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Abstract

Direct numerical simulations were performed to study the effects of free-stream
turbulence on different flow regimes past a circular cylinder. The focus was on
the transition-in-wake state of the flow and particle impact on the cylinder. To
increase accuracy of the simulations, a considerable effort was made to improve the
numerical methods used within the simulations. The focus of these improvements
was on an existing immersed boundary method and a newly developed overset grid
method for the representation of the solid cylinder in the open-source Pencil Code.

Transition-in-wake is the first stage of transition to turbulent flow around a cylin-
der, and can be characterized by three-dimensional effects developing in the wake,
along with a decrease in the vortex shedding frequency (at Re≈ 190). For medium
to high-intensity turbulent free-stream flow, the Reynolds number bandwidth for
transition is increased. That is, the transition is initiated at a lower Reynolds number
and endures to a higher Reynolds number than when the free-stream is laminar.
Relevant mechanisms for this bandwidth increase include intermittent vortex dislo-
cations and quasi-stable states at lower Reynolds numbers within the transition, and
stimulations of larger modes of instabilities for higher Reynolds numbers.

For inertial particle impaction on a cylinder at moderate Reynolds number (Re =
100 and Re = 400), high-intensity free-stream turbulence significantly amplifies the
number of particles that impact the cylinder (for certain particle Stokes numbers,
St). The peak amplification of impaction is observed at St = 0.3. This peak is
related to a change in impaction mechanism, from boundary stopping to boundary
interception, and it will therefore dependent on the size of the particles as well as the
Stokes number. The amplification decreases rapidly when the difference between a
particle’s Stokes number and Stokes number at peak impaction increases. These
observations were reproduced from laminar impaction data using an expression for
expectation value to estimate the particle impaction within the turbulent free-stream.

Improving how ghost- and mirror-points reconstruct the boundary conditions in
an existing immersed boundary method yielded a more efficient way to perform
simulations of a cylinder in a cross-flow using the Pencil Code. Yet impaction of
small particles proved computational costly, limiting St ≥ 0.2. Overset grids were
developed as a means to overcome this limitation. The overset grid implementation
uses sixth-order finite-differences for the governing equations, with summation-by-
part operators at the boundary, Padé filtering and local time-step restrictions. The
result is high-order accuracy at the cylinder boundary reproducing particle impaction
with a 90% reduction in the necessary grid points. For 2D flow simulations, the
number of grid points could be reduced by factors of 14–18 for flows with Re= 100–
400 when using overset grids rather than the immersed boundary method.
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Everything flows.

Heraclitus1

1
Introduction

In this thesis, computational efforts to investigate flows past a cylinder are pre-
sented. Flows of varying complexity are studied, ranging from simple steady flows
to particle-laden flows in the unsteady vortex-shedding regime, with high-intensity
turbulence present in the free-stream. To study such flows at reasonable compu-
tational costs, novel numerical methods have been developed and implemented
in the open-source code known as the Pencil Code [15, 16, 100]. The aim of
this introductory chapter is to provide the motivation for this work and to give an
overview of relevant physical and numerical research.

1.1. Motivation

It can be quite relaxing to lie down next to a river and daydream, while watching
twigs floating by and eddies breaking apart on rocks. Contemplating the physics
of the phenomena one is observing, however, can be enough to make the most
carefree daydreamer awaken to a nightmare of non-linear interactions and unsolved
problems. Yet, if one takes a special interest in the physics of flows, it is perhaps
the knowledge that what one is observing is yet to be fully understood that causes
the relaxation itself.

1Variants of this aphorism appear in Plato’s Cratylus [73] and Simplicius’ Commentary on Aristotle’s
Physics [99].
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Although it is now four centuries since the great mathematician and physicist
Isaac Newton lived, there are many problems of a mechanical nature that are far
from fully understood by natural scientists. One such problem is the complex
interplay of fluids and objects in a turbulent flow. One needs not be a daydreamer or
a romantic to find such a problem interesting, as turbulent flows are found not only in
nature. Such flows exist in abundance within industrial applications, and increased
knowledge about turbulence facilitates improvements in such application. Turbulent
flow past an object may be complex enough, but it can be further complicated by
considering a multi-phase flow, such as a two-phase flow where one phase is a
fluid and the other consists of particles suspended in the flow. The flow problem
considered in this thesis is a turbulent, particle-laden flow, where an obstruction is
blocking the path of the suspended particles.

A river flowing around a rock and the fly-ash of a bio-mass fired power plant
heating tubes of water vapor are examples of turbulent particle-laden flows navigat-
ing an obstruction. Although these examples of water flowing and gas rising may
appear quite different, the flow fields can be very similar. Further similarities can
be found in the transport and deposition mechanisms of suspended particles in a
river, sediments that wear rocks over time, and particles from combusted bio-mass
transported by the fly-ash in an incinerator and deposited on heating tubes. In both
examples, one should expect intermittent, chaotic fluctuations of velocity in the flow.
These fluctuations, the turbulence in the flow, may be due to the fluid interacting
with the object or other factors upstream or surrounding the object. Examples
include rapids in the river and an incinerating flame in the bio-mass power plant.

A clear description and understanding of the fundamental physical processes of
such flows can be motivation enough to take on the research required to write a
doctoral thesis. Any applications of such research in industry can be considered
a beneficial side-effect, or the main motivation for such research. Some possible
applications are consideration below.

Particle motion, accumulation and deposition in turbulent flows are of great
importance for many critical applications in the modern world. Two relevant
examples are filter applications and industrial boilers. Particles impacting on a solid
object in the flow can lead to the build-up of a deposition layer on the solid-fluid
interface, or it can lead to erosion of the solid object. For a bio-mass power plant,
a deposition layer will lead to reduced efficiency (power output), while in a water
turbine, particles in the water will contribute to erosion and corrosion of the blades
(also lowering efficiency). In both cases efforts are therefore made to avoid particle
deposition. In the diesel filter of a car, particles passing the filter contribute to air
pollution. In this case (and in other filter applications) the goal is to maximize
particle deposition. Regardless of the particular application, increased knowledge
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of the flow problem can improve design and, hence, efficiency.
Computational methods (simulations) were used in all new research presented

within this thesis. With modern supercomputers available, idealizing complex
flow problems and solving them numerically is a common approach yielding
knowledge previously unattainable by purely theoretical or experimental studies.
The computations are based on the well-founded claim that all (non-relativistic
continuum) flows can be described by the same fundamental laws: the Navier-
Stokes equations. Similarities between water in a river and gaseous flow in a
power plant were noted above. In effect, only the boundary conditions and certain
physical parameters (viscosity, density, etc.) separate these flows when described
by the Navier-Stokes equations. This computational approach does, however, have
drawbacks. Not only must a considerable effort be made to prove the validity
of the numerical results, certain methods may turn out less effective than initially
expected. This necessitates the development and implementation of novel numerical
methods. Quite a large part of the research presented in this thesis is related to
such development and the implementation of a numerical framework capable of
describing complex flow problems.

1.2. Flow problems

The domain of all flows considered are variations of a cylinder obstructing the
flow. Although there is little variation in the geometry, the flows themselves are
quite different. This leads to different flow problems, which are described in the
following section.

Transition-in-wake

The flow past a circular cylinder is usually described by a single non-dimensional
number, the (cylinder) Reynolds number2. The Reynolds number (Re) is defined as:

Re =U0D/ν , (1.1)

where U0, D and ν are the mean flow velocity, cylinder diameter and kinematic
viscosity, respectfully. The Reynolds number is the primary parameter describing
the viscous behavior of all Newtonian fluids [114]. At low Reynolds numbers,
viscous forces dominate over advective inertial forces. This flow regime is termed
laminar flow (or creeping flow, for very low Reynolds numbers). For flow past a

2Named after Osborne Reynolds, for his pioneering research on a broad range of topics in fluid
mechanics [82].
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(a) Re = 20 (b) Re = 60 (c) Re = 100

Figure 1.1.: Visualization of instantaneous vorticity normal to the view plane,
plotted for three different Reynolds numbers. Transition from steady laminar flow
(a) to unsteady laminar flow without (b) and with (c) vortex shedding in the wake.
Inflow at the top plane.

cylinder, laminar flow does not necessarily indicate steady flow, i.e., flow constant
in time. In the very low Reynolds numbers range of laminar flow, the flow is steady,
but when the Reynolds number is increased past Re' 47 the steady flow becomes
unsteady through a Hopf bifurcation [79]. At this point, periodic oscillations
develop in the wake. The wake eventually breaks up and form eddies downstream
of the cylinder as the Reynolds number is increased (Re > 90). This pattern is
known as the Kármán vortex street3. This development, from steady laminar flow
to the Kármán vortex street, is seen in Figure 1.1.

Up to this point, the flow could be described as purely two-dimensional, as there
was no variation of flow variables in the spanwise direction of the cylinder. With a
further increase of the Reynolds number, however, three-dimensional fluctuations
develop in the cylinder’s wake. This occurs as the flow enters the transition-in-

3Although named after the engineer and scientist Theodor von Kármán, for his early research of this
wake pattern, some controversy exists on who should be attributed as discovering this pattern.
Von Kármán himself remarked that he made peace with the French scientist Henri Bénard on this
matter, by jokingly suggesting that what in Berlin and London is called “Kármán street" should
be called “Avenue de Henri Bénard" in Paris [109].
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wake state. This state of the flow spans (180−200)< Re < (350−400) (see, e.g.,
Zdravkovich [126]). For Re > 400 the flow progresses through other transitional
stages as the Reynolds number is increased. These are denoted transition-in-shear-
layers and transition-in-boundary-layers. Following the last transition, the flow
can be described as fully turbulent; a state that is reached when all disturbed flow
regions around the cylinder are turbulent [126]. All flows investigated in this thesis
have Re≤ 400.

A flow simulation operating in the Reynolds number range of the transition-
of-wake state should be able to reproduce the distinctive three-dimensional flow
behavior observed in experiments focusing on this transition. The transition-in-
wake was selected as the test case for three-dimensional simulations performed in
the present work, and motivated an in-depth look at this transitional state of the
flow. The particular focus was on the effect of a turbulent free-stream (TFS), i.e. the
flow approaching the cylinder was turbulent. Key contribution to the understanding
of the transition-in-wake state include work by Roshko [85], Williamson [115,
117], Williamson and Roshko [119], and Barkley and Henderson [8]. A brief
background on this material is presented below, including specific work on the
effect of free-stream turbulence.

It was noted above that this transition starts at 180 < Re < 200. The Reynolds
number of onset is typically identified by a sharp decrease in the vortex shedding
frequency of the Kármán vortex street. The onset is identified over a range of
Reynolds numbers, and this reflects two things. Firstly, there is a hysteresis pattern
in the vortex shedding frequency when the Reynolds number is varied in the region
were the transition begins. Secondly, there is quite a large scatter in the observed
onset of the transition. This is especially prominent within experimental results,
which can be seen by comparing data from the literature.

The onset of transition was observed at Reynolds numbers (in chronological
order): 150 by Roshko [85] and Tritton [102], 140 by Gerrard [35], 170–180
by Williamson [115], 168 by Norberg [67], and 180–194 by Williamson [117].
Using Floquet stability analysis, Barkley and Henderson [8] identified the onset
of transition at Re = 189 and Henderson and Barkley [43] further proved that the
transition was sub-critical, explaining the hysteresis effect observed experimentally
by Williamson [115] and others. The Reynolds number computed by Barkley and
Henderson [8] was not only confirmed by the more recent results by Williamson
[117], but also by high-accuracy numerical simulations [77].

Instability modes with a spanwise length of approximately four cylinder diam-
eters develop in the flow at the onset of three-dimensionality in the wake. These
are called mode A instabilities [115, 117] and are the dominant flow features in
the spanwise direction during the first part of the transition-in-wake regime, along
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with spot-like vortex dislocations. Vortex dislocations are large-scale intermittent
structures that grow downstream of the cylinder. These dislocations were discovered
experimentally by Williamson [116], and similar features have been reproduced
in numerical simulations (see, e.g., [127, 42]). Zhang et al. [127] labeled these
structures “vortex adhesion”, due to vortices evidently adhering to the cylinder
over many shedding periods. The structures were also found to be self-sustained in
the range 160 < Re < 230. Henderson [42] pointed out that the spot-like disloca-
tions must be generated by the mode A instability, and concluded that a nonlinear
interaction between self-excited modes in the A-band is responsible for the appear-
ance of large-scale structures in the wake. Here, the A-band refers to the different
wavelengths of the mode A instability4.

The mode B instability develops in the wake with a further increase of the
Reynolds number. Mode B instabilities are streamwise structures with a spanwise
wavelength of approximately one cylinder diameter, dominating the flow at Re&
260 (see Williamson [118] and references therein). At Reynolds numbers between
210 and 220, the mode A and mode B instabilities start to co-exist in the wake. The
transition from a flow dominated by one mode to the other is gradual, with energy
in the flow shifting continuously from the larger (mode A) to the smaller (mode B)
instabilities over a range of Reynolds numbers (see Barkley et al. [9]). Note that
unlike the transition where mode A instabilities first occur, the second transition
during the transition-in-wake state of the flow is supercritical [9].

The work on transitional flow presented in the present thesis does not focus
on the general nature of the instabilities that develop in the flow. Rather, the
transitional flow and flow with a Reynolds number near the transition-in-wake
regime was studied under the disturbance of a turbulent free-stream. Experimental
studies exist with this as a partial focus, conducted by Bloor [14], Hussain and
Ramjee [45] and Norberg [66]. No effect was observed by Hussain and Ramjee [45],
leading Zdravkovich [125] to draw the conclusion that the transition-in-wake state
of the flow was insensitive to the free-stream turbulence. This finding is not
valid, as Hussain and Ramjee performed experiments with Re . 160, that is, for
Reynolds numbers outside the transition-in-wake state of the flow. Bloor [14]
and Nordberg [66] observed an effect of the turbulence on the transition, in the
bandwidth of Reynolds numbers spanning the transitional regime, but an analysis
of the process was not performed.

4Note that the observed spanwise wavelength (λA = 4D) of the three-dimensional pattern developing
in the wake corresponds to the most unstable wavelength of the A-band.
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Particle deposition

Investigating particles in a flow convected towards and (possibly) past a circular
cylinder is quite different from the study of transitional flow, and can be studied
completely independently. Nevertheless, knowledge of the effect of free-stream
turbulence on the transition-in-wake can be useful when particle-laden flow simula-
tions under turbulent flow conditions are performed. For example in understanding
unexpected behavior of the particle-laden flow at certain Reynolds numbers (per-
haps due to an early onset of the transition-in-wake state), or in setting up flow cases
with Reynolds numbers outside the most complex region of the transition. The
latter was done when particle simulations within this work were set up to conduct
an investigation of free-stream turbulence effects on particle deposition without
unnecessary disturbances.

Particle-laden flow is a huge field of research itself, and has been a focus in
recent years. For a general overview, with emphasis on numerical simulations of
such flows, the reader is referred to reviews by Kuerten [55] and Marchioli [60].
For the purpose of the research presented in the present thesis, only particle-laden
flows with a cylinder obstructing the path of the particles will be considered, and
the focus will be on the impaction of particles on the surface of the cylinder.

When considering a large number of particles impacting on an obstruction in the
flow, a practical way of quantifying the probability of impaction is by computing
impaction efficiencies, η . The impaction efficiencies are the ratios of particles
impacting on the cylinder to the total number of particles with a centre of mass
that would hit the cylinder if not disturbed by the flow5. The impaction efficiencies
are typically split into front-side and back-side impaction, η f and ηb, respectively.
These figures are represented as functions of the particle size and density, described
by the Stokes number. The Stokes number (St) is the ratio of a particle’s Stokes
time to the timescale of the fluid flow the particle is suspended in:

St = τp/τ f . (1.2)

In the context of particle impaction on a cylinder, the fluid time scale is the ratio
between the cylinder diameter (or radius) and the mean flow velocity.

There are several different methods for determining the impaction efficiencies of
particles in flow past a cylinder. The simplest way to compute η is to use a potential
flow approximation derived by Israel and Rosner [48]. The potential flow method
for computing impaction efficiencies is well accepted for Stokes numbers larger

5In practice, this means that η > 1 is possible, since particles with finite radii and center of mass
outside the projected cylinder area can contact the cylinder even without the flow affecting their
trajectory.
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than unity. For small Stokes numbers, the particles follow the flow to a large extent,
hence, rotational and viscous effects in the vicinity of the cylinder will be important
for the transport of these particles. These effects are not resolved with a potential
flow approximation, thus, other methods must be used to calculate accurate particle
impaction efficiencies for small Stokes numbers6. Other studies on impaction and
deposition found in the literature used experimental methods (Schweers et al. [89]
and Kasper et al. [50]), numerical simulations (Yilmaz and Cliffe [122], Li et al.
[57], Haugen and Kragset [39], Haugen et al. [40], and Wacławiak and Kalisz
[110]) and phenomenological modeling (Huang et al. [44]). These studies regarded
smooth laminar flow past one or more cylinders.

Inertial particle impaction on a cylinder in a cross-flow can be split into three
different impaction modes, based on what drove the trajectories of the convected
particles during impact. The modes are classical impaction (particle inertia driven
trajectory), boundary stopping (boundary layer driven trajectory) and boundary
interception (mass center of particles do not come in contact with the cylinder)
(cf. Haugen and Kragset [39] and Weber et al. [111]). The mode is determined
by the Stokes number (with some dependence on Reynolds number). Generally,
classical impaction occurs for Stokes numbers St & 0.9, boundary stopping7 for
0.2 < St < 0.9 and boundary interception for St < 0.2. Potential flow expressions
for impaction efficiencies are applicable for the classical impaction mode, while
they are only somewhat useful for the boundary stopping mode and are not at all
applicable for boundary interception.

It is reasonable to expect that turbulence in the flow influences the rate of particle
impaction in many applications. The turbulence can be due to transitional eddies
in the free shear layers of the cylinder at high Reynolds numbers, combustion
upstream of the cylinder or wall turbulence for a cylinder in a confined space,
etc. The velocity fluctuations will affect the inertial particle impactions on the
cylinder surface, as particle trajectories deviate from the mean flow streamlines
when turbulence is present. This is particularly important for particles with small
Stokes numbers, as such particles primarily follow the flow.

An exception to the experimental studies on particles in smooth laminar flow, is
the measurements by Douglas and Ilias [29] on the effect of turbulence on particle
impaction. Douglas and Ilias [29] considered a cylinder situated within a channel

6A consequence of using the potential flow approximation for computing particle efficiencies, is
that η = 0 (no impaction) for particles with St < 1/8 (see Ingham et al. [46]).

7The boundary stopping mode is partly overtaken by the classical impaction mode for high Reynolds
numbers. Haugen and Kragset [39] identified boundary stopping for 0.2 < St < 0.3 and classical
impaction for St > 0.3 when Re = 1685. With Re = 20 the boundary stopping mode existed for
0.3 < St < 0.7.
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with turbulence generated by the channel walls. The results showed increased
impaction efficiencies when turbulence was present in the flow, and eddy diffusion
was a contributing mechanism. The scatter in the data was, however, quite large for
small Stokes numbers.

Several recent computational studies on particle impaction include turbulence
in the flow (see Lee and Lockwood [56], Weber et al. [111], Beckmann et al. [10],
and Pérez et al. [70], and a mini-review by Weber et al. [112]), but these were
limited by the use of Reynolds Average Navier-Stokes modeling8. In one such study,
performed by Weber et al. [111], it was found that the turbulence played a minor
role for particles with Stokes number larger than a critical value. The turbulence
increasing particle impactions for particles with Stokes numbers below the critical
value. However, as pointed out by the authors of said study, the accuracy of the
CFD simulation was limited by the lack of rigorous testing of the particle tracking
procedure. Further limitations were introduced by modeling and time-averaging
the flow, and by not accounting for boundary interception.

The work on particle-impaction presented in this thesis is twofold. Firstly, the
effect of free-stream turbulence on impaction efficiencies of inertial particles for
Stokes numbers from 0.2 to 10 was considered by Direct Numerical Simulations
(DNS). Secondly, the particle impaction for a large range of Stokes numbers was
used as a test case for a new numerical method developed as part of this doctoral
work. This numerical method was motivated by the very high accuracy requirement
for impaction of small particles (St . 0.2). The crux of the computations was to
resolve the flow without needing a very fine grid, and at the same time have a
sufficiently fine grid to resolve the particle trajectories in the vicinity of the cylinder.
The interpolation of fluid velocities used to update the forces acting upon particles
was particularly sensitive to the grid spacing for very small, tracer-like particles.

1.3. Numerical methods

Fluid flow in a domain that contains an immersed solid object is a common test
case for computational fluid dynamics. Obstructions in the flow include (but are
not limited to) cylinders, spheres, flat plates, rectangular or elliptical cylinders and
spheroids, triangles and complex geometries made out of a combination of these
shapes. Finding a method to represent such objects optimally in simulations is not
a trivial task, and the numerical method used is often chosen specifically for the

8This limitation is, perhaps, not of much concern to the authors of said papers, as the focus of these
articles is not on effects of the turbulence on the impaction. An exception to this is the article by
Weber et al. [111] where this is a partial focus.
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(a) Body-conformal (b) Non-body conformal

Figure 1.2.: Representation of a solid object in the flow domain with different types
of structured meshes. Domain boundaries not shown.

problem at hand.

For many generic shapes, such as cylinders, spheres, plates, etc., body-fitted
structured meshes are commonly used to represent the object(s) in the flow. These
meshes conform to the object(s) in the flow domain, as seen in Figure 1.2(a), and
typically to the other physical boundaries of the domain (inlet, outlet, walls, etc.) as
well. Depending on the shape of the flow domain and the object in the flow, this
may require a deformation of the grid to conform to domain boundaries, in addition
to the procedures to map the grid in the flow domain to a simple computational
domain. This deformation may result in a grid with unnecessary local variations of
the grid (e.g., a grid that is denser than necessary in certain areas of the domain).
This can also contribute to time consuming grid generation (see, e.g., Versteeg and
Malalasekera [105]). A popular alternative to such meshes, particularly when the
shape of the flow domain or the objects within is more complex, is an unstructured
mesh. Unstructured meshes provide the highest flexibility in grid adaptation to a
particular flow geometry, and are a good alternative for complex geometries when
finite-volume or finite-element formulations of the governing equations are used
(see Mavriplis [62], Owen [68], and Tannehill et al. [98]). Disadvantages of such
grids include larger storage requirements, the need for intricate mesh generation
techniques and difficulties in achieving high-order accuracy.
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Immersed boundary method

The object(s) in the flow and the flow domain can alternatively be represented
without the grid conforming to the object(s), as seen in Figure 1.2(b). Typically, this
is done by using a Cartesian grid, with a modification in either the flow equations
or the grid cells in the immediate vicinity of the solid object(s). Popular techniques
include immersed boundary methods (IBMs) (Peskin [71], Peskin [72], and Mittal
and Iaccarino [64]) and cut-cell methods (Quirk [81], Causon et al. [20], Ingram
et al. [47], and Schneiders et al. [88]). These two methods differ in that the IBM
uses a Cartesian grid in the entire flow domain, while the cut-cell method grids are
“cut” near objects and/or domain boundaries that do not conform to the grids. Due
to this cell cutting, care must be taken such that the cut cells do not become too
small, since this may introduce numerical instabilities.

For the IBM, rather than modifying the grid cells near the solid object, the
boundary conditions of the solid are imposed directly in the flow equations. This
is done either by a continuous or discrete forcing technique. In both cases a body-
force, present due to non-conforming boundaries in the flow, is introduced in the
Navier-Stokes equations. This is done either before discretization (continuous
forcing) or after (discrete forcing) [64]. The latter is the preferred method for IBM
used to represent rigid boundaries.

