
Neural Network Based Characterization
and Feature Extraction from Analogue
Radio Signals for Verification Purposes

Morten Olsen Lykkedrang

Master of Science in Electronics

Supervisor: Kjetil Svarstad, IES

Department of Electronic Systems

Submission date: June 2018

Norwegian University of Science and Technology

Sammendrag

Mixed-signal applikasjoner er blant de raskest voksende markeds-segmentene innen elektronikk- og
halvleder-industri, og har foresaket at mange silisium produsenter hare mixed-signal designs som
en av sine primære fokusomr̊ader. Mange SoC design i dag er derfor mixed-signal. En eskalerende
kompleksitet i elektroniske kretser har dermed ført til økte utfordringer n̊ar det kommer til mixed-
signal SoC verifikasjon[1].

Dene avhandlingen utforsker bruken av kunstige nevrale nettverk til å klassifisere strukturelle trekk,
samt position og signal-lengde av RVM radio signaler i støyfylte omgivelser. Trening og testing av
disse nevrale nettverkene har blitt gjort ved help av MatLab R2018a, hvor de nevrale nettverkene har
blitt utviklet ved hjelp av network verktøykassen som og er en del av MatLab R2018a. Nettverkene
var testet b̊ade med å bruke SGDM, RMSProp og ADAM algoritmene under treningsprocessen,
samt tatt i bruk inngangsdata b̊ade i tids-domenet og frekvens-domenet.

Inngangsdataene var utsatt for hvit Gaussian støy, hvor støyniv̊aet i dB er lagt i forhold til en sig-
nalkraft lik 25. Dette ga støy-topper rundt 50-55 for 0SrefNR, hvorav amplituden p̊a radio signalene
er satt til 50. Den strukturelle klassifikasjonen oppn̊adde en nøyaktighet p̊a 0.9623 ved 0SrefNR,
med en klassifiseringstid p̊a 34 ∗ 10−4s ved bruk av CPU. En mindre versjon av CNN arkitekturen
oppn̊adde en nøyaktighet p̊a 0.9529 med en klassifiseringstid p̊a 9.92 ∗ 10−4. Klassifikasjonen av
signalets posisjon var gjort gjennom en heirarkisk arkitektur som hadde en total klassifiseringstid
p̊a 13.99∗10−4s. Denne tiden inkluderer ikke tiden som kreves for å flytte data mellom dem. Denne
heirarkiske arkitekturen oppn̊adde en nøyaktighet p̊a 0.982 for å klassifisere riktig 1bit omr̊ade for
start posisjon, med en 0.7104 nøyaktighet for å klassifisere riktig sample. Lengde-klassifiseringen
oppn̊adde en nøyaktighet p̊a 0.9359, med 0.9970 for å enten klassifisere riktig eller kun være 1 bit
fra riktig. Klassifiseringstiden for denne CNN arkitekturen var å 4.49 ∗ 10−4s per iterasjon p̊a en
CPU. Disse resultatene er alle fra bruk av data fra tids-domenet, som viste en høyere nøyaktighet
en bruk av frekvens-domenet for alle testene.

i

Abstract

Mixed-signal applications are among the fastest growing market segments in the electronics and
semiconductor industry, and have caused many silicon manufacturers to have mixed-signal designs
as one of their main focuses. Most SoC designs today are therefore mixed signal. With an esca-
lation in circuitry complexity, there are increasing challenges when it comes to mixed-signal SoC
verification[1].

This thesis explores the use of artificial neural networks for the classification of structural features,
position, and signal length of RVM radio signals in a noisy environment. The training and testing
data for the artificial neural networks where generated in MatLab R2018a, with the neural networks
themselves being developed using MatLab’s network toolbox. The networks were tested using the
SGDM, RMSProp and ADAM solver algorithms, using both time-domain and frequency-domain
input data.

The added white Gaussian noise was set based on a reference signal power of 25, which placed the
noise peaks for the test-scenarios around 50-55. The amplitudes for the actual signals were set to
50 throughout all test scenarios. The structural classification achieved an accuracy of 0.9623, with
a classification time of 34 ∗ 10−4s on a CPU. A smaller version of the CNN achieved an accuracy of
0.9529, with a classification time of 9.92 ∗ 10−4s per classification. The positional classification, in a
similar environment, managed to pinpoint the position down to a 1 bit region with an accuracy of
0.982, with an accuracy of 0.7104 of classifying the exact sample number. This solution followed a
hierarchical approach, using 4 CNNs and a total of 13.99 ∗ 10−4s per classification, not counting the
time spent transferring data between the networks. The length classification achieved an accuracy
of 0.9359, with a 0.9970 chance of being either accurate or 1 bit off. The classification time for this
CNN was 4.49 ∗ 10−4s for each iteration. All of these results are taken using time-domain input
data, which outperformed frequency-domain input-data throughout all test scenarios.

ii

Preface

This report is the result of the Master’s thesis conducted during the spring of 2018, concluding a
Master of Science degree in Electronics, with a specialization in Embedded Systems. The report
is submitted to the Department of Electronic Systems at the Norwegian University of Science and
Technology (NTNU).

I would like to thank professor Kjetil Svarstad from the Department of Electronic Systems at NTNU,
for valuable support, guidance, and feedback throughout the development process. I would also like
to thank my friends and family for their support during both this project, as well as throughout the
years spent on the degree.

iii

Contents

1 Introduction 1

1.1 Background and motivation . 1

1.2 Contribution . 1

1.3 Structure of thesis . 2

2 Background 3

2.1 UVM based verification . 3

2.2 SPICE, Analog Mixed Signals and Real Value Modeling for verification purposes . . 3

2.3 Machine learning and neural networks . 4

2.3.1 Machine learning . 4

2.3.2 Artificial neural networks . 4

2.3.3 Training a neural network . 5

2.3.4 Neural network layers . 6

3 Related Work 9

3.1 Modulation recognition in cognitive radio using artificial neural networks 9

3.1.1 Biologically Inspired Radio Signal Feature Extraction with Sparse Denoising
Autoencoders . 9

3.1.2 Automatic recognition of both inter and intra classes of digital mdoualted
signals using artificial neural network . 10

3.1.3 Algorithms for Automatic Modulation Recognition of Communication Signals 10

3.2 Voice recognition . 10

3.3 FINN . 11

iv

4 Architecture and Test Development 12

4.1 RVM features, parameters and test-cases . 12

4.2 Generation of training and classification data . 13

4.3 Neural network structure, training and validation . 15

4.4 RVM structural classification . 16

4.5 RVM positional classification . 18

4.6 RVM length classification . 19

5 Analysis 21

5.1 Comparison between the SGDM, RMSProp and ADAM solvers 21

5.2 Comparison between time-domain and FFT with and without phase-component . . . 22

5.3 Comparison between the use of the ASK (OOK), FSK, and PSK modulation schemes 23

5.4 Comparison between CNN and FNN . 24

5.5 Neural network for structural analysis of RVM signal 25

5.5.1 Comparison of sampling rates . 25

5.5.2 Comparison of differently sized CNNs . 25

5.5.3 CNN performance for structural classification 27

5.6 Neural network for positional analysis of RVM signal 28

5.6.1 Comparison of sampling rates . 28

5.6.2 Comparison of differently sized CNNs . 29

5.6.3 CNN performance for positional classification 29

5.7 Neural network for signal length analysis of RVM signal 31

5.7.1 Comparison of sampling rates . 31

5.7.2 Comparison of differently sized CNNs for length classification 31

5.7.3 CNN performance for length classification . 32

6 Discussion 34

6.1 Validity of generated data . 34

6.2 Accuracy and size of ANNs . 35

v

6.3 Time-domain versus frequency-domain . 36

6.4 Results for the classification problems . 36

6.5 Possible improvements . 37

6.6 Additional features . 37

7 Conclusion 38

7.1 Future work . 39

A Artificial neural network results for structural test-cases 42

A.1 Comparison between the different solvers for analog structural feature analysis . . . 43

A.2 Structural comparison of time-data and FFT . 45

A.3 ASK, FSK and PSK comparison at different SNR for structural analysis 47

A.4 Comparison compared to fully connected neural networks 49

A.5 Structural analysis for different number of samples per bit 51

A.6 Structural comparison of differently sized CNNs . 53

B Artificial neural network results for positional test-cases 60

B.1 Comparison between the different solvers for analog positional analysis 60

B.2 Positional comparison of time-data and FFT . 62

B.3 ASK, FSK and PSK comparison at different SNR for positional analysis 64

B.4 Comparison between the CNN and FNN . 66

B.5 Positional analysis comparison of different number of samples per bit 67

B.6 Signal position comparison of differently sized CNNs 69

B.7 Final structure for positional analysis neural network 77

C Artificial neural network results for signal length test-cases 80

C.1 Comparison between the different solvers for analog signal length analysis 80

C.2 Signal length comparison of time-data and FFT . 83

C.3 Signal length comparison beetween ASK, FSK, and PSK modulation scheme 85

C.4 Comparison between the CNN and FNN . 87

vi

C.5 Signal length comparison of different number of samples per bit 88

C.6 Signal length comparison of differently sized CNNs 91

vii

List of Figures

2.1 Example of convolutional filter with stride [2 2] . 7

4.1 Visual representation of a RVM signal with different levels of white Gaussian noise
added . 15

4.2 MatLab2018 syntax for specifying neural network layers 16

4.3 Example of CNN structure . 16

5.1 CNN used as a basis for parameter alterations . 27

5.2 High accuracy CNN for structural classification . 27

5.3 CNN used as a basis for parameter alterations for positional classification 30

5.4 CNN used as basis for parameter alterations for length classification 32

5.5 CNN optimized for accuracy for lengths classification 33

viii

List of Tables

5.1 Comparison between the SGDM, RMSProp and ADAM solvers 21

5.2 Comparison of time-domain input parameters versus frequency domain with and with-
out phase component . 22

5.3 Execution time of FFTs compared to neural network classification time 22

5.4 Comparison between ASK, FSK, and PSK modulation schemes for structural and
positional classification . 23

5.5 Comparison between ASK, FSK, and PSK modulation schemes for length classification 23

5.6 Comparison of accuracy and execution time for CNN and FNN 24

5.7 Size and operation comparison between CNNs and FNNs 24

5.8 Accuracy and classification time for different number of samples per bit 25

5.9 Details for CNNs with 2-5 convolutional layers . 26

5.10 Accuracy for each output neuron for structural classification for neural networn in
Figure 5.2 . 28

5.11 Accuracy and classification time for structural classification at 0SrefNR and 20 sam-
ples per bit . 28

5.12 Accuracy and classification time for different number of samples per bit for positional
classification at 0SrefNR . 29

5.13 Details for CNNs with CNNs with 2-4 convolutional layers at 0SNR 29

5.14 Performance and details for CNNs for positional classification. 31

5.15 Accuracy and classification time for different number of samples per bit for length
classification . 31

5.16 Details for CNNs with 3-5 convolutional layers for length classification 31

5.17 Accuracy and classification time for length classification at 0SNR and 20 samples per
bit . 33

ix

Abbreviations

ADAM Adaptive Moment Estimation
AI Artificial Intelligence

ALU Arithmetic Logic Unit
AMC Automatic Modulation Classification
AMS Analog Mixed Signal
ANN Artificial Neural Network
ASK Amplitude Shift Keying
BNN Binary Neural network
CDV Coverage Driven Verification
CPU Central processing Unit

DBPSK Differential Binary Phase Shift Keying
DFT Discrete Fourier Transform
DNN Deep Neural Network

DQPSK Differential Quadrature Phase Shift Keying
DUV Device Under Verification
EoF End of Frame
FFT Fast Fourier Transform

FPGA Field Programmable Gate Array
FSK Frequency Shift Keying

GFSK Gaussian Frequency Shift Keying
GMSK Gaussian Minimum Shift Keying
GPU Graphics Processing Unit
HDL Hardware Descriptive Language
IC Integrated Circuit
IP Intellectual Property

I/Q In-phase and Quadrature
MFCC Mel-Frequency Cepstrum Coefficients
OOK On-Off Keying
PSK Phase Shift Keying
ReLU Rectified Linear Unit

RMSProp Root Mean Square Propagation
RNM Real Number Modeling
RVM Real Value Modeling
SDR Software Defined Radio

SGDM Stochastic Gradient Descent with Momentum
SoC System on Chip
SoF Start of Frame

SSDA Stacked Sparse Denoising Autoencoders

x

Chapter 1

Introduction

1.1 Background and motivation

Mixed-signal applications are among the fastest growing market segments in the electronics and
semiconductor industry, and has caused many silicon manufacturers to have mixed-signal designs as
one of their main focuses[1]. Most system-on-chip (SoC) designs today are therefore mixed-signal.
With a continuous escalation in circuit complexity, there are increasing challenges when it comes to
mixed-signal SoC verification. These include both incomplete SoC-level and system level verification,
as well as uncertainties in coverage. A report [1] by Cadence Design Systems claims that, according
to industry estimates, over 60% pf SoC design re-spins at 45nm and below are due to mixed-signal
errors, with functional verification for digital ICs now taking up 70% of the logic design phase.
Adding analog and mixed-signal IP makes this task even more complex, resulting in verification and
simulation never being fast enough.

As described in the project assignment, the stimuli of the circuit is dynamically decided by a con-
troller based on on line monitoring of the response from the Design Under Verification (DUV) in
UVM based verification. While this works well for the digital domain, it is difficult to adapt for
the analogue domain such as radio signals. Realistic in Spice and analog mixed signal (AMS) are
typically too slow for this purpose, and difficult to integrate in UVM. Instead. real value modeling
(RVM) may be a relevant alternative for verification of digital and analog mixed behavior. The
challenge then becomes to extract relevant features from the real value signal which can be used for
monitoring and controlling the testbed.

1.2 Contribution

This thesis aims to examine the use of artificial neural networks (ANNs) to extract relevant features
from a RVM signal as a potential step in the UVM verification process. As ANNs have been utilized
in areas, such as image classification and voice recognition, the general strategy has been to look at
the solutions used for those domains and utilize these as a basis for a solution regarding RVM signals.
The assessment of each solution will primarily be based upon the solution’s accuracy, complexity in
terms of memory size and operation count, as well as the execution time.

1

Relevant features to look for in mixed-signal radio circuitry may range from anywhere between
correct signal power, frequency, rise and fall time, to more digitally leaned characteristics such as
delay, and features contained in the signal’s structure. In this thesis, it has been chosen to examine
the extraction of structural features, delay in form of the sample position equating to the start of a
signal, as well as signal length. The RVM signals will be inserted into the artificial neural networks
as either raw time-domain data, or as frequency domain-data with or without the phase component.
A number of fully connected and convolutional architectures will be explored in order to find a
suitable neural network architecture.

In more detail, the features that will be looked at are:

• Signal structure - This part primarily concerns with a ANNs ability to recognize certain pat-
terns or parts of a RVM signal. It concerns the existence of the correct header sequence and the
existence of a data payload. It also concerns with determining the existence of the package’s
end point, or EoF, as well as the start of frame (SoF) delimiter placed between the header
and the data payload. The checks for the SoF delimiter also serves as a test to see the ANNs
ability to recognize the existence of identifiers and similar small changes within a RVM signal.

• Signal start positions - One aspect of the verification process that’s often important to verify
is the verification of correct delay at different points of the design. Since in this case the neural
network will be unaware of the delay of the initial sampling data, it will instead give out the
position of where the it believes the first data sample resides. This should allow the rest of
the system to determine the actual delay. The distance between the start and end point of the
signal may also give information regarding correct length or frequency.

