a few-shot learning method to object
detection.

Goal 1.2. Evaluate performance of the method from Goal 1.1 on
standard object detection datasets.

Given that few-shot object detection is possible, does it actually speed up the
user–model feedback loop? While one could rely on only theoretical analyses, we
argue it’s important to consider the technical and practical feasibility. There might
be bottlenecks and obstacles in an actual real-world application that are hard to
foresee. Therefore we consider a proof of concept implementation to be a suitable
way to test if the feedback loop is faster.

Research question 2. Does the method from Goal 1.1 enable a faster user–model
feedback loop?

Goal 2.1. Make a proof of concept tool simulating the user–model
feedback loop on object detection.

Goal 2.2. Use the proof of concept tool to measure if it’s reasonable
to expect a faster user–model feedback loop when using
the method from Goal 1.1.

1.4. CONTRIBUTIONS 7

1.4 Contributions

We make the following contributions:

• We introduce a new simple taxonomy for meta-learners that enables discussion
about meta-learning at a more general level.

• We give valuable insight into how difficult it is to apply MAML (Finn et al.
2017) to object detection on natural images — sharing our failed attempts.

• We show that it is possible to do few-shot object detection with Reptile
(Nichol et al. 2018b) — even though it’s unclear if the accuracy is any better
when compared to standard pretraining.

• We show that Reptile enables us to adapt much quicker to a new object
detection task than standard pretraining.

• We demonstrate that Reptile can speed up the user–model feedback loop in
realistic use cases by implementing and running a proof of concept tool.

8 CHAPTER 1. INTRODUCTION

1.5 Outline

Chapter 2 — Background Theory: All necessary background theory are in-
troduced. This includes deep learning in general as well as convolutional neural
networks and few-shot learning. For each topic, we first give an overview before we
go into greater detail about the most relevant methods for this thesis. Note that
our choice of methods are motivated later.

Chapter 3 — Tools and Environment: Describes the tools and environment
used in this thesis. Note that our choice of tools are motivated later.

Chapter 4 — Exploration: Lay out the path we followed to achieve Goal 1.1.
Choice of methods used in this thesis will be motivated. Since a large part of
the work we did was to explore how to get few-shot learning working for object
detection, we have decided to present this work in a dedicated chapter. We will
also give valuable insight into failed attempts.

Chapter 5 — Implementation: Presents the implementation of different so-
lutions used throughout this thesis. We will only give a high-level overview and
consider details to be outside the scope of this text. Choice of tools will be motivated
when they are used.

Chapter 6 — Experimental Setup: We explain in detail which experiments
we will do, and how we set up and execute them. This will provide all necessary
details needed to understand the results in the next chapter.

Chapter 7 — Results: For each experiment, we present the results and then
analyze and interpret them.

Chapter 8 — Discussion and Conclusion: With the results and analysis fresh
in mind we conclude with respect to our research questions and goals. We also
discuss consequences and the potential of the methods we have worked with, and
finally look at possible future work.

Chapter 2

Background Theory

In this chapter, we introduce the theoretical material used in this thesis. It should
provide the reader with enough information to understand the rest of the document.
But not all topics will be covered in detail, and unfamiliar readers will have to
consult the referenced sources for more information if they find it necessary.

We will open by explaining why deep learning has become so popular before we
cover the fundamentals of deep learning. Extending the fundamentals, we cover
Convolutional Neural Networks (CNNs) — a key ingredient for applying deep
learning to computer vision tasks. More specifically we look at the building blocks
needed to build CNNs and then delve into image classification and object detection.
We end the chapter by giving an overview of few-shot learning and meta-learning,
including a more detailed coverage of the meta-learning methods most relevant for
this thesis.

2.1 A Brief History of Deep Learning

Deep learning has made its march into many domains, often becoming the new
state of the art (LeCun et al. 2015). Eye-opening applications and record-breaking
performance in standardized benchmarks are responsible for a massive amount of
coverage in the press (He et al. 2015; Mnih et al. 2015; Silver et al. 2016). The
hallmark of deep learning is its ability to learn the representations from raw data
necessary to perform its task. It does so by learning multiple levels of representation,
increasing in abstraction from raw data. Earlier machine learning methods had
the problem that they were too dependent upon the representation of the data
they got. These classical methods need handcrafted feature extractors, which can
be extremely challenging or infeasible to engineer. Figuring out which low-level
features one needs and how to extract them used to be a big industry, but deep
learning is rapidly replacing these methods.

9

10 CHAPTER 2. BACKGROUND THEORY

While the term deep learning is relatively new, its history (Schmidhuber 2015) has
roots going many years back. This is because deep learning is simply referring to a
neural network with many layers1 — a rather recent trend.

McCulloch & Pitts (1943) introduced a simple model of neural networks but was
not able to train them. Different ways of training the networks were proposed in
the years following. Rosenblatt (1958) introduced the perceptron, basically a single
neuron, and a way to train it. However, it remained an unsolved challenge how to
effectively train multi-layered networks for many years until Rumelhart et al. (1985)
introduced backpropagation — a structured way to propagate the influence on
the output through neural networks with multiple layers. Despite some successful
applications (e.g. LeCun et al. 1990) neural networks never saw the widespread
use we see today because they had several obstacles making training hard. The
networks demanded large amounts of data and computational resources. Also, it
was quite tricky to get the training procedure to convergence in a reasonable time
without getting stuck or overfit. G. E. Hinton et al. (2006) marks the start of a
revived interest for neural networks. They showed that it was possible to train
(some variant) of a deep neural network effectively. In the following years the field
made progress for three major reasons:

1. Improved training techniques and tools: Making it easier to conver-
gence quickly without getting stuck and generalize well more reliably. More
specifically, better ways to deal with vanishing gradients (e.g. ReLU from
Nair & G. E. Hinton 2010) and overfitting (e.g dropout from Srivastava et al.
2014).

2. More data: Making it possible to leverage neural networks ability to exploit
huge amounts of raw data. The general growth of the web and sensor data,
together with the construction of large-scale datasets (e.g. ImageNet Deng
et al. 2009), have made it possible to obtain a growing amount of training
data.

3. More computational resources: Making it possible to train big and deep
networks. Mass produced GPUs have made it possible and cheap to obtain
parallel computing hardware suitable for training neural networks.

All of the above led up Krizhevsky et al. (2012) winning the ImageNet Large Scale
Visual Recognition Challenge in 2012, which became the start of mass adaptation
of deep learning.

2.2 Fundamentals of Deep Learning

In this section, we will briefly introduce some of the main concepts of deep learning.
A complete introduction is outside the scope of this thesis, but we refer the reader to

1There exists no strict requirement on the number of layers

2.2. FUNDAMENTALS OF DEEP LEARNING 11

Λ
(∑n

i=1 wixi
)

x1

x2

xi

xn

a

w1

w2

wi

wn

...

...

(a)

x1

x2

x3

x4

y1

y2

y3

…

(b)

Figure 2.1: (a) Illustration of a neuron. (b) Illustration of a fully connected
feedforward neural network.

Goodfellow et al. (2016) for a comprehensive introduction. We will limit ourselves to
superficially discussing only standard supervised learning with feedforward networks,
as that is most relevant for this thesis.

2.2.1 Goal

Let’s first define our goal. We wish to approximate some unknown function2 f∗.
This function could, for example, be used to classify images. So if x is an image,
y = f∗(x) will be some value representing the class of the image (e.g. dog, cat,
etc. if one were classifying animals). Of course, we can’t approximate this function
without knowing anything about the task at hand. We therefore have some observed
data D = {(x(j),y(j))|1 ≤ j ≤ m} where we know that f∗(x(j)) ≈ y(j) for all j.
In other words we have some input-output examples for the function we want to
approximate3, and they may contain noise. The way we approximate f∗ is by
defining a function (also called a model) f(x;θ) parameterized by θ, and then try
to find suitable parameters for this function using our data.

2It might seem restrictive to approximate a function when so many real-world examples are best
described as a stochastic process without definite outcomes/answers. But this is entirely a question
of which function to approximate. Functions can output probabilities, represent probability
densities, etc.

3We may of course also have implicit domain knowledge about the task at hand guiding us.

12 CHAPTER 2. BACKGROUND THEORY

−3 −2 −1 1 2 3

−1

−0.5

0.5

1

x

a

Sigmoid

−3 −2 −1 1 2 3

−1

−0.5

0.5

1

x

a

tanh

−3 −2 −1 1 2 3

−1

−0.5

0.5

1

x

a

ReLU

Figure 2.2: Plots showing the sigmoid, tanh and ReLU activation function.

2.2.2 Representation

How should this function fθ look like4? In theory, it could be anything. But in our
context, this will be a feedforward neural network. A feedforward network is in
essence just a function with many parameters. These networks can be assembled
in arbitrarily ways with numerous building blocks and bell and whistles, but we
will focus on the basics. The classical motivation used for neural networks is that
they (very) loosely model the brain5. Our smallest building blocks are neurons —
supposed to model brain neurons. A neuron takes multiple inputs, accumulate a
weighted sum of the inputs and then performs some nonlinear activation function
Λ on the accumulated sum. The resulting output is the activation value a of the
neuron. See Figure 2.1a for an illustration. We use these neurons to build our
feedforward network by organizing them in sequential layers. The inputs to a neuron
are the activation values of all the neurons in the previous layer. Neurons of the first
layer use x as inputs and the output of the neurons in the last layer are considered
ŷ. If we now regard θ as a vector consisting of the weights of all the neurons in the
network, we have a feedforward neural network interpreted as a function f(x;θ)
that maps input x to output ŷ = f(x;θ) parameterized by θ. See Figure 2.1b for
an illustration.

We just described what is known as a fully connected feedforward network. This
is, of course, just a specific variant of feedforward networks. They may vary in
numerous ways such as in activation functions and overall network architecture.
Examples of typical activation functions are displayed in Figure 2.2. The most
important aspect of such networks is that they can be represented as some kind of
layered computational graph. We will see later why this is important. These layers
can be said to give depth to the networks and the calculation they represent. Layers
usually involve a big linear transformation where many values interact followed by
a nonlinear per-neuron activation. Notice that such layers can often be expressed in
vector notation. Let’s take a fully connected layer as an example. If W l is a matrix
with the weights going into layer l and al−1 is a vector with the activation values

4We use fθ as a shorthand, with meaning as in fθ(x) = f(x;θ).
5Most will probably say they are in reality more “inspired by” than “model of”.

2.2. FUNDAMENTALS OF DEEP LEARNING 13

from layer l − 1, then the activation values for layer l become al = Λ(Wal−1) —
given that W is defined correctly, and Λ performs elementwise activation.

2.2.3 Optimization

Given that we have selected a fθ that we think is suitable for the task at hand,
we now need to figure out how we should set the parameters θ to approximate f∗.
To do this, we first define some cost6 function L(fθ, D), quantifying how “bad” fθ
approximates f∗ over the data D with parameters θ. Then we start with some
(random) initial θ and do gradient descent over θ with respect to the cost function
L(fθ, D).

The cost function is typically defined as an average over the per example losses for
all examples (x(j),y(j)) ∈ D:

L(θ) = 1

|D|
∑
j

L(fθ, (x
(j),y(j)))

where L is the per example loss. Notice that evaluating L(fθ, (x
(j),y(j))) usually

involves evaluating ŷ(j) = fθ(x
(j)) and then compare the output ŷ(j) of the network

to the target y(j), i.e. L(fθ, (x(j),y(j))) = L̃(y(j), ŷ(j)).

Gradient descent is, in its essence, doing

θt+1 = θt − α∇θt
L(fθ, D)

for many timesteps t, where α is the learning rate. As one can see, we need the
gradient of the cost function L(fθ, D) with respect to the parameters θ, and not
the cost function itself. So for each gradient descent iteration, we would like to
evaluate:

∇θL(fθ, D) =
1

|D|
∑
j

∇θL(fθ, (x
(j),y(j)))

This becomes too computationally heavy when we have a lot of data (as one
usually has in deep learning) since we in practice have to evaluate and differentiate
ŷ(j) = fθ(x

(j)) to find ∇θL(fθ, (x
(j),y(j))). Remember that fθ is actually a (large

multilayered) neural network. So to make gradient descent more tractable, we use
only a randomly sampled fix sized subset B ⊂ D of the examples to approximate
∇θL(fθ, D):

∇θL(fθ, D) ≈ ∇θL(fθ, B)

This is what’s called Stochastic Gradient Descent (SGD). B is referred to as a
minibatch (or just batch) and |B| is the (mini)batch size. In practice, one does not
use standard SGD but rather one of its extensions or derivatives7.

6Cost and loss are used interchangeably
7Perhaps most notable SGD with momentum (Rumelhart et al. 1986), RMSProp (Tieleman &

G. Hinton 2012) and Adam (Kingma & Ba 2015)

14 CHAPTER 2. BACKGROUND THEORY

x z1 z2 z3 z4 L(x, y, θ)

θ1 θ2 θ3 y

f1 f2 f3 L̃

Figure 2.3: Illustration of the computational graph for the loss function in Equa-
tion 2.1.

2.2.4 Backpropagation

Even though sampling the examples and only approximating the true ∇θL(fθ, D)
reduces the number of gradients we need to calculate, we still need to calculate some
of these expensive gradients. Remember that our network could be represented
as a computational graph. Since L̃ is only a calculation based upon the output of
the network and some target value, the graph can be extended to output the loss
instead of the network output. We then have a computational graph that takes x,
y and θ as input and output the loss. The task of finding loss gradients is now
reduced to finding gradients of one (or more) nodes in a computational graph with
respect to other nodes. Backpropagation performs this calculation in an efficient
manner. It’s a procedure that applies the chain rule of differentiation using dynamic
programming. We will illustrate this with an example.

Assume that all values are scalars8 and that we have a loss function that can be
expressed as a function composition:

L(fθ, (x, y)) = L̃(y, ŷ) = L̃(y, fθ(x)) = L̃(y, f3(f2(f1(x; θ1); θ2); θ3)) (2.1)

And where intermediate values are named:

z1 = f1(x)

z2 = f2(z1)

z3 = f3(z2)

z4 = L̃(y, z3)

8The example is only for scalars, but the same principle applies to arbitrarily tensors.

2.2. FUNDAMENTALS OF DEEP LEARNING 15

We can then represent L(fθ, (x, y)) as the computational graph shown in Figure 2.3.
The question is now how we find the gradients ∂L

∂θ1
, ∂L
∂θ2

and ∂L
∂θ3

. If we naively apply
the chain rule, we get (2.2):

∂L

∂θ3
=

∂z4
∂θ3

=
∂z4
∂z3

∂z3
∂θ3

∂L

∂θ2
=

∂z4
∂θ2

=
∂z4
∂z3

∂z3
∂z2

∂z2
∂θ2

∂L

∂θ1
=

∂z4
∂θ1

=
∂z4
∂z3

∂z3
∂z2

∂z2
∂z1

∂z1
∂θ1

(2.2)

∂z4
∂z4

= 1

∂z4
∂z3

=
∂z4
∂z4

∂z4
∂z3

∂z4
∂θ3

=
∂z4
∂z3

∂z3
∂θ3

∂z4
∂z2

=
∂z4
∂z3

∂z3
∂z2

∂z4
∂θ2

=
∂z4
∂z2

∂z2
∂θ2

∂z4
∂z1

=
∂z4
∂z2

∂z2
∂z1

∂z4
∂θ1

=
∂z4
∂z1

∂z1
∂θ1

(2.3)

Here we see how the calculation lends itself easily to dynamic programming. Sub-
calculations will be repeated more and more as the computational graph gets deeper.
If we start at the output, we can work our way backward through the graph, building
the gradients with the chain rule along the way — as seen in Equation 2.3 and
illustrated using the computational graph in Figure 2.4. This is, in essence, the
backpropagation algorithm.

The insight from this example is that we can find the gradient of the output of a
computational graph with respect to internal nodes in the graph by doing only local
calculations. To find the gradient of the graph output with respect to a node, we
only need to know the gradient of the graph output with respect to its predecessor
and the gradient of its predecessors with respect to the node itself — as illustrated
in Figure 2.5. To find the gradient of the loss with respect to all parameters, one
simply traverse the computational graph in reverse topological order applying the
chain rule. The base case is that the gradient of the graph output with respect to
itself is 1. In our example, the computational graph was a tree, but backpropagation
will work for arbitrarily computational graphs (they will always be directed and
acyclic). Also, the algorithm is not limited to working with scalars but extend easily
to tensors of one or more dimensions.

The way backpropagation just was shown only involved symbolic values. When it’s
performed in practice, these will (of course) all be numerical values. The gradients

16 CHAPTER 2. BACKGROUND THEORY

x z1 z2 z3 z4 L(x, y, θ)

θ1 θ2 θ3 y

f1 f2 f3 L̃

∂z4
∂z4

= 1∂z4
∂z3

= ∂z4
∂z4

∂z4
∂z3

∂z4
∂z2

= ∂z4
∂z3

∂z3
∂z2

∂z4
∂z1

= ∂z4
∂z2

∂z2
∂z1

∂z4
∂θ3

= ∂z4
∂z3

∂z3
∂θ3

∂z4
∂θ2

= ∂z4
∂z2

∂z2
∂θ2

∂z4
∂θ1

= ∂z4
∂z1

∂z1
∂θ1

Figure 2.4: Illustration showing backpropagation performed on the computational
graph in Figure 2.3 for the loss in Equation 2.1.

z

q1

q2

...

qn∂L
∂z =

n∑
i=1

∂L
∂qi

∂qi
∂z

Figure 2.5: Illustration of the local computation necessary to perform dynamic
programming in backpropagation.

2.2. FUNDAMENTALS OF DEEP LEARNING 17

calculated will depend on the input-output pair (x,y) and the parameters θ. All
the local gradients will be expressions involving node values. Since we need the
value of the different nodes in the graph, we actually have to evaluate the whole
computational graph before doing backpropagation. This is called the forward pass.
Backpropagation is then appropriately named the backward pass.

2.2.5 Generalization

Let’s assume that we are able to use SGD with backpropagation to optimize
the parameters in large neural networks9. Then we are able to efficiently choose
parameters θ such that fθ(x

(j)) ≈ y(j) ≈ f∗(x(j)) for all observed data points
(x(j),y(j)) ∈ D. However, just because fθ approximates f∗ well on observed data
doesn’t necessarily mean it will on unobserved data from the true data distribution.
Being able to approximate unobserved values from the true data distribution with the
help of only a finite sample is what’s known as generalizing. There is an underlying
issue when we try to generalize. We posed the problem of approximating f∗ as
the problem of optimizing some parameterized function fθ to fit some (potentially
noisy) samples of input-output examples. This will not in general lead to good
generalization. Several things can go wrong, but there are mainly two of interest to
us (both are illustrated in Figure 2.6a):

• Underfitting: When it should be possible to perform better on observed
data and unobserved data at the same time. This could be a result of the
model not being expressive enough or because of problems with the training
procedure.

• Overfitting: When it should be possible to trade off worse performance on
observed data with better performance on unobserved data. This can occur
for many reasons. The underlying problem is, as mentioned, that we have
posed generalization as optimization. In essence, we are fitting noise. Either
sampling noise — so that the sampling gives a wrong impression on the overall
data trend. Or noise in measurement — so that we mistake noise for actual
data trends.

In deep learning, the problem of overfitting is by far the most dominant.

How do we know if we are underfitting or overfitting? This is in general hard
to know, but one can take action to try to hypothesize what is going on. One
useful metric to know is how good the model performs on the true unobserved data
distribution. Unfortunately, we do not have/know this distribution. So instead we
can get a (possibly biased) sample of the unobserved data by splitting our data in

9Optimizing large neural networks with SGD can be very tricky, and many problems may arise.
We do not discuss details of how to get things working in practice, even though this a big part of
the deep learning field. We recommend looking up other sources — e.g. Goodfellow et al. (2016).

18 CHAPTER 2. BACKGROUND THEORY

x

y

D

f∗

Underfitting f

Overfitting f

(a)

Iterations

Lo
ss

Overfitting

Iterations

Underfitting

Training Validation

(b)

Figure 2.6: (a) Plot illustrating overfitting and underfitting. (b) Illustration of
typical learning curves for models that overfit and underfit.

training and validation data10. We only use the training data when doing SGD,
and approximate the performance on unobserved data with the validation data. It’s
especially informative to plot the loss on training and validation data during training

— showing the progress as the number of SGD iterations increase. Figure 2.6b show
one typical example of overfitting and one typical for underfitting. Overfitting is
often characterized by the training loss distancing itself from the validation loss.
The validation loss might even go up. Underfitting is often discovered by noting
that the training (and validation) loss is unacceptably high.

One thing is detecting if the model is overfitting or underfitting, but how does one
avoid/fix it? Underfitting can usually be fixed by increasing the model size, making
it more expressive. In reality, the struggle seems to be that of overfitting. One
might, of course, get more data to make it less likely to overfit, but this is not always
possible/feasible. Moreover one could try to make the model smaller, but this might
hurt expressiveness in a way that makes it underfit. There exist many ways to
combat and balance overfitting, and it remains an active field of research. The
techniques that are made to help generalization is called regularization techniques.
We will briefly mention some of the most prominent techniques. The reader is
encouraged to look up other sources or refer to Goodfellow et al. (2016).

• Parameter norm penalty: Penalize high magnitude parameters in the loss
function. Popular variants include L1 and L2 regularization — the latter also
known as weight decay.

10In reality, one almost always split the data in a training, validation and testing part. The
model is trained on the training data, generalization is monitored with validation data and the
final test of how the model does on unobserved data is done with the test data. Since one often do
decisions about hyperparameters based on validation performance this data can’t be regarded as
unobserved, and we need the test data to get a reliable sample of the performance on unobserved
data.

2.3. CONVOLUTIONAL NEURAL NETWORKS 19

• Early stopping: Monitor performance on the validation set, stop training
when the performance hasn’t improved in a while and choose the parameters
for when the validation loss was at its lowest.

• Ensemble methods: Train (partially) independent models and combine
their results (average, majority vote, etc.). Independence can be achieved
by using different training data, different random initialization or different
network architectures.

• Dropout (Srivastava et al. 2014): Randomly set neurons to zero during
training. Can be seen as an extreme form of ensemble method — training
a different network each iteration. It forces the network to rely on multiple
information sources, making it less likely to fit noise.

• Data augmentation: Synthesize more data by augmenting the already
provided training data in ways that do not change the desired output.

• Transfer learning: Train on a different task with other data first, and then
reuse the trained parameters to fine-tune the model for the task at hand.

• Parameter sharing: Let the same parameter be used several places in the
network. The most famous example is CNNs — introduced in Section 2.3.

2.3 Convolutional Neural Networks

Computer vision is one of the areas where deep learning has been applied most
successfully. A success that can be largely attributed to Convolutional Neural
Networks (CNNs). These are deep learning networks that perform one or more
convolutions. The convolution operation itself is not novel in the domain of computer
vision. It has a long history in image processing and computer vision and has been
used to perform tasks such as smoothing, sharpening and edge detection. But while
classical techniques usually use relatively few handcrafted convolution kernels, CNNs
use many learned kernels in a hierarchy of layers. The earlier layers detect low-level
features which the later layers combine into more and more complex features. It is
this hierarchical processing which gives CNNs the ability to learn high-level tasks,
such as classifying images using raw images as its input (LeCun et al. 2015). CNNs
have taken some inspiration from biology and the hierarchical processing is often
compared to how the visual cortex in the brain works.

While computer vision is concerned with a wide variety of tasks, our focus is object
detection. To understand how object detection is done we first have to take a quick
look at image classification. So in this section, we will first explain the building
blocks of CNNs. Then we take a look at how image classification is done, before we
dive into object detection.

20 CHAPTER 2. BACKGROUND THEORY

I

w

×

O

Figure 2.7: Illustration of a 3x3 convolution on a 7x7 input — showing the compu-
tation of O(2, 2). I is the input image, w is the kernel and O is the result.