A further development of the discrete forcing method is to treat the immersed
boundary as a sharp interface, and to impose the boundary conditions directly by
using a combination of ghost-points inside the solid and mirror/image-points in
the flow domain (set by interpolation) to reconstruct the solid (Tseng and Ferziger
[103] and Berthelsen and Faltinsen [12]). An advantage to this approach is that the
boundary conditions are represented without any added force in the flow equations,
hence, the method can easily be implemented in an existing flow solver.

Disadvantages of IBMs are the lack of mass conservation9 and reduced accuracy
in the vicinity of the surface. Note that recent developments show that some of
the challenges related to high-order accurate reconstructions of velocities near the
surface can be overcome (Linnick and Fasel [58], Seo and Mittal [90], and Xia et al.
[121]).

Overset grids

Roughly ten years after the emergence of the IBM, a method of multiple grids
overset on one another was proposed to represent solids in a flow (see Steger

9Finite-volume approaches with cut-cell methodology are appropriate if mass and momentum
conservation must be guaranteed [64].

13



et al. [93], Steger and Benek [94], and Benek et al. [11]). Such overset grids, or
Chimera methods, employ body-conformal grids on solid objects in the flow domain,
but the grids do not extend to the domain boundaries. Instead, a non-conforming
background grid (typically uniform Cartesian) is used, and updated flow information
of overlapping grid regions is communicated between grids at every time step. In
this way, a flow simulation is split into multiple sub-simulations, one for each grid,
and the information exchanged in overlapping regions enter as boundary conditions
into the flow equations of the sub-simulations. The background grid is used to
compute the flow outside the smaller body-fitted grids, and the communication
between the different grids is done by interpolation. The flow domain may contain
a single grid overlapping another, or several grids overlapping. The latter case
necessitates a priority of communication and computation for solutions on different
grids (see, e.g., Chesshire and Henshaw [21] and Meakin [63]). For complex
configurations, this may require extensive preprocessing for fixed objects (Rogers et
al. [84]) or intricate grid handling during the simulation for moving bodies (Noack
[65]).

Overset grid methods have the advantages of being highly accurate at the solid-
fluid interface. This is due to the use of body-fitted grids in these regions, and the
flexibility in the grid stretching when several grids are used. Additionally, no grid
deformation is necessary to conform to domain boundaries, due to the use of an
appropriate non body-conformal background grid. If the flow domain is circular, a
cylindrical grid can be used as the background grid, if rectangular, a Cartesian grid,
etc.

The communication between the grids is the limiting factor in terms of the
accuracy of overset grid methods. Interpolation of flow variables between grids in
the overlapping regions is detrimental to mass conservation. However, conservative,
mass-correcting overset grid methods do exist for finite-volume codes (see e.g.
Pärt-Enander and Sjögreen [69] and Zang and Street [124]). Using high-order
interpolation between grids has proven beneficial in regard to the overall accuracy
and stability of the overset grid method for both finite-difference and finite-volume
implementations (Sherer and Scott [91], Chicheportiche and Gloerfelt [22], and
Völkner et al. [108]).

While advantageous in terms of accuracy, high-order interpolation techniques
have the disadvantages of an increase in complexity and larger interpolation stencils,
leading to more inter-processor communication and floating-point operations. Fur-
thermore, straightforward extension to high-order interpolation (e.g. from second-
order to fourth-order Lagrangian interpolation) does not guarantee a better solution.
Possible overshoots in the interpolation polynomials can have a devastating impact
on the accuracy and stability of the numerical simulation.
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1.4. Goals and thesis outline

The main goal of this thesis is to document research on the transport and deposition
of small particles on a cylindrical geometry in moderate Reynolds number flows, as
well as the necessary numerical methods developed to perform the research. The
achievements of the research as a whole can be split into four parts:

• An existing immersed boundary method was improved, such that accurate
Direct Numerical Simulations (DNS) could be performed at reasonable com-
putational costs for flows with moderate Reynolds numbers.

• The improved IBM was used to investigate the complex flow patterns in
the transition-in-wake state by DNS, with the focus on how the transition is
affected by high-intensity free-stream turbulence.

• DNS of a particle laden-flow interacting with a circular cylinder under condi-
tions of laminar and turbulent free-streams was performed. Observation and
analysis of how the impaction efficiencies were affected by high-intensity
free-stream turbulence was done. Further, a predictive expression of the
turbulence effect was suggested and the quality of this expression was con-
sidered.

• The numerical handling of the cylinder was improved by the development
of an overset grid method, in order to (1) make possible very accurate sim-
ulations of small particles impacting on the cylinder and to (2) reduce the
computational cost such that flows with larger Reynolds numbers can be
considered in future research.

Background information related to the milestones has been given in this intro-
ductory chapter. In the next chapter the focus shifts to the theory of fluid flow,
and a thorough description of the relevant numerical methods for discretization
of the flow and particle equations and representation of solid objects in the flow.
Following this, the contributions to the present thesis are described in Chapter 3.
Conclusions are drawn in the last chapter, where suggestions for further work are
also given. The scientific articles making up the bulk of the documented work can
be found in the second part of the thesis.
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What we observe is not nature itself, but nature
exposed to our method of questioning.

Werner Heisenberg10

2
Theory and methodology

In this chapter the theoretical framework used to describe fluid flow and particle
transport is described, and details of the discretization and numerical methods in
use are presented.

2.1. Compressible Navier-Stokes equations

Fluid flow can be described by the Navier-Stokes equations, a set of equations
derived from Newton’s second law of motion, by considering viscous and pressure
forces acting on a fluid element. For compressible Newtonian fluids, the Navier-
Stokes equations for continuity and momentum are:

Dρ

Dt
+ρ∇ ·u= 0 , (2.1)

and

ρ
Du
Dt

=−∇p+∇ · (2µS)+F , (2.2)

respectively. Here ρ , t, u, p and µ are the density, time, velocity vector, pressure,
and dynamic viscosity (µ = ρν , with kinematic viscosity ν), respectively, and

D
Dt

=
∂

∂ t
+u ·∇ (2.3)

10In Physics and Philosophy: The Revolution in Modern Science [41]
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is the substantial derivative operator. The compressible rate of strain tensor S is
given by:

S =
1
2

(
∇u+(∇u)T

)
−I

(
1
3
∇ ·u

)
, (2.4)

where I is the identity matrix. The vector F is an external body force, e.g. gravity,
drag from particles, etc. To close this set of equations, an equation of state is
required. Here, the ideal gas law is applied:

p = c2
s ρ , (2.5)

where cs is the speed of sound.
The Navier-Stokes equations can be re-written into a form with only the differ-

entiation of variables with respect to time on the left hand side of the equations.
This is the format of the equations in the Pencil Code. With a constant speed of
sound (for the case of an isothermal fluid), constant kinematic viscosity and zero
body-force, the flow equations are:

∂ρ

∂ t
=−(u ·∇)ρ−ρ∇ ·u , (2.6)

and

∂u

∂ t
=−(u ·∇)u− c2

s∇(lnρ)

+ν

(
∇2u+

1
3
∇(∇ ·u)+2S ·∇(lnρ)

)
. (2.7)

To develop a computational Navier-Stokes solver, fully expanded versions of
the equations above are needed. Despite the utility, the fully expanded Navier-
Stokes equations are rarely stated for compressible flow, particularly for coordinates
systems other than Cartesian. For this reason the expressions are included in
Appendix A.

2.2. Particle equations

Describing the fluid flow by the Navier-Stokes equations entails describing the
fluid as a continuum. This is known as a Eulerian description of the flow. Particle
descriptions in fluids are categorized as either Lagrangian tracking or Eulerian
modeling approaches (Crowe et al. [24]). Using a Lagrangian formalism means that
an individual particle (or parcel of particles) is tracked as it moves through the flow
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field. An Eulerian approach treats the particles and the fluid as two inter-penetrating
continua. A Eulerian-Eulerian description for the fluid-particle flow is useful for
when the volume fraction of the solid matter is high (see, e.g. van der Hoef et
al. [104]), but this is not the case for the flows considered in this thesis. Instead
Eulerian-Lagrangian tracking is used for particle-laden flows, such that each particle
is tracked individually as it interacts with the surrounding fluid.

The considered particles are idealized as point-particles, that is, the particle
volume is neglected (although a finite diameter is used in drag calculations and
collisions, more on the latter point in Section 2.6). Although simulations are
performed with several million particles in the flow11, the small particle sizes makes
the flow dilute, justifying the use of a point-particle approach. This also justifies
the use of one-way coupling for fluid and particle phases. The one-way coupling
indicates that the flow of one phase (the fluid) affects the other (the particles) while
there is no reverse effect [24]. Alternatively, two-way coupling implies a mutual
effect between the flows of both phases.

For a one-way coupled, Lagrangian, point-particle, the particle’s velocity and
position is described by:

dvp

dt
=
FD,p

mp
, (2.8)

dxp

dt
= vp , (2.9)

where vp, xp and mp are the velocity, centre of mass position and mass of the
particle, respectively. The force acting upon the particle is the drag force, FD,p, due
to the particle moving through the fluid. The particle drag force is given by:

FD,p =
1

2Cc
ρCD,pAp |u−vp|(u−vp) , (2.10)

where Ap = πd2
p/4 is the cross sectional area of the particle and

Cc = 1+
2λ

dp

(
1.257+0.4e(−1.1dp/2λ )

)
, (2.11)

is the Stokes-Cunningham factor with parameters set for air (Cunningham [25] and
Davies [27]), and a particle diameter dp. The mean free path λ = 67nm accounts

11Note that although several million particles are inserted into the flow during a simulation, there
are no more than a few hundred thousand particles present in the flow in the simulations at any
given time. This is due to the removal of particles from the flow when impacting on the cylinder
or reaching the outlet boundary.
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for the fact that for very small particles, the surrounding medium cannot be regarded
as a continuum but, rather as distinct particles. The particle drag coefficient is given
by (see Schiller and Neumann [87] and Clift et al. [23]):

CD,p =





0.44 , if Rep > 1000 ,
24

Rep

(
1+0.15Re0.687

p
)
, if Rep . 1000 ,

(2.12)

where Rep is the particle Reynolds number, Rep = dp |vp−u|/ν . When Rep <
1000, which is the case for all the particles considered, the particle drag force of
Eq. (2.10) can be written as:

FD,p =
mp

τp
(u−vp) , (2.13)

where

τp =
Sd2

pCc

18ν(1+ fc)
, (2.14)

is the particle response time, with fc = 0.15Re0.687
p and density ratio S = ρp/ρ .

Note that the drag force on the particle is reduced to the Stokes drag (Stokes [95]),
FD,p = 6πνρrp (u−vp) , in the limit Cc = 1 and Rep� 1.

With the particle time scale defined, the Stokes number can be used as a non-
dimensional number to describe a particle in the flow. As mentioned in the intro-
duction, the Stokes number is the ratio between the particle and fluid time scales
(Eq. (1.2)). The particle time scale is given by Eq. (2.14) and the fluid time scale is:

τ f =
D

2U0
, (2.15)

where the factor two is included by convention. The Stokes number can be regarded
as a measure of particle inertia. Particles with small Stokes numbers follow the flow
to a large extent, while particles with large Stokes numbers are negligibly affected
by flow conditions.

2.3. Numerical methods for the Navier-Stokes
equations

All simulations performed during the Ph.D. studies used the high-order finite-
difference code known as the Pencil Code [100]. The code is a modular, open-
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source, partial differential equation solver programmed in Fortran9512. In addition
to using this code for flow simulations, extensions were made and a new module
was added. The main code extensions were on the representation of solid surfaces
in the fluid flow. Details of the methods developed will be given in Section 2.5.
First, the discretization of the Navier-Stokes equations is considered.

Governing equations

The spatial derivatives in the governing equations (right hand side of Eqs. (2.6)
and (2.7)) are discretized with sixth-order central differences. Finite-difference
approximations are applied to first and second order derivatives and to mixed-
derivatives (Eqs. (A.6)–(A.10) and (A.16)–(A.20) in Appendix A). The finite-
difference stencils for first and second order derivatives of a variable f , at grid point
i, in direction h are:

δh
∂ fi

∂h
≈ 1

60
fi+3−

3
20

fi+2 +
3
4

fi+1−
3
4

fi−1 +
3
20

fi−2−
1
60

fi−3 , (2.16)

(δh)2 ∂ 2 fi

∂h2 ≈
1
90

fi+3−
3
20

fi+2 +
3
2

fi+1−
49
18

fi +
3
2

fi−1−
3
20

fi−2 +
1
90

fi−3 ,

(2.17)

on a standard grid with grid spacing δh and grid points denoted by i−1, i, i+1, etc.
(Fornberg [33] and Gustafsson [37]). For mixed-derivatives of fi, j along directions
h and k, the finite-difference operators can be found by applying the first order
derivative in an orthogonal direction to each term in Eq. (2.16), yielding:

δk
∂ 2 fi, j

∂h∂k
≈ 1

60
∂ fi, j+3

∂h
− 3

20
∂ fi, j+2

∂h
+

3
4

∂ fi, j+1

∂h

− 3
4

∂ fi, j−1

∂h
+

3
20

∂ fi, j−2

∂h
− 1

60
∂ fi, j−3

∂h
, (2.18)

where the derivatives with respect to h are approximated by Eq. (2.16) and δk is the
grid spacing in the k-direction (along the j index). Alternatively, using bidiagonal
operators:

δhδk
∂ 2 fi, j

∂h∂k
≈ 1

360
( fi+3, j+3− fi−3, j+3)−

3
80

( fi+2, j+2− fi−2, j+2)

12Some modules make use of C and Fortran 2003 functionality. Post-processing routines are
implemented in IDL and Python. Makefiles, configuration files for compilation, and other
auxiliaries use Perl. Massively parallel by MPI, with recent CUDA-extensions allowing for
parallel simulations on graphical processing units.
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+
3
8
( fi+1, j+1− fi−1, j+1)−

3
8
( fi+1, j−1− fi−1, j−1) (2.19)

+
3
80

( fi+2, j−2− fi−2, j−2)−
1

360
( fi+3, j−3− fi−3, j−3) .

Notice that the bidiagonal operators reduce the number of grid points used by the
finite-difference stencil from 36 (in Eq. (2.18)) to 12 (in Eq. (2.19)).

The integration in time of the Navier-Stokes equations and the particle equations
is by a third-order memory-efficient Runge-Kutta scheme13 [120]. For a function

∂φ

∂ t
= f(φ(t)) , (2.20)

the update from timestep n to n+1, that is, from φ(tn) to φ(tn+1), by this explicit
scheme, is according to the following algorithm:

δf1 = δ tf(φ(tn)) , φ1 = φ(tn)+
1
3
δf1 ,

δf2 = δ tf(φ1)−
5
9
δf1 , φ2 = φ1 +

15
16
δf2 , (2.21)

δf3 = δ tf(φ2)−
153
128

δf2 , φ(tn+1) = φ2 +
8
15
δf3 ,

where δ t = (tn+1− tn). The memory efficiency of this Runge-Kutta scheme is due
to it only requiring one temporary array δf to store data as the time-integration
of φ is performed. No temporary arrays of φ are needed because the array φ is
overwritten when updated from one stage to the next.

Boundary closures

The finite-difference operators in Eqs. (2.16)–(2.19) are only valid for grid points
that are surrounded by enough neighbouring grid points in each direction such that
all values for fi+3, fi−3, fi+2, etc., which are necessary to calculate the derivatives,
exist. Hence, special handling is required to compute the derivatives of velocity and
density in the vicinity of boundaries. The accuracy of a simulation as a whole is
very sensitive to the choice of boundary closures. In the present work, three types
of boundaries occur, each with its own closure for the finite-difference stencils. The
different type of boundaries are: inlet/outlet, periodic and solid.

13Williamson [120] handles round-off errors explicitly in his Runge-Kutta algorithm. This is not
done in the implementation in the Pencil Code.
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Navier-Stokes characteristic boundary conditions

Navier-Stokes characteristic boundary conditions (NSCBC) are used for the inlet
and outlet boundaries to minimize reflection. The NSCBC is a well-posed boundary
formulation that makes use of local one-dimensional characteristic wave relations
(LODI) to approximate the amplitude of incoming acoustic waves. This allows
waves to pass through the boundaries, yielding partially reflecting inlet and outlet
boundaries. For details on NSCBC and LODI-relations the reader is referred to the
seminal paper by Poinsot and Lele [74].

To compute necessary gradients for the LODI-relations at the inlet and outlet,
fourth-order, one-sided finite-difference stencils [33] are used:

δh
∂ fi

∂hi
≈±

(
−25

12
fi +4 fi±1−3 fi±2 +

4
3

fi±3−
1
4

fi±4

)
, (2.22)

where points i, i+1, . . . are used for left-side boundaries and i, i−1, . . . for right-
side boundaries. Note that the NSCBC implementation in the Pencil Code uses
modifications suggested by Yoo et al. [123] and Lodato et al. [59] to account for
transversal flow effects (necessary, e.g. for turbulent flow at the inlet).

Periodic boundary

Unlike inlet/outlet and solid boundaries, periodic boundaries can be handled in a
straightforward, almost trivial, manner in many fluid dynamics codes. A periodic
boundary simply implies that two boundaries of the flow domain (e.g., top and
bottom) are directly coupled, such that what exits through the one boundary enters
the other, and vice versa (see, e.g., Versteeg and Malalasekera [105]). Hence, a
periodic boundary is in principle folded onto itself. This makes the size of the
physical flow domain (artificially) infinitely long in the direction of periodicity.

The derivatives of Eqs. (2.16)–(2.19) can be solved in the same manner as the
interior points, provided that the outlying points are included appropriately. For
example, if the first derivatives are computed at grid points i = 0,1,2, . . . ,Ni−1,Ni

and the boundaries are periodic, the gradient at grid point Ni will need data at
fNi+1, fNi+2, fNi+3 from points outside the domain. Due to the periodicity the grid
points i = 0 and i = Ni overlap (connecting the folded domain), hence, fNi+1 =
f1, fNi+2 = f2, fNi+3 = f3, and Eq. (2.16) can be used. In the Pencil Code the
periodic boundaries are handled by the use of a three-point deep ghost-zone on
each side of the array of flow variables. Hence, variables are stored for grid points
i = −2,−1,0,1,2, . . . ,Ni− 1,Ni,Ni+1,Ni+2,Ni+3, where the outliers are updated
using:

fNi+1 = f1 , fNi+2 = f2 , fNi+3 = f3 ,
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f−2 = fNi−2 , f−1 = fNi−1 , f0 = fNi ,

and gradients are computed for i = 1,2, . . . ,Ni by Eq. (2.16) etc.14

Flow arrays are padded with ghost-points on each side by default in the Pencil
Code, due to the domain decomposition and communication between processors
that do not share physical memory. Hence, the periodicity does not add complexity
in this regard.

Solid boundary

In the present thesis, solid boundaries in the flow domain represent a solid object
that obstructs the fluid flow. The solid object’s boundary may or may not conform
to the computational grid. As mentioned in Section 1.3, both body-conformal and
non-body conformal grids are used to resolve such boundaries in the present work.
Body-conformal grids are used with overset grids, while grids that are not fitted to
the surface are used with immersed boundary methods.

In the case of surface representation by an immersed boundary method, the
finite-difference stencils in Eqs. (2.16),(2.17) and (2.19) are used for first, second
and mixed derivatives, respectively, at all grid points in the flow domain15. This is
possible due to the use of a several layers of ghost-points inside the solid, set by
corresponding mirror-points in the flow domain (details in Section 2.5). For overset
grids, asymmetric stencils are necessary for grid points close to the surface, as there
are no grid points inside the solid when the grid is body-conformal.

The asymmetric stencils that are used near the boundary, when represented
by overset grids, are summation-by-parts (SBP) operators (see Strand [96] and
Mattsson and Nordström [61]). The choice of SBP-operators near the surface is
based on favorable features, such as of well-posedness and stability enhancement.
For the sixth-order centred stencils used for first and second derivatives, third-
order accurate SBP boundary closures exist. For an array of flow variables, f =
( f1 , f2 , . . . , fNi), the first derivative stencils are given by:

δh
∂f

∂h
=Q ·fT (2.23)

14Note that this means reducing the number of grid points from Ni +1 to Ni. This can countered by
adding one grid point to any periodic direction during initialization.

15There exist some exceptions to this. The exceptions are grid points handled by NSCBC, and grid
points that are within a very small distance from the cylinder surface (usually set to

√
2δx). The

latter exception will be described when details of the immersed boundary method are given in
Section 2.5
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with

Q=




q1,1 q1,2 q1,3 q1,4 q1,5 q1,6 0 . . .
q2,1 0 q2,3 q2,4 q2,5 q2,6 0 . . .
q3,1 q3,2 0 q3,4 q3,5 q3,6 0 . . .
q4,1 q4,2 q4,3 0 q4,5 q4,6 q4,7 0 . . .
q5,1 q5,2 q5,3 q5,4 0 q5,6 q5,7 q5,8 0 . . .
q6,1 q6,2 q6,3 q6,4 q6,5 0 q6,7 q6,8 q6,9 0 . . .

· · · 0 − 1
60

3
20 −3

4 0 3
4 − 3

20
1
60 0 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .




(2.24)
where coefficients q j,k can be found in Strand [96]. Similarly, the second derivative
stencils are given by:

δh2 ∂f

∂h
= P ·fT (2.25)

with

P =




p1,1 p1,2 p1,3 p1,4 p1,5 p1,6 0 . . .
p2,1 p2,2 p2,3 p2,4 p2,5 p2,6 0 . . .
p3,1 p3,2 p3,3 p3,4 p3,5 p3,6 0 . . .
p4,1 p4,2 p4,3 p4,4 p4,5 p4,6 p4,7 0 . . .
p5,1 p5,2 p5,3 p5,4 p5,5 p5,6 p5,7 p5,8 0 . . .
p6,1 p6,2 p6,3 p6,4 p6,5 p6,6 p6,7 p6,8 p6,9 0 . . .

· · · 0 1
90 − 3

20
3
2 −49

18
3
2 − 3

20
1

90 0 . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . .




(2.26)
where coefficients p j,k can be found in Mattsson and Nordström [61]. Alternative
values for q j,k and p j,k can be found in Gustafsson [37]. Note that the SBP-operators
for the first and second derivatives are consistent with the sixth-order centred finite-
difference schemes on the interior of the domain. This can be seen from lines
seven and on of the matrices Q and P being equal to matrix formulations of
Eqs. (2.16) and (2.17), respectively. For the mixed derivatives, Eq. (2.18) is used,
with SBP-operators from Eqs. (2.23) in the direction orthogonal to the surface.

Filtering

The centred finite-difference schemes used to discretize the governing equations
are non-dissipative. This can cause problems due to the potential growth of high-
frequency modes in the solutions, leading to spurious noise (wiggles) in computed
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fields or numerical instability. In the present work, such instabilities showed up in
the density array, in particular on very fine non-uniform grids. Different methods of
filtering the instabilities related to non-dissipative schemes are implemented in the
Pencil Code. Alternatives include using upwinding rather than central-differences
for certain computations, using a high-order implicit filter, or using hyper-diffusion.
The latter option was not used. For details on hyper-diffusion in the Pencil Code,
the reader is referred to Brandenburg and Sarson [18] and Haugen and Brandenburg
[38].

The upwinding filter turns on dissipation in the computation of the density
field. The procedure makes use of (dissipative) fifth-order upwind stencils for
the advective operators of the density field. Because the difference between the
sixth-order central and fifth-order upwind derivative is proportional to the operator
of second-order accuracy, the upwind gradient can be computed by:

−uhδh
∂ f
∂h

∣∣∣∣
upwd

=−uhδh
∂ f
∂h

∣∣∣∣
cent

+
1
60
|uh| δh6 ∂ 6 f

∂h6

∣∣∣∣
cent

, (2.27)

for any sign of the velocity components in the h-direction, uh, with the first term
on the left-hand side computed by Eq. (2.16) and the second term (sixth derivative)
computed by:

δh6 ∂ 6 f
∂h6

i
≈ fi+3−6 fi+2 +15 fi+1−20 fi +15 fi−1−6 fi−2 + fi−3 . (2.28)

For details see Dobler et al. [28].
Upwind filtering is an inexpensive way to add dissipation to the density field.

