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Abstract

In recent years, increasing attention has been given to an apparent issue within the scientific
fields where the reproducibility of scientific results is questioned. This trend is commonly
termed a crisis of reproducibility, or a reproducibility crisis. While medicine is a central
scientific field here, it spans most other fields as well, including the computational sciences.

This thesis investigates the reproducibility of recent and central scientific publications
within artifical intelligence, through a selection of the most cited papers the past few years.
The reproducibility is investigated by attempting to reproduce the presented results, based
on the description of the method presented in the paper.



Sammendrag

I de senere arene har det blitt gitt gkt oppmerksomhet til et stadig synligere problem innen
det vitenskapelige feltene, der det stilles spgrsmal ved reproduserbarheten til vitenskapelige
resultater. Denne trended henvises ofte til som en reproduserbarhetskrise. Medisin er et av
de mer sentrale vitenskapsfeltene her, men problemet dekker de fleste felter, inkludert de
komputasjonelle.

Denne oppgaven undersgker reproduserbarheten til senere og sentrale vitenskapelige pub-
likasjoner innen feltet kunstig intelligens, gjennom et utvalg av de mest siterte publikasjonene
de seneste arene. Reproduserbarheten undersgkes ved a forsgke a reprodusere resultatet som

blir presentert, basert pa beskrivelsen av metoden presentert i paperet.
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Chapter

Introduction

1.1 Motivation

A core part of the scientific method is the cycle of posing a hypothesis, devising an experi-
ment to test this hypothesis, and performing that experiment. The results (as well as prior
knowledge) can then be used to refute or revise the hypothesis, (or perhaps strengthen it).
The idea is then that the field of science through this methodology moves forward as a whole,
building on past results. [Oat06, pp. 283-285]

Carefully documenting this process has several benefits for the community:

e Others in the community will be able to share methods, and perhaps improve on ele-

ments missing from what they themselves were doing

e Others can perform the same experiment to ascertain that they too reach the same
result, or if not, through comparing documentations perhaps find weak points in the
hypothesis or methodology.

e Higher transparency is achieved, which lowers the chances of (both accidental and

intentional) fraudulence

The ability of others to perform the same experiment to compare the results is referred
to by terms like reproducibility, repeatability, or replicability. Unfortunately there is a trend
(a so-called reproducibility crisis) of researchers being able to reproduce scientific results,
both independent researchers and the researchers who achieved the results in the first place.
[Bak16]

With validation of experimental results being a central part of the scientific method, these

problems are concerning.
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1.2 Problem Outline

The purpose of this thesis is to investigate reproducibility of research in computer science.
More specifically, the extent of various degrees of reproducibility (for an independent en-
tity) of the results published in papers, relying on the papers’ documentation of the process
(methodology, experimental setup, dataset(s), source code(s), and so on).

The belief is that investigations into the reproducibility of published research might pro-
vide insights into whether there are aspects that can be identified as contributing to this,

and if there are aspects that increase reproducibility.

1.3 Research Context

This research was conducted as part of my master’s thesis at Norwegian University of Science
and Technology (NTNU). The research task was formulated by Odd Erik Gundersen, my
supervisor. The research, although this thesis being written independently, is a collaboration.
with another group’s master’s thesis. My research was conducted alongside the research
of this second group, with both overlapping areas of contribution as well as independent
contributions. The details of this collaboration is elaborated on in chapter 4.

The research builds on prior research into contents of papers from conferences where the
papers were scored based on whether they included or did not various elements. The results
from this prior research indicate that the degree to which papers document the method is
highly variable, for instance whether source code — or even pseudo code — is published, or
whether the dataset is documented. The results additionally indicate that the documentation
of results data in papers is rather lackluster.

Moving forward, it could be argued that the presented findings from the analysis (which
pertain to the documentation level of the papers) might not be indicative of the difficulty
in reproducing or replicating the results of the papers. A possible step forward, which is
investigated in our research, is to actually attempt to reproduce the results presented in
a selection of papers, using the available documentation. The hope is that this research
may provide an insight into among other things whether the methods presented in the prior

research can provide indications for the degree of difficulty in reproducing results

1.4 Hypothesis, Objectives, and Research Questions

This thesis covers two of the three overall topics in our research. The first topic covered
concerns the method by which a set of papers to attempt reproducing is selected, and the

second topic covered (which is also covered by the other group) concerns the results of
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attempting to reproduce the selection of papers. The selection methodology is documented
in chapter 5, and the reproduction is documented in chapter 7.
The third overall topic, which is covered by the other group, concerns the methodology

to follow when reproducing a paper, and the documentation framework for this process.

1.4.1 Paper Selection Process

HYP-sel 1 The search results from Scopus return sets of higher impact papers that cover a diverse
set of subjects within the field of Artifical Intelligence

RQ-sel 1 Is Scopus a decent choice as a bibliographic database with respect to the content cov-

erage and citation impact of the results?

The objective of these research questions on paper selection is to provide an idea of
whether the selection process is feasible with respect to producing a list of papers, where

that list has decent coverage over topics in the field.

1.4.2 Paper Reproducibility

The hypothesis HY P-repr 1 as well as the research questions RQ-repr 1, RQ-repr 2, and
RQ-repr 3 have been adapted from [Kjel7]

HYP-repr 1 The documentation of experiments in published Al papers is not sufficient to be con-

sidered feasibly reproducible for independent researchers.

HYP-repr 2 There is a correspondence between the documentation level of a paper and the repro-

ducibility of the paper.
RQ-repr 1 What is the state of reproducibility of Al papers?
RQ-repr 2 What documentation is missing from AI papers to support reproducibility?
RQ-repr 3 Documentation practices have improved over time.

RQ-repr 4 Are there elements of the documentation that surface when using the framework of
the collaborating group of researchers (Odd Cappelenand Martin Mglna), that indicate
reproducibility problems?

These research questions aim to identify whether there are difficulties in actually repro-
ducing research results in artificial intelligence, and if there is, attempt to identify what
makes this difficult.
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1.5 Research Approach

The prior work on which the thesis builds examines papers from the top conferences in the
Al-field. Instead of using the same selection process, this thesis attempts to motivate a
selection process based on the citation counts of papers.

The thesis first investigates methods by which papers can be selected based on citation
counts, as well as analyzing such a selection to substantiate that this is a reasonable method
to select papers. Reproduction of the selected papers is then attempted and data of the
process gathered by using a common framework and process, developed in a separate but

collaborating thesis.

1.6 Research Contributions
This theis has the following contributions

e A methodology by which to select papers for use in our reproduction attempts.

e An evaluation of the reproducibility of a subset of the selected papers, and the main

issues encountered in the process.

1.7 Limitations
e The research is limited to the duration of a master’s thesis at NTNU, i.e two semesters.

e The presented sample of papers attempted is fairly small, so it is difficult to draw

broader conclusions based on statistics.

e The sample of papers is not random, so generalizing to all papers (in Al) is not really

feasible.

e We have access to some hardware, but this access is still limited. If e.g a cluster of

GPUs is required, this is unavailable to us.

1.8 Structure

The paper is structured as follows: Chapter 1 introduces the overall topic of the research,
the overall goals and contributions, as well as the context of the research.
The related research is then covered in chapter 2, as well as common understandings of

terms like reproducibility and replicability in the scientific community.
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Chapter 3 presents our understanding and use of terms like reproducibility, as well as
presenting some of the prior work that our research is a continuation of.

The methodology followed in our research is presented in broad strokes in chapter 4, from
how to select papers to the results from attempting to reproduce them. The problem of
selecting papers is then presented in 5, and a methodology for selection is proposed. The
proposed methodology is evaluated with respect to the research questions on selection, the
results presented and analysed in chapter 6.

The reproduction process is covered in chapter 7, with the reresults presented in chapter

8. Chapters 9 discusses these results. 10 concludes the thesis.

1.9 Disclosure

In line with the idea that properly documenting research is necessary to increase its repro-
ducibility, we will be striving for releasing the artefacts generated from the research, e.g
method code, experiment code, and code for generating the figures and results presented in
the paper.

The released source code and artefacts are made available on various GitHub repositories,
gathered under a common Organization Account ! for our research project — with “us”
being the two collaborating groups of researchers. In this paper, more specific references to
repositories will be provided as results generated from code in that repository are presented,

where feasible.

https://github.com/AIReproducibility2018


https://github.com/AIReproducibility2018

Chapter

Background

Problems with reproducing results is prevalent in the scientific fields. More than half of the
researchers in various fields when asked in a questionnaire, responded that they had failed
to reproduce an experiment, for some fields the proportion remaining above 50% even for a
researchers own results [Bak16] [BI15].

There is little consensus on the terminology when it comes to reproducibility [GFI116].
Terms like reproducibility or replicability are often used without being explicitly defined,
and other times used interchangably, it being difficult to say whether the choice is stylistic
or due to subtle differences. In [BI15, p. 117], at first the phrase “...in proportion to their
[available] resources, the cost of attempting to reproduce a study can be substantial ...”
is used, and shortly after the phrase “What is difficult to quantify is the opportunity cost
associated with studies that fail to replicate”. [GFI16, p. 2|, noting that the usage of the
terms reproducibility and replicability have varying definitions, proposes new terminology
centered around the word reproducibility (as opposed to giving new definitions for exist-
ing words): methods reproducibility, results reproducibility, and inferential reproducibility.
Here, methods reproducibility covers “[The] ability to implement, as exactly as possible, the
experimental and computational procedures, with the same data and tools, to obtain the
same results”, results reproducibility covers “[The| production of corroborating results in a
new study, having followed the same experimental methods”, and inferential reproducibility
covers “[The|] making of knowledge claims of similar strength from a study replication or
reanalysis”.

“Reproducible research” is a somewhat more agreed upon term, often being attributed
to Claerbout and his colleagues in the 90s [GFI16] [VKV09] [LMS12] through their efforts in
computational science to provide interactive runnable code on CD-ROMs accompanying their
publications. The ideal is that a reader should be able to run the accompanying code and be
able to produce the same figures as in the paper. A central point is that the paper is not the

research itself, but that it rather advertises the research — the research being the environment
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(e.g collection of data and code) which produced the analysis and figures presented in the
paper. [BD9g]

[Penl1] calls replication the standard by which scientific claims are judged, and goes
on to use the term reproducibility in the context of making the data and computer code
used to analyze results publicly available, so that others can analyze the same data. They
then say that this falls short of “full replication”, with the reasoning that the same data is
used rather than independently collected data. This use of the terms is repeated in [LP15],
reproducibility being recomputation while replication is independent researchers targeting
the same research question reaching the same result.

In contrast, [LMS12] uses the term “replicable” to mean the ability to re-run the same
code and achieve the same result, and “reproducible” to mean creating an independent
implementation that verifies the published result.

[VK11] uses the term repetition for rerunning the exact same experiment with the same
method on the same or similar system, where the result obtained is the same or very sim-
ilar. Their definition of reproduction is similar to that of [LMS12], used in the context of
independent confirmation — where independent researchers base themselves on the contents
of the paper and linked resources (though the term replication is not covered).

[VKV09, p. 39] uses a definition of reproducible research, where “a research work is called
reproducible if all information to the work, including, but not limited to, text, data and
code, is made available, such that an independent researcher can reproduce the results”, and
presents six degrees of reproducibility based on time and effort required of an independent
researcher. They additionally perform a survey on 134 papers, using a short questionnaire, to
assess the reproducibility practices in signal processing at the time. Their overall conclusion
is that algorithms are well-documented, though they raise the concern that the review did
not involve actually implementing the algorithms, and that some issues might not surface
until during the process of attempting an implementation.

[CPW15] presents a study on 601 papers, registering whether the results presented in
the papers are backed by code, and if so whether obtaining the code is possible, and if so
whether they were able to build the code (the result of attempting to run the code is not
a high priority in their study). Out of 402 papers with results backed by code, they were
able to obtain the code for 226 papers (either through the paper, through a web search, or
through emailing the authors). For 130 papers the code built successfully within 30 minutes,
and for 64 of the papers it took longer (for 23 of the papers, the authors ensured the code
would build with reasonable effort). This comes out to the code being obtainable in 56% of
the cases, and out of the attempts at building obtained code, 32% were successful within 30

minutes (increasing to 56% with no hard time limit).
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Documenting for reproducibility

This chapter presents terminology and work on documenting for reproducibility.

3.1 Defining reproducibility
In this and the following chapters, reproducibility will be understood as it is in [GK18]:

Definition. Reproducibility in empirical artificial intelligence research is the
ability of an independent research team to produce the same results using the

same method based on the documentation made by the original research team.

Likewise, repeatability is understood as conducting the same experiment and obtaining
the same result (as opposed to understanding it as reproducibility, which is understood to
be broader than exactly repeating an experiment).

Independent research team is understood as a research team that only uses the documen-
tation made available by the original research team in attempting to reproduce the results.

Additionally, [GK18] makes a distinction between the research method employed, and
the Al method employed (a more abstract notion than the notion of the Al program that
implements the Al method).

3.2 Evaluating reproducibility

In [Gunl5], requirements for what is required of benchmarks in computing for them to be
reproducible are presented. This covers what information needs to be disclosed — for instance
what has been done (as specified by the software program running the experiment(s), any
data, and the results), motivations, and detailed information about the environment and

infrastructure used to run the experiment(s).
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Based on the requirements, [Gunl5] goes on to propose a metric that measures the repli-
cability of a scientific body of work, by noting that the requirements can be broken down
along three dimensions: Experiment Procedures, Data and Results, and Documenta-
tion. Each of these have several aspects to them, for instance under Experiment Procedures,
aspects include the source code for the method and the source code for the experiment. Us-
ing these aspects, a metric function is proposed. In its simpler form as used, it counts the
presence of an aspect in the published work as 1.0, and counts absence as 0.0. The values
are then summed and divided by the total number of aspects, resulting in a reproducibility
score in the interval [0.0, 1.0].

[Kjel7] adapts this survey, and applies it to a sample of 400 papers from two journals,
visiting each twice in separate years. The journals covered are AAAI in the years 2014 and
2016, and IJCAI in the years 2013 and 2016. The survey is given more detailed evalation
criteria, and an evaluation procedure to follow when going through a paper is devised.

[GK18] further develops the survey by in line with [GFI16] noting that there are de-
grees of reproducibility, and goes on to define three reproducibility levels — R1, R2, and R3.
These levels are defined in order of increasing generality (and decreasing requirements of the

available documentation), the definitions repeated here for reference:

e R1: Experiment Reproducible The results of an experiment are experiment repro-
ducible when the execution of the same implementation of an Al method produces the

same results when executed on the same data.

e R2: Data Reproducible The results of an experiment are data reproducible when an
experiment is conducted that executes an alternative implementation of the AI method

that produces the same results when executed on the same data.

e R3: Method Reproducible The results of an experiment are method reproducible
when the execution of an alternative implementation of the AI method produces the

same results when executed on different data.

Using the survey and the defined reproducibility levels, they present a metric for measuring
the degree by which a paper fits each reproducibility level. The categories cover aspects pre-
sented in [Kjel7] and [Gunl5], relating to method, data, and experiment. Each reproducibil-
ity level depends on a given selection of these categories, R3 having the fewest dependencies
(only relying on the method category) while R1 has the most documentation dependencies
(relying on code, data, and the method). A metric for the degree to which a paper belongs in
a given level is then calculated similarly to in [Gunl15], except that the categories (and their
aspects) that are not relevant for the given level are not used when calculating the degree

the paper fits that level.
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3.3 Moving forward

Our research involves attempting to reproduce a selection of papers. In that regard, it is
beneficial to have a structured process to follow for consistency in both methodology and
collection of data about the process. A collaborating group of researchers Odd Cappelen
and Martin Mglna, building on [GK18] and prior work, have devised such a framework for
collecting data, as well as a methodology that is designed with the limitations of this research
project in mind.

Our usage of this methodology and framework on a selection of papers is detailed in
chapter 7, and the results of this process are detailed in chapter 8.

As a final note, while [GK18] presents categories R1, R2, and R3, our research groups came
across papers which had code published, but not the dataset used. The original definition
of R2 requires data to be available (as does R1), and this case does not truly fit with the
definition of R3, where data is not available. We have therefore, as presented in the autumn
project report of the other research group, decided to split the category R2 into two new

categories:

e R2-D, Data Reproducible — An alternative implementation of the method being used

on the same data (this is is identical to the original definition of R2).

e R2-M, Method Reproducible — The same implementation of the method being used on

new data (this is a new definition, that covers the case described above).