2.3.1 Building Blocks

The main building block of a CNN is the convolution operation11. It’s not limited
to two-dimensional domains or images specifically, but we will explain it in the
context of images. The operation slides a kernel over the image performing a dot
product between the kernel and the image at each spatial location:

O(i, j) = (I ∗ w)(i, j) =
∑
n

∑
m

I(i+ n, j +m)w(n,m)

where I is the input image and w is the kernel matrix. This is also illustrated in
Figure 2.7. For classical computer vision tasks, the kernels are handcrafted to detect
different features in the image, e.g. edges, and the output O from the convolution
operation is a map that tells where in the input image a particular feature exists.
In CNNs the kernels are treated as parameters — i.e. w ⊆ θ12. A convolution
operation is usually followed by the addition of bias b and an elementwise activation
function Λ. This is similar to fully connected layers, having both weight and bias
as parameters and then sent through an activation function. Let +b(z) = z + b be
the function which adds the bias. We call Λ ◦+b ◦ O a convolutional layer and the
output of a convolutional layer a feature map13. A CNN is then a neural network
that uses one or more convolutional layers, and may be structured in arbitrary ways
and incorporate other types of layers. In deep learning, of course, one usually stack
many convolutional layers. The input to the first layer is the image itself, while the
other layers receive the feature map from the layer before.

The convolution operation incorporates strong prior knowledge about images: local-
11Strictly speaking, usually we actually use what’s called cross-correlation, but this is not of any

practical importance.
12w ⊆ θ is not well defined since w is a matrix and θ a vector, but we define it to mean that w

is a subrange of θ.
13The use of these two terms vary in the literature and do not have an exact agreed upon

definition.

2.3. CONVOLUTIONAL NEURAL NETWORKS 21

I

Λ(O + b)

w3 w3 w3 w3 w3

w2 w2 w2 w2 w2
w1 w1 w1 w1 w1

Figure 2.8: Illustration of a one-dimensional convolutional layer with a kernel of
size 3.

ity and translation invariance. To easier appreciate this, let’s look at one-dimensional
convolutional layers and compare this to fully connected layers. Having only one
dimension, the convolution operation simply becomes

O(i) = (I ∗ w)(i) =
∑
n

I(i+ n)w(n)

Figure 2.8 illustrates this operation in the form of neurons — as discussed in
Section 2.2. We can contrast this with fully connected layers by looking at the
illustration in Figure 2.1b. The most noticeable difference between convolutional
layers and fully connected layers is that the connections are sparse, i.e. a node in
one layer is connected to some, but not all, nodes in the next layer. Not only are
the neurons sparsely connected, but they are also locally connected. We are in
a way incorporating prior knowledge of the spatial structure of images into the
network architecture. Features that lie spatially close in an image are more likely
to influence each other. Sparse connections lead to much fewer parameters in the
network compared to fully connected layers, giving a strong regularizing effect since
it’s harder to overfit with fewer parameters.

Also notice that the weights are reused to compute the values of each of the nodes
in O — this is the equivalent to sliding a kernel over multiple locations in the input.
Sharing weights also have a regularizing effect since there are fewer parameters
and the kernel is forced to learn weights that work well across all spatial positions
in the input. This weight sharing incorporates our prior knowledge of translation
invariance in images into the network architecture. A cat is a cat no matter where
in the image it appears.

The observant reader may have noticed that the output of a convolution operation
is smaller than its input. As long as the kernel is bigger than 1x1, we will necessarily
get this effect because values in the output need a certain neighborhood of values
in the input. This is not always a desirable effect. So to avoid it we usually pad the
input to mimic a larger spatial extent. This is illustrated in Figure 2.9. If we pad
correctly, we can make sure the output has the same size as the input. There exist

22 CHAPTER 2. BACKGROUND THEORY

Figure 2.9: Illustration of padding in convolution. This show how padding can
mitigate the problem of different sized input and output.

(a)

4 2
7 1 7

(b)

Figure 2.10: (a) Illustration of a strided convolution with stride 2 on a 7x7 feature
map with padding, resulting in a 4x4 feature map. The dots show the kernel center
for every spatial location where the kernel is used. Notice that without padding
the resulting feature map would be 3x3. (b) Illustration of 2x2 max pooling with
stride 2 performed on a 8x8 feature map, resulting in a 4x4 feature map. This is an
efficient way to scale down feature maps — not requiring any weights.

many schemes for what values to pad with, but the most common is to just use
zeros (which is usually the mean value).

Sometimes, it may actually be of interest to scale down feature maps. Either
to reduce the computational burden of the following layers or to achieve a more
compact representation. This is usually done by either strided pooling or strided
convolutions — the latter becoming more and more popular. Strided convolutions
are like regular convolutions, but the kernel is applied to a lower resolution grid
over the input:

Os(i, j) = (I ∗ w)(si, sj) =
∑
n

∑
m

I(i+ n, j +m)w(n,m)

where s is the stride. A convolution with stride 2 is illustrated in Figure 2.10a.
Pooling is a reduction function without parameters that is applied spatially across the

2.3. CONVOLUTIONAL NEURAL NETWORKS 23

convolution
5x5

max pooling
2x2

convolution
3x3

convolution
3x3

Figure 2.11: Illustration of the receptive field for the output of four layers. First
a 5x5 convolutional layer, then a 2x2 max pooling layer with stride 2 and ending
with two 3x3 convolutional layers. The input is a 22x22 image, and the output is a
9x9 feature map. All convolutional layers use padding. Notice the significant effect
strided max pooling has on the receptive field.

whole feature map. The most common types of pooling are max and average pooling.
2x2 max pooling with stride 2 is illustrated in Figure 2.10b. The advantage with
strided convolution over strided pooling is that the network may learn specialized
downsampling schemes, while the advantage of pooling is its efficiency and the lack
of parameters.

Other times it may be of interest to scale up feature maps, as we will see when we
look at RetinaNet (Lin et al. 2017b). This is normally done by either transposed
convolutions or interpolation techniques. Interpolation techniques are equivalent
to traditional interpolation techniques used to upsample images. And we will not
look closer at transposed convolutions since they are not relevant for us. The
main distinction between these two techniques are as with strided convolutions and
pooling — the first one is parameterized, while the latter one is not.

To understand the content of an image it won’t suffice with small patches — you
need to see larger parts of the image. So while a single convolutional layer might not
be able to give valuable insight to an image, stacking multiple layers will enable the
feature maps to base their individual values on a larger and larger part of the image.
We call the area of the original input image affecting a value in a feature map the

24 CHAPTER 2. BACKGROUND THEORY

w

× ∑
b

+ Λ

Figure 2.12: Illustration of a complete convolutional layer with multiple feature
maps, bias and activation function. Note that there are separate kernel weights and
biases for each output feature map. The kernel has to be a volume in order to slide
over the input feature volume.

max

Figure 2.13: Illustration of max pooling applied to a feature volume. One simply
applies max pooling on each of the feature maps in the input feature volume.

receptive field of that feature map. This is illustrated in Figure 2.11. It’s important
to take this into consideration when designing a CNN architecture. This will be
clear when we look at object detection in Section 2.3.3. It might be unreasonably
hard to detect a large horse when you can only see small patches of it without
spatial relationship.

So far we have provided a simplified view of convolutions and pooling. In reality
an image is not represented simply by a two-dimensional matrix, but rather as
several matrices, because it contains several channels. It’s common that digital
photographies have three channels — a red, green and blue color channel. In addition
we won’t normally produce only one feature map per layer. We produce several
feature maps, and thus have several kernels. The number of feature maps/kernels
is referred to as the number of filters or channels. The input image, kernels and
layer output can all be thought of as three-dimensional tensors or volumes. We
sometimes call multiple feature maps used as input and output of convolutional
layers for feature volumes. Extending convolution and pooling to suit this is trivial,
and is illustrated in Figure 2.12 and 2.13.

These are the most central building blocks of CNNs, which have been successfully
applied to many computer vision tasks. Common for convolution and pooling (with
their different variants) is that they lend themselves well for GPU computation.

2.3. CONVOLUTIONAL NEURAL NETWORKS 25

They are highly data parallel — the same operation should be executed on all a lot
of data. So although these operations are computationally expensive, they are still
feasible because they can be efficiently executed on relatively cheap consumer grade
graphics cards. We will now look at how one can apply these building blocks to
image classification, before we dive into object detection.

2.3.2 Image Classification

In image classification, the goal is to classify images as one of the multiple prede-
termined classes. Performance is measured in accuracy, i.e. number of correctly
classified images divided by the total number of images. Sometimes an image is
considered correctly classified if the correct class are among top k predictions.

The ubiquitous ILSVRC14 (Deng et al. 2009) image classification dataset provides a
very large number of training examples and act as a standard benchmark. Making
the dataset suitable for both testing new methods and comparing them to others.
It contains 14 million natural images annotated as one of 1000 object classes. The
performance on this standard benchmark has increased dramatically in the last few
years with the help of CNN architectures. There are of course many other datasets
for different purposes and domains, ranging from the standard toy dataset MNIST
(LeCun n.d.) to difficult large-scale datasets.

So how can we do image classification with a CNN? We can produce rich feature
maps with convolutions and pooling, but how do we output predictions? The
standard solution is to feed the feature volume into one or more fully connected
layers and then softmax. The last fully connected layer outputs a vector with length
corresponding to the number of classes, and the softmax operation normalizes this
vector. Softmax is defined as

softmax(x)i =
exi∑
j e

xj

and can be considered a continuous argmax — it suppresses all but the highest
value and provides a continuous one-hot vector picking out the highest value. Since∑

i softmax(x)i = 1 one can interpret the output vector as a probability distribution
over classes, telling how certain the model is. So cross entropy is often used as loss
function.

Let’s take a look at some popular architectures, more specifically VGG16 (Simonyan
& Zisserman 2014) and ResNet34 (He et al. 2016). They will be relevant when we
discuss object detection. Both have a similar structure, as can be seen in Figure 2.14.
Stacking convolutional layers with occasional strided convolutions or pooling to
scale down the feature maps, and then ending with one or more fully connected
layers and softmax. The number of feature maps is increased as their dimensions

14Also just called ImageNet.

26 CHAPTER 2. BACKGROUND THEORY

image
224x224

3x3 conv, 64

3x3 conv, 64

2x2 max pool 2

3x3 conv, 128

3x3 conv, 128

2x2 max pool 2

3x3 conv, 2563x3 conv, 256

3x3 conv, 256

3x3 conv, 256

2x2 max pool 2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

2x2 max pool 2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

2x2 max pool 2

fc, 4096

fc, 4096

fc, 1000

softmax, 1000

VGG16

image
224x224

7x7 conv, 64 2

3x3 max pool 2

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 128
3x3 conv, 128

2

3x3 conv, 128
3x3 conv, 128

3x3 conv, 128
3x3 conv, 128

3x3 conv, 128
3x3 conv, 128

3x3 conv, 256
3x3 conv, 256

2

3x3 conv, 256
3x3 conv, 256

3x3 conv, 256
3x3 conv, 256

3x3 conv, 256
3x3 conv, 256

3x3 conv, 256
3x3 conv, 256

3x3 conv, 256
3x3 conv, 256

3x3 conv, 512
3x3 conv, 512

2

3x3 conv, 512
3x3 conv, 512

3x3 conv, 512
3x3 conv, 512

7x7 avg pool

fc, 1000

softmax, 1000

ResNet34

112x112

56x56

28x28

14x14

224x224

Output feature
map sizes

7x7

Residual block

3x3 conv

batchnorm

relu

3x3 conv

batchnorm

+

relu

VGG layer

3x3 conv

relu

Figure 2.14: The architecture of VGG16 and ResNet34. For each convolution (conv)
the kernel size and the number of kernels are indicated. Stride is specified in the
margin. Fully connected layers (fc) are denoted by the output vector size. In the
middle we can see the size of the feature maps produced by the different layers.
VGG is shown as a stack of standard convolutional layers while ResNet is shown as
residual blocks. Notice the characteristic skip-connection in the residual block —
this is the main selling point of ResNet. The figure is inspired by He et al. (2016).

2.3. CONVOLUTIONAL NEURAL NETWORKS 27

Trash bin

Chair

Figure 2.15: Illustration of object detection. One wants to localize and classify all
objects of some set of predetermined classes.

are reduced. Notice that all images are resized to a fixed size (in this case 224x224)
before processed by the network.

VGG stacks only standard 3x3 convolutional layers, consisting of a convolution
followed by the ReLU activation function. Scaling down is done by strided max
pooling. A considerable amount of weights and computational burden in VGG are
found in the last fully connected layers. The second fully connected layer alone has
4096× 4096 = 16 777 216 weights. Other variants than VGG16 with different depth
are presented by the authors15, but these only differ in the number of convolutional
layers.

ResNet’s main building block is the residual block. He et al. (2016) hypothesize that
adding skip connections over layers will make it easier to optimize. This way it’s
easier for the net to achieve identity mapping and gradients may reach deep layers
more undisturbed. Scaling down is done mainly by strided convolutions instead of
max pooling, only one fully connected layer is used, and batch normalization (Ioffe
& Szegedy 2015) is heavily utilized. There are other variants of ResNet that differ
in depth16, but they all share the same underlying structure — differing only in the
number of residual blocks and slightly how the residual blocks are structured inside.

This is of course just a brief overview and there are lot more details that could
have been outlined (e.g. ResNet’s convolutions doesn’t use bias because they are
followed by batch normalization). And there are of course more variants of VGG
and ResNet, as well as other architectures. But this will be sufficient to understand
the rest of this thesis.

28 CHAPTER 2. BACKGROUND THEORY

IoU =
I

U

(a)

0 1

0

1

Recall

P
re

ci
si

on

Precision
AP

(b)

Figure 2.16: (a) Illustration of Intersection over Union (IoU). (b) Illustration of
Average Precision (AP) using precision-recall curve.

2.3.3 Object Detection

Object detection is the task of localizing and classifying objects in an image —
as illustrated in Figure 2.15. To correctly detect an object one has to predict the
correct class and a bounding box indicating the outline of the object. There can be
arbitrarily many (or none) objects in the image, and there may exist several objects
of the same class.

The first problem faced in object detection is how to measure performance. How
well does a model perform object detection? Two issues arise:

1. When is a bounding box correct? How close should it be to ground truth?
We should obviously allow a certain degree of slack.

2. How do we trade off precision and recall? We might not detect every object
and we might false positively detect objects. It’s desirable to have a measure
that gives partial credit, instead of simply deeming the result either completely
correct or incorrect.

Both issues can of course be solved in numerous ways, but the community seems to
have converged on a solution.

The first issue is solved with the use of Intersection over Union (IoU). This is a
measure for comparing bounding boxes, and is simply the area of the intersection
divided by the area of the union of the two boxes — as illustrated in Figure 2.16a.
An IoU of 1 is a complete overlap between the boxes while an IoU of 0 means
there is no overlap. To judge a predicted bounding box as correct or incorrect one
simply calculates the IoU between the predicted bounding box and the ground

15All: VGG11, VGG13, VGG16, VGG19
16All: ResNet18, ResNet34, ResNet50, ResNet101, ResNet152

2.3. CONVOLUTIONAL NEURAL NETWORKS 29

truth bounding box, and then judge based on some IoU threshold (e.g. IoU above
0.5 is correct).

The second issue is solved using Average Precision (AP). As we just saw we use IoU
to judge bounding boxes as correct or not. All that remains to judge a single object
prediction correct or not is to check if the predicted class is correct. We then use AP
to combine all the individual predictions to one measure. AP is found by ranking
the individual object predictions by confidence17 and averaging the precision for
all prefixes of this ranking. This could also be interpreted as the area under the
precision-recall curve — as illustrated in Figure 2.16b. AP is just a measure for one
class, and the performance of multiple classes are reported as the mean Average
Precision (mAP).

We just explained how one could measure performance in object detection. The
specific thresholds and details for how AP is calculated differ slightly from dataset
to dataset. We would like to note that it’s not completely straightforward or
even desirable to translate this performance measure directly to a loss function.
A thresholded success metric gives no useful information to gradient descent —
continuous errors are needed. There’s also the problem of matching predicted
bounding boxes against ground truth. If a predicted box doesn’t overlap any ground
truth boxes, how “incorrect” is that box? And which ground truth box should a
predicted box be compared to if it overlaps several ground truth boxes? Because of
this complexity and different methods having different demands, one will see that
various loss functions are used.

Another problem in object detection is that of annotated data. Annotating every
object in an image is resource demanding. Object detection datasets are therefore
significantly smaller than image classification datasets. This is the reason that most
object detection methods use transfer learning. They first pretrain a CNN on image
classification (typically on ImageNet) and then reuse parameters to fine-tune on
object detection.

The two most prominent object detection datasets are PASCAL VOC18 and MS
COCO (Lin et al. 2014)19. VOC contains 20 object classes, and there are two non-
overlapping versions: VOC2007 and VOC2012. Both are split into train, val and
test. VOC2007 has almost 5 000 images in trainval and in test, while VOC2012
has around 11 500 images in trainval. VOC2012 test is not made public, so it’s
normal to train on VOC2007 trainval and VOC2012 trainval — and then test
on VOC2007 test. COCO is considerably larger with its 80 object classes and over
100 000 images. The splits have changed since its initial release in 2014. In the 2017
version train/val/test split is approximately 115 000/5 000/40 000. The number
of object classes and instances per picture is considerably higher for COCO than

17Most models output some sort of confidence score in addition to a bounding box and a class.
Usually a model output a confidence score distribution over classes and the class with highest
confidence score is chosen.

18http://host.robots.ox.ac.uk/pascal/VOC/
19With ImageNet detection dataset at third. There are other datasets, but we see these less

frequently used. Refer to Lin et al. (2014) for a comparison of other object detection datasets.

http://host.robots.ox.ac.uk/pascal/VOC/

30 CHAPTER 2. BACKGROUND THEORY

VOC. VOC has 1.4 classes and 2.3 instances on average in an image, while COCO
has 3.5 classes and 7.7 instances. Most images (i.e. over 50%) in VOC contain only
one object. COCO on the other hand usually has multiple objects.

For PASCAL VOC the performance is measured as mAP with an IoU overlap
of 0.5. The way mAP is computed differs slightly between the 2007 and 2012
version. For the 2007 version the individual APs are approximated by sampling the
precision-recall curve with 11 evenly spaced recall values, while for the 2012 version
the exact APs are calculated. COCO uses several more elaborate performance
measures:

• AP: Average precision averaged over IoU thresholds {0.50, 0.55, 0.60, . . . , 0.95}.

• AP50: Average precision at IoU 0.5.

• AP75: Average precision at IoU 0.75.

• APS : Average precision for small objects (smaller than 32× 32 pixels).

• APM : Average precision for medium objects (between 32× 32 and 96× 96).

• APL: Average precision for large objects (larger than 96× 96).

• AR1: Average recall when top 1 detection per image is used.

• AR10: Average recall when top 10 detections per image are used.

• AR100: Average recall when top 100 detections per image are used.

• ARS : Average recall for small objects (smaller than 32× 32).

• ARM : Average recall for medium objects (between 32× 32 and 96× 96).

• ARL: Average recall for large objects (larger than 96× 96).

Even though it’s just called AP, and not mAP, these scores are usually averaged
across all 80 classes. It’s most normal to report AP as explained above as the
main performance metric on COCO, but we have not been able to find out why
this measure was created and used instead of the PASCAL VOC measure (AP50).
Redmon & Farhadi (2018) has expressed a sceptical opinion about its lack of
justification, and pointed out it’s not obvious which metric is best.

We will now summarize some of the most popular object detection methods. These
methods can be divided into two groups: two-stage and one-stage detection20. Two-
stage detection has an initial stage where (relatively) few promising object candidates
are identified, and the second stage then evaluates these candidates. While one-stage
detection just does some kind of dense regular sampling of candidates across the
image and evaluates them all. First we will briefly cover R-CNN based methods

— which are two-stage detection methods. Then we also briefly cover YOLO, a
popular one-stage detector, before we go more into detail on the one-stage detectors
SSD and RetinaNet since these are most relevant for this thesis. There are of course

20Also called sparse and dense detection. Or proposal-based and end-to-end approach.

2.3. CONVOLUTIONAL NEURAL NETWORKS 31

other methods, but this is not an exhaustive review, and we think these are the
most representative. We will also refrain from doing an in-depth comparison of the
different methods as this will be too lengthy.

R-CNN Based Methods

R-CNN (Girshick et al. 2014) is a method combining traditional computer vision
techniques with CNNs. It consists of three distinct steps:

1. Region proposal: Use a traditional computer vision technique21 to propose
regions that might contain objects. This is considerably more efficient than
brute force sliding window proposals.

2. Computing features: Extract the region proposals from the image and feed
them through a CNN to get a feature vector.

3. Classify regions: Use a linear classifier22 to classify the feature vector for
each region.

Step 2 and 3 need to be trained. The CNN is pretrained on normal image classi-
fication and then fine-tuned on actual region proposals. The linear classifiers are
trained on feature vectors from the CNN. To get better bounding boxes they also
extend the method with a bounding box regression — i.e. they predict bounding
box corrections/offsets based on the feature vector.

The R-CNN method greatly increased the state-of-the-art performance for object
detection. But a drawback of this method is that it’s very slow (i.e. several seconds
for a single image even on a powerful GPU). Girshick et al. (2014) use ≈ 2000
region proposals — all of which must be propagated through the CNN. Fast R-
CNN (Girshick 2015) solves this problem by extracting the region proposals directly
from a feature volume produced by the CNN. So instead of propagating each region
proposal through a CNN, the whole image is propagated through a CNN to get
a big feature volume and then all regions are extracted from this feature volume.
This extraction step is done with what the author names RoI pooling (Region of
Interest pooling). Girshick (2015) ends up with a stack of new feature maps which
is used to classify and produce bounding box corrections by some fully connected
layers. In effect the neural network has taken over the role as a linear classifier.
The architecture basically has two steps now: 1) Region proposal and 2) Classifying
regions.

The slowest part of Fast R-CNN is the region proposal. Faster R-CNN (Ren et al.
2015) replaces the traditional region proposal technique with a CNN, resulting in
the whole architecture being one big CNN. With this approach the CNN does region
proposals, feature extraction and classification. Faster R-CNN have state-of-the-art
accuracy and is able to process several images per second.

21They use selective search.
22They use SVMs.

32 CHAPTER 2. BACKGROUND THEORY

YOLO

YOLO (You Only Look Once) (Redmon et al. 2016) is a method that treats object
detection as a regression task, and does not rely on region proposals. It uses a CNN
to produce a feature volume and then each feature volume cell is responsible for
detecting objects that have its center in that cell. A cell predicts a class and a
fixed number of bounding boxes. Each bounding box prediction consists of position,
width, height and a confidence score telling how confident the network is that the
box contains an object. Object predictions are chosen by non-maximum suppression.

The strength of YOLO lies in its simple architecture. This also makes it very fast
— so fast it can do real-time object detection (i.e. above 30fps). The drawback was
initially the accuracy, but this has improved in YOLOv2 (Redmon & Farhadi 2017)
and YOLOv3 (Redmon & Farhadi 2018) where the authors extend and improve
YOLO in different ways.

SSD

SSD (Single Shot multibox Detector) (Liu et al. 2016) is another one-stage end-to-
end approach that does not rely on region proposals. Instead of region proposals
SSD bases its predictions on a fixed number of anchor boxes of different scales and
aspect ratios. For each anchor box it predicts a class and offset corrections of the
position, width and height. As with YOLO actual object predictions is chosen
by non-maximum suppression. SSD is composed of a base network pretrained
on ImageNet and then extended with convolutional layers that decrease in scale.
Detection heads are attached to feature volumes of multiple scales to get predictions.
The SSD architecture, more specifically SSD300, is shown in Figure 2.17. Now that
we have summarized the method we will look closer at some details.

The base network is derived from VGG16 pretrained on ImageNet. All layers up to
the last convolutional layers are kept unmodified, but the last layers are changed
to make an all convolutional network. The exact details of these modifications are
outside the scope of this introduction, so we will just summarize the superficial
outcome. The last max pooling layer is changed to 3x3 without stride, the two
first fully connected layers are converted to convolutional layers, and the last fully
connected layer and softmax are removed. In a simplified view the fully connected
layers and softmax are removed and two convolutional layers have instead been
appended.