The filter should, however, only be used for grids that are not body-conformal. This
is because the necessary SBP boundary closures for the body-fitted grids are not
implemented for the fifth-order upwind scheme or for the second-order central
differences of the sixth derivative. The SBP boundary closures in Eqs. (2.24) and
(2.26) are only appropriate for sixth-order central difference schemes of the first
and second derivative, respectively16

In simulations performed during the development and implementation of the
overset grid method in the Pencil Code, the impact of noise in the density field
increased when cylindrical polar coordinates were used. This was especially true

16SBP operators for a fifth-order upwind scheme exist, and have been used for computation of
the Euler equations [97]. The extension to the Navier-Stokes equations, if possible, requires a
modification of boundary handling by simultaneous approximation terms which complicate the
process considerably (see [31] and references therein).
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when the grid was refined and when the flow was unsteady. As mentioned above,
the upwind filtering in the Pencil Code cannot be applied to body-fitted cylindrical
grids. Instead, high-order Padé filtering is used. The Padé filter is an implicit filter
introduced by Visbal and Gaitonde [106] that filters high-frequency modes by:

α f φ̂i−1 + φ̂i +α f φ̂i+1 =
N

∑
n=0

αn

2
(φi+n +φi−n) , (2.29)

where φ̂k and φk are components k of the filtered and unfiltered solution vectors,
respectively. The parameter α f is a free (filter) parameter (

∣∣α f
∣∣ ≤ 0.5) and N

depends on the filter order. For the tenth-order filter used here, N = 5, and the fixed
parameters αn are:

a0 =
193+126a f

256
, a1 =

105+302a f

256
, a2 =

15(−1+2a f )

64
,

a3 =
45(1−2a f )

512
, a4 =

5(−1+2a f )

256
, a5 =

1−2a f

512
.

Asymmetric filters are used near the solid boundary, where the one-sidedness
of the filter increases as the boundary is approached. Different options have been
implemented, and up to tenth-order one-sided filters can be used with overset grids.
The filter used in the work done by Aarnes et al. [2] is a “0-6-8-8-8-10-" filter in the
vicinity of the boundary. That is, the boundary value is not filtered, and the filter
order for increasing distance from the surface is sixth-order, eighth-order (three
grid points) and tenth-order (all points in the interior). The boundary stencils and
parameter values can be found in Gaitonde and Visbal [34].

The high-order Padé filtering requires solving a tridiagonal linear system of
equations (Eq. (2.29)) for every strip of grid points in each direction. In the radial
direction a system of equations with i from 1 to Nr (where Nr is the number of
grid point in the radial direction) is solved for every strip in the θ -direction. The
filter is one-dimensional, making the system of equations manageable. Further, the
requirement

∣∣α f
∣∣ ≤ 0.5 ensures that the system is diagonally dominant, hence it

can be solved directly by the Thomas algorithm (a simplified form of Gaussian
elimination without pivoting, developed by Thomas [101]). For strips along the
θ -direction, the domain is periodic. This results in a cyclic tridiagonal system, that
can be solved with the Thomas algorithm after application of the Sherman-Morrison
formula [78].

The disadvantage of using an implicit filter (Padé filtering) as compared to
explicit filters (upwinding, hyper-diffusion) is increased computational cost due
to solving linear systems and increased communication between processors. The
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implicit Padé filter is, however, known to outperform explicit filtering schemes [106,
107] in terms of accuracy, and having less of an effect on larger flow structures.

Grid stretching

Many options for grid stretching are available in the Pencil Code. For grid stretching
in the radial direction of the cylindrical grid, grid stretching by hyperbolic sine
functions is appropriate. For grid points i = 1,2, . . . ,Nξ − 1, the grid points in
physical space17, ξi, are computed by:

ξi = Lξ

sinh
(

γ i
Nξ−1

)

sinhγ
+ξ0 , (2.30)

where
γ ≡ αgLξ , (2.31)

Lξ and Nξ are the physical length and the number of grid points in the ξ -direction,
respectively. The parameter αg is a free (grid) parameter and ξ0 is the location of
the first grid point18. With this set-up for grid stretching, the smallest and largest
grid spacings become:

δξmin =
Lξ γ

Nξ−1
1

sinhγ
, (2.32)

δξmax =
Lξ γ

Nξ−1
cothγ . (2.33)

For communication between the background and body-fitted grids in the overset
grid method, it is advantageous to have grid cells with similar grid spacing in the
interpolation region. In addition, having near-quadratic cells close to the surface of
the cylinder is recommended. The grid spacing in the tangential direction on the
overset cylindrical grid (θ -direction) is simply (2πri)/Nθ , where Nθ is the number
of grid cells in the θ -direction and ri is the radial coordinate of a strip of grid
points. Hence, the ratio between the smallest and largest grid cells in the tangential
direction is

δθmax

δθmin
=

rgrid

rcyl
, (2.34)

17The grid set-up in the Pencil Code is not computed directly, as presented here, but uses coordinates
in computational space and later converts to physical space. For the present purpose, however, the
physical space description is adequate (and significantly easier to comprehend).

18Note that the expressions are simplified due to the inflection point of the stretching function being
set to the boundary point ξ0. More general expressions can be found in the grid-generation module
in Pencil Code [100].
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where rgrid is the radius of the body-fitted cylindrical grid and rcyl is the radius of
the cylinder that the grid is fitted to. With grid stretching in the radial direction by
Eq. (2.30), the ratio between largest and smallest grid cells in the radial direction is:

δ rmax

δ rmin
= coshγ . (2.35)

Hence, to achieve similar grid spacing in the interpolation region on all grids
and near-quadratic cells in the vicinity of the cylinder surface, the following steps
should be taken:

• Set Nθ to an appropriate value for the cylinder grid size, such that δθmax≈ δx,
where δx is the grid spacing on the Cartesian grid.

• Compute the free parameter αg by combining Eqs.(2.31), (2.34) and (2.35)
to get:

αg =
1
Lr

cosh−1
(

rgrid

rcyl

)
, (2.36)

where Lr = rgrid− rcyl.

• Set the number of grid points in the radial direction by inserting δ rmax ≈
δθmax into Eq. (2.33), yielding

Nr ≈
Nθ

2πrgrid
αgL2

r coth(αgLr) . (2.37)

Other types of grid stretching can be used, but the stretching described here has
the advantage of being a straightforward way to yield a grid that is finest in the
vicinity of the cylinder and gradually becomes coarser as the distance from the
cylinder is increased.

The finite-difference stencils of Eqs. (2.16)–(2.19) are expressed for uniform
grids, yet with a slight modification these are also applicable to non-uniform grids.
The first and second order derivatives in physical space (ξ ) can be expressed as
derivatives in computational space (h) by:

∂ f
∂ξ

= h′(ξ )
∂ f
∂h

,
∂ 2 f
∂ξ 2 =

(
h′(ξ )

)2 ∂ 2 f
∂h2 −h′′(ξ )h′(ξ )

∂ f
∂h

. (2.38)

The functions h′(ξ ) and h′′(ξ ) are the first and second derivatives of h with respect
to ξ . These can be set during grid generation and do not vary in time unless the
grid is deformed during a simulation19.
19The grid in computational space is generated such that it is equidistant with grid spacing δh = 1.

Using deforming grids is not an option.
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2.4. Turbulence

A central focus for much of the research within this work is effects of turbulence
in the flow field on other flow phenomena. Turbulent flows feature a velocity field
that fluctuates randomly in time and is highly disordered in space, with fluctuations
that exhibit a wide range of length scales. Turbulence is unpredictable in the sense
that a minute change to the initial conditions will produce a large change to the
subsequent motion [26].

Important length scales used to characterize a turbulent flow field are (from largest
to smallest) the integral scale, the Taylor microscale and the Kolmogorov scale.
The integral scale and the Kolmogorov scale are characteristic length, velocity and
time scales of the largest and smallest eddies in the turbulent flow field, respectively.
The Taylor microscale is an intermediate scale in-between these two20. The energy
cascade describes the relation between the scales of turbulence (as described by
Richardson [83] and Kolmogorov [52, 53]). In brief, the largest eddies contain the
largest proportion of the energy in the flow. Energy is continuously transferred
from larger to smaller and smaller eddies, in a cascade, until the eddies become so
small that they are strongly affected by the viscosity. At the scale of these isotropic
(Kolmogorov sized) eddies, the kinetic energy is dissipated (into heat).

Computational simulations of turbulent flows

For simulation of turbulent flows, there are three main types of computations:
Reynolds-Averaged Navier-Stokes (RANS) simulations, Large-Eddy Simulations
(LES) and Direct Numerical Simulations (DNS).

In DNS, the Navier-Stokes equations are solved directly by the simulation soft-
ware, with sufficiently fine resolution to resolve all scales (spatial and temporal)
of the turbulent flow. The approach was popularized by Kim et al. [51] for a fully
developed channel flow, and has been applied to a large range of flows since then.
Because no modeling of the turbulence is used in DNS, it is regarded as the most
accurate way to simulate turbulent flows. A major drawback of DNS is that such
simulations are very computationally expensive. Resolving all scales of turbulence
(which often span several orders of magnitude), yields the number of grid points
as scaling by Re2.25

τ (Reτ is the Reynolds number defined in terms of the Taylor
microscale) and the total cost as scaling by Re3

τ in DNS [75]. All simulations in the

20Note that the Taylor microscale is not an arithmetic mean in-between the integral and the Kol-
mogorov scales, but a well-defined length scale that can be computed from two-point correlations
of the flow field. A Taylor scale based Reynolds number is commonly used to quantify the
turbulence of a flow field (see, e.g., Pope [75]).
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present work utilize DNS.
LES is an approach where the largest scales of motion are represented explicitly

while the small scales are treated by an approximate model [32]. In effect, low-pass
filtered versions of the Navier-Stokes equations are solved, allowing for the use
of larger grid spacing and time step sizes than in DNS. To avoid losing valuable
information in the filtering process, the smaller scales are represented by sub-grid-
scale (SGS) models. A popular SGS-model is the Smagorinsky model (Smagorinsky
[92]). Although LES is much less expensive to perform than DNS, such simulations
are in many cases too expensive for practical applications. For such applications,
RANS simulation is the preferred method. RANS simulates time-averaged versions
of the flow equations21. The time-averaging yields an additional stress term in the
equations, which must be modeled by a turbulence closure model. Such closure
models range from simple algebraic models (mixing length model) to second-order
closure models (Reynolds Stress Models) [105]. Alternatives to the mentioned
turbulence simulation strategies are unsteady RANS (URANS) and Very Large-
Eddy simulations (VLES).

Turbulence generation

For turbulence to develop in the flow past a cylinder, the Reynolds number must
be sufficiently high. The first instance of turbulence develops downstream of the
cylinder in the transition-in-wake state of the flow. To develop turbulence in the
shear layers or boundary layers around the cylinder, the Reynolds number must be
much higher than in the transition-in-wake.

Another possible source of turbulence in such a flow is turbulence inserted in
the free-stream. The present work is limited to moderate Reynolds numbers, and
insertion of free-stream turbulence at the inlet. Before a turbulent flow field is
inserted into the simulations, it is generated in a turbulence generation domain.

To generate turbulence, a rectangular box with periodic boundaries in all direc-
tions is used. Initially, the density and velocity fields are constant. Homogeneous
isotropic turbulence is generated in this periodic box by forcing in random directions
on a selected range of wave numbers. A forcing function is used to generate the
force term in the momentum equation (Eq. (2.2)), as described by Brandenburg [17],
Haugen and Brandenburg [38], and Babkovskaia et al. [7]. The forcing function is:

F (x, t) = R{Nfk(t)eik(t)x+iϕ(t)} , (2.39)

where x is the position vector and R indicates the real part of the expression. The
wave vector k(t) and random phase −π ≤ ϕ(t)≤ π change at every time step, so
21To emphasize the time-averaging, the term steady RANS is often used.
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Figure 2.1.: The insertion of a turbulent flow field at the inlet of the flow domain.
Thin slices of velocity data are taken from the turbulence domain (left box) and
added to the velocity field at the inlet of flow domain (right box). Figure reproduced
from Aarnes et al. [4].

F (x, t) is delta-correlated in time. On dimensional grounds, the prefactor is chosen
to be N = f0cs

√
kcs/δ t, where k = |k| and f0 are non-dimensional factors chosen

to regulate the intensity of the turbulence.
At each time step, one of many possible wave vectors in a certain range around

a given forcing wave number is selected. For example, with a given forcing wave
number k f = 5 this range may be 4.5 < |k|< 5.5. The system is then forced with
non-helical transversal waves,

fk =
k× ê√

k2− (k · ê)2
, (2.40)

where ê is an arbitrary unit vector that is real and not aligned with k. Note that
|fk|2 = 1.

The turbulence generation is run until it is statistically stationary. When this
point is reached, the turbulence can be inserted at the flow domain’s inlet. The
insertion process is straightforward, with slices of data taken from the turbulence
generation domain and added to the inlet of the flow domain at every timestep
(see Fig. 2.1). The inlet of the flow domain has a fixed mean velocity. With mean
flow in the x-direction, the mean velocity is U0 = (U0,0,0). Since the turbulence
generation domain has a mean velocity of zero (isotropic homogeneous turbulence)
the mean inlet velocity is not affected by the added turbulent flow field. The
velocities at the inlet are updated as U =U0 +u

′ at every time step, where u′ are
the velocity fluctuations in the slice taken from the turbulence generation domain.
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(a) IBM (b) Overset grids

Figure 2.2.: Illustration of grids used to represent solid objects in the Pencil Code,
by either immersed boundary methods (a) or overset grids (b).

To avoid outflow at the inlet, f0 used in the forcing function is chosen such that
max{|u′x|, |u′y|, |u′z|} < U0. Note that the size of the inlet (Ly and Lz in Fig. 2.1)
must be the same as the size of the data slices taken from the turbulence generation
domain. The two domains must also have the same number of grid points in these
directions.

2.5. Resolving solid boundaries

Representing a solid cylinder in a flow simulation may appear trivial, but the degree
of accuracy necessary for resolving impaction of very small embedded particles in
the flow made this one of the major challenges in this research. The background for
the two different methods used for this purpose was given in Section 1.3. In this
section a description of the implementations in the Pencil Code is presented. It is
based in part on material from research articles included in Chapter 5, in particular
from Aarnes et al. [1] and Aarnes et al. [5].

Immersed boundary methods

As mentioned in the introductory chapter, IBMs are methods that resolve boundaries
in the flow without fitting a grid to the boundaries. Typically, a non-body conformal
Cartesian grid is used for the entire flow domain, as illustrated in Figure 2.2(a). In
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Figure 2.3.: Immersed boundary method. A zone of ghost-points is used when
computing fluid-points. Ghost-points are set from corresponding mirror-points
in the flow domain, after identification of mirror-points along surface normals
(a) or along Cartesian grid lines and surface normals (b). Fluid-points within a
fixed distance from the surface are computed by interpolation. ( ) ghost-points,
( ) fluid-points, ( ) interpolated fluid-points, (#) hole-points, (�) mirror-points.

this illustration, the intersections of solid grid lines represent fluid-points, where
the governing equations are solved by using the finite-difference stencils defined
in Eqs. (2.16),(2.17) and (2.19). The intersection points of dashed grid lines are
grid points inside the solid (solid-points) where the flow equations are not solved.
The solid-points can be split into two groups: ghost-points and hole-points. The
ghost-points are set by corresponding mirror-points and used in the finite-difference
stencil of fluid-points in the vicinity of the solid surface, while hole-points are
unused grid-points. The two IBM implementations in the Pencil Code that are
considered here differ only in one aspect: how the velocity components in the
ghost-points are set.

Ghost-points and mirror-points

Flow variables (velocity and density) in the ghost-points are not computed by
solving the governing equations. Rather, they are set from corresponding mirror-
points in the flow domain, by imposing boundary conditions at the solid surface. At
the mirror-points the flow variables are computed by interpolation from surrounding
fluid-points. When the ghost-points are used by other fluid-points, the boundary
conditions are imposed on the fluid flow. The boundary conditions used for the
simulations of a cylinder in a cross-flow are no-slip and impermeability for the
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velocity components, and zero gradient for the density normal to the surface22.
The distance from a ghost-point to a mirror-point is twice the distance from the
ghost-point to the surface. This yields the following relationship between a flow
variables in a ghost-point (φg) and its corresponding mirror-point (φm):

φg(u) =−φm(u) , (2.41)

φg(ρ) = φm(ρ) . (2.42)

The two different methods used to compute ghost-points in the present work are
by identifying mirror-points along surface normals through ghost-points or along
grid-lines through ghost-points. The different methods are denoted orthogonal
mirror-point IBM (OIBM) and Cartesian mirror-point IBM (CIBM).

In the OIBM, each ghost-point is related to a single mirror-point, as seen in
Figure 2.3(a), where points g and m make up a ghost/mirror-point pair. The values
set in ghost-point g from m (by Eqs.(2.41) and (2.42)) is used in the finite-difference
stencils of fluid-points f1 and f2, when computing derivatives along the horizontal
and vertical directions, respectively. Conversely in the CIBM, each ghost-point
is related to several mirror-points, as seen Figure 2.3(b), where ghost-point g is
connected to mirror-points m, m′ and m′′. The density in point g is set identically
to the orthogonal mirror-point IBM, using data interpolated to point m. Velocity
components are set from points m′ and m′′. When g enters as a grid-point in the
horizontal gradients of point f1, velocities in g as set from m′ are used. When the
vertical gradients in point f2 use g, velocities in g are set from mirror-point m′′.

The handling of ghost- and mirror-points in the CIBM is somewhat more intri-
cate than in the OIBM, but it has the advantages of reducing distances between
fluid-points and mirror-points, and simplifying interpolation of mirror-points. Flow
variables in mirror-points are calculated by Lagrangian interpolation (Abramowitz
and Stegun [6]); bi-linear for OIBM and quadratic for CIBM (velocity components
only). With OIBM, flow variable φ in a mirror-point m at a position (xm,ym) is com-
puted from the four surrounding grid points (xi,y j),(xi+1,y j),(xi,y j+1),(xi+1,y j+1)
by

φm =C1 +C2x̃+C3ỹ+C4x̃ỹ , (2.43)

22The boundary condition for density can be derived by applying the boundary layer approximation
for pressure, ∂ p/∂ r = 0 (White [113]), to the ideal gas law for an isothermal flow.
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where

C1 = φi, j ,

C2 =−φi, j +φi+1, j ,

C2 =−φi, j +φi, j+1 ,

C3 = φi, j−φi+1, j−φi, j+1 +φi+1, j+1 ,

(2.44)

and

x̃ =
xm− xi

xi+1− xi
, ỹ =

ym− y j

y j+1− y j
. (2.45)

With CIBM, velocity components are interpolated using one-dimensional inter-
polants along the grid-lines. This makes increasing the order of interpolation from
linear to quadratic trivial. The quadratic interpolation stencils use three grid-points,
where one of the three grid-points is always the interception point of the grid-line
with the solid boundary. Because velocity components are zero at this point, the in-
terpolation of values to a mirror-point in-between fluid-points (xi,y j) and (xi+1,y j),
next to a boundary interception point (xb,y j) is:

φm = L1φi, j +L2φi+1, j , (2.46)

where

L1(xm,xi,xi+1) =

(
xm− xb

xi− xb

)(
xm− xi+1

xi− xi+1

)
,

L2(xm,xi,xi+1) =

(
xm− xb

xi+1− xb

)(
xm− xi

xi+1− xi

)
,

(2.47)

and similarly for mirror-points in-between grid points (xi,y j) and (xi,y j+1) using
L1(ym,y j,y j+1) and L2(ym,y j,y j+1).

Exceptions

Not all mirror-points can be set by interpolation from surrounding fluid-points.
Mirror-points that are very close to the surface, like point m in Figure 2.3(a), are
not surrounded by enough fluid-points to use Eqs. (2.43)–(2.45) directly, without
including ghost-points in the interpolation stencil. Flow velocities at such points are
computed by interpolation along the surface normal, where the intersection points
of the surface normal with the solid boundary and with the first grid-line outside the
solid boundary are used for interpolation. Data at the intersection with the grid-line
is interpolated from the two neighboring points along the grid-line.
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Figure 2.4.: Special handling of mirror-points and fluid-points that are very close to
the solid surface. ( ) ghost-points, ( ) fluid-points, ( ) grid-line interception-point,
(#) boundary interception-point, (�) mirror-points.

Since the velocity normal to the surface is expected to increase as a second
order function with distance from the surface, it is beneficial to interpolate this
variable by a quadratic expression. Velocities at the two interception points are
first decomposed into radial and tangential velocities. The radial component of the
velocity at the mirror-point is interpolated by the quadratic expression:

ur,m = ur,GI

(
δ rm

δ rGI

)2

, (2.48)

where ur,GI is the radial velocity at the grid-line interception point, and δ rm and
δ rGI are the distances from the mirror-point and grid-line interception point to the
boundary interception point, respectively. Note that this interpolation expression
is quadratic, yet guarantees that there are no overshoots in the interpolated values.
The tangential velocity component is interpolated by:

uθ ,m = uθ ,GI

(
δ rm

δ rGI

)
. (2.49)

The expressions for interpolation of ur,m and uθ ,m are valid only when u= 0 at the
surface.

Figure 2.4(a) depicts such a case, for mirror-point m (used by ghost-point g).
Data at fluid-points f3 and f4 are used to interpolate values to the grid-intersection
point ( ), such that the velocities at m can be computed from this and the known
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boundary value at the boundary interception point (#). Note that this handling is not
used for density, as the density at the boundary is not known (Neumann boundary
condition). Instead, regular interpolation stencils are applied, which works for
density, due to very little variation in the density field and a symmetric boundary
condition.

If a mirror-point is identified along a grid-line with the CIBM closer to the
surface than the nearest fluid-point along the grid line, the interpolation is simply
shifted one cell away from the surface. In Figure 2.4(a) the mirror-point m′ is
in-between fluid-points f1 and f2, and uses these fluid-points and the boundary
interception-point next to f2 in the interpolation. Mirror-point m′′ is too close to
the surface for such handling, and shifts the interpolation stencil to use f4 and f5.
Since the boundary interception-point next to m′′ is also used in the interpolation,
extrapolation is avoided and the shifting of the boundary stencil is does not produce
problems.

The second type of exception in the IBM implementation is the handling of
fluid-points very close to the surface. These points are particularly sensitive to
disturbances in the flow field, and for this reason an option is included to compute
them directly by interpolation from surrounding points and boundary interception-
points, rather than using finite-difference stencils23. If a fluid-point is within a
pre-defined cut-off distance from the cylinder24, the flow variables at the grid point
are computed by interpolation along surface normals, similarly to mirror-points
in the OIBM that were too close to the surface to be surrounded by enough fluid-
points. Figure 2.4(b) depicts such an interpolation: The fluid points f1, f2, f4 and
f5 are within the cut-off distance (dashed line). For each of these fluid-points,
the boundary interception-point and the grid-line interception at the first grid-line
from the surface are used in interpolation. As for mirror-point handling, data at
the grid-line interception is interpolated from neighboring fluid-points, e.g. values
at f6 and f7 are used to interpolate data to the grid-line interception point used
for interpolation to fluid-point f4. As for the mirror-points, the radial velocity
component is interpolated by the quadratic expression in Eq. (2.48).

Overset grids

Representing a solid in the flow by an overset grid means applying a body-fitted
grid to said object. Other considerations, like the shape of the flow domain, number

23Finite-difference stencils used to compute grid points very close to the surface would include
ghost-points quite far into the solid cylinder, in particularly for computation of mixed derivatives.
This is avoided by handling such points as exceptions.

24Default value is
√

2δx.
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of objects in the flow25, inlet and outlet conditions, etc., are specified by the
background grid and by communication between the overset grids.