• Signal length - In some ways connected to the classification of signal position, the length of
the RVM signal may help determine whether or not all parts of the desired signal are present,
or whether or not the design output is of the desired output frequency when compared to the
sampling frequency.

All RVM signals will be expected to exist in a noisy environment, and will be subjected to white
Gaussian noise before entering the artificial neural network.

1.3 Structure of thesis

Chapter 2: Background elaborates on the use analogue and mixed-signals in the verification process,
including the use of RVM. The chapter also introduces key concepts for ANNs and its components.
Chapter 3: Related work will look at earlier studies and publications within the field of ANNs and
radio signal feature extraction. Chapter 4: Architecture and test development provides information
regarding the different test cases, including how the systems were built and how data for them
were generated. Chapter 5: Analysis contains the resulting data generated from the architectures
discussed in Chapter 4, as well including comparisons for their performance. Chapter 6: Discussion
discusses the the results and comparisons described in Chapter 5, as well as potential strengths
and weaknesses for the different solutions, as well as for the development process. The thesis
concludes with Chapter 7: Conclusion, which proposes some thoughts and possible routes for future
development within the same field. Further details regarding the neural networks explored in this
thesis can also be found in the appendices.

2

Chapter 2

Background

2.1 UVM based verification

The Universal Verification methodology (UVM) is a complete methodology that codifies the best
practices for efficient and exhaustive verification [2], with the goal of helping developers find more
bugs earlier in the design process. UVM aims to develop reusable verification components, and is
targeted to both verify small designs and large-gate count IP-based system on chip (SoC) designs.
UVM is an open sourced format primarily based on the Open Verification Methodology (OVM)
library, and has been tested to work on all major commercial simulators[2].

UVM provides the ability to cleanly partition a verification environment into a set of specific compo-
nents. It provides classes and infrastructure to enable fine-grain control for sequential data stimulus
generation, both for the module and system level, and provides built-in stimulus generation, which
can be customized. The UVM base classes are made to provide automation and help streamline
usage, allowing the creation of hierarchical reusable environments[2].

UVM is based around providing coverage driven verification (CDV), which combines automatic test
generation, self-checking testbenches, and coverage metrics to reduce time spent verifying a design.
A full description of UVM and its classes can be found in Universal Verification Methodology (UVM)
1.2 User’s Guide[3] and Universal Verification Methodology (UVM) 1.2 Class Reference[4] released
by accellera Systems Initiative.

2.2 SPICE, Analog Mixed Signals and Real Value Modeling
for verification purposes

Mixed-signal applications are today one of the fastest growing segments in the electronics and semi-
conductor industry. Electronic equipment is both expected to do more, and to have a wider specter
of operation. Growth opportunities in a wide array of electronic equipment has probed many silicon
vendors into refocusing their business on RF, high-performance analog, and mixed-signal designs.
Due to this trend, most SoC designs today are mixed signal, with all, or close to all, being mixed
signal at advanced process nodes in the near future[1]. [1] states that, according to industry esti-

3

mates, over 60% of SoC design re-spins at 45nm and below are due to mixed-signal errors. Many of
these re-spins are caused by commonplace, avoidable errors such as inverted or disconnected signals.

Mixed-signal verification is still primarily done by SPICE simulations, where [5], [6] and [1] all agree
that SPICE based verification is too slow to the point of chip-level simulations being impractical.
Because of this, Analog Mixed-Signal (AMS) and Real Value/Number Modeling (RVM/RNM) tech-
niques have been introduced in order to enhance simulation speed. [5] illustrates that UVM is suited
for both AMS and RVM simulations. While AMS and RVM models offer progressively higher per-
formance, it is worth noting that they give an extra cost when it comes to developing them [5]. [6]
offers a comparison for the different methods. As stated, the virtual prototypes based on purely
digital models and model description give the highest verification speed but may not offer an effi-
cient way to capture analog behavior, which is often an integral part of the embedded system. It is
also worth noting that while simulations that are purely digital are faster than real value modeling
(RVM), they can only represent an analog signal as a single logic value, which may only be sufficient
for connectivity checks[1]. RVM gains an advantage over AMS as it does not require an analog
solver [5]. Instead, RNVM utilizes discrete floating-point real numbers in order to enable the user
to describe an analog block as a signal-flow model, which can be simulated in a digital solver at
near-digital simulation speeds[1]. While this restricts RVM to a signal flow approach, it means the
issue of analog convergence becomes less of a problem due to not requiring an analog solver.

2.3 Machine learning and neural networks

2.3.1 Machine learning

Artificial neural networks (ANNs) are one type of machine learning which has seen much practical
value in the field of pattern recognition. Artificial intelligence (AI), and with it machine learning,
is today a thriving field with numerous active research topics[7]. Early implementations primarily
concerned solving problems that could be described by a list of formal, mathematical rules. In
contrast, the challenges for AI and machine learning nowadays often entail problems that may be
simple for a human to solve, yet difficult to describe formally. This includes problems like recognizing
spoken words or recognizing images. While these tasks are often trivial for a human being to solve,
yet hard to describe to a computer. AI aims to solve this by allowing computers to learn from
previous experiences. As defined by Tom M. Mitchell in [8] ”The field of machine learning is
concerned with the question of how to construct computer programs that automatically improve with
experience”. ANNs are one rapidly growing subset of AIs, that aims to solve these problems through
mimicking the human brain by creating neural structures to handle decision-making

2.3.2 Artificial neural networks

Perhaps the easiest way to describe how a ANN works if by describing a type of artificial neuron
called a perceptron. Perceptrons were developed in the 1950s and 1960s by the scientist Frank
Rosenblatt, inspired by earlier work by Warren McCulloch and Walter Pitts[9]. A perceptron takes
a number of binary inputs x and produces a single binary output y, based on the values of said
inputs. Each input has an associated weight w, which determines the importance each input has to
to the output. The output value for a perceptron is determined by whether the weighted sum of the

4

inputs are above a threshold value, as described in Equation 2.1.

output =

{
0, if 0

∑
j wjxj ≤ threshold

1, if 0
∑
j wjxj > threshold

(2.1)

Modern ANNs are in many ways similar to Rosenblatt’s perceptrons. However, instead of using
threshold values, biases are introduced. A bias can be interpreted as a measure regarding how easily
one can turn a specific perceptron’s output to ’1’. An activation function is also introduced, who’s
purpose is to make sure small changes made to weights and biases only cause a small change to the
network’s output. One additional change these have when compared to perceptrons is that outputs
are no longer limited to the binary values ’0’ and ’1’, but can instead take any value between 0 and
1[9]. The form the activation function takes depends on the type of neuron, with a common type
being the sigmoid function. The new definition for this can be seen in Equation 2.2, with weights
wi, inputs xi and bias b. The activation function for the sigmoid neuron can be seen in Equation
2.3, where z in this case equates to Equation 2.2.

y = f
∑
i

(wi + xi + b) (2.2)

σ =
1

1 + e−z
(2.3)

The neurons that constitute to making a neural network are set up in layers. The first of these
layers is commonly referred to as the input layer, with the last layer commonly being referred to as
the output layer. The layers in between are called hidden layers. The number of hidden layers, the
number of neurons they contain, as well as how these neurons are connected to both the previous
and the following layers depends on the type of layer in question. These layers will be explained
more in detail in Chapter 2.3.4. Neural networks where all layer inputs derive from the previous
layer are labeled as feedforward networks, with networks that allow a cyclic form being labeled as
recurrent neural networks. This thesis will only focus on the feedforward networks[9].

The performance of convolutional neural networks (CNNs) in particular have improved significantly
in recent years, to the point where they now outperform other visual recognition algorithms, as well
as human accuracy on certain problems[10].

2.3.3 Training a neural network

The training of a neural network involves an optimization process of the network’s parameters,
such as weights and biases, in a process that essentially trains the network to recognize the desired
parameters through the correct output neuron.

As described in [11], in order to train a neural network with a set of input vectors xn where n =
1, ...N , together with a corresponding set of target vectors tn, one must minimize the error function
shown in Equation 2.4

E(w) =
1

2

N∑
n=1

||y(xn, w)− tn||2 (2.4)

5

An algorithm is employed in order to minimize the error function. The primary objective of this
function is to alter the values of the network’s parameters, particularly weights and biases, by
updating them with small steps. Algorithms that handle this operation include Stochastic Gradient
Descent (SGD), alternatively Stochastic Gradient Descent with Momentum (SGDM), root mean
square propagation (RMSProp), and adaptive moment estimation (ADAM)[12] . The equations for
these algorithms can be seen in Equation 2.5 (SGDM), 2.6 (RMSProp) and 2.7. (ADAM)[13].

E(θ) is for these cases the loss/error function, with ∇E(θ) being its gradient. α acts as the learning
rate, θ as the parameter vector, with ι being the iteration number. In addition, SGDM utilizes the
γ parameter, which determines the contribution of the previous gradient, and is specified before
training starts. RMSProp and ADAM utilizes decay rates, notated as β1 and β2, that are also
specified before training starts. ε is a small constant added to avoid division by zero [13].

θι+1 = θι − α∇E(θι) + γ(θι − θiota−1) (2.5)

θι+1 = θι
α∇E(θι)√
vι + ε

(2.6)

θι+1 = θι −
αmι√
vι + ε

(2.7)

mι = β1mι−1 + (1− β1)∇E(θι) (2.8)

vι = β2vι−1 + (1− β2)[∇E(θι)]
2 (2.9)

An algorithm known as the backpropagation algorithm is responsible for computing the gradient
of the cost/loss function. While this will not be explained in detail here, the essence of it entails
first doing a forward pass using an input vector xn to find the activations for all the neurons. The
error values on the outputs are then propagated backwards through the network, which are used to
calculate the gradients and perform updates[11][9]. The number of times the training vectors are
used once to update the network’s weights is referred to as an epoch.

2.3.4 Neural network layers

As previously mentioned, a neural network consists of a number of layers where both the method for
how they connect to the previous layer, as well as how they use their input parameters, depends on
the type of layer. This section will describe how some of these layers operate. Further information
regarding each layer, and ANNs in general, can be found in [14] and [15].

The first of these layers is the convolutional layer, which is the core building block for a CNN. The
convolutional layer operates by having one or more filters move along the layer’s input data, handing
one section of the data at the time. Each filter has a number of weights equal to the product of the
filter’s dimensions, as well as a single bias. These values used for the weights and the bias remains
the same while the filter traverses the layer’s inputs. The important parameters for a convolutional
layer are the following:

• The number of filters, with each filter having its own weights and bias.

6

• The dimensions of these filters.

• The filters’ stride, which refers to the step size moved between each activation.

• The padding, which is rows or columns of zeroes added to the borders of the inputs

Each filter operates independently from the others, and produces its own set of neurons to be used
by the next layer in the neural network. The primary purpose of adding padding to the layer’s input
is to increase the significance of the input neurons located near the edges and corners of the previous
layer. Convolutional filters are generally two-dimensional, meaning the number of weights scales
with the number of channels (the 3rd-dimension) of the previous layer. As an example, should
a convolutional filter have the dimensions [3 3], with the previous layer having 4 channels, the
convolutional filter will in total have 3x3x4 weights, and create a single output for each activation
in the height and width dimensions. A simple example of how the convolutional filter moves can be
seen in Figure 4.1.

(a) Position 1 (b) Position 2

(c) Position 3 (d) Position 4

Figure 2.1: Example of convolutional filter with stride [2 2]

Another common layer type, and perhaps the easiest to understand, is the fully connected layer. As
the name implies, each of the N neurons in a fully connected layer are directly connected to the M
neurons in the previous layer. Each of these N neurons have a unique weight for each input in M ,
as well as having its own bias. This means for neural networks with large layers, a fully connected
layer will require enormous amounts computations as well as physical memory.

The rectified linear unit are usually placed after either a convolutional or batch normalization layer.
It performs a threshold operation to each neuron, setting any input value that is less than zero to
zero, as can be seen in Equation 2.10[14].

f(x) =

{
0, if x < 0

x, if x >= 0
(2.10)

The batch normalization layer is commonly placed between convolutional layers and rectified linear
unit layers. The batch normalization layer aim to normalize the activations and gradients that
propagate though a network, in order to make network training into an easier optimization problem
[14][16]. The layer works by subtracting the mean µB of each mini-batch, and dividing it by the
mini-batch’s standard deviation σ2

B . The inputs are then scaled by a factor γ and shifted by β. An
ε parameter is also added for stability. The formula for the batch normalization layer can be seen in

7

Equation 2.11. γ and β are trained variables, with µB and σ2
B being replaced with values that apply

the the entire training set, instead of just one mini-batch, after network training has completed.

xi = γ
˜xi−µB√
σ2
B + ε

+ β (2.11)

8

Chapter 3

Related Work

This chapter will present some recent works that are of interest when it comes to utilizing artificial
neural networks to extract features from a RVM signal. While were no articles for using ANNs to
extract features from a radio signal utilizing RVM for verification purposes, there were still papers
that can be considered relevant. Section 3.1 entails different approaches for automatic modulation
classification (AMC) of radio signals and software-defined radio (SDR). Section 3.2 touches briefly
on the use of ANNs in voice recognition. While not directly related to radio signals, both instances
entails using a stream of floating point values representing amplitude values. Section 3.3 briefly
touches on the subject of binary neural networks (BNNs)

3.1 Modulation recognition in cognitive radio using artificial
neural networks

3.1.1 Biologically Inspired Radio Signal Feature Extraction with Sparse
Denoising Autoencoders

Automatic modulation classification (AMC) has become an important task for communication sys-
tems in the later years, with the challenge being when signal features and precise models for gen-
erating each modulation may be unknown[17]. [17] utilizes in-phase and quadrature (I/Q) signals
acquired together with stacked sparse denoising autoencoders (SSDAs) to generate features, and
then use those features to perform automatic modulation classification. Using this method, they
managed to achieve > 99% correct classification at 7.5 dB signal-to-noise ratio (SNR), and > 92 at 0
SNR, with as few as 100 I/Q timepoints in a 6-way classification test. The six modulation schemes
were:

• On-off Keying (OOK)

• Gaussian frequency-shift keying (GFSK)

• Gaussian minimum-shift keying (GMSK)

• Differential binary phase-shift keying (DBPSK)

9

• Differential quadrature phase-shift keying (DQPSK)

• Orthogonal frequency-division multiplexing (OFDM)

3.1.2 Automatic recognition of both inter and intra classes of digital
mdoualted signals using artificial neural network

[18] developed an AMR classifier used for classification of five digital modulation formats: 2ASK,
4ASK, 2FSK, BPSK, and QPSK. As opposed to the method used in [17], this paper chose to look
extract information contained in the instantaneous amplitude, phase, and frequency of the incoming
radio signal. The four values extracted from those were:

• γmax - the maximum value of the power spectral density of the normalized-centered instanta-
neous amplitude of the intercepted signal segment.

• σap - the standard deviation of the absolute value of the centered non-linear component of the
instantaneous phase t time instant t.

• σdp - the standard deviation of the direct value of the centered non-linear component of the
direct instantaneous phase.

• σaa - the standard deviation of the absolute value of the normalized centered instantaneous
amplitude

These extracted valued allows one to distinguish between the different modulation schemes by placing
them into subsets based on which modulation schemes contain, and which doesn’t contain, informa-
tion in each of these parameters. As an example γmax can be used to distinguish 2FSK from the
other four modulation schemes in question, as 2FSK contains no amplitude information. Utilizing
a multi-layer feed-forward neural network, they managed to achieve > 99% correct classification at
an SNR above 5dB, and > 98% correct classification at SNR values as low as -5dB.