In the rest of this thesis, unless R2-M is explicitly mentioned, mentions of R2 are taken
to refer to the first category (R2-D).
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Research Method

This chapter presents the overall methodology followed in our research.

The overall goal of the research is to evaluate reproducibility in the field of Artificial
Intelligence, by attempting to reproduce a selection of papers. A process to achieve this will
have several steps, where each step may require particular methods.

With this goal in mind, it becomes clear that a selection of papers is necessary. A process
for selecting papers (i.e generating data for the next steps of the research) is therefore devised,
which is detailed in chapter 5. The process is then applied, resulting in the selection of papers
presented and analysed in chapter 6.

In order to improve consistency, it is important to be methodical in the attempts at
reproducing the selection of papers, as well as documenting each attempt and its results. To
achieve this, a framework and methodology has been devised by the collaborating research
group, as part of their autumn project for their master’s thesis.. This was briefly described
in section 3.3, and is revisited in chapter 7 where the methodology and survey is applied,
and in chapter 8 where the data generated from the reproduction attempts is analysed.

With a selection of papers, and a methodology and framework to follow and use for
recording data during the reproduction attempts, the next step is to follow through with
the reproductions. The initial goal was to identify the reproducibility categories of the
papers, and then attempt to reproduce the experimental papers in the R1 category (validating
theoretical papers being considered out of scope for our research). That is, the category
described in section 3.2 as the least general one, requiring the most documentation (more
specifically, source code had to be available). A short while into the process, the experiment
was modified so to incorporate reproduction of R2 papers as well. That is, as long as
the data used is available, the paper is a candidate for reproduction, even if source code is
unavailable. Papers classified as R3 were documented using the framework, but reproduction

was not attempted.

12



Chapter

Paper selection methodology

This chapter presents the methodology followed for generating a selection of papers for use
in the process of attempting to reproduce their presented results.
The chapter is divided into two parts: deciding where to select papers from, and deciding

how to select the papers from that source.

5.1 Source to select papers from

The prior work on which the thesis builds examines papers from the top conferences in the
Al-field. Using a similar selection process here is worth considering, though with reference
to the main research goal, one wishes to be able to say something about the reproducibility
of the field as a whole. In that sense, being limited to one or a few particular journals might
not be too representative of the field. Another benefit of performing a different selection of
papers is to make the dataset an independent variable, providing opportunities for validating
the results of the prior work on a new dataset.

This could be achieved by selecting different conferences from the prior work (AAAI,
[JCAI), though the concern that one journal might be too narrow still applies.

A different criteria is using a metric such as the citation count (or other citation impact
measures) of a paper; using the citation count as a criteria for selection was proposed by
our supervisor, Odd Erik Gundersen, considered by having in mind that highly cited papers
by virtue of being highly cited, very likely have had a notable impact (be that a positive or
negative impact).

Having the idea of using citation count as a selection criteria, the source to select papers
from is constrained to sources that feasibly enable ranking papers by that measure. Several
bibliographic databases provide such measures, so an investigation into the features provided

by some of these to determine whether some have advantages over others is a natural next

13
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step.

5.2 Bibliographic databases

In the following, several bibliographic databases are considered, based on to what degree
they fulfill certain (unformalized) criteria, e.g if some database turned out to have a usability
feature that was advantageous enough to make a second database cumbersome to use in
comparison.

Examples of criteria that surfaced during the investigation:

e The database provides citation counts for papers, or some other citation metric to rank

papers.

(this was a pre-defined requirement).

e The search system is convenient for restricting the returned papers to a particular field

of interest, or restricting the search by other criteria.

(i.e artificial intelligence).

e The database supports exporting the search result in a convenient way to a convenient

format.

(e.g exporting bibliographic information).

e Transparency in how the database and search operates.

(e.g why a result was returned given a search should be reasonable).
Databases considered:

e Microsoft Academic *
e Google Scholar 2
e Scopus ?

e Web of Science *

'https://academic.microsoft.com/
2https://scholar.google.com/
3https://scopus.com/
“https://apps.webofknowledge . com/


https://academic.microsoft.com/
https://scholar.google.com/
https://scopus.com/
https://apps.webofknowledge.com/
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Microsoft Academic is developed by Microsoft Research. When the user searches for a
topic, e.g “Artificial Intelligence”, it lists a set of subcategories in the side bar (for instance
neural networks or evolutionary algorithms). A few test-searches to experiment with it
revealed some obscurities in the way it handles searches, however. In this specific case, after
having searched for “Artifical Intelligence”, the engine returned a set of results. Appending
part of the title of the first result to an attempted refined search, lead to this first result not
being included in the results.

A bit of reading revealed that the search engine uses semantic search, which appears
to attempt to interpret what the user wanted, rather than what the user actually typed.
This has benefits in not limiting the accessibility of the database to only the users who have
experience in formulating their queries, but unfortunately makes it difficult to somewhat
explicitly know what is going on behind a given search.

Microsoft Academic otherwise enables sorting the result by citation count, and has a
fairly intuitive way to browse results by field of study. There does not appear to be any easy
way to batch-export the search results to a convenient format.

Google Scholar uses the Google Search interface to search for academic papers, listing
results in a similar way to its usual search engine, with some included details about citation
counts and sources. It otherwise appears to be very limiting in letting the user define the
search or order and export results.

Scopus is a subscription-based bibliographic database owned by publisher Elsevier. ® It
is reasonable to raise questions about whether there is a conflict of interest, and whether the
database favours papers published by Elsevier. These concerns become less prominent when
it is revealed that the site is run by an independent international board, which decides what
journals and papers to include. The content coverage policy is openly available. [Els17]

The actual search is far more flexible than that of Google Scholar and Microsoft Academic,
permitting searches in particular datafields (keywords, title, abstract, and others), filtering by
year, filtering by document type (conference paper, book chapter, review, etc), by conference,
and various others. It also permits sorting by citation count, and lets the user export the
metadata of the (in practice) first 2000 search results.

Web of Science is a subscription-based bibliographic database run by Clarivate Analytics.®
It appears rather similar to Scopus in terms of features, though its interface seemed a bit
more difficult to use than Scopus (although that might be due to having become acustomed
to Scopus’ interface beforehand).

Out of these, Scopus and Web of Science are the most advantageous for the purposes

of sampling papers, with Google Scholar and Microsoft Academic being limited by their

Shttps://elsevier.com/
Shttps://clarivate.com/


https://elsevier.com/
https://clarivate.com/
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interface, searching, or export-capabilities. Out of Scopus and Web of Science, it is difficult
to say whether one has advantages over the other, though Scopus was chosen for our purposes
largely due to there not being any clear advantages to Web of Science, and due to Scopus
being considered earlier, already proving to have satisfactory functionality.

It is worth noting that due to there not being one true, consistent way to count citations,
it is infeasible to compare citation counts across bibliographic databases. Because of this,
choosing one database and sticking to it makes sense. Taking into account that the latter two
databases in particular appear to have desirable features and content coverage, there does

not appear to be much necessity in generating data using multiple databases, either way.

5.2.1 Performing a selection

Having chosen a bibliographic database, this section proposes and motivates a procedure for
using the database to generate a dataset (i.e a list of papers to use for the reproduction
attempts).

Scopus has papers from a wide variety of scientific fields (and not just computer science
or artificial intelligence). A natural first step is therefore to devise a method for filtering out
papers from fields and on topics that are not of interest.

The interface for searching the bibliographic database (Scopus) permits constructing a
query from field matches and mismatches, combined with logical connectives. An example of
this is shown in figure 5.1, where a search has been performed for publications with document
type of article, published in the year 2012, and with “Artificial Intelligence” in any of the
keyword fields (either author keywords or index keywords).

Below, a search query to be used is proposed. The process of selecting it cannot be
described as more than by trial and error, though the result of performing the search along
with an analysis is presented and analysed in chapter 6. The goal of this analysis is an
evaluation of the performance of using the search, with respect to the distribution of attributes
of the papers (like source journals or index keywords), and whether this distribution can be
used to say whether the paper selection appears to be representative of the field of artifical
intelligence, e.g by whether the subfields covered by the keywords is wide, or whether they are
very narrow (for instance, should almost all the results happen to be about neural networks).

The various parts of the query in figure 5.2 have specific motivations. The actual search
term, “Artificial Intelligence”, has the underlying assumption that the bibliographic database
(or the source journals) accurately adds the keyword to papers that either come from source
journals with almost exclusively Al papers, or papers that have other author keywords from
the field (for example Support Vector Machines); after all, it is unreasonable to expect that
all authours of papers would themseles use the Artificial Intelligence keyword. Chapter 6

attempts to validate this assumption, through investigation of keyword attributes.
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SCOpUS Search  Sources Alerts Lists  Helpw  Scival Login ~

3 ’ 378 dOCU me nt resu |tS A ondary documents ¥ 1942 patent results

CEY [ "Artificial Intelligence” ) AND [ LIMIT-TO (DOCTYPE, "ar™ ) AND ( LIMIT-TO [ PUBYEAR | 2012

# Edit B Save L. Setalert Setfeed

Search within results... tla Analyze search results Show all abstracts  Sorton:  Cited by (highest)
Refine results Allvs Export Download Viewcitation overview  Viewcitedby Addtolist == (2 =
Document title Authors Year Source Cited by
—— ifpe O 4 m ] Context-aware saliency Goferman, S., Zelnik- 2012 |EEE Transactions on Pattern 733
detection Manor, L., Tal, A Analysis and Machine
Year hd Intelligence
341006112774, pp. 1915-1926
Author name A
“
Subj ect area A View abstract v (B ETmwI) View at Publisher Related documents
Computer Science (2,289) > Lo i
: m 7 Distributed GraphLab: A Low, Y., Gonzalez, J., 2012 Proceedings of the VLDB 713
Engineering (976) > framework for machine leaming  Kyrola, A, (...}, Endowment
and data mining in the cloud Guestrin, C,, 58), pp. T16-727
Mathematics (B69) » Hellerstein, ].M.
Medicine (523) >
View abstract v [E™NETMNLI) View at Publisher Related documents
[ Biochemistry, (324 »
Genetics and
Molecular Biology 3 Blind image quality assessment:  Saad, M.A,, Bovik, 2012 |EEE Transactions on Image 523
) A natural scene statistics AC., Charrier, C. Processing
View more approach in the DCT domain 21(8),6172573, pp. 3339-3352
Documcnttypc h View abstract v [E™NETMNLI) View at Publisher Related documents

Figure 5.1: Example search for 2012 articles with “Artificial Intelligence” in the keywords

KEY ( "Artificial Intelligence" )

AND NOT ( TITLE-ABS-KEY ( "survey" ) OR TITLE-ABS-KEY ( "review" ) )

AND ( LIMIT-TO ( DOCTYPE , "cp " ) OR LIMIT-TO ( DOCTYPE , "ar " ) OR
LIMIT-TO ( DOCTYPE , '"ch " ) OR LIMIT-TO ( DOCTYPE , "ip " ) )

AND ( LIMIT-TO ( PUBYEAR , 2012 ) )

Figure 5.2: Search query used for the year 2012. Other than changing the PUBYEAR, the
other years are equivalent.
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The decision to search only in the keyword-fields (as defined by Scopus), as opposed to
inlcuding e.g the abstract-field as well, is motivated in part by a desire to have the presence
of each paper in the results be attributable to an (to a larger degree) explicit reason, and in
part to filter out some papers that mention Al in passing without otherwise being related to
the field.

The document type codes are used by Scopus to indicate book chapter, article, article in
press, and conference paper. The motivation for choosing only these is that the remaining
document types are for documents like survey papers (although it appears some papers that
perhaps should have been classified as that, are classified as e.g article, but these form a
very small portion, that perhaps from Scopus’ point of view have an ambigous document
type), which rarely contain experimental results. Survey papers are not considered relevant
to our research goals, which concern reproducing experimental results, and for that reason
such document types have been excluded as far as that is achievable.

The motivation behind excluding papers that contain the words “survey” or “review”
in the abstract, title, or keywords is largely intended to filter out leftover papers from the
previous document type step, where these papers are less likely to contain experimental
results, and therefore had they been present would be taking up time being investigated, only
to be discarded manually for the same reason. There is some probability that papers with
experimental results that inadvertantly mention these terms are excluded by this decision.
This tradeoff between at one end of the scale excluding nothing for additional manual work,
and at the other end of the scale excluding almost every imaginable term mostly used by
survey, review, and tutorial papers, is deemed a reasonable tradeoff.

The reasoning for limiting the search to a specific year is twofold. Firstly because the
research questions are about the current state of the field, so using all years would be less
appropriate. Secondly, Scopus appears to have a limit on the number of search results that
can be exported at once, thus searching for the full range of interest runs the risk of one
year with a lot of highly cited papers pushing other years out of the list. By performing the
search for each year separately, as long as each year actually has enough papers published,
the same number of most cited papers from each year is guaranteed to be present in the final
exported sets.

The actual search process essentially involves:

e Use the search query to get a list of results.
e Order the results by citation count

e Export the first (e.g) 2000 results to a convenient format



Chapter

Paper selection results and analysis

This chapter evaluates the selection of papers made by following the procedure devised in

chapter 5. In particular, the research question RQ-sel 1 is investigated.

6.1 The selected sample

The exported selections of papers for each year, being the 2000 most cited papers of each
year (based on the citation count measurements of Scopus), is made available at one of our
GitHub repositories. *

For illustrative purposes, a select few columns for one of the exported years (2016) is

shown for the first few papers in table 6.1

6.2 Attributes of sampled papers

Keeping in mind that the overall research goal is to attempt reproducing a selection of papers,
as well as the research limitations (i.e, time), it is highly unreasonable to expect more than
100 papers (and even that) to be investigated for each year. For this reason, it may be
valuable to perform the following analyses on a limited set of papers per year, in addition to
performing the analyses on all the 2000 papers per year. Given that the selection criteria is
by citation count, it makes sense to select the first few papers from the 2000 for this purpose.
The number of papers to use for the shorter set has been set to 60 per year, resulting in
60 x 5 = 300 papers in total for the shorter set — compared to the 2000 x 5 = 10000 papers
for the full set.

! https://github.com/AIReproducibility2018/UTILS_exported_papers
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Document types by year, whole CSV-file

Year: aggregate

B Article

B Article in Press
I Book Chapter
B Conference Paper

Figure 6.1: Proportions for each document type of all exported papers for each year

Generated_by: Appendix B: F)

6.2.1 Document Types

While it might be less relevant for investigating the hypothesis that the sample of papers
(both the 60 and the 2000) span a wide range of topics, figures 6.1 and 6.2 show the proportion
of each document type that the exported papers are classified as by Scopus. It is mostly of
interest for the purpose of seeing what kind of document types (among the ones exported) are
the more common in the field. Based on these results, articles and conference papers are by
far the most common in artificial intelligence. It also makes sense that article in press is rare,
as the years in question are 2012 through and including 2016, while the export was made

late 2017, when most papers from the previous years should have been published already.
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Document types by year, first 60 papers per year

Year: aggregate

B Article

B Article in Press
- Book Chapter
B Conference Paper
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Figure 6.2: Proportions for each document type of first 60 exported papers for each year

Generated_by: Appendix B: F)
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Figure 6.3: Citation counts as a function of position in exported list, for all papers. Tail of
data is shown in table 6.2

Table 6.2: Last few papers and their citation counts, full set

2012

2013 2014 2015 2016

1996
1997
1998
1999
2000

11
11
11
11
11

10
10
10
10
10

9
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Generated_by: Appendix B: F)

Figures 6.3 and 6.4 indicate that the larger portion of the first 60 papers for each year do have

more than just a few citations each, alleviating some of the concern that after the first couple
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Figure 6.4: Citation counts as a function of position in exported list, for the first few papers.
Tail of data is shown in table 6.3

Table 6.3: Last few papers and their citation counts, short set

2012 2013 2014 2015 2016

56 89 97 74 47 22
57 89 96 73 47 21
o8 85 95 73 46 21
29 85 94 73 46 21
60 85 92 73 46 21
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of papers all citation counts show only one a handful of citations (e.g 2-3 citations). Had
this not been the case, this sample of 60 papers would fail to fulfill some of the expectations
— namely, one of the intentions of making a selection based on citation count being to obtain
papers that in some way are important to the field /having high impact.