After the base network eight more convolutional layers are added. They alternate
between 1x1 convolutions reducing the number of feature maps and 3x3 convolutions
scaling down the feature maps. These layers make feature volumes in different
scales, which are used to produce detections. We feed different sized feature volumes
from the network to detection heads. In SSD these detection heads consist of a
location and a class confidence part. The location part is a 3x3 convolution, and
the class confidence part is a 3x3 convolution followed by softmax.

2.3. CONVOLUTIONAL NEURAL NETWORKS 33

Image
300x300x3

VGG16∗
38x38

3x
3

co
n

v
,

10
24

19x19
1x

1
co

n
v

,
10

24
19x19

1x
1

co
n

v
,

25
6

3x
3

co
n

v
,

51
2,

st
ri

d
e

2

10x10

1x
1

co
n

v
,

12
8

3x
3

co
n

v
,

25
6,

st
ri

d
e

2

5x5

1x
1

co
n

v
,

12
8

3x
3

co
n

v
,

25
6,

n
o

p
ad

3x3

1x
1

co
n

v
,

12
8

3x
3

co
n

v
,

25
6,

n
o

p
ad

1x1

Detections

H H H H H H

3x3 conv 3x3 conv

softmax

class box

Figure 2.17: The architecture of SSD300. The image is first processed by a pretrained
VGG16, before going trough several additional convolutional layers decreasing in
scale. Detections are produced by detection heads attached to feature volumes of
different scales. The figure is inspired by Liu et al. (2016). *Not the entire VGG16

— see the main text.

34 CHAPTER 2. BACKGROUND THEORY

10x10 feature map 5x5 feature map Image

Figure 2.18: Illustration of anchor boxes in SSD. Each cell in a feature volume is
associated with a number of predetermined anchor boxes of different scales and
aspect ratios. The anchor boxes are centered at the cells receptive field in the image.
And cells in lower resolution feature volumes have larger anchor boxes than those
in higher resolution feature volumes. The figure is inspired by Liu et al. (2016).

The final feature volume from the detection heads is predictions. Each cell23 in a
feature volume is associated with some anchor boxes of different scales and aspect
ratios. These anchor boxes are centered at the cells receptive field in the image.
Cells from lower resolution feature volumes have larger anchor boxes, and cells from
higher resolution feature volumes have smaller anchor boxes. See Figure 2.18 for
an illustration. Liu et al. (2016) use a fixed scheme and some manual tinkering
to choose aspect ratios and scales for the anchor boxes. For each box two things
are predicted: 1) class confidence and 2) offset corrections of box position and
dimension. The idea is that for each anchor box we predict which object class it
belongs to and how to make it fit better to the object. Notice that we just predict
the box offsets for each anchor box, and not per class. This is why SSD is said to
do class-agnostic localization. Since not every anchor box might contain an object,
background is added as the 0th class — making it possible for the model to signal
the absence of objects. So if we have A anchor boxes for a cell and |C| object classes,
we need A(|C|+ 4) feature maps (+4 because we correct x, y, width and height).

To produce detections for inference we first remove detections classified as back-
ground. Then we do non-maximum suppression with IoU 0.45: If two detections
overlap with more than an IoU of 0.45 and have the same predicted object class, we
remove the detection with lowest class confidence. And if more than 200 detections
remain, we only keep the 200 with the highest confidence.

To get the loss at training time we need a more involved setup. Since we generally
23A feature volume cell is in effect a vector consisting of values from all feature maps at the

same spatial location. In other words, a feature volume is a 2D grid of feature vectors across the
image, and one such vector is a feature volume cell.

2.3. CONVOLUTIONAL NEURAL NETWORKS 35

have multiple detections and ground truth boxes we need to figure out which
detections should be compared to which ground truth box. We do this by comparing
the anchor boxes and ground truth boxes. First we match each ground truth box
to the detection with the anchor box that has the highest IoU overlap. Then for
the remaining detections we match if its anchor box has an IoU overlap with a
ground truth box above 0.5. This way each detection is either matched with a single
ground truth box or none at all, while several detections may be matched to the
same ground truth box. The loss is most easily conveyed with formulas, so we will
repeat the loss formulas from Liu et al. (2016)24.

We let xp
ij = {0, 1} indicate if detection i is matched with ground truth box j of

object class p. The loss is a weighted sum of confidence and location loss:

L(x, c, l, g) = 1

N
(Lconf (x, c) + αLloc(x, l, g))

where c is the class confidence25, l the predicted anchor box relative offset, and g
the ground truth bounding box. In practice α is set to 1. Let Pos be the detections
that match with a ground truth box and Neg the detections that do not:

Pos =
{
i :

∑
p

∑
j

xp
ij > 0

}
Neg =

{
i :

∑
p

∑
j

xp
ij = 0

}
Then the location loss is defined as

Lloc(x, l, g) =
∑
p

∑
j

∑
i∈Pos

∑
m∈{cx ,cy,w,h}

xp
ijL̃1 (l

m
i − ĝmij)

where L̃1 is the smooth L1 loss and ĝij is the relative offset between the ground
truth box j and the anchor box i

ĝcxij =
gcxj − dcxi
dwi σ

2
1

ĝcyij =
gcyj − dcyi
dhi σ

2
1

ĝwij =
log

(
gw
j

dw
i

)
σ2
2

ĝhij =
log

(
gh
j

dh
i

)
σ2
2

Notice that the offset target ĝij is normalized in relation to the anchor box and that
the dimensions are log scaled. When we want to do inference and relate detections
from the network to the image we need to use the anchor boxes and perform these

24We present them in a slightly different way suitable for this thesis.
25Note that we use c for confidence, while Liu et al. (2016) use it for the class score before

softmax.

36 CHAPTER 2. BACKGROUND THEORY

operations in reverse. σ2
1 and σ2

2 are not included in the formulas by Liu et al. (2016)
in their publication, but they are used as expressed above in their code. They are
set to 0.1 and 0.2 respectively. The motivation behind these is not known, since the
authors don’t mention them. Lastly the confidence loss is the cross entropy loss:

Lconf (x, l, g) = −
∑
p

∑
j

(∑
i∈Pos

xp
ij log(c

p
i) +

∑
i∈Neg∗

log(c0i)
)

To avoid a large imbalance between positive and negative examples (there are far
more negative then positive) we do hard negative mining. So we sort the negative
detections by confidence and keep only the 3|Pos| with the lowest confidence for
background. The negative detections that are kept are denoted Neg∗.

Liu et al. (2016) use SGD with momentum and weight decay and schedule the
learning rate two be divided by 10 two times They make heavy use of data augmen-
tation, which they found to be essential. Their setup changes slightly depending on
which model they train (SSD300 or SSD512) and which dataset they train on. All
images are resized to fit the predefined size (300x300 or 512x512), but models for
other image sizes can be trained by adjusting anchor boxes. SSD300 and SSD512
achieve 74.3% mAP and 76.9% mAP respectively on VOC2007 test, and SSD300
does so with real-time speed.

There are a lot more details that we have not covered. Like how the authors handle
that the values in the feature volumes from the pretrained layer in VGG16 are
scaled very high. Or how they choose the anchor boxes. But we have covered
what is most essential for this thesis and direct the reader to Liu et al. (2016) for
more details. In summary — SSD make detections by extracting feature volumes
of different scales and regress on them. It’s a fast and quite accurate end-to-end
approach that can be scaled to trade off speed and accuracy.

RetinaNet

Lin et al. (2017b) combined several ideas into RetinaNet — a state-of-the-art one-
stage object detector. Compared to SSD (Liu et al. 2016), the two most important
changes are the use of focal loss as confidence loss and extracting feature volumes
from a Feature Pyramid Network (Lin et al. 2017a).

The motivation behind focal loss is that dense object detectors will often have an
extreme imbalance between positive and negative (foreground and background)
detections, since most locations in an image do not contain objects. Even though
most of these locations are easily classified as background by a detector, the share
amount of negative detections can still overwhelm the loss — giving the optimization
routine little to work with. A standard way to deal with this is hard negative
mining (as explained with SSD above) — in effect ignoring some negative detections
to balance out against positive. With focal loss no negative detections are ignored.
Instead the confidence loss is changed to put less weight on easy detections. This is

2.3. CONVOLUTIONAL NEURAL NETWORKS 37

simply done by introducing the factor (1− cpi)
γ into the cross entropy loss, so that

the new confidence loss becomes

Lconf (x, l, g) = FL(x, l, g) = −
∑
p

∑
j

(∑
i∈Pos

xp
ij(1− cpi)

γ log(cpi) +
∑

i∈Neg

log(c0i)
)

And the full loss still remains

L(x, c, l, g) = 1

N
(Lconf (x, c) + αLloc(x, l, g))

Notice that we now use all the negative detections Neg instead of the detections
resulting from hard negative mining Neg∗. The focal loss introduces a new hyperpa-
rameter γ that must be set — and it might affect the α hyperparameter. Luckily the
authors have found these parameters to have large stable ranges, and they provide
strong defaults (γ = 2 and α = 0.25). The focal loss is the main contribution from
Lin et al. (2017b).

RetinaNet uses the same concept of anchor boxes as SSD. They have a simplified
and more structured scheme for creating anchors — with 9 anchors per feature
volume cell across scales. The matching between anchors and ground truth boxes
are also simplified. Anchors with IoU overlap above 0.5 are matched with ground
truth boxes, and anchors with overlap below 0.4 IoU are matched to background.

The whole architecture of RetinaNet is shown in Figure 2.19. RetinaNet uses a
Feature Pyramid Network (FPN) (Lin et al. 2017a) to produce the feature volumes
used for detections. FPN starts with ResNet pretrained on ImageNet26. Let the last
feature volume from each scale of ResNet be called C1 to C5. A 1x1 convolution
on C5 is used to produce the feature volume P5. Then P5 is upsampled and added
with a 1x1 convoluted C4 before a 3x3 convolution to produce P4. The same as
P4 is repeated to produce P3, as shown in Figure 2.19. The 1x1 convolutions are
there to get the correct number of feature maps, so they can be added. In addition,
smaller feature volumes, P6 and P7, are produced with strided convolutions after
C5 to make detection of large objects easier. P3 through P7 are used to produce
detections with the detection head. The intuition behind using an FPN is that
higher resolution feature volumes early in the base network might benefit from
higher level features found in lower resolution feature volumes further down in
the network. By starting from the last feature volume and scaling up we ensure
that all high-level features are used in all scales. But by scaling up we might lose
fine-grained details that might be important for localization — thus we make sure
to add back the original feature volumes.

The detection head differs in two ways from SSD, it’s bigger and weights are shared
among all scales instead of unique weights for each scale. The head is now a five-layer
convolutional network, and the same head is used at all scales. Notice that the
head still has two parts, one for classification and one for bounding box regression,
each with its own weights.

26The authors use ResNet50 and ResNet101 for their experiments, but all ResNet variants are
compatible.

38 CHAPTER 2. BACKGROUND THEORY

Image

C1

C2

C3

C4

C5

ResNet

P6

P7

3x
3

co
n

v
,

25
6,

st
ri

d
e

2

3x
3

co
n

v
,

25
6,

st
ri

d
e

2

3x3
conv, 256

3x3
conv, 256

P5
P4

P3

++

1x1 c, 2561x1 c, 2561x1 c, 256

Detection head

Detections

3x3 conv, 256
relu

3x3 conv, 256
relu

3x3 conv, 256
relu

3x3 conv, 256
relu

3x3 conv, |C|A

softmax

3x3 conv, 256
relu

3x3 conv, 256
relu

3x3 conv, 256
relu

3x3 conv, 256
relu

3x3 conv, 4A

class box

Figure 2.19: The RetinaNet architecture. The image is first passed through ResNet
(could be any variant), and then feature volumes of different scales are produced.
P6 and P7 are just realized by using strided convolutions. But the higher resolution
feature volumes P3, P4, P5 are achieved by bilinear upsampling and skip connections
from upstream layers. The skip connections make sure no fine-grained details
are lost, while still getting the higher level features from C5. Note that the skip
connections include a 1x1 convolution to match up the number of filters. P3 through
P7 are used to make detections, and they all share the same detection head — i.e
sharing weights. |C| denotes the number of classes, and A the number of anchor
boxes for a feature volume cell. The figure is inspired by Lin et al. (2017b).

2.4. FEW-SHOT LEARNING AND META-LEARNING 39

The authors train RetinaNet using synchronized SGD with momentum 0.9 and
weight decay 0.0001 on 8 GPUs. They use batch size 16 and train for 90 000
iterations. An initial learning rate of 0.01 is used and divided by 10 after 60 000
and 80 000 iterations. Instead of scaling each image to fit a quadratic form, they
keep the aspect ratio and scale the shortest side of the image to some predefined
size27. RetinaNet achieves competitive accuracy, while still being fairly fast.

2.4 Few-Shot Learning and Meta-Learning

In this section, we will first introduce the few-shot learning setting and contrast it
to similar settings. Noticeable work and popular benchmarks will be summarized
to contextualize the material. Relevant for this thesis is the approach of meta-
learning to do few-shot learning. So we will then introduce meta-learning and see
how meta-learning fit into the few-shot learning setting. To more easily motivate
the meta-learning methods we use and to see how they differ from others we will
introduce a simplified meta-learner taxonomy. After the introduction of meta-
learning we will go into greater detail about the methods that are relevant for this
thesis — i.e. MAML and its descendants.

2.4.1 Few-Shot Learning

As mentioned earlier, the popularity of deep learning can be partly attributed to
impressive results on benchmark datasets, such as ImageNet (Deng et al. 2009).
These results show that in some cases deep learning can be used to solve very
complex tasks given sufficient amounts of data. Acquiring the amounts of data
necessary for training a deep neural network from scratch is often expensive or
impossible. To make deep learning applicable to a wide range of tasks we need to
be able to learn new tasks efficiently — i.e. learn using as little data as possible.

Transferring knowledge learned from one task to another related task can help make
learning more efficient — this is called transfer learning (see for example Pan &
Yang 2010). Transfer learning is useful if the amount of data for the task at hand
is sparse, but there exist large amounts of data for a different but related task.
Transferring the knowledge gained from a related task might make learning the task
at hand much more efficient.

Transfer learning has seen widespread success in computer vision. Typically, one
would train an image classification model on some standardized dataset (e.g. Ima-
geNet), which contains vast amounts of data. And then fine-tune for some other
image classification task or a related computer vision task (e.g. object detection),
for which there are much less data available. In these days one can often skip

27They report accuracy/speed trade-off for 400,500,600,700 and 800.

40 CHAPTER 2. BACKGROUND THEORY

the first (often time consuming) step completely, as pretrained models are already
publicly available for download.

Few-shot learning28, which is the focus of this thesis, is an extreme form of transfer
learning. In a few-shot learning setting, there are only a few examples (e.g. five
examples) for the task at hand. The goal of a few-shot learner is then to learn the
task at hand using the few examples available and knowledge transferred from a
related task. While few-shot learning is not restricted to supervised learning (e.g.
Finn et al. (2017) uses it for reinforcement learning), we will mostly cover it in that
context.

There are several similar settings to few-shot learning. Since the terminology
isn’t used consistently, one will find different variants and nuances of these in the
literature. We provide a summary of the different similar settings to few-shot
learning as we see them and describe briefly how they differ:

• Zero-shot learning: Learning to perform a new task for which there are no
provided examples. There are instead provided some other helpful information
outside the task domain. An example would be to recognize cats in pictures
only based on a textual description of cats.

• Semi-supervised few-shot learning: Learning a new task with few anno-
tated examples, but many unannotated examples. This differs from standard
few-shot learning — where only labeled examples are provided. Situations
like these are normal. One may have large amounts of data available for the
task at hand, but annotating them may be expensive. It would be beneficial
to only annotate some examples, but still learn from all the unannotated
examples. Notice that this is just a special case of semi-supervised learning.
This has been confusingly called ‘Few-example learning’ by Dong et al. (2018).

• Few-shot domain adaptation: Learning an already known task but in
another domain with few examples — in contrast to few-shot learning, where
the task is not known beforehand and the domain might be similar. The
desired behavior is the same, but the input distribution is different. One
might have vast amounts of examples in one domain, but not in another. An
example would be to go from recognizing cats in natural images to recognizing
cats in hand-drawn sketches with only a few hand-drawn example sketches
available.

• Domain generalization: Making a model that will perform well on a known
task, but in another unknown domain without examples. This can be seen as
domain adaptation without examples. The model is supposed to perform well
on a new domain without any examples or training.

• Weakly supervised few-shot learning: Learning a new task based on

28 Also called k-shot learning or low-shot learning in the literature. One-shot learning refer to
the situation of having only one example, but are also sometimes confusingly mixed with the case
of several examples.

2.4. FEW-SHOT LEARNING AND META-LEARNING 41

few incomplete or inaccurate examples. For example learning to detect cats
(classifying and localizing) when examples only specify how many cats are
present in an image and contain no localization information.

There are mainly three popular benchmarks for supervised few-shot learning used
today:

• Omniglot (introduced by Lake et al. 2015): Often described as the ‘transposed
MNIST’. Omniglot contains 1623 characters from 50 different alphabets written
by 20 people. So instead of few classes and many examples per class such
as MNIST, it contains many classes with few examples per class. This has
become the standard toy dataset for few-shot image classification, and as with
MNIST almost perfect accuracy is achieved with state-of-the-art methods.
The standard metrics are accuracy on 1-shot and 5-shot for both 5-way and
20-way classification.

• MiniImageNet (introduced by Vinyals et al. 2016): A subset of ImageNet
consisting of 100 classes and 600 examples per class. Accuracy is tested on
both 1-shot and 5-shot for 5-way classification.

• Sinusoid regression (introduced by Finn et al. 2017): Mostly used as an
exploratory benchmark. When varying the amplitude and phase of sinusoids,
the challenge is to perform regression with only a few data points. This was
used extensively in our specialization project.

The earliest work on few-shot learning we could find was Fei-Fei et al. (2003, 2006).
These are Bayesian approaches for few-shot learning on computer vision tasks, and
are from before the rise of deep learning. Lake et al. (2015) presented a new few-shot
learning dataset (Omniglot) and another Bayesian approach to few-shot learning

— still with no competition from deep learning based methods. But several deep
learning based methods have since been introduced and replaced this method as
state of the art.

We will now briefly summarize some of the prominent and noticeable methods
for few-shot learning introduced since Lake et al. (2015). And afterwards we will
discuss the different categories of approaches more generally.

This will not be an exhaustive list (there are of course many more) — as that would
be outside the scope of this thesis.

• Siamese Neural Networks (Koch et al. 2015): One-shot learning for image
classification framed as a matching problem. The output of two twin CNNs
with tied parameters are combined using L1 distance. Presented with two
images the network tries to decide if they are of the same class or not. The
CNN learns to map an image to an embedding space where images of the
same class are close while images of other classes are further apart.

• Prototypical Networks (Snell et al. 2017): The network learns an em-

42 CHAPTER 2. BACKGROUND THEORY

bedding space where new instances can be classified by the nearest29 class
prototype in that space. The class prototype is simply the mean of the
embeddings to the provided class examples.

• MANN — Memory-Augmented Neural Networks (Santoro et al. 2016):
Inspired by Neural Turing Machines (Graves et al. 2014), a fully differentiable
network with external memory learns to read examples in sequence and then
classify a new example at the end. The network store useful information
about the examples in the external memory that can be used to classify an
unlabeled example.

• Matching Networks (Vinyals et al. 2016): A matching network takes a
support set (labeled examples) and a single unlabeled example, and then
predicts the label the unlabeled example. The support set is provided as
a memory and is accessed with an attention mechanism. That way the
network can “look” at examples while classifying the new example. Noticeable,
the authors also introduce the MiniImageNet benchmark for few-shot image
classification.

• Optimization as a model for few-shot learning (Ravi & Larochelle
2017): Learns both initial parameters of a network and the optimizer used for
adaptation. The optimizer is an LSTM based RNN.

• MAML — Model-Agnostic Meta-Learning (Finn et al. 2017): Opti-
mizes only the initial parameters of a network to be able to adapt to a new
task with only one (or a few) gradient descent step. This method is model-
agnostic of nature because it only requires SGD for training. It has been
shown to work on regression, classification and reinforcement learning.

Some methods are tailored towards specific problems, while others are more general
in nature — there are especially many tailored for classification problems. A popular
strategy aims to learn a metric space where new instances can be easily compared
(Koch et al. 2015; Snell et al. 2017; Vinyals et al. 2016). Such methods are usually
non-parametric, i.e. they need the few provided training examples at inference
time. One shortcoming of these methods is that they are not easily applied to other
problems than classification. The most dominating trend for approaching few-shot
learning today is meta-learning.

2.4.2 Meta-Learning

Meta-learning30 is a form of transfer learning where the learner transfers knowledge
about how to learn. A meta-learner will try to find common knowledge across tasks,
which it then can use to learn new unseen tasks faster and/or more data efficiently. It

29By Squared Euclidian distance
30There are many possible definitions and variations of meta-learning (see Lemke et al. 2015;

Vilalta & Drissi 2002, for a survey). The one that is used in the literature we work with, and
therefore also in this thesis, is learning to learn as defined by Thrun & Pratt (1998).

2.4. FEW-SHOT LEARNING AND META-LEARNING 43

uses the data from different tasks to learn to learn — as opposed to learning the task
itself — and can transfer this knowledge to learn similar tasks. If a meta-learning
approach is efficient enough, one can do few-shot learning. Meta-learning can be
thought of as learning an inductive bias (Mitchell 1997), and in effect incorporating
prior knowledge into the learning procedure.

Let’s introduce the abstract problem of doing meta-learning and its notation31. A
task T is a distribution over input-target pairs (x,y). It’s possible to sample data
points D = {(x(j),y(j)) ∼ T } from a task. We write this as D K∼ T on shorthand,
where K is the number of points, or just DT if K is not important. Normally,
we would train specifically on a particular task T , but for meta-learning we wish
to learn how to learn a future task T ∼ p(T) from a distribution of tasks p(T).
The goal is to have a meta-learner FΦ parameterized by Φ that given some data
points D ∼ T sampled from a previously unseen task T ∼ p will provide a model
fφ parameterized by φ that performs well on unseen data (x∗,y∗) ∼ T from that
task. Or more straightforward, given some previously unseen task T ∼ p we want

F (D K∼ T ; Φ) = fφ

to be such that
f(x∗;φ) = ŷ∗ ≈ y∗

for unseen data from the task (x∗,y∗) ∼ T . Summarized as

F (DT ∼p; Φ)(x
∗) = ŷ∗ ≈ y∗

In other words, the meta-learner F should be able to learn a new task T ∼ p with
K examples. We call this step, going from DT to a model fφ suitable for the task T
using F , adaptation. One could of course learn this new task without a meta-learner,
but the idea is that a meta-learner has somehow learned to learn faster or more
data efficiently. To achieve this we train the meta-learner on tasks sampled from a
train distribution of tasks ptrain(T) — which is hopefully close to p(T) — to find
appropriate meta parameters Φ. And to help us we have a loss function L(fφ,D),
giving the loss for the model fφ over the data points D.

There has been proposed several ways to approach meta-learning. Based on the work
of Finn et al. (2017) and Finn & Levine (2018), we introduce (in our opinion) a more
clear and better-suited way to categorize meta-learners at a high-level for this thesis.
This simplified taxonomy, with prominent meta-learners included, are shown in
Figure 2.20. We separate the meta-learners into two groups: 1) Parameter-inducing
and 2) Non-parameter-inducing. Parameter-inducing meta-learners use the provided
data points DT to find suitable parameters φ = θ′

T for a model fφ:

F (DT ; Φ)(x
∗) = f(x∗;φ) = f(x∗; g(DT ; Φ)) = f(x∗;θ′

T)

31 We use some of the notation from Finn et al. (2017), Finn & Levine (2018), Nichol & Schulman
(2018a), and Nichol et al. (2018b), but it have been adapted and expanded where necessary.

44 CHAPTER 2. BACKGROUND THEORY

Meta learners

Parameter-inducing

Learn the initialization

R
eptile

(N
ichol

et
al.