3.1.3 Algorithms for Automatic Modulation Recognition of Communica-
tion Signals

[19] encompasses a more expansive, yet similar, version of the method for AMR utilizing informa-
tion contained in the instantaneous amplitude, phase, and frequency of the incoming radio signal.
Utilizing a structure of three connected ANNs, and a total of 9 parameters derived from the in-
stantaneous amplitude, phase, and frequency, they managed to achieve correct classification rate
between 13 different modulation schemes of > 96% at the SNR of 15dB.

3.2 Voice recognition

Speech signal recognition commonly utilize Mel-frequency cepstrum coefficients (MFCC) to, which
conveys vocal tract characteristics. The method extracts information from short time intervals
using Discrete Fourier Transform (DFT)). The DFT results then go through a bank of Mel-spaced
triangular filters, with the Mel-scale being linear below 1000Hz, and logarithmic above 1000Hz.

10

Lastly, as Duscrete Cosine Transform (DCT) is applied to the bank of the filter bank energies. [20]
reports having successfully implemented this using a convolutional neural network (CNN).

3.3 FINN

FINN: A Framework for Fast, Scalable Binarized Neural Network Interface[10], compares the per-
formance of binary neural networks (BNNs) to that of CNNs. As opposed to CNNs, that normally
utilize 32bit floating point parameters, BNNs, as the name describes, instead utilize binary values
in either a fully binarized network (full BNN), or partly binarized networks. FINN achieved an
accuracy of 95.8% for the MNIST dataset with 12.3 million image classifications per second. The
platform used was a ZC706 FPGA platform, which drew less than 25 W of total system power.
They also achieved a 80.1% accuracy with the CIFAR-10 dataset, and a 94.9% accuracy with the
SVHN dataset. Their prototypes maintained an accuracy within 3% of other low-precision works,
which they state could have been improved by using larger BNNs[10].

11

Chapter 4

Architecture and Test
Development

4.1 RVM features, parameters and test-cases

The neural networks focuses on verifying three primary features that may be of interest in when it
comes to verification of a RVM signal:

• Structural signal components

• Signal position/delay/timing

• Signal length

As was mentioned in Chapter 3, no previous cases of extracting radio signal features utilizing ANNs
and RVM were found. The papers regarding cognitive radio in Chapter 3.1 describes both utilizing
the frequency domain, as well as higher order parameters derived from the instantaneous amplitude,
phase, and amplitude. However, since the classifications here assumes only a single modulation
scheme is used for each data-set, the higher order parameters may therefore not be useful. Voice
recognition also includes the use of a DFT to translate the signal to the frequency-domain. However,
as the signals used in this thesis will be mostly randomized, looking going through additional filters
to find something akin to vocal tracts had been deemed unnecessary. It has therefore been chosen
to look at the ANNs ability to extract information from both time-domain and frequency-domain
data. For the case of frequency-domain, this will include versions both with and without including
the phase parameter.

In order to keep the scenarios as realistic as possible, the signals has been subjected to a constrained
randomization process. For all of the three classification scenarios mentioned, the position the signal
has within the RVM samples has been randomized, including having the samples be taken at different
points of the sinusoidal wave for each instance to signify the case where the receiver has not yet
synchronized with the signal. There will also be a comparison between basic ASK (OOK), FSK,
and PSK. The FSK will for these cases have a doubling in frequency to differentiate between logical
’1’ and ’0’, with PSK following a binary form where the phases are 180 degrees apart. The following

12

cover points were made for each feature in an attempt to find a suitable neural network structure
for each of them:

• Comparison between the SGM, RMSProp and ADAM solver algorithms

• Comparison between time-domain input data and FFT input data. In the case of using FFT,
this included a version both with and without including the phase parameter (imaginary part).

• Comparison between the accuracy when utilizing ASK (OOK), FSK and PSK modulation
schemes for the RVM signal.

• Comparison between CNN and FNN

• Comparison between different ratios of sampling frequency and signal frequency, here referred
to as ”samples per bit”

• Comparison of performance between differently sized CNNs, including:

– Varying number of convolutional layers

– Varying sizes of filters, as well as varying number of filters

– Varying amounts of padding

– Varying amounts of stride

4.2 Generation of training and classification data

As no existing databases containing relevant data were found, these had to be generated for the neural
networks before training or validation could begin. The RVM signals used as input parameters were
generated using MatLab R2018a[21]. Each feature that were to be examined utilized the same
method for constructing the training and testing data-sets.

The data generation started out with a procedure that goes through each of the neural network’s
intended output neurons, and creates appropriate input data that is randomized within that output’s
valid ranges. The parameters chosen here include:

• The appropriate modulation scheme

• The total number of samples, measured in how many bits the area is supposed to cover.

• The RVM signal as a binary sequence.

• The starting position of the RVM signal within the sampled region.

• The amplitude of the signal

• The signal to noise ratio

• The ratio between the signal’s frequency and the sampled frequency. In other words, how
many samples are used to cover each binary value of the RVM signal.

• The number of periods in the sinusoidal wave for a single bit of the RVM signal.

13

• At which points of the sinusoidal wave the samples are to be taken. This is meant to represent
the case where the receiver and the signal have not been synchronized.

A separate function is called that uses the above-mentioned parameters to transform the binary
sequence into amplitude values, as is required for a RVM signal. The formula used can be seen in
Equation 4.1. Am, f and φ are here parameters used to describe the ASK (OOK), FSK, and PSK
modulation schemes. Each test scenario will only ever utilize one of these modulation schemes for
a given data-set. NPeriodsPerBit is in this case an additional parameter with the same function as
the FSK parameter f , but is separate for clarity. φskew is the parameter responsible for altering
which points of the sinusoidal ware the samples are taken at. This value always remain within
the region covered by a single sample, as higher values would equate to adding a n-sample delay,
which would look identical to the system yet complicate the testing procedure due to the starting
position no longer being at the sample specified. MBitSampleNumber and MBit are sequences holding
a number of elements equal to the number of samples used to describe one bit of data. The values
of MBitSampleNumber are equally spaced floating point values in the range [0 1].

MBit = Am ∗ cos(2πfNPeriodsPerBitMBitSampleNumber + φ+ φskew) (4.1)

The RVM sequences for each of the signals were then concatenated together and placed at the
appropriate located within the sampled region. Values outside the region covered by the signal were
kept at the value 0. Lastly, the entire signal is subjected to white Gaussian noise. In order to keep
the actual noise values constant for each iteration, the SNR were set when compared to a signal
with a signal power of 25, with the actual signals commonly being given an amplitude of 50. As a
comparison, with a signal power of 25, the values of the noise levels can be seen in the table below.
Keep in mind the values are rough estimates with slight changes from case to case.

SrefNR (dB) Average noise level (absolute value) Peak noise level (absolute value)
6 dB 7.5 27
0 dB 15 55
-6 dB 27.5 110

A visual representation can be seen in Figure 4.1. The case used covers an area of 50 bits, with 10
samples being used to cover the period of 1 bit. The signal included utilizes the PSK modulation
scheme, with a 20 bit long sequence of alternating ’1’s and ’0’s starting at sample number 250.

14

(a) SrefNR of 6 (b) SrefNR of 0

(c) SrefNR of -6

Figure 4.1: Visual representation of a RVM signal with different levels of white Gaussian noise added

4.3 Neural network structure, training and validation

The ANNs developed primarily took the form of convolutional neural networks (CNNs), that utilized
the layer sequence of convolutional layer, batch normaliation layer, and ReLu layer, repeated for
each convolutional layer. A comparison where the convolutional layers were swapped out with
fully connected layers were also made. The solutions were developed utilizing the network toolbox
included in MatLab R2018a[15], which contains convenient tools for building, training and veryfying
the operations of ANNs.

Matlab R2018a includes convenient tools and functions that simplifies the specifications of the neural
network layers. An example for creating the structure of a CNN can be seen in Figure 4.2 The first
convolutional layer here consists of 40 filters with dimensions [100 1], with a stride of [2 1] and
padding of [10 0 0 0].

The same network as shown in Figure 4.2 can be seen in more detail in Figure 4.3, which utilizes
the neural network analyzer extension for the network toolbox to extract information such as layer
size and number of weights and biases for for each layer.

The network toolbox’s also includes functions for training the neural network, as well as using it to
classify a test-set. Both of these functions takes a 4-dimensional matrix as input, where iterations
are stacked along the 4th dimension. The network training function also takes includes parameters
for training and an output matrix corresponding to the 4-dimensional data-matrix as inputs in order
to train the network. The networks are set to train for a maximum of 100 epochs.

15

Figure 4.2: MatLab2018 syntax for specifying neural network layers

Figure 4.3: Example of CNN structure

4.4 RVM structural classification

As previously mentioned, the structural test-case had as its main objective to determine to what
extent the CNN was capable of recognizing certain sequences and identifiers when the signal is placed
at a random position with in a sampled range of a noisy environment. The specific points were the
following:

• Determine if the preamble sequence consisting of alternating ’1’s and ’0’s is present in the
signal

• Determine whether or not the start of frame (SoF) delimiter, here recognized as a ’11’ sequence
at the end of the preamble, is present.

• Determine whether the signal contains any data bits (not including the preamble)

16

• Determine whether or not the entire signal is present in the sampled region. In other words,
look for the end of frame (EoF).

The outputs were specified shown below, with the letters signaling the presence of the preamble
sequence (P), SoF delimiter (S), data packet (D), and EoF (E). Some combinations of these have
not been included, due to them not being possible. As an example, one cannot detect a SoF delimiter
without having the preamble and a data sequence both be present.

• 0: No signal detected

• P: Only preamble detected

• D: Only data detected. End-point not present within sampled data

• DE: Only data detected. End-point found within sampled data

• PD: Preamble and data detected. Correct SoF delimiter not found. End-point not found within
sampled data

• PDE Preamble and data detected. Correct SoF delimiter not found. End-point found within
sampled data

• PSD: Preamble and data detected. Correct SoF delimiter detected. End-point not found within
sampled data

• PSDE: Preamble and data detected. Correct SoF delimiter detected. End-point found within
sampled data.

The input data generated for the neural network were done following the method described in
Chapter 4.2. For this case, the parameters were set as follows:

• The modulation scheme were set to either ASK (OOK), FSK, or PSK. However, only one were
ever used during the same set of data.

• The sampled area were set to cover 50 bits worth of data, with the actual number depending
on the number of samples used to describe 1 bit of data (the ratio between signal frequency
and sample frequency)

• The RVM signal was set as a binary sequence of length 0-25, not including the preamble.
The binary sequence for the data part of the signal was set to be entirely randomized for the
FSK and PSK modulation schemes. For the ASK (OOK) modulation scheme, the last bit was
always set to a logical ’1’, as the network would be unable to see trailing zeroes for this scheme.
The sequence was re-randomized should the data sequence turn out identical to the preamble.

• The starting position was randomized, with the constraint being that the last bit of the se-
quence had to have at least one sample in the sampled region. The start of the signal was
always placed within the sampled region.

• The amplitude was chosen to a constant of 50 throughout all tests. The exact value of 50 holds
no significant importance outside the ratio between it and the signal power used for the SNR.

• The SrefNR was varied between -6 dB and 6 dB, compared to a signal with a power of 25.

17

• The ratio between the sampled frequency and the frequency of the signal was kept at a rate
of 4-20 samples for each bit of data.

• The number of periods on the sinusoidal wave used to represent a single bit was kept at
a constant of 1, with the logic behind this being that systems where each binary value is
translated into several periods equate to having the same binary value repeated for this test
case. As an example, the binary sequence ’11’ will in this case seem identical to a binary ’1’
in a system that utilizes two periods on the sinusoidal wave to represent one binary value.

• The points of where the samples are taken along the sinusoidal wave were randomized within
the region covered by each sample, and denote the case where the receiver has not yet syn-
chronized to the received signal.

4.5 RVM positional classification

The positional test-case had as its function to help estimate timing and delays for the device under
testing (DUT). Due to the neural network not knowing the actual sampling frequency, but rather
just the ratio between signal and sampling frequency, as well as not knowing how much of a delay
there’s been before the first sample in the sampled region, the neural network instead focuses on
determining at which sample the signal starts in a noisy environment.

The proposed solution for this test-case follows a hierarchical approach. This was done both to limit
the total number of output neurons, as well as to allow the networks with larger amounts of input
neurons to do more coarse grain classification. The hierarchy went as described below:

• The first neural network is set to take in a sampled region capable of holding at most 100 bytes
worth of data, and is tasked with ascertain in which 10 byte region the starting point of the
signal is located.

• The second neural network is set to take the 10 byte region ascertained by the first neural
network, and go through the same process to ascertain the starting position down to a 1 byte
region.

• The third neural network continues the process described above to ascertain the starting
position down to a 1 bit region.

• The forth neural network will then lastly ascertain which of these samples acts as the starting
point for the signal.

As a more concrete example, one can consider a 100 byte region where the sampling frequency is
10 times higher than the time-period used for each bit, meaning each bit is described within 10
samples. This causes the first neural network to have a total of 8000 input neurons, where it is
tasked to ascertain in which region of 800 samples the starting position is located in. The second
neural network further pinpoints this down to 80 samples, the third down to 10 samples, with the
last attempting to pinpoint the exact sample.

The input data generated for the neural networks were done following the method described in
Chapter 4.2, with each neural network having its training data generated independently of the other
neural networks. The parameters for these neural networks were set as follows:

18

• The modulation schemes were set to either ASK (OOK), FSK, or PSK. However, only one
scheme was utilized for any given set of training and testing data.

• The sampled region for each neural network were set as described above.

• The RVM signal was set as a binary sequence of length 1-80 bits. The content of this binary
sequence was fully randomized for the FSK and PSK modulation schemes, while for the ASK
(OOK) modulation scheme the first bit is always set as a logic ’1’ due to the network being
unable to see leading zeroes for this modulation.

• The starting position was randomized within the region covered by each output neuron.

• The amplitude was chosen to a constant of 50 throughout all tests. As mentioned earlier,
the exact amplitude value holds little significance, with the important factor being the ratio
between the amplitude and the noise levels.

• The SrefNR was varied between -6 dB and 6 dB, compared to a signal power of 25.

• The ratio between the smapled frequency and the frequency of the signal was kept at a rate
of 4-20 samples for each bit worth of data.

• The number of periods for each bit was kept at a constant value of 1.

• The points where the samples were taken along the sinusoidal wave were randomized within
the region covered by a single sample to represent a lack of synchronization.

4.6 RVM length classification

Length of a RVM signal may be a relevant evaluation point to determine whether or not all parts of
a sent message are present. As the size of data and the accuracy needed are highly dependent on the
actual application, it has here been chosen to look for the differences in signal length for small signals
of a length of 0-25 bits in a noisy environment. The input data generated for the neural networks
were done following the method described in Chapter 4.2, utilizing the following parameters:

• The modulation schemes were set to either ASK (OOK), FSK, or PSK. However, only one
modulation scheme was utilized during a single set of training and test data.

• The sampled region was set to cover 50 bits worth of data, with the actual number of neurons
in the input layer depending on the number of samples used to describe one bit.

• The RVM signal was set as a binary sequence of length 0-25 bits. The actual sequence was
fully randomized for the FSK and PSK modulation schemes. For the ASK (OOK) modulation
scheme, the first and last bit of the signal were always set as a logical ’1’, with the bits between
being randomized.

• The starting position was randomized within the sampled region, with the valid positions being
any position where the entire signal would fit within the sampled region.

• The amplitude was chosen to a constant of 50 throughout all tests, for the same reasons as
mentioned for the other test-cases.