The governing flow equations are discretized on each grid, which allows for
different coordinate systems to be used in the same flow simulation. For flow past a
cylinder in a rectangular domain, the appropriate choice is a Cartesian background
grid where Eqs. (A.1)–(A.4) are used for the flow. A cylindrical grid is fitted to
the solid (see Figure 2.2(b)) and the governing equations in Eqs. (A.12)–(A.15) are
discretized on this grid. Hence, a generalized flow solver (or two different flow
solvers) is necessary to update the solution on the different grids.

For the case of a cylinder in a cross-flow, the inlet, outlet, periodic boundaries,
etc., are handled by the background grid. Using overset grids does not affect how
the domain boundaries are specified. The solid object’s boundary, however, is
handled in a very different manner than when resolved with IBMs. Since the grid
surrounding the cylinder is body-conformal, SBP boundary closures of Eqs. (2.23)–
(2.26) can be used for third-order accurate, time-stable solutions at the boundary.
Hence, no ghost/mirror-points or interpolation is used to enforce the boundary
conditions at the cylinder surface. The physical boundary conditions (no-slip and
impenetrability for velocity and zero density gradient normal to the surface) do not
change.

Communication between grids

Each of the grids must take into account one additional boundary: the numeri-
cal boundary where data is communicated between grids by interpolation. This
boundary consists of a region of overlapping background and body-fitted grids.
In Figure 2.2(b) this region is hidden to make the illustration of the overset grid
clearer. In practice, the Cartesian grid penetrates into the cylindrical grid, and the
cylindrical grid is extended with grid points extending further out over the Cartesian
grid points. In the overlapping region, the grid points can be split into regular
fluid-points (some which are used as donor-points in interpolation), interpolated
fluid-points (fringe-points) and unused grid points (hole-points). A more detailed
depiction of the overset grids can be seen in Figure 2.5.

Identification of fringe-points on the two different grids is quite different. The
cylindrical grid simply uses a zone of fringe-points three points thick outside
the fluid-points (blue grid-lines/grid-points in Figure 2.5). For the background
grid, an inner and outer radius of fringe-points is set during pre-processing, and
all points within the bounds of these radii are identified as fringe-points (orange

25At present, the overset grid implementation in the Pencil Code only allows for a single grid overset
a background grid. Multiple grids overset one another will therefore not be considered here.
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(a) Identification of fringe-points (b) Fringe-points

Figure 2.5.: Identification of fringe-points in region of overlapping grids on a
background grid with δx/D = 8.

circles/grid points in Figure 2.5). The outer radius is set first, in accordance with a
criterion of explicit interpolation26; hence, the outer radius is smaller if higher-order
interpolation is used. The inner radius is computed from the outer radius, thick
enough to guarantee that all fluid-points use only other fluid-points or fringe-points
in the finite-difference stencils (not hole-points). All grid points on the background
grid within the inner radius are identified as hole-points.

After identification of fringe-points, the grid points on the opposing grid sur-
rounding each fringe-point are identified as donor-points. Flow variables from
these donor-points are interpolated to the fringe-point. The interpolated velocity
components must be transformed to the appropriate coordinate system, before used
in the flow arrays. The analytic relations between Cartesian and cylindrical (polar)
coordinates are:

x = r cosθ , r =
√

x2 + y2 ,

y = r sinθ , θ = arctan
(y

x

)
.

(2.50)

26Explicit interpolation on overset grids means interpolating from donor-points to fringe-points,
where all donor-points are fluid-points. Using implicit interpolation between grids means that
donor-points can also be fringe-points (Chesshire and Henshaw [21])
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The velocity transformations can be done in a straightforward way by:

ux = ur cosθ −uθ sinθ , ur = ux cosθ +uy sinθ ,

uy = ur sinθ +uθ cosθ , uθ =−ux sinθ +uy cosθ .
(2.51)

The number of donor-points for each fringe-point depends on the interpolation
stencil. Typically, the z-plane is shared between the Cartesian and the cylindri-
cal systems, hence stencils with four or nine donor-points are used for bi-linear
or bi-quadratic interpolation, respectively. If bi-linear interpolation is selected,
Eqs. (2.43)–(2.45) can be used directly regardless of whether the interpolation is
the Cartesian to the curvilinear grid or vice versa, because the grid points are all on
rectangular grid-cells in computational space. For quadratic interpolation, spline
interpolation stencils can be used. In the Pencil Code, the form of the quadratic
splines for interpolation of a point p at position xp from surrounding donor points
i−1, i, i+1 is:

φp = S0φi−1 +S1φi +S2φi+1 , (2.52)

where

S0 =
1
2

(
1
2
−δxp

)2

, (2.53)

S1 =
3
4
−δx2

p , (2.54)

S2 =
1
2

(
1
2
+δxp

)2

, (2.55)

with
δxp =

xp− xi

δxi
, (2.56)

and δxi is the grid spacing at grid point i. Other, higher-order interpolants can also
be used, but the implementations of these have not been properly tested at present.

Timestep on overset grids

When overset grids are used to resolve a solid boundary, the timestep is split into
four parts: updating the flow array using the governing equations on the Cartesian
grid, communicating the boundary data from the Cartesian to the cylindrical grid,
updating the flow array with the governing equations on the cylindrical grid, and,
lastly, communicating the boundary data from the cylindrical to the Cartesian grid.
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In some overset grid implementations (see, e.g. Sherer and Scott [91]) such splitting
is done for each sub-iteration of the timestep in the Runge-Kutta method. This is
not done in the overset grid implementation in the Pencil Code. The Cartesian flow
solver instead completes an entire Runge-Kutta timestep before communicating
flow data to the cylindrical grid. Following this, several Runge-Kutta timesteps are
performed on the cylindrical grid, before data is sent back to the Cartesian grid.

There are two main advantages of splitting the timestep as it is done in the Pencil
Code. Firstly, the data communication between grids is reduced. This saves both
computational time on each processor and communication time used to transfer
data between processors. Communicating data once per Runge-Kutta timestep
reduced these costs by a factor of three, when compared to communicating once per
sub-iteration. Secondly (and more importantly), completing several timesteps on
the cylindrical grid for each timestep on the background grid is a way to circumvent
the very strict timestep requirement imposed by using an explicit method for the
compressible Navier-Stokes equations. This timestep restriction is the minimum of
the advective and diffusive timestep restrictions,

δ tν ≤
Cνδξ 2

min
ν

, δ tu ≤
Cuδξmin

|u|+ cs
, (2.57)

respectively, where δξmin is the smallest grid spacing in any direction (on the
relevant grid), and Cν and Cu are the diffusive and advective Courant numbers,
respectively. For weakly compressible flows past a cylinder, the timestep restriction
is typically much smaller than the necessary timestep to accurately resolve the
flow, due to the necessity for a fine grid in the vicinity of the cylinder. By allowing
several timesteps on the cylindrical grid for each time step on the background grid,
the timestep restriction from the fine grid cells in the vicinity of the cylinder no
longer applies as a global timestep restriction. Thus, not only is computational
cost related to updating the region of fringe-points reduced, but the cost of the flow
solver as a whole is dramatically reduced by allowing a much larger timestep in the
major regions of the flow domain.

2.6. Simulating particle-laden flow

When the flow is particle-laden, the fluid-phase of the flow is handled with the
numerical methods described in the preceding sections, in the same way as if there
were no particles in the flow. For the Lagrangian particles, the third-order Runge-
Kutta method used for time integration in the same way as for the flow equations.
Other than this, the handling of the particle equations is fundamentally different
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from the flow equations. New considerations include the insertion of particles into
the flow, interpolation of flow data to particle positions, and particles impaction on
the cylinder.

Particle insertion

Particles are inserted at random positions within a limited volume near the inlet.
The intention of inserting particles into the flow is to study particle impaction on
the cylinder. For this reason, it is only necessary to insert particles over a volume
where the particles have a chance of hitting the cylinder. When the flow is laminar,
the front-side of the volume is the area that covers the projected cylinder area. No
particles inserted outside of this area will hit the cylinder27. For turbulent flow, the
particle trajectories do not follow the mean flow, and a larger insertion volume is
necessary. The size is dependent on the turbulence intensity and distance from the
inlet to the cylinder28. Whether particles are inserted over the entire flow domain or
not, the impaction efficiency:

η = Nimpact/Ninsert (2.58)

only takes into account the number of inserted particles (Ninsert) over the projected
cylinder area when computed from the number of particles that impact the cylinder
(Nimpact).

For the smallest particle sizes St = 0.01–0.1, the number of particles that impact
on the cylinder is very small (η f ≈ 10−5–10−4). For confidence in the simulation
statistics, when the impaction efficiencies are computed, Nimpact should be large
enough that a single impaction does not significantly impact η . With η f ≈ 10−5

for St = 0.01, this would require Ninsert of order 107 for this particular particle size.
Very small particles are light enough to follow the fluid almost perfectly. Hence, it
is reasonable to assume that only particles inserted very close to the center of the
inlet will have a chance of impacting on the cylinder, as fluid is pushed away from
the centerline upon approach to the cylinder. Consequently, inserting very small
particles close to the centerline only, and scaling up Ninsert correspondingly during
post-processing is a reasonable way to reduce the number of particles required
when very small particles in a laminar flow are considered. This technique has
been used with success in Aarnes et al. [2], where particles with St ≤ 0.1 where

27In theory, particles inserted outside the projected cylinder area can hit the cylinder, due to their
finite radii. However, the force from the fluid upon the particles will push the particles away from
the cylinder, and no particles inserted outside the area hit the cylinder in these simulations.

28Insertion over the entire inlet was used for simplicity, for the particle-laden turbulent flow simula-
tions in Aarnes et al. [3]
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inserted only over one-tenth of the projected cylinder area. Note that for flow with
turbulence in the free-stream, this would not be an appropriate way of inserting the
particles, because particles inserted farther from the centerline can be convected
towards and past the centerline when approaching the cylinder.

Updating the particle equations

To update the particle equations (Eqs. (2.8) and (2.9)), the fluid velocity and density
at each particle position is necessary. The particle positions do not, in general,
coincide with the grid points, so these values must be set using surrounding grid
points.

The simplest way to compute the fluid velocity and density at a particle position
is by using the nearest grid point-approximation, which consists of setting u and
ρ equal to the values at the grid points closest to xp. While this is a very fast way
to update the particles, it is too crude an approximation for the particle impaction
simulations. Instead, a cloud-in-cell approach is used, which means that the data
is interpolated from the surrounding grid points. Hence, bi-linear interpolation
(Eqs. (2.43)–(2.45)) is used for two-dimensional simulations, and tri-linear for
three-dimensional runs.

If an IBM is used to represent the cylinder, particles very closer to the cylinder
surface will not be surrounded by enough fluid-points to use the cloud-in-cell
interpolation. Such particles are handled by the interpolation procedure described
for mirror-points along surface normals that are surrounded by less than four
fluid-points (see handling of point m in Figure 2.4(a)). The use of quadratic
interpolation for the radial velocity component of particles in the immediate vicinity
of the cylinder has an especially large effect on the accuracy of particle impaction
simulations.

When the cylinder is represented by overset grids, the interpolation changes once
the particles are within the fringe-point radius. For particles within this radius, data
from the cylindrical grid is used, rather than from the background grid. The type
of interpolation scheme is set by the Pencil Code user to be either tri-quadratic, bi-
quadratic/linear, quadratic/bi-linear or tri-linear (for three-dimensional simulations).
In the case of bi-quadratic/linear interpolation, the interpolation is linear in the
z-direction. Alternatively, for quadratic/bi-linear interpolation, linear interpolation
is used for θ and z-directions. The recommended settings are bi-quadratic/linear
for radial and tangential velocity components (18 grid points used in 3D) and
tri-linear for velocity in the z-direction and density (eight grid points used in 3D).
The quadratic interpolation is Lagrangian, hence interpolation stencils:

φp = L0φi−1 +L2φi +L3φi+1 , (2.59)
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with

L1(xp,xi−1,xi,xi+1) =

(
xp− xi

xi−1− xi

)(
xp− xi+1

xi−1− xi+1

)
,

L1(xp,xi−1,xi,xi+1) =

(
xp− xi−1

xi− xi−1

)(
xp− xi+1

xi− xi+1

)
,

L2(xp,xi−1,xi,xi+1) =

(
xp− xi−1

xi+1− xi−1

)(
xp− xi

xi+1− xi

)
,

(2.60)

are applied in each quadratic direction. Points xi−1,xi,xi+1 are chosen such that
xi−1 < xp < xi+1 and Min(|xp− x j|)

∣∣
j=i−1,i,i+1 = |xp− xi|. To avoid overshoots in

the vicinity of the cylinder, the quadratic interpolation scheme for particles closer to
the surface than the closest grid point29 changes to Eq. (2.48) in the radial direction.
All interpolation from the cylindrical grid is done in the computational space of
radial and tangential coordinates.

Particle impaction

If a particle contacts the cylinder, the particle is removed from the simulation and
an impaction is registered. Particle sticking mechanisms, bouncing, etc. are not
considered. Although the particles in the simulations are point-particles, their finite
radii do come into consideration when impaction is considered. For a particle to
impaction on the cylinder, it is sufficient that the particle and cylinder radii overlap.
This impaction mechanism allows for boundary interception, that is, impaction on
the cylinder by the particle being intercepted by the cylinder due to the finite radii.
Figure 2.6 illustrates this mechanism.

2.7. Parallelization

The Pencil Code is parallelized by domain decomposition (data-parallelism), using
the Message Passing Interface (MPI) to communicate data between processors on
distributed memory systems30. The domain decomposition is a straightforward par-
allelization where grid points in the flow domain are assigned a processor according

29Users may choose a larger distance than this for the special handling, such as the momentum
thickness of a stagnation point flow [113]:

δm ≈ 0.20669
D√
2Re

as the limit for the special handling.
30Data-parallelism on GPUs is also possible, for parts of the code, but will not be considered here.
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(a) Streamlines for Re = 20 (b) Particle impaction by interception

Figure 2.6.: Trajectories for particles that following the streamlines to a large extent.
Without boundary interception, the particles in positions three and four (counting
from left to right) will not be removed from the simulation, but pass the cylinder.
( ) particle, (×) center of mass of particle. Mean flow from left to right, colouring
for horizontal velocity component.

to location, and local flow variable arrays are constructed on each processor. A
processor’s array of flow variables is padded with three ghost-points on all sides,
where copies of flow variables from neighboring processors are stored. These halos
of ghost-points are updated at every sub-iteration of the Runge-Kutta scheme, such
that the numerical solution is not affected by the parallelization.

With large particle simulations, an efficient parallelization is necessary. Typi-
cally, one of two methods is used: (1) particles are located on the processor that
“owns” the part of the flow domain on which the particle is located (spatial particle
parallelization) or (2) particles are distributed equally among processors, regardless
of spatial position. While (2) has the advantage of load balancing of particles
distributed unevenly in space, large amounts of data communication is a drawback
(global flow arrays may be necessary). Spatial particle distribution (1) is the pre-
ferred method in the Pencil Code although a version of (2) called particle block
domain decomposition is available (see Johansen et al. [49]).

Parallelization tests can be found in the manual for the Pencil Code [16]. Tim-
ing for up to 73 728 processors are included. Timing results show near linear
weak scaling. Strong scaling was also considered, which follows an approximate
second-order fit with very good scaling for ≥ 163 grid-points per processor in
three-dimensional simulations. Scaling for large simulations with a fixed grid (5123

grid points) and a large amounts of particles in the flow (6.4×106) on 128–4096
cores showed a linear trend.
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When overset grids are used, each processor will own a part of each grid (back-
ground and overset grids). This data layout is chosen to avoid idle processors during
the update steps on different grids, as these cannot be updated simultaneously.
In general, the domain covered by the background grid on one processor may or
may not overlap with that same processor’s domain on the cylindrical body-fitted
grid. Hence, inter-processor communication may be necessary during inter-grid
communication of interpolated flow variables in the overlapping region.

At present, the particle handling in (1) is not altered when overset grids are used.
Hence, a particle is identified on a processor by (x,y,z)-coordinate, not (r,θ ,z)-
coordinate. This means that additional communication may be necessary when a
particle enters the region covered by the body-fitted grid. For this reason, part of
the disadvantage of particle parallelization in (2) is encountered even though (1) is
used. Although significant, the increased data communication is not detrimental to
the parallel simulations on overset grids, since:

• only parts of the body-fitted grid need to be communicated; that which is
overlapped by the background grid of the processor in question.

• the communication needs only occur once per Runge-Kutta timestep on the
background grid, as flow variables on the body-fitted grid are not updated
during the sub-timesteps on the background grid.

• the total number of grid points on the body-fitted grid is much smaller than
that on the background grid.

As an example of the latter point, consider two-dimensional rectangular domains
with domain size Lx×Ly = 10D× 20D, used for particle-laden flows in Aarnes
et al. [2]. Here, the ratio of grid points on the body-fitted mesh to the grid points on
the background mesh is 1/10. Even if a global flow array of the body-fitted grid31 is
communicated, it is still much smaller than communicating in the opposite direction
(from the background to the body-fitted grid) or generating global Cartesian data
arrays to use with particle handling (2).

31Note that such global arrays are not used. The worst case scenario in terms of communication
is that in a two-dimensional simulation, parallelization would only occur in one direction that
resulted in a split of the body-fitted grid region among two processors, such that a processor
needed to receive (up to) half of the grid points from the body-fitted grid.
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I am putting myself to the fullest possible use,
which is all I think that any conscious entity can
ever hope to do.

HAL 900032

3
Contributions

The main contributions to the present thesis consist of five manuscripts, which have
been published in or submitted to peer-review journals with scopes appropriate for
each of the manuscripts. Of the manuscripts, one has been published in conference
proceedings, two have been published in international journals and two are under
consideration for publication in international journals. In this chapter context for
and summaries of the manuscripts are given.

3.1. Timeline

The five manuscripts cover quite a wide range of topics, all within the field of
flow past a solid geometry. The range of topics reflects different phases of the
work during the Ph.D. studies. The main motivation has always been to increase
understanding of the physics of fluid and particle flows, but accuracy limitations in
the simulations forced the alternation between research on physical problems and
development of numerical methods. A rough time-line for the research is shown in
Figure 3.1.

Roughly speaking, the five manuscript included in Chapter 5 can be catego-
rized as three papers concerning numerical methods (Papers I, IV and V) and two
concerning advancements in understanding of physical mechanisms in flows with
free-stream turbulence (Papers II and III). Of the papers focusing on numerical

32From Stanley Kubrick’s 2001: A Space Odyssey, where the fictional character HAL 9000 is an
artificial general intelligence [54].
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Paper I: On validation and implementation of an 
immersed boundary method in a high order finite 

difference code for flow simulations

Validate and improve existing IBM 
implementation in the Pencil Code.

Make transitional flow a test case for the 
new method. Interesting turbulence effects 

motivate further study.

Paper II: Numerical investigation of free-stream 
turbulence effects on the transition-in-wake state of 

flow past a circular cylinder

Introduce particles into the turbulent free-
stream

Paper III: Inertial particle impaction on a cylinder in a 
turbulent cross flow at modest Reynolds numbers

Reynolds number and particle size 
limitations in particle-laden flow study 

motivate further improvements in the Pencil 
Code

Paper V: Treatment of solid objects in the Pencil Code 
using immersed boundary methods and overset grids

Overset grid method implemented and 
tested

Paper IV: High-order overset grid method for detecting 
particle impaction on a cylinder in a cross flow

Coupling between particle-module and 
overset grid-module

Figure 3.1.: Timeline of Ph.D. work.

methods, Paper I [1] validates an immersed boundary method (IBM) implementa-
tion and improvements made to this method, Paper IV [2] introduces the overset grid
method for flows past a cylinder, with and without particles in the flow, and Paper
V [5] is a comparative study of IBM and overset grids for solid body representation
in the Pencil Code. For the manuscripts focusing on physical phenomena, Paper
II [4] is a study of a transitional flow under conditions of high-intensity free-stream
turbulence, and Paper III [3] consists of direct numerical simulations and statistical
analysis of particle impaction in laminar and turbulent flows.

Although updates to the existing immersed boundary method and development
of the overset grids in the Pencil Code are documented in the manuscripts, extensive
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work done during the Ph.D. studies was only indirectly documented within this
research. That work is related to continuous improvements of code efficiency,
post-processing routines, parallelization, interpolation, etc. To demonstrate the
amount of code development completed, consider the Fortran-module of the overset
grid method alone (not counting any post-processing or coupling to other modules),
which is more than 104 lines of code (and growing), and more than 26000 lines of
code were submitted to the Git repository of the Pencil Code by the thesis author.

3.2. List of papers

PAPER I

Jørgen R. Aarnes, Nils E. L. Haugen and Helge I. Andersson (2015)

On validation and implementation of an immersed boundary method in a
high order finite difference code for flow simulations
Published in MekIt’15: Eighth national conference on computational mechanics;
2015 May 18–19, Trondheim, Norway. Ed. by Skallerud, Bjørn and Andersson,
Helge I. Barcelona, Spain: International Center for Numerical Methods in Engi-
neering, pp. 1–21.

The authors’ contribution to paper: Jørgen R. Aarnes implemented the novel
handling of ghost-point in the Pencil Code, with support in joint-coding sessions
with Nils E. L. Haugen. Nils E. L. Haugen also contributed to the idea of the new
method. Jørgen R. Aarnes performed all validation runs and wrote the paper. The
process was supervised and the manuscript reviewed by Nils E. L. Haugen and
Helge I. Andersson.

PAPER II

Jørgen R. Aarnes, Helge I. Andersson and Nils E. L. Haugen (2018)

Numerical investigation of free-stream turbulence effects on the transition-in-
wake state of flow past a circular cylinder
Published in Journal of Turbulence 19, 252–273.

The authors’ contribution to paper: Jørgen R. Aarnes performed the simulations,
evaluated the results and wrote the paper. Helge I. Andersson suggested the topic
for study, and both Nils E. L. Haugen and Helge I. Andersson contributed with
supervision and suggestions for manuscript revision.
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PAPER III

Jørgen R. Aarnes, Nils E. L. Haugen and Helge I. Andersson (2018)

Inertial particle impaction on a cylinder in a turbulent cross-flow at modest
Reynolds numbers
Submitted to journal

The authors’ contribution to paper: Jørgen R. Aarnes performed the simulations,
evaluated the results and wrote the paper. Nils E. L. Haugen suggested the research
topic and made major contributions to the statistical analysis part of the paper.
The process was supervised and the manuscript reviewed by Nils E. L. Haugen and
Helge I. Andersson.

PAPER IV

Jørgen R. Aarnes, Nils E. L. Haugen and Helge I. Andersson (2018)

High-order overset grid method for detecting particle impaction on a cylinder
in a cross flow
Submitted to journal, some revisions made after submission.

The authors’ contribution to paper: Jørgen R. Aarnes implemented and per-
formed tests on the overset grid module, evaluated the results and wrote the paper.
Code improvements and implementation details was discussed on many occasions
with Nils E. L. Haugen. The process was supervised and the manuscript reviewed
by Nils E. L. Haugen and Helge I. Andersson.

PAPER V

Jørgen R. Aarnes, Tai Jin, Chaoli Mao, Nils E. L. Haugen, Kun Luo and Helge
I. Andersson (2018)

Treatment of solid objects in the Pencil Code using an immersed boundary
method and overset grids
Published in Geophysical & Astrophysical Fluid Dynamics. Forthcoming in special
issue titled On the Physics and Algorithms of the Pencil Code.

The authors’ contribution to paper: Jørgen R. Aarnes performed the tests and
evaluated the results for the circular geometry part of the paper. Jørgen R. Aarnes
and Tai Jin co-wrote the complex geometry section, for which tests were performed
by Chaoli Mao and analyzed by Tai Jin. The process was supervised by Nils

52



E. L. Haugen. Nils E. L. Haugen, Helge I. Andersson and Kun Luo reviewed the
manuscript.

3.3. Summary of papers

PAPER I

y′
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(a) Orthogonal mirror-point method
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f

x y zx′y′
z′

x′′

(b) Cartesian mirror-point method

Figure 3.2.: The two IBM implementations. Ghost-points (#) set by corresponding
mirror-points (�) along surface normal (a) or along grid lines in x- and y-direction
(b) Mirror-points interpolated from surrounding fluid-points ( ).