2018b)

M
A
M
L
(F

inn
et

al.
2017)

M
eta-SG

D
(Z

.
L
i
et

al.
2017)

(R
avi

&
L
arochelle

2017)

Learn to optimize

(K
.
L
i
&

M
alik

2017)

(A
ndrychow

icz
et

al.
2016)

(H
ochreiter

et
al.

2001)

(Schm
idhuber

1992)

(S.
B
engio

et
al.

1992)

(Y
.
B
engio

et
al.

1990)

Non-parameter-inducing

SN
A
IL

(M
ishra

et
al.

2018)

M
atching

N
etw

orks
(V

inyals
et

al.
2016)

M
A
N
N

(Santoro
et

al.
2016)

Figure 2.20: Simplified taxonomy of meta-learners. Some prominent meta-learners
are included as leaf nodes.

where g is a function parameterized by Φ, taking the potentially variably sized DT
as input and giving the constant sized θ′

T as output. While non-parameter-inducing
meta-learners instead use the provided data points DT as parameters directly to
the model:

F (DT ; Φ)(x
∗) = f(x∗;φ) = f(x∗;DT ,Φ)

and in this case the model parameters are just φ = (DT ,Φ). One can think of
parameter-inducing meta-learners as eagerly training a parametric model when
adapting, and non-parameter-inducing meta-learners as lazily training a non-
parametric model (in terminology from Mitchell 1997). So notice that parameter-
inducing methods will make use of the loss function L at adaptation time, while
non-parameter-inducing methods will not.

Non-parameter-inducing meta-learners (e.g. Mishra et al. 2018; Santoro et al. 2016;
Vinyals et al. 2016) have different techniques for letting the model process DT . A
common theme is to use some kind of mechanism over DT enabling the model to
decide which parts to use. Mishra et al. (2018) and Vinyals et al. (2016) use an
attention mechanism over input embeddings, while Santoro et al. (2016) input DT
iteratively into an RNN which can write to and read from an external memory.

Parameter-inducing meta-learners condenseDT into parameters θ′
T for some (usually

fixed) model f . In practice an initial model fθ with parameters θ is adapted to a

2.4. FEW-SHOT LEARNING AND META-LEARNING 45

task T by using the parameter update function g to find new parameters32

g(DT ; Φ) = g(DT ; [θ,Φ− θ]) = θ′
T

to get the model fθ′
T

. Notice that the initial model parameters θ is considered a
part of the meta parameters Φ. There are basically two ways for meta-learners to
achieve this. They can either learn the parameter update function g or they can
learn the initial model parameters θ. Or they could of course do both. We refer to
this as learn to optimize and learn the initialization, respectively.

As mentioned by Finn et al. (2017), learning to optimize is a popular approach.
Earlier methods used quite small models compared to today and the authors were
more interested in the low-level biological interpretations (S. Bengio et al. 1992;
Y. Bengio et al. 1990; Schmidhuber 1992). Hochreiter et al. (2001) successfully
used LSTMs to meta-learn easy regression tasks. But more recent methods apply
the approach to more complex problems (Andrychowicz et al. 2016; K. Li & Malik
2017). Ravi & Larochelle (2017) learn both the initialization and how to optimize,
but this is not as common as just learning to optimize (from some fixed or random
initialization).

As far as we know, learning the initialization is a rather new approach. Finn
et al. (2017) introduced MAML, where the idea is to optimize the initial model
parameters θ so that they perform well after one or a few SGD steps. In other
words, the function g is predefined to be SGD, and MAML tries to find suitable
initial parameters θ. Learning just the initial parameters θ might seem like a very
restrictive way to do meta-learning, but Finn & Levine (2018) show that MAML is
a universal learning procedure. Simplified, this means that MAML can approximate
any learning algorithm, and in theory is as expressive as meta-learners that learn
to optimize. Z. Li et al. (2017) proposed a method called Meta-SGD, extending
MAML by also learning parameter-wise learning rates to be used by SGD — and
in effect letting MAML learn to optimize to some degree. But this extension has
not seen widespread adaptation, and in our specialization project we show why
this extension is probably not desirable. Inspired by MAML, Nichol et al. (2018b)
introduced Reptile33, which have a less intricate way of learning θ. These methods
learning the initialization will be covered in more detail in the next section, where
we take a closer look at MAML and its descendants Meta-SGD and Reptile.

2.4.3 MAML and its Descendants

We will now describe the MAML method (Finn et al. 2017), followed by Meta-SGD
(Z. Li et al. 2017) and Reptile (Nichol et al. 2018b). None of the methods are limited
to supervised learning but will be presented in a simplified manner and focus solely
on supervised learning — leaving out unnecessary abstractions and information.

32Φ− θ should be interpreted as the vector Φ where the subrange containing θ is removed.
33Wordplay on MAM(MA)L

46 CHAPTER 2. BACKGROUND THEORY

MAML

Algorithm 1 MAML for Few-Shot Supervised Learning
Require: ptrain(T): train distribution over tasks
Require: α, β: inner step size and meta-step size
Require: K: examples to train on K-shot learning

1: Randomly initialize θ
2: while not done do
3: B ← {Ti ∼ ptrain(T)} . Sample meta batch of tasks
4: for all Ti ∈ B do
5: Di

K∼ Ti . Sample K data points from Ti
6: θ′

i ← θ − α∇θL(fθ ,Di) . Gradient descept step
7: D′

i
K∼ Ti . Sample K new data points from Ti

8: end for
9: θ ← θ − β∇θ

∑
Ti∈B

L(fθ′
i
,D′

i) . Meta gradient descent step

10: end while

When using MAML we wish to adjust the initial parameters θ in such a way that
the performance of the model can be as good as possible on a new task with only
one or a few gradient steps. Since extending from one (n = 1) to more gradient
steps (n > 1) is straightforward, we will without any loss of generality assume only
a single gradient step for the sake of simplicity. Summarized, we sample batches
of tasks B = {Ti ∼ ptrain(T)}, perform a gradient step for each task Ti ∈ B on
sampled data points Di ∼ Ti to get adapted parameters θ′

i, and then adjust the
initial parameters θ using a gradient step with respect to the loss L(fθ′

i
,D′

i) on
other sampled data points D′

i ∼ Ti with the adapted parameters θ′
i. The procedure

is shown in Algorithm 1 — taken from Finn et al. (2017) and then adapted to the
context of this thesis. Note that the stop criterion is considered an implementation
detail and may vary. In this thesis, we will do as Finn et al. (2017) and just run for
a fixed number of N iterations.

Explained as an optimization procedure, we perform SGD with the objective

min
θ

ETi∼ptrain(T)

[
L(fθ−α∇θL(fθ,Di),D

′
i)
]

In practice Finn et al. (2017) use Adam (Kingma & Ba 2015) for this meta-
optimization.

Adapting a model trained with MAML to a new task T ′ using a few adaptation
data points DT ′ is straightforward. Simply adapt by performing na (i.e. one or
more) gradient steps

θ ← θ − α∇θL(fθ,DT ′)

much like on line 6. Only that the parameters θ are mutated to be the adapted
parameters θ′ instead of using θ′ for meta optimization. Notice that the number of
adaptation data points K = |DT ′ | is not necessarily the same as when training. A
model trained on 10-shot might be used for 5-shot adaption.

2.4. FEW-SHOT LEARNING AND META-LEARNING 47

One of MAML’s biggest strengths is that it’s model-agnostic. It’s not tied to a
specific architecture or type of problem. As long as the model is trained using
gradient descent MAML can be applied. Another big advantage is that when the
meta-training have found suitable initial parameters θ, adaptation can be achieved
by standard SGD techniques. No debt, in the form of method complexity, is
inherited from the meta-training step to the adaptation step. When you have found
θ with MAML you are not dependent on the MAML setup anymore. This makes it
easier to integrate into already existing pipelines.

As mentioned earlier, even though it might seem very restrictive that MAML
only learns the initialization and not to optimize, Finn & Levine (2018) showed
that MAML is actually capable of approximating any learning algorithm. The
authors call it a universal learning procedure. The definition of a universal learning
procedure, and the proof that MAML is one, is somewhat technical and involves some
assumptions. We will not go into great detail about this since that would be outside
the scope of this thesis. But put simply, a meta-learner F is a universal learning
procedure if F (DT ; Φ)(x

∗) is a universal function approximator34 of (DT ,x
∗).

On the downside, MAML is very resource demanding. The need to backpropagate
through a normal gradient step is effectively making the network twice as deep

— thereby increasing both the compute and memory needed. And while it is
theoretically straightforward to optimize the initial parameters with respect to
the loss after more than one gradient step, the already high compute and memory
demand scale linearly with the number of steps. In addition, since it is generally
harder to optimize deeper networks and that MAML are in effect making the
network deeper, this may make it hard for MAML to optimize large models. Some
of these problems were addressed by Finn et al. (2017). They tried using a first-order
approximation of MAML (named FOMAML by Nichol et al. 2018b) which ignore
the second order derivatives. FOMAML showed no significant drop in performance
compared to MAML. But while it sounds desirable, FOMAML was not given much
attention and details of how this was done were left out by the authors. Only very
recently Nichol et al. (2018b) pointed out that FOMAML is actually much simpler
to implement than what was initially recognized.

Meta-SGD

Z. Li et al. (2017) propose to optimize the step size α in addition to the initial
parameters θ. Instead of being a constant scalar, α is a learnable vector with
per parameter learning rates. This procedure is called Meta-SGD and is shown
in Algorithm 2. Notice the only difference from MAML is the learnable learning
rate. In our specialization project we found empirical data indicating that although
Meta-SGD models might be better after just one adaptation step na = 1, the

34 It’s a well known result that (at least some types of) neural networks are expressive enough
to, with some assumptations, approximate any function (see for example Hornik et al. 1989). This
has also been proved for many of the more modern variants of neural networks.

48 CHAPTER 2. BACKGROUND THEORY

Algorithm 2 Meta-SGD for Few-Shot Supervised Learning
Require: ptrain(T): train distribution over tasks
Require: β: meta-step size
Require: K: examples to train on K-shot learning

1: Randomly initialize θ and α
2: while not done do
3: B ← {Ti ∼ ptrain(T)} . Sample meta batch of tasks
4: for all Ti ∈ B do
5: Di

K∼ Ti . Sample K data points from Ti
6: θ′

i ← θ −α�∇θL(fθ ,Di) . Gradient descept step
7: D′

i
K∼ Ti . Sample K new data points from Ti

8: end for
9: θ ← θ − β∇θ

∑
Ti∈B

L(fθ′
i
,D′

i) . Meta gradient descent step for θ

10: α← α− β∇α
∑

Ti∈B
L(fθ ,D′

i) . Meta gradient descent step for α

11: end while

learned learning rates make the adaptation unstable when na > 1. In practice,
a MAML trained model often becomes better than a Meta-SGD trained model
when you allow it to make multiple adaptation steps na > 1. We showed that the
instability could be attributed to overfitted learning rates — we saw both learning
rates of extremely high magnitude and learning rates with wrong sign. The problem
could be made smaller by optimizing for performance after more than one step,
but (as discussed with MAML above) this is not necessarily possible or without its
problems. It might be possible to solve the issues with regularization techniques,
such as weight decay or parameter sharing, but we hypothesize that most of the
claimed advantage Meta-SGD has over MAML is just overfitted learning rates.

Reptile

Algorithm 3 Reptile for Few-Shot Supervised Learning
Require: ptrain(T): train distribution over tasks
Require: α, β: inner step size and meta-step size
Require: K: examples to train on K-shot learning
Require: n: number of inner optimization steps
Require: b: size of the inner batches — constrained to b ≤ K

1: Randomly initialize θ
2: while not done do
3: B ← {Ti ∼ ptrain(T)} . Sample meta batch of tasks
4: for all Ti ∈ B do
5: Di

K∼ Ti . Sample K data points from Ti
6: θ′

i ← OL
f (θ,Di;n, b, α,) . Inner optimization

7: end for
8: θ ← θ − β 1

|B|
∑

Ti∈B
(θ − θ′

i) . Meta parameter update step

9: end while

Nichol & Schulman (2018a) first introduced Reptile as a simpler and more scal-

2.4. FEW-SHOT LEARNING AND META-LEARNING 49

able initialization-learner than MAML. Reptile does not rely on backpropagating
through gradient descent steps, and are thereby less resource demanding. Instead
of optimizing θ with respect to the loss on some test data points D′

T when using
the updated parameters θ′

T , Reptile just moves θ closer to θ′
T to minimize the

difference between them. In other words just moving the initial parameters closer to
the updated parameters. As in MAML the meta parameter update is averaged over
multiple tasks in a task batch B. The whole procedure is shown in Algorithm 3.
OL

f (θ,Di;n, b, α) is an optimization procedure (e.g. SGD, Adam, or similar) opti-
mizing θ with respect to the loss L of f by doing n steps with learning rate α and
sampling minibatches of size b from Di. Notice that no test data points D′

i are used
and the meta update of the parameters θ is simply an average over the difference
from initial parameters θ to adapted parameters θ′

i weighted by the meta-learning
rate β. Explained as an optimization procedure, Reptile performs optimization
with the objective

min
θ

ETi∼ptrain(T)

[
1

2

∥∥θ −OL
f (θ,Di;n, b, α)

∥∥2]
The meta parameter update step could in theory use any optimizer, but the authors
only use SGD — mainly with linearly decreasing β from 1 to 0.

The authors use Adam as inner optimizer O, but to avoid harmful behavior when
continously switching tasks momentum is turned off35 — i.e. setting Adam’s β1 = 0.
They keep the optimizer state and reuse it at adaptation time. So one could argue
that the Reptile method learns to optimize to some degree since they transfer the
optimizer state. But we have found empirically that it makes no difference if we
reset the optimizer state before adaptation, so it’s not necessary at all to transfer
the optimizer state. Therefore we will categorize Reptile as a method that learns
the initialization, and does not learn to optimize.

Some time later Nichol et al. (2018b) updated their article considerably. The claim
that Reptile is simpler was removed, most likely because the authors discovered
that FOMAML can be implemented much easier than what was known before.
They provide both empirical as well as theoretical36 results indicating that the
difference between Reptile, MAML and FOMAML is not that large — except
that MAML is harder to implement and less scalable than the first-order methods.
Both the authors and earlier work (Andrychowicz et al. 2016; Ravi & Larochelle
2017) indicate that first-order derivatives are most important, and second-order
derivatives can be ignored. Another important update from the authors is that of
hyperparameter sensitivity. Reptile has an even larger number of hyperparameters
than MAML, but contrary to the impression given in the first version of the article,

35Although not noted by Nichol & Schulman (2018a), this is actually just RMSprop (Tieleman
& G. Hinton 2012).

36 By doing leading order Taylor expansion of Reptile, MAML and FOMAML they show how
these compare with respect to the use of first-order derivatives. They show that all three has
one term that minimizes the expected loss and another term that maximizes the inner product
between gradients from minibatches in the same task T . Where the latter term can be interpreted
as generalization within T .

50 CHAPTER 2. BACKGROUND THEORY

the authors point out that most hyperparameters are actually very insensitive and
robust. This was discovered in our work in parallel before the update from the
authors.

Chapter 3

Tools and Environment

In this chapter, we will describe the tools used in this thesis. We will begin by
introducing deep learning frameworks in general and summarize popular frameworks.
Since we will be using PyTorch, this is covered in greater detail. We then cover
hardware requirements, before we introduce tools used to realize our proof of concept
tool.

3.1 Deep Learning Frameworks

One of many advances in deep learning the past few years has been in tooling.
Specialized frameworks have emerged, and there are currently several major options
to choose from. The frameworks enable rapid construction of different deep learning
architectures, while still maintaining high performance during training and inference.

Specialized deep learning frameworks exist and thrive because they provide four
features:

• Computational graphs: A deep learning architecture can from a computa-
tional viewpoint be understood most easily as a tensor-oriented computational
graph. Computational graphs make it easy to break up architectures into
manageable parts, and also serve as a powerful abstract fundament to enable
automatic differentiation. Deep learning frameworks enable simple construc-
tion and execution of such graphs.

• Automatic differentiation: Most deep learning models rely on gradient
descent for optimization. To do gradient descent we (of course) need gradi-
ents. Deep learning frameworks offer seamless automatic differentiation on
computational graphs using backpropagation.

• High-performance hardware integration: The computational costs of
training neural networks can be large. Because they can easily be parallelized,

51

52 CHAPTER 3. TOOLS AND ENVIRONMENT

we want to run them on high-performance hardware such as GPUs. Deep
learning frameworks make it trivial to move computation from CPU to GPU.

• Deep learning specific utilities: Many building blocks in deep learning
are used over and over again. Optimization algorithms (e.g. SGD, RMSprop,
Adam), different kinds of layers and activation functions, data loading and so
on are part of nearly every deep learning application. In this context, deep
learning frameworks come with batteries included. They offer an abundance
of utilities and include implementations of the most used building blocks.

3.1.1 Framework Variation

Even though most frameworks have the four features mentioned above, they can
differ in implementation and extra features. We will now outline some of the ways
deep learning frameworks can differ.

Interface

Perhaps the most noticeable way frameworks differ from a users point of view
is in the way one interacts with them. The majority of frameworks provide a
programming interface, but some are (almost) entirely configuration-based. Since
the frameworks perform resource demanding tasks, they are mostly implemented
in low-level languages (e.g. C and/or C++). However, when they do most of the
heavy lifting, there’s no reason to make the user work within the same low-level
language. Therefore the user is often provided with bindings in one or more high-
level languages. As of this writing, the most dominant language is Python, but
other languages are used (e.g. Lua, Julia, R, C#, Java).

The philosophy and motivation behind the interface differ between the frameworks.
Some aim at being more high-level and fast to prototype, others at giving more
fine-grained control. Some aim at being more industry/production-friendly, others
at being more academia/research-friendly.

Dynamic vs. Static Graphs

Computational graphs are a powerful abstraction that all major frameworks supply.
However, the way this abstraction is handled in practice internally and how it is
presented to the user can differ. Most prominent is the distinction between static
and dynamic graphs. Static graphs are defined explicitly and declaratively before
execution. One first defines how the graph should be. Then feed the graph data
and execute it — usually a large number of times, but with different data each time.
Dynamic graphs are defined implicitly while the graph executes. All tensors are
nodes in the computational graph, and all operations on these tensors produce new

3.1. DEEP LEARNING FRAMEWORKS 53

nodes at graph runtime. Dynamic graphs are therefore typically created by writing
regular imperative programs operating on tensors.

Both dynamic and static graphs have advantages and disadvantages. Static graphs
incur lower runtime overhead and are easier to optimize, but in practice, this is
not synonymous with significantly better performance. Because static graphs are
explicit and do not require running the graph it makes them easier to package, ship
and distribute, making them attractive to production systems. The flexibility of
dynamic graphs is their main advantage over static graphs. Blending the graph
definition with regular computer code and flow is more flexible because one is less
dependent on the abstractions the framework provides for graph construction. This
also makes dynamic graphs more effortless to debug. Debugging the graph is just
like debugging regular computer code, while in static graphs one have to debug
through the graph execution engine. The flexibility and ease of debugging make
them attractive for exploring novel ideas/architectures.

Implementation of Automatic Differentiation

Basically all deep learning frameworks support automatic differentiation with back-
propagation, but they vary in implementation. This might not make any difference
to the user depending on the use case. The difference might be most noticeable when
doing work that is tightly coupled to optimization and backpropagation (which we
do in this thesis). The main distinction between implementations is in whether they
backpropagate directly through the graph and just produce numerical results or ex-
tend the graph to include nodes that do the calculations of backpropagation. In the
terms used by Goodfellow et al. (2016) the first approach is symbol-to-number
differentiation and the latter symbol-to-symbol differentiation. Symbol-to-
number differentiation calculates the gradients in a distinct step decoupled from the
execution of the graph. In contrast, symbol-to-symbol differentiation extends the
graph and makes the gradient calculations a non-distinguishable part of the execu-
tion of the graph. This is illustrated in Figure 3.1. Symbol-to-symbol differentiation
has one major advantage: It lends itself much more to intimate use of the gradients.
The gradients are just nodes in the graph — as everything else. This makes it more
intuitive to implement things such as gradient descent over gradient descent. On
the other side, extending the graph may incur overhead if it’s not needed.

Deployment

When one has successfully trained a network, one might want to deploy it to
a production environment. Some frameworks are supported by ecosystems that
make it straightforward deploy and integrate models in production systems (e.g.
cloud-based solutions). Moreover, since mobile platforms are becoming increasingly
important some frameworks also support deploying and running on mobile devices.

54 CHAPTER 3. TOOLS AND ENVIRONMENT

x z1 z2 z3 y
f1 f2 f3 f4

x z1 z2 z3 y
f1 f2 f3 f4

∂y
∂z3

∂z3
∂z2

∂z2
∂z1

∂z1
∂x

∂y
∂z2

∂y
∂z1

∂y
∂x

f ′
4f ′

3f ′
2f ′

1

×××

Figure 3.1: Illustration of symbol-to-symbol differentiation. Differentiation is
performed by extending the graph with nodes necessary to calculate the gradients
using the backpropagation method. In this example, we have a computational graph
for the function y = f(x), where f can be composed as y = f(x) = f4(f3(f2(f1(x)))).
We backpropagate from y (the output of the computational graph) to find the
gradients of y with respect to x (the input in this case). Note that this can be done
for arbitrary (directed acyclic) computational graphs, as long as backpropagation
can be applied, not just simple graphs such as this one.

3.1. DEEP LEARNING FRAMEWORKS 55

Distributed Computing

Training neural networks can be so resource intensive that one machine or GPU isn’t
enough. Some frameworks support spreading workloads across multiple CPUs/GPUs
on one machine and/or across multiple machines. What they support and the level
of support varies.

Availability of Pretrained Models

For many applications, it can be of great use to have access to pretrained models.
The selection of pretrained models for a framework is largely dependent on the
community. Models can be converted to other frameworks, but this is often non-
trivial. So it’s desirable that someone has already implemented and trained the
network one needs.

3.1.2 Popular Frameworks

A full review of different deep learning frameworks is out of scope for this thesis. We
will restrict this text to briefly mentioning some of the most popular frameworks.

• Theano (Theano): Primarily developed at Université de Montréal and
released in 2007, it was one of the first major frameworks. It was not made
specifically for deep learning, but that is what it’s mainly used for. Active
development stopped in 2017.

• TensorFlow (Martín Abadi et al. 2015): Developed at Google and released in
2015, and has gained massively in popularity since then. It’s largely inspired
by Theano.

• Caffe (Jia et al. 2014): Is geared towards and has been especially popular for
image processing. Developed at Berkley AI Research, initially started by a
Ph.D. student.

• Caffe21: Inspired by Caffe and aimed at production use. Backed by Facebook,
released in 2017 and long-term merging with PyTorch ongoing.

• Keras (Chollet et al. 2015): A high-level interface on top of TensorFlow,
Theano and CNTK developed by a Google engineer and released in 2015.

• MXNet (T. Chen et al. 2015): Backed by many industry partners and
supports a large number of programming languages and platforms.

• CNTK2: Developed by Microsoft and first released in 2016.

1https://caffe2.ai/
2https://github.com/Microsoft/CNTK

https://caffe2.ai/
https://github.com/Microsoft/CNTK

56 CHAPTER 3. TOOLS AND ENVIRONMENT

import torch

x = torch.tensor([5], requires_grad=True)
z1 = 2*x
z2 = z1**3
y = z2 / 50

Tensor [5]

x

Tensor [10]

z1

Tensor [1000]

z2

Tensor [20]

y

Function /50Function **3Function *2

Figure 3.2: Illustration of how PyTorch does automatic differentiation. In this
example, we look at the Tensor and Function objects created after executing the
code above — which calculate (2x)3

50 for x = 5. The dashed arrows show how the
variables were computed, and the solid lines show references. The Function objects
have essentially made a graph for the reverse mode, and the Tensor objects have
references into this graph. This example is of course very simple, but the principle
remains the same for non-scalars and arbitrary computational DAGs.

• Torch (Collobert et al. 2011): A scientific computing framework aimed at
machine learning that was first released in 2002.