• The SrefNR was varied between -6dB and 6dB, with the noise levels being compared to a
signal with a power of 25.

19

• The ratio between the sampled frequency and the frequency of the signal was kept at a rate
of 4-20, meaning each bit worth of data covered 4-20 neurons in the input layer.

• The points of where the samples were taken along the sinusoidal wave were randomized within
the region covered by each sample/neuron.

20

Chapter 5

Analysis

5.1 Comparison between the SGDM, RMSProp and ADAM
solvers

Test-case Modulation Scheme SGDM accuracy RMSProp accuracy ADAM accuracy
Structural ASK 0.8057 0.8115 0.7889
Structural FSK 0.9265 0.9300 0.9165
Structural PSK 0.9384 0.9350 0.9185

Position (10 byte NN) ASK 0.9129 0.9087 0.9102
Position (10 byte NN) FSK 0.9492 0.9388 0.9490
Position (10 byte NN) PSK 0.9469 0.9372 0.9450

Length ASK 0.3067 / 0.7130 0.3281 / 0.7368 0.3979 / 0.7980
Length FSK 0.6575 / 0.9775 0.6975 / 0.9792 0.7643 / 0.9898
Length PSK 0.6273 / 0.9726 0.7399 / 0.9848 0.7168 / 0.9779

Table 5.1: Comparison between the SGDM, RMSProp and ADAM solvers

The results when testing the performance of the different solvers can be seen in Table 5.1, with the
accuracy shown for the length test scenario being written as PCorrect/PCorrectOrOneOff . All tests
within the same test scenario were done using the same neural network structure. As denoted by the
table, the differences in accuracy for both the structural and position test-cases, who were both done
at an already high accuracy, were rather small. As the actual accuracy can vary slightly even when
using the exact same parameters, training, and testing data for each iteration, the differences here
are rather negligible. However, for the length test-case, which in this scenario was done at a lower
overal accuracy, the differences between the SGDM solver and the more sophisticated RMSProp
and ADAM solvers were more noticable. One of the highest being a difference in accuracy of over
10% for the FSK modulation scheme when using ADAM as opposed to SGDM. The ADAM solver
also attained quite significantly better results than the RMSProp for the ASK and FSK modulation
schemes for the length test-case, only performing slightly worse for the PSK modulation scheme.

Due to the RMSProp and ADAM solvers being rather close for the remaining instances shown in
Figure 5.1, the remaining comparisons shown throughout this chapter all utilize the ADAM solver.
More information regarding the neural networks and parameters utilized for each comparison can

21

be seen in Appendix A.1, B.1, and C.1.

5.2 Comparison between time-domain and FFT with and
without phase-component

Test-case Modulation Scheme Time Frequency Frequency and phase
Structural PSK 0.9185 0.4960 0.6276

Position (10B NN) PSK 0.9450 0.9134 0.9140
Length PSK 0.7168 / 0.9779 0.2725 / 0.6592 0.2731 / 0.6601

Table 5.2: Comparison of time-domain input parameters versus frequency domain with and without
phase component

The results from the comparison between utilizing time-domain input data and frequency-domain
input data (with or without phase component) for the PSK modulation scheme can be seen in Table
5.2. The neural networks utilized remained the same for the time-domain version and the frequency-
domain version that did not include the phase. For the frequency domain version that included both
frequency and phase component, a single change was made to the neural network by introducing
another layer along the 3rd dimension. More clearly, the network was altered from having (X,Y,1,N)
input neurons to (X,Y,2,N) input neurons, essentially doubling the number of neurons in the input
layer. More details regarding each the time-domain and frequency-domain comparison can be found
in Appendix A.2, B.2, and C.2.

As can be seen from Table 5.2, the frequency domain versions yielded significantly poorer accuracy
for both the structural and length test-cases, while only having a slight difference in the case of
determining position. Due to the poor performance, frequency domain input appear to be unsuited
for distinguishing structural differences in a signal, as well as for the signal length. On the other
hand, the due to the positional results being just above 3% apart for the three versions of the input,
there may exist neural network structures that utilize frequency domain input that can outperform
the time-domain version. However for the sake of this thesis, only the time-domain was further
looked into.

The time required to perform the FFTs remained small when compared to the execution time of
the neural network. As would be expected, the difference scales with the complexity of the neural
network structure, due to the FFT only being dependent on the number of neurons for the input
layer. The execution time for performing the classification and for the FFT can be seen in Table
5.3.

Test-case FFT time (per iteration) Classification time (per iteration)
Structural 0.38 ∗ 10−4s 0.96 ∗ 10−4s

Position (10 byte NN) 0.24 ∗ 10−4s 0.94 ∗ 10−4s
Length 0.19 ∗ 10−4s 3.71 ∗ 10−4s

Table 5.3: Execution time of FFTs compared to neural network classification time

22

5.3 Comparison between the use of the ASK (OOK), FSK,
and PSK modulation schemes

Test-case Mod. scheme 6SrefNR 0SrefNR -6SrefNR
Structural ASK 0.8820 0.7889 0.4706
Structural FSK 0.9791 0.9165 0.6953
Structural PSK 0.9653 0.9185 0.7317
Position ASK 0.9897 0.9102 0.6580
Position FSK 0.9886 0.9490 0.8127
Position PSK 0.9871 0.9450 0.7981

Table 5.4: Comparison between ASK, FSK, and PSK modulation schemes for structural and posi-
tional classification

Test-case Mod. scheme 6SrefNR 3.5SrefNR 0SrefNR
Length(Accurate) ASK 0.7073 0.5436 0.3979

Length(Accurate or 1 off) ASK 0.9377 0.9092 0.7980
Length(Accurate) FSK 0.9943 0.9632 0.7643

Length(Accurate or 1 off) FSK 1.0 0.9992 0.9898
Length(Accurate) PSK 0.9923 0.9881 0.7168

Length(Accurate or 1 off) PSK 0.9999 1.0 0.9779

Table 5.5: Comparison between ASK, FSK, and PSK modulation schemes for length classification

The modulation schemes examined were the basic versions of ASK (OOK), FSK, and PSK, with a
focus on how they behave at different levels of noise. As can be seen in Table 5.4 and Table 5.5, the
accuracy for FSK and PSK remain relatively close to each other for all test-cases and noise levels.
The ASK on the other hand performed considerably worse for all the cases. ASK also appeared to
have a steeper drop in accuracy with increasing noise levels. As an example, the accuracy for ASK
dropped more than 33.17% in accuracy between a SrefNR of 6 and -6, while the FSK and PSK
modulation schemes dropped 17.59% and 18.90%. One possible explanation for this could be due
to on-off keying version describing logical ’0’ as an absence of signal. This essentially means the
neural network received no visible difference between a logical ’0’ and pure noise. For a randomly
generated binary stream, this would equate to the neural network only having half the amount of
actual signal data to work with, which could explain why it performs worse than the FSK and PSK
modulation schemes.

An additional note to make from Table 5.4 and Table 5.5 would be that classifying the signal’s length
appear more subject to error when the noise levels increase than the other test-cases. However, if
one looks at the percentage of classifications for the length analysis that are either correct or just
1 off at 0SrefNR, one can see that the values are comparable to the accuracy of the structural
test-case. The likely cause could therefore be that since the distinction between the output neurons
for the length analysis are rather small, a spike in the noise levels near the start- or end-point of the
signal may cause a wrong classification. Another possible reason could be that the length analysis
simply has more output neurons than the other cases.

23

5.4 Comparison between CNN and FNN

Test-case CNN accuracy CNN exe. time FNN accuracy FNN exe. time
Structural 0.9185 1.19ms 0.6440 10ms
Position 0.9450 0.83ms 0.7547 3.28ms
Length 0.7168 / 0.9779 3.94ms 0.2163 / 0.5585 62.18ms

Table 5.6: Comparison of accuracy and execution time for CNN and FNN

Layer # Neurons # Weights # Biases # Multiplications # Additions
Struct conv1 6090 3000 30 618 000 618 000
Struct conv2 1680 30 000 20 2 520 000 2 520 000
Struct conv3 380 4000 10 152 000 152 000

Sum 8150 37 000 60 3 290 000 3 290 000

Struct full1 6180 3 090 000 6180 3 090 000 3 090 000
Struct full2 1680 10 382 400 1680 10 382 400 10 382 400
Struct full3 380 638 400 380 638 400 638 400

Sum 8240 11 026 980 8240 14 102 560 14 110 800

Pos10 conv1 3240 400 10 129 600 129 600
Pos10 conv2 1280 4000 10 256 000 256 000
Pos10 conv3 210 1000 5 42 000 42 000

Sum 4730 4610 25 427 600 427 600

Pos10 full1 3240 2 592 000 3240 2 592 000 2 592 000
Pos10 full2 1280 4 147 200 1280 4 147 200 4 147 200
Pos10 full3 210 268 800 210 268 800 268 800

Sum 4730 7 008 000 4730 7 008 000 7 008 000

Length conv1 8240 4000 40 824 000 824 000
Length conv2 2520 60 000 30 5 040 000 5 040 000
Length conv3 700 12 000 20 420 000 420 000
Length conv4 160 2000 10 64 000 64 000

Sum 11 620 78 000 100 6 348 000 6 348 000

Length full1 8240 4 120 000 8240 4 120 000 4 120 000
Length full2 2520 20 764 800 2520 20 764 800 20 764 800
Length full3 700 1 764 000 700 1 764 000 1 764 000
Length full4 160 112 000 160 112 000 112 000

Sum 11 620 26 760 800 11 620 26 760 800 26 760 800

Table 5.7: Size and operation comparison between CNNs and FNNs

One aspect of the testing procedure was to compare the results given from a neural network primarily
made out of convolutional layers, and a neural network made out of primarily fully connected layers.
The convolutional and fully connected layers in the CNN and FNN are made to have roughly
matching number of neurons their corresponding layers. As shown in Table 5.6, the CNN vastly
outperforms the FNN both in terms of execution time and accuracy, to the point where the FNN
networks are likely not even close to accurate enough to be viable to take part in a verification
process.

Furthermore, as shown in Table 5.7, the FNN demands 4.3 (structural), 16.4 (position 10 byte
version), and 4.2 (length) times as many floating point operations in the form either multiplications
or additions. The higher disparity, however, is in the amount of storage space required by the FNN

24

compared to the CNN, the highest of which in this case is the FNN for length analysis with 20.76
million weights in total. Attempts using smaller sized FNNs also failed to challenge the accuracy
yielded by the CNN versions.

Please note that all layers shown in Table 5.7 are followed by a batch normalization layer and a
rectified linear unit (ReLU) layer. These are not included in the calculations for storage space or
floating point operations required in this case, due to them being roughly equal due to the similar
sized convolutional and fully connected layers. An interesting detail would be that, in terms of
accuracy. both the CNNs and FNNs performed significantly worse without the batch normalization
layers. For some FNN structures, the difference was to the point where the training process would
break down entirely without the batch normalization layers, resulting in the network predicting the
same output regardless the input values.

The number of floating point operations for the CNNs should also be slightly lower in an actual
system than shown in Table 5.7, as the numbers include floating point operations on padded areas
where the input values are 0.

5.5 Neural network for structural analysis of RVM signal

5.5.1 Comparison of sampling rates

Samples per bit Accuracy Classification time
4 0.8146 0.92 ∗ 10−4s
10 0.9185 0.93 ∗ 10−4s
20 0.9356 1.08 ∗ 10−4s

Table 5.8: Accuracy and classification time for different number of samples per bit

As can be seen in Table 5.8, there appears to be a strong correlation between the ratio of sampling
frequency versus signal frequency (here referred to as ”samples per bit”), and the accuracy the neural
network is capable of yielding. An important note is that, since the sampled window here scales
with the number of samples used to describe one bit, the input layer scales proportionally with the
number of samples used to describe each bit. The neural networks used to yield the data given
by Table 5.8 have had the filter sizes, padding and stride of their first convolutional layer scaled
with the number of neurons in the input layer to make the networks as similar as possible. They
are, however, not entirely equivalent, as not all parameters were allowed to be scaled to a strictly
proportional value. The details regarding the networks used for each case can be found in Appendix
A.5.

The networks in the following subsections will utilize the 20 samples per bit version, in an attempt
to optimize the accuracy.

5.5.2 Comparison of differently sized CNNs

The CNN architectures for structural feature recognition appears, according to the results shown
in Table 5.9, seems to peak around 4 layers when using a stride of [4 1] for the first convolutional
layer, and [2 1] for the remaining ones. The fifth layer on the 5 convolutional layer version in this

25

Layer 2CNN network 3CNN network 4CNN network 5CNN network
Conv1 30x[200 1 1] filters 30x[200 1 1] filters 30x[200 1 1] filters 30x[200 1 1] filters
Conv2 5x[20 1 30] filters 20x[50 1 30] filters 20x[50 1 20] filters 20x[50 1 20] filters
Conv3 - 10x[20 1 20] filters 20x[20 1 20] filters 20x[20 1 20] filters
Conv4 - - 10x[20 1 20] filters 10x[20 1 20] filters
Conv5 - - - 5x[20 1 10] filters

Accuracy 0.9130 0.9356 0.9516 0.8601
Classification time 1.11 ∗ 10−4s 1.08 ∗ 10−4s 1.12 ∗ 10−4s 1.84 ∗ 10−4s

Table 5.9: Details for CNNs with 2-5 convolutional layers

case does appear to be too small to be beneficial to the network, only having the dimensions [3 1 5].
Reducing the stride for the layers may yield better accuracy, at the cost of increased computational
and spacial needs.

Outside of the number of actual number of convolutional layers, the layers’ stride, padding, filter
size, and the number of filters used were also altered. The alterations that will be mentioned here
will all be alterations of a single parameter from the CNN described in Figure 5.1, which is the
same CNN as the 3CNN network from Figure 5.9. The details of these experiments can be found
in Appendix A.6. Talking primarily about the first convolutional layer, since the remaining layers
scales off of it’s parameters, the accuracy does seem to have a peak somewhere around the [200 1 1]
value, yielding an accuracy of 0.8131 with a filter size of [40 1 1], 0.8896 for [100 1 1], and 0.8431
for [500 1 1]. The padding also appear to yield the best results around the values shown in Figure
5.1, with an accuracy of 0.9213 without any padding. An increase in padding to almost match the
filter size yielded an accuracy of 0.9386, which is within the normal deviation that can appear even
when retraining a neural network with the exact same parameters.

Reducing the stride does increase accuracy, yielding 0.9519 when the stride of the first convolutional
layer is reduced to [1 1]. However, this did more than double the time necessary to classify each
iteration to 2.23ms. Increasing the number of filters at each convolutional layer also increases the
accuracy, with a doubling of filters for all convolutional layers yielding an accuracy of 0.9559. A
combination of low stride and more convolutional layers and7or filters may allow one to approach
an accuracy of 1.0. However, the classification time will likely increase substantially as well. The
accuracy drops to 0.8915 when the SrefNR is lowered to -6dB. This decrease is primarily caused
by a further drop i accuracy for detecting the end-point of the signal, as well as an added confusion
between instances of very short data packets (’D’) and instances with no data (’0’).