There is nonetheless a downwards trend in the number of citations as the position of the
paper in the list increases, which by the 60th paper while not reaching zero, does reach fairly
low compared to the highest citation counts.

Because it is difficult to read the exact values for the later papers (where the variance
starts to even out), The last few papers for each of the full sets and shortened sets are shown
in tables 6.2 and 6.3, respectively. Here, the last exported paper from the most recent year
(2016) has 4 citations, the last exported paper from 2012 having 11 citations. For the shorter
set of 60 papers, the last paper with the least citations is from 2016, with 21 citations.

Compared to the papers with the most citations (more than 500 for each year), these are
rather low values (though it should be noted that the search result from Scopus contained a
lot more papers than just the 2000 that were exported, many having 0 registered citations).

Keeping in mind that the year 2016 as of writing is fairly recent (not to mention that
there is a time difference between 2012 and 2016), it is reasonable that papers from 2016
will tend to have gathered fewer citations than older papers like the ones from 2012; the last
paper in the shorter set from year 2012 has 85 citations (compared to the 21 of the paper
from 2016), which is a far step up from the citation counts of 4-10 at the bottom of the full
set — it appears somewhat unreasonable to call the last few papers in the shorter set of 60

papers obscure (in the sense that they are unknown).

6.2.3 Journals and Other Sources

Looking into which journals the exported papers come from, the figures 6.5 and 6.6 (with
statistics presented in tables 6.4 and 6.5) indicate that even though the various IEEE trans-
actions and Lecture Notes in Computer Science (LNCS) are by far more common, other
journals are still represented (there being around half as many journals as there are papers,
for the short set — the number of journals to number of papers is closer to % for the full set
of 2000 papers). Some conferences also only have papers in the sample for one or a few of
the years, as indicated by the bar charts.

It is reasonable to expect larger journals to have a larger presence, though it is nonetheless

apparent that more than just a few journals are represented in the sample.
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Papers by source journal, using whole CSV-file
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Figure 6.5: Proportion of papers per journal for the full set of papers, sorted by aggregate
count for all years for each journal. Only the journals with the most papers are listed
separately, the rest have been grouped into misc.
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Papers by source journal, using most cited 60 papers
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Figure 6.6: Proportion of papers per journal for the 60 first papers, sorted by aggregate count
for all years for each journal. Only the journals with the most papers are listed separately,
the rest have been grouped into misc.
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Table 6.4: Statistics for the proportion of papers for each journal. Count is the number of
journals. Set of all papers.

2012 2013 2014 2015 2016

count 541.000000 538.000000 621.000000 660.000000 666.000000
mean 3.696858 3.717472 3.220612 3.030303 3.003003
std 17.493823  15.122778  13.056501 8.775690 9.109525
min 1.000000 1.000000 1.000000 1.000000 1.000000
25% 1.000000 1.000000 1.000000 1.000000 1.000000
50% 1.000000 1.000000 1.000000 1.000000 1.000000
75% 2.000000 2.000000 2.000000 2.000000 2.000000
max  379.000000 278.000000 288.000000 125.000000 161.000000

Table 6.5: Statistics for the proportion of papers for each journal. Count is the number of
journals. Set of first 60 papers.

2012 2013 2014 2015 2016

count 28.000000 30.000000 38.000000 41.000000 42.000000
mean  2.142857  2.000000  1.578947 = 1.463415  1.428571
std 2223016 2.392517  1.348304  1.246947  1.107466
min 1.000000  1.000000  1.000000  1.000000  1.000000
25% 1.000000  1.000000  1.000000  1.000000  1.000000
50% 1.000000  1.000000  1.000000  1.000000  1.000000
5% 2.000000  1.000000  1.750000  1.000000  1.000000
max 9.000000 10.000000  7.000000  8.000000  6.000000
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6.2.4 Keywords

One of the larger concerns that remain is whether the exported papers cover a wide portion
of the field of artificial intelligence, or if they cover a very narrow area (for instance, almost
purely neural networks). The research concerns artificial intelligence, and not just neural
networks, after all (even if neural networks happen to be a large subfield). In the following,
an ever shorter set of 15 of the top cited papers per year is used in addition to the full 2000
and the short 60. This is to investigate the state of the highest cited papers in the sample,
in particular considering the steep drop-off in citation counts from section 6.2.2.

The first thing to note is that the occurences of the keyword “Artificial Intelligence” are
not always 100% (even when all keywords have been converted to lowercase, as in the tables).
One reasonable explanation for this is that perhaps the Index Keywords did not contain the
term, while the Author Keywords did. This is not exclusively true, however, even in a merged
table (treating both keyword fields as one field), the occurence is not 100% (see table 6.12).

The actual reason for this (or at least a reason that appears consistent) is that Scopus
appears to use substring matching rather than exact matching, so a paper with the keyword
“Artificial Intelligence Research” that does not have the keyword “Artificial Intelligence”,
will still be returned for a search for the latter, as was performed in our paper selection.

A second thing to note is that for the very short selection of papers (the first 15), see
table 6.11 of author keywords, no one exact keyword appears for more than a handful of the
15 papers for each year. The few potential exceptions to this are the keywords “machine
learning” (which could be considered rather broad), which occurs for 9 out of the 75, papers
spread fairly evenly over the selection of years — and particle swarm optimization, which
occurs 1 time in 2012 and 6 times in 2013 (which for 2013 is 40% of the 15 papers (though
in return, the keyword does not appear again for the rest of the years)).

A concern with the above is that the keywords have not been normalized, that is to
say “particle swarm optimization” and “particle swarm optimization (pso)” are considered
separate keywords. An example of this is present in table 6.11, on lines 43, 44, and 45. Here,

bM

the three keywords “support vector machinels,, (svm)]” are all represented, through at least
two papers (as one occurence is from 2016, the others from 2014). This is not just a quirk of
author keywords alone; table 6.8 for lines 59 and 60 (here too about support vector machines)
show the same phenomenon.

A consequence of this is that the prevalence of a keyword may be undercounted by only
looking at keywords in isolation, and consequently, it is not very reasonable to conclude
that a diverse area is covered solely on the basis that each individual keyword only is used
by a small proportion of the selection. It is nonetheless possible to conclude that none the
individual exact keywords are overrepresented.

When extended to the 2000 samples (table 6.9), some trends in keywords start to emerge.
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Table 6.6: Index keywords, all 2000 papers, top few most common keywords

Keyword 2012 2013 2014 2015 2016 mean total
1 artificial intelligence 1973.0 1975.0 1974.0 1990.0 1989.0 1980.2 9901.0
2 learning systems 99.0 138.0 518.0 967.0 1017.0 547.8 2739.0
3 algorithms 625.0 601.0 532.0 503.0 346.0 521.4 2607.0
4 article 578.0 582.0 381.0 211.0 172.0 384.8 1924.0
5 humans 362.0 372.0 357.0 199.0 119.0 281.8 1409.0
6 human 317.0 336.0 346.0 216.0 155.0 274.0 1370.0
7 algorithm 342.0 343.0 343.0 200.0 141.0 273.8 1369.0
8 optimization 146.0 145.0 148.0 231.0 309.0 195.8 979.0
9 learning algorithms 76.0 78.0 145.0 276.0 273.0 169.6 848.0
10 priority journal 174.0 173.0 154.0 116.0 130.0 149.4 747.0
11 pattern recognition, automated 245.0 229.0 176.0 74.0 17.0 148.2 741.0
12 decision support systems 175.0 149.0 129.0 136.0 135.0 144.8 724.0
13 classification (of information) 57.0 68.0 133.0 223.0 205.0 137.2 686.0
14 procedures 22.0 127.0 242.0 172.0 82.0 129.0 645.0
15 automated pattern recognition 186.0 185.0 164.0 80.0 20.0 127.0 635.0
16 neural networks 80.0 62.0 78.0 158.0 236.0 122.8 614.0
17 methodology 271.0 260.0 69.0 3.0 7.0 122.0 610.0
18 machine learning 75.0 105.0 119.0 142.0 150.0 118.2 591.0
19 data mining 59.0 93.0 95.0 172.0 160.0 115.8 579.0
20 support vector machines 87.0 62.0 151.0 146.0 127.0 114.6 573.0
21 forecasting 71.0 62.0 93.0 157.0 181.0 112.8 564.0
22 sensitivity and specificity 145.0 162.0 146.0 60.0 35.0 109.6 548.0
23 reproducibility of results 172.0 153.0 138.0 55.0 17.0 107.0 535.0
24 computer simulation 170.0 148.0 113.0 39.0 25.0 99.0 495.0
25 software engineering 130.0 116.0 81.0 41.0 53.0 84.2 421.0
26 female 93.0 98.0 120.0 66.0 43.0 84.0 420.0
27 computer assisted diagnosis 102.0 128.0 114.0 54.0 22.0 84.0 420.0
28 image interpretation, computer-assisted 114.0 151.0 104.0 36.0 14.0 83.8 419.0
29 controlled study 96.0 84.0 101.0 74.0 62.0 83.4 417.0
30 decision making 63.0 72.0 70.0 88.0 114.0 81.4 407.0
31 feature extraction 46.0 44.0 78.0 109.0 124.0 80.2 401.0
32 reproducibility 103.0 101.0 123.0 55.0 17.0 79.8 399.0
33 male 91.0 90.0 114.0 65.0 39.0 79.8 399.0
34 computer science 24.0 147.0 174.0 12.0 33.0 78.0 390.0
35 artificial neural network 94.0 69.0 74.0 69.0 77.0 76.6 383.0
36 support vector machine 66.0 57.0 96.0 84.0 72.0 75.0 375.0
37 semantics 57.0 71.0 56.0 86.0 92.0 72.4 362.0
38 image processing 82.0 56.0 72.0 78.0 64.0 70.4 352.0
39 pattern recognition 29.0 42.0 85.0 110.0 82.0 69.6 348.0
40 decision trees 37.0 42.0 53.0 124.0 90.0 69.2 346.0
41 computers 23.0 36.0 190.0 51.0 34.0 66.8 334.0
42 image enhancement 87.0 125.0 90.0 24.0 6.0 66.4 332.0
43 computer vision 68.0 39.0 66.0 78.0 79.0 66.0 330.0
44 particle swarm optimization (pso) 72.0 64.0 57.0 60.0 66.0 63.8 319.0
45 genetic algorithms 56.0 44.0 50.0 75.0 86.0 62.2 311.0
46 decision support system 98.0 70.0 49.0 46.0 47.0 62.0 310.0
47 evolutionary algorithms 39.0 64.0 55.0 68.0 81.0 61.4 307.0
48 regression analysis 36.0 48.0 71.0 65.0 81.0 60.2 301.0
49 adult 67.0 66.0 74.0 51.0 31.0 57.8 289.0
50 swarm intelligence 74.0 56.0 57.0 53.0 47.0 57.4 287.0
51 prediction 56.0 61.0 71.0 47.0 42.0 55.4 277.0
52 ant colony optimization 8.0 69.0 59.0 68.0 70.0 54.8 274.0
53 physiology 55.0 47.0 82.0 60.0 26.0 54.0 270.0
54 signal processing 36.0 36.0 72.0 59.0 48.0 50.2 251.0
55 machine learning techniques 8.0 16.0 55.0 81.0 90.0 50.0 250.0
56 social networking (online) 18.0 27.0 57.0 92.0 52.0 49.2 246.0
57 accuracy 69.0 56.0 53.0 42.0 25.0 49.0 245.0
58 iterative methods 22.0 38.0 48.0 68.0 62.0 47.6 238.0
59 neural networks (computer) 75.0 56.0 36.0 40.0 29.0 47.2 236.0
60 clustering algorithms 39.0 36.0 29.0 69.0 63.0 47.2 236.0
61 classification 53.0 43.0 58.0 51.0 31.0 47.2 236.0
62 animals 53.0 68.0 64.0 22.0 21.0 45.6 228.0
63 complex networks 14.0 24.0 34.0 65.0 90.0 45.4 227.0
64 benchmarking 38.0 32.0 36.0 52.0 68.0 45.2 226.0
65 statistical model 65.0 54.0 54.0 30.0 22.0 45.0 225.0
66 image segmentation 48.0 49.0 40.0 38.0 47.0 44.4 222.0
67 automation 47.0 43.0 38.0 53.0 39.0 44.0 220.0
68 diagnosis 28.0 24.0 34.0 69.0 62.0 43.4 217.0
69 software 61.0 54.0 50.0 21.0 21.0 41.4 207.0
70 image analysis 46.0 47.0 36.0 45.0 32.0 41.2 206.0
71 stochastic systems 17.0 15.0 41.0 63.0 68.0 40.8 204.0
72 state of the art 20.0 16.0 22.0 68.0 66.0 38.4 192.0
73 problem solving 20.0 25.0 35.0 58.0 54.0 38.4 192.0
74 fuzzy logic 50.0 49.0 30.0 35.0 28.0 38.4 192.0
75 aged 42.0 43.0 45.0 39.0 21.0 38.0 190.0
76 magnetic resonance imaging 46.0 44.0 54.0 28.0 15.0 37.4 187.0
77 brain 50.0 44.0 45.0 29.0 17.0 37.0 185.0
78 middle aged 44.0 43.0 44.0 30.0 19.0 36.0 180.0
79 information retrieval 41.0 44.0 39.0 33.0 23.0 36.0 180.0
80 ant colony optimization (aco) 58.0 48.0 21.0 27.0 26.0 36.0 180.0
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CHAPTER 6. PAPER SELECTION RESULTS AND ANALYSIS