• PyTorch3: Backed by Facebook, released in 2017 and built on top of the
same backend as Torch, but with very tight and intimate integration with the
Python ecosystem. Aimed at research use, but long-term merging with Caffe2
is ongoing.

3.1.3 PyTorch

We will now give a high-level introduction to some of the central parts of PyTorch,
which will serve as a background for later sections.

The fundamental data structure in PyTorch is torch.Tensor, which (of course)
represent a tensor. In crude terms, a Tensor is equivalent to a NumPy (Walt
et al. 2011) array, but can be used on both CPU and GPU. They provide (mostly)
the same interface and operations as NumPy arrays, and can also be converted
seamlessly to and from NumPy arrays.

3https://github.com/pytorch

https://github.com/pytorch

3.1. DEEP LEARNING FRAMEWORKS 57

nn.Module

f1 θ1

nn.Module

f2 θ2

nn.Module

f3 θ3

nn.Module

f4 θ4

Figure 3.3: Illustration of hierarchically organized nn.Module. Each nn.Module
keep track of its own parameters θ necessary for their forward pass computation f ,
as well as any submodules used.

The torch.autograd package makes it possible to do automatic differentiation.
This is achieved with the use of some constructs built into Tensor — which can be
enabled by setting requires_grad = True on a Tensor. A Tensor has a .grad_fn
property, which is a torch.autograd.Function object that keeps track of how the
Tensor was computed. A Function object is essentially a node in a computational
graph. It keeps track of the computational parents to its associated Tensor and
necessary intermediate values to make backpropagation possible. When doing an
operation on one or more Tensor(s) it will create a new Tensor for the result with
a corresponding Function. So autograd builds the (reversed) computational graph
and cache necessary intermediate values while one perform the forward pass of the
graph. See Figure 3.2 for an illustration. One can then easily do backpropagation
while traversing this graph. Moreover, here comes a really powerful feature of
autograd, it can perform this backpropagation with calculations on Tensor. That
way the gradients are calculated just like every other Tensor, making them nodes
in the computational graph that can be backpropagated through. In effect, doing
symbol-to-symbol differentiation. This makes it trivial to find the gradients of the
gradients.

So while one can do arbitrary calculations on tensors and do automatic differentia-
tion over those calculations, these are still relatively low-level building blocks when
working with large neural networks. In practice, one wants to manage calculations
in larger reusable building blocks and at the same time manage parameters. Py-
Torch makes the high-level abstraction torch.nn.Module available for this purpose.
Module is meant to be subclassed, and when one does so one has to define two
things: 1) The constructor — where one initializes parameters and other Module
instances. 2) A forward method — where one performs the forward pass of the

58 CHAPTER 3. TOOLS AND ENVIRONMENT

module (optionally with the help of other submodules initialized in the constructor).
This way one can organize calculations in hierarchies, as illustrated in Figure 3.3.
A Module instance will initialize all necessary parameters for itself and its whole
hierarchy under it, giving one interface to a large computational graph with its
associated parameters. In addition PyTorch provides torch.optim.Optimizer
(and already implemented subclasses), which can keep track of parameters and do
optimization steps. Making it possible to write code like this:
net = Net() # A Module subclass
optimizer = SGD(net.parameters(), lr=0.01) # Keep track of parameters
for input, target in dataset:

optimizer.zero_grad() # Zero out accumulated gradients
output = net(input) # Forward pass of net module
loss = loss_fn(output, target)
loss.backward() # Automatic differentiation with respect to the loss
Gradients are now accumulated for all parameters
optimizer.step() # SGD update step

3.1.4 TensorBoard

Training a neural network is often very time consuming. Days of training are
not unusual — even on powerful GPUs. Hyperparameter search or sensitivity
analysis might require running many experiments. One quickly ends up having
multiple, simultaneous and long-running experiments — sometimes across machines.
Therefore it’s necessary to be able to monitor such experiments. We achieve this
by logging loss and other relevant data to file while running to a format that is
readable by TensorBoard4 — a tool from TensorFlow (Martín Abadi et al. 2015).
TensorBoard launches as a server that monitors arbitrarily many log files and makes
them available to the user in a dashboard.

Visualization enables us to detect issues during the training process and compare
different training runs.

3.2 Hardware

Training deep neural networks is computationally heavy. With many layers and
parameters, it takes time to do both the forward and backward passes. Fortunately,
these operations can be expressed as tensor operations that are easily parallelizable

— which can leverage the power of modern mass-produced GPUs. Almost all deep
learning frameworks use NVIDIAs cuDNN5 to support GPU computation, this is
also true for PyTorch. So for deep learning a cuDNN enabled GPU is required.

The speedup gained from using GPUs imposes requirements on RAM-to-GPU
transfer bandwidth because the mini-batches needs to be transferred from the

4https://github.com/tensorflow/tensorboard
5https://developer.nvidia.com/cuDNN

https://github.com/tensorflow/tensorboard

3.3. PROOF OF CONCEPT TOOL 59

RAM to the GPU for processing. If it takes more time to transfer a mini-batch
than process it, the transfer becomes a bottleneck. To calculate gradients with
backpropagation the activation values from the forward pass is needed for every
example in the mini-batch. These activation values are stored in the GPU’s RAM
to enable efficient processing. State-of-the-art neural networks for image processing
typically need several gigabytes for processing the required batch sizes for stable
training.

We have shared access to workstations with Nvidia GeForce GTX 1080Ti (11GB
RAM). These are available to us over a 100Mbit local network.

3.3 Proof of Concept Tool

3.3.1 React

React is a JavaScript library used to create interactive user interfaces for the web.
Over the past few years React has become one of the most popular user interface
frameworks for the web.

In React, user interfaces are designed by declaring views for the application state.
To make it easy to declare views, React provides a JavaScript language extension
called JSX. The render method in Figure 3.4 is an example of how JSX can be used
to declare a view for state.count.

As the reader may notice JSX resembles HTML, in fact the <div> tag will be
rendered as an HTML div element in the browser. In React the Counter view is
called a React component.

React user interfaces can easily be made interactive through event handlers attached
to the user interface elements. In Figure 3.4 an event handler handleClick is
attached to the button. When the user clicks the increment button handleClick
will be invoked. The event handler handleClick increments state.count by calling
the React.Component method setState. When the state changes, React calls the
render method which returns the updated view. React then inserts the updated
view into the browser in an efficient manner. This user interaction process is
illustrated in Figure 3.5.

The separation of application state logic and view declaration is part of Reacts
appeal. Another strong point for React is the ability to compose components.
Figure 3.6 illustrates how components can be composed. Composing allows the
developer to create complex user interfaces by arranging simple components into a
hierarchy.

60 CHAPTER 3. TOOLS AND ENVIRONMENT

class Counter extends React.Component {
state = {

count: 1
}

handleClick = () => {
this.setState(prevState => ({

count: prevState.count + 1
}));

}

render() {
return (

<div>
Count: {this.state.count}

<button onClick={this.handleClick}>

Increment
</button>

</div>
);

}
}

Figure 3.4: A simple counter view declared in JSX syntax.

Count: 1

Increment
handleClick()

render()
Count: 2

Increment

User
click

React

Figure 3.5: Illustration of a user interaction for the Counter component in Figure
3.4.

3.3. PROOF OF CONCEPT TOOL 61

Count: 1

Increment

Count: 3

Increment

class TwoCounters extends React.Component {
render() {

return (
<div>

<Counter />
<Counter />

</div>
);
}

}

Figure 3.6: Illustration of a composition of two Counter components.

from flask import Flask
app = Flask(__name__)

@app.route('/path/to/endpoint', methods=['GET'])
def endpoint():

return "String returned to client"

Figure 3.7: Flask endpoint

3.3.2 Flask

Flask6 is a microframework for making web services in Python. Creating an endpoint
in Flask is simple through the use of Python’s function decorator syntax, shown in
Figure 3.7. Part of Flask’s philosophy is to make it simple to get started without
limiting the ability to make complex applications later on.

3.3.3 SQLite

SQLite7 is a simple and self-contained SQL database engine. It comes built-in in
the Python standard library, and requires no setup. Compared to other large-scale

6http://flask.pocoo.org
7https://www.sqlite.org

http://flask.pocoo.org
https://www.sqlite.org

62 CHAPTER 3. TOOLS AND ENVIRONMENT

and complex RDBMS (relational database management system), SQLite lacks some
advanced features and is not suited for a massive number of users. But what it
lacks in scalability and features, it makes up for in simplicity. No dependencies,
no setup and databases are just stored in a single normal file, but SQLite still
exhibits respectable performance. If one wants an SQL database but do not require
a large-scale full-blown RDBMS, SQLite will be a natural choice.

Chapter 4

Exploration

In this chapter, we will give the reader insight into our process working our way
from sinusoid regression to object detection. Figure 4.1 shows a timeline of key
milestones and publications of related work. We will describe the challenges we face
and our process to overcome these challenges.

In this thesis, we will focus on MAML and related methods. We chose to focus on
these methods because they have many attractive properties for the application we
are concerned with — i.e. the user–model feedback loop. When we started working
on this thesis, we planned to apply MAML on object detection. We experienced
difficulties when scaling up MAML to full-blown object detection, so when Nichol
& Schulman (2018a) published a simplified version of MAML, called Reptile, we
saw no reason not to try this method instead. The difficulties experienced with
MAML will be elaborated on later in this chapter.

W will now motivate why we chose to explore MAML. Although not explicitly
stated, the arguments for MAML holds for its descendants (Reptile and Meta-SGD)
as well.

As stated, MAML has some attractive properties for our purposes. The foremost
property of MAML is that it is model agnostic — i.e. it has few restrictions on the
model. MAML’s only restriction on the model f is for it to be learnable by gradient
descent. A wide range of deep learning models for a wide range of problems are
learnable by gradient descent. Therefore MAML can be considered a very general
method. Many of the methods in Section 2.4 are tailored to one specific model.
This tailoring restricts which problems the method can be applied to, making these
methods less general. We argue that a general method is more valuable to explore
since it can be part of many useful applications of the user–model feedback loop.
We also argue that MAML, because of its generality, is a natural choice for exploring
the uncharted territory of few-shot object detection.

In order to apply MAML to a new problem one has to find a suitable model f and

63

64 CHAPTER 4. EXPLORATION

MAML

Specialization Project start

Meta-SGD

RetinaNet

Specialization Project end

Master Thesis start

Applied MAML on LettersOD with TinySSD

Replaced SSD base network with ResNet

Reptile v1
Switched from MAML & SSD to Reptile & RetinaNet

Reptile v2

Proof of concept annotation tool

Start running experiments

Master Thesis end

Figure 4.1: Timeline of key milestones and publications of important related work.
The key milestones are displayed on the left and publications of related work on
the right.

65

define ptrain(T). Finding a suitable model f is easy. Because of the model agnostic
nature of MAML, one can simply choose an off-the-shelf deep learning model
suitable for a task T . Defining ptrain(T) is the only challenging part. However, we
argue that it is a smaller challenge than adapting a method specialized for image
classification to object detection.

The downside to the model agnostic nature of MAML is an involved and computa-
tionally heavy training procedure. As we can see from Algorithm 1 in Section 2.4,
there are two levels of optimization. The outer optimization involves calculation of
second-order derivatives by backpropagating through a deep computational graph.
This backpropagation step is expensive, and since the computational graph is deep,
achieving a good gradient flow can be challenging. Some of the other methods
in Section 2.4 have, at least for classification, a more straightforward learning
procedure. MAML’s use of second-order derivatives may explain why we had issues
when training on PASCAL VOC images. These issues are discussed later in this
chapter.

Non-parameter-inducing and parameter-inducing methods tradeoff training and
evaluation time differently. Non-parameter-inducing methods use the examples
DT as parameters directly to the model f . This causes the evaluation time of
the user–model feedback loop to increase with the number of examples |DT |. For
parameter-inducing methods like MAML on the other hand, the model f is not
dependent on the examples DT . So no matter how many examples |DT |, MAML will
use the same amount of time on the evaluation step. MAML avoids the dependency
by condensing DT into fixed-size parameters θ′

T using gradient descent. This might
cause the training step of the user–model feedback loop to take longer time as the
number of examples increases. For non-parameter-inducing methods the training
step in the user–model feedback loop will usually be instantaneous, because the
examples are used as parameters directly to the model. There is, therefore, a
tradeoff between inference time and training time between parameter-inducing and
non-parameter inducing methods. Which category of methods that yield the fastest
iterations of the user–model feedback loop will likely vary depending on the number
of examples and the application.

By the taxonomy in Figure 2.20 there are two categories of parameter-inducing
methods: learning the initialization and learning to optimize. MAML is a method
that learns the initialization. The initialization it learns can be used just like
any other standard random initialization of neural network parameters. Therefore
MAML can be used and combined with the same methods and techniques usually
used to train neural networks. This capability is a significant advantage it has over
methods that learn to optimize.

To summarize, there are two main reasons we chose MAML:

1. MAML is a general method easily applicable to a wide range of problems.
There might be use cases of the user–model feedback loop that benefits from
another meta-learning method, but we think there is more value in a method

66 CHAPTER 4. EXPLORATION

applicable to a wide range of use cases and problems.

2. MAML can be easily combined with standard tools and techniques. We
believe being able to use MAML with current and future tools and techniques
is very important when solving real world problems.

With MAML chosen, we needed to find a suitable object detection model. There
are many object detection architectures to choose from. In Section 2.3.3, we identify
two types of object detection architectures one-stage and two-stage detection. The
two-stage detection models have traditionally had higher accuracy than one-stage
methods, but their architecture and training process are usually more involved. To
apply MAML we need to modify the training process, so an object detection model
with a simple training procedure is preferable. Also, the inference time of one-stage
detectors is usually lower, which is beneficial when the goal is to speed up the
user–model feedback loop. We chose to use the one-stage detector SSD, described
in Section 2.3.3, with MAML. In addition to being a one-stage detector, SSD uses
class-agnostic localization — as opposed to R-CNN based methods, which use class-
specific localization. In a few-shot learning context, class-agnostic localization is
beneficial because all examples of all classes contribute to improving the localization

— making the localization training more data efficient.

As far as we know, there hasn’t been done a great deal of work on few-shot learning
for object detection. A challenge we faced as a result of this was the lack of existing
benchmarks tailored to few-shot object detection. Therefore we have adapted the
general object detection datasets PASCAL VOC and COCO to our needs. This
process is described in detail in Chapter 6.

In our earlier work, we employed MAML on few-shot sinusoid regression, which is a
more straightforward task than object detection on natural images. To make the
transition from sinusoid regression to object detection on natural images easier, we
designed a simple object detection dataset with black letters on white background

— we call this dataset LettersOD. The implementation details for this dataset can
be found in Chapter 5.

Using a simple dataset like LettersOD allowed us to use a relatively small neural
network, which is fast to train and do inference with. It’s also easier to get small
neural networks to converge. We know from our earlier work that MAML is sensitive
to the correct hyperparameters — so having a network that converges easier is
beneficial. Therefore we implemented a smaller object detection network we call
TinySSD — a scaled-down version of the full-scale SSD network.

As far as we know, MAML has not been used with a larger neural network than
the one used by (Finn et al. 2017). Also, we have not found anyone that has used
MAML for object detection. Since both using a large neural network and doing
object detection with MAML is a novelty, we followed a four-step approach to avoid
taking on too much at once.

1. Standard object detection with TinySSD on LettersOD: Testing stan-

67

dard object detection first allows us to get rid of any bugs in our implementa-
tion of Functional PyTorch. Also, it’s useful to test this first to verify that
TinySSD has sufficient capacity to achieve a good score on LettersOD.

2. Few-shot object detection with MAML and TinySSD on LettersOD:
To test if it’s possible to do few-shot object detection at all with MAML.

3. Few-shot object detection with MAML and SSD300 on LettersOD:
If few-shot object detection works with TinySSD and MAML, the next step
is to scale up the neural network. We therefore test SSD and MAML on
LettersOD to make sure the network size alone doesn’t break MAML.

4. Few-shot object detection with MAML and SSD300 on PASCAL
VOC: This will test if it’s possible to use MAML for object detection on
natural images.

For standard object detection, we employed a standard experimental setup where
we first train a model on the training set and then test on the test set. After some
initial bug fixes, we were able to get near perfect score for standard object detection
on LettersOD with TinySSD. This result made us confident that TinySSD had
sufficient capacity to do object detection on LettersOD. The next step was to try
few-shot object detection with TinySSD and MAML on LettersOD.

To test few-shot object detection on LettersOD we did 5-way 5-shot learning, as
Vinyals et al. (2016) do for MiniImageNet. Details of how we defined few-shot
learning for the object detection problem is provided in Chapter 6. When using
TinySSD and MAML we also achieved a near perfect score. This score proved that,
at least for a simple object detection dataset, few-shot learning is possible.

Switching to a full-scale SSD network also went without significant complications,
yielding a similar score as TinySSD on LettersOD. With both object detection and
larger network working, we moved on to PASCAL VOC images.

The leap from LettersOD to PASCAL VOC images proved difficult. We even had a
hard time getting the training process stable. At closer inspection, we saw that the
gradients and activations exploded during training. To resolve this issue, we tried
both to facilitate more stable learning and to reduce the problem complexity. We
tried many things to get MAML to work on PASCAL VOC images:

• 1-way classification: The first simplification we made was to do 1-way
classification instead of 5-way. In a 1-way classification setting there is only
one class to detect, all other classes are considered background. This is
considerably easier than distinguishing five different classes. Unfortunately,
this simplification alone was not enough to make the training stable.

• Adjusting hyperparameters: In deep learning, tuning hyperparameters is
important, and sometimes the difference between success and failure. The
most critical parameter in deep learning is often learning rate. We tried
tuning both learning rates and all the other hyperparameters. No combination

68 CHAPTER 4. EXPLORATION

of hyperparameters we tried was able to stabilize the training. Due to
computational complexity, some of the hyperparameters of MAML is restricted.
For example, the compute and memory scales linearly with the number of
inner steps n. So the amount of GPU memory sets an upper limit on the
number of inner steps.

• Different learning rates and Meta-SGD: It is a well-known fact that
early layers of CNNs detect low-level features in the image, like edges and basic
shapes. These low-level features are useful across domains. The base network
we use, VGG16, is pretrained on ImageNet, so it has already learned to detect
these features. Moreover, all the classes in PASCAL VOC exist in ImageNet,
so the network has also learned some high-level features relevant for these
classes. We therefore expect it to be possible to get a decent score on PASCAL
VOC with minimal adjustments to the base network’s weights. We experiment
with different learning rates for the different parts of the network and also try
freezing the VGG network and train only the detection heads with MAML.
Despite considerable effort we weren’t able to find a configuration that made
the training stable. Perhaps the learner could tune the learning rates itself?
In our specialization project, we explored an extension for MAML called
Meta-SGD where the learning rates for each weight is learned in addition
to the weights themselves. Having a learning rate for each weight gives the
model more flexibility and eliminates α as a hyperparameter, but doubles the
number of parameters, makes it more unstable and prone to overfitting. So
instead we tried two different approaches inspired by Meta-SGD: per layer
learning rates and per filter learning rates. Ideally, the learner would be able
to set an appropriate learning rate for the different parts of the network,
avoiding too drastic changes in the base network. None of these attempts got
rid of the instability, at best it was only postponed.

• 3 step learning: At this point we thought the instability in training might
stem from learning the detection head and meta learn at the same time. When
we start training a network from random weights, the loss and therefore the
gradients are high. To calculate the second order derivative for MAML’s
meta update step one has to use backpropagation. Because the graph to
backpropagate through is deep the gradient flow is more likely to be poor

— i.e. gradients are more likely to explode or vanish. Untrained heads and
second-order gradient calculations combined might explain the instability we
are experiencing. We try to mitigate this by applying a three-step process.
First, we train standard object detection. Then we transfer learn with MAML
where we only adjust the classification head of the network. Finally, we allow
MAML to finetune the whole network. With this approach, we were able to
stabilize the training, but we were not able to achieve meaningful results.

• Batch normalization and ResNet: As mentioned above the meta update
step is prone to poor gradient flow due to the deep computational graph.
Using batch normalization is a common trick in deep learning to aid the

69

gradient flow. Also, different architectures try to improve the gradient flow
with clever tricks. One such network architecture is ResNet, which uses skip
connections and batch normalization to allow gradients to flow more easily
through the network. Therefore we think it is worth a shot switching to
ResNet as the base net to see if that can improve our results. Unfortunately,
the switch to ResNet made no significant improvements.

• Training and testing on the same classes: To make the task even easier
we both train and test on the training set, which contains 15 classes. Training
and testing on the training set are just for debugging purposes. With this
setup the model is not doing true few-shot learning since the model sees the
same classes for both training and testing. We train the model with the 3 step
process described above and verify that the score after the first step (standard
training) is satisfactory. The model should now be able to distinguish all
classes. So in the transfer step we just add an additional layer on top of the
detection heads. This was done so the model easily can easily pick out the
class it wants to detect. This setup should make it easy to learn the task T ,
but to our surprise we were not able to achieve meaningful performance.

About halfway through the semester Nichol & Schulman (2018a) released an im-
provement of MAML called Reptile. Reptile is similar to MAML but use a different
method to calculate the meta-step. More details on the differences between MAML
and Reptile can be found in Section 2.4. The most significant difference between the
two is that Reptile eliminates the second order derivatives, which saves computation
and stabilizes the training process. We also switched to RetinaNet (Lin et al. 2017b),
an updated version of SSD. The architecture of RetinaNet is explained in detail in
Section 2.4. RetinaNet has many advantages over SSD, we summarize some here:

• Flexibility with respect to base networks: Easier to use different base
networks. This allows us to experiment with different base networks to see
what works best. As a compromise between training time and accuracy, we
used ResNet34 for most of our exploration.

• Flexibility with respect to image size: RetinaNet has a simpler scheme
for anchor boxes, making it easier to test images of different scales. This
flexibility allows us to trade off accuracy and speed.

• Better performance: Through different improvements like Feature Pyramid
Network and Focal Loss, RetinaNet has improved performance compared to
SSD.

Using Reptile with RetinaNet for 1-way classification on PASCAL VOC we had
no problems with training and were able to achieve meaningful results right away.
Therefore we decided to use Reptile for rest of the thesis.

With Reptile working on PASCAL VOC we conclude that we have reached Goal
1.1. In Chapter 6 we will devise an experimental setup for the next goal (1.2).

70 CHAPTER 4. EXPLORATION

Chapter 5

Implementation

5.1 Functional PyTorch

We use PyTorch as our framework of choice for our work in this thesis. We do
not do an in-depth comparison of every framework for our use case since we can’t
defend the time usage. Instead, we choose PyTorch for two simple reasons: 1) It’s
flexible and transparent. 2) Its interface is already familiar.

PyTorch uses dynamic graphs and tight integration with Python, which allows
for great flexibility in use. One writes control flow in plain Python, and the
computational graph is defined dynamically while running. The process is also
transparent because the graph execution follows the normal program flow, in contrast
to a distinct graph execution environment that is ran after the graph has been
defined. Debugging can be made step by step directly in Python code as one
would ordinarily do. At the same time, one has access to both common high-level
abstractions as well as fine-grained building blocks needed for implementing novel
ideas.

The developers of PyTorch have gone a long way in making the use close to that
of the SciPy (Jones et al. 2001–) ecosystem. We are familiar with this ecosystem,
saving a considerable amount of time when learning to use PyTorch compared to
other frameworks.

5.1.1 Extending PyTorch

PyTorch provides all the fundamental building blocks necessary to train a deep neural
network (i.e. automatic differentiation, seamless GPU support, etc.). But some of
its more high-level constructs, meant to enable structured and easy development,
are not well-suited for our special use case with MAML and its descendants. We
will now explain why some of PyTorch’s high-level abstractions do not fit our needs

71

72 CHAPTER 5. IMPLEMENTATION

θ

fθ L ∇θ

SGD

Di

fθ′i L

D′
i

x
y

θ′
i

x′ y′

L(fθ′
i
,D′

i)

Figure 5.1: A simplified computational graph of supervised learning with MAML
for a single task Ti. SGD is the Stochastic Gradient Descent function, i.e. θ′i =
θ − α∇θL(fθ′

i
,Di) in this graph. The objective is to minimize the meta-loss∑

Ti∈B
L(fθ′

i
,D′

i) with respect to θ.

and how we adapt/extend PyTorch to do so. When we are done we will be able to
use PyTorch (with our extensions) to implement MAML and its descendants in an
ergonomic and straightforward manner.