Solid boundary representation of a cylinder in a cross flow by the immersed
boundary method (IBM) was validated by parametric studies of relevant physical
and numerical properties that influence the simulations. The three non-dimensional
flow variables: mean drag coefficient, root-mean-square lift coefficient and Strouhal
number were computed from the simulation results, and compared for varying grid
spacing, domain size (upstream length, downstream length, width), Mach number
and Courant number. The parameter study yielded expected results, with drag, lift
and Strouhal numbers approaching asymptotic values that correlate with the param-
eter variation. An exception to this was the mean drag coefficient computed for
varying upstream and downstream length. The unexpected behavior was attributed
to blockage effects. The parametric studies were concluded with a comparison to a
large set of previously published data, showing good agreement with the present
study.

In the grid refinement study, it was found that 64 grid points per cylinder diameter
was necessary to resolve the flow with reasonable accuracy when Re = 100. To
counter this strict grid requirement a new IBM method was suggested (see Figure
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Figure 3.3.: Mean drag coefficient (CD), root-mean-square lift coefficient (C′L) and
Strouhal number (St) for different grid spacing and IBM: The Cartesian mirror
point method (solid blue) and the orthogonal mirror point method (dashed red).
Error bars indicate 1% deviation.

3.2). The previous IBM implementation in the Pencil Code identified mirror-points
along orthogonal lines from the ghost-points through the solid surface. The new
method instead used mirror-points along horizontal and vertical grid lines. The
methods were contrasted as orthogonal and Cartesian mirror-point implementations
of the immersed boundary method. With the new method, a grid spacing of 38 grid
points per cylinder diameter was found to be sufficiently fine (see Figure 3.3. This
is a significant improvement from the previous IBM implementation.

PAPER II

The transition-in-wake state of flow past a cylinder, during which the first three-
dimensional aspects of the flow develop, was studied by direct numerical simu-
lations (DNS). The effect of a turbulent free-stream (TFS) on the transition was
investigated by inserting homogeneous isotropic turbulence at the inlet of the flow
domain. The intensity of the decaying TFS varied from 3.6% to 12.2% (as it
reached the cylinder), with integral scales 0.5, 0.75 and 1.0 times the cylinder
diameter for the high intensity case. The results were compared with a laminar
free-stream (LFS) case.
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Figure 3.4.: Relationship between Strouhal number (St) and Reynolds number (Re)
over the transitional domain (b) TFS flow compared to LFS case. -o- LFS; -x- TFS;
- - 2D LFS.

Effects of the TFS were seen in two Reynolds number ranges (see Figure 3.4). At
the lower end of the transition (Re < 190) the TFS perturbed the flow, which forced
the onset of the transition at a lower Reynolds number than the corresponding
LFS case. With a laminar free-stream, there is a sharply defined critical Reynolds
number where the first three-dimensional effects in the wake were found at Re≈ 190.
With a TFS, the critical Reynolds number was not sharply defined. This is not
surprising, as this transition is subcritical, hence, flow disturbances may initiate the
transition earlier. The shift due to the TFS was, however, to a lower Re than allowed
by the hysteresis pattern of the subcritical instability seen in experiments with
an LFS. Turbulence with different integral scales and intensities revealed further
complexities at the onset of the transition. Quasi-stable states, in which the wake
alternates between two- and three-dimensional vortex shedding, were observed.
Such states are closely related to large scale vortex dislocations that develop in the
wake. For a quasi-stable shedding state, the vortex dislocation breaks up before the
wake reaches a saturated state of mode A instabilities.

The TFS also affected the upper part of the transitional regime (Re ≥ 250).
Mode A instabilities were simulated in the wake, such that mixed A–B instabilities
were observed for Re ≥ 250. This is in contrast to the LFS flow, where mode A
instabilities die out in the upper part of the transitional regime, and pure mode B
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Figure 3.5.: Contours of instantaneous vorticity ωz = [∇×u]z in a plane along
the streamwise direction, through the cylinder axis, plotted for Re = 250 (left and
middle) and Re = 350 (right) for flow simulations with LFS (top) and TFS (bottom).
Contour plots for two time instants are given for Re = 250: t1, early development
of instabilities; t2, asymptotic state (t2� t1). Only the asymptotic state is shown
for Re = 350.

instability states are seen in the wake (see Figure 3.5). The effects of stimulated
existence of mode A instabilities in the wake (inhibiting a pure mode B wake)
correlated with the turbulence intensity, and was strongest for the highest intensity
TFS.

In accordance with the studies by Bloor [14] and Norberg [66], the effect of
the turbulent free-stream on the transition-in-wake was an increased bandwidth
of Reynolds numbers spanning the transition-in-wake. More precisely, the band-
width of Reynolds numbers where mode A instabilities are sustained in the wake
increased. Disturbances in form of turbulent fluctuations are therefore an additional
source of scatter in measured critical Reynolds numbers, previously attributed to
contamination from end conditions [118].

PAPER III

The effects of turbulence in the free-stream on front-side particle impaction on a
cylinder were studied with direct numerical simulations and statistical analysis. A
large number of inertial point particles (∼ 107) were inserted at random positions
over the inlet of the flow simulations. The particles were distributed over Stokes
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(a) Re = 100 (b) Re = 400

Figure 3.6.: Predicted and observed results for amplification factor (R f ) of impaction
efficiencies resulting from turbulence of different integral scales interacting with
particles in the flow.

numbers 0.2≤ St ≤ 10, and the simulations were performed for moderate Reynolds
numbers (Re = 100 and Re = 400). For each Reynolds number, three cases of
particle impaction were simulated: LFS, TFS with integral scale Λ = 0.8D, and
TFS with Λ = 2.7D. In addition to the simulations, expectation values of particle
impaction affected by TFS were derived:

E(η(Steff))≈ η(St)+
η ′′(St)

2
σ

2
St , (3.1)

where Steff is the effective Stokes number, η ′′(St) is the second derivative of the
impaction efficiency for laminar conditions and σ2

St is the variance of the effective
Stokes number. With a turbulent free-stream Steff is a stochastic value, Steff =
(St ·U)/U0, where U is the flow velocity and U0 is the velocity of the mean flow.

The effects of the TFS were large for particles with St = 0.3, in particular
at Re = 400, where 3–4 times as many particles hit the cylinder (depending on
the integral scale of the turbulence). For smaller (St = 0.2) and larger particles
(St ≥ 0.4) only a small effect relative increase in particle impaction was seen.
Previously published results by Weber et al. [111] showed a cut-off Stokes number
for particles that were affected by the TFS. A similar upper cut-off was reproduced,
but using such a cut-off to identify which particles are affected by free-stream
turbulence was regarded as inappropriate, when boundary interception was included
as an impaction mechanism. There appears to be a peak Stokes number where the
maximum effect of the turbulence on particle impaction exists, and a small region

57



of St around this maximum quite large amplification of impaction occurs. This
Stokes number is in the St-region where the dominant impaction mechanism on
the cylinder changes from boundary interception to boundary stopping. Including
impaction by boundary interception yields such a peak at Stpeak > Stcrit.

The effect of turbulence on particle impaction depended on the Reynolds number
of the flow, and the integral scale and intensity of the turbulence. The turbulence
intensity (Ti) decayed at a much faster rate for smaller integral scales and Reynolds
numbers. Higher Reynolds number and larger integral scale (i.e., higher turbulence
intensity) yields a larger amplification of impaction.

With η ′′(St) approximated from the LFS simulations and σ2
St computed from

decaying turbulence in a cylinder-free domain, expectation values of front-side
particle impaction were computed and plotted together with the observations from
the direct numerical simulations (coloured fields in Figure 3.6). The observed
effect of the TFS on a limited range of Stokes numbers was reproduced by the
predictions using Eq. (3.1). The fit was very good with regards to which Stokes
numbers were affected by the turbulence, and it is indicative of large amplifications
of the impaction efficiencies. The predictive power of Eq. (3.1) is good, and it
is expected that more accurate approximations of η ′′(St) and σ2

St will only make
the predictions better. Such an expression can be useful for predictions of particle
impaction in flows with free-stream turbulence, requiring only data from an LFS
flow and the intensity of the decaying turbulence.

PAPER IV

The recent implementation of an overset grid method (see Figure 3.7) in the Pencil
Code was described, and tests were performed to determine the formal order of
accuracy and performance of the method for practical flow simulations. Particle
impaction on a cylinder in a cross flow motivated the development of this method,
and as such, this was the sample application of overset grids used within a complex
flow problem. Unique features of the overset grid implementation were documented.
These include local time-step restrictions, summation-by-parts boundary conditions
and application to particle impactions.

The formal order of accuracy, P, was determined, by computing L2-error norms
from steady flow simulations (Re = 20) on grids with spacing refined stepwise by a
factor 1/2. Two methods of interpolation were compared, and both yielded P≈ 2.5
for all flow variables in most of the domain covered by the body-fitted cylindrical
grid. The order of accuracy was highest in the immediate vicinity of the of the solid
surface (P≈ 5 for the radial velocity component).

For unsteady flow at Re = 100, the simplest interpolation between grids (bi-linear
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(a) (b)

Figure 3.7.: Communication from background Cartesian grid to overset cylindrical
grid (a) and back (b): Fringe-points ( ) receive data from surrounding donor-
points ( ) by interpolation. Dashed lines used to identify sections of the grids where
variables are not computed by finite-differences (fringe-points and hole-points).

Lagrangian interpolation) performed better than the complex method (bi-quadratic
spline interpolation). Grid refinement runs showed very rapid convergence towards
grid independent solutions for central flow coefficients (drag, lift and Strouhal
number). Differently sized overset grids were tested, and all showed good agreement
with previously published data for the computed coefficients.

When applied to particle-laden flows, simulations reproduced previously pub-
lished results over the entire range of Stokes numbers tested (0.01 ≤ St ≤ 10).
The simulations using overset grids used much coarser meshes for the particle
simulations than used in previous studies. Direct comparison for equally sized
flow domains yielded a 90% reduction in the number of grid points required for
two-dimensional simulations. The dramatic reduction in computational cost was
exploited to efficiently investigate the effect of domain sizes and grid resolution
on particle impaction. Increasing the domain size, from Lx×Ly = 6D× 12D to
10D×20D (with mean flow along the y-direction) revealed considerable blockage
effects on the smaller domain (see Figure 3.8). The effect of a larger flow domain
(smaller blockage effect) significantly reduced particle impaction for the smallest
particles. Together with grid refinement, the new result showed an over-prediction
in published results by Haugen and Kragset [39] of a factor of 6.3 for the small-
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Figure 3.8.: Front side impaction efficiency (η f ) as a function of Stokes number
(St) at Reynolds number 100 for different domain sizes (left) and grid resolutions
(right).

est Stokes number (St = 0.01). The over-prediction was most prominent for the
smallest particles, and was reduced to a factor 2.8 for St = 0.1.

PAPER V

Two methods of solid body representation implemented in the Pencil Code, were
compared for steady and unsteady flows past a solid object. The orthogonal mirror-
point IBM and the newly implemented overset grid method were considered.

Grid refinement simulations for Reynolds numbers, Re = 20 (steady), Re = 100
(unsteady) and 400 (unsteady) revealed a large difference between resolutions
necessary to reach grid independence. With overset grids, less than one fourth the
number of grid points were necessary in each direction to reach grid independence,
as compared to when IBM was used (see Figure 3.9). Because the time-step is
proportional to the grid spacing, significantly larger time-steps could be used with
the overset grid method. This was partially due to the local time-step restriction
on the overset grids. With a sufficiently fine grid, both the IBM and overset grids
could be used to compute flow coefficients (drag, lift and Strouhal number) that
agreed well with previously published data.

The advantages of IBM over overset grids were considered. Although much
less efficient than overset grids, IBM is useful due to its straightforward imple-
mentation into an existing flow solver and the flexibility of the method. The latter
trait was demonstrated, by resolving a non-circular boundary with IBM. A semi-
circular/semi-elliptical cylinder was used as a test geometry, for which the ratio of
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Figure 3.9.: Normalized values for mean drag coefficient (CD) for flow with Re =
100, mean drag coefficient and root-mean-square lift coefficient (C′L) for flow with
Re = 400. Results are computed for grids with varying coarseness. The cylinder
in the flow is represented either by the immersed boundary method (IBM) or with
overset grids (OG).

(a) R/b = 2.0 (b) R/b = 1.0 (c) R/b = 0.5

Figure 3.10.: Flow visualization. Contours of instantaneous vorticity normal to the
view plane plotted for three different geometries at Re = 100. Inflow at the top of
plane.
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circular radii R to elliptical axis b was varied (see Figure 3.10).

3.4. Other contributions

In addition to the included manuscripts and the developments in the Pencil Code,
the author played an active role in the Pencil Code community and participated in a
range of scientific conferences during the Ph.D. studies. This has also contributed
towards the present thesis, and relevant works are therefore listed here.

Conference presentations

Improving the implementation of solid objects in a high order finite difference
code for direct numerical simulations of turbulent flow
Presented at MekIT’15 – The 8th National Conference in Computational Mechanics
(18–19 May, 2015), Trondheim, Norway.

The effect of turbulence on particle impaction on a cylinder in cross flow
Presented at 9th International Conference on Multiphase Flow (22–27 May, 2016),
Florence, Italy.

The effect of free stream turbulence on the transition in wake
Presented at 11th European Fluid Mechanics Conference, (12–16 September, 2016),
Seville, Spain.

Resolving bluff bodies in DNS using overset grids
Presented at MekIT’17 - 9th National Conference on Computational Mechanics
(11–12 May, 2017), Trondheim, Norway.

Free-stream turbulence effects on the transition-in-wake state of the flow past
a circular cylinder
Presented at 16th European Turbulence Conference (21–24 August, 2017), Sto-
cholm, Sweden.

Particle-laden flow past a cylinder resolved with IBM and overset grids
Presented at 70th Annual Meeting of the American Physical Society Division of
Fluid Dynamics (19–21 November, 2017), Denver, USA.
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Pencil Code community

Participation without presentation at the 10th Pencil Code Meeting (7-11 July,
2014), Göttingen, Germany.

Validation and immersed boundary method improvements for fluid flow sim-
ulations
Presented at 11th Pencil Code Meeting (11–14 May, 2015), Trondheim, Norway.

Free-stream turbulence effects on the onset of the transition in the wake of
a circular cylinder
Presented at 12th Pencil Code User Meeting (8–12 August, 2016), Graz, Austria.

Resolving bluff bodies in the Pencil Code using overset grids
Presented at 13th Pencil Code User Meeting (10–14 July, 2017), Newcastle, UK.
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Whenever a theory appears to you as the only
possible one, take this as a sign that you have
neither understood the theory nor the problem
which it was intended to solve.

Karl R. Popper33

4
Conclusion

In this chapter, concluding remarks on the different research topics are given. Future
outlook with suggestions for further research and recommended extensions to the
work presented in this thesis are also included.

4.1. Concluding remarks

A computational study of a cylinder in a cross flow has been presented. The focus
of the study has been on both physical phenomena and numerical problems related
to such a flow case.

The physical problems considered are the transition-in-wake state of the flow
and particle impaction on the cylinder. For both of these flow problems, the novel
contribution has been the investigations of how free-stream turbulence affects the
different mechanisms at play, investigated by DNS with homogeneous isotropic tur-
bulence inserted at the flow inlet for moderate Reynolds numbers. Under conditions
of a medium to high-intensity turbulent free-stream the range of Reynolds number
spanning the transition-in-wake state of the flow is increased. The disturbances in
the flow trigger transition at a lower Reynolds number and that transition endures
to a higher Reynolds number. Relevant mechanisms for this bandwidth increase are
stimulation of mode A instabilities, intermittent vortex dislocations, quasi-stable
shedding states and mixed A–B instabilities. For inertial particle impaction on a
cylinder, the turbulence amplifies the particle impaction for Stokes numbers in
the range where the dominating impaction mechanism changes from boundary

33In Objective Knowledge: An Evolutionary Approach [76].
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stopping to boundary interception. The relative amplification of impaction is small
for particles outside this Stokes number range.

The numerical problems considered were related to the accurate resolution of
fluid and particle flow around a solid. The accurate resolution of the boundary layer
around a solid cylinder was a crucial aspect of this research, and both immersed
boundary methods and overset grid methods were employed to achieve sufficiently
accurate results at reasonable computational costs. Efforts to improve the numerical
representation of a solid cylinder by an IBM yielded a significant reduction in the
necessary grid resolution. The particle-laden flow simulations were still limited to
particles with a Stokes number larger than or equal to 0.2 for accurate represen-
tation of particle trajectories in the vicinity of the cylinder. For smaller particles,
significantly finer grids would be necessary. This motivated the implementation of
overset grids. The Pencil Code implementation of overset grids has shown great
promise. Not only is the order of accuracy of the method higher than that of the
IBM implementation, but a much more flexible grid stretching scheme and local
time-restrictions provide large cost reductions in highly accurate flow simulations.
The result is a method with outstanding performance for the simulation of a cylinder
in a cross flow, both with and without particles in the flow.

4.2. Future outlook

During the research performed in this doctoral work, many new research problems
were encountered. Some are direct extensions to the work performed, while others
are new possibilities or ideas that have arisen during the research.

The immediate extension to the investigation of transitional flow is to perform
simulations with lower intensity TFS. It is plausible that there is a cut-off for the
turbulence intensity at which the onset of transition is sensitive to flow disturbances.
Identifying a cut-off intensity can have applications to determining an acceptable
level of disturbances in experimental studies of transitional flow states. A focused
investigation into the mechanism of vortex dislocations in the wake is another
topic for future research. The dislocations are attributed to self-excited mode A
instabilities by Henderson [42], yet still occur in quasi-stable states where the wake
does not settle into a mode A instability when the free-stream is turbulent. Does
this mean that the self-excited A modes exist without other visible flow effects other
than the intermittent vortex dislocations, when high-intensity disturbances force the
transition?

For particle impaction under conditions of free-stream turbulence, an immediate
extension is to perform simulations for many more Stokes numbers, in particular
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in the region where impaction is affected by the turbulence. In this way, the peak
Stokes number for amplification can be more accurately identified, which can be
applied in practical applications when impaction should be avoided (like in indus-
trial boilers). Further studies should also aim to include a larger range of Stokes
numbers and turbulent intensities. When the Stokes number range is increased (to
include smaller particles), mechanisms like Brownian motion and thermophoresis
should also be accounted for. Perhaps even more interesting is to increase the
Reynolds numbers of such flows, such that simulations are performed under condi-
tions that are more representative of real world applications. A combination of this
and accounting for more than just inertial impactions should be the aim of future
DNS investigations of cylinders in particle-laden cross flows. For higher Reynolds
numbers, the backside impaction also becomes an interesting aspect of particle
deposition.

These research topics, and many more, can be studied with the novel numerical
methods implemented in the Pencil Code during these Ph.D. studies. The code is
open-source and freely available for anyone to download from GitHub. At present,
recent extensions to the overset grid module include handling of non-isothermal
flows (energy equation included in the solver) and computation of thermophortic
forces on particles in the flow.

The intent of this thesis is to provide useful information and inspiration to
researchers in the field of fluid dynamics, who have the time and patience to
investigate fundamental flow problems by direct numerical simulations. Together
with advances made by researchers in experimental fluid dynamics and efforts
by engineers to make use of fundamental research in the design of real-world
applications, such computational studies are a source of continuous progress in the
understanding of the physics of fluid and particle flows.
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Let no one ignorant of geometry enter here.

Inscription, Plato’s Acadamy34

A
Navier-Stokes equations

The compressible Navier-Stokes equations are rarely written out in full. Although
the short-hand notation is quite elegant, the Navier-Stokes equations written in
an expanded format are useful when developing or understanding procedures in
a computational fluid dynamics software. The expressions are given here. To
understand how computations are performed in The Pencil Code, the Navier-Stokes
equations: (Eqs. (2.6) and (2.7)) formulated term-by-term are most useful, as this
is how the equations are solved by this particular software. Both the full form
and the term-by-term form are given here. The expressions are based on and
checked against material found in Cantwell [19], Griffiths [36], Bird et al. [13], and
Quartapelle [80].

A.1. Cartesian coordinates

It is straightforward to write the Navier-Stokes equations in Cartesian coordinates.
The full form of the continuity equation (Eq. (2.1)) is:

∂ρ

∂ t
+ux

∂ρ

∂x
+uy

∂ρ

∂y
+uz

∂ρ

∂ z
= −ρ

(
∂ux

∂x
+

∂uy

∂y
+

∂uz

∂ z

)
. (A.1)

The momentum equation, Eq. (2.2), in Cartesian coordinates is given by the set of
equations:

34Tradition has it that the statement was engraved over the door of Plato’s Academy [30].
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where the divergence
(
∇ ·u= ∂ux

∂x +
∂uy
∂y + ∂uz

∂ z

)
is written in compact form to keep

the equations from spanning too many lines.
Writing out the right-hand sides of Eqs. (2.6) and (2.7) is trivial in Cartesian

coordinates. These are included here for completeness. The terms on the right hand
side of the continuity equation are:
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The terms on the right hand side of Eq. (2.7) are split into components in in x,y and
z-direction. This yields:
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A.2. Cylindrical coordinates

The momentum equations in Cartesian coordinates have an identical structure in all
three directions. This is not the case in cylindrical (polar) coordinates, where the
equations become notably more complicated.

In cylindrical coordinates, the Navier-Stokes equations can be written out in
the r,θ and z-directions by using the cylindrical coordinate form of the gradient,
divergence, curl, Laplacian, vector Laplacian and advective operators for a scalar
and vector field:
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In Eq. (A.11), r̂ , θ̂ and ẑ are unit vectors in r,θ and z-directions, respectively.
The scalar function f = f (r,θ ,z), F andG are vector functions F = Fr(r,θ ,z)r̂+
Fθ (r,θ ,z)θ̂+Fz(r,θ ,z)ẑ (and similar forG), and ∇ is a three-dimensional deriva-
tive operator in cylindrical coordinate space. With these, the continuity equation
can be written as:
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and the momentum equations as:
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The term-by-term formulation of right hand sides of Eqs. (2.6) and (2.7) in
cylindrical coordinates are:
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(A.16)
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The term-by-term equations can be reduced to versions of the ordinary formulations
of the Navier-Stokes equations, provided the fluid can be described by the ideal gas
law (Eq. (2.5)) with constant speed of sound and constant kinematic viscosity.

The cylindrical terms of Eqs. (A.16)–(A.20) appear more unwieldy than the
Cartesian counterparts, Eqs. (A.6)–(A.10). However, by formulating the Navier-
Stokes equations in this way it becomes clear that regardless of the choice of
coordinate system, the equations are functions of the fluid variables ρ and u and a
set of primitive derivatives only. The primitive derivatives are:

∂ρ

∂xi
,
∂uxi

∂xi
,

∂ 2uxi

∂x j∂xk
, (A.21)

where xi ∈ {x,y,z} for Cartesian coordinates and xi ∈ {r,θ ,z} for cylindrical coor-
dinates (the same goes for x j and xk).
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One of the symptoms of an approaching nervous
breakdown is the belief that one’s work is terri-
bly important.

Bertrand Russell35

5
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35In The Conquest of Happiness [86]
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Abstract. An open source code using high-order finite differences for fluid flow simula-
tions has been validated for use for flows past a stationary cylinder. The implementation
of the immersed boundary method in the code has been considered. A new implemen-
tation is suggested, replacing orthogonal mirror points by mirror points along grid lines.
This implementation resulted in more accurate computation of drag and lift coefficients,
indicating increased accuracy of the computed flow close to the cylinder and allowing for
coarser grids to be used in the simulations.