26

Figure 5.1: CNN used as a basis for parameter alterations

5.5.3 CNN performance for structural classification

Figure 5.2: High accuracy CNN for structural classification

Figure 5.2 shows structure for the CNN with the highest accuracy for structural classification,
without going to overboard on the number of filters at each convolutional layer. As shown in
Table 5.11, this neural network achieves an accuracy of 0.9623, requiring 45 ∗ 10−4 seconds for each
classification on average. As can be seen in Table 5.10, where the letters P, S, D, and E represent
the presence of preamble, SoF delimiter, data, and EoF, the vast majority of the false classifications
regards not detecting the EoF. Since the neural network seems capable of detecting the difference
between a correct and incorrect SoF, which are differentiated by a single binary value, these wrong
classifications regarding the EoF are likely caused when the EoF is placed extremely close to the end
of the sampled region. The results of a second, smaller, neural network is also shown in Table 5.11.
This neural network is identical to the one shown in Figure 5.2, except the number of filters have
been reduced to [10 10 5 5] for the 4 convolutional layers. As can be seen by comparing the two,
one can maintain an accuracy only 0.01 below the larger network while only having to use roughly
0.22 times the weights and biases, and 0.21 times the floating point operations. The numbers in

27

the parenthesis in Table 5.11 are the numbers needed to connect the last convolutional layer to the
output layers, with the other numbers just including the convolutional layers themselves.

Actual \Predicted 0 P D D E P D P D E P S D P S D E
0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
P 0.0 0.969 0.0 0.0 0.018 0.0 0.013 0.0
D 0.023 0.001 0.959 0.002 0.010 0.005 0.0 0.0

D E 0.008 0.004 0.057 0.919 0.0 0.007 0.0 0.005
P D 0.0 0.005 0.0 0.0 0.994 0.001 0.0 0.0

P D E 0.0 0.009 0.0 0.0 0.057 0.933 0.0 0.001
P S D 0.0 0.002 0.0 0.0 0.001 0.0 0.993 0.004

P S D E 0.0 0.002 0.0 0.0 0.0 0.001 0.066 0.931

Table 5.10: Accuracy for each output neuron for structural classification for neural networn in Figure
5.2

Type Accuracy Classification time CNN weights+biases CNN add+mult ops
Optimized for accuracy 0.9623 45 ∗ 10−4s 48080 (+7288) 37 096 000 (+14560)

Smaller version 0.9529 9.92 ∗ 10−4 8530 (+3648) 7 667 000 (+7280)

Table 5.11: Accuracy and classification time for structural classification at 0SrefNR and 20 samples
per bit

5.6 Neural network for positional analysis of RVM signal

The results shown in this chapter utilize the CNN responsible for narrowing down the position from
a 10 byte region to a 1 byte region when making comparisons, with the results for the other parts
being added in Chapter 5.6.3.

5.6.1 Comparison of sampling rates

Table 5.12 shows the comparison of accuracy and classification time for different number of samples
used to describe one bit of data. As the table shows, there appears to be a strong correlation between
accuracy and number of samples used to describe each bit. However, the accuracy remains above
the 90-percentile for all three cases shown. The neural networks used to yield these results are made
to be as similar as possible, having the filter sizes, stride, and padding scaled as proportionally as
possible to make the networks as similar as possible. This is reflected in Table 5.12 with the networks
having similar classification times, with the major difference being in the number of neurons in the
input layer.

The details regarding the networks used for each case can be found in Appendix B.5. The networks
in the following subsections will utilize the 20 samples per bit version, in an attempt to optimize the
accuracy.

28

Samples per bit Accuracy Classification time
4 0.9214 0.79 ∗ 10−4s
10 0.9450 0.83 ∗ 10−4s
20 0.9708 0.95 ∗ 10−4s

Table 5.12: Accuracy and classification time for different number of samples per bit for positional
classification at 0SrefNR

Layer 2CNN network 3CNN network 4CNN network
Conv1 10x[40 2 1] filters 10x[40 2 1] filters 10x[40 2 1] filters
Conv2 10x[10 2 10] filters 10x[10 2 10] filters 10x[10 2 10] filters
Conv3 - 5x[10 2 10] filters 10x[5 2 10] filters
Conv4 - - 5x[5 2 10] filters

Accuracy 0.9787 0.9739 0.9847
Classification time 0.83 ∗ 10−4s 0.90 ∗ 10−4s 0.97 ∗ 10−4s

Table 5.13: Details for CNNs with CNNs with 2-4 convolutional layers at 0SNR

5.6.2 Comparison of differently sized CNNs

As can be seen in Table 5.13, the CNN architectures for positional recognition appear to stay
extremely close to each other in terms of accuracy. All of these CNNs utilize a stride of [4 1] for
their first convolutional layer, and a stride of [2 1] for the remaining convolutional layers. This does
seem to point towards the neural network having little difficulty in classifying which position the
start of the signal appears in, allowing for a high accuracy without a high complexity.

Utilizing the neural network described in Figure 5.3, which is the same network as the 3CNN network
in Table 5.13, the network appears to achieve a higher accuracy both when reducing and increasing
the filter size for the first convolutional layer. A reduction down to [20 2 1] gives an accuracy of
0.9799, while increasing the filter size to [80 2 1] gives an accuracy of 0.9823. The highest accuracy,
however, is achieved when reducing the stride along the 2nd dimension to 1, giving a filter size of
[40 1 1]. Utilizing this filter, the network was capable of achieving an accuracy of 0.9912. Reducing
the stride of the first convolutional layer, and adding additional padding to the convolutional layers
also increased the network’s accuracy. Still, these alterations did not manage to reach as high an
accuracy as changing the filter sizes did. Further details regarding each of the test-cases described
can be found in Appendix B.6.

5.6.3 CNN performance for positional classification

As mentioned earlier, the positional classification follows a hierarchical approach, where a sampled
region capable of holding up to 100 byte worth of data is first reduced from 100 byte region to 10 byte
region, from a 10 byte region to a 1 byte region, 1 byte region to 1 bit region, and then finally down to
a single sample. The examples shown up until now have all been from the neural network responsible
for reducing the area in question from a 10 byte region to a 1 byte region. The other CNNs have been
modelled based on the performance this CNN had through the previous test-cases. The details, such
as filter sizes and layer structure, regarding the structure of each CNN can be found in Appendix
B.7. The results for each of the CNNs can be seen in Table 5.14, with the measurements being from
the PSK modulation scheme at 0SrefNR, and 20 samples per bit. The number of weights, biases

29

Figure 5.3: CNN used as a basis for parameter alterations for positional classification

and floating point operations listed are the ones utilized for the convolutional layers, with the ones
needed for connecting to the output layer being placed in parenthesis.

The outermost CNN, which in Table 5.14 has been called CNN(100B ⇒ 10B), showed a perfect
accuracy for the test-set in question. While the size of CNN(100B ⇒ 10B) may be reduced, the
version here was included due to keeping an accuracy of 0.9994 when the SrefNR was reduced to
-6. However, one should keep in mind that since the position is randomized within the valid range,
and with that range in this case being rather large, the number of cases close to the borders between
the different output neurons would statistically be rather few. In addition, this version of the neural
network has a staggering 16000 input neurons in total.

As shown in Table 5.14, the accuracy remains extremely high down to classifying the correct 1 bit
region of the input samples, maintaining an accuracy of 0.983 to the correct region. However, there is
a rather huge drop in accuracy to find the correct sample within that 1 bit region. As was mentioned
in Chapter 4.2, the noise peaks for 0SrefNR can reach up to 55 in value. With a signal amplitude
set to 50, it should be understandable why the neural network struggles to reach high accuracy at
such a high precision. A spike in noise at the correct sample could either completely nullify the
signal at that sample, or heighten another sample to make it look like the start position. A note
to make is that CNN(1b ⇒ 1sample) has a 0.88 chance of either predicting the correct sample or
be 1 sample off, which makes the system as a whole have a 0.865 chance of being at most 1 sample
off. Another note to make for CNN(1b⇒ 1sample), which utilizes a single hidden layer trio, is that
it was the only case where a fully connected version got close in accuracy to its CNN counterpart.
In this case, a FNN managed to obtain an accuracy of 0.70. For the case of an SrefNR of -6, the
accuracy of CNN(10B ⇒ 1B) drops to 0.9285 and CNN(1b ⇒ 1sample) to 0.8084, resulting in a
0.75 chance of correct classification within a 1 bit region. CNN(1b⇒ 1sample) drops to an accuracy
of 0.3342, being mostly unusable at this point.

30

Neural Network Acc.(0SrefNR) Class. time #CNN weight+bias CNN FLOPS
CNN(100B ⇒ 10B) 1.0 12.0 ∗ 10−4s 1925(+48 010) 5 174 400(+96 000)
CNN(10B ⇒ 1B) 0.9912 0.90 ∗ 10−4s 1925 (+3010) 624 000 (+6000)
CNN(1B ⇒ 10b) 0.9918 0.96 ∗ 10−4s 8460 (+5768) 1 000 800 (+11 520)

CNN(1b⇒ 1sample) 0.7226 0.13 ∗ 10−4 510 (+17 020) 17 000 (+34 000)
Combined 0.7104 13.99 ∗ 10−4 12 820 (+73 808) 6 816 200 (+147 520)

Table 5.14: Performance and details for CNNs for positional classification.

Samples per bit Accuracy Accurate or 1 off Classification time
4 0.3451 0.7955 4.08 ∗ 10−4s
10 0.7168 0.9779 3.94 ∗ 10−4s
20 0.9009 0.9985 4.76 ∗ 10−4s

Table 5.15: Accuracy and classification time for different number of samples per bit for length
classification

5.7 Neural network for signal length analysis of RVM signal

5.7.1 Comparison of sampling rates

As should be apparent from Table 5.15, the number of samples used to describe one bit worth of data
has a significant impact on the accuracy of the neural network. This does makes sens, considering
the amount of samples directly correlate to how much of an actual difference there are between the
output neurons. Much more for the structural or positional cases, the classification of a signal’s
length randomly positioned in a noisy environment appears highly dependent on the sampling rate
of the receiver. As with structural and positional classifications, the CNNs utilized to yield the
results in Table 5.15 had the parameters of their first convolutional layer scaled, in order to appear
as similar as possible.

The networks in the following subsections will utilize the 20 samples per bit version, as this one
appears to be the only one that may reach an acceptable accuracy.

5.7.2 Comparison of differently sized CNNs for length classification

Layer 3CNN network 4CNN network 5CNN network
Conv1 30x[200 1 1] filters 40x[200 1 1] filters 50x[200 1 1] filters
Conv2 20x[50 1 30] filters 30x[50 1 40] filters 40x[50 1 50] filters
Conv3 10x[20 1 20] filters 20x[20 1 30] filters 30x[20 1 40] filters
Conv4 - 10x[10 1 20] filters 20x[10 1 30] filters
Conv5 - - 10x[5 1 20] filters

Accuracy 0.6892 0.9009 0.9045
Accurate or 1 off 0.9727 0.9985 0.9887

Classification time 2.74 ∗ 10−4s 3.94 ∗ 10−4s 7.57 ∗ 10−4s

Table 5.16: Details for CNNs with 3-5 convolutional layers for length classification

31

Table 5.16 shows a comparison between CNNs with different amounts of convolutional layers. While
the version utilizing 3 convolutional layers lacks behind, the 4 convolutional layers and 5 convolu-
tional layers versions are extremely close when it comes to obtaining the correct classification. With
a difference of only 0.0036, this remains within the area a neural network may deviate in accuracy
after training with the exact same input parameters. The details regarding these CNNs can be found
in Appendix C.5 and C.6.

using the 4CNN network from Table 5.16 as a basis, which can be seen in Figure 5.4, the neural
network’s stride, padding, and filters were altered in an attempt to achieve better accuracy. In
opposition to the results given when attempting to optimize for structural or positional classification,
reducing the stride of the first convolutional layer to the minimum amount ([1 1]) resulted in the
accuracy dropping to 0.5751, or 0.8755 for either being accurate or 1 sample off. Furthermore, both
increasing and decreasing the filter size of the first convolutional layer caused a loss in accuracy. For
a filter size reduced to [40 1], the accuracy dropped to 0.7241, and to 0.8027 for a filter increased to
[400 1] in size. Most results points to there being a middle-ground in complexity where the length
classification network has it’s peak in accuracy. Details regarding the neural networks used for each
of the test-cases can be found in Appendix C.6.

Figure 5.4: CNN used as basis for parameter alterations for length classification

5.7.3 CNN performance for length classification

Figure 5.5 shows the CNN structure that yielded the highest accuracy. As shown in Table 5.17,
the accuracy this CNN achieved was 0.9359 for correct classification, and 0.9970 for being at most
one bit off. This CNN is, however, extremely large to the point of being comparable to the FNNs
discussed in Chapter 5.4. Out of the 26 output neurons, the only one which differentiated from the
rest in form of accuracy is the ’0’ length neuron. This neuron had an accuracy of 0.998, having only
a single false classification out of the 500 instances that went through the classification procedure
for this output.

The accuracy of the CNN drops significantly when the SrefNR increases. With a SrefNR of -6,
the accuracy drops to 0.3432, with the chance of it being either accurate of 1 bit off being 0.7868

32

Figure 5.5: CNN optimized for accuracy for lengths classification

Accuracy Accurate or 1 off Classification time CNN weights+biases CNN add+mult ops
0.9359 0.9970 4.49 ∗ 10−4s 134140 (+8346) 22 792 000 (+16640)

Table 5.17: Accuracy and classification time for length classification at 0SNR and 20 samples per
bit

33

Chapter 6

Discussion

This chapter will discuss the methodology chosen, as well as the results presented in the previous
chapters.

6.1 Validity of generated data

As was mentioned during Chapter 4.2, the generation for the RVM training and testing data was
done using manually using MatLab R2018a. This was done due to no existing databases with
relevant data being found. One aspect that should be kept in mind with this, is that since since
the data was made using programmed logic, there may be a risk of the ANNs managing to re-create
that logic, which would be an unintended effect. Also, because the data has been generated and
not sampled, some parameters have perfect replication, while in an actual sampled situation they
would not. An example of this would be that in the generated data, the ratio between the sampling
frequency and the signal frequency is a perfect integer with no deviation. Each bit is covered buy
an exact number of samples, and each instance have the exact same signal frequency. In a real
application, the sampled values may have small deviations in these aspects.

The case where the ratio between sampling frequency and signal frequency is not a perfect integer
value could have an effect on the overall accuracy. While the sampling points on the sinusoidal wave
have been skewed to represent a non-synchronized design, the sampling points remain the at the
same points for each bit-period of that instance. This essentially means that each binary value ’1’
and ’0’ holds the same pattern, when not considering the added noise. For a non-integer ratio, the
points on the sinusoidal wave the samples are taken at would change depending on where the bit is
located in the sampled region, possibly causing an added complication for the classification process.
This would naturally have a higher impact when the ratio between sampling and signal frequency
is low, as for higher values, the difference would likely just act as a small addition of noise.

34

6.2 Accuracy and size of ANNs

The results shown throughout Chapter 5 usually points towards larger neural networks being more
accurate, up to a certain point. As should be apparent from Table 5.6 in Chapter 5.4, the fully
connected neural networks are far outmatched by the convolutional neural networks both in terms
of speed and accuracy. As further noticed in Chapter 5.5.3, 5.6.3, and 5.7.3, the CNNs also appear
to perform best when the filter sizes of medium size. The likely cause could be that, while too
small may fail to gather sufficient parameters for a correct classification, a larger neural network
may end up with too many parameters that has no importance for the classification process, but
instead simply adds noise throughout the layers. As previously mentioned, the only case where
a fully connected network had a comparable accuracy was for the smallest neural network in the
positional classification. This neural network had a single convolutional or fully connected layer,
followed by a batch normalization layer and ReLU layer. Adding additional layers in this case only
caused the accuracy to decrease.