Let’s first see what we need when using MAML. Figure 5.1 shows a simplified
version of the computational graph we need to optimize over when using MAML on
supervised learning. The most important thing to notice in this graph is that we
have two instances of the parameters (actually more because we have a θ′i for each
example i in a minibatch). Usually, when we do gradient descent we will just update
the parameters in-place, but in this case the gradient descent step is just a part
of a computational graph that one will do gradient descent over. It’s problematic
do to in-place operations if one wants to backpropagation because it breaks up the
computational graph. And since we want to adjust the initial parameters, based on
the performance of updated parameters, we must keep them around.

Figure 5.2a shows how the usual high-level constructs in PyTorch are used for
training. The problem is that both nn.Module and optim.Optimizer are tightly
coupled with some set of parameters. nn.Module associates a given computational
graph with some specific instance of the parameters. This is a good way to do
it when doing normal gradient descent. But when we do gradient descent over
gradient descent in MAML we want to be able to use several instances of the same
parameters. optim.Optimizer has the same problem — it’s associated with some
particular instance of the parameters. But in addition it’s also problematic because
it does in-place updates of the parameters. We want to be able to keep both the
initial parameters and the updated parameters.

We introduce the package functional_pytorch to solve these problems. The main
contribution is functional_pytorch.FunctionalModule and
functional_pytorch.Params. FunctionalModule provides the same features as
nn.Module, but in a functional and stateless manner. Meaning that it does not

5.1. FUNCTIONAL PYTORCH 73

x y

fθ L ∇θ

θ Optimizer

nn.Module

(a) Standard PyTorch training flow

x y

fθ L ∇θ

θ Optimizer

θ′

FunctionalModule

Params

(b) Functional training flow

Figure 5.2: Illustration of the transition from stateful to stateless modules, making
it possible to implement MAML in PyTorch. Rectangles represent elements with
state, while circles represent elements without state — i.e. pure functions. A box
on an edge indicates state change at the end of an iteration.

bind itself to a specific instance of the parameters, but rather take a parameter
instance as an argument for the forward pass method. Params is the structure
that encapsulates a parameter instance. Figure 5.3 shows how the parameters are
now managed in their own structure (Params) separate from FunctionalModule.
This makes it straightforward to manage several instances of the same parameters.
FunctionalModule initializes Params instances that correspond to that module.
The two constructs make up a recursive pair in the sense that a FunctionalModule
can pass subparams to the corresponding submodule when doing a forward pass.
Since parameters are treated as a flat dictionary elsewhere in PyTorch, Params has
been implemented to behave as such unless used otherwise. Only FunctionalModule
makes use of the underlying tree structure.

Figure 5.2 shows the change in behavior between the normal stateful training flow
and the new stateless flow that functional_pytorch enables. Notice that the
optimizer also needs to be stateless. This can easily be achieved by not using the
stateful optimizers from torch.optim. And then just implement the optimizer as a
standard function that takes in parameters and gradients, and outputs the updated
parameters.

74 CHAPTER 5. IMPLEMENTATION

nn.Module

f1 θ1

nn.Module

f2 θ2

nn.Module

f3 θ3

nn.Module

f4 θ4

(a) nn.Module hierarchy

FunctionalModule

f1

FunctionalModule

f2

FunctionalModule

f3

FunctionalModule

f4

Params

θ1

Params

θ2

Params

θ3

Params

θ4

(b) FunctionalModule and Params hierarchy

Figure 5.3: An illustration of hierarchically organized FunctionalModule and
Params from the functional_pytorch package is shown in (b). Contrast this to
(a), where nn.Module is used.

5.2. LETTERSOD 75

Figure 5.4: Examples of random affine transformations on a specific instance of E
and H. The transformations should introduce additional variation in the dataset,
but without making the letters harder to identify. Note that for example rotating
too much might make it hard to distinguish certain letters.

5.2 LettersOD

The goal of LettersOD is to provide a very simple object detection dataset suitable
for development and early testing. We would like it to have similar characteristics,
with regard to the number of classes and instances, as PASCAL VOC and MS
COCO. MNIST (LeCun n.d.) has too few classes, so instead we base our dataset on
EMNIST (Cohen et al. 2017) — an extended version of MNIST with letters. We
use only letters, not digits, and thus have 26 classes. Since lowercase letters can be
hard to distinguish from certain uppercase letters we choose the simple solution of
just including uppercase letters.

To mimic object detection datasets for natural images we would like to insert letters
of different scales randomly on a white background. The letters in EMNIST are
only 28x28 pixels, and they do not lend themselves well for considerable upscaling.
Therefore, all letters are first preprocessed. We use the vectorization tool Potrace1

to convert all letters to SVG. Then all letters are normalized, the SVG stripped to
a minimum and then inserted into an SQLite database. This way we can sample
and fetch letters by different criterions fast.

Having all letters ready in a database, we can produce object detection images.
Letters are simply sampled from the database, combined in a single SVG and
then rasterized to a desired resolution. To introduce some variation and avoid
overfitting we apply random affine transformations to each letter — see Figure 5.4

1http://potrace.sourceforge.net

http://potrace.sourceforge.net

76 CHAPTER 5. IMPLEMENTATION

Figure 5.5: Examples from LettersOD. The number of letters and the scale of each
letter vary. In addition, we apply random affine transformations on each letter.
Note that letters are placed non-overlapping to avoid ambiguity.

for examples of these transformations. The scale is varied for each letter. Some may
take up almost the entire image, while others might only take up a very small patch.
Objects in natural images may partially occlude each other while it still is possible
to identify them. The same is not true for all black letters on a white background.
We therefore place the letters non-overlapping. Correctly sampling, augmenting and
placing objects on a canvas without overlap is actually an interesting non-trivial
problem, but we deem that outside the scope of this thesis, and will not go into
detail about how this was done. Figure 5.5 shows some examples of LettersOD.

5.3 Proof of Concept Tool

Our proof of concept tool consists of three main part: clients, workers and the server.
The client is implemented as a web app where the user can trigger adaptation of
new models and browse their detections. The workers are responsible for training
and evaluating the models. The clients and workers communicate with the server
over their designated APIs, the client API, and the worker API. An overview of

5.3. PROOF OF CONCEPT TOOL 77

User

Client Server

Worker

Actions

Feedback

Jobs

Annotations
Results

Metadata

TasksResults

Figure 5.6: Overview of our proof of concept tool. Note that there could be multiple
clients and workers.

the system is presented in Figure 5.6.

Two central concepts in the system are jobs and tasks. A job consists of one or
more tasks. There are two job types:

• Adapt job: Given a model and a set of annotated examples this job produces
a new model which is adapted to the set of annotated examples.

• Detect job: This job takes a model and a set of images and produces
detections for those images.

Typically, the client submits such jobs to the server. The server then divides jobs
into tasks and distributes the tasks to the workers for processing. When the workers
complete a task, they report the result back to the server.

We will now explain each part in more detail.

5.3.1 Client

Multiple clients can be connected simultaneously. The client is implemented as a
simple web app using React (see Section 3.3.1 for more on React). We use React
for two main reasons: 1) It has excellent support and a variety of libraries — with
for instance premade UI (user interface) components. 2) We already have some
experience with it from before.

React has become one of the most popular frameworks for building web applications2.
2https://insights.stackoverflow.com/survey/2018/

https://insights.stackoverflow.com/survey/2018/

78 CHAPTER 5. IMPLEMENTATION

Figure 5.7: Screenshot of the web application’s Detection tab.

The popularity has led to an active community with a vast ecosystem — providing
many libraries and extensive documentation. The excellent ecosystem makes it
less likely that we will get stuck. And we used a community created library in our
project to speed up the design and implementation process of the user interface.
The library implements Googles Material design as React UI components, and is
simply called MaterialUI3.

Since we have limited time, the fact that we were somewhat familiar with React from
before made it a natural choice. This familiarity allowed us to focus on developing
features rather than learning a new library.

A screenshot of the web application is shown in Figure 5.7, and more screenshots
can be found in Appendix B. We kept the design of the web application simple with
three main tabs and a sidebar.

• Adaption tab: On this tab, the user can look through the set of annotated
examples, adjust some adaptation hyperparameters and trigger adaptation of

3https://material-ui.com/

https://material-ui.com/

5.3. PROOF OF CONCEPT TOOL 79

the annotated examples. Since this is a proof of concept tool, we have not
implemented controls for all the hyperparameters.

• Detection tab: On this tab, the user can select a model and trigger a
detection job. Then as the detection job finishes, the user can look through a
list of images with detections and compare them to ground truth annotations.
The list can be grouped by images or detections and sorted by confidence,
uncertainty or image id. If the user sees an image where the model has
produced an inaccurate detection, the image can be added to the set of
annotated examples by clicking “Add targets”. The “Add targets” button is a
stand in for an annotation tool in our proof of concept tool. For a real-world
application, one would have to make a user interface for manually annotating
the images to make it possible to use such a system with datasets that don’t
have ground truth annotations.

• Evaluation tab: On this tab, the user can see the performance metrics of
the models. The metrics are calculated based on the detections produced in
the Detection tab.

• Status sidebar: On the right side of the web application the latest jobs are
listed with job status, type and id. Also, the registered workers are listed,
with the status, name and IP-address of the workers. The web application
polls the backend regularly to get the status of the jobs and workers. This
feature is useful to get an idea of the state of a job the user has submitted.

5.3.2 Worker

The tool allows for one or more workers to be connected. These workers are powerful
workstations with GPUs. GPUs are needed to make the computation efficient since
the tasks involve training and evaluating large CNNs.

When a worker starts up it reports to the server which models and datasets it has
access to and starts polling the server for tasks. The workers can be ordered to
process one of the following tasks by the server.

• Adapt a model to a set of annotated examples.

• Produce detections for a set of images with a given model.

• Download a model from another worker.

When a worker has completed a task, it reports the result back to the server.

5.3.3 Server

The server orchestrates clients and workers, and is realized as a Flask server. It is
responsible for receiving jobs from clients, divide it into tasks and distribute the

80 CHAPTER 5. IMPLEMENTATION

tasks to workers. The server is not connection-oriented with respect to clients and
workers, and clients and workers may come and go as they want during a session.

The tasks are distributed to the workers in a first come, first served fashion —
i.e. when a worker polls the server, the worker is assigned the next unfinished
task. Note that tasks are pulled rather than pushed — i.e. the workers ask the
server for another task, rather than the server telling the worker to start another
task. This design choice makes it simple to implement the worker communication
using a RestAPI. The downside to this the strategy is that the workers need to
continually poll the server for new jobs, which causes unnecessary load on the
server and network. However, with a limited number of workers, the load will never
become an issue in our proof of concept tool. To manage the application state the
server uses an SQLite database. The database is used for managing the jobs, tasks,
and workers as well as keeping control with the annotated examples and detections
for a model.

Information about the annotated examples and detections for the different models
are made available to the clients through another RestAPI. This API also offers
endpoints for adding examples and trigger adaptation and detection jobs. To make
sure the client has up to date state for the jobs and the workers we let the client
poll the server for status at regular intervals. As for the workers, this causes some
unnecessary load on the server and network. However, this will not affect the
user–model feedback loop duration, therefore we argue that polling is a reasonable
solution for our proof of concept tool.

Chapter 6

Experimental Setup

In this chapter, we will motivate and describe our experiments. We will do this in
two parts, each part related to its own research question and goal:

1. Reptile evaluation — Goal 1.2: To find out how well meta-learning with
Reptile performs on few-shot object detection we set up experiments measuring
standard metrics for object detection, but in the few-shot setting. There exists
no standard way to benchmark few-shot object detection, so an important part
of this chapter will be to introduce and motivate the benchmarks we run and
the baselines we use for comparison. In addition to measuring performance,
we would also like to run some quantitative experiments highlighting the
advantages and limitations of Reptile.

2. Proof of concept tool evaluation — Goal 2.2: Running a system for
training object detection machine learning models would require considerable
infrastructure. While the quantitative experiments above will show how
capable a Reptile model is to perform few-shot object detection in terms of
artificial and isolated benchmark metrics, there are still many other factors
that must be taken into consideration when considering the feasibility of a
faster user–model feedback loop. There may be many unforeseen practical
challenges or obstacles when implementing a real world system that are hard
to analyze up front with only traditional machine learning benchmark setups.
So to verify the feasibility of actually realizing such a system in practice and
testing its speed we set up a less rigorous experiment with our proof of concept
tool.

81

82 CHAPTER 6. EXPERIMENTAL SETUP

6.1 Reptile Evaluation

Since we are not aware of or found any previous work on either few-shot object
detection1 or meta-learning for object detection we have to establish a framework
for evaluating meta-learners. So in this section, we will first explain how we make
the problem of object detection fit into the framework of meta-learning and few-shot
learning. More specifically, we will establish how a task T is to be interpreted in
the context of object detection and how we sample data points DT from it when
doing few-shot learning. The standard benchmarks for object detection are not
suited for evaluating few-shot learning. Therefore we will introduce and motivate
a few benchmarks with corresponding datasets. These are based upon PASCAL
VOC and MS COCO, but adapted to the few-shot setting. And finally, we specify
the different experiments we run — both justifying and detailing our choices. Since
there are no already established benchmarks or significant earlier work, we also
importantly introduce and motivate some baselines for comparison.

6.1.1 Meta-Learning and Few-Shot Learning for Object De-
tection

We define a task T in object detection to be such that the input x is an image
containing zero or more objects. The desired output y is a set of object detections,
where each detection consists of a bounding box and class label chosen among M
classes. While x may be an arbitrary image, y must be detections for the same M
classes for all (x, y) ∼ T . Note that an image might contain objects that are not
among the M classes to be recognized. So in other words, an object detection task
is to detect all objects of M specific classes. We say a task T is an M-way object
detection task.

It’s also necessary to establish exactly what few-shot learning is in the object
detection context — which data points are provided when doing K-shot learning?
This is not trivial, so let’s first define how we handle few-shot learning for object
detection, and then discuss it afterwards. Given a task T , let DT

K∼ T be such that
|DT | = MK and each object class is present in at least K images. So for each of
the M object classes we sample K images containing that class. We are guaranteed
that each class is present in K images, but they might also be arbitrarily present
in the remaining (M − 1)K images. We say we do K-shot object detection if we
adapt to the task T with the data points DT

K∼ T .

Note that the term K-shot becomes somewhat more convoluted when used this way
1 We actually found some very recently unpublished work (H. Chen et al. 2018) from March

this year doing few-shot object detection, but we discovered this too late to effect our experiments.
The authors use a method specifically designed for object detection. There are also other work
(e.g. Dong et al. 2018) closely related to few-shot object detection, but no so close that it’s natural
to have any place in or influence over our experiments.

6.1. REPTILE EVALUATION 83

compared to other meta-learning settings like regression, where the interpretation
is straightforward. We argue this unavoidable in practice because of the way object
detection is structured. There are three main factors that must be addressed when
defining what K-shot should mean:

1. Multiple classes: How do you handle classes with respect to K? It is
unreasonable to expect a model to learn a class if it has seen no instances
of it. So 1-shot learning would be ill-defined if it entailed that you are only
provided with a single example for 1 out of M classes. It’s therefore natural
to assume that each class will have at least one example. In meta-learning
for classification this is solved by defining K-shot as the setting where K
examples of each class are provided, giving a total of MK examples. This
way K-shot is always well-defined, also when K < M , because you will always
be guaranteed examples of all classes. We adopt the same scheme for object
detection.

2. Multiple objects per image: Are examples counted at image level or object
instance level? In object detection an image can contain an arbitrary number
of objects from the same class. So the information contained in a single image
may vary significantly. If examples are counted at image level, the number
of object instances in DT will vary. Even though K = 5, the meta-learner
may see way more than K objects instances of each class. But then again, if
examples are counted at object instance level, the number of images may vary
greatly. Either way DT will vary in ways we can’t control. For image level
counting, the size of the desired output will vary, while for object instance
level counting the size of the input will vary.

You could of course try to combine them both and fix both the number
of object instances and images, but we argue counting examples at object
instance level should be avoided in practice. It would make the sampling of
examples both too restrictive and too complex. Restrictive because it would
severely limit which combination of images that could be sampled together

— we risk distancing us from what is realistic in real world settings and also
simply excluding too much training data. And complex because it would
require solving an intricate problem2 of which images can be combined to
achieve the right number of object instances.

3. Multiple classes per image: Closely related to both of the factors discussed
above — how do we handle that multiple classes are present in the same
image? In normal image classification only one class is considered correct
for an image, but in object detection an image can contain multiple classes
that must be recognized. If we simply sample K images per class (containing
that class), we might end up with classes that are present in more than K
images. This would depend on how often different classes co-exist in an image.
It would be possible to make a scheme where you could control how many

2 This problem is in fact NP-hard in general, following from the subset-sum problem (Cormen
et al. 2009).

84 CHAPTER 6. EXPERIMENTAL SETUP

images a class would be present in. But we argue, similarly as for the previous
factor, that taking into consideration which classes co-exist in the image is
best avoided in practice because it would be both restrictive and complex.

In summary, we have defined how K-shot learning is to be understood for object
detection and discussed why we choose to do it this way, Mostly because we mean
the alternatives are too restrictive and too complex to defend against a simpler
approach.

6.1.2 Benchmarks

Few-shot object detection cannot be tested the same way as normal object detection.
For normal object detection one would first train a model on some training data
consisting of all classes, and then test on some separate test data also consisting of
all classes. But in the case of few-shot learning we would like to first train on data
only consisting of some classes, and then test by adapting to some other classes
afterwards. And in the case for meta-learning, in effect testing if the meta-learner
has learned to learn.

More formally we would first like to have a dataset split into train and test3. Let
C denote the set of all classes. Then the test split should consist of the classes
Ctest ⊂ C, and train should consist of the remaining classes Ctrain = C − Ctest. A
few-shot learner is given full access to all of train during training. During testing
a task T using some (or all) of the test split classes is sampled. Some adaptation
data DT

K∼ T and some separate test data D′
T ∼ T are sampled from test. The

few-shot learner can use DT to adapt and is then tested on D′
T . Several tasks are

sampled and tested this way.

Even though not strictly necessary, we would also like to divide the test split into
test-adapt and test-test. And then always sample DT from test-adapt and
let D′

T just be all data points in test-test. This is in contrast to just sampling
both adaptation and testing data points from the same pool without replacement.
We have three reasons to do it this way:

1. It makes it simple to sample separate adaptation and test data points without
the risk of mixing data points between adaptation and testing.

2. It makes it easier to compare results across models adapted to the same task,
but with different adaptation data points, because all are tested on the same
data points.

3. It combines the traditional way of testing supervised learning with meta-
learning. For many traditional supervised machine learning methods we want
a standard train/test split. But if we do few-shot learning we would also like
to first separately train on some other classes. This way of effectively splitting

3In practice one would also often need a validation split. This can be achieved by dividing
train further. We do not go into detail about this.

6.1. REPTILE EVALUATION 85

train

Classes Ctrain

FΦ

DT ∼ (T ∼ ptrain)

test

Classes Ctest

test-adapt test-test

FΦ fφ

DT D′
T

x∗

φ

From same T ∼ ptest

Φ

Compare

y∗ŷ∗

Performance metric

Training Testing

Figure 6.1: Illustration of how training and testing is done for a meta-learner —
showing the flow of data.

all the data into three splits (train, test-adapt, test-test) achieves both.
It makes it possible to do combinations where one meta-learns first and then
use for example active learning at adaptation time.

Given a few-shot dataset as just explained, let’s summarize and see how one would
test a meta-learner FΦ in practice. Before testing starts, the meta-learner FΦ has
trained on data from train by sampling data points from tasks in ptrain. The
only data transferred from training to testing is the meta-learner parameters Φ.
Testing starts by sampling a task T — which might use any of the test classes
Ctest. Then some adaptation data points DT

K∼ T are sampled from test-adapt,
the meta-learner provide an adapted model F (DT ; Φ) = fφ. Finally, all data points
D′

T in test-test are used to test the model fφ the same way one would do it in a
normal non-meta-learning setting. Of course, one should usually test multiple tasks
or a task multiple times to take into account the natural variations in task and
datapoint sampling. The whole procedure, the flow of data and how the dataset is

86 CHAPTER 6. EXPERIMENTAL SETUP

used is illustrated in Figure 6.1.

There already exist popular datasets and benchmarks for object detection (e.g.
PASCAL VOC and MS COCO). But they are not suited for few-shot performance
evaluation out of the box. The main issue is that they are not split by class. We
propose three benchmarks that adapt PASCAL VOC and MS COCO to few-shot
learning:

1. PASCAL VOC in 4 folds (FS-VOC): Combines VOC2007 trainval,
VOC2007 test and VOC2012 trainval. For each fold, 5 unique classes are
used for test, while the remaining 15 classes are used for train. test is
randomly split 50-50 into test-adapt and test-test.

2. MS COCO in 4 folds (FS-COCO): Use all images in MS COCO 2017
train. For each fold 20 unique classes are used for test, while the remaining
60 classes are used for train. test is randomly split 50-50 into test-adapt
and test-test.

3. MS COCO to PASCAL VOC transfer (FS-COCO2VOC): The 60
classes in COCO that remain when you remove the 20 that exist in VOC are
used for train. And all images in VOC are used as test. test is randomly
split 50-50 into test-adapt and test-test.

We will now go into detail about these three and discuss choices we make.

The idea behind the three variants is that FS-VOC and FS-COCO will serve as a
test on few-shot object detection when transferring from similar images, but with
other object classes. And FS-COCO2VOC will test resilience to a larger change
in domain distribution. Since neither VOC or COCO contains a vast amount of
classes, we fold FS-VOC and FS-COCO to be able to both train and test on all
classes.

One potential issue with testing on VOC and COCO images is that the classes
overlap with ImageNet — many of the classes in VOC and COCO are also classes in
ImageNet. Since we use a base image classification network pretrained on ImageNet
our model will strictly speaking actually have seen some of the target classes it’s
tested on. One solution would be to pretrain our own base network on ImageNet
with the classes from VOC and COCO removed, but this is simply too time and
resource consuming. Training a large image classification network on ImageNet
require considerable setup, infrastructure and compute resources. We don’t even
have access to hardware with enough storage capacity to store all the millions of
images in ImageNet. Another solution would be to find a dataset without class
overlap with ImageNet, but we were not able to find other datasets with enough data
and without overlap. While initially this seems like a big issue, it might actually be
acceptable in practice. With ImageNet containing 1000 classes it’s quite likely that
a new task at hand will contain either classes that exist in ImageNet or classes that
are closely related to classes in ImageNet. At least if detecting common real world
objects — image classification networks pretrained on ImageNet will in general be

6.1. REPTILE EVALUATION 87

able to detect a very wide range of features. For tasks that have little resemblance
to classes in ImageNet (e.g. medical image analysis) one would most likely not use
an ImageNet pretrained model anyway. The whole point is that the base network is
pretrained on similar images. So even though it’s not optimal we still argue it’s not
an unreasonable way to test few-shot object detection. And we will have to defer
further investigation of the impact of base network dataset overlap to future work.

The observant reader may wonder exactly how we split the datasets by class. Images
in object detection may contain multiple classes, so an image does not immediately
fall into either train or test. Let hc

j ∈ {0, 1} denote whether image j contain class
c or not, and let Ctrain and Ctest denote the classes in train and test respectively.
We consider every image in the original dataset (VOC or COCO) — across all
original splits. We then include an image j in test if∑

c∈Ctest

hc
j > 0

and train otherwise. In other words, all images containing at least one of the test
classes Ctest will be included in test, and all other in train. Only classes in Ctrain
and Ctest are provided as targets in train and test respectively. This way we make
sure a model trained on train have never seen any objects from the test classes,
although images in test may contain objects from the train classes as part of the
background (they are not a target, but are still there). Ideally one might want no
leakage of classes between the splits, but if we were to remove all images mixing
classes between the two splits we would exclude a lot of images. And we argue our
solution is reasonable with respect to real world scenarios. Models will be tested
on detecting object classes that are clearly unseen, but they may at the same time
take advantage of prior knowledge of objects in the background.