1 INTRODUCTION

As the cost of high computing power is ever decreasing, the use of high accuracy com-
putations of fluid flow is no longer restricted to academia, but widespread in both research
and engineering applications. The extent one trusts the results from computational fluid
dynamic simulations can be illustrated by the way direct numerical simulations (DNS) of
turbulence are often referred to as numerical experiments, rather than simulations or nu-
merical computations. The firm belief in computational results is not unfounded. Indeed,
numerical simulations compare very well with experimental results, and open for research
on many scientific problems that cannot easily be studied experimentally.

A problem may, however, arise when developed software is applied to research for which
it has not been thoroughly tested and validated. The value of numerical results that are
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seemingly trustworthy will quickly decrease if a small change of the case studied, e.g.
a small increase of the domain size, has a large, unexpected influence on the computed
results.

The aim of this paper is to present a thorough and systematic validation of the open
source high order finite difference code known as the Pencil code [1] used to compute
compressible flow around a circular cylinder at Reynolds number Re = 100, where

Re =
U∞D

ν
, (1)

with free stream velocity U∞, cylinder diameter D and kinematic viscosity ν. The flow
problem is a well-known benchmarking case. The validation is presented in detail as the
code used is open for use by other researchers, whom may easily compare their validation
to the results presented here. Further, it is the intent of the authors to make use of this
software for simulating turbulent two-phase flow and the importance of understanding
how different parameters affect the results cannot be overstated.

The Pencil Code is an open source code where all routines can be inspected in detail.
In the process of validation, a closer look is taken on the way the fluid-solid interface in
the flow problem is represented. This is done by the immersed boundary method with
discrete forcing and ghost cells as described in, e.g., [2, 3]. The code uses 6th order central
difference on all fluid points, and a three point deep ghost zone is therefore necessary
in representing the solid interface. More details on the implementation of the immersed
boundary implementation and a suggested method of improvement can be found in Sec. 3.

2 VALIDATION

In conducting a thorough validation meant to lay the foundation for further work for
a specific case, the effect of varying several different parameters has been studied. The
parameters include both physical properties of the system (domain size, Mach number)
and numerical properties (grid spacing, Courant number). For all validation runs the drag
coefficient

CD =
2FD

ρU2
∞D

, (2)

the lift coefficient

CL =
2FL

ρU2
∞D

, (3)

and the Strouhal number

St =
fD

u
, (4)

are computed, and used to compare the effect of tuning different parameters. The coeffi-
cients are expressed in terms of the free stream velocity U∞, density ρ, cylinder diameter
D, vortex shedding frequency f , drag force FD and lift force FL. The drag and lift forces
are computed on a given number of forcepoints close to the cylinder surface. These forces
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Figure 1: Definition of physical set-up. Cylinder is not to scale.

vary with time, as the Reynolds number is sufficiently high to cause vortex shedding.
Therefore, the mean drag coefficient and the root-mean-square lift coefficient are com-
puted and used in the validation. The using root-mean-square values of the lift coefficient
is standard practice. The mean value should be close to zero, when rms value is not used.

The physical set-up is a two-dimensional rectangular domain of length Lx and width
Ly, as show in Fig. 1. The length can be split into the upstream length, Lx,u and the
downstream length, Lx,d, which need not be equal. Partially reflecting Navier-Stokes
characteristic boundary conditions (NCSBC) (see [4]) are used at both the inlet and the
outlet, with constant inflow velocity U∞ at the inlet. In the spanwise direction periodic
boundary conditions are used. One could argue that free-slip walls should also be tested,
but as this is not appropriate for the author’s further work with this set up it is not the
focus of this study.

For all the validation runs the following properties are not altered: D = 0.1 m, U∞ =
1.0 m/s and ν = 1.0 · 10−3 m2/s. All lengths in the system are non-dimensionalized in
terms of the cylinder diameter D.

The results from the validations runs are plotted with error bars, such that the effect
of the different parameters are more easily compared. The area spanned by an error
bar is 1% (0.5% above and 0.5% below a point) of the “correct” value of the drag, lift
and Strouhal number. Note that the correct value is not obtainable analytically, and
the results found by Qu et al. [5] using body conformal grids and very large domains
are used for this purpose. For the largest domain in [5] (200D×200D) the values are
CD = 1.310, C ′L = 0.2151 and St = 0.1647 for incompressible flow. An alternative would
be to use the asymptotical values at very large domains with body conformal grids, found
by Posdziech and Grundermann [6]. They do, however, not include root-mean-square lift
in their results.
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2.1 Grid refinement

The first parameter that is validated is the grid spacing. The grid is Cartesian, and
the convective time step is computed for each time step by

∆t = CCFL
(∆x)min

(|u|+ cs)max

, (5)

where CCFL is the Courant number, (∆x)min = min(∆x,∆y,∆z), u is the fluid velocity
at a grid point and cs is the sound speed. Hence, the time-step is proportional to the
smallest grid spacing in the system. This motivates choosing the grid spacing equal in
the x- and y-direction, ∆x = ∆y. The remaining parameters (the domain size, Mach
number and Courant number) are chosen rather arbitrarily, some of them perhaps overly
cautiously others not strict enough, as will be shown in the validation to come. The
reason for the rather arbitrary choice of parameters is the lack of a detailed validation
in literature, for the specific flow problem computed with a similar software. The grid
refinement results are purely of qualitative interest, to find a sufficiently fine grid, not to
find quantitative information about the drag, lift and Strouhal number. The upstream
and downstream length are chosen equal, and the length and width of the system are set
to 20D and 10D, respectively. The flow is weakly compressible with a Mach number set
to 0.05. The Courant number is set to 0.4.

In Fig. 2 it can be seen that the resolution has little effect on the Strouhal number.
The effect on the rms lift and the drag coefficient are comparable for D/∆x ≥ 25 (for
D/∆x < 25, however, the rms lift has a large drop, making the similarity between CD and
C ′L less than obvious in the figure). The oscillatory behaviour for both these quantities
for D/∆x < 64 is an unwanted effect. Thus, the grid spacing should be chosen such that
D/∆x ≥ 64 to avoid this. Hence, quite a large number of grid points are necessary to
compute accurate results, especially when the domain size is increased (assuming that the
grid refinement is close to independent of the domain size). The use of a stretched grid
should therefore be considered in order to reduce the resolution without using a coarser
grid close to the cylinder surface.

The magenta curve in Fig. 2 depicts the mean lift coefficient for this grid refinement
study. This is included for completeness, to confirm that the mean lift is indeed close
to zero. The error bars in the figure are the same ones that are used for the root-mean-
square lift coefficient. The results show a tendency towards negative mean coefficients for
coarse grids, which may indicate symmetry breaking in the computations. This tendency
is, however, not obvious as the grid spacing is decreased. Apart from this, it can be seen
that the mean lift coefficient is not affected much by decreasing the grid spacing beyond
D/∆x ≥ 25. This indicates that rms lift coefficient is a more appropriate measure of
accuracy in the validation runs. The mean lift coefficient will not be included beyond
this.

4



Jørgen R. Aarnes, Nils E. L. Haugen, Helge I. Andersson

1.46

1.48

1.50

1.52

1.54

C
D

0.20

0.22

0.24

0.26

C
′ L

0.174

0.175

0.176

0.177

0.178

S
t

0 20 40 60 80 100 120
D/∆x

0.004
0.002
0.000
0.002
0.004

C
L

Figure 2: Computed mean drag coefficient, root-mean-square lift coefficient, Strouhal
number and mean lift coefficient for different grid spacing.

2.2 Mach number

The Mach number, defined here as

Ma =
U∞
cs
, (6)

has a large impact on the time-step in the simulations of compressible fluid flow. As
the Mach number is reduced to approach the incompressible limit, the time step is also
reduced. It is therefore necessary to consider the qualitative impact of the Mach number
on the results, such that the effects are known for Mach numbers that are convenient to
use in the simulations. All Mach numbers considered here are for subsonic flow. The
domain size and Courant number is equal to that in the grid refinement simulations. The
grid spacing is set to D/∆x = 64.
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Figure 3: Computed mean drag coefficient, root-mean-square lift coefficient and Strouhal
number for varying Mach number.

Figure 3 depicts the results from runs with varying Mach number. It can be seen that
once again the Strouhal number is much less affected by the parameter variation, than
the drag and lift coefficients. In contrast to the grid refinement results, the results in
Fig. 3 vary in a smooth, non-oscillatory fashion, approaching the incompressible limit
as the Mach number is decreased. This is as expected, as for most flows no important
changes is observed when the Mach number is reduced from 0.2 to 0.01 [7] (not reduced
below 0.025 in the present computations). From the results, one should expect less than
1% deviation from the incompressible limit, when the Mach number is set to 0.1. Thus,
setting Ma = 0.1 is a reasonable trade-off between accuracy and computational cost.

2.3 Domain size

While both grid refinement and varying the Mach number is fairly straightforward,
looking at the effect of changing the domain size requires some more thought. Not only
should one expect that the three parameters Lx,u, Lx,d and Ly affect the computed results,
when varied one at the time, one might also expect that the variations are not independent
(as assumed with grid spacing and Mach number variations). Hence, varying a single
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parameter at a time is not necessarily enough to fully understand how the domain size
affect the computed quantities.
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Figure 4: Computed mean drag coefficient, root-mean-square lift coefficient and Strouhal
number for varying domain width.

Consider first the variation of system width, where the results are depicted in Fig. 4.
These results are computed with D/∆x = 64, CCFL = 0.4, Ma = 0.1 and Lx,u = Lx,d =
10D. It is clear that the width of the system has a large impact on the computed
coefficients, and it is the first parameter this far that has more than a modest impact
on the Strouhal number. This far the system width has been set to Ly = 10D. The
results in Fig 4 indicates that this is, by far, a too narrow domain to obtain results
that quantitatively accurate. However, as the results, in a similar manner as the results
from the Mach number variation, drop quite smoothly towards an asymptotic limit, the
qualitative behaviour in the system may be satisfyingly resolved with such a domain
width.

The computed drag coefficient, lift coefficient and Strouhal number for varied stream-
wise lengths are depicted Fig. 5, where the blue and red curves represent the results for
varied upstream and downstream lengths, respectively. The results are computed with
D/∆x = 64, CCFL = 0.4, Ma = 0.1 and Ly = 10D. When the upstream length is varied
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Figure 5: Computed mean drag coefficient, root-mean-square lift coefficient and Strouhal
number for varying upstream length (blue) and downstream length (red).

the downstream length is set to 10D, and vice versa. Hence, the curves overlap exactly
at the point where the varied parameter is 10D. The curves also overlap to a large extent
for the computed Strouhal number for Lx,u, Lx,d ≥ 10D, which is robust to changes of the
upstream and downstream lengths.

The way the mean drag and rms lift coefficient vary, on the other hand, is not as
expected. Both show a significant drop as the upstream and downstream lengths are
increased from 5D to 10D. This trend does not, however, extend towards an asymptotic
limit, as was the case for increasingly large domain width. Consider the mean drag
coefficient for increasingly large downstream lengths (red curve in top window of Fig. 5).
The curve shows some oscillations for small values of Lx,d, before it decreases steadily. For
Lx,d > 35D, however, there is an unexpected increase in the computed drag coefficient.
This increase is not only apparent in the results computed at Lx,d = 40D, there is a
further increase for Lx,d = 50D. The reason for this behaviour, and the similar behaviour
for the variations with upstream length, is not obvious. It is probable that it is related
to some blocking effect due to the domain being too small for the flow problem, either in
the spanwise or the streamwise direction, or both.

Figure 6 depicts the von Kármán vortex street at close time intervals for two different
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Figure 6: Vorticity component in z-direction for downstream lengths Lx,d = 20D (top)
and Lx,d = 40D (bottom).
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Figure 7: Computed mean drag coefficient for varying downstream length, for three pa-
rameter configurations: Lx,u = 10D and Ly = 10D (red), Lx,u = 20D and Ly = 10D
(blue), Lx,u = 10D and Ly = 20D (green).

downstream lengths, Lx,d = 20D and Lx,d = 40D. The snapshots do not indicate that
the vortices leave the domain differently in the two different simulations and there is no
sign of reflections that distort the results. Thus, it is unlikely that the this is the reason
for the unexpected results in Fig. 5.

To understand the behaviour of the computed drag coefficient in Fig. 5 a few more
validation runs for varying domain size are performed. The downstream length is varied
for three different parameter configurations. One with Lx,u = 10D and Ly = 10D (the
same as before), one with Lx,u = 20D and Ly = 10D and one with Lx,u = 10D and
Ly = 20D. The results are seen in Fig. 7.

Several aspects of the domains influence on the computed mean drag coefficient are
apparent in the figure. Consider first the difference between the red and the green curves.
The red curve is equal to the computed drag for varying downstream length in Fig. 5,
while the green curve depicts the results with doubled domain width. The two curves are,
qualitatively, very similar; the bottom curve is only shifted downwards by approximately
0.075. This shift, towards a more accurate result for the computed drag coefficient, can
also be seen in Fig. 4, when comparing the computed mean drag coefficient for Ly = 10D
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Figure 8: Computed mean drag coefficient for varying upstream length, for three param-
eter configurations: Lx,d = 10D and Ly = 10D (red), Lx,d = 20D and Ly = 10D (blue),
Lx,d = 10D and Ly = 20D (green).

and Ly = 20D. This confirms that the blockage effects from a narrow width has a large
impact on the quantitative results and a very modest impact on the qualitative results.

Comparing the red curve with the blue curve, for which the upstream length has
been doubled shows that a possible reason for the unexpected jagged form of the drag
coefficient computed with Lx,u = 10D is a blockage effect due to a too short upstream
length. This is in accordance with [6] that advise against using domain with smaller
upstream lengths than 20D. The blue curve shows the expected behaviour of dropping
towards an asymptotic value for increasingly large downstream lengths. Thus, to achieve
the expected qualitative behaviour of increasing the domain in the downstream direction
the upstream direction must be larger than some threshold value.

The effects are somewhat similar for the computed drag coefficient with varying up-
stream lengths, for different Ly and Lx,d. Figure 8 depict the results for varied upstream
length, for three parameter configurations. One equal to the one in Fig. 5 (red), one with
Lx,d = 20D and Ly = 10D (blue), and one with Lx,d = 10D and Ly = 20D (blue). Again,
the green and red curves are qualitatively very similar, indicating independent effects of
increasing upstream length and domain width. The blue curve is more smooth. Beyond
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Figure 9: Computed mean drag coefficient, root-mean-square lift coefficient and Strouhal
number for different Courant numbers.

the value for the smallest upstream length (Lx,u = 5D) the computed drag coefficient
increases towards a limiting value for increasing upstream length for the configuration
with Lu,d = 20D.

2.4 Courant number

The Courant number is a numerical constant that sets restrictions on the time step
(Eq. (5)) to maintain stability of the explicit time discretization. One often tries to
avoid a larger Courant number than one, which is related to the stability limit found
by von Neumann analysis of the one-dimensional advection equation discretized by the
upwind scheme. An even lower Courant number is often used chosen, to ensure that the
simulations are well within the stability region. This is not necessarily a good idea, as the
time step will become small. Indeed, for higher order discretization schemes a Courant
number larger than unity may be permitted (as shown in, e.g., [8] where CCLF = 1.43 is
the stability criteria).

Figure 9 depict the computed drag and lift coefficients and the Strouhal number for
different Courant numbers. The constant parameters are D/∆x = 64, Ma = 0.1, Lx,u =
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Lx,d = 10D and Ly = 10D. It can be seen that the Courant number has no significant
effect on the computed quantities for CCLF ≤ 1.2. This does not mean that CCLF = 1.2
is the optimal choice of Courant number for all simulations with this set-up. If, e.g.,
forced turbulence is introduced or the Reynolds number is increased such that turbulence
is generated in the flow, the small scale structures will have a significant impact on the
result. This may influence the choice of Courant number as the Courant number influences
the small scale error.

With CCLF = 1.4 the computations are close to becoming unstable, and the computed
lift and drag show some deviations from sinusoidal behaviour. A run with CCLF = 1.6
was also initiated, but did not complete successfully, as instability produced NaNs in the
solution.

2.5 Comparison to data sets from previous studies

The impact of variation of different parameters of interest has been studied in detail.
To conclude the validation part of this paper a few runs for a large domain have been
computed, and are compared to previous studies. Table 1 show computed values for mean
drag coefficient, rms lift coefficient and Strouhal number, from several different previous
studies as well as the present one. The extent the previous studies are comparable to the
present one varies from study to study. All studies are assumed grid independent, and
only the domain size is given for comparison. While some studies use the rms lift as a
control parameter, others use the amplitude of the lift. This amplitude has been scaled by
0.707 to an approximate rms-value. This may be done as the lift coefficient is a smooth
sinusoidal-like function with zero mean value.

The present results have been computed on a rectangular domain of width Ly = 60D,
upstream length Lx,u = 20D and downstream length Lx,d = 40D. The flow is compressible
with Mach number Ma = 0.1 and the Courant number is set to CCLF = 1.0. The grid
is equidistant with grid spacing ∆x = D/60. In addition, two numerical parameters
have been altered, as compared to the previous runs. One is a scaling parameter used in
the computations of the drag force and lift force, and one is a parameter related to the
fluid points very close to the cylinder surface. The latter (linear close interpolate) will
be discussed further in Sec. 3. Default values in the software have been used for these
parameters, this far. The change is made before computing the runs for the large domain
and is based on previous experience with high accuracy runs for this flow problem.

The studies in Tab. 1 represent a wide spread of computational fluid dynamic methods
for computing the flow past a cylinder. The top seven and the present study use the
immersed boundary method to represent the cylinder in the flow, yet they use quite dif-
ferent domain sizes. The eight remaining do not use the immersed boundary method, but
different body conformal grids. Finite-volume, finite-difference, finite element, spectral
element and lattice-boltzmann methods are represented in the table. Only [14], [19] and
the present study are for compressible flows, while the remaining are computations for
incompressible flows. The study [14] uses the Pencil Code, the same software that is used
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Table 1: Comparison with data sets from previous studies. Root-mean-square lift co-
efficients marked by a superscript star ((∗)) denote lift coefficient amplitudes scaled to
root-mean-square values. The non-rectangular grids are marked as circular inlet/C-type
(I) or circular/O-grid (#). Domains where the cylinder is not centred have both upstream
and downstream length given.

[(Lxu + Lxd
)× Ly]/D

2 CD C ′L St

Lai & Peskin [9] (6.1 + 20.5)× 26.6 1.4473 0.233(∗) 0.165
Kim, Kim & Choi [10] 70× 100 1.33 0.22(∗) 0.165
Su, Lai & Lin [11] (13.4 + 16.5)× 16.7 1.40 0.240(∗) 0.168
Pan [12] 60× 60 1.32 0.226(∗) 0.16
Tseng & Ferziger [3] 32× 16 1.42 0.29 0.164
Noor, Chern & Horng [13] − 1.4 − 0.167
Haugen & Kragset [14] 70× 35 1.328 − 0.166
Park et al. [15] (50 + 20)× 100, I 1.33 0.235(∗) 0.165
Shi et al. [16] 100, # 1.331 − 0.1650
Mittal [17] 100× 100 1.322 0.226 0.1644
St̊alberg et al. [18] 160, # 1.32 0.233(∗) 0.166
Posdziech & Grundmann [6] (20 + 50)× 40 I 1.3504 0.234(∗) 0.1667
Posdziech & Grundmann [6] (40 + 50)× 80 I 1.3321 0.229(∗) 0.1650
Li et al. [19] 100× 100 1.336 − 0.164
Qu et al. [5] 60× 60 1.326 0.2191 0.1660
Present (20 + 40)× 60 1.334 0.227 0.1658

in the present study, but with a different domain size and resolution. The studies [5]
and [6] are intended to compute the coefficients to high accuracy, for very large domains,
meant to give qualitative results useful for, e.g., benchmarking purposes. Only the do-
mains most similar to the domain used in the present study are included in Tab. 1. Two
of the domains in [6] are close to the present domain size, and both are included in the
table.

It is seen that the computed results are in very good agreement with previous studies.
A few of the studies using the immersed boundary method are for smaller domains than
the high accuracy runs in this study. These results compare well with the results for
similar domain sizes, as depicted in Figs. 4–7. The validations performed does not only
show how the different parameters affect the solution, but also that the solution is in good
agreement with literature.

The results computed with the Pencil Code can be regarded as highly accurate. The
results are, however, achieved by using a very fine grid, something that may prove trou-
blesome if the computed case is to be generalized to three dimensions. The critical point
when regarding the grid spacing in the set-up is the resolution of the points closest to
the cylinder surface. Therefore, the way the fluid equations are solved here is studied in
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detail to find possible improvements to the boundary layer representation.

3 IMMERSED BOUNDARY METHOD

The immersed boundary method was introduced by Peskin in the 1970s to model
flow around heart valves [20]. Today it is a class of methods that represent a boundary
immersed in a flow with non-body conformal grids [2]. As the grid does not conform to
the solid boundary, incorporating the boundary conditions require a modification to the
equations in the vicinity of the boundary. In the Pencil Code, this is done by what is
called a discrete forcing approach. In this way of implementing the immersed boundaries
the flow equations are first discretized on a Cartesian grid without regard to the immersed
boundary, and then forcing terms that represent the boundaries’ effect on the flow are
introduced. For details on the grid representation close to the boundaries the reader is
referred to [14]. Only the main outline will be repeated here.

3.1 Orthogonal mirror point method

To avoid special handling of the grid points close to the solid surface, a ghost-cell zone is
constructed inside the solid surface. The ghost-cell zone is three grid points deep, contrary
to the much used single ghost-point in discrete forcing immersed boundary methods (see,
e.g., [3]). Three points are necessary to make the sixth order central differencing scheme
applicable at the grid points close to the solid surface as well as far from the boundaries.
The ghost-cells are given values by using mirror points outside the solid surface. Figure
10 illustrates the relation between mirror points and ghost points for three ghost points.

The boundary conditions at the cylinder surface is no-slip and impearmeability for the
velocity, and zero gradient in the radial direction for the density. The way the mirror
points are set up using lines orthogonal to the interface makes satisfying these boundary
conditions fairly straightforward. However, the distance from a computed fluid point close
to the immersed boundary to the mirror points used to generate ghost points necessary
to compute the flow variables at the fluid point can be large. This may have a negative
influence on the accuracy of the computations. This effect will be greatest on the grid
points nearest to the cylinder surface, as they make use of three grid points inside the
solid geometry. This is illustrated in Fig 10, where the relation between the fluid point
a close to the cylinder surface and the position of the mirror point used to set the value
at the ghost points d can be seen. It is possible to handle these points as exceptions. A
parameter limit close linear in the Pencil Code lets the user choose the distance from the
cylinder that qualifies for special handling – using interpolation between the surface and
the neighbouring point to compute the flow variables, rather than the high order finite
difference method (detail in [14]). The default distance is half a grid cell (thus fluid point
a in Fig. 10 would be handled as an exception). This distance is used in all the validation
runs in Sec. 2, except for the simulations compared with previous studies (Tab. 1), where
a larger distance has been used (this gave favourable results).
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y′

x′

z′

abc
x y z

Figure 10: Ghost points set by corresponding mirror points at orthogonal distance from
the solid surface. Fluid points (a,b,c;  ), ghost points (x,y,z; #) and a mirror points
(x′,y′,z′; �).

3.2 Cartesian mirror point method

A new implementation of the immersed boundary method in the Pencil Code is sug-
gested. The method makes use of the Cartesian grid by setting local mirror points along
the grid lines. This minimises the distance from a fluid point to the mirror points used
when setting the ghost-cell values. The method is quite straightforward for the velocity
components in the flow, but requires special handling of the density function to satisfy a
zero gradient in the radial direction. In addition some ghost points will have to be com-
puted several times – once for each direction for which they are to be used. The concept
is illustrated in Fig. 11.