The amount of filters used in the convolutional layers probably have the largest impact when it
comes to the comparison of both physical (storage) and computational size versus the accuracy
achieved. While an increased number of filters does have a positive impact on the accuracy, they do
have a massive impact on both the computational requirements, and the amount of storage space
required. This increase in accuracy does seem to level out eventually. However, as exemplified in
Table 5.11, one can gain a massive difference in terms of size and computational requirements at
only a small loss in accuracy. As long as a slight loss in accuracy isn’t a critical problem, it should be
considered to utilize a smaller CNN, especially in the case of limited storage, such as on a FPGA. Of
the other parameters, filter size padding appeared to have a window where they work best, meaning
changing them either to become smaller or larger than this area would have a negative impact on
the CNNs accuracy. With exception of the length classification, reducing the stride generally saw a
minor increase in accuracy, at the cost often having a significantly larger computational and spatial
footprint.

The amount of storage space required is also highly dependent on the amount of neurons in the last
layer before the output layer. Since the connection to the output is fully connected, it required a total
of n ∗m weights and m biases, with m being the number of neurons in the output layer, and n the
number of neurons in the layer connected to it. As is best seen in Table 5.14, this number may be far
larger than that of the convolutional layers combined. An increase in the number of convolutional
layers may therefore actually cause a net gain in both size and computational requirements. A
comparison between the 5 convolutional layer networks shown in Table 5.9 and 5.16, the accuracy
appears to be more linked to the number of neurons connected to the output layer than the actual
number of convolutional layers.

A common trend that goes throughout the entire testing procedure would be that the accuracy is
highly linked with how many input neurons are used to differentiate between two output neurons. In
other words, the robustness is directly linked with how many samples the noise must distort before
invalidating that section of the input. This should come as no surprise, as it essentially equates to
increasing how distinct each output neuron appears from the others.

Network sizes influenced the training time for the networks. While the training times have not been
included as part of this thesis, a general understanding in the difference in training time can be
seen by looking at the classification times for each ANN. A thing to keep in mind would be that all
of these classification times are taken using CPUs, meaning devices with more parallelism such as
GPUs or FPGAs should require a much lower time for both training and classification.

35

6.3 Time-domain versus frequency-domain

One of the early decisions made during for this thesis was to look at the comparison between how
time-domain input data and frequency-domain input data. While these two domains essentially
contains the same data, the CNNs proved much better at recognizing differences in the time-domain
for these cases than for the frequency domain. As the cases looked at could be described as primarily
an evaluation of signal amplitude, this shouldn’t be that much of a surprise. One would, however,
still expect the frequency domain version to outperform the time-domain for cases more closely
related to the signal’s frequency, as those should have a greater distinction in the frequency domain.

Other parameters, such as the higher-order parameters utilized to classify modulation scheme in
cognitive radio, as described in Chapter 3.1, may also be of use as input parameters, either as an
addition or as a replacement to having the time-data inputs. An advantage that could be made
if higher-order variables prove accurate enough would be that the neural network structures they
utilize could potentially be of a significant smaller size than the ones the time-data CNNs utilize.

6.4 Results for the classification problems

The choice of solver algorithms used to minimize the loss/error function does appear to have quite
the impact on how well the ANN is able to be trained. As shown in Table 5.1, this difference appears
to be largest when the accuracy is low, with the ADAM solver pulling ahead of both RMSProp and
SGDM for these cases.

The modulation scheme also seems to have an impact on the classification process. However, the
difference appears to be more linked to the amount of data visible to the neural network, and not
as much as to the actual modulation scheme. As an elaboration for this, the FSK and PSK has
remained extremely close in terms of accuracy throughout all tests, commonly within 1% of each
other, usually taking turns on who’s most accurate. Even when using the same neural network and
the same set of training data, the resulting accuracy tends to deviate up to around 0.3%. This is most
probably caused by a combination of the randomized initial weights and biases in combination with
the random order the training data. The difference between FSK and PSK is therefore basically
negligible. ASK, on the other hand, had consistently worse results than the other two. Since it
utilizes on-off-keying, the binary value ’0’ is described as an absence of signal. This results in the
neural network essentially having half the amount of visible data to work with. The amount of visible
data the modulation scheme gives the neural network therefore appears to be far more significant
than how the visible data is structured.

As previously mentioned, the accuracy appears to correlate mostly with how many samples that
differentiate the output neurons. As an be seen in Table 5.10, the false classifications are primarily
a failure to detect the end-point of the data package. These cases are most probably the cases
where the end point is located only a few samples from the end of the sampled region, making a
few, or even a single, spike in the added noise enough to cause a wrong classification. This would
also mean the accuracy is dependent on the size of the sampled region for this classification. Since
the signal’s position is randomized, a larger sampled region would make it less likely for a signal to
be placed close to the edges. An added note would also be that the most accurate solution for the
structural may prove too large to be implemented on an FPGA or a similar device. As the structural
classification is trained to look for specific patterns, it must also be trained specifically for a set of
structures to look for. CNNs does however appear to be capable of distinguishing between single
binary differences, as the cases where their only difference was the binary value of the 1-bit SoF

36

delimiter had an accuracy of 0.994 and 0.993 respectively for 0SNR.

Positional classification appears highly accurate down to the 1bit region, which for the case shown
equated to a region of 20 samples. These neural networks, even combined, are significantly smaller
than the ones used for both structural and length analysis. The largest CNN in the hierarchy could
also probably be reduced in size without much loss in accuracy, due to how well it holds up even at
a SNR of -6. However, one should keep in mind that much of the reason why the larger networks
have such a high accuracy is due to how unlikely the randomized position in the training and test
set are to be placed near the edges of each region. This CNN hierarchy may be the one most likely
to be useful for more general cases, with the primary challenge for implementing it on a FPGA
being funneling data to the 16000 input neurons. The network does by no means have to start out
covering such a large region, as the size was mostly chosen to verify if the network would be able to
pinpoint the position from such a large set of data.

Out of the three, the length classification is the worst performer both in terms of accuracy, and in
terms of size and computational requirements. Considering the high accuracy of the positional clas-
sification hierarchy, it will probably be more beneficial to just run the region through this hierarchy,
reversing the order of the neurons to find the end-point.

6.5 Possible improvements

While the CNNs have gone through an optimization process, this does not mean they cannot be
improved further in terms of accuracy, size, or computational requirements. Out of the three,
positional architecture is probable the only one that could have any use for a general case.

One optimization could be to look for the amount of convolutional filters that would yield the
smallest amount of storage requirement while maintaining a near peak accuracy. Attempting to
make the cases more generalized would also be a possible optimization. Also, as mention in Chapter
3.3, finding structures that work for binary neural networks would be a possible optimization option,
as it could reduce both the number storage registers needed, as well as being able to utilize counters
instead of arithmetic logic units (ALUs)

6.6 Additional features

This thesis has mostly focused on looking for structural characteristics contained in a RVM signal.
More analogue values such as amplitude, frequency, rise times, and so on could also be of interest.
The main challenge with more analogue values would be that, since a neural network’s output has
a binary form, these characteristics would most likely be classified within ranges instead of exact
values.

37

Chapter 7

Conclusion

This thesis aimed to develop and test a series of artificial neural networks for classification of features
in a radio signal described through real value modeling. The thesis chose to focus on three primary
characteristics: the search for structural characteristic, the search for delay, by finding the starting
position of a signal within a sampled region, and by finding the length of a RVM signal. The
data generation and test environment were done using MatLab R2018a. All data was subjected to
Gaussian white noise with a SNR compared to a reference signal power of 25. This resulted in noise
peaks roughly equal to the signal amplitude at 0SrefNR.

Of the three different solvers tested, the ADAM solver proved to yield the highest accuracy when
the resulting accuracy could be considered low, especially sub 50%. SGDM, RMSProp, and ADAM
all having roughly equal performance for high accuracy systems, especially above 90%. Of the three
modulation schemes utilized, the FSK and PSK performed roughly equal, while the ASK (OOK)
modulation lacked behind for all tests completed. This seems to be more a result of FSK and PSK
providing the neural network with more data, as ASK (OOK) does not provide data for binary
’0’ values, as opposed to the actual form the data takes. CNN architectures outperformed FNN
architectures by 20-50% in accuracy, while maintaining a far smaller physical and computational
footprint. Time-domain input data yielded higher accuracy results than frequency-domain input
data. The closest comparison here was the positional classification, yielding 0.9450 in accuracy for
time-domain input data, and 0.9134 for frequency domain input data.

The structural characteristics achieved an accuracy of 0.9623 at 0SrefNR with a classification time
of 34.0 ∗ 10−4s on average for each classification. The sum of weights and biases for this network
was 55360, requiring roughly 37.1 million floating point operations for its convolutional layers, plus
the connections to the output layer. A smaller version which achieved an accuracy of 0.9529, with
a classification time of 9.92 ∗ 10−4s, 12178 weights and biases, and roughly 7.7 million floating point
operations for its convolutional layers and the output layer. The network had an accuracy of 0.993
at recognizing a single-bit identifier, with the primary source of false classifications being detecting
the signal end-point when placed close to the edge of the sampled region.

The positional characteristics was developed in a hierarchical fashion, where the first CNN took in a
sampled region capable of holding 100 bytes worth of data, and determining in which 10 byte region
the start of the signal was located in. The second CNN would further pinpoint the region down to
a 1 byte region, the 3rd down to a 1 bit region, and the forth attempt to find the exact sample.
The CNN hierarchy achieved an accuracy of 0.983 to classify the right bit region at 0SrefNR, and

38

0.7104 for classifying the correct sample. The total classification time for the entire hierarchy was
13.99 ∗ 10−4s, not counting the time needed to move data from one network to the other. The
sum of weights and biases for the entire network was 86628, whereas 73808 were between the last
convolutional layer and the output layers in the CNNs. The total number of floating point operations
for the convolutional layers and output layers were roughly 7.0 million. The hierarchy achieved a
0.75 accuracy for classifying the correct bit region at -60SrefNR, with the last CNN being unable
to reliably classify the correct sample at this 0SrefNR value.

The length characteristics achieved an accuracy of 0.9359, with a 0.9970 chance of being either
accurate or 1 bit off. The classification time for the network was 4.49 ∗ 10−4s per classification.
The sum of weights and biases for the convolutional layers plus the output layer 142486, with the
number of floating point operations performed by these layers being roughly 22.8 million. The
accuracy dropped to 0.3432 when the SrefNR was decreased to -6, with a 0.7868 chance of being
either accurate or 1 bit off. Running through the positional CNN hierarchy twice to obtain the start
and end position should generally outperform using the CNN for length characteristics.

7.1 Future work

A natural way forward would be to attempt to characterize other radio signal utilizing real value
modeling and artificial neural networks. Examples of such features could be signal power, frequency,
and rise/fall times. Further exploration into possible higher-order parameters to use as inputs for
the ANNs could also be a viable next step.

Another path forward would be to implement the CNNs into an FPGA, analyzing the classification
times and comparing them to that of SPICE or AMS. One may also attempt to include the CNN
architectures into an actual verification procedure and measure their performances. One may also
wish to generalize the structures to create a wider area of use.

A separate route, as mentioned during Chapter 6, would be to utilize fixed data types with a reduced
precision. Binary neural networks are a valid candidate to explore, but so is reducing the data types
down to 8 bit fixed point.

39

Bibliography

[1] Pete Hardee Sathishkumar Balasubramanian. Solutions for mixed-signal soc verification using
real number models.

[2] Kathleen A. Meade Sharon Rosenberg. A Practical Guide to Adopting the Universal Verification
Methodology (UVM). Cadence Design Systems, Inc., 2010.

[3] Accellera Systems Initiative. Universal Verification Methodology (UVM) 1.2 User’s Guide,
October 2015.

[4] Accellera Systems Initiative. Universal Verification Methodology (UVM) 1.2 Class Reference,
June 2014.

[5] Hao Fang Neyaz Khan, Yaron Kashai. Metric driven verification of mixed-signal designs.

[6] Martin Barnasconi. Systemc ams extensions: Solving the need for speed.

[7] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016. http:
//www.deeplearningbook.org.

[8] Tom M. Mitchell. Machine Learning. McGrac-Hill Science/Engineering/Math, March 1997.

[9] Michael Nielsen. Neural Networks and Deep Learning. Online Book, Dec 2017. http://

neuralnetworksanddeeplearning.com/index.html.

[10] Giulio Gambardella Michaela Blott Philip Leong Magus Jahre Kees Vissers Yaman Umuroglu,
Nicholas J. Fraser. Finn: A framework for fast, scalable binarized neural network inter-
face. FPGA ’17 Proceedings of the 2017 ACM/SIGDA International Symposiom on Field-
Programmable Gate Arrays, pages 65–74, February 2017.

[11] Christopher M. Bishop. Pattern recognition and machine learning. Springer,
2006. http://users.isr.ist.utl.pt/~wurmd/Livros/school/Bishop%20-%20Pattern%

20Recognition%20And%20Machine%20Learning%20-%20Springer%20%202006.pdf.

[12] Jimmy Ba Diederik P Kingma. Adam: A method for stochastic optimization, Dec 2014. arXiv:
1412.6980v9.

[13] Deep learning training from scratch: Options for training deep learning neural network. https:
//se.mathworks.com/help/nnet/ref/trainingoptions.html.

[14] Howard B. Demuth Mark Hudson Beale, Martin T. Hagan. Neural network toolbox user’s
guide, March 2018. https://se.mathworks.com/help/pdf_doc/nnet/nnet_ug.pdf.

[15] MathWorks Inc. Neural network toolbox. https://se.mathworks.com/help/nnet/index.

html.

40

http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://neuralnetworksanddeeplearning.com/index.html
http://neuralnetworksanddeeplearning.com/index.html
http://users.isr.ist.utl.pt/~wurmd/Livros/school/Bishop%20-%20Pattern%20Recognition%20And%20Machine%20Learning%20-%20Springer%20%202006.pdf
http://users.isr.ist.utl.pt/~wurmd/Livros/school/Bishop%20-%20Pattern%20Recognition%20And%20Machine%20Learning%20-%20Springer%20%202006.pdf
arXiv:1412.6980v9
arXiv:1412.6980v9
https://se.mathworks.com/help/nnet/ref/trainingoptions.html
https://se.mathworks.com/help/nnet/ref/trainingoptions.html
https://se.mathworks.com/help/pdf_doc/nnet/nnet_ug.pdf
https://se.mathworks.com/help/nnet/index.html
https://se.mathworks.com/help/nnet/index.html

[16] Christian Szegedy Sergey Ioffe. Batch normalizaiton: Accelerating deep network training by
reducing internal covariate shift, March 2015. arXiv:1502.03167.

[17] Daniel Grady Daniel Gebhardt Benjamin Migliori, Riley Zeller-Townson. Biologically inspired
radio signal feature extraction with sparse denoising autoencoders, May 2016. arXiv:1605.

05239.

[18] Jide Julius Popoola. Automathic recognition of both inter and intra classes of digital modu-
latated signals using artificial neural networks. Journal of Engineering Science and Technology,
9:273–285, 2014.

[19] E.E. Azzouz Asoke K. nandi. Algorithms for automatic modulation recognition of com-
munication signals. IEEE transactions on communications, 46(10), April 1998. https:

//ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=664294.

[20] Ole Martin Skafs̊a. Fpga implementation of a convolutional neural network for ”wake up word”
detection. Master’s thesis, June 2017.

[21] MathWorks Inc. Matlab r2018a. https://se.mathworks.com/products/new_products/

latest_features.html?s_tid=srchtitle.