Table 6.7: Index keywords, first 60 papers, top few most common keywords

Keyword 2012 2013 2014 2015 2016 mean total
1 artificial intelligence 59.0 58.0 60.0 60.0 60.0 59.4 297.0
2 algorithms 29.0 25.0 12.0 16.0 16.0 19.6 98.0
3 article 28.0 21.0 16.0 12.0 10.0 17.4 87.0
4 learning systems 4.0 7.0 12.0 28.0 34.0 17.0 85.0
5 algorithm 22.0 17.0 11.0 12.0 13.0 15.0 75.0
6 human 19.0 13.0 14.0 14.0 14.0 14.8 74.0
7 humans 20.0 13.0 14.0 13.0 13.0 14.6 73.0
8 pattern recognition, automated 23.0 16.0 8.0 2.0 2.0 10.2 51.0
9 automated pattern recognition 19.0 15.0 8.0 2.0 3.0 9.4 47.0
10 procedures 3.0 6.0 9.0 16.0 10.0 8.8 44.0
11 methodology 23.0 15.0 5.0 0.0 0.0 8.6 43.0
12 neural networks 2.0 5.0 3.0 9.0 18.0 7.4 37.0
13 computer vision 5.0 6.0 9.0 7.0 7.0 6.8 34.0
14 image interpretation, computer-assisted 12.0 9.0 4.0 2.0 5.0 6.4 32.0
15 image processing 12.0 4.0 5.0 5.0 4.0 6.0 30.0
16 computer assisted diagnosis 9.0 8.0 5.0 2.0 6.0 6.0 30.0
17 reproducibility of results 12.0 6.0 5.0 3.0 3.0 5.8 29.0
18 optimization 6.0 9.0 4.0 5.0 5.0 5.8 29.0
19 priority journal 6.0 4.0 6.0 6.0 5.0 5.4 27.0
20 sensitivity and specificity 10.0 5.0 5.0 4.0 1.0 5.0 25.0
21 machine learning 2.0 2.0 5.0 5.0 11.0 5.0 25.0
22 learning algorithms 1.0 3.0 6.0 7.0 7.0 4.8 24.0
23 image processing, computer-assisted 10.0 4.0 3.0 5.0 2.0 4.8 24.0
24 image enhancement 11.0 6.0 4.0 1.0 1.0 4.6 23.0
25 reproducibility 8.0 4.0 4.0 3.0 3.0 4.4 22.0
26 particle swarm optimization (pso) 3.0 14.0 1.0 2.0 2.0 4.4 22.0
27 classification (of information) 0.0 5.0 8.0 6.0 3.0 4.4 22.0
28 support vector machines 2.0 1.0 5.0 6.0 5.0 3.8 19.0
29 signal processing 4.0 4.0 3.0 2.0 6.0 3.8 19.0
30 artificial neural network 4.0 1.0 2.0 3.0 9.0 3.8 19.0
31 data mining 0.0 4.0 4.0 4.0 5.0 3.4 17.0
32 convolutional neural network 1.0 0.0 1.0 4.0 11.0 3.4 17.0
33 computer simulation 8.0 4.0 3.0 1.0 1.0 3.4 17.0
34 support vector machine 2.0 2.0 1.0 6.0 5.0 3.2 16.0
35 physiology 3.0 3.0 3.0 5.0 2.0 3.2 16.0
36 pattern recognition 1.0 3.0 3.0 5.0 4.0 3.2 16.0
37 image segmentation 4.0 4.0 4.0 2.0 2.0 3.2 16.0
38 feature extraction .0 2.0 4.0 3.0 6.0 3.2 16.0
39 databases, factual 5.0 3.0 2.0 2.0 4.0 3.2 16.0
40 animals 4.0 4.0 5.0 2.0 1.0 3.2 16.0
41 factual database 4.0 3.0 2.0 2.0 4.0 3.0 15.0
42 subtraction technique 9.0 2.0 2.0 0.0 1.0 2.8 14.0
43 state of the art 1.0 1.0 0.0 7.0 5.0 2.8 14.0
44 semantics 1.0 1.0 4.0 5.0 3.0 2.8 14.0
45 models, theoretical 5.0 8.0 1.0 0.0 0.0 2.8 14.0
46 image analysis 4.0 0.0 3.0 3.0 4.0 2.8 14.0
47 evolutionary algorithms 2.0 9.0 0.0 2.0 1.0 2.8 14.0
48 biometry 2.0 3.0 4.0 3.0 2.0 2.8 14.0
49 neural networks (computer) 3.0 1.0 1.0 2.0 6.0 2.6 13.0
50 female 2.0 2.0 4.0 2.0 3.0 2.6 13.0
51 face 1.0 5.0 3.0 3.0 1.0 2.6 13.0
52 software engineering 8.0 3.0 0.0 0.0 1.0 2.4 12.0
53 nonhuman 3.0 0.0 5.0 4.0 0.0 2.4 12.0
54 magnetic resonance imaging 2.0 4.0 1.0 2.0 3.0 2.4 12.0
55 image classification 0.0 2.0 2.0 5.0 3.0 2.4 12.0
56 genetic algorithms 3.0 4.0 1.0 1.0 3.0 2.4 12.0
57 deep neural networks 0.0 0.0 2.0 6.0 4.0 2.4 12.0
58 deep learning 0.0 0.0 2.0 3.0 7.0 2.4 12.0
59 convolution 0.0 0.0 2.0 2.0 8.0 2.4 12.0
60 three dimensional imaging 6.0 0.0 2.0 1.0 2.0 2.2 11.0
61 theoretical model 5.0 6.0 0.0 0.0 0.0 2.2 11.0
62 nuclear magnetic resonance imaging 2.0 4.0 1.0 2.0 2.0 2.2 11.0
63 network architecture 1.0 0.0 2.0 3.0 5.0 2.2 11.0
64 male 3.0 2.0 3.0 1.0 2.0 2.2 11.0
65 image subtraction 6.0 2.0 2.0 0.0 1.0 2.2 11.0
66 controlled study 3.0 1.0 4.0 2.0 1.0 2.2 11.0
67 computers 2.0 1.0 6.0 2.0 0.0 2.2 11.0
68 computer science 0.0 5.0 6.0 0.0 0.0 2.2 11.0
69 big data 0.0 0.0 4.0 2.0 5.0 2.2 11.0
70 benchmarking 1.0 2.0 1.0 4.0 3.0 2.2 11.0
71 animal 3.0 2.0 3.0 2.0 1.0 2.2 11.0
72 state-of-the-art methods 1.0 0.0 3.0 3.0 3.0 2.0 10.0
73 signal processing, computer-assisted 3.0 4.0 2.0 0.0 1.0 2.0 10.0
74 problem solving 3.0 3.0 1.0 2.0 1.0 2.0 10.0
75 imaging, three-dimensional 7.0 0.0 1.0 0.0 2.0 2.0 10.0
76 diagnosis 1.0 1.0 1.0 4.0 3.0 2.0 10.0
77 video recording 4.0 2.0 0.0 2.0 1.0 1.8 9.0
78 swarm intelligence 2.0 2.0 2.0 2.0 1.0 1.8 9.0
79 regression analysis 3.0 1.0 2.0 1.0 2.0 1.8 9.0
80 optimization problems 3.0 1.0 3.0 2.0 0.0 1.8 9.0
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Table 6.8: Index keywords, first 15 papers, top few most common keywords

Keyword 2012 2013 2014 2015 2016 mean total
1 artificial intelligence 15.0 14.0 15.0 15.0 15.0 14.8 74.0
2 algorithms 11.0 8.0 3.0 4.0 5.0 6.2 31.0
3 article 11.0 5.0 4.0 5.0 4.0 5.8 29.0
4 learning systems 2.0 0.0 3.0 7.0 10.0 4.4 22.0
5 human 6.0 2.0 4.0 5.0 5.0 4.4 22.0
6 humans 6.0 2.0 4.0 5.0 4.0 4.2 21.0
7 algorithm 8.0 3.0 3.0 3.0 4.0 4.2 21.0
8 pattern recognition, automated 9.0 4.0 4.0 1.0 0.0 3.6 18.0
9 automated pattern recognition 6.0 4.0 4.0 1.0 1.0 3.2 16.0
10 priority journal 4.0 1.0 1.0 4.0 3.0 2.6 13.0
11 methodology 8.0 4.0 1.0 0.0 0.0 2.6 13.0
12 procedures 1.0 1.0 2.0 5.0 3.0 2.4 12.0
13 reproducibility of results 6.0 1.0 1.0 1.0 1.0 2.0 10.0
14 neural networks 1.0 2.0 0.0 3.0 4.0 2.0 10.0
15 image interpretation, computer-assisted 4.0 3.0 1.0 1.0 1.0 2.0 10.0
16 computer vision 1.0 1.0 3.0 2.0 3.0 2.0 10.0
17 particle swarm optimization (pso) 3.0 6.0 0.0 0.0 0.0 1.8 9.0
18 learning algorithms 1.0 0.0 2.0 3.0 3.0 1.8 9.0
19 sensitivity and specificity 5.0 0.0 1.0 2.0 0.0 1.6 8.0
20 computer assisted diagnosis 2.0 3.0 1.0 1.0 1.0 1.6 8.0
21 reproducibility 4.0 0.0 1.0 1.0 1.0 1.4 7.0
22 pattern recognition 1.0 1.0 2.0 1.0 2.0 1.4 7.0
23 optimization 3.0 3.0 0.0 0.0 1.0 1.4 7.0
24 machine learning 1.0 0.0 0.0 1.0 5.0 1.4 7.0
25 image enhancement 4.0 1.0 1.0 1.0 0.0 1.4 7.0
26 evolutionary algorithms 2.0 5.0 0.0 0.0 0.0 1.4 7.0
27 artificial neural network 1.0 0.0 1.0 1.0 4.0 1.4 7.0
28 signal processing 0.0 2.0 1.0 0.0 3.0 1.2 6.0
29 image processing 4.0 0.0 1.0 0.0 1.0 1.2 6.0
30 databases, factual 3.0 0.0 1.0 0.0 2.0 1.2 6.0
31 data mining 0.0 2.0 0.0 0.0 4.0 1.2 6.0
32 animals 3.0 1.0 0.0 1.0 1.0 1.2 6.0
33 subtraction technique 4.0 0.0 1.0 0.0 0.0 1.0 5.0
34 state of the art 0.0 0.0 0.0 4.0 1.0 1.0 5.0
35 regression analysis 2.0 1.0 1.0 0.0 1.0 1.0 5.0
36 prediction 1.0 1.0 1.0 1.0 1.0 1.0 5.0
37 network architecture 0.0 0.0 2.0 1.0 2.0 1.0 5.0
38 image processing, computer-assisted 4.0 0.0 0.0 0.0 1.0 1.0 5.0
39 image analysis 2.0 0.0 0.0 1.0 2.0 1.0 5.0
40 factual database 2.0 0.0 1.0 0.0 2.0 1.0 5.0
41 digital storage 0.0 1.0 0.0 3.0 1.0 1.0 5.0
42 convolutional neural network 1.0 0.0 0.0 1.0 3.0 1.0 5.0
43 convolution 0.0 0.0 1.0 1.0 3.0 1.0 5.0
44 three dimensional imaging 4.0 0.0 0.0 0.0 0.0 0.8 4.0
45 testing 0.0 4.0 0.0 0.0 0.0 0.8 4.0
46 semantics 0.0 0.0 2.0 1.0 1.0 0.8 4.0
47 remote sensing 0.0 0.0 2.0 0.0 2.0 0.8 4.0
48 models, theoretical 2.0 2.0 0.0 0.0 0.0 0.8 4.0
49 imaging, three-dimensional 4.0 0.0 0.0 0.0 0.0 0.8 4.0
50 image classification 0.0 1.0 0.0 1.0 2.0 0.8 4.0
51 feature extraction 0.0 0.0 1.0 0.0 3.0 0.8 4.0
52 deep learning 0.0 0.0 1.0 1.0 2.0 0.8 4.0
53 data handling 0.0 0.0 0.0 1.0 3.0 0.8 4.0
54 computer science 0.0 2.0 2.0 0.0 0.0 0.8 4.0
55 complex networks 0.0 0.0 1.0 1.0 2.0 0.8 4.0
56 clustering algorithms 0.0 2.0 2.0 0.0 0.0 0.8 4.0
57 animal 2.0 0.0 0.0 1.0 1.0 0.8 4.0
58 theoretical model 2.0 1.0 0.0 0.0 0.0 0.6 3.0
59 support vector machines 0.0 0.0 2.0 0.0 1.0 0.6 3.0
60 support vector machine 1.0 0.0 0.0 0.0 2.0 0.6 3.0
61 stochastic systems 0.0 3.0 0.0 0.0 0.0 0.6 3.0
62 statistics 1.0 2.0 0.0 0.0 0.0 0.6 3.0
63 state-of-the-art performance 0.0 0.0 1.0 1.0 1.0 0.6 3.0
64 state-of-the-art methods 0.0 0.0 2.0 1.0 0.0 0.6 3.0
65 signal processing, computer-assisted 0.0 2.0 0.0 0.0 1.0 0.6 3.0
66 sensor 0.0 0.0 2.0 0.0 1.0 0.6 3.0
67 random processes 0.0 3.0 0.0 0.0 0.0 0.6 3.0
68 protein 0.0 0.0 0.0 2.0 1.0 0.6 3.0
69 problem solving 1.0 2.0 0.0 0.0 0.0 0.6 3.0
70 principal component analysis 1.0 0.0 1.0 0.0 1.0 0.6 3.0
71 particle swarm 1.0 2.0 0.0 0.0 0.0 0.6 3.0
72 object recognition 1.0 0.0 1.0 0.0 1.0 0.6 3.0
73 nonhuman 1.0 0.0 1.0 1.0 0.0 0.6 3.0
74 neurons 0.0 1.0 2.0 0.0 0.0 0.6 3.0
75 neurology 1.0 0.0 0.0 2.0 0.0 0.6 3.0
76 neural networks (computer) 0.0 0.0 0.0 1.0 2.0 0.6 3.0
7 movement (physiology) 1.0 0.0 2.0 0.0 0.0 0.6 3.0
78 movement 1.0 0.0 2.0 0.0 0.0 0.6 3.0
79 mobile phone 0.0 0.0 1.0 1.0 1.0 0.6 3.0
80 knowledge acquisition 0.0 0.0 2.0 1.0 0.0 0.6 3.0
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Table 6.9: Author keywords, all 2000 papers, top few most common keywords

Keyword 2012 2013 2014 2015 2016 mean total
1 machine learning 51.0 69.0 193.0 272.0 307.0 178.4 892.0
2 artificial intelligence 65.0 47.0 78.0 44.0 55.0 57.8 289.0
3 ant colony optimization 57.0 67.0 38.0 40.0 34.0 47.2 236.0
4 classification 34.0 35.0 52.0 57.0 54.0 46.4 232.0
5 swarm intelligence 53.0 41.0 46.0 43.0 41.0 44.8 224.0
6 feature selection 20.0 21.0 41.0 52.0 45.0 35.8 179.0
7 particle swarm optimization 38.0 40.0 28.0 22.0 26.0 30.8 154.0
8 support vector machine 13.0 14.0 41.0 40.0 32.0 28.0 140.0
9 decision support system 35.0 29.0 27.0 17.0 20.0 25.6 128.0
10 neural networks 17.0 19.0 22.0 29.0 37.0 24.8 124.0
11 data mining 12.0 19.0 28.0 29.0 27.0 23.0 115.0
12 decision support systems 36.0 19.0 21.0 15.0 15.0 21.2 106.0
13 optimization 25.0 18.0 20.0 18.0 23.0 20.8 104.0
14 active learning 8.0 5.0 26.0 38.0 24.0 20.2 101.0
15 genetic algorithm 24.0 15.0 14.0 20.0 20.0 18.6 93.0
16 deep learning 0.0 1.0 11.0 30.0 43.0 17.0 85.0
17 support vector machines 14.0 15.0 22.0 15.0 16.0 16.4 82.0
18 clustering 16.0 10.0 18.0 15.0 12.0 14.2 71.0
19 computational intelligence 12.0 10.0 12.0 19.0 15.0 13.6 68.0
20 big data 1.0 6.0 12.0 22.0 22.0 12.6 63.0
21 artificial neural networks 9.0 11.0 6.0 13.0 24.0 12.6 63.0
22 pattern recognition 5.0 9.0 20.0 19.0 6.0 11.8 59.0
23 random forest 4.0 6.0 12.0 22.0 14.0 11.6 58.0
24 computer vision 13.0 10.0 12.0 13.0 10.0 11.6 58.0
25 feature extraction 9.0 11.0 13.0 11.0 13.0 11.4 57.0
26 cloud computing 14.0 18.0 6.0 11.0 8.0 11.4 57.0
27 neural network 8.0 7.0 13.0 5.0 23.0 11.2 56.0
28 fuzzy logic 9.0 11.0 13.0 12.0 8.0 10.6 53.0
29 artificial neural network 10.0 4.0 8.0 18.0 13.0 10.6 53.0
30 natural language processing 4.0 5.0 9.0 18.0 13.0 9.8 49.0
31 evolutionary computation 4.0 20.0 11.0 5.0 7.0 9.4 47.0
32 artificial bee colony 6.0 8.0 10.0 12.0 9.0 9.0 45.0
33 genetic algorithms 9.0 8.0 7.0 7.0 12.0 8.6 43.0
34 activity recognition 7.0 8.0 7.0 16.0 5.0 8.6 43.0
35 svm 8.0 5.0 10.0 11.0 8.0 8.4 42.0
36 segmentation 7.0 12.0 11.0 5.0 7.0 8.4 42.0
37 prediction 5.0 5.0 8.0 12.0 11.0 8.2 41.0
38 support vector machine (svm) 5.0 3.0 10.0 15.0 5.0 7.6 38.0
39 genetic programming 4.0 11.0 7.0 9.0 7.0 7.6 38.0
40 multi-objective optimization 6.0 11.0 6.0 8.0 6.0 7.4 37.0
41 image segmentation 5.0 14.0 5.0 5.0 8.0 7.4 37.0
42 extreme learning machine 1.0 4.0 7.0 13.0 12.0 7.4 37.0
43 evolutionary algorithms 6.0 8.0 10.0 5.0 8.0 7.4 37.0
44 dimensionality reduction 2.0 6.0 13.0 6.0 9.0 7.2 36.0
45 ambient intelligence 5.0 10.0 12.0 3.0 6.0 7.2 36.0
46 sentiment analysis 2.0 6.0 5.0 10.0 12.0 7.0 35.0
47 remote sensing 6.0 5.0 4.0 12.0 6.0 6.6 33.0
48 uncertainty 9.0 4.0 7.0 6.0 6.0 6.4 32.0
49 dictionary learning 7.0 2.0 11.0 6.0 6.0 6.4 32.0
50 simulation 13.0 8.0 4.0 2.0 4.0 6.2 31.0
51 artificial bee colony algorithm 7.0 7.0 6.0 6.0 5.0 6.2 31.0
52 ant colony optimization (aco) 8.0 6.0 4.0 7.0 6.0 6.2 31.0
53 anomaly detection 2.0 4.0 6.0 9.0 10.0 6.2 31.0
54 sparse representation 6.0 7.0 10.0 3.0 4.0 6.0 30.0
55 semi-supervised learning 6.0 3.0 8.0 7.0 6.0 6.0 30.0
56 ensemble learning 5.0 2.0 4.0 10.0 9.0 6.0 30.0
57 support vector regression 1.0 2.0 8.0 7.0 11.0 5.8 29.0
58 image processing 6.0 5.0 4.0 8.0 6.0 5.8 29.0
59 differential evolution 6.0 8.0 8.0 2.0 5.0 5.8 29.0
60 wireless sensor networks 6.0 3.0 3.0 7.0 9.0 5.6 28.0
61 unsupervised learning 6.0 3.0 7.0 6.0 6.0 5.6 28.0
62 bayesian networks 5.0 6.0 8.0 5.0 4.0 5.6 28.0
63 supervised learning 3.0 4.0 2.0 10.0 8.0 5.4 27.0
64 breast cancer 4.0 4.0 5.0 6.0 8.0 5.4 27.0
65 text mining 3.0 4.0 4.0 8.0 7.0 5.2 26.0
66 random forests 0.0 2.0 7.0 9.0 8.0 5.2 26.0
67 online learning 4.0 8.0 7.0 4.0 3.0 5.2 26.0
68 metaheuristics 2.0 7.0 4.0 5.0 8.0 5.2 26.0
69 face recognition 3.0 10.0 8.0 3.0 2.0 5.2 26.0
70 decision support 6.0 9.0 3.0 6.0 2.0 5.2 26.0
71 decision making 10.0 5.0 3.0 3.0 5.0 5.2 26.0
72 alzheimer’s disease 3.0 6.0 7.0 9.0 1.0 5.2 26.0
73 logistic regression 5.0 4.0 6.0 4.0 6.0 5.0 25.0
74 image classification 5.0 6.0 1.0 5.0 7.0 4.8 24.0
75 fault diagnosis 2.0 2.0 4.0 8.0 8.0 4.8 24.0
76 twitter 1.0 2.0 6.0 6.0 8.0 4.6 23.0
s scheduling 5.0 8.0 3.0 4.0 3.0 4.6 23.0
78 global optimization 11.0 3.0 3.0 3.0 3.0 4.6 23.0
79 gis 6.0 2.0 5.0 5.0 5.0 4.6 23.0
80 boosting 3.0 7.0 3.0 5.0 5.0 4.6 23.0
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Table 6.10: Author keywords, first 60 papers, top few most common keywords