Consider a computation of the fluid point b. The ghost points x and y are needed (in
addition to three fluid points to the right and the left fluid point a) in the 6th order central
differencing scheme. The mirror points used in the computation of the fluid velocities in
the ghost-points x and y are x′ and y′, respectively. It can be seen that the mirror points
x′ and y′ are much closer to b than the corresponding mirror points in the orthogonal
mirror point method (Fig. 10). This is expected to reduce the error in the ghost point
representation in the central differencing scheme, as behaviour of the fluid velocities at
the ghost points are more strongly coupled to the fluid point velocity if the mirror points
are in close proximity to said grid point.

The fluid velocity vector in the mirror points is computed by interpolation between the
two nearest grid points and the surface point on this grid line. Hence, when computing
x′ in Fig. 11 the points b and a are used, as well and the surface point to the right of
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abc

d

e

f

x y zx′y′
z′

x′′

Figure 11: Ghost points set by corresponding mirror points along the grid lines in x-
and y-direction. Fluid points (a,...,f ;  ), ghost points (x,y,z; #) and a mirror points
(x′,y′,z′,x′′; �).

a. When computing y′ points c, b and the surface point to the right of a is used in the
interpolation, etc. The surface points can be used for the velocity interpolation since
non-slip and impearmeability conditions at the surface require all velocity components to
be zero there. Such conditions do not apply to the density, for which all that is known is
that the radial component of the density gradient is zero at the surface. Due to this, the
new immersed boundary method is more of a hybrid method than a pure Cartesian grid
method. The orthogonal mirror points shown in Fig. 10 are constructed in this scheme
as well, yet only to set the density in the ghost-points.

The mirror point x′′ that is included in Fig. 11 is used when computing the velocity
vector in x for computation of the y-components of d, e and f . This drawback, the
necessity to compute the value in some ghost points several times, is not expected to have
a large impact on the computational cost of the immersed boundary implementation.

This new immersed boundary implementation is expected to improve the accuracy
of the computed flow variables, such that high accuracy results can be computed with
a coarser grid than that used in the validation runs. If these expectations are met,
this will not only negate the added cost of decomposition and additional ghost points
computations, but reduce the overall simulation time significantly.

3.3 Results

Figure 12 depict mean drag coefficient, rms lift coefficient and Strouhal number for
varying grid size computed with the two different implementations of the immersed bound-
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Figure 12: Computed mean drag coefficient, root-mean-square lift coefficient and Strouhal
number for different different grid spacing. Two different implementations of the immersed
boundary method have been used to get the results. The Cartesian mirror point method
(blue) and the orthogonal mirror point method (red, dashed).

ary method in the Pencil Code. The blue and red curves show the results for the Cartesian
mirror point method (see Sec. 3.2) and the orthogonal mirror point method (see Sec. 3.1),
respectively. The computations have been carried out with Ly = 10D, Lx,u = Lx,d = 10D,
Ma = 0.1 and CCFL = 0.9. The scaling parameter and the parameter related to the treat-
ment of fluid points close to the solid surface (both mentioned in Sec. 2.5) have been set
to the same values as those used in Sec. 2.1–2.4.

It is seen that performing a grid refinement study with the new implementation of the
immersed boundary method yields less oscillatory behaviour when going from one grid
size to the next. Further, it can be seen that all three computed quantities, CD, C ′L and St
reach a point where decreasing the grid spacing has only a small effect. As a matter of fact,
the variations in the computed results, for all three quantities, is within the error bounds
for D/∆x ≥ 38. This is a substantial improvement over the grid refinement performed
in Sec. 2.1, indicating that the new immersed boundary method does indeed yield more
accurate ghost points within the cylinder. The extra overhead in the computations,
due to some ghost points being computed several times, has a negligible impact on the
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computational time compared to increasing the grid spacing by a factor of 1.7, when going
from D/∆x = 64 to D/∆x = 38 (recall that the grid spacing not only affects the spatial
resolution, but also the time step used in the computations).

4 CONCLUSION

Thorough validation for the case of computing flow past a stationary cylinder has
been conducted. In the validations, the effect of the grid spacing, Mach number, domain
size and Courant number on the computed mean drag coefficient, root-mean-square lift
coefficient and Strouhal number was studied.

Out of the different parameters tuned in during the validation, only the grid spacing
and the domain size behaved somewhat unexpected. The computed results showed an
oscillatory behaviour for different grid sizes, resulting in the choice of a quite fine grid
for the remaining validation runs (D/∆x = 64). When considering the domain size,
the upstream and downstream lengths showed dependent behaviour. This indicated that
a minimum length in the streamwise direction is not itself sufficient in computing high
accuracy results, the cylinder placements in the domain must be such that the upstream
and downstream lengths are both sufficiently large (> 20D). Of the remaining parameters,
both the domain width and the Mach number indicated smooth decrease towards an
asymptotic value for the computed quantities. The Courant number had very little effect
on the computed values, for CCFL ≤ 1.2.

The results computed with the Pencil Code compared very well to previous studies.
The computations of high accuracy results were, however, very computationally costly,
on the fine grid used in the computations. This motivated a closer look at the flow
computations closest to the solid cylinder, where the immersed boundary method with a
ghost-zone is used in the Pencil Code.

A new implementation of the immersed boundary method was suggested. The method
improves on the way the ghost-points inside the cylinder are computed, by making use
of the grid lines in computing the fluid flow on corresponding mirror points. Such an
improvement greatly reduced the oscillatory behaviour seen in the grid refinement results,
indicating higher accuracy of the boundary layer around the cylinder. The increased
accuracy allows for an increase in the grid spacing of a factor of 1.7 with negligible impact
on the accuracy.

The presented study lays a solid foundation for further work on flows past a circular
cylinder using the high order finite difference Pencil code. As the impact of many cen-
tral parameters is well understood, the choice of these parameters – which is always a
compromises between accuracy and computational cost – can be made without too much
guesswork and hand-waving arguments. Further, the improved accuracy close to the solid
surface will be beneficial in the authors’ further study with this set-up, and for other users
of the open source code that include immersed solid objects in their flow simulations.
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Abstract

Particle impaction on a cylinder in a cross-flow is investigated with the use
of Direct Numerical Simulations, with focus on the effect of free-stream tur-
bulence on the front-side impaction efficiency. The turbulence considered is
high-intensity homogeneous isotropic turbulence, introduced upstream of the
cylinder in moderate Reynolds number flows. It is found that the free-stream
turbulence leads to a significant increase in the number of particles that im-
pact the cylinder for certain Stokes numbers (St). The peak amplification of
impaction is observed at St = 0.3, for different integral scales and Reynolds
numbers. This peak is related to a change in impaction mechanism, from
boundary stopping to boundary interception, and it will therefore dependent
on the size of the particles as well as the Stokes number. The effect of the
free-stream turbulence on impaction decreases rapidly when the difference
between a particle’s Stokes number and Stokes number at peak impaction
increases. Using statistical analysis, an expectation value of predicted effects
of free-stream turbulence on particle impaction is derived. This expression
predicts the observed impaction amplification to a good degree, particularly
in terms of which Stokes numbers that are affected by the turbulence.

1. Introduction

Particle laden fluid flows are common both in nature and in a large num-
ber of industrial applications. In many applications the impaction between

∗Corresponding authors: Jørgen Røysland Aarnes
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particles and solid objects entrained in the fluid flow is central. Such im-
pactions may lead to the buildup of a deposition layer on the solid-fluid
interface or to erosion of the solid object. In industry, these mechanisms are
typically found in filters, furnaces, industrial boilers and ventilation systems.

A simple cylindrical geometry may well approximate the solid objects in
several of the applications mentioned above, and a cylinder in a cross-flow has
become a benchmark case for particle impaction. Inertial particle impaction
on a cylinder in a cross-flow can be split into three different impaction modes,
based on what drives the trajectories of the convected particles during im-
pact. The modes are classical impaction (particle inertia driven trajectory),
boundary stopping (boundary layer driven trajectory) and boundary inter-
ception (mass center of particles do not come in contact with the cylinder)
(cf. Haugen and Kragset, 2010; Weber et al., 2013b). The mode is deter-
mined by the Stokes number (with some dependence on Reynolds number).
Here we define the Stokes number as the ratio of the particle Stokes time
to the timescale of the fluid flow around the solid object (St = τp/τf ). The
Reynolds number is Re = U0D/ν, where U0 is the free-stream velocity, D
is the cylinder diameter and ν is the kinematic viscosity. Generally, classi-
cal impaction occurs for Stokes numbers St & 0.9, boundary stopping for
0.2 . St . 0.9 and boundary interception for St . 0.2. Note that the
boundary stopping mode is partly overtaken by the classical impaction mode
for high Reynolds numbers (see Haugen and Kragset, 2010).

Potential flow theory can be used to calculate the particle impaction ef-
ficiencies as a function of particle size (see Israel and Rosner, 1982). The
method is well accepted for Stokes numbers larger than unity. Rotational
and viscous flow effects are not resolved with a potential flow approximation.
These are particularly important for transport of particles with small Stokes
numbers, as these follow the flow to a large extent. Further, the approxima-
tion assumes infinitesimal particles sizes, and will therefore not account for
boundary interception. Consequently, no impaction occurs for particles with
St < Stcrit = 1/8 (Ingham et al., 1990) (note that viscous effects will increase
the value of Stcrit, hence Stcrit is larger for smaller Reynolds numbers (see
Phillips and Kaye, 1999)).

Other approaches to finding the impaction efficiencies, using experimental
(Schweers et al., 1994; Kasper et al., 2009), numerical (Yilmaz et al., 2000;
Li et al., 2008; Haugen and Kragset, 2010; Haugen et al., 2013) and phe-
nomenological modeling (Huang et al., 1996) are found in literature. With
few exceptions, these studies regard smooth laminar flow past one or more

2



cylinders. It is, however, reasonable to expect that the influence of any tur-
bulence in the flow is highly relevant for the rate of particle impaction in
the mentioned applications. The turbulence in said applications can be due
to, e.g., transitional eddies in the free shear layers of the cylinder at high
Reynolds numbers, combustion upstream of the cylinder, wall turbulence for
a cylinder in a confined space, or similar sources. Either way, one would
expect the velocity fluctuations to affect the inertial particle impactions on
the cylinder surface.

An exception to the experimental studies on particles in smooth laminar
flow, is the measurements by Douglas and Ilias (1988) on the effect of turbu-
lence on particle impaction. In that study the cylinder was situated within
a channel such that the turbulence was generated by the channel walls. The
results showed increased impaction efficiencies when turbulence was present
in the flow, and eddy diffusion was considered as a prime mechanism leading
to this. The scatter in the data was, however, quite large for small Stokes
numbers.

Numerical studies on particle impaction in turbulent flows are often lim-
ited by the fact that they use Reynolds Average Navier-Stokes modeling of
the turbulence (see review by Weber et al., 2013a). One such study was
performed by Weber et al. (2013b), in which it was found that the turbu-
lence played a minor role for particles with Stokes number larger than Stcrit

and had the effect of increasing the particle impactions below this critical
point. However, as pointed out by the authors of said study, the predictable
power of these CFD-simulations is limited by the lack of rigorous testing of
the particle tracking procedure in use. Further limitations are introduced
from the modeling and time-averaging of the flow, as seen by the factor two
difference in impaction efficiency for small particles when switching between
turbulence modeled by the k-ε model and Reynolds Stress Models.

In the current study, we consider the effect of turbulence in the flow
on the particle impaction efficiencies on a circular cylinder by using Direct
Numerical Simulations (DNS), i.e., three-dimensional simulations where all
scales of the turbulence (spatial and temporal) are resolved. The turbulence
is not generated in the flow past the cylinder, as the Reynolds numbers in
our study are too low for this. Rather, free-stream turbulence is inserted
upstream of the cylinder and decays as it is convected by the mean flow.
This typically emulates the flow regime above a thermal incinerator or boiler
for solid fuels. As particles impact they deposit on the cylinder surface. The
aim of this study is to understand the way the turbulence affects the inertial
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impaction mechanism of the particles.
The structure of the paper is the following: In Section 2 the governing

flow equation and particle equations are given, and the simulation set-up is
described. Following this, different ways to predict the effects of turbulence
on the particle impaction is described in Section 3. Results from simulations
with and without free-stream turbulence are presented in Section 4, and
compared to predicted amplification of particle impaction, before conclusions
are drawn in Section 5.

2. Methodology

2.1. Governing equations

The equations describing the flow are the equation for continuity,

Dρ

Dt
= −ρ∇ · u , (1)

and momentum,

ρ
Du

Dt
= −∇p+ ∇ · (2µS) , (2)

where ρ, t, u and p are the density, time, velocity vector and pressure,
respectively, µ = ρν is the dynamic viscosity and

D

Dt
=

∂

∂t
+ u ·∇ (3)

is the substantial derivative operator. The rate of strain tensor is given by:

S =
1

2

(
∇u + (∇u)T

)
− I

(
1

3
∇ · u

)
, (4)

where I is the identity matrix. The pressure is computed by the isothermal
ideal gas law, p = c2

sρ , where cs is the speed of sound. The flow is isothermal
and weakly compressible.

Particles in the flow are point particles. A Lagrangian formalism is used
to track the particles. A particle’s velocity and position is described by:

dvp
dt

=
FD,p
mp

, (5)

dxp
dt

= vp , (6)
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where vp, xp and mp are the velocity, center of mass position and mass of
the particle, respectively. The drag force acting upon a particle is given by:

FD,p =
1

2Cc
ρCD,pAp |u− vp| (u− vp) , (7)

where Ap = πd2
p/4 is the cross sectional area of the particle and

Cc = 1 +
2λ

dp

(
1.257 + 0.4e(−1.1dp/2λ)

)
, (8)

is the Stokes-Cunningham factor with parameters set for air for a particle
with diameter dp (Cunningham, 1910; Davies, 1945) . The mean free path λ
accounts for the fact that for very small particles, the surrounding medium
can no longer be regarded as a continuum but, rather, distinct particles. The
particle drag coefficient is given by:

CD,p =
24

Rep

(
1 + 0.15Re0.687

p

)
. (9)

The expression is valid for particles with particle Reynolds number Rep =
dp |vp − u| /ν . 1000, which is the case for all particles in the present study.
Thus, the particle drag force can be written as:

FD,p =
mp

τp
(u− vp) , (10)

where

τp =
Sd2

pCc

18ν(1 + fc)
(11)

is the particle response time, fc = 0.15Re0.687
p and S = ρp/ρ. Note that

Eq. (11) equals the Stokes time in the limit Cc = 1 and Rep � 1. The Stokes
number (St = τp/τf ) is defined with a fluid time scale

τf =
D

2U0

. (12)

An alternative convention is to define the Stokes number without a factor
two in the denominator of the fluid time scale.
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Figure 1: Computational domain, split into two rectangular boxes. Left box for turbulence
generation and right box for flow domain. Thin slices of velocity data are taken from the
turbulence domain and added to the inlet of the flow domain, illustrated here by a thin
rectangular box between the two domains. The slice thickness and the cylinder in the flow
domain are not to scale.

2.2. Simulations

The simulations were performed with the high-order finite-difference code
for compressible hydrodynamic flows known as The Pencil Code (see Bran-
denburg and Dobler, 2002; The Pencil Code, 2018). The equations describ-
ing the flow are discretized with a memory efficient third-order Runge-Kutta
method in time (developed by Williamson, 1980) and sixth-order central
differencing in space. A three-point deep ghost-zone immersed boundary
method was used to resolve the cylinder surface, with ghost-points set by no-
slip and impermeability boundary conditions along grid lines (with quadratic
interpolation) and zero gradient of the density along the surface normal (with
linear interpolation). For details on the numerical method, and grid and time
independence tests, see Aarnes et al. (2018).

The fluid velocities used to update the particle trajectories were interpo-
lated from surrounding grid points by tri-linear Lagrangian interpolation. In
the immediate vicinity of the cylinder surface, quadratic interpolation was
used to compute the velocity component normal to the surface.

2.2.1. Fluid flow and turbulence generation

The computational domain consists of two rectangular boxes: a turbu-
lence production domain and a flow domain (see Fig. 1). The production
domain is a periodic box in which homogeneous isotropic turbulence was
generated by external forcing in random directions over a selected range of
wave numbers. The strength of the forcing and the wavenumber range are

6



free parameters which determine the turbulence intensity and length scale,
respectively. For details, see Brandenburg (2001); Haugen and Brandenburg
(2006); Aarnes et al. (2018). The flow domain is a rectangular box with
periodicity in two direction (x- and z-direction), and a mean flow in the
third direction (y-direction). Navier-Stokes characteristic boundary condi-
tions (NSCBC) were used both at the inlet and at the outlet of the flow
domain. This boundary formulation is a formulation that makes use of one-
dimensional characteristic wave relations to allow acoustic waves to pass
through the boundaries (Poinsot and Lele, 1992). The NSCBC implemen-
tation in the Pencil Code uses modifications suggested by Yoo et al. (2005)
and Lodato et al. (2008) to account for transversal flow effects, e.g. for tur-
bulent flow at the inlet. A circular cylinder is placed in the center of the flow
domain, with axis along the z-direction. Simulations were performed for flow
in the unsteady vortex shadding regime, with Reynolds numbers Re = 100
and Re = 400.

The size of both the turbulence production domain and the flow domain is
(Lx, Ly, Lz) = (6D, 12D, 4D), where D is the cylinder diameter. The domain
size was set sufficiently large to resolve the three-dimensional phenomena
in the flow (the wavelength of instabilities in the cylinder wake is approxi-
mately 1D in the z-direction at Re = 400 (Williamson, 1996)). Validation
runs have been performed, and a uniform grid spacing of D/∆x = 40 and
D/∆x = 64 for flow with Re = 100 and Re = 400, respectively, was deemed
sufficiently accurate to fully resolve all scales of the free-stream turbulence
and the boundary layer around the cylinder. The grid spacing did, however,
limit the particle Stokes numbers which could be used to St ≥ 0.2. Smaller
particles require a finer resolution in order to be represented accurately in
the vicinity of the cylinder, as the interpolation of fluid velocities for use in
Eq. (10) is sensitive to the grid spacing. Very small, tracer-like particles are
particularly sensitive to incorrect estimation of forces from the fluid on the
particle, as being brought marginally closer to the surface may result in inter-
ception rather than no interception. Note that grid spacings ∆x = ∆y = ∆z
were used, to ensure that the spatial Kolmogorov microscale (ηKol) was re-
solved in all directions (∆x/ηKol = 3.48, 1.92 for Re = 100, 400). The strict
advective time step restriction (∆t ≤ Cu∆x/ (|u|max + cs), where Cu is the
advective Courant number) due to the low Mach number (Ma = 0.1) , en-
sured several hundred time steps per (temporal) Kolmogorov microscale.

Once the forced turbulence was statistically stationary, slices of flow quan-
tities from the turbulence domain were added to the inlet of the flow do-
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Table 1: Turbulence intensity Ti at different positions along the streamwise direction in a
12D long domain, with no cylinder present in the flow.

Position Re = 100 Re = 400
(downstream) Λ = 2.7D Λ = 0.8D Λ = 2.7D Λ = 0.8D

0 0.230 0.222 0.232 0.225
3D 0.172 0.090 0.203 0.143
6D 0.152 0.061 0.183 0.106
9D 0.139 0.048 0.169 0.086

main. The inlet velocity in the flow domain U = 〈U0〉+ u′, with mean flow
U0 = (0, U0, 0) and the velocity flucuations u′. The velocity fluctuations at
the inlet were updated at every time step using data from the turbulence
domain. The mean velocity was not affected by the insertion of turbulence
at the inlet, since the turbulence was isotropic. In the flow domain, the
turbulence decayed when convected downstream towards and past the cir-
cular cylinder. The decay rate of the turbulence depends on its intensity
(Ti = urms/〈U〉 where urms is the is the root-mean-square value of the three-
dimensional velocity fluctuations) and integral scale (Λ), and the Reynolds
number of the flow. Turbulence with integral scale Λ = 2.7D and Λ = 0.8D
was used, with intensity 0.22–0.23% at the inlet. For details on the turbu-
lence decay, see Tab. 1, where Ti at selected points along the streamwise
direction in a cylinder-free flow domain is listed, for the different Reynolds
numbers and integral scales. Instantaneous velocity contours of the decaying
turbulence at Re = 400 can be seen in Fig. 2.

2.2.2. Particles

Particles with Stokes numbers ranging from 0.2 to 10 were inserted at
random positions within a thin box covering the inlet of the flow domain.
The velocity of an inserted particle was initialized to the mean inlet velocity.
Particles were removed from the simulations either when hitting the cylinder
or when reaching the outlet boundary.

In each simulation, a large number of particles (1.0×107) over a selection
of Stokes numbers were inserted at a constant rate of approximately (1.25×
106)/τK , where τK is the shedding period of the von Kármán eddy street.
This ensured that the particles interacted with the flow past the cylinder
over several shedding cycles. The variation in Stokes number was achieved
by varying the particle radii. For a given Stokes and Reynolds number, the
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(a) Λ ≈ 2.7D (b) Λ ≈ 0.8D

Figure 2: Contours of velocity component normal to the plane of view, in a plane along
the streamwise direction, perpendicular to the cylinder axis, with flow from top to bottom.
High intensity free-stream turbulence with integrals scale Λ inserted at the top and con-
vected downstream. Flow Reynolds number is 400. Dark blue (light yellow) corresponds
to negative (positive) values.

particle diameter can be determined by:

dp
D

= 3

√
St

SRe
. (13)

In all simulations the ratio of particle to fluid density S = ρp/ρ = 1000.
The distribution of particles with respect to Stokes numbers was non-

uniform. Since the impaction probability is a lot lower for particles with
small St than high St, more particles were needed in the low than in the
high St range in order to obtain good statistics of the impaction rate. To
illustrate this, consider that even with 14% of the inserted particles having
St = 0.2 and only 2.3% having St = 10, approximately 250 times more
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Table 2: Typical distribution of particles in a simulation. Stokes number greater or equal
2.0 include St = 2.0, 3.0, 5.0 and 10, each containing approximately 2.3% of the particles
in the simulation.

St 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 ≥ 2.0
NSt/Ntot (%) 14 13 12 12 9 9 9 6 6 9

particles with St = 10 impact the cylinder than with St = 0.2. The particle
distribution for a typical simulations is given in Tab. 2.

3. Estimated effects of turbulence on particle impaction

When turbulence is introduced at the inlet of the flow domain, there are
several possible ways it can affect the particle trajectories and impaction.

3.1. The turbulence based Stokes number

The turnover time of an integral scale turbulent eddy is given as

τe = Λ/urms . (14)

With this time scale a turbulence based Stokes number can be defined as
Ste = τp/τe . If the eddy turnover time is much shorter than the particle
Stokes time (Ste � 1) the particles are too heavy to be affected by the
turbulent eddies, i.e, for large Ste the turbulence has a negligible effect on
the particles. In this work, Ste < 1.5 for Λ = 0.8D and Ste < 0.5 for
Λ = 2.7D at the inlet, so large scale effects cannot be disregarded for any of
the particle sizes in use.

Alternatively, the turbulent Stokes number can be defined as Stη = τp/τη,

where τη =
√
ν/ε is the Kolmogorov time scale (with the average energy

dissipation rate ε). It is known that particles with τη . τp . τe will expe-
rience preferential concentration (Yoshimoto and Goto, 2007), i.e particles
will cluster if Stη . 1 . Ste. The clustering has been found in low vorticity
regions (Squires and Eaton, 1991). In the present study, 0.3 . Stη < 13.8
(0.1 < Stη . 6.6) for Re = 400 (Re = 100). Hence, some preferential con-
centration should be expected, in particular for Re = 400 flow with particles
that have particle Stokes numbers St & 0.7 (Stη = 0.96 when St = 0.7
for this Reynolds number). Consider Fig. 3 for an illustration of preferen-
tial concentration for St = 0.2 and St = 0.8 particles. A higher degree of
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(a) St = 0.2 (b) St = 0.8

Figure 3: Particles convected towards the cylinder in Re = 400 flow with free-stream
turbulence with integral scale Λ = 0.8D. The thickness of the 2D-slice (in z-direction) is
12ηKol.

clustering can be seen for the larger particles (clustering takes some time to
develop, and is mainly seen for particles that have been convected at least
half of the upstream length). Note that corresponding plots for Re = 100
show no notable clustering.