41

arXiv:1502.03167
arXiv:1605.05239
arXiv:1605.05239
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=664294
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=664294
https://se.mathworks.com/products/new_products/latest_features.html?s_tid=srchtitle
https://se.mathworks.com/products/new_products/latest_features.html?s_tid=srchtitle

Appendix A

Artificial neural network results for
structural test-cases

• 0: No signal detected

• P: Only preamble detected

• D: Only data detected. End-point not present within sampled data

• DE: Only data detected. End-point found within sampled data

• PD: Preamble and data detected. Correct SoF delimiter not found. End-point not found within
sampled data

• PDE Preamble and data detected. Correct SoF delimiter not found. End-point found within
sampled data

• PSD: Preamble and data detected. Correct SoF delimiter detected. End-point not found within
sampled data

• PSDE: Preamble and data detected. Correct SoF delimiter detected. End-point found within
sampled data.

42

A.1 Comparison between the different solvers for analog struc-
tural feature analysis

Signal information:

Modulation Scheme ASK, FSK, PSK
Amplitude 50 peak

Noise Levels 0 SNR: approx 14.0 average amplitude , approx 50 peak
Input size 50 bit area
Data bits 0-25

Samples per bit 10
Periods per bit 1

Phase-scew Randomized within timespace of 1 sample

Training options:

Solver sgdm, rmsprop, adam
Epochs 100

Iterations per epoch 62
Learning rate Constant 0.01 (sgdm), Constant 0.001 (rmsprop, adam)

Network Structure:

Analog signal structural feature analysis using SGDM:

ASK
Accuracy 0.8057

Execution time 1.0465s (for 8000 iterations)
Execution per iteration 1.00 ∗ 10−4s

FSK
Accuracy 0.9265

Execution time 0.8373s (for 8000 iterations)
Execution per iteration 1.05 ∗ 10−4s

PSK
Accuracy 0.9384

Execution time 0.8085s (for 8000 iterations)
Execution per iteration 1.01 ∗ 10−4s

43

Analog signal structural feature analysis using RMSProp:

ASK
Accuracy 0.8115

Execution time 0.8565s (for 8000 iterations)
Execution per iteration 1.07 ∗ 10−4s

FSK
Accuracy 0.9300

Execution time 0.8159s (for 8000 iterations)
Execution per iteration 1.02 ∗ 10−4s

PSK
Accuracy 0.9350

Execution time 0.7630s (for 8000 iterations)
Execution per iteration 0.95 ∗ 10−4s

Analog signal structural feature analysis using ADAM:

ASK
Accuracy 0.7889

Execution time 1.2283s (for 8000 iterations)
Execution per iteration 1.54 ∗ 10−4s

FSK
Accuracy 0.9165

Execution time 0.8003s (for 8000 iterations)
Execution per iteration 1.00 ∗ 10−4s

PSK
Accuracy 0.9185

Execution time 0.9534s (for 8000 iterations)
Execution per iteration 1.19 ∗ 10−4s

44

A.2 Structural comparison of time-data and FFT

Signal information:

Modulation Scheme PSK
Amplitude 50 peak

Noise Levels 0 SNR: approx 14.0 average amplitude , approx 50 peak
Input size 50 bit area
Data bits 0-25

Samples per bit 10
Periods per bit 1

Phase-scew Randomized within timespace of 1 sample

Training options:

Solver adam
Epochs 100

Iterations per epoch 62
Learning rate Constant 0.001

Network Structure for time data and FFT (amplitude only):

45

Network Structure for FFT (amplitude and phase):

PSK time-domain classification results

Accuracy 0.9185
Execution time 0.9534s (for 8000 iterations)

Execution per iteration 1.19 ∗ 10−4s

PSK FFT classification results with amplitude and phase:

Accuracy 0.6276
FFT time 1.6516s

FFT time per iteration 2.06 ∗ 10−4s
Execution time 1.1462s (for 8000 iterations)

Execution per iteration 1.43 ∗ 10−4s

PSK FFT classification results with only amplitude:

Accuracy 0.4960
FFT time 0.3029s

FFT time per iteration 0.38 ∗ 10−4s
Execution time 0.7653s (for 8000 iterations)

Execution per iteration 0.96 ∗ 10−4s

46

A.3 ASK, FSK and PSK comparison at different SNR for
structural analysis

Signal information:

Modulation Scheme ASK, FSK, PSK
Amplitude 50 peak

Noise Levels Varies
Input size 50 bit area
Data bits 0-25

Samples per bit 10
Periods per bit 1

Phase-scew Randomized within timespace of 1 sample

Training options:

Solver adam
Epochs 100

Iterations per epoch 62
Learning rate Constant 0.001

Network Structure:

6SNR

ASK
Accuracy 0.8820

Execution time 0.8027s (for 8000 iterations)
Execution per iteration 1.00 ∗ 10−4s

FSK
Accuracy 0.9781

Execution time 0.8243s (for 8000 iterations)
Execution per iteration 1.03 ∗ 10−4s

47

PSK
Accuracy 0.9653

Execution time 0.8968s (for 8000 iterations)
Execution per iteration 1.12 ∗ 10−4s

-6SNR

ASK
Accuracy 0.4706

Execution time 0.7542s (for 8000 iterations)
Execution per iteration 0.94 ∗ 10−4s

FSK
Accuracy 0.6953

Execution time 0.7545s (for 8000 iterations)
Execution per iteration 0.94 ∗ 10−4s

PSK
Accuracy 0.7318

Execution time 0.8005s (for 8000 iterations)
Execution per iteration 1.00 ∗ 10−4s

48

A.4 Comparison compared to fully connected neural net-
works

Neural numbers for each layer have been chosen to match the number or neurons each CNN network
in Chapter A.2. Please refer to this, and and other chapter describing CNN results, for comparisons.
The FNNs below all utilize the same set of training and test data.

Signal information:

Modulation Scheme ASK, FSK, PSK
Amplitude 50 peak

Noise Levels 0 SNR: approx 14.0 average amplitude , approx 50 peak
Input size 50 bit area
Data bits 0-25

Samples per bit 10
Periods per bit 1

Phase-scew Randomized within timespace of 1 sample

Training options:

Solver adam
Epochs 100

Iterations per epoch 62
Learning Constant 0.001

Network Structure: The network below is made to have equal number of nodes in each of the
three fully connected layers as the standard CNN size used in Appendix A.3.

Batch Normalization layers are include here, as otherwise the training reaches a certain point before
the training accuracy breaks down, causing the network to give the same prediction regardless of
input.

Classification results:

Accuracy 0.6440
Execution time 8.3247s (for 8000 iterations)

Execution per iteration 10.0 ∗ 10−4s

49

One aspect worth noting is that training this FNN required a total training time of 194 minutes,
while the CNN equivalent can requires only around 10 minutes for the same case.

50

A.5 Structural analysis for different number of samples per
bit

A comparison to 10 samples per bit can be found in Appendix A.1.

Signal information:

Modulation Scheme ASK, FSK, PSK
Amplitude 50 peak

Noise Levels 0 SNR: approx 14.0 average amplitude , approx 50 peak
Input size 50 bit area
Data bits 0-25

Samples per bit varies
Periods per bit 1

Phase-scew Randomized within timespace of 1 sample

Training options:

Solver adam
Epochs 100

Iterations per epoch 62
Learning rate Constant 0.001

20 samples per bit

Network Structure:

Results:

Accuracy 0.9356
Execution time 0.8623s (for 10000 iterations)

Execution per iteration 1.08 ∗ 10−4s

51

4 samples per bit

Network Structure:

Results:

Accuracy 0.8146
Execution time 0.7340s (for 10000 iterations)

Execution per iteration 0.92 ∗ 10−4s

52

A.6 Structural comparison of differently sized CNNs

Signal information:

Modulation Scheme PSK
Amplitude 50 peak

Noise Levels 0 SNR: approx 14.0 average amplitude , approx 50 peak
Input size 50 bit area
Data bits 0-25

Samples per bit 20
Periods per bit 1

Phase-scew Randomized within timespace of 1 sample

Training options:

Solver adam
Epochs 100

Iterations per epoch 62
Learning rate Constant 0.001

Unmodified structure with results:

Network Structure:

Results:

Accuracy 0.9356
Execution time 0.8623s (for 10000 iterations)

Execution per iteration 1.08 ∗ 10−4s

4 CNN layers

Network Structure:

Results:

53

Accuracy 0.9516
Execution time 0.8994s (for 10000 iterations)

Execution per iteration 1.12 ∗ 10−4s

5 CNN layers

Network Structure:

Results:

Accuracy 0.8601
Execution time 1.4734s (for 10000 iterations)

Execution per iteration 1.84 ∗ 10−4s

54

2 CNN layers

Network Structure:

Results:

Accuracy 0.9130
Execution time 0.8902s (for 10000 iterations)

Execution per iteration 1.11 ∗ 10−4s

55

Smaller sized convolutional filters

Network Structure:

Results:

Accuracy 0.8131
Execution time 0.8660s (for 10000 iterations)

Execution per iteration 1.08 ∗ 10−4s

Network Structure:

Results:

Accuracy 0.8896
Execution time 0.8362s (for 10000 iterations)

Execution per iteration 1.05 ∗ 10−4s

56

Larger sized convolutional filters

Network Structure:

Results:

Accuracy 0.8431
Execution time 0.7471s (for 10000 iterations)

Execution per iteration 0.934 ∗ 10−4s

Doubled amount convolutional filters

Network Structure:

Results:

Accuracy 0.9559
Execution time 1.3155s (for 10000 iterations)

Execution per iteration 1.64 ∗ 10−4s

57

No padding

Network Structure:

Results:

Accuracy 0.9213
Execution time 0.6473s (for 10000 iterations)

Execution per iteration 0.81 ∗ 10−4s

More padding

Network Structure:

Results:

Accuracy 0.9386
Execution time 0.9785s (for 10000 iterations)

Execution per iteration 1.22 ∗ 10−4s

58

Less stride

Network Structure:

Results:

Accuracy 0.9519
Execution time 1.7823s (for 10000 iterations)

Execution per iteration 2.23 ∗ 10−4s

More stride

Network Structure:

Results:

Accuracy 0.8769
Execution time 0.8616s (for 10000 iterations)

Execution per iteration 1.08 ∗ 10−4s

59

Appendix B

Artificial neural network results for
positional test-cases

B.1 Comparison between the different solvers for analog po-
sitional analysis

Signal information:

Modulation Scheme ASK, FSK, PSK
Amplitude 50 peak

Noise Levels 0 SNR: approx 14.0 average amplitude , approx 50 peak
Input size 80 bit area
Data bits 1-80

Samples per bit 10
Periods per bit 1

Phase-scew Randomized within timespace of 1 sample

Training options:

Solver sgdm, rmsprop, adam
Epochs 100

Iterations per epoch 78
Learning rate Constant 0.01 (sgdm), Constant 0.001 (rmsprop, adam)

Network Structure:

Analog signal positional analysis using SGDM:

ASK
Accuracy 0.9129

Execution time 0.9224s (for 10000 iterations)
Execution per iteration 0.92 ∗ 10−4s

60

FSK
Accuracy 0.9492

Execution time 0.9913s (for 10000 iterations)
Execution per iteration 0.99 ∗ 10−4s

PSK
Accuracy 0.9469

Execution time 1.1098s (for 10000 iterations)
Execution per iteration 1.11 ∗ 10−4s

Analog signal positional analysis using RMSProp:

ASK
Accuracy 0.9087

Execution time 0.8868s (for 10000 iterations)
Execution per iteration 0.89 ∗ 10−4s

FSK
Accuracy 0.9388

Execution time 0.8176s (for 10000 iterations)
Execution per iteration 0.81 ∗ 10−4s

PSK
Accuracy 0.9372

Execution time 0.8648s (for 10000 iterations)
Execution per iteration 0.86 ∗ 10−4s

Analog signal positional analysis using ADAM:

ASK
Accuracy 0.9102

Execution time 0.8351s (for 10000 iterations)
Execution per iteration 0.84 ∗ 10−4s

FSK
Accuracy 0.9490

Execution time 0.8440s (for 10000 iterations)
Execution per iteration 0.84 ∗ 10−4s

PSK
Accuracy 0.9450

Execution time 0.8267s (for 10000 iterations)
Execution per iteration 0.83 ∗ 10−4s

61

B.2 Positional comparison of time-data and FFT

Signal information:

Modulation Scheme PSK
Amplitude 50 peak

Noise Levels 0 SNR: approx 14.0 average amplitude , approx 50 peak
Input size 80 bit area
Data bits 1-80

Samples per bit 10
Periods per bit 1

Phase-scew Randomized within timespace of 1 sample

Training options:

Solver adam
Epochs 100

Iterations per epoch 78
Learning rate Constant 0.001

Network Structure for time data and FFT (amplitude only):

62

Network Structure for FFT (amplitude and phase):

PSK time-domain classification results

Accuracy 0.9450
Execution time 0.8267s (for 10000 iterations)

Execution per iteration 0.83 ∗ 10−4s

PSK FFT classification results with amplitude and phase:

Accuracy 0.9140
FFT time 1.7156s

FFT time per iteration 1.72 ∗ 10−4s
Execution time 0.9364s (for 10000 iterations)

Execution per iteration 0.94 ∗ 10−4s

PSK FFT classification results with only amplitude:

Accuracy 0.9134
FFT time 0.2425s

FFT time per iteration 0.24 ∗ 10−4s
Execution time 0.9370s (for 10000 iterations)

Execution per iteration 0.94 ∗ 10−4s

63

B.3 ASK, FSK and PSK comparison at different SNR for
positional analysis

Modulation Scheme ASK, FSK, PSK
Amplitude 50 peak

Noise Levels Varies
Input size 80 bit area
Data bits 1-80

Samples per bit 10
Periods per bit 1

Phase-scew Randomized within timespace of 1 sample

Training options:

Solver adam
Epochs 100

Iterations per epoch 78
Learning rate Constant 0.001

Network Structure:

6SNR

ASK
Accuracy 0.9897

Execution time 0.8672s (for 8000 iterations)
Execution per iteration 0.87 ∗ 10−4s

FSK
Accuracy 0.9886

Execution time 0.8285s (for 8000 iterations)
Execution per iteration 0.83 ∗ 10−4s

PSK
Accuracy 0.9871

Execution time 0.7933s (for 8000 iterations)
Execution per iteration 0.79 ∗ 10−4s

64

-6SNR

ASK
Accuracy 0.6580

Execution time 0.8736s (for 8000 iterations)
Execution per iteration 0.87 ∗ 10−4s

FSK
Accuracy 0.8127

Execution time 0.8517s (for 8000 iterations)
Execution per iteration 0.85 ∗ 10−4s

PSK
Accuracy 0.7981

Execution time 0.8182s (for 8000 iterations)
Execution per iteration 0.82 ∗ 10−4s

65

B.4 Comparison between the CNN and FNN

Signal information:

Modulation Scheme PSK
Amplitude 50 peak

Noise Levels 0 SNR: approx 14.0 average amplitude , approx 50 peak
Input size 80 bit area
Data bits 1-80

Samples per bit 10
Periods per bit 1

Phase-scew Randomized within timespace of 1 sample

Training options:

Solver adam
Epochs 100

Iterations per epoch 78
Learning rate Constant 0.001

Network Structure:

Accuracy 0.7547
Execution time 3.2751s (for 10000 iterations)

Execution per iteration 3.28 ∗ 10−4s

66

B.5 Positional analysis comparison of different number of
samples per bit

A comparison to 10 samples per bit can be found in Appendix B.1.