Keyword 2012 2013 2014 2015 2016 mean total
1 machine learning 1.0 3.0 1.0 7.0 12.0 4.8 24.0
2 particle swarm optimization 1.0 11.0 1.0 2.0 1.0 3.2 16.0
3 deep learning 0.0 0.0 2.0 3.0 7.0 2.4 12.0
4 swarm intelligence 2.0 0.0 2.0 2.0 1.0 1.4 7.0
5 support vector machines 0.0 2.0 1.0 0.0 3.0 1.2 6.0
6 neural networks 1.0 3.0 1.0 0.0 1.0 1.2 6.0
7 neural network 0.0 0.0 1.0 1.0 4.0 1.2 6.0
8 feature selection 1.0 1.0 3.0 0.0 1.0 1.2 6.0
9 artificial neural networks 0.0 3.0 0.0 0.0 3.0 1.2 6.0
10 testing 0.0 5.0 0.0 0.0 0.0 1.0 5.0
11 sparse representation 3.0 1.0 1.0 0.0 0.0 1.0 5.0
12 segmentation 2.0 1.0 1.0 0.0 1.0 1.0 5.0
13 face recognition 0.0 2.0 1.0 1.0 1.0 1.0 5.0
14 evolutionary computation 0.0 5.0 0.0 0.0 0.0 1.0 5.0
15 support vector machine (svm) 1.0 0.0 1.0 2.0 0.0 0.8 4.0
16 stochastic processes 0.0 4.0 0.0 0.0 0.0 0.8 4.0
17 object detection 2.0 0.0 0.0 0.0 2.0 0.8 4.0
18 data mining 0.0 2.0 0.0 1.0 1.0 0.8 4.0
19 crowdsourcing 1.0 1.0 1.0 0.0 1.0 0.8 4.0
20 convolutional neural networks 1.0 0.0 0.0 1.0 2.0 0.8 4.0
21 classification 0.0 0.0 2.0 1.0 1.0 0.8 4.0
22 biometrics 0.0 1.0 1.0 2.0 0.0 0.8 4.0
23 artificial intelligence 1.0 1.0 2.0 0.0 0.0 0.8 4.0
24 artificial bee colony 1.0 1.0 1.0 1.0 0.0 0.8 4.0
25 alzheimer’s disease 0.0 1.0 1.0 1.0 1.0 0.8 4.0
26 support vector machine 0.0 0.0 1.0 2.0 0.0 0.6 3.0
27 pattern recognition 0.0 1.0 2.0 0.0 0.0 0.6 3.0
28 optimization 1.0 0.0 1.0 0.0 1.0 0.6 3.0
29 object recognition 1.0 1.0 1.0 0.0 0.0 0.6 3.0
30 neurons 0.0 1.0 0.0 2.0 0.0 0.6 3.0
31 mild cognitive impairment 0.0 1.0 1.0 0.0 1.0 0.6 3.0
32 image retrieval 1.0 0.0 1.0 1.0 0.0 0.6 3.0
33 genetic algorithms 0.0 2.0 1.0 0.0 0.0 0.6 3.0
34 gaussian processes 2.0 0.0 0.0 1.0 0.0 0.6 3.0
35 extreme learning machine (elm) 1.0 0.0 1.0 1.0 0.0 0.6 3.0
36 equations 0.0 3.0 0.0 0.0 0.0 0.6 3.0
37 dictionary learning 3.0 0.0 0.0 0.0 0.0 0.6 3.0
38 cloud computing 1.0 2.0 0.0 0.0 0.0 0.6 3.0
39 biomedical engineering 0.0 3.0 0.0 0.0 0.0 0.6 3.0
40 big data 0.0 2.0 0.0 0.0 1.0 0.6 3.0
41 ant colony optimization 0.0 1.0 0.0 1.0 1.0 0.6 3.0
42 unsupervised learning 0.0 0.0 2.0 0.0 0.0 0.4 2.0
43 transfer learning 0.0 0.0 1.0 1.0 0.0 0.4 2.0
44 topology 0.0 2.0 0.0 0.0 0.0 0.4 2.0
45 system dynamics 2.0 0.0 0.0 0.0 0.0 0.4 2.0
46 subspace learning 0.0 1.0 0.0 0.0 1.0 0.4 2.0
47 spectral clustering 0.0 1.0 0.0 1.0 0.0 0.4 2.0
48 social networks 0.0 1.0 0.0 0.0 1.0 0.4 2.0
49 sentiment analysis 0.0 2.0 0.0 0.0 0.0 0.4 2.0
50 sensor fusion 0.0 0.0 1.0 0.0 1.0 0.4 2.0
51 self-similarity 2.0 0.0 0.0 0.0 0.0 0.4 2.0
52 scene text detection 0.0 1.0 1.0 0.0 0.0 0.4 2.0
53 problem-solving 0.0 2.0 0.0 0.0 0.0 0.4 2.0
54 power engineering and energy 0.0 2.0 0.0 0.0 0.0 0.4 2.0
55 person re-identification 0.0 0.0 2.0 0.0 0.0 0.4 2.0
56 particle swarm optimization (pso) 1.0 1.0 0.0 0.0 0.0 0.4 2.0
57 optimization methods 0.0 2.0 0.0 0.0 0.0 0.4 2.0
58 opinion mining 0.0 1.0 1.0 0.0 0.0 0.4 2.0
59 object segmentation 1.0 0.0 1.0 0.0 0.0 0.4 2.0
60 non-local means 2.0 0.0 0.0 0.0 0.0 0.4 2.0
61 natural language processing 0.0 0.0 1.0 1.0 0.0 0.4 2.0
62 multilevel thresholding 0.0 1.0 1.0 0.0 0.0 0.4 2.0
63 multi-objective optimization 0.0 1.0 0.0 0.0 1.0 0.4 2.0
64 motion segmentation 0.0 1.0 1.0 0.0 0.0 0.4 2.0
65 microgrid 0.0 1.0 0.0 0.0 1.0 0.4 2.0
66 memristor 0.0 0.0 0.0 0.0 2.0 0.4 2.0
67 magnetic resonance imaging 0.0 1.0 0.0 1.0 0.0 0.4 2.0
68 large-scale learning 1.0 1.0 0.0 0.0 0.0 0.4 2.0
69 kapur’s entropy 0.0 1.0 1.0 0.0 0.0 0.4 2.0
70 intelligent fault diagnosis 0.0 0.0 0.0 0.0 2.0 0.4 2.0
71 image segmentation 0.0 1.0 1.0 0.0 0.0 0.4 2.0
72 image representation 0.0 0.0 1.0 1.0 0.0 0.4 2.0
73 image classification 0.0 2.0 0.0 0.0 0.0 0.4 2.0
74 hyperspectral data classification 0.0 0.0 1.0 1.0 0.0 0.4 2.0
75 genetic mutations 0.0 2.0 0.0 0.0 0.0 0.4 2.0
76 fusion 1.0 0.0 0.0 1.0 0.0 0.4 2.0
7 flexible electronics 0.0 0.0 0.0 1.0 1.0 0.4 2.0
78 feedforward neural networks 1.0 1.0 0.0 0.0 0.0 0.4 2.0
79 feature learning 0.0 0.0 0.0 1.0 1.0 0.4 2.0
80 extreme learning machine 0.0 0.0 1.0 1.0 0.0 0.4 2.0
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Table 6.11: Author keywords, first 15 papers, top few most common keywords

Keyword 2012 2013 2014 2015 2016 mean total
1 machine learning 1.0 1.0 0.0 3.0 4.0 1.8 9.0
2 particle swarm optimization 1.0 6.0 0.0 0.0 0.0 1.4 7.0
3 testing 0.0 4.0 0.0 0.0 0.0 0.8 4.0
4 evolutionary computation 0.0 4.0 0.0 0.0 0.0 0.8 4.0
5 deep learning 0.0 0.0 1.0 1.0 2.0 0.8 4.0
6 stochastic processes 0.0 3.0 0.0 0.0 0.0 0.6 3.0
7 big data 0.0 2.0 0.0 0.0 1.0 0.6 3.0
8 swarm intelligence 2.0 0.0 0.0 0.0 0.0 0.4 2.0
9 sparse representation 1.0 1.0 0.0 0.0 0.0 0.4 2.0
10 social networks 0.0 1.0 0.0 0.0 1.0 0.4 2.0
11 sensor fusion 0.0 0.0 1.0 0.0 1.0 0.4 2.0
12 self-similarity 2.0 0.0 0.0 0.0 0.0 0.4 2.0
13 problem-solving 0.0 2.0 0.0 0.0 0.0 0.4 2.0
14 pattern recognition 0.0 1.0 1.0 0.0 0.0 0.4 2.0
15 object detection 1.0 0.0 0.0 0.0 1.0 0.4 2.0
16 non-local means 2.0 0.0 0.0 0.0 0.0 0.4 2.0
17 neural networks 0.0 1.0 0.0 0.0 1.0 0.4 2.0
18 neural network 0.0 0.0 0.0 1.0 1.0 0.4 2.0
19 face recognition 0.0 0.0 1.0 0.0 1.0 0.4 2.0
20 extreme learning machine 0.0 0.0 1.0 1.0 0.0 0.4 2.0
21 data mining 0.0 1.0 0.0 0.0 1.0 0.4 2.0
22 convolutional neural networks 1.0 0.0 0.0 1.0 0.0 0.4 2.0
23 clustering 0.0 1.0 1.0 0.0 0.0 0.4 2.0
24 wearable sensors 0.0 0.0 0.0 0.0 1.0 0.2 1.0
25 wearable devices 0.0 0.0 1.0 0.0 0.0 0.2 1.0
26 wavelets transforms 0.0 0.0 0.0 1.0 0.0 0.2 1.0
27 voting system 0.0 0.0 0.0 1.0 0.0 0.2 1.0
28 visual saliency 1.0 0.0 0.0 0.0 0.0 0.2 1.0
29 vessel segmentation 0.0 0.0 0.0 1.0 0.0 0.2 1.0
30 venus 0.0 1.0 0.0 0.0 0.0 0.2 1.0
31 vaccination 0.0 0.0 0.0 1.0 0.0 0.2 1.0
32 unsupervised learning 0.0 0.0 1.0 0.0 0.0 0.2 1.0
33 unobtrusive sensing 0.0 0.0 1.0 0.0 0.0 0.2 1.0
34 transitions 0.0 0.0 0.0 0.0 1.0 0.2 1.0
35 trainable filters 0.0 0.0 0.0 1.0 0.0 0.2 1.0
36 traffic sign recognition 1.0 0.0 0.0 0.0 0.0 0.2 1.0
37 trace norm 0.0 1.0 0.0 0.0 0.0 0.2 1.0
38 topology adaptation 1.0 0.0 0.0 0.0 0.0 0.2 1.0
39 topology 0.0 1.0 0.0 0.0 0.0 0.2 1.0
40 tensor completion 0.0 1.0 0.0 0.0 0.0 0.2 1.0
41 telemedicine 0.0 0.0 0.0 1.0 0.0 0.2 1.0
42 target cross-validation 0.0 0.0 0.0 0.0 1.0 0.2 1.0
43 support vector machines 0.0 0.0 0.0 0.0 1.0 0.2 1.0
44 support vector machine (svm) 0.0 0.0 1.0 0.0 0.0 0.2 1.0
45 support vector machine 0.0 0.0 1.0 0.0 0.0 0.2 1.0
46 subspaces 0.0 1.0 0.0 0.0 0.0 0.2 1.0
47 subspace clustering 0.0 1.0 0.0 0.0 0.0 0.2 1.0
48 strips 0.0 1.0 0.0 0.0 0.0 0.2 1.0
49 steering kernel regression 1.0 0.0 0.0 0.0 0.0 0.2 1.0
50 statistics 0.0 1.0 0.0 0.0 0.0 0.2 1.0
51 stacked autoencoder (sae) 0.0 0.0 1.0 0.0 0.0 0.2 1.0
52 spectral clustering 0.0 1.0 0.0 0.0 0.0 0.2 1.0
53 spatio-temporal descriptors 1.0 0.0 0.0 0.0 0.0 0.2 1.0
54 sparse learning 0.0 1.0 0.0 0.0 0.0 0.2 1.0
55 sparse errors 1.0 0.0 0.0 0.0 0.0 0.2 1.0
56 spark 0.0 0.0 0.0 1.0 0.0 0.2 1.0
57 social-based frameworks and applications 0.0 0.0 0.0 0.0 1.0 0.2 1.0
58 social media 0.0 0.0 0.0 0.0 1.0 0.2 1.0
59 smartphones 0.0 0.0 0.0 0.0 1.0 0.2 1.0
60 smartphone 0.0 0.0 0.0 1.0 0.0 0.2 1.0
61 single-link clustering 0.0 0.0 1.0 0.0 0.0 0.2 1.0
62 simulated annealing 0.0 1.0 0.0 0.0 0.0 0.2 1.0
63 short-term forecasting 0.0 1.0 0.0 0.0 0.0 0.2 1.0
64 service science 0.0 1.0 0.0 0.0 0.0 0.2 1.0
65 service orientation 0.0 1.0 0.0 0.0 0.0 0.2 1.0
66 sequence-coupling model 0.0 0.0 0.0 0.0 1.0 0.2 1.0
67 sentiment analysis 0.0 1.0 0.0 0.0 0.0 0.2 1.0
68 semi-supervised learning 0.0 0.0 1.0 0.0 0.0 0.2 1.0
69 semi-auto image tagging 0.0 1.0 0.0 0.0 0.0 0.2 1.0
70 self-organization 1.0 0.0 0.0 0.0 0.0 0.2 1.0
71 self-learning particle swarm optimizer (slpso) 1.0 0.0 0.0 0.0 0.0 0.2 1.0
72 segmentation 0.0 1.0 0.0 0.0 0.0 0.2 1.0
73 search methods 0.0 1.0 0.0 0.0 0.0 0.2 1.0
74 scene text detection 0.0 0.0 1.0 0.0 0.0 0.2 1.0
75 scalable machine learning 0.0 0.0 0.0 0.0 1.0 0.2 1.0
76 rotation-invariant cnn (ricnn) 0.0 0.0 0.0 0.0 1.0 0.2 1.0
7 rotating machinery 0.0 0.0 0.0 0.0 1.0 0.2 1.0
78 robust principal component analysis 1.0 0.0 0.0 0.0 0.0 0.2 1.0
79 retinal image analysis 0.0 0.0 0.0 1.0 0.0 0.2 1.0
80 remote sensing images 0.0 0.0 0.0 0.0 1.0 0.2 1.0
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Table 6.12: Both Author keywords and Index keywords, All 2000 papers, top selection of
most common keywords