3.2. Large scale turbulence

The impaction efficiency η = Nimpact/Ninit in a laminar flow is determined
by the Stokes number. Here, Nimpact is the number of particles impacting
on the cylinder surface and Ninit is the number of particles initially posi-
tioned such that their finite radii would overlap with the cylinder at some
point if convected with the mean flow in the direction of the cylinder. When
Ste.1, the particle trajectories will be affected by the turbulent eddies. Con-
sequently, the particle velocities will deviate from the mean flow velocity.
When the scale of the turbulence is not small compared to the size of the
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cylinder, this yields a modified Stokes number, which will then also give a
change in the particle impaction efficiency.

The Stokes number St = τp/τf is by definition proportional to the mean
fluid flow velocity since τf = D/2U0. With turbulence present in the flow,
the magnitude of the flow velocity U (in general different from the mean
flow velocity) is stochastic. Thus, the Stokes number is also a stochastic
variable, effectively different from the laminar St, expressed by the uniform
fluid velocity U0. The effective Stokes number can be expressed as

Steff = St
U

U0

. (15)

As Steff is a linear function of U , its variance becomes

V ar(Steff) = σ2
St =

(
St

U0

)2

V ar(U) . (16)

Since U0 is constant, the variance of Steff is zero when U = U0. The ex-
pectation value of the Stokes number is E(Steff) = St, since U fluctuates
symmetrically around the mean velocity in homogeneous isotropic turbu-
lence.

We may re-write the effective Stokes number to Steff = St + ∆St, where
∆St = ((U − U0)/U0)St is the fluctuation in the Stokes number due to U 6=
U0. Taylor expanding the impaction efficiency yields

η(Steff) = η(St) + η′(St)∆St +
η′′(St)

2
∆2
St +O(∆3

St) . (17)

The expectation value of the impaction efficiency can now be found:

E(η(Steff)) = η(St) + η′(St)E(∆St) +
η′′(St)

2
E(∆2

St) + E(η(O(∆3
St)) . (18)

Neglecting higher order terms and using that σ2
St = E(∆2

St) − E(∆St)
2 =

E(∆2
St), due to the symmetry of velocity fluctuations around the mean, yields

a simple expression for the expectation value of particle impaction efficiency:

E(η(Steff)) ≈ η(St) +
η′′(St)

2
σ2
St. (19)

When there is no turbulence ∆St = 0 and the expectation value of the im-
paction efficiency is E(η(Steff) = η(St). In other words, it equals the im-
paction efficiency in the laminar case, as anticipated.
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In order to use Eq. (19) to predict front-side particle impaction efficiencies
with turbulence present, values for ηf (St), η

′′
f (St) and σ2

St are required. There
are different ways to find or approximate these variables, and we suggest
the following: Results for front-side impaction efficiencies, ηf , are readily
available in literature (see, e.g. Haugen and Kragset, 2010) and from our
recent simulations. Second derivatives of these measurements can be found
by curve fitting to existing results, and finding derivatives of the fitted curves.
To find the effective Stokes number, the variance of U is needed. This value
can be computed straightforwardly by considering the sample variance of the
velocity field of the decaying turbulence. This can be done either in the flow
domain, upstream of the cylinder, or in a cylinder-free domain, where the
decaying turbulence is considered free from any obstructions in the flow. The
latter approach is used in this study. We will return to this subject in Section
4.2.

As the front side impaction is also dependent on the Reynolds number,
a Reynolds number dependent expectation value expression can be derived.
With the same procedure for derivation as above, we get:

E(η(Reeff)) ≈ η(Re) +
η′′(Re)

2
σ2
Re , (20)

where Reeff = Re(U/U0) and σ2
Re = V ar(Reeff). To use this expression,

η(Re) and (approximations of) η′′(Re) are needed. In the present study,
simulations were only performed for two different Reynolds numbers, which
is insufficient to compute η(Re) and η′′(Re). We will therefore only focus on
the predictions of turbulence effects based on the effective Stokes number.

3.3. Small scale turbulence

If the integral scale of the turbulent eddies is very small, the eddies may
penetrate into the boundary layer around the cylinder. If this happens,
the particles can impact on the cylinder surface due to turbophoresis, i.e.
the transport of particles from areas of high turbulent intensity to areas of
low turbulent intensity (related to much larger spatial scales than preferen-
tial concentration), which could have a significant effect on the impaction
efficiency. Let us call this “impaction by external turbophoresis” (see Mi-
tra et al., 2018, and references therein for a study of non-channel-flow tur-
bophoresis). For a weakly compressible flow, the thickness of the cylinder’s
front-side boundary layer (stagnation layer) is given by

δ ≈ 2.4
√
ν/B , (21)
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where B ≈ 4U0/D (White, 2006). Hence,

δ =
κD√
Re

; (22)

where κ is a constant approximately equal to 1.2. In order to have impaction
by external turbophoresis the turbulent integral scale Λ must fulfill the in-
equality

δ > Λ . (23)

If the Navier-Stokes equations are transformed into spectral space, the dis-
sipative term of the velocity is νk2ũ, where ũ is the Fourier transform of
the fluctuating velocity vector. It is apparent that small scale turbulence,
that is, turbulence with large wavenumber k, will decay very fast. If the
turbulence generated upstream of the cylinder shall survive all the way down
to the cylinder, the timescale of the turbulence decay, given by τν = Λ2/ν,
must be longer than the convective time scale τc = Lc/U0, where Lc is the
distance that the decaying turbulence is convected before reaching the cylin-
der (upstream length of the flow domain in the present case). Hence, from
the inequality (τν > τc), and the definitions of τν and τc the following must
be true if the turbulence shall survive until it reaches the cylinder:

Λ >

√
γD√
Re

, (24)

where γ = Lc/D. Combining Eqs. (22) - (24) yields

√
γ <

Λ

D

√
Re < κ. (25)

For the inequality to be satisfied, we must have
√
γ < κ. Hence, unless

very small upstream domain lengths are used, the inequality in Eq. (25) is a
contradiction. Consequently, impaction by external turbophoresis, where the
integral scale of the turbulence is small enough to penetrate the boundary
layer around the cylinder, is not practically feasible if the source of turbulence
is not very close to the cylinder. An example where the source is indeed
close to the cylinder is a cylinder placed in a turbulent channel flow as in the
study by Douglas and Ilias (1988). This is a situation which is encountered
in many industrial applications, and it introduces some extra parameters
into the study. Due to the increased parameter space this application is
not considered here; instead, this work focuses solely on decaying isotropic
turbulence introduced upstream of the cylinder.
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Figure 4: Front side impaction efficiency ηf for laminar free-stream flow. Present results
computed in a three-dimensional domain at Re = 100 and 400, compared to results by
Haugen and Kragset (2010) computed at Re = 100 and 421 in a two-dimensional domain.

4. Results and discussion

As mentioned the impaction efficiency η = Nimpact/Ninit, where Ninit is
the total number of particles inserted over a cylinder area projected onto
the flow inlet. The impaction efficiency can be considered as a sum of two
parts, η = ηf + ηb, where ηf and ηb are the front- and back-side impaction
efficiencies, respectively. The bulk of the particles that impact the cylinder
at low and moderate Reynolds numbers do so on the front-side, and we focus
only on this part of the impaction efficiency here. For backside impaction to
become significant, larger Reynolds numbers and smaller particles than used
in this study must be considered.

To verify that the particle impaction results are sufficiently accurate,
results from a flow without disturbances from free-stream turbulence are
compared with results from a two-dimensional impaction study in literature.
The comparison can be seen in Fig. 4, where it is apparent that the earlier
results are reproduced very well by the present DNS.

From Fig. 4 it is also clear that the three-dimensional effects present in
the flow at Re = 400 do not have a noticeable impact on the front-side
impaction efficiency (this would be seen as discrepancy between the present
(3D) and literature (2D) results for Re = 400). This is not surprising, as the
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Figure 5: Front side impaction efficiency ηf . Results for laminar and turbulent free-stream,
the latter with integral scale Λ = 2.7D or 0.8D. Results for Reynolds numbers Re = 100
and 400.

flow is in the upper part of the transition-in-wake regime at this Reynolds
number, where tree-dimensional effects occur in the wake of the cylinder, not
on the front-side.

4.1. Simulations with free-stream turbulence

High-intensity turbulence was inserted at the inlet an decayed when con-
vected downstream. The intensity of the turbulence was 22%−23% at the in-
let in all simulations with free-stream turbulence, and the decay was strongly
dependent on integral scale and Reynolds number (see Section 2.2 for details).

Consider Fig. 5, depicting the impaction efficiencies with and without
a turbulent free-stream. A few changes are apparent in the results: For
certain Stokes numbers an increase in ηf can be seen, for both Reynolds
numbers. The increase is largest for the largest integral scale turbulence.
Further, the effect of the turbulence appears to be larger for Re = 400 than
for Re = 100. These observation are not surprising, as larger effects are
expected from the turbulence with higher turbulence intensity. Another,
perhaps more unexpected consequence of the turbulence, is that the increase
in impaction is largest at St ≤ 0.3. This is in the Stokes number-region
where the dominant impaction mechanism changes from boundary stopping
to boundary interception (as the Stokes number is decreased).

16



To gain further insight into the effect of the turbulence on the front-side
impaction, the impaction results from particles subjected to a turbulent free-
stream are normalized with corresponding results from laminar free-stream
flow. The resulting amplification factor:

Rf =
ηf,turb

ηf,lam

, (26)

is a direct measure of increase or decrease of impactions due to the free-stream
turbulence. The amplification factor is plotted together with predicted values
in Fig. 6. The predicted values will be considered in Section 4.2.

Figure 6(a) depicts Rf as a function of Stokes number for Re = 100 for the
two different turbulence cases considered. It is evident that the turbulence
significantly increased impaction of particles in the lower range of the Stokes
number domain. This is in accordance with the findings of Weber et al.
(2013b), where only impaction below a critical Stokes number, Stcrit, was
affected by turbulence. For Re = 106, Weber et al. (2013b) computed Stcrit =
0.324, which is in agreement with the Re = 100 simulation results, showing
only a small effect of the turbulence for St ≥ 0.4. For particles with St ≥ 0.4
we observe a small decrease in the impaction for particles in the free-stream
turbulence, with Rf approaching one as the Stokes number is increased.

Contrary to the results of Weber et al. (2013b), a distinct peak of ampli-
fication occurs at St = 0.3. For the larger integral scale turbulence the am-
plification is approximately 1.8, an increase from 0.17% impaction to 0.31%
impaction. This peak can be attributed to the change in impaction mech-
anism, from boundary stopping to boundary interception, near this Stokes
number. When particles are affected by the turbulence, they experience a
change in their effective Stokes number. A small increase (decrease) in ve-
locity will give a slightly higher (lower) Stokes number. If we take Stpeak to
be the St where the impaction mechanism changes (see Sec. 4.2) and con-
sider the laminar impaction curves in Fig. 4, a particle with Stokes number
Stpeak + ∆St will have a smaller chance to impact if ∆St < 0 (boundary
interception dominating), but a much higher change to impact if ∆St > 0
(boundary stopping dominating). With the mean of ∆St being zero, this will
result in an average increase in impaction efficiency near Stpeak. Note that
without including the boundary interception mechanism in the simulations
(as in Weber et al., 2013b) the amplification Rf → ∞ as St → Stcrit, and
the distinct amplification peak will not be observable.

The results for Re = 400 (see Fig. 6(b)), are similar to those for the lower
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Figure 6: Predicted and observed results for amplification factor of impaction efficiencies
resulting from turbulence of different integral scales interacting with particles in the flow.

Reynolds number. Again, the amplification is greatest for particles with
Stokes numbers ≤ 0.3, and there is a distinct peak in Rf at St = 0.3. Yet, a
few differences between the results at Re = 100 and Re = 400 can be noted:
the turbulence gave rise to a larger amplification effect in the latter case,
and the difference between the effect from the two turbulence realizations
is smaller. Neither of these findings are very surprising, if one considers
that the intensity of the turbulence decayed slower in the flow domain when
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the Reynolds number was increased. In addition to these aspects, some
amplification of the impact of larger particles is observed at Re = 400. This
effect (Rf = 1.02–1.06 for St ≥ 0.5, decreasing with increasing St) is only
seen for the highest intensity case (Λ = 2.7D). In a study by Homann et al.
(2016), the amplification of particle impaction on a sphere in a turbulent
flow converged to unity as a power law of St (decreasing with increased St).
This trend was most clear for very strong turbulent fluctuations (Ti = 0.60
and Ti = 1.18). A similar relationship can be investigated for impaction on
a cylinder, but higher intensity turbulence than used in the present study is
required before conclusions can be drawn. Note that impaction by boundary
interception was not included in the study by Homann et al. (2016), and
including such a mechanism may affect a power law trend.

The results at Re = 100 showed agreement with the CFD-study by Weber
et al. (2013b) in terms of a cut-off Stokes number above which the turbulence
played a minor role in terms of amplifying particle impaction. Weber et al.
(2013b) did not report a critical Stokes number for Re = 400, but Stcrit can
be approximated to 0.25 for Re = 400, by interpolating from their reported
critical Stokes numbers. Using this value as a cut-off Stokes number is,
however, not consistent with our observations of effects of the free-stream
turbulence for Re = 400. On the contrary, the peak in turbulence effect on
impaction is found at the same Stokes number for Re = 400 as for Re = 100,
which is above the approximated Stcrit for Re = 400. The critical Stokes
number as defined by Weber et al. (2013b) was intended as a limit for when
zero-sized particles impact (St > Stcrit) or do not impact (St < Stcrit) the
cylinder in a laminar free-stream flow. From our simulations it appears that
this critical Stokes number is related to a peak amplification, when boundary
interception (particles with finite radii) is included. The St = 0.3 particles
in the Re = 400 flow are expected to be near this peak Stokes number.
Hence, a significant amplification at St = 0.3 is not surprising, and an even
larger amplification is expected if particles with St = Stpeak were considered.
Investigating this would require, first, a determination of Stpeak.

4.2. Predictions of free-stream turbulence effects on particle impaction

In all simulations, the integral scale of the free-stream turbulence was
of the same order of magnitude as the cylinder diameter. The free-stream
turbulence is such that Ste = τp/τe . 1, hence, the particles should be
expected to be convected by the larger turbulent eddies if the flow domain
was free of any obstacles.
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To be able to predict effects of the turbulence on the particle impaction,
data from the turbulence-free simulations was used to compute the unknowns
η(St) and η′′(St) in Eq. (19). Flow data from simulations with a turbulent
free-stream decaying in a cylinder-free domain was used to approximate σSt.
In the following we explain how this was done in practice.

First, the cfit-tool with smoothing splines (for Re = 100 results) and ra-
tional fractions (for Re = 400 results) in MATLAB (software version MAT-
LAB, 2016) was used to fit curves to the impaction data computed for flow
with a laminar free-stream. This yielded expressions for η(St) in the entire
Stokes number range covered by the sample of particle sizes. Different curve
fitting was used for the two data sets, as this yielded the best possible fit for
each set. This fitting was done in logarithmic space, hence, exponentials of
the fitted results are the impaction efficiencies (displayed in Fig. 4). From a
fitted function f(log(St)) = log(η(St)), second derivatives were found ana-
lytically by:

η′′(St) =
d2

d(St)2
exp [f(log(St))]

=
ef

St2

[
d2f

d(log(St))2
+

(
df

d(log(St))

)2

− df

d(log(St))

]
. (27)

Finally, the variance of the upstream velocity field, necessary to compute
σSt by Eq. (16), was needed. Since the Reynolds numbers were moderate,
the turbulence decayed quite rapidly. Hence, the variance of the velocity
depended strongly on where in the flow domain the velocity was measured.
Since we are interested in the stochastic property of the velocity due to
the turbulence only, the variance was computed in a flow domain without a
cylinder present. To obtain relevant values for the computations, the variance
was averaged at each grid point in time and moving average were computed
in the streamwise direction. The moving averages were computed over a 0.5D
thick slab in the streamwise direction, starting a distance 0.5D downstream
of the inlet, and continuing to where the center of the cylinder would be
positioned if the cylinder was present. Mean, maximum and minimum values
of the moving averages were found and used as prediction and prediction
bounds of V ar(U).

The amplification factors predicted by inserting the computed η(St),
η′′(St) and σSt in Eq. (19) can be seen as the colored areas in Fig. 6. Quite
large error bounds are used, due to the way the variance was computed (as
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noted in the previous paragraph). The predictions fit well with the DNS
impaction results. In particular, the strong amplification of the impaction
efficiencies close to St = 0.3 is predicted by the statistical analysis. From
Eq. (19) the observed amplification of particle impaction is not surprising
for the Stokes numbers where the impaction curves are concave up. Haugen
and Kragset (2010) showed that the impaction efficiency is close to linear in
the boundary interception mode. Hence, the second derivative of η(St) with
respect to Stokes number will be approximately zero in this region. Based
on the expression for predicted impaction we would therefore not expect a
significant effect of turbulence on inertial impaction in the boundary inter-
ception regime (but a strong effect in the region where impaction mechanism
changes from boundary stopping to boundary interception).

The predictions (Fig. 6) show that the amplification is greatest for par-
ticles with St = 0.33 for Re = 100 and St = 0.29 for Re = 400. We
identify these Stokes numbers as measures for Stpeak for the particle sizes
used in the present cases. Note that Stpeak is close to, but somewhat larger
than, the critical Stokes numbers for its respective Reynolds number. This
is in accordance with the suggested explanation that the boundary intercep-
tion becomes the dominant impaction mechanism at Stpeak. With zero-sized
particles, η(St) → 0 as St → Stcrit. With finite-sized particles, η(St) de-
creases towards zero in the same way, when the Stokes number is reduced
in the boundary stopping impaction regime. The trend is interrupted for
St = Stpeak > Stcrit, for which a significant amount of particles impact by
boundary interception. Boundary interception is dependent on the particle
radii, and, hence, so is Stpeak. Consider, e.g. particles with half the density
ρp of the particles in the present study, with all other parameters (except
size) unchanged. The particles will have a 40% larger radius than particles
in the present study (see Eq. (11)). Consequently, impaction by boundary
interception is more likely to occur, and a larger Stpeak is expected.

For the larger particles (St & 0.5) the predictions by Eq. (19) show a
convergence to unity from below (impaction curve η(St) is concave down,
yielding η′′(St) < 0). The results from turbulence simulations yielded η(St >
0.5) ' 1, approached from below, for Λ = 0.8D turbulence for both Reynolds
numbers. A similar trend is found for Λ = 2.7D turbulence for Re = 100,
yet here approximately 3%–1% decrease (Rf ≈ 0.97–0.99) was measured for
St = 0.6–10 (Rf closer to 1 for higher Stokes numbers). Only with the large
scale turbulence for Re = 400 was the trend Rf → 1 from below contra-
dicted. As mentioned in Sec. 4.1, amplification of 2%–6% for St = 0.5–10
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(smaller amplification for higher Stokes numbers) was observed for this case.
This contradicts the predictions by Eq. (19), yet is in accordance with ob-
servations by Homann et al. (2016) that found increased impaction (on a
sphere) for all St when the free-stream was turbulent. Nevertheless, we have
seen that the predictive expression fits well with our data for St < 0.5. The
inability to predict amplification of impaction at higher Stokes numbers for
Re = 400 and Λ = 2.7D may be due to assumptions made when deriving
Eq. (19) being invalid for such cases. One possibility is that the preferential
concentration of these particles in low vorticity zones affected the velocity
fluctuations experienced by the particles. Although the velocity fluctuations
of the flow field were symmetric (yielding E(∆St) = 0), preferential concen-
tration may have lead particles to experience a non-symmetric velocity field.
Consequently, the odd derivatives of η(St) in (Eq. (18)) should not cancel
in the Taylor expansion of η(Steff). Note also, that the higher order terms
in the Taylor expansion cannot be neglected if large particles are affected
by turbulence with very high intensity, since this may yield σSt > 1. Con-
sider e.g., that turbulence with intensity decaying such that V ar(U)/U2

0 ≥ 1
yields σSt ≥ 1 for St ≥ 1. This was not the case here, but should be consid-
ered by other researchers who would like to use Eq. (19) to predict effects of
turbulence on particle impaction.

5. Conclusion

The effect of free-stream turbulence on inertial particle impaction for a
large range of Stokes numbers has been investigate by DNS. The following
can been concluded from the study:

(a) The effect that free-stream turbulence has on the impaction rate of
particles on a cylinder depends largely on the particle Stokes number.
There is a peak Stokes number for which the largest amplification of
particle impaction on the cylinder occurs. For the sample of Stokes
numbers used in the present study, St = 0.3 was closest to the peak
Stokes number, in both Re = 100 and Re = 400 flow. The relative in-
crease in particle impaction decreases fast when the difference between
a particle’s Stokes number and the peak Stokes number increases.

(b) The peak Stokes number is related to where the impaction mechanism
changes from being dominated by boundary stopping (St > Stpeak)

22



to boundary interception (St < Stpeak). At which Stokes number im-
paction by boundary interception becomes the dominating impaction
mechanism depends on the size of the particles for a given Stokes num-
ber. Hence, Stpeak is not a fixed value depending only on St. The value
will depend on the parameters that make up the Stokes number.

(c) The effect of turbulence on particle impaction is also dependent on the
Reynolds number of the flow, and the intensity and integral scale of
the turbulence. The Reynolds number and the integral scale of the
turbulence determine how fast the intensity of the turbulence decays in
the flow domain. Higher Reynolds number and larger integral scale (i.e.,
higher turbulence intensity) yields a larger amplification of impaction.
In the present study, the Reynolds number and integral scale effects
cannot be distinguished from the turbulence intensity effects. Hence the
study is inconclusive in regards to how these parameters individually
will effect the amplification of impaction.

(d) Using Stcrit as a measure of for which particles with St < Stcrit ex-
perience the largest effects of the free-stream turbulence on impaction
is not appropriate when boundary interception is included as an im-
paction mechanism. For finite-sized particles, the peak Stokes number,
where the maximum effect of the turbulence on particle impaction is
found, will always be larger than Stcrit.

(e) A quite simple expression for the expected turbulence effects on im-
paction was derived:

E(η(Steff)) ≈ η(St) +
η′′(St)

2
σ2
St.

Comparison of predicted effects from this expression with DNS results
was favorable, in particular in the lower Stokes number region.

Based on our conclusions, we suggest three topics of further research.
Firstly, the larges impaction was observed at St = 0.3. This is slightly below
the predicted peak for Re = 100 and slightly above for Re = 400. Increasing
the St-resolution in this region, that is, performing additional simulations
with a large number of particles distributed among Stokes numbers ranging
from 0.2 to 0.4 could to a greater extent pinpoint a the Stokes number where
the maximum turbulence effect on impaction occurs. This would be useful in
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a further validation of the model for predicting particle impaction in a turbu-
lent flow. This would also increase the accuracy of the fitted laminar ηf (St)
curves, giving better predictions based on expectation values. Secondly, the
Reynolds number should be increased both to see if the Stokes number of the
peak is shifted, and to further investigate the effect of the turbulence integral
scale when separated from intensity. Along with this, the inlet turbulence
intensity should be varied for a fixed integral scale, such that distinct effects
of Ti can be identified. Thirdly, extending this study to much smaller particle
sizes would make it possible to consider if effect of turbulence diminishes for
very small particles and, further, to explore turbulence effects on back-side
impaction. The back-side impaction phenomenon has previously been found
by Haugen and Kragset (2010) to occur for small particles (St . 0.13), for
Re ≥ 400. For very small particles effects of thermophoresis should be taken
into account, as recent studies (Beckmann et al., 2016; Garćıa Pérez et al.,
2016) have found that such mechanisms to be very important for particle
transport and deposition of small particles.
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