We have decided to have four folds for FS-VOC and FS-COCO. This is a good trade-
off between getting enough data to train on, test on and compute time (more folds
=⇒ more models). Which classes should be in train and test for the different
folds? We need to divide the classes into four distinct sets C1

test, C
2
test, C

3
test, C

4
test.

And let the train classes for fold i be defined by Ci
train = C − Ci

test. If we were
to divide the classes randomly, we risk very unbalanced train/test splits. Some
object classes occur much more frequently together than other (e.g. bicycle and
person). So choosing some particular classes for test might result in some classes
in train having very few images. This is especially the case for COCO, which
generally have more classes per image. We solve this problem by casting the dividing
of classes as an optimization problem.

C is to be divided into disjoint sets Ci
test for i ∈ {1, 2, 3, 4} such that

⋃
Ci
test = C

and |Ci
test| =

|C|
4 for all i. The objective is

min
∑
i

∑
c

(∑
j h

c
j ĥ

i
j∑

j h
c
j

)2

88 CHAPTER 6. EXPERIMENTAL SETUP

where ĥi
j denotes whether image j contains any of the test classes Ci

test (in other
words, if image j is in test for fold i):

ĥi
j = H

(∑
c∈Ci

test

hc
j

)
Here is H the Heaviside function. This objective can be interpreted as the fraction
of the images containing a class that are being placed in test, squared and summed
across classes and splits. The main motivation is that we want to avoid train having
some classes which occur in very few images, making the dataset too unbalanced.
One might be tempted to optimize for the size of train or some other simple
strategy, but this would lead to more rarer classes being sacrificed for more common
classes. The number of images a class occurs in vary hugely. Especially, person is
present in an order of magnitude more than others. To avoid some training classes
being present in too few images in train our objective does two things:

1. The loss of images from train to test per class is normalized. This way each
class count equally — common classes can not dominate the rarer.

2. The fraction of lost images from train to test per class is squared. Effectively
prioritizing getting more images for a training class with relatively few images
than one that has relatively many.

We tried formulating an integer program and using a strong commercial solver, but it
was too large for the solver (though there might exists alternative formulations that
would make it feasible). Instead we used randomized local search using simulated
annealing (Kirkpatrick et al. 1983), since this is a simple and popular general
purpose heuristic. The initial solution is just a random division of classes, and each
iteration we try to swap one class from a fold with some class from another fold.
The temperature was decayed exponentially. We ran for at least 10000 iterations
and terminated when there had been no improvement for 5000 iterations4. The
final folds will now be presented for FS-VOC — while FS-COCO can be found in
Appendix A.

The final folds are presented in Table 6.1. We see that the test classes have clustered
somewhat into groups that commonly occur in the same type of scenery. So to make
them easier to remember we have given them human-readable names, as shown in
the table. In Figure 6.2 we see the fraction of images containing a class that are
used in the same split as the class. Since person is present in so many images, it
will always make a big impact when chosen as test class. Figure 6.3 shows how
many images there are in test compared to train. Again, we see that the fold
with person as a test class suffers the most. It’s unfortunate, but still considerably
better than what it would be like if we made four random folds.

4 Note that we implemented this in C++ with some some tricks to bring down the running
time to reasonable levels. The objective value is very entangled and it’s hard to find shortcuts or
ways to calculate it incrementally — especially for COCO.

6.1. REPTILE EVALUATION 89

Urban
w/o person

Urban
w/ person Rural Indoor

C1
test C2

test C3
test C4

test

aeroplane bicycle bird chair
bus bottle boat diningtable
car horse cow pottedplant
cat motorbike dog sofa
train person sheep tvmonitor

Table 6.1: The four different folds of FS-VOC. The classes in test are listed for
each fold.

0 0.5 1

aeroplane
bicycle

bird
boat

bottle
bus
car
cat

chair
cow

diningtable
dog

horse
motorbike

person
pottedplant

sheep
sofa

train
tvmonitor

Urban
w/o person

0 0.5 1

Ratio of images kept

Urban
w/ person

0 0.5 1

Rural

0 0.5 1

Indoor

Figure 6.2: Plot showing the fraction of images containing a class that are kept in
test (red) and train (blue) for all four folds of FS-VOC. Remember, because of
the way we divide the images, test always gets all images containing test classes.

90 CHAPTER 6. EXPERIMENTAL SETUP

Urban
w/o person

Test
32%

Train
68%

Urban
w/ person

Test
45%

Train
55%

Rural

Test
25%

Train
75%

Indoor

Test
20%

Train
80%

Figure 6.3: Plot showing ratio between the number of images in train and test
for each folds in FS-VOC.

For FS-COCO2VOC the train and test classes are predetermined by COCO and
VOC. Removing all VOC classes from COCO the way described above will remove
a lot of images. So in order to address this and also see to which degree the method
is able to generalize to new unseen data we choose to let FS-COCO2VOC be made
in three ways:

1. FS-COCO2VOC, strictly no VOC classes: All images with any of the
VOC classes are removed from train. This is equivalent to the strategy used
for FS-VOC and FS-COCO.

2. FS-COCO2VOC, strictly no VOC classes except person: The same
as above, but allow images with person — so there might be persons in the
background of the training images. This drastically increases the number of
images in train.

3. FS-COCO2VOC, VOC classes allowed in background: Allow all im-
ages in train as long as some of the training classes are present, regardless of
whether an image contains a test class or not.

To produce performance metrics we use the procedure described above, and il-
lustrated in Figure 6.1. For FS-VOC and FS-COCO2VOC we report PASCAL
VOC 2012 metrics, while for FS-COCO we report COCO metrics. For FS-VOC
and FS-COCO we average metrics across folds. The number of tasks and samples
per task can be varied depending on the compute resources available and the
desired uncertainty. As we have limited compute resources we will run some of the
experiments with relatively few repetitions.

6.1.3 Baselines

Since we have no earlier work to compare to and we introduce new benchmarks,
we need to have one or more baselines for comparison. We will operate with two
baselines: 1) Standard transfer learning and 2) Transfer learning from joint training.

Standard transfer learning simply trains normal object detection on all classes in

6.1. REPTILE EVALUATION 91

train at the same time, and then does transfer learning to DT to learn the task T .
Adaptation is basically the same as for a model trained with Reptile. The main
difference is that the initial parameters θ are obtained by standard training instead
of Reptile training. Since the number of classes changes from train to test we
must change the class confidence heads and the optimizer state. We argue that
standard transfer learning represent the most simple, straightforward and natural
way to do few-shot learning if one doesn’t use few-shot learning specific methods.

Joint training can be achieved by simply setting n = 1. Then we optimize for the
expected loss across tasks — and in effect doing joint training (Nichol et al. 2018b).
According to Nichol et al. (2018b) this should be a strong baseline.

6.1.4 Setup

We will now present the quantitative experiments we will run with Reptile. Note that
we have limited time and compute resources, so we have to scale the experiments
accordingly. First we will list all meta-learners and baseline models trained. And
then we will list all evaluations

Models

The authors of RetinaNet use ResNet101 as base network and resize images so that
the shortest edge has some large constant size and keep the aspect ratio, but we use
ResNet34 for all models and resize all images to 500x500. Because, while Lin et al.
(2017b) can run synchronized SGD on eight GPUs we need to run everything on one
GPU. We adapt the same scheme for anchor boxes, but scale them with respect to
our image size. This setup has been tested on both VOC and COCO, and achieve
a score of 81.3 and 30.1. Even though we have scaled down considerably, we get
decent accuracy.

We train 11 Reptile models using the hyperparameters in Table 6.2a, one for each
fold on FS-VOC and FS-COCO and one for each FS-COCO2VOC variant. And for
each Reptile model we also do joint pretraining and standard pretraining, using
the hyperparameters in Table 6.2b and 6.3 respectively. While Nichol & Schulman
(2018a) first reported what seemed to be extremely fine-tuned hyperparameters,
Nichol et al. (2018b) reported later (after we started using Reptile) that Reptile is
actually very robust to the choice of hyperparameters. This is consistent with our
experience, and we so didn’t spend much time finding suitable hyperparameters.
As Nichol et al. (2018b), we choose the K used during training independent from
the number of examples the models will be adapted to when tested.

We make extensive use of data augmentation. Including horizontal flipping, zoom in,
zoom out, cropping and photometric distortion. All augmentations are aggressively
toned down for COCO images to avoid small object becoming unrecognizable.
In addition to these standard augmentations on the image level we also apply

92 CHAPTER 6. EXPERIMENTAL SETUP

Hyperparameter Notation Value
Inner steps n 10
Inner batch size b 16
Inner step size* α 0.0001
Training shots K 10

Meta-step size** β 1.0
Meta-batch size |B| 2
Iterations N 5 000

(a) Reptile

Hyperparameter Notation Value

Inner batch size b 16
Inner step size* α 0.0001
Training shots K 10

Meta-step size** β 1.0
Meta-batch size |B| 2
Iterations N 50 000

(b) Joint pretraining
*Adam with no momentum (β1 = 0) is used as inner optimizer — as Nichol et al. (2018b).

**β is linearly annealed to 0 as Nichol et al. (2018b).

Table 6.2: Reptile and joint pretraining hyperparameters used for all experiments.

Hyperparameter Notation Value
Batch size 16
Step size* α 0.0001
Weigh decay 0.0001
Iterations N 100 000
*Adam is used and α is decreased by a
factor of 10 after N = 60 000 and
N = 80 000.

Table 6.3: Standard pretraining hyperparameters used for all experiments.

augmentation on the task level. We randomly rotate tasks 90, 180 or 270 degrees.
If task T is rotated 90 degrees then all images from that task are rotated 90 degrees.
The idea is to increase the variation in tasks — learning to detect upside down
horses are different than normal horses — and thereby increasing the model’s ability
to learn new tasks.

While it would be ideal to train more than one model for each dataset variant, we
limit ourselves to the above setup because it would be impossible to train more
models given the computational resources we have access to. We have set the
hyperparameters so that each model takes approximately 25 hours to pretrain on
the hardware available for us. With a total of 33 models, it’s no surprise this is
very time consuming.

Experiments

• FS-VOC benchmark: We measure the performance of Reptile on FS-
VOC. Following the standard of testing 5-way classification on MiniImageNet
(Vinyals et al. 2016), we test 5-way object detection. In a user–model feedback

6.1. REPTILE EVALUATION 93

loop you would ideally start with relatively few annotated examples, and then
iteratively add more as needed. We argue that both K = 5 and K = 20
would be a reasonable number of examples to start with in an ideal setting,
depending on the task. 5 and 20 examples are relatively few examples and
can most likely be acquired quite quick5, but is still enough to capture some
of the variation of the target object classes. We therefore test both 5-shot and
20-shot as two reasonable start levels for a fast user–model feedback loop.

For each model we evaluate after 10, 100 and 1000 steps, and repeat the
evaluation 20 times for each fold to account for variations in DT sampled
from test-adapt. All repeats use all data points in test-test to produce a
mAP score.

• Many examples: We measure the performance of Reptile when given many
examples from FS-VOC. Reptile might speed up early iterations in the user–
model feedback loop. But what happens when you later acquire more examples
and you don’t have few examples anymore? Can you still use the same meta-
learner, or will the performance degrade compared to standard methods? We
let DT be all images in test-adapt and evaluate after 10, 100 and 1000 steps
as before, but also after 10000 because of the large number of examples. Since
this is time consuming we only do one repetition per fold.

• Very few examples: We measure the performance of Reptile when given
very few examples. Is Reptile valuable even if you provide a minimum number
of examples? We test K = 1 through K = 4 and repeat the evaluation three
times per fold.

• FS-COCO benchmark: We measure the performance of Reptile on FS-
COCO. Doing object detection on COCO images is considered significantly
more challenging than VOC. This will test Reptile on a harder benchmark
than FS-VOC. We evaluate the same way as we do for FS-VOC.

• FS-COCO2VOC benchmark: We measure the performance of Reptile
when trained on COCO images, and then evaluated on VOC images. Images
from COCO and VOC are noticeably different. How will Reptile handle the
larger shift in domain distribution? For each model we evaluate after 10, 100
and 1000 steps, and repeat the evaluation 5 times per fold.

Since we train on relatively few examples some task adaptations might be unstable
when doing a fixed large number of steps. To give all models the best possible
chance and to avoid outliers we provide a scheme for early stopping of unstable
models when adapting. When we adapt for a fixed number of steps (i.e. 10, 100,
1000 or 10000) we maintain a running mean of the loss for the last 30 steps. If the
running mean ever reach a value twice as high as the lowest running mean observed

5 With K = 5 and K = 20 for 5-way classification we will need 25 and 100 examples accordingly.
If we assume annotation times from Papadopoulos et al. (2017) and three object instances per
image it will take approximately 10 and 40 minutes respectively.

94 CHAPTER 6. EXPERIMENTAL SETUP

so far, we stop and keep the model as it were when the running mean was at its
lowest. Otherwise we just keep the model as is after the fixed number of steps.

6.2 Proof of Concept Tool Evaluation

The main goal of this evaluation is to discover how much speedup (if any) Reptile
could potentially bring to a user–model feedback loop for object detection. There
are basically three time-consuming steps in this loop: 1) User actions — i.e. data
collection, annotation, choosing hyperparameters 2) Training a model 3) Evaluating
a model. How fast the feedback loop is in practice will of course depend heavily on
the hardware and the use case, and we can’t do an extensive analysis. Instead, we
would like to set up a simple experiment finding out the time it takes to do one
iteration in the feedback loop using our proof of concept tool for some reasonable
example use cases. This will shed some light on the potential speedup of using
Reptile.

We assume use cases where all data are already available, but not necessarily
annotated6. The four use cases we investigate are:

Use case 1. Change hyperparameters: The user changes the hyperparame-
ters, and wants to retrain and evaluate with the previously annotated
examples. We assume for simplicity that the time it takes to choose
some new hyperparameters are negligible.

Use case 2. Annotate 1 new image per class: The user will annotate 1 new
image per class, in total 5 images, and then retrain and evaluate.

Use case 3. Annotate 5 new images per class: The user will annotate 5 new
images per class, in total 25 images, and then retrain and evaluate.

Use case 4. Annotate 20 new images per class: The user will annotate 20
new images per class, in total 100 images, and then retrain and
evaluate.

All use cases are performed on FS-VOC. Images from test-adapt are annotated
and adapted models are evaluated on test-test. And as for the experiments in
the last section we do 5-way object detection.

Since our tool doesn’t do proper annotation, and timing annotation speed would
require testing with real users, we use the annotation times from Papadopoulos
et al. (2017) and assume three object instances per image on average. This means
we assume it takes 21 seconds per image to annotate.

Training time will depend heavily on how many examples you train on, so we run
each use case in two versions: 1) No (or very few examples) already annotated.

6It’s actually quite common that large amounts of unannotated data are available — just not
annotations.

6.2. PROOF OF CONCEPT TOOL EVALUATION 95

No examples Many examples
Reptile Normal Reptile Normal

Use case 1. 10 1 000 2 000 10 000
Use case 2. 10 1 000 2 000 10 000
Use case 3. 100 1 000 2 000 10 000
Use case 4. 100 1 000 2 000 10 000

Table 6.4: The number of adaptation steps used for the different use cases depending
on the method used and the number of annotated examples provided.

2) Most examples are already annotated. For use case 1 we assume 57 already
annotated images for version 1 and all images in test-adapt for version 2, while for
the rest we assume 0 and all images in test-adapt for the two versions respectively.
To keep the experiments simple we only include standard pretraining as baseline.
We consider it most natural to compare to normal training since this represents
doing nothing few-shot learning related at all.

We run both the server and client locally on a normal workstation. And all use
cases are performed with both one and two worker machines — where each worker
has a Nvidia 1080Ti graphics card. The local workstation and the workers are
on the same local network with 100Mbit bandwidth (so it takes approximately 30
seconds to transfer an adapted model from one worker to another). All use cases
are executed once per fold and averaged.

How many steps should we use to adapt? We empirically find that both Reptile
and standard pretraining are able to achieve almost the same level of accuracy, but
Reptile needs fewer adaptation steps8. Therefore we let each model adapt until the
accuracy flattens out. In Table 6.4 we present how many steps we do for each use
case depending on the number of annotated examples. These number of steps have
been found empirically.

All use cases are performed (except the annotation) by us in our web client. Since
we rely on many approximate assumptions and manual execution, the measured
times will not be accurate down to seconds. Therefore we will only report measured
time in minutes.

7Since we are only changing hyperparameters and not adding any annotations we have to
assume some annotated examples.

8As will be shown in Chapter 7, this claim is also backed up by the results of the experiments
from the section above.

96 CHAPTER 6. EXPERIMENTAL SETUP

Chapter 7

Results

7.1 Reptile Evaluation

In this section, we will present and analyze the results of the quantitative experiments
we have done.

FS-VOC Benchmark

Figure 7.1 presents the averaged mAP score across all folds. Since the results between
folds vary significantly, we also provide the average mAP score for individual folds in
Figure 7.2 for completeness. The plots show that Reptile adapts faster than the two
baseline models. Perhaps surprisingly, Reptile does not seem to perform considerably
better than the baselines after 1000 steps. One might wonder if the faster adaptation
can only be attributed to Reptile inheriting the optimizer state from the meta-
learning stage, but we tested (results not shown) resetting the optimizer state before
adaptation, which did not produce significantly different results. Joint pretraining
adapts faster than standard pretraining, but is still considerably slower than Reptile,
showing that the inner steps in Reptile is important.

As one can see from Figure 7.2, there is a significant difference in mAP score
between the different folds, 0.3 mAP difference between max performance on the
Urban w/o person fold and the Indoor fold. We know from the literature that some
VOC classes are more challenging than others. The Urban w/o person fold for
example contains several classes that are considered easy (e.g. plane and bus). This
difference in difficulty highlights the value of testing all classes when experimenting
with few-shot learning on datasets with a limited number of classes.

97

98 CHAPTER 7. RESULTS

101 102 103

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

5-shot

Reptile Joint training Normal

101 102 103

20-shot

Max na

m
A

P

Figure 7.1: Plots showing mAP score for 5-way object detection on FS-VOC. The
mAP score is averaged across all four folds for 10, 100 and 1000 adaptation steps.
Each evaluation is repeated 20 times.

Many Examples

Figure 7.3 shows how Reptile performs when given many examples. We see that
Reptile still adapts faster than the two baselines, and never drop below the baselines
in accuracy. This is interesting because it shows that Reptile holds up even when
we are not doing few-shot learning. There’s no reason to stop using Reptile when
the number of examples increase — it still adapts faster. Note that all models
continue to improve all the way up to 10000 steps — this is not surprising since we
have so many examples that it takes many minibatches to see them all.

Very Few Examples

The performance of Reptile for K = 1 through K = 4 is shown in Figure 7.4.
Although the accuracy is not especially high, we see that Reptile still adapts
considerably faster than the two baselines. As for the experiments above, the
baselines are able to close the accuracy gap to Reptile given enough steps. Not
surprisingly, the accuracy increases across the board along with the number of
examples.

FS-COCO & FS-COCO2VOC Benchmark

Unfortunately, we were not able to get any reasonable results when training on
COCO images — achieving scores of basically zero. The models behaved normally

7.1. REPTILE EVALUATION 99

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

U
rb

an
w

/o
pe

rs
on

5-shot 20-shot

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

U
rb

an
w

/
pe

rs
on

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R
ur

al

101 102 103

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

In
do

or

Reptile Joint training Normal

101 102 103

Max na

m
A

P

Figure 7.2: Plots showing mAP score for 5-way object detection on each of the
FS-VOC folds. Each evaluation is repeated 20 times and the whiskers indicate the
maximum and minimum score.

100 CHAPTER 7. RESULTS

101 102 103 104

0

0.2

0.4

0.6

0.8

Max na

m
A

P

Reptile Joint training Normal

Figure 7.3: Plots showing mAP score for 5-way object detection on FS-VOC. The
mAP score is averaged across all four folds for 10, 100, 1000, 10000 adaptation
steps. Each evaluation is only performed once.

1 2 3 4

0

0.1

0.2

0.3

0.4

10 Iterations

1 2 3 4

100 Iterations

Reptile Joint training Normal

1 2 3 4

1000 Iterations

K

m
A

P

Figure 7.4: Plots showing mAP score for 5-way object detection on FS-VOC. The
mAP score is averaged across all four folds for K = 1 through K = 4. Each
evaluation is repeated three times.

7.2. PROOF OF CONCEPT TOOL EVALUATION 101

during training, and we were not able to find out why adaptation failed. We have
three possible explanations:

1. Not pretrained long enough: The model might need more iterations when
pretraining on COCO images compared to VOC images. We observed that
the loss was still decreasing.

2. Wrong hyperparameters: Other hyperparameters might be necessary when
training on COCO images compared to VOC images.

3. Too complex: It could just simply be that object detection on COCO images
is too hard given our approach.

Training these meta-learners and running evaluations is a time-consuming1 process,
which requires extensive amounts of compute. We simply do not have the time or
the computational resources to investigate this further.

7.2 Proof of Concept Tool Evaluation

We present all the measured results in Table 7.1 rounded to the nearest minute.
The first thing we notice is that Reptile is considerably faster in all use cases. As
expected, the relative distance to the baseline shrink as the user need to do more
work — since the feedback loop then is dominated by the time it takes the user to
annotate. Adding an extra worker only has a noticeable effect in use case 1 and 2
when we use Reptile on very few examples. This is not surprising, given that the
evaluation only takes a few minutes on FS-VOC. It would probably have a much
greater impact on a larger dataset.

In addition to seeing how long one iteration in the user–model feedback loop takes,
it’s also interesting to see how long the user needs to wait from when the training
was started to when the evaluation results are ready. This is the perceived waiting
time if the user performs no further actions before the evaluation is known. We
present these waiting times in Table 7.2. Here we see clearly that the waiting
time is considerably smaller when using Reptile, but it’s still far away from being
considered real-time.

1 With the (shared) resources available to us a complete iteration of training a meta-learner
and evaluating it takes several days.

102 CHAPTER 7. RESULTS

No examples No examples
1 worker 2 workers 1 worker 2 workers

Use case 1. Reptile 3 min 2 min 25 min 24 min
Normal 14 min 13 min 114 min 113 min

Use case 2. Reptile 5 min 3 min 27 min 26 min
Normal 16 min 14 min 116 min 114 min

Use case 3. Reptile 13 min 11 min 34 min 33 min
Normal 23 min 21 min 123 min 121 min

Use case 4. Reptile 39 min 38 min 60 min 59 min
Normal 49 min 48 min 149 min 148 min

Table 7.1: The time it takes to do one iteration in the user–model feedback loop for
each of the four use cases presented in Section 6.2.

No examples No examples
1 worker 2 workers 1 worker 2 workers

Use case 1. & 2. Reptile 3 min 2 min 25 min 24 min
Normal 14 min 13 min 114 min 113 min

Use case 3. & 4. Reptile 4 min 3 min 25 min 24 min
Normal 14 min 13 min 114 min 113 min

Table 7.2: The time it takes from the user requests a model to be trained and
evaluated to the evaluation is done for each of the four use cases presented in
Section 6.2. In other words the time for one iteration, but without user actions.

Chapter 8

Discussion and Conclusion

We will now go through our research questions and goals while we look back and
discuss the results. For each research question we will first assess if we have achieved
its goals, before we conclude the question itself.

To answer the Research question 1, we identified two goals. The first goal aimed at
finding a suitable few-shot learning method and adapt it to object detection, and
then the second goal was to evaluate this method.

Goal 1.1. Choose and adapt a few-shot learning method to object detection.

This goal was mostly addressed in Chapter 4. We first settled on MAML (Finn et al.
2017), but after a substantial effort invested in getting it to work with full-scale
object detection on natural images we switched to the similar method Reptile
(Nichol et al. 2018b). With Reptile we were able to train object detection on
PASCAL VOC images, and was ready to evaluate. We conclude that we reached
Goal 1.1.