Keyword 2012 2013 2014 2015 2016 mean total
1 artificial intelligence 1984.0 1982.0 1988.0 1999.0 1998.0 1990.2 9951.0
2 learning systems 99.0 138.0 518.0 967.0 1017.0 547.8 2739.0
3 algorithms 625.0 601.0 533.0 503.0 348.0 522.0 2610.0
4 article 578.0 582.0 381.0 211.0 172.0 384.8 1924.0
5 humans 362.0 372.0 357.0 199.0 119.0 281.8 1409.0
6 algorithm 343.0 344.0 344.0 200.0 141.0 274.4 1372.0
7 human 317.0 336.0 346.0 216.0 155.0 274.0 1370.0
8 machine learning 116.0 150.0 283.0 369.0 396.0 262.8 1314.0
9 optimization 147.0 146.0 148.0 231.0 309.0 196.2 981.0
10 learning algorithms 76.0 78.0 145.0 276.0 273.0 169.6 848.0
11 priority journal 174.0 173.0 154.0 116.0 130.0 149.4 747.0
12 pattern recognition, automated 245.0 229.0 176.0 74.0 17.0 148.2 741.0
13 decision support systems 175.0 150.0 129.0 136.0 135.0 145.0 725.0
14 classification (of information) 57.0 68.0 133.0 223.0 205.0 137.2 686.0
15 procedures 22.0 127.0 242.0 172.0 82.0 129.0 645.0
16 automated pattern recognition 186.0 185.0 164.0 80.0 20.0 127.0 635.0
17 neural networks 82.0 65.0 79.0 158.0 237.0 124.2 621.0
18 methodology 271.0 260.0 70.0 3.0 7.0 122.2 611.0
19 support vector machines 90.0 68.0 154.0 148.0 127.0 117.4 587.0
20 data mining 60.0 94.0 95.0 172.0 160.0 116.2 581.0
21 forecasting 71.0 62.0 93.0 157.0 181.0 112.8 564.0
22 sensitivity and specificity 145.0 162.0 146.0 60.0 35.0 109.6 548.0
23 reproducibility of results 172.0 153.0 138.0 55.0 17.0 107.0 535.0
24 computer simulation 170.0 148.0 113.0 39.0 25.0 99.0 495.0
25 support vector machine 74.0 66.0 131.0 110.0 96.0 95.4 477.0
26 classification 81.0 70.0 99.0 100.0 81.0 86.2 431.0
27 software engineering 130.0 116.0 81.0 41.0 53.0 84.2 421.0
28 female 93.0 98.0 120.0 66.0 43.0 84.0 420.0
29 computer assisted diagnosis 102.0 128.0 114.0 54.0 22.0 84.0 420.0
30 image interpretation, computer-assisted 114.0 151.0 104.0 36.0 14.0 83.8 419.0
31 controlled study 96.0 84.0 101.0 74.0 62.0 83.4 417.0
32 artificial neural network 99.0 71.0 76.0 79.0 86.0 82.2 411.0
33 decision making 63.0 72.0 70.0 88.0 114.0 81.4 407.0
34 feature extraction 46.0 45.0 78.0 109.0 124.0 80.4 402.0
35 decision support system 122.0 92.0 67.0 59.0 60.0 80.0 400.0
36 reproducibility 103.0 101.0 123.0 55.0 17.0 79.8 399.0
37 male 91.0 90.0 114.0 65.0 39.0 79.8 399.0
38 computer science 24.0 147.0 174.0 12.0 33.0 78.0 390.0
39 semantics 57.0 71.0 56.0 86.0 92.0 72.4 362.0
40 image processing 84.0 56.0 73.0 78.0 64.0 71.0 355.0
41 pattern recognition 29.0 43.0 88.0 111.0 82.0 70.6 353.0
42 decision trees 37.0 43.0 53.0 124.0 90.0 69.4 347.0
43 ant colony optimization 61.0 87.0 59.0 68.0 70.0 69.0 345.0
44 computer vision 72.0 39.0 67.0 79.0 80.0 67.4 337.0
45 computers 23.0 36.0 190.0 51.0 34.0 66.8 334.0
46 image enhancement 87.0 125.0 90.0 24.0 6.0 66.4 332.0
47 particle swarm optimization (pso) 74.0 64.0 57.0 60.0 66.0 64.2 321.0
48 genetic algorithms 56.0 44.0 50.0 77.0 87.0 62.8 314.0
49 evolutionary algorithms 40.0 64.0 55.0 69.0 81.0 61.8 309.0
50 prediction 57.0 63.0 77.0 58.0 53.0 61.6 308.0
51 regression analysis 36.0 48.0 71.0 65.0 81.0 60.2 301.0
52 adult 67.0 66.0 74.0 51.0 31.0 57.8 289.0
53 swarm intelligence 75.0 56.0 57.0 53.0 47.0 57.6 288.0
54 physiology 55.0 47.0 82.0 60.0 26.0 54.0 270.0
55 signal processing 36.0 36.0 72.0 60.0 48.0 50.4 252.0
56 machine learning techniques 8.0 17.0 56.0 81.0 90.0 50.4 252.0
57 social networking (online) 18.0 27.0 57.0 92.0 52.0 49.2 246.0
58 accuracy 69.0 57.0 53.0 42.0 25.0 49.2 246.0
59 iterative methods 22.0 38.0 48.0 68.0 62.0 47.6 238.0
60 neural networks (computer) 75.0 56.0 36.0 40.0 29.0 47.2 236.0
61 clustering algorithms 39.0 36.0 29.0 69.0 63.0 47.2 236.0
62 animals 53.0 68.0 64.0 22.0 21.0 45.6 228.0
63 complex networks 14.0 24.0 34.0 65.0 90.0 45.4 227.0
64 image segmentation 48.0 51.0 41.0 39.0 47.0 45.2 226.0
65 benchmarking 38.0 32.0 36.0 52.0 68.0 45.2 226.0
66 statistical model 65.0 54.0 54.0 30.0 22.0 45.0 225.0
67 diagnosis 31.0 25.0 34.0 70.0 62.0 44.4 222.0
68 automation 48.0 43.0 38.0 53.0 39.0 44.2 221.0
69 software 62.0 54.0 51.0 22.0 24.0 42.6 213.0
70 image analysis 46.0 47.0 36.0 45.0 32.0 41.2 206.0
71 stochastic systems 17.0 15.0 41.0 63.0 68.0 40.8 204.0
72 fuzzy logic 50.0 50.0 32.0 36.0 28.0 39.2 196.0
73 state of the art 20.0 16.0 22.0 68.0 66.0 38.4 192.0
74 problem solving 20.0 25.0 35.0 58.0 54.0 38.4 192.0
75 magnetic resonance imaging 46.0 45.0 55.0 29.0 15.0 38.0 190.0
76 aged 42.0 43.0 45.0 39.0 21.0 38.0 190.0
7 big data 1.0 7.0 39.0 64.0 75.0 37.2 186.0
78 brain 50.0 44.0 45.0 29.0 17.0 37.0 185.0
79 feature selection 20.0 22.0 41.0 52.0 46.0 36.2 181.0
80 ant colony optimization (aco) 59.0 48.0 21.0 27.0 26.0 36.2 181.0
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It can be thought that this is because with 15 or 60 papers, the sample size is so small that
an author is likely to have their keyword appear higher up on the list if the author adds
a somewhat uncommon keyword or even a slightly different spelling of a common keyword
(and even moreso if every author does this). In the table of 2000 papers, several rather
distinct subfields are present — support vector machines, swarm intelligence, clustering, neural
networks, and genetic algorithms to name a few. All of these except clustering are represented
at least 3 times in table 6.10 of the top 60 author keywords.

6.3 Evaluation

Having analysed the citation counts of the selected papers as well as other attributes like the
source (journal) and keywords, the part of selection hypothesis HYP-sel 1 concerning the
papers being of higher impact is supported, as long as the used selection does not extend
towards the lower end of the first 60 papers for each year and beyond.

Papers are represented from a fair number of journals, where a slight trend in the preva-
lence of keywords of interest to determining which subfields are covered is starting to emerge
in the selection of the first 60 papers, the trend being rather apparent when extended to the
2000 papers per year. The evidence supporting this part of the hypothesis weak when limited
to the first 15 papers from each year, in large part due to noise. It appears to be difficult
to use author-supplied and index-supplied keywords to say something about the diversity of
topics covered when the sample size gets smaller, though at the same time, there is no strong

evidence that a subfield is grossly overrepresented either.



Chapter

Research Method — Reproduction

This chapter covers the process of reproducing the selection of papers that resulted from the
method described in chapter 5, using the framework presented by the collaborating research

group of Odd Cappelen and Martin Mglna, as well as the survey presented in [GK18|.

7.1 Methodology

In order to address the research questions that pertain to reproducibility, an observational
study in the form of a survey ([Oat06, pp. 93-94]) has been devised, which is fed in the data
generated by the paper selection process. Two rather similar surveys are used — one made
by the collaborating group, and one presented in [GK18] (which the collaborating group’s
survey builds on).

The surveys cover the collection of data regarding the documentation level of the pub-
lications. The attempted reproduction of a publication — as well as the identification of its
reproducibility — does not seem as easily described by just the research strategy of surveys
(in the sense of the same kinds of data being gathered systematically), as it is not entirely
clear what data should be gathered for each attempt, until the attempt has been made and
some idea of the difficulties encountered is had (even if the methodology for each paper is
systematic). There is also the aspect where the research is studying research, where that
research has its own research methods for its experiments — and attempting to reproduce
the results may involve in some sense repeating the experiment of the paper (although the
purpose of performing the experiment is in our case not related to the phenomenon the
publication relates to).

Instead of attempting to force the methodology to be describable by e.g an overall strategy,

the process is described in the following.

38
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7.2 Process

7.2.1 Identifying R1

The paper selection process resulted in a set of 2000 papers per year, in our case covering
the years from 2012 up to and including 2016. These papers are sorted by citation count,
the measure by which the papers were selected.

The initial target was to identify R1! papers, and attempt reproducing their results. R2
and R3 papers were identified as well, though were set aside. In addition, a few papers with
no experimental results (e.g theoretical papers and review papers) present in the selection of
papers were identified as such, and as reproducing (i.e proving) theoretical results is outside
our scope, they were skipped.

This was done for year 2012 at first — though after having identified the reproducibility
level of 10-15 papers — was expanded to cover years 2014 and 2016 as well. The reason for
this was to ensure that not only a single year was represented, and also to have an evenly
spaced selection of years (2012, 2014, 2016), so that it would be possible to draw conclusions
about how (or whether) documentation has changed over time.

As our groups had covered 10-15 papers and were about to extend the coverage to years
2013 and 2015, it was decided that due to the low number of papers identified as R1, most
being identified as R2, it would be appropriate to extend the coverage of the reproduction
attempt to cover R2 papers as well. As R2 papers require less documentation, being more
decoupled from the exact experiments they present, they provide higher generality, and may
provide information about reproducibility than R1 papers alone (which are essentially repeat-
ing the experiments on different hardware, perhaps with other slightly different variables).
R3 papers were still concluded to require too much effort per paper, as a new dataset would

have to be procured.

7.2.2 Reproduction of R1 and R2

For the process of reproducing the results of the R2 papers (as well as the R1 papers), a hard
cutoff-limit of 40 hours per paper was applied. This means that once 40 hours of work has
been put into a paper, any results obtained so far are “final” (a possible outcome is also that
no results are obtained, because a running implementation of the method and experiment
has not been achieved within the time limit). It should be noted that this is 40 hours of
active effort; a paper that presents a method that requires training, where the training for
instance runs for a week on a GPU, is not timed when the implementation has been invoked

and runs in the background — after all, it is possible to spend time working on other papers

1See chapter 3 for the definition of the degrees of reproducibility.
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while this implementation runs.

In addition to the hard time limit, other criteria for when to stop working on a paper
are introduced via the process of Odd Cappelen and Martin Mglnaas well — some of them
formalizing the process of leaving out papers that do not fit an identification of R1, R2, or R3
— and some related to the documentation presented. A selection of the criteria (from their

autumn 2017 project report) are repeated here for reference, with shortened descriptions:
1. Article unrelated to query (i.e, not related to the field of AI).
2. No experiments presented.

3. Only qualitative results are presented (these are hard to determine whether have been

reproduced).
4. Data sets unavailable [for R1 and R2-D].

5. Required resources unavailable [to us| (e.g if a paper uses a very large cluster of com-

puters).

6. Required hyper-parameter values not provided (e.g if the value is central to the results,

and searching for the “right” value would take a lot of effort).

An additional stopping-criteria relating to the experiment description was later intro-
duced. This covers papers where an experiment is presented, but the experiment is described
in such a way that it is very difficult or impossible for independent researchers to perform
the same experiment (that is to say, the reproduction would have to take guesses at what
the experiment was — in a somewhat blunt manner of speech, devise the experiment to test
the method on its own).

The survey was populated with information from the process of reproducing each paper,
other issues encountered being noted down and discussed, for use in e.g revising the set
of analysis methods to use. This includes a selection of identified categories pertaining to
problems encountered, assumptions made, and likely causes of error where the achieved
results were different from the results achieved in the paper. The details of this are covered
in chapter 8, on the results of the reproduction attempts.

Tables 7.1, 7.2, and 7.3 list the papers along with the citation for all the 30 papers that

were covered.
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Table 7.1: The selection of papers from 2012 that was covered

Title Cited by Level Researcher Citation
Context-aware saliency detection 592 R2-D MM [GZMT12]
A modified Artificial Bee Colony algorithm for real- 456 R2-D NN [AK12]
parameter optimization

Measuring the objectness of image windows 424 R1 ocC [ADF12]
Blind image quality assessment: A natural scene statistics 415 R1 oC [SBC12]
approach in the DCT domain

RASL: Robust alignment by sparse and low-rank decompo- 292 R1 NN [Pen+12]
sition for linearly correlated images

Cooperatively coevolving particle swarms for large scale op- 287 R2-D OC [LY12]
timization

Learning sparse representations for human action recogni- 186 R2-D OC [GW12]
tion

Single image super-resolution with non-local means and 175 R3 oC [Zha+12]
steering kernel regression

Multi-modal multi-task learning for joint prediction of mul- 173 R3 ocC [ZST+12]
tiple regression and classification variables in Alzheimer’s

disease

Development and investigation of efficient artificial bee 163 R2-D MM [LNX12]

colony algorithm for numerical function optimization
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Table 7.2: The selection of papers from 2014 that was covered

Title Cited by Level Researcher Citation
Visualizing and understanding convolutional networks 767 R2-D 0OC [ZF'14]
Clustering by fast search and find of density peaks 545 R1 MM [RL14]
Distributed representations of sentences and documents 266 R2-D MM [LM14]
DeCAF: A deep convolutional activation feature for generic 257 R2-D MM [Don+14]
visual recognition

DeepRelD: Deep filter pairing neural network for person re- 178 R2-D NN [Li+14]
identification

Robust text detection in natural scene images 177 R3 NN [Yin+14]
Deep learning-based classification of hyperspectral data 171 R1 NN [Che+14]
Semi-supervised and unsupervised extreme learning ma- 158 R2-D NN [Hua+14]
chines

Towards end-to-end speech recognition with recurrent neural 140 R3 MM [GJ14]
networks

Facial landmark detection by deep multi-task learning 132 R2-D NN [Zha+14]
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Table 7.3: The selection of papers from 2016 that was covered

Title Cited by Level Researcher Citation
Mastering the game of Go with deep neural networks and 571 R3 MM [Sil+16]
tree search

Deep Convolutional Neural Networks for Computer-Aided 152 R3 oC [Shi+16]

Detection: CNN Architectures, Dataset Characteristics and
Transfer Learning

MLIib: Machine learning in Apache Spark 98 R3 ocC [Men+16]
XGBoost: A scalable tree boosting system 97 R1 MM [CG16]
Deep neural networks: A promising tool for fault character- 77 R2-D NN [Jia+16a]

istic mining and intelligent diagnosis of rotating machinery

with massive data

ISuc-PseOpt: Identifying lysine succinylation sites in pro- 71 R2-D OC [Jia+16D)
teins by incorporating sequence-coupling effects into pseudo

components and optimizing imbalanced training dataset

Classification with Noisy Labels by Importance Reweighting 69 R2-D OC [LT16]
Deep convolutional and LSTM recurrent neural networks for 52 R1 0oC [OR16]
multimodal wearable activity recognition

Generalized Correntropy for Robust newline 7Adaptive Fil- 49 R2-D MM [Che+16]
tering

Learning Rotation-Invariant Convolutional Neural Networks 45 R3 MM [CZH16]

for Object Detection in VHR Optical Remote Sensing Images
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Chapter

Results

This chapter presents the results of attempting to reproduce the selection of papers, and
presents some identified categories of problems, assumptions made, and possible sources of

eIrors.

8.1 Papers covered

The selection of papers from the process described in chapter 5 is rather substantial, spanning
2000 papers for each of the years from 2012 up to and including 2016. As was alluded to in
chapter 7, only a tiny portion of these have been covered by our research groups.

The total number of papers (only counting papers identified as R1, R2-D, R2-M, or R3)
covered per year towards the end of the project was not evenly distributed, though the counts
lie in the range [10,15]. It was decided to use the same number of papers per year, and as
the counts were all fairly close to 10 (when rounded down), the final selection to finalize
evaluations of and include was set to the first 10 (experimental) papers per year, for the
years 2012, 2014, and 2016. The final selection of papers is shown in tables 7.1, 7.2, and 7.3,
along with a label of which individual ended up covering the paper.

Some papers were revieved by several members of the research groups. One reason why
this was done was that the person who went through the paper (in a getting-an-overview-
sense), noticed it required access to specific hardware that our groups were in the process
of getting access to. When we did get access, the person who had started on the paper was
busy with another paper, while a member involved in getting access to the hardware had the
opportunity to attempt it, so we agreed to transfer the “responsibility” of that paper (along
with the time already spent on it, although the time was never substantial in any of these
cases). In those cases, the person with the final (and in our cases larger) responsibility for

that paper is the one who is listed in the table.
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8.2 Identifying Categories

Other than the proposed metrics (via the framework, and the metric that is proposed in
[GK18]), it was difficult to beforehand (that is, before the reproductions were attempted)
decide on what to do with the results from going through with the process. This is particularly
true as the research process evolved throughout the course of the project, as aspects that
were not previously considered surfaced. Nonetheless, as the results of more papers were
attempted reproduced, some commonalities in what made that paper difficult started to
appear. After having gathered and documented 10 papers for each year (30 in total, only
counting R* ones), we went through several iterations of describing what our issues (if any)
with reproducing the results were, and to generalize them into categories that might apply
to several papers.

The result of this process was three types of categories:

e Problem: which problems were encountered during the attempt?

e Assumption: which assumptions were made, due to missing or ambiguous information

in the published documentation?

e Error: if the result from the reproduction attempt is different from the result presented

in the paper, what are the more likely causes for this, in our belief?

These categories are in turn covered below, with the larger contribution to the following
generalized problem, assumption, and error-category formulations being attributed to the

collaborating research group:

8.2.1 Problem categories

Some of the problem categories from table 8.2 may be ambiguous from their shorter descrip-

tion, or may otherwise benefit from further motivation:

e P6: the code not being inspectable. Essentially covers closed source executable code
(e.g binaries or protected matlab files). There is not really any way to know whether

these implement the method that the paper presents.

e P10: Going from the abstract overview that papers tend to present their method in to
an actual implementation often requires certain assumptions about choices that were
glossed over. If the number of assumptions needed start to add up, or if significant
assumptions are needed, the belief in how accurately the presented method has been
implemented decreases. An example of this is [Li+14], where negative training examples
are gradually increased as training progresses, but the details around how to implement

this are left out.
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Table 8.1: The selection of (R1, R2-D) papers for reproduction. The initials indicate who had
the responsibility for that paper. NN is the author of this thesis, Nicklas Grimstad Nilsen,
while OC and MM are the authors of the collaborating thesis, Odd Cappelen and Martin

Mglna.

ID  Article Year RI1/R2 Overall outcome Researcher

1 Measuring the objectness of image windows 2012 R1 Partial success 0oC

2 Generalized Correntropy for Robust Adaptive Fil- 2016 R2 Partial success MM
tering

3 Development and investigation of efficient artificial 2012 R2 Partial success MM
bee colony algorithm for numerical function opti-
mization

4 Blind Image Quality Assessment 2012 RI1 Partial success ocC

5 Cooperatively Coevolving particle swarm optimiza- 2012 R2 Partial success oC
tion for large scale optimization

6 Learning sparse representations for human action 2012 R2 Failure ocC
recognition

7 Visualizing and understanding convolutional net- 2014 R2 No Result 0oC
works

8 iSuc-PseOpt: Identifying lysine succinylation sites 2016 R2 Partial success oC
in proteins by incorporating sequence-coupling ef-
fects into pseudo components and optimizing im-
balanced training dataset

9 A modified Artificial Bee Colony algorithm for real- 2012 R2 Partial success NN
parameter optimization

10 RASL: Robust alignment by sparse and low-rank 2012 Rl Failure NN
decomposition for linearly correlated images

11  Classification with noisy labels by importance 2016 R2 Failure 0oC
reweighting

12 Deep convolutional and LSTM recurrent neural 2016 R1 Partial success oC
networks for multimodal wearable activity recog-
nition

13 Context Aware Saliency Detection 2012 R2 Failure MM

14  Distributed representations of sentences and docu- 2014 R2 No Result MM
ments

15 XGBoost: A scalable tree boosting system 2016 RI1 Failure MM

16  Facial landmark detection by deep multi-task 2014 R2 No Result NN
learning

17 Deep learning-based classification of hyperspectral 2014 R1 Failure NN
data

18  Semi-supervised and unsupervised extreme learn- 2014 R2 Failure NN
ing machines

19  DeepRelD: Deep Filter Pairing Neural Network for 2014 R2 No Result NN
Person Re-Identification

20  Deep neural networks: A promising tool for fault 2016 R2 No Result NN
characteristic mining and intelligent diagnosis of
rotating machinery with massive data

21  Clustering by fast search and find of density peaks 2014 R1 Success MM

22  DeCAF: A Deep Convolutional Activation Feature 2014 R2 Failure MM

for Generic Visual Recognition
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Problem Assumption Error

Article

0.0

Figure 8.1: A heatmap where each column represents one of the three category groups
identified. Each row is one of the papers that were attempted reproduced, where the value
(colour) in the cell is the proportion of possible categories in that column that apply to
the paper. Each column has been normalized separately, so that if there are 100 possible
problems and 50 possible errors, a paper with 90 problems and 45 errors will have the same
colour in those two columns.
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Figure 8.2: A stacked bar-chart covering each of the problem categories from table 8.2, and
how many times it applied to either an R1 paper or an R2 paper.
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e P11: The paper [Hua+14] presents the method in a rather abstract way, providing
suggestions for how to e.g normalize a matrix, but without actually stating which

method was used to produce their own results.

e P14: The paper [AK12] has various errors in the tables, e.g inserted additonal symbols,
and parameter values being shifted so that it is hard to tell which parameters were used

for which results.

e P15: The paper [Jia+16a] uses a dataset with health conditions for machinery, but the
way the dataset is described in the paper (as having 200 signals with 2400 data points),
does not match the dataset that is available online, and it is not clear what the paper

did to make the dataset into that representation.

For R1-papers, the most common issue was that the code for running one or more exper-
iments was not shared, making it difficult to perform the R1 reproduction level for the paper
(as experiments have to be reimplemented). Another issue is versioning, where the authors
may have made several versions of the code available (through e.g GitHub), or a version has
been made available but it is not certain whether that was the version they used, or if the

version is a new implementation from a later point in time.
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Table 8.2: The problem categories that were identified, and the indices of the papers that
each are considered to apply to. The paper corresponding to each index is listed in table 8.1

Category Id  Problem Category Papers

P1 For R1 study, the experiment code is not shared, or the experiment 1,4, 12, 10, 17
code does not cover all experiments

P2 For R1 study, the method code does not cover the entire method as 4
described in the paper

P3 For R1 study, the code is poorly documented and difficult to interpret 4

P4 For R1 study, the parameter values shared with the code are not com- 12, 17
plete, or differ from the values given in the paper

P5 For R1 study, code was not versioned, or the paper did not state which 1, 4, 17
version was used in experiments

P6 An implementation of the method or experiment is shared, but the 13, 16
code is not inspectable.

p7 Random numbers are used in a significant way, but the numbers, ran- 1,4, 5,9
dom number generator, and random seed are not shared

P8 An aspect of the method is not described, or described in a manner 5, 9, 18, 19, 22
difficult to understand

P9 An aspect of the experiment is not described, or described in a manner 2, 7, 11, 13, 9, 19, 20
difficult to understand

P10 The implementation of the method, or an aspect of it, is not described, 2, 3, 5, 7, 8, 11, 14, 9, 16, 18, 19, 22
or difficult to understand

P11 Multiple methods or implementations are suggested, but which varia- 8, 18
tion is used is not stated

P12 Trained weights or trained parameters shared online are not the same 4
as was used in original experiments

P13 Not all parameter or hyper-parameters needed are given 6,9, 15, 17, 18, 21

P14 There is a possible error in the paper 9

P15 There is a mismatch between a data set as described in the paper and 6, 13, 16, 19, 20
as available online

P16 A necessary subset of a data set is not shared 13

P17 Augmented or pre-processed data set is not shared, and the method 8, 11, 16, 19
for pre-processing and data augmentation is not clearly described

P18 Partition of data into training, validation, and test set is not shared, 11, 18, 19, 20
and the method for performing the partition is not clearly described

P19 Results are presented in a manner unsuitable for reproduction 2,13

P20 Significant resource demands (hardware or software) make reproduc- 7

tion complicated
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For R2 papers, the most common issue is by far that their description of how the Al
method or experiment is implemented /performed is unclear or not described at all. The more
assumptions that has to be made, the more chances there are for various errors or differences
between interpretations or understandings to occur. An example of this is [Li+14], where
the various training strategies are only summarily described. They are described well enough
for other researchers to use the training strategy themselves in their own research, but not
well enough that an independent researcher would be able to implement the strategy same
same way; we could conceivably have gone through with spending the rest of the allotted
time for the paper to attempt implementing the strategies, using assumptions where unclear,
but the number of assumptions required for how to run the experiment became so numerous
that it was decided it would fall under the stopping criteria for the experiment not being
documented well enough (see section 7.2.2).

Datasets are another large problem. They can be difficult to understand how to use
(sometimes so difficult that they were the reason reproduction was not achiveved, as in
[Jia+16a]), other times the dataset appears to have been changed since it was used in the
paper, as appears to be the case with [Che+14] — the number of training samples per category
when running the experiment code being different from what is presented in the paper, even
with the random seed that the authors provided set.

Random seeds are another difficult issue, as they can sometimes be difficult or less mean-
ingful to share (e.g for methods with other sources of nondeterminism than the random
number generator, for instance in cases of multiprocessing), though for research where the
experiment code is released where setting a random seed causes results to be consistent across
runs, it can be very helpful in removing variables for why the result might be different. In
our implementation of the Artificial Bee Colony optimization presented in [AK12], when the
program was invoked without a random seed set, the results were wildly different between
our own invocations (far beyond what a Welch t-test would indicate). With a seed set, the
results between runs were the same, though still significantly different from the results pre-
sented in the paper (the only result somewhat consistent with the results paper was for the

simplest function (sphere), hence the paper is labeled as “partial success” in table 8.1).

8.2.2 Assumption Categories

Similarly to in the subsection on problem categories, here some of the assumption categories

from table 8.3 are elaborated on:

e A3: This concerns for instance [Che+14] (an R1 paper with experiment code available
as well), where the paper mentions the code runs faster on a GPU, but can be run on

a CPU if desirable, though it does not appear to run on a GPU out of the box. A few
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Figure 8.3: A stacked bar-chart covering each of the assumption categories from table 8.3,
and how many times it applied to either an R1 paper or an R2 paper.

Generated_by: Appendix B: E)

Table 8.3: The assumption categories that were identified, and the indices of the papers that
each are considered to apply to. The paper corresponding to each index is listed in table 8.1

Category Id

Assumption category

Papers

Al

A2

A3

A4
A5

A6

AT

A8

A9

Al0

All
Al2

Al13
Al4
Al5

For R1 study, the code available is assumed to be the same as was used in the
original experiments

For R1 study, the parameter values in available code are assumed to be the same as
was used in the original experiments

For R1 study, a minor change to the code to facilitate running on our hardware is
assumed to not affect results

An assumption is made about how to interpret a term or concept which is ambigous
An assumption is made about how to treat an aspect of the method which is not
well described, based on how that aspect is treated in another paper

An assumption is made about how to treat an aspect of the method which is not
well described, but this assumption is not based on how that aspect is treated in
another paper

For aspects where multiple methods are suggested, an assumption is made about
which to use

A third party implementation of a method is assumed to be similar to the original
implementation

When using a third party library or framework used in the original experiment, it
is assumed that the version used in the reproduction can produce the same results
as the version used in the original experiment

Trained weights or trained parameters shared online are assumed to be the same as
was used in the original experiments

Assumption is made about one or more parameter values

Augmented or pre-processed data set is assumed to be equivalent to original data
set used in experiment, even if it is not identical

An assumption is made about how to partition a data set

An assumption is made about the usage of a data set

The hardware is assumed to not significantly influence the results of the experiment

1,4, 12, 15, 21, 17
1,4, 12, 15, 17
12, 17

2, 6, 18
5,7, 14, 18, 19

2,3,5,8, 19, 18, 9, 22

8, 18
7,11, 18

17, 22

1,4, 12, 22

6,17,18,9
8,11, 19

6, 15, 19, 18
13,9
12, 17
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minor changes were made in the code to make it utilize the GPU we had available.

e A5,AG,A7: In [Hua+14], the construction of the graph laplacian has assumptions, both
based on other papers and separately. The paper is rarely explicit on how it was done

for the results presented, but rather suggests many ways things can be done.

e A8: e.g by using a library for K-nearest neighbours, where the original method says
it uses this method — the assumption being that the implementations of K-nearest are

equivalent.

e A15: This mostly applies when the hardware is specialized, e.g using GPUs for training

neural networks.

A lot of the assumption categories stem from the problems that we identified as having in
attempting to reproduce the results of the papers. One of the papers covered that necessitated
a lot of assumptions is [Hua+14]. It follows the trend of describing the method in a way that
somebody may be able to implement it for a separate problem, though not enough that the
experiment can easily be reproduced. It should also be noted that our achieved results from
running our implementation perform poorly enough that there likely are unknown errors in
the implementation.

On the topic of assuming the version of the code that was retrieved is the same as was
used in the paper, another related issue presented itself: For at least one paper, code was
found online (where there was no reference to such supplementary materials in the paper),
but we were unable to determine whether the author of the code was the same author as the
author of the paper. Looking through license files and following links to the homepage of the
code author (on a university web server) did not lead to any author or website-owner names.!
Running code that is not beyond reasonable doubt verifiably written by one or more of the
paper authors is not within our scope of R1-papers, though it could perhaps fall under the

scope of R2, although it was not something we decided to do.