Note that we didn’t show it’s impossible to get MAML to work, but at least we
have shown that it’s non-trivial. We went out of our way to give MAML a fair
shot at succeeding, and even then was not able to produce meaningful results. We
conclude that it’s still an open question if it’s possible to apply MAML on large
and complex neural networks. One of the things that make MAML hard to train
is its use of second-order derivatives. Finn et al. (2017) and Nichol et al. (2018b)
suggest that it’s not necessary to use second-order derivatives and that a first-order
approximation will suffice. Unfortunately, Nichol et al. (2018b) are the first to
detail how this can be done and how simple it is (Finn et al. (2017) provide no
details), but this was released too late for us to investigate further. Given how
similar first-order MAML and Reptile1 are and the analyses by Nichol et al. (2018b)
it’s not unreasonable to think it’s likely that first-order MAML would give similar
results as Reptile.

1Remember that Reptile is a first-order method — it does not rely on second-order derivatives.

103

104 CHAPTER 8. DISCUSSION AND CONCLUSION

Goal 1.2. Evaluate performance of the method from Goal 1.1 on standard object
detection datasets.

We saw that Reptile is able to adapt considerably faster than standard pretraining
no matter how many examples were provided. But our experiments show that
Reptile does not achieve much better accuracy if the standard pretrained model is
given enough steps. Reptile might have a slight edge over standard pretraining with
K = 5 examples, but it’s hard to reached any final conclusions since the difference is
small, the noise is considerable and we haven’t tuned hyperparameters for standard
pretrained models. Even though we were able to train Reptile on PASCAL VOC
images, we were not able to successfully train on MS COCO images. Due to limited
time and compute we did not have the chance to investigate further why this is the
case. It remains an open question if it’s possible to use Reptile on COCO images.
We conclude that we have reached Goal 1.2, but our evaluation opens up for more
further work.

Nichol et al. (2018b) emphasize that Reptile can adapt fast to new tasks, which our
results support. And Finn et al. (2017) emphasize the same for MAML. They both
test their methods on MiniImageNet, and are able to significantly outperform the
standard pretraining baseline in accuracy. The impression is that these methods
not only adapts fast, they are also able to get higher accuracy than the baseline.
We were not able to firmly show a considerable difference in accuracy between
Reptile and standard pretraining for object detection. The MiniImageNet baseline
originates from Ravi & Larochelle (2017), and they used SGD with some fixed
number of steps to adapt. Ravi & Larochelle (2017) did not specify the number of
steps, but upon inspection of their published code they seem to have used 15 steps.
Since they do not use data augmentation, this might be the maximum number of
steps they are able to do before overfitting. Our strong standard pretraining baseline
might be attributed to better regularization. This is something to investigate in
future work.

Research question 1. Can few-shot learning methods be used to do object
detection on natural images?

We have explored using MAML and Reptile for object detection. We were not able
to use MAML for object detection on natural images, but had more success with
Reptile. With Reptile we were able to adapt significantly faster than standard
pretraining on new tasks involving PASCAL VOC images, but we were not able
to show that Reptile is able to learn from fewer examples. And it remains an
open question if on can successfully train Reptile on MS COCO images (i.e. more
complex images). We conclude that it’s possible to use a few-shot learning method
to do object detection, but it’s uncertain how much better it works compared to
standard pretraining.

For Research question 2 we also had two goals: to make a proof of concept tool
and to measure the speedup achieved by using Reptile compared to the standard
pretraining method.

105

Goal 2.1. Make a proof of concept tool simulating the user–model feedback loop
on object detection.

The tool we created has all the components needed to simulate the user–model
feedback loop. A client with a simple user interface, workers to do training and
evaluation of the model and a server to manage the process. We therefore conclude
that we have achieved Goal 2.1.

Goal 2.2. Use the proof of concept tool to measure if it’s reasonable to expect a
faster user–model feedback loop when using the method from Goal 1.1.

We executed some plausible use cases, and showed that Reptile is able to speed
up the user–model feedback loop. The improvement is most noticeable when user
actions are small and one is training on few examples. As user actions grow in size
and training involves more examples these steps dominate the time consumption. We
conclude that it is in fact reasonable to expect Reptile to speed up the user–model
feedback loop, but how much depends heavily on the use case.

We note that the actual perceived feedback latency from the users perspective (i.e.
ignoring user actions) is always considerably lower when using Reptile. This is
because only training speed is improved. Ideally, Reptile would be able to generalize
better with few examples than the baseline so one could annotate fewer examples
and get the same accuracy — and thereby save annotation time. But as mentioned
above, we were not able to conclude that Reptile makes better use of few examples
with respect to accuracy compared to the baseline.

Research question 2. Does the method from Goal 1.1 enable a faster user–model
feedback loop?

While Reptile is not able to reduce the number of annotations relative to standard
pretraining, it is able to reduce the training time considerably. The workload on
the user is the same, but the user receives feedback from training and evaluating
a model faster. We therefore conclude that Reptile enables a faster user–model
feedback loop, but speedup depends on the use case.

Implications and Future Work

Standard training procedures often last several days, which is both slow and
potentially costly. With deep learning models being applied in an increasing number
of applications, it lies great value in speeding up the user–model feedback loop. We
have shown that recent advances in few-shot learning might have the potential to
do exactly that.

Since we’re not able to train Reptile on MS COCO images, it’s still unclear if it’s
possible to do object detection on more complex images with Reptile. Further
investigation is needed to uncover whether we need longer training time, different
hyperparameters or if it’s just not possible with our method of choice.

106 CHAPTER 8. DISCUSSION AND CONCLUSION

Reptile is able to adapt with fewer steps, but we could not conclude that it makes
better use of few examples compared to standard pretraining. Upon a closer look
we see that existing work on few-shot image classification seems to adapt their
baselines with relatively few steps. Whether standard pretraining is able to perform
on the same level as Reptile or not, given more steps and appropriate regularization,
is a question for future work.

Bibliography

Ali, Karim, David Hasler & Frangois Fleuret (2011). “FlowBoost—Appearance learning
from sparsely annotated video”. In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR).

Andrychowicz, Marcin et al. (2016). “Learning to learn by gradient descent by gradient
descent”. In: Advances in Neural Information Processing Systems (NIPS).

Bazzani, Loris et al. (2016). “Self-taught object localization with deep networks”. In: IEEE
Winter Conference on Applications of Computer Vision (WACV).

Bengio, Samy et al. (1992). “On the optimization of a synaptic learning rule”. In: Optimality
in Artificial and Biological Neural Networks.

Bengio, Yoshua, Samy Bengio & Jocelyn Cloutier (1990). Learning a synaptic learning rule.
Université de Montréal, Département d’informatique et de recherche opérationnelle.

Bietti, Alberto (2012). Active learning for object detection on satellite images. Tech. rep.
California Institute of Technology.

Bilen, Hakan, Marco Pedersoli & Tinne Tuytelaars (2014). “Weakly supervised object
detection with posterior regularization”. In: British Machine Vision Conference (BMVC).

Chen, Hao et al. (2018). “LSTD: A Low-Shot Transfer Detector for Object Detection”. In:
arXiv preprint arXiv:1803.01529.

Chen, Tianqi et al. (2015). “MXNet: A flexible and efficient machine learning library for
heterogeneous distributed systems”. In: arXiv preprint arXiv:1512.01274.

Chollet, François et al. (2015). Keras. https://github.com/fchollet/keras.
Cohen, Gregory et al. (2017). “EMNIST: an extension of MNIST to handwritten letters”.

In: arXiv preprint arXiv:1702.05373.
Collobert, R., K. Kavukcuoglu & C. Farabet (2011). “Torch7: A Matlab-like Environment

for Machine Learning”. In: BigLearn, Advances in Neural Information Processing Systems
(NIPS) Workshop.

Cormen, Thomas H. et al. (2009). Introduction to algorithms. MIT press.
Deng, Jia et al. (2009). “ImageNet: A large-scale hierarchical image database”. In: IEEE

Conference on Computer Vision and Pattern Recognition (CVPR).
Dong, Xuanyi et al. (2018). “Few-Example Object Detection with Model Communication”.

In: arXiv preprint arXiv:1706.08249v6.
Fei-Fei, Li et al. (2003). “A Bayesian approach to unsupervised one-shot learning of object

categories”. In: IEEE International Conference on Computer Vision (ICCV).

107

https://github.com/fchollet/keras

108 BIBLIOGRAPHY

Fei-Fei, Li, Rob Fergus & Pietro Perona (2006). “One-shot learning of object categories”.
In: IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 28.4.

Finn, Chelsea, Pieter Abbeel & Sergey Levine (2017). “Model-Agnostic Meta-Learning for
Fast Adaptation of Deep Networks”. In: International Conference on Machine Learning
(ICML).

Finn, Chelsea & Sergey Levine (2018). “Meta-Learning and Universality: Deep Representa-
tions and Gradient Descent can Approximate any Learning Algorithm”. In: International
Conference on Learning Representations (ICLR).

Girshick, Ross (2015). “Fast R-CNN”. In: IEEE International Conference on Computer
Vision (ICCV).

Girshick, Ross et al. (2014). “Rich feature hierarchies for accurate object detection and se-
mantic segmentation”. In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR).

Goodfellow, Ian et al. (2016). Deep learning. Vol. 1. MIT press Cambridge.
Graves, Alex, Greg Wayne & Ivo Danihelka (2014). “Neural turing machines”. In: arXiv

preprint arXiv:1410.5401.
He, Kaiming et al. (2015). “Delving deep into rectifiers: Surpassing human-level performance

on imagenet classification”. In: IEEE International Conference on Computer Vision
(ICCV).

– (2016). “Deep residual learning for image recognition”. In: IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).

Hinton, Geoffrey E, Simon Osindero & Yee-Whye Teh (2006). “A fast learning algorithm
for deep belief nets”. In: Neural Computation 18.7.

Hochreiter, Sepp, A Steven Younger & Peter R Conwell (2001). “Learning to learn using
gradient descent”. In: International Conference on Artificial Neural Networks (ICANN).
Springer.

Hornik, Kurt, Maxwell Stinchcombe & Halbert White (1989). “Multilayer feedforward
networks are universal approximators”. In: Neural Networks 2.5.

Ioffe, Sergey & Christian Szegedy (2015). “Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift”. In: International Conference on Machine
Learning (ICML).

Jia, Yangqing et al. (2014). “Caffe: Convolutional Architecture for Fast Feature Embedding”.
In: arXiv preprint arXiv:1408.5093.

Jones, Eric, Travis Oliphant, Pearu Peterson, et al. (2001–). SciPy: Open source scientific
tools for Python. url: http://www.scipy.org/.

Joshi, Ajay J, Fatih Porikli & Nikolaos Papanikolopoulos (2009). “Multi-class active
learning for image classification”. In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR).

Kao, Chieh-Chi et al. (2018). “Localization-Aware Active Learning for Object Detection”.
In: arXiv preprint arXiv:1801.05124.

Keren, Gil et al. (2018). “Weakly Supervised One-Shot Detection with Attention Siamese
Networks”. In: arXiv preprint arXiv:1801.03329.

http://www.scipy.org/

BIBLIOGRAPHY 109

Kingma, Diederik P & Jimmy Ba (2015). “Adam: A method for stochastic optimization”.
In: International Conference on Learning Representations (ICLR).

Kirkpatrick, Scott, C Daniel Gelatt & Mario P Vecchi (1983). “Optimization by simulated
annealing”. In: Science 220.4598.

Koch, Gregory, Richard Zemel & Ruslan Salakhutdinov (2015). “Siamese neural networks
for one-shot image recognition”. In: International Conference on Machine Learning
(ICML), Deep Learning Workshop. Vol. 2.

Krizhevsky, Alex, Ilya Sutskever & Geoffrey E Hinton (2012). “Imagenet classification with
deep convolutional neural networks”. In: Advances in Neural Information Processing
Systems (NIPS).

Lake, Brenden M, Ruslan Salakhutdinov & Joshua B Tenenbaum (2015). “Human-level
concept learning through probabilistic program induction”. In: Science 350.6266.

LeCun, Yann (n.d.). The MNIST database of handwritten digits. http://yann.lecun.
com/exdb/mnist/.

LeCun, Yann, Yoshua Bengio & Geoffrey Hinton (2015). “Deep learning”. In: Nature
521.7553.

LeCun, Yann et al. (1990). “Handwritten digit recognition with a back-propagation
network”. In: Advances in Neural Information Processing Systems (NIPS).

Lemke, Christiane, Marcin Budka & Bogdan Gabrys (2015). “Metalearning: a survey of
trends and technologies”. In: Artificial Intelligence Review 44.1.

Li, Ke & Jitendra Malik (2017). “Learning to optimize”. In: International Conference on
Learning Representations (ICLR).

Li, Zhenguo et al. (2017). “Meta-SGD: Learning to Learn Quickly for Few Shot Learning”.
In: arXiv preprint arXiv:1707.09835.

Lin, Tsung-Yi et al. (2014). “Microsoft COCO: Common objects in context”. In: European
Conference on Computer Vision (ECCV). Springer.

Lin, Tsung-Yi et al. (2017a). “Feature Pyramid Networks for Object Detection”. In: IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).

Lin, Tsung-Yi et al. (2017b). “Focal Loss for Dense Object Detection”. In: IEEE Conference
on Computer Vision and Pattern Recognition (CVPR).

Liu, Wei et al. (2016). “SSD: Single shot multibox detector”. In: European Conference on
Computer Vision (ECCV). Springer.

Martín Abadi et al. (2015). TensorFlow: Large-Scale Machine Learning on Heterogeneous
Systems. url: https://www.tensorflow.org/.

McCulloch, Warren S & Walter Pitts (1943). “A logical calculus of the ideas immanent in
nervous activity”. In: The bulletin of mathematical biophysics 5.4.

Mihalcik, David & David Doermann (2003). The design and implementation of ViPER.
Tech. rep. University of Maryland.

Mishra, Nikhil et al. (2018). “A simple neural attentive meta-learner”. In: International
Conference on Learning Representations (ICLR).

Mitchell, Thomas M. (1997). Machine Learning. McGraw-Hill, Inc.

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://www.tensorflow.org/

110 BIBLIOGRAPHY

Mnih, Volodymyr et al. (2015). “Human-level control through deep reinforcement learning”.
In: Nature 518.7540.

Nair, Vinod & Geoffrey E Hinton (2010). “Rectified linear units improve restricted
boltzmann machines”. In: International Conference on Machine Learning (ICML).

Nichol, Alex & John Schulman (2018a). “Reptile: a Scalable Metalearning Algorithm”. In:
arXiv preprint arXiv:1803.02999v1.

Nichol, Alex, Joshua Achiam & John Schulman (2018b). “On First-Order Meta-Learning
Algorithms”. In: arXiv preprint arXiv:1803.02999v2.

Oquab, Maxime et al. (2015). “Is object localization for free?-weakly-supervised learning
with convolutional neural networks”. In: IEEE Conference on Computer Vision and
Pattern Recognition (CVPR).

Pan, Sinno Jialin & Qiang Yang (2010). “A survey on transfer learning”. In: IEEE
Transactions on Knowledge and Data Engineering (TKDE) 22.10.

Papadopoulos, Dim P et al. (2017). “Extreme clicking for efficient object annotation”. In:
IEEE International Conference on Computer Vision (ICCV).

Ravi, Sachin & Hugo Larochelle (2017). “Optimization as a model for few-shot learning”.
In: International Conference on Learning Representations (ICLR).

Redmon, Joseph & Ali Farhadi (2017). “YOLO9000: Better, Faster, Stronger”. In: IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).

– (2018). “YOLOv3: An incremental improvement”. In: arXiv preprint arXiv:1804.02767.
Redmon, Joseph et al. (2016). “You Only Look Once: Unified, real-time object detection”.

In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
Ren, Shaoqing et al. (2015). “Faster R-CNN: Towards real-time object detection with

region proposal networks”. In: Advances in Neural Information Processing Systems
(NIPS).

Rosenblatt, Frank (1958). “The perceptron: a probabilistic model for information storage
and organization in the brain”. In: Psychological Review 65.6.

Roy, Soumya, Vinay P Namboodiri & Arijit Biswas (2016). “Active learning with version
spaces for object detection”. In: arXiv preprint arXiv:1611.07285.

Rumelhart, David E, Geoffrey E Hinton & Ronald J Williams (1985). Learning internal
representations by error propagation. Tech. rep. California Univ San Diego La Jolla Inst
for Cognitive Science.

– (1986). “Learning representations by back-propagating errors”. In: Nature 323.6088.
Santoro, Adam et al. (2016). “Meta-learning with memory-augmented neural networks”.

In: International Conference on Machine Learning (ICML).
Schmidhuber, Jürgen (1992). “Learning to control fast-weight memories: An alternative to

dynamic recurrent networks”. In: Neural Computation.
– (2015). “Deep learning in neural networks: An overview”. In: Neural Networks 61.
Sener, Ozan & Silvio Savarese (2018). “Active Learning for Convolutional Neural Net-

works: A Core-Set Approach”. In: International Conference on Learning Representations
(ICLR).

BIBLIOGRAPHY 111

Settles, Burr (2010). Active learning literature survey. Tech. rep. University of Wisconsin –
Madison.

Silver, David et al. (2016). “Mastering the game of Go with deep neural networks and tree
search”. In: Nature 529.7587.

Simonyan, Karen & Andrew Zisserman (2014). “Very deep convolutional networks for
large-scale image recognition”. In: arXiv preprint arXiv:1409.1556.

Sivaraman, Sayanan & Mohan M Trivedi (2014). “Active learning for on-road vehicle
detection: A comparative study”. In: Machine Vision and Applications 25.3.

Snell, Jake, Kevin Swersky & Richard Zemel (2017). “Prototypical networks for few-shot
learning”. In: Advances in Neural Information Processing Systems (NIPS).

Srivastava, Nitish et al. (2014). “Dropout: A simple way to prevent neural networks from
overfitting”. In: The Journal of Machine Learning Research 15.1.

Thrun, Sebastian & Lorien Pratt (1998). “Learning to learn: Introduction and overview”.
In: Learning to learn. Springer.

Tieleman, Tijmen & Geoffrey Hinton (2012). “Lecture 6.5-rmsprop: Divide the gradient
by a running average of its recent magnitude”. In: COURSERA: Neural networks for
machine learning 4.2.

Vijayanarasimhan, Sudheendra & Kristen Grauman (2014). “Large-scale live active learning:
Training object detectors with crawled data and crowds”. In: International Journal of
Computer Vision 108.1-2.

Vilalta, Ricardo & Youssef Drissi (2002). “A perspective view and survey of meta-learning”.
In: Artificial Intelligence Review 18.2.

Vinyals, Oriol et al. (2016). “Matching networks for one shot learning”. In: Advances in
Neural Information Processing Systems (NIPS).

Vondrick, Carl, Donald Patterson & Deva Ramanan (2013). “Efficiently scaling up crowd-
sourced video annotation”. In: International Journal of Computer Vision 101.1.

Walt, S. van der, S. C. Colbert & G. Varoquaux (Mar. 2011). “The NumPy Array: A
Structure for Efficient Numerical Computation”. In: Computing in Science Engineering
13.2.

Wang, Keze et al. (2017). “Cost-effective active learning for deep image classification”. In:
IEEE Transactions on Circuits and Systems for Video Technology 27.12.

Yuen, Jenny et al. (2009). “LabelMe video: Building a video database with human
annotations”. In: IEEE International Conference on Computer Vision (ICCV).

Zhu, Xiaojin (2008). “Semi-Supervised Learning Literature Survey”. In: Computer Sciences
Technical Report.

112 BIBLIOGRAPHY

Appendix A

FS-COCO Folds

Table A.1 shows which classes belong to test for each fold (i.e. Ci
test for each fold

i). We have given each fold a name to make it easier to remember and distinguish.
Note that the name only reflects a general trend, and do not reflect all images (e.g.
Indoor contains many images of bears outside). In Figure A.2 we show the fraction
of images containing a class that are kept in train for all four folds of FS-COCO.
It’s generally harder to find splits in FS-COCO, but the gain of optimizing the splits
is much larger than in FS-VOC. We see that the split containing person in test is
again the most difficult. Figure A.1 show the ratio between train and test. As
for FS-VOC, there’s a strong unbalance for the split containing person in test.

People

Test
60%Train

40%

Outdoor

Test
37%

Train
63%

Indoor

Test
34%

Train
66%

Food

Test
27%

Train
73%

Figure A.1: Plot showing ratio between the number of images in train and test
for each folds in FS-COCO.

113

114 APPENDIX A. FS-COCO FOLDS

People Outdoor Indoor Food
C1
test C2

test C3
test C4

test

person car cat bootle
bicycle airplane dog wine glass
motorcycle bus bear cup
boat train chair fork
bench truck couch knife
backpack traffic light potted plant spoon
umbrella fire hydrant bed bowl
handbag stop sign tv sandwich
tie parking meter laptop broccoli
suitcase bird mouse carrot
frisbee horse remote hot dog
skis sheep keyboard pizza
snowboard cow cell phone cake
sports ball elephant book dining table
kite zebra clock toilet
baseball bat giraffe vase microwave
baseball glove banana scissors oven
skateboard apple teddy bear toaster
surfboard orange hair drier sink
tennis racket donut toothbrush refrigerator

Table A.1: The four different folds of FS-COCO. The classes in test are listed for
each fold.

115

0 0.5 1

person
bicycle

car
motorcycle

airplane
bus

train
truck
boat

traffic light
fire hydrant

stop sign
parking meter

bench
bird

cat
dog

horse
sheep

cow
elephant

bear
zebra

giraffe
backpack
umbrella
handbag

tie
suitcase

frisbee
skis

snowboard
sports ball

kite
baseball bat

baseball glove
skateboard

surfboard
tennis racket

bottle
wine glass

cup
fork

knife
spoon

bowl
banana

apple
sandwich

orange
broccoli

carrot
hot dog

pizza
donut

cake
chair

couch
potted plant

bed
dining table

toilet
tv

laptop
mouse

remote
keyboard

cell phone
microwave

oven
toaster

sink
refrigerator

book
clock
vase

scissors
teddy bear

hair drier
toothbrush

People

0 0.5 1

Ratio of images kept

Outdoor

0 0.5 1

Indoor

0 0.5 1

Food

Figure A.2: Plot showing the fraction of images containing a class that are kept in
test (red) and train (blue) for all four folds of FS-COCO. Remember, because of
the way we divide the images, test always gets all images containing test classes.

116 APPENDIX A. FS-COCO FOLDS

Appendix B

Proof of Concept Tool
Screenshots

Figure B.1: Screenshot of the web application’s Evaluation tab.

117

118 APPENDIX B. PROOF OF CONCEPT TOOL SCREENSHOTS

Figure B.2: Screenshot of the web application’s Adaption tab.

	Introduction
	Motivation
	Related Work
	Research Questions and Goals
	Contributions
	Outline

	Background Theory
	A Brief History of Deep Learning
	Fundamentals of Deep Learning
	Goal
	Representation
	Optimization
	Backpropagation
	Generalization

	Convolutional Neural Networks
	Building Blocks
	Image Classification
	Object Detection

	Few-Shot Learning and Meta-Learning
	Few-Shot Learning
	Meta-Learning
	MAML and its Descendants

	Tools and Environment
	Deep Learning Frameworks
	Framework Variation
	Popular Frameworks
	PyTorch
	TensorBoard

	Hardware
	Proof of Concept Tool
	React
	Flask
	SQLite

	Exploration
	Implementation
	Functional PyTorch
	Extending PyTorch

	LettersOD
	Proof of Concept Tool
	Client
	Worker
	Server

	Experimental Setup
	Reptile Evaluation
	Meta-Learning and Few-Shot Learning for Object Detection
	Benchmarks
	Baselines
	Setup

	Proof of Concept Tool Evaluation

	Results
	Reptile Evaluation
	Proof of Concept Tool Evaluation

	Discussion and Conclusion
	Appendix FS-COCO Folds
	Appendix Proof of Concept Tool Screenshots