8.2.3 Error Categories

Similarly to in the subsection on problem categories, and on assumption categories, here

some of the error categories from table 8.4 are elaborated on:

e [2, E3, and E4 cover the cases where our assumptions that we had reason to believe

were fair, perhaps were not as fair as we at first thought.

!The paper that this concerned is [Hua+14], the repository that was found being https://github.com/
ExtremeLearningMachines/SS-US-ELM


https://github.com/ExtremeLearningMachines/SS-US-ELM
https://github.com/ExtremeLearningMachines/SS-US-ELM
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Figure 8.4: A stacked bar-chart covering each of the error categories from table 8.4, and how
many times it applied to either an R1 paper or an R2 paper.

Table 8.4: The error categories that were identified, and the
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indices of the papers that each

are considered to apply to. The paper corresponding to each index is listed in table 8.1

Category Id  Error Category Papers
E1l For R1 study, the code available is not exactly the same as was used in the original 1, 4, 17
experiments
E2 There are errors in our assumptions about the method 5,18, 9
E3 There are errors in our assumptions about the experiment 6, 18
E4 There are errors in our assumptions about the implementation 3,5,13,18,9
E5 There are unknown errors in our implementation of the method 2,3,5,6,8,13, 18,9, 22
E6 There are unknown errors in our implementation of the experiment 1,2,3,4,6, 8,13, 18,9
E7 An implementation in a third party library is not equivalent to the implementation 6, 11, 17, 18
used in the original experiment
E8 The trained weights or trained parameters shared are not the same as was used 1, 4, 12, 22
in the original experiment
E9 The parameters are not the same as was used in the original experiment 1, 4, 6, 15, 18, 17
E10 The randomness in the method or experiment, and the lack of shared random 8, 11,9
numbers and random number generator, influences the result
El11 Augmented and pre-processed data set used in reproduction is not equivalent to 8, 11, 17
the data set used in original experiment
E12 The data subset used in reproduction is not the same as was used in original 11, 13
experiment
E13 The partitioning of data into training, validation, and test set is not the same as 11
was used in the original experiment
E14 Differences in hardware influenced the result 12
E15 The reproduced results are difficult to compare to the original results 10
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e E5 and E6 cover unknown errors in our implementation. This can be anything from a
wrong sign in a mathematical expression to errors in the way datasets are read in and

used.

These are, by definition, fairly hard to give examples of that have not been fixed before
trying to run the implementation again; if the fix really fixed the issue, then a paper

would likely not be listed here.

e E12: In case a method only uses a portion of a dataset, e.g if a dataset is very large

and the paper decides to only select 10% of the elements, but does not say which 10%.

e E15: The paper [Pen+12] presents a facial alignment method, and has published code
for some of their experiments. Not all of these experiments have ground truths, and are
thus qualitative (as mentioned in the paper). The paper does present some quantitative
results for a dataset with ground truths, though the experiment code provided does not
produce these quantitative values, and it is difficult to say whether the output of the
code is the same as is presented in the paper (as the output is qualitative here too,
though this time quantitative results should be attainable, although it is not clear how

to make the code achieve this).

Errors E2-E6 are somewhat related, pertaining to the implementation of the method and
experiment. Of these, E4, E5, and E6 are the most common, indicating that the method and
experiment (E2 and E3) appear to be described reasonably well, so that that a researcher
can understand the method and the experiment — but not well enough that the step from
method to implementation (E4) is achievable without sizable room for errors in the necessary
assumptions. Furthermore, a lack of experience within a field may increase the chances of
unknown implementation errors (E5, E6).

Likewise related, errors E8 and E9 (which concern parameters and weights) have fairly
commonly been identified as likely to be the cause of the error, pertaining to the parameters
and weights used. Even if a hyperparameter is not provided (or not provided explicitly), it
might still be a hyperparameter with a range of values that it is reasonable to estimate. Even
so, it is not unlikely that different parameters may affect the performance of the method,
especially if the researcher implementing the method has a limited amount of time to try out

different parameters.

8.3 Metrics from AAAI-Paper

The other research group has developed a framework based on the survey and metric pre-

sented in [GK18]. This newly developed metric could conceivably have been used in this
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Figure 8.5: The reproducibility metric score presented in AAAT over time (duplicated here
for reference), used on the papers from the conferences presented in the same paper, repeated

here for reference.
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selection of 30 papers, grouped by year.
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Figure 8.7: The data presented in figures 8.5 and 8.6, here plotted together.
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thesis, though as it is already presented in the thesis of the collaborating group, it appears
more beneficial to apply the metric presented in the AAAI paper here. One advantage of this
is that the AAAI paper, which covers two conferences at two different points in time each,
presents a development of the metric over time, grouped by the conference for each year.
The goal of this was to give an idea of whether documentation practices have improved over
time. By repeating such an analysis here, results can be compared for e.g consistency.

The survey used to generate the data in the AAAI paper has a lot of similarities with
the newly developed survey. Additionally, this newly developed survey (while not presented
in detail here) has been used during the reproduction attempts to gather the data. As such,
it would both save time and limit the possiblity of accidental inconsistencies to use as much
of the data gathered in the new survey as possible when entering it in the original survey.
See appendix A for a description of how the fields in the survey from [GK18] and [Kjel7]
were determined, based on the values collected by the newer survey. Nonetheless, it should
be noted that the field for evaluation criteria have been left blank due to the description of
when to set it being hard to understand. Additionally, the field for experiment setup has
been treated the same way as in their presentation (i.e, a check for descriptions of hyper
parameters).

There does not appear to be any consistency in the change in reproducibility scores over
time, except for year 2016 consistently being worse on all three measures (R1D, R2D, R3D).
For year 2014, R2D has one of the highest scores out of all the datapoints for all years, while
simultaneously for 2014, R3D has the worst score of all datapoints for any year. Compared to
the scores presented in for the IJCAl-samples, the scores for the 30 papers we have surveyed
show no such upwards trend. This may well be because our 10 samples per year is a very
tiny sample.
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Discussion

9.1 Paper Selection, in Light of Reproductions

The selection of papers, having been made with respect to citation count, does cover a certain
breadth of subfields within artifical intelligence; neural networks (deep and convolutional,
shallow variants, and other variations like extreme learning machines) are certainly well-
represented, though research on other topics like swarm intelligence, decision trees, statistical
methods for signal processing, and other new algorithms have some representation as well.
Nonetheless, neural networks are present in some regard in the larger portion of the 22 papers
covered. This makes sense when one takes into consideration that neural networks and deep
learning have seen a rise in popularity this decade, though it still makes the representation
skewed.

A potential issue with the method the papers was selected by, is that it does not result
in a random sample; the method used to generate it non-probabilistic purposive-sampling
[Oat06, pp. 96-98], with our purpose being to obtain a selection of highly cited papers.
Because the sample is not random from the population of all Artifical Intelligence-papers, it
is not possible to generalize from our observations to that of all papers in the field either —
any generalizations apply to the most highly cited papers.

The previous raises another concerning issue — by only giving exposure to the issues
of reproducing highly cited papers (and also by covering only R1 and R2 papers, the two
categories of papers that already are releasing the most documentation), it may give off the
impression that these papers document their research poorly compared to other papers. It

is difficult to say whether highly cited papers have different documentation practices than

27
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papers with fewer citations !, and performing such comparisons is not the intention of using
this selection method, but rather to get a selection of important (i.e highly cited) papers;
after all, highly cited papers have had some impact on the field, so issues with documentation
found here may well apply elsewhere, even if it is not statistically possible to draw such a

conclusion.

9.2 Reproduction Methodology

Our methodology changed a few times throughout the project, in particular from reproducing
R1 papers to including R2 papers as well. The survey used has evolved somewhat from its
first iteration to reflect aspects discovered when reviewing papers that did not fit entirely
within the framework of the existing survey. Had the later methodology been known from
the start, the process may have been slightly more organized, although such hindsight is

rarely a luxury one has.

9.3 Reproducibility

Even though a large portion of the selection in some way pertains to neural networks, the
problems encountered (in particular related to the implementation of the method and exper-
iment) — as well as the ones related to the source code — are shared between papers from most
topics covered. Neural network papers, in addition, are likely to be candidates for having the
categories that cover training, validation, and test set specifications. These categories could
in some sense be considered more specific than categories that relate to just the dataset,
and thus having a lot of neural network papers does not necessarily limit the insight when it
comes to datasets, as datasets are a prerequisite for these more specialized categories. The
problem categories related to datasets in general (mismatches in descriptions, uncertainty
about whether the dataset is the same, or other pre-processing not being included) are in
fact among the larger categories that remain after the method description categories have
been considered.

Papers that publish their method (even less the experiment) code are not too common

among the ones we have covered. 2 Most of the problems we encountered in some sense

lthe documentation metrics presented in figure 8.7 for both our covered papers and the papers covered
by [GK18] from AAAT and IJCAI indicate that this is not the case; an informal search on a select few papers
from the list of 400 papers shows citation counts in the range 2-10, compared to most of ours having 50 or
more citations — the metrics in the figure are a mix of both better and worse across the selection for each
year.

2Tt may be appropriate to add a disclaimer here that authors should not in general be given any blame
for code not being released, as the authors might not be able to release their code even if they would like to
due to e.g licensing requirements. It could nonetheless be argued that it should be a goal to strive towards.
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pertain to this unavailability, as a consequence of the code being unavailable is that an
implementation will have to be made, which brings along any issues with understanding
the documentation of the method and experiment. The unavailability of code does not just
hinder the R1-reproduction of a paper, but may also hinder R2 and R3 reproduction — even if
a researcher is intending to implement their own version of the method, while using new data
(R3) — having the original “reference implementation” of the authors available can be helpful
for eliminating variables that may contribute to the reproduced results not corresponding to
the presented ones.

The previous also applies to any other documentation, where variables of uncertaintly
about whether the Al method is the deciding factor or not may be introduced. This is
in part the reason for the desire to have a metric for reproducibility. The reproducibility
levels R1, R2 (R2-D, R2-M), and R3 are far from having common consensus in the scientific
community. They are, after all, one possible metric intended to formalize and measure
the concept of the reproducibility of a research body (with respect to the documentation).
Reading graphs like 8.6 should therefore be done with the consideration in mind that this
metric is not absolute, though provided the surveying of papers that was used to generate it
is consistent with respect to evaluation criteria, it can be used to say how the documentation
level in the papers has evolved over time.

With this in mind, we are not seeing any of the results of [GK18]. That is to say, there
is no consisent increase (as with the IJCAI papers), nor is the documentation scores (R1,
R2, R3) fairly similar to each other, R2 and R3 diverging for the year 2014. The conclusion
in their research, based on how only one of the two conferences showed improvement over
time, is that their hypothesis of documentation improving over time is not supported. We
too have to come to the same conclusion, that documentation scores for our selection has not
improved over time — however, as was mentioned, our sample of 30 papers (10 per year) may

be too small, compared to their sample of 100 papers per year per conference (400 in total).



o 10

Conclusions

10.1 Conclusions and Suggestions for Future Work

This theis, in collaboration with a second separate thesis running alongside it, has presented
an investigation into the degree of reproducibility and issues encountered during attempting
to reproduce a selection of highly cited research within the field of artifical intelligence. A
process for selecting such highly cited papers, as well as an evaluation of the topics they cover
was presented.

The selection of papers was used in reproduction attempts, with various issues encoun-
tered having been documented and generalized. With reference to ealier work on measuring
the change of documentation levels of papers over time, a metric for documentation score
was used to estimate the documentation level of each paper reviewed.

The sample of papers reviewed is fairly small, so one natural direction for future work
is to expand the sample, building on the methodology used, as well as considering differ-
ent methods for generating a sample of papers, for instance covering subfields of artificial

intelligence beyond the more popular ones.
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Appendix

Converting from new survey to AAAl-survey

Below is a listing of the fields in the evaluation of our 30 papers using the survey of [GK18§]

and [Kjel7], and how each was determined:

The following are equivalent to the definitions of the newer survey, and the value can

be copied over: research_type, affiliation, problem_description, goal/objective, hypothesis,

prediction, contribution

The following need some closer consideration:

result_outcome (novelty): All the research appears to present novel results, other
than one paper ([Men+16]) which appears to mostly be a presentation and benchmark

of a library than novel research.

research_method: This has a stricter definition, the evaluation guide presented in

[Kjel7] saying that there has to be an explicit mention of the word “research method”
research_question: Same as above.

pseudo_code: Whether any pseudocode is present — set to 1 if the newer survey says

partial or more.

open_source_code: Needs to be explicitly referenced in paper through e.g supplemen-

tary materials. If it is, set to 1 if the newer survey mentions method code.
open_experiment_code: Same as above
train, validation, test: This is a very cumbersome set of fields to evaluate:

— NaN for train, NaN for validation, and 1 for test if dataset is available and the

method does not use training/validation. This is manually done.
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— NaN for train, NaN for validation, and 0 for test if dataset is unavailable and no

training/validation.

— If the method uses training/validation/test, set these to 1 if the newer survey
fields for (training, validation, test)-partition is set to “some” or “all” (because
the survey used in the AAAl-paper is not as strict about the entire split needing
to be provided).

— If any of these fields in the newer survey are set to not applicable, manually

determine it by going through the paper.

e hardware_specification: This is stricter than in the newer study, requiring very
explicit mentions of models. The newer study considers the hardware specification
with respect to the paper, e.g if its code mainly runs on a GPU then the CPU is not of
as much interest (although it can still be very useful to eliminate variables that might
affect the result. As it is stricter, set 0 where “none” in the newer study, but if the
newer study says “specified”, then it has to be manually checked to conform with this

stricter requirement.

e software dependencies: Whether there is a readme/requirements file (or in the pa-

per) that mentions software versions. This is manually done.

e third party_citation: Manual, but fairly quick as any citations to code or datasets

makes this 1.

e experiment_setup: This field was problematic in [Kjel7], as it turned into a check for
hyperparameters. In order to be consistent to enable comparisons with the results from
their survey, this field is treated the same way here — i.e mentions of hyperparameter

values or descriptions (“some” in newer survey) suffices.

e evaluation criteria: Unfortunately, this field was vaguely described, and even looking
through example papers from the survey of [Kjel7], I was unable to determine how this
field was set. As such, I have left it blank.



Appendix B

Code versions used

This appendix contains references to the repositories that were used to generate the tables,

figures, and other data in this thesis, as well as which particular version/commit was used.

A)

Implementation of the paper “A modified Artificial Bee Colony algorithm for real-

parameter optimization” [AK12], as well as results from running the implementation.
Version: v1.0

Commit SHA-1: ¢929558502ba36771cb22bf9889aebalc23e3291

URL: https://github.com/AIReproducibility2018/AModifiedABCAlgorithmOpt
Modifications made to the retrieved implementation of the paper “Deep learning-based

classification of hyperspectral data”, [Che+14], as well as results from running the

implementation.

Version: v1.0

Commit SHA-1: b824e17219cee03a35ceb64ebdf8ead23daflctbe

URL: https://github.com/AIReproducibility2018/DLClassifHypspec
Implementation of the paper “Semi-supervised and unsupervised extreme learning ma-
chines” [Hua+14], as well as results from running the implementation.

Version: v1.0

Commit SHA-1: al076e040a02919939bb9aaa998037dac72dd9cb

URL: https://github.com/AIReproducibility2018/SemiSupELM

A Jupyter Notebook with a modified version of the code used to generate the repro-

ducibility metric presented in [GK18] over time, adapted to include the metric over

time for the papers we have covered.
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Version: v1.0

Commit SHA-1: ela28edeb19aldb9c318bcdbbd0862da622¢7258

URL: https://github.com/AIReproducibility2018/UTILS_AAAI _metrics

The source code for generating various tables showing statistics about categories, and

exporting them to figures. Also contains rather questionable code for converting Pandas

dataframes to tex-tables with wrapped text columns.

Version: v1.0

Commit SHA-1: f404ef569b8a624e3e71dd9b56d{f6b0fc152ce20

URL: https://github.com/AIReproducibility2018/UTILS_tablegen

A Jupyter Notebook which analyses various attributes of the selection of papers, like
citation counts and keyword proportions.

Version: v1.0

Commit SHA-1: 272d0553f3585a7ch91aa861e6697333a0bbch68

URL: https://github.com/AIReproducibility2018/UTILS_paper_sample_analysis
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