Signal information:

Modulation Scheme PSK
Amplitude 50 peak

Noise Levels 0 SNR: approx 14.0 average amplitude , approx 50 peak
Input size 80 bit area
Data bits 1-80

Samples per bit Varies
Periods per bit 1

Phase-scew Randomized within timespace of 1 sample

Training options:

Solver adam
Epochs 100

Iterations per epoch 78
Learning rate Constant 0.001

20 samples per bit

Filter and stride have here been doubled when compared to the 10 samples/bit version in order to
make the two cases as similar as possible for the system. Padding has also been adjusted to be equal
to half the filter size.

Network Structure:

Results:

Accuracy 0.9708
Execution time 0.9526s (for 10000 iterations)

Execution per iteration 0.9526 ∗ 10−4s

67

Same scenario except for the padding at the first convolutional layer being 10 instead
of 20

Accuracy 0.9832
Execution time 0.9153s (for 10000 iterations)

Execution per iteration 0.92 ∗ 10−4s

4 samples per bit

Filter and stride have here been reduces when compared to the 10 samples/bit version in order to
make the two cases as similar as possible for the system. Padding has also been adjusted to be equal
to half the filter size.

Network Structure:

Results:

Accuracy 0.9214
Execution time 0.7916s (for 10000 iterations)

Execution per iteration 0.79 ∗ 10−4s

68

B.6 Signal position comparison of differently sized CNNs

Signal information:

Modulation Scheme PSK
Amplitude 50 peak

Noise Levels 0 SNR: approx 14.0 average amplitude , approx 50 peak
Input size 80 bit area
Data bits 1-80

Samples per bit 20
Periods per bit 1

Phase-scew Randomized within timespace of 1 sample

Training options:

Solver adam
Epochs 100

Iterations per epoch 78
Learning rate Constant 0.001

Unmodified structure with results:

Network Structure:

Results:

Accuracy 0.9739
Execution time 0.8983s (for 10000 iterations)

Execution per iteration 0.90 ∗ 10−4s

4 CNN layers

Network Structure:

Results:

69

Accuracy 0.9847
Execution time 0.9742s (for 10000 iterations)

Execution per iteration 0.97 ∗ 10−4s

2 CNN layers

Network Structure:

Results:

Accuracy 0.9787
Execution time 0.8338s (for 10000 iterations)

Execution per iteration 0.83 ∗ 10−4s

70

Smaller sized convolutional filters

Network Structure:

Results:

Accuracy 0.9799
Execution time 0.9236s (for 10000 iterations)

Execution per iteration 0.92 ∗ 10−4s

Network Structure:

Results for filters with size 1 along 2nd dimension:

Accuracy 0.9912
Execution time 0.9007s (for 10000 iterations)

Execution per iteration 0.90 ∗ 10−4s

71

Larger sized convolutional filters

Network Structure:

Results:

Accuracy 0.9823
Execution time 0.7320s (for 10000 iterations)

Execution per iteration 0.73 ∗ 10−4s

Network Structure:

Results with filter size of 10 along 2nd dimension:

Accuracy 0.7769
Execution time 0.3225s (for 10000 iterations)

Execution per iteration 0.32 ∗ 10−4s

72

Network Structure:

Results with filter size of 4 along 2nd dimension:

Accuracy 0.9626
Execution time 0.8116s (for 10000 iterations)

Execution per iteration 0.81 ∗ 10−4s

Increased number of convolutional filters

Number of filters for each CNN layer is here doubled compared to the unmodified version

Network Structure:

Results:

Accuracy 0.9836
Execution time 1.8991s (for 10000 iterations)

Execution per iteration 1.90 ∗ 10−4s

73

No padding

Network Structure:

Results:

Accuracy 0.9661
Execution time 0.7845s (for 10000 iterations)

Execution per iteration 0.78 ∗ 10−4s

Maximum padding

Maximum padding in this case means that the outermost activations only include a number of inputs
(that are not part of the padding) equal to the size of the stride. With a stride of 2, this means only
the 2 first samples are part of the first position of the filter, and equivalently for the last position.

Results:

Accuracy 0.9875
Execution time 1.0406s (for 10000 iterations)

Execution per iteration 1.04 ∗ 10−4s

74

Less stride

Network Structure:

Results:

Accuracy 0.9799
Execution time 8.6617s (for 10000 iterations)

Execution per iteration 8.66 ∗ 10−4s

Network Structure:

Results:

Accuracy 0.9824
Execution time 1.8013s (for 10000 iterations)

Execution per iteration 1.80 ∗ 10−4s

75

More stride

Network Structure:

Results:

Accuracy 0.9557
Execution time 0.4877s (for 10000 iterations)

Execution per iteration 0.49 ∗ 10−4s

76

B.7 Final structure for positional analysis neural network

For 10 byte region

Network Structure:

Results

Accuracy 0.9912
Execution time 0.9007s (for 10000 iterations)

Execution per iteration 0.90 ∗ 10−4s

A note to make is that this is identical to one of the test-cases shown earlier, using optimization for
stride. Combining this optimization with optimization to padding or number of convolutional layers
did not yield higher accuracy. Increasing the number of filters also did not increase accuracy

For 100 byte region

Network Structure:

77

Results at 0 SNR:

Accuracy 1.0
Execution time 12.2042s (for 10000 iterations)

Execution per iteration 12.0 ∗ 10−4s

Results at -6 SNR:

Accuracy 0.9994
Execution time 12.16812s (for 10000 iterations)

Execution per iteration 12.0 ∗ 10−4s

A point to make here is that due to the data being randomly placed inside the area covered by each
output neuron, the number of corner cases, referring to cases where the starting position is only one
or a few samples from the border between the areas covered by two output neurons, are probably
few in number.

For 1 byte region

Network Structure:

Results at 0 SNR:

Accuracy 0.9918
Execution time 0.7651s (for 10000 iterations)

Execution per iteration 0.96 ∗ 10−4s

78

For 1 bit region

Network Structure:

Results at 0 SNR:

Accuracy 0.7226
Execution time 0.2693s (for 10000 iterations)

Execution per iteration 0.13 ∗ 10−4s

79

Appendix C

Artificial neural network results for
signal length test-cases

C.1 Comparison between the different solvers for analog sig-
nal length analysis

Signal information:

Modulation Scheme ASK, FSK, PSK
Amplitude 50 peak

Noise Levels 0 SNR: approx 14.0 average amplitude , approx 50 peak
Input size 50 bit area
Data bits 0-25

Samples per bit 10
Periods per bit 1

Phase-scew Randomized within timespace of 1 sample

Training options:

Solver sgdm, rmsprop, adam
Epochs 100

Iterations per epoch 101
Learning rate Constant 0.01 (sgdm), Constant 0.001 (rmsprop, adam)

Network Structure:

Analog signal length analysis using SGDM:

ASK

Accuracy 0.3067
Accuracy with max 1 bit wrong 0.7130

Execution time 5.1360s (for 13000 iterations)
Execution per iteration 3.95 ∗ 10−4s

80

FSK

Accuracy 0.6575
Accuracy with max 1 bit wrong 0.9775

Execution time 5.4057s (for 13000 iterations)
Execution per iteration 4.16 ∗ 10−4s

PSK

Accuracy 0.6273
Accuracy with max 1 bit wrong 0.9726

Execution time 5.2802s (for 13000 iterations)
Execution per iteration 4.06 ∗ 10−4s

Analog signal length analysis using RMSProp

ASK

Accuracy 0.3281
Accuracy with max 1 bit wrong 0.7368

Execution time 5.0345s (for 13000 iterations)
Execution per iteration 3.87 ∗ 10−4s

FSK

Accuracy 0.6975
Accuracy with max 1 bit wrong 0.9792

Execution time 4.9742s (for 13000 iterations)
Execution per iteration 3.83 ∗ 10−4s

PSK

Accuracy 0.7399
Accuracy with max 1 bit wrong 0.9848

Execution time 4.9100s (for 13000 iterations)
Execution per iteration 3.78 ∗ 10−4s

Analog signal length comparison using ADAM

ASK

Accuracy 0.3979
Accuracy with max 1 bit wrong 0.7980

Execution time 4.7087s (for 13000 iterations)
Execution per iteration 3.62 ∗ 10−4s

81

FSK

Accuracy 0.7643
Accuracy with max 1 bit wrong 0.9898

Execution time 4.9796s (for 13000 iterations)
Execution per iteration 3.83 ∗ 10−4s

PSK

Accuracy 0.7168
Accuracy with max 1 bit wrong 0.9779

Execution time 5.1230s (for 13000 iterations)
Execution per iteration 3.94 ∗ 10−4s

82

C.2 Signal length comparison of time-data and FFT

The matrix size for time-data: (500,1,1,13000), with 500 instances for each output.

The matrix size for FFT with amplitude and phase: (500,1,2,13000), where first index of 3rd dimen-
sion are absolute values, and 2nd index of 3rd dimension is phase.

The matrix size for FFT with only amplitude: (500,1,1,13000), with 500 instances for each of the
26 outputs.

Training options:

Solver adam
Epochs 100

Iterations per epoch 101
Learning rate Constant 0.001

Modulation Scheme PSK
Amplitude 50 peak

Noise Levels 0 SNR: approx 14.0 average amplitude , approx 50 peak
Input size 50 bit area

Data bit length 0-25
Samples per bit 10
Periods per bit 1

Phase-scew Randomized within timespace of 1 sample

Network Structure for time data and FFT (amplitude only):

83

Network Structure for FFT (amplitude and phase):

PSK time-domain classification results

Accuracy 0.7168
Accuracy with max 1 bit wrong 0.9779

Execution time 5.1230s (for 13000 iterations)
Execution per iteration 3.94 ∗ 10−4s

PSK FFT classification results with amplitude and phase:

Accuracy 0.2731
Accuracy with max 1 bit wrong 0.6601

FFT time 1.2611s
FFT time per iteration 0.97 ∗ 10−4s

Execution time 5.1012s (for 13000 iterations)
Execution per iteration 3.92 ∗ 10−4s

PSK FFT classification results with only amplitude:

Accuracy 0.2725
Accuracy with max 1 bit wrong 0.6592

FFT time 0.2485s
FFT time per iteration 0.19 ∗ 10−4s

Execution time 4.8185s (for 13000 iterations)
Execution per iteration 3.71 ∗ 10−4s

84

C.3 Signal length comparison beetween ASK, FSK, and PSK
modulation scheme

Results for 0SNR can be seen in Appendix C.1.

Signal information:

Modulation Scheme ASK, FSK and PSK (separately)
Amplitude 50 peak

Noise Levels varies
Input size 50 bit area
Data bits 0-25

Samples per bit 10
Periods per bit 1

Phase-scew Randomized within timespace of 1 sample

Training options:

Solver adam
Epochs 100

Iterations per epoch 101
Learning rate Constant 0.001

Network Structure:

6SNR

ASK classification results:

Accuracy 0.7073
Accuracy with max 1 bit wrong 0.9377

Execution time 5.2538s (for 13000 iterations)
Execution per iteration 4.04 ∗ 10−4s

85

FSK classification results:

Accuracy 0.9943
Accuracy with max 1 bit wrong 1.0

Execution time 4.9542s (for 13000 iterations)
Execution per iteration 3.81 ∗ 10−4s

PSK classification results:

Accuracy 0.9923
Accuracy with max 1 bit wrong 0.9999

Execution time 5.1648s (for 13000 iterations)
Execution per iteration 3.97 ∗ 10−4s

3.5NR

ASK classification results:

Accuracy 0.5436
Accuracy with max 1 bit wrong 0.9092

Execution time 4.7313s (for 13000 iterations)
Execution per iteration 4.18 ∗ 10−4s

FSK classification results:

Accuracy 0.9632
Accuracy with max 1 bit wrong 0.9992

Execution time 4.7454s (for 13000 iterations)
Execution per iteration 3.65 ∗ 10−4s

PSK classification results:

Accuracy 0.9771
Accuracy with max 1 bit wrong 1.0

Execution time 4.85233.73s (for 13000 iterations)
Execution per iteration ∗10−4s

86

C.4 Comparison between the CNN and FNN

Signal information:

Modulation Scheme PSK
Amplitude 50 peak

Noise Levels 3.5 SNR: approx 10.0 average amplitude , approx 37 peak
Input size 50 bit area
Data bits 0-25

Samples per bit 10
Periods per bit 1

Phase-scew Randomized within timespace of 1 sample

Training options:

Solver adam
Epochs 100

Iterations per epoch 101
Learning rate Constant 0.001

Network Structure:

Accuracy 0.2163
Accuracy with max 1 bit wrong 0.5585

Execution time 80.8351s (for 13000 iterations)
Execution per iteration 62.18 ∗ 10−4s

87

C.5 Signal length comparison of different number of samples
per bit

A comparison to 10 samples per bit can be found in Appendix C.1.

Signal information:

Modulation Scheme PSK
Amplitude 50 peak

Noise Levels 0 SNR: approx 14.0 average amplitude , approx 50 peak
Input size 50 bit area
Data bits 0-25

Samples per bit varies
Periods per bit 1

Phase-scew Randomized within timespace of 1 sample

Training options:

Solver adam
Epochs 100

Iterations per epoch 101
Learning rate Constant 0.001

Network Structure:

Signal length with 20 samples per bit

Filter of the first convolutional layer has been doubled in length. The stride and padding for the first
convolutional layers have also been doubled. This is done to create a neural network that should be
as equivalent as possible to the 10 samples/bit version.

Network Structure:

88

Accuracy 0.9009
Accuracy with max 1 bit wrong 0.9985

Execution time 6.1875s (for 13000 iterations)
Execution per iteration 4.76 ∗ 10−4s

Signal length with 4 samples per bit

The fiter for the first convolutional layer has been reduced to 40. The stride and padding for the
first convolutional layer have also been reduced when compared to the 10 samples/bit version. This
is in an attempt to create a network that is as similar as possible to the 10 samples/bit version.

Network Structure:

89

Accuracy 0.3451
Accuracy with max 1 bit wrong 0.7955

Execution time 5.2753s (for 13000 iterations)
Execution per iteration 4.08 ∗ 10−4s

90

C.6 Signal length comparison of differently sized CNNs

Signal information:

Modulation Scheme PSK
Amplitude 50 peak

Noise Levels 0 SNR: approx 14.0 average amplitude , approx 50 peak
Input size 50 bit area
Data bits 0-25

Samples per bit 20
Periods per bit 1

Phase-scew Randomized within timespace of 1 sample

Training options:

Solver adam
Epochs 100

Iterations per epoch 101
Learning rate Constant 0.001

CNN with 3 convolutional layers

Network Structure:

Accuracy 0.6892
Accuracy with max 1 bit wrong 0.9727

Execution time 3.5636s (for 13000 iterations)
Execution per iteration 2.74 ∗ 10−4s

CNN with 5 convolutional layers

Network Structure:

91

Accuracy 0.9045
Accuracy with max 1 bit wrong 0.9887

Execution time 9.8385s (for 13000 iterations)
Execution per iteration 7.57 ∗ 10−4s

92

CNN with different amount of padding

No padding

Accuracy 0.9125
Accuracy with max 1 bit wrong 0.9961

Execution time 7.2252s (for 13000 iterations)
Execution per iteration 5.56 ∗ 10−4s

Large amounts of padding

The padding introduced in this iteration is equal to half the filter size at each convolutional layer.

Accuracy 0.9142
Accuracy with max 1 bit wrong 0.9925

Execution time 8.6235s (for 13000 iterations)
Execution per iteration 6.63 ∗ 10−4s

93

CNN with different amounts of stride

CNN with stride of first convolutional layer minimized

Accuracy 0.5751
Accuracy with max 1 bit wrong 0.8755

Execution time 6.2462s (for 13000 iterations)
Execution per iteration 4.81 ∗ 10−4s

Stride increased

Accuracy 0.7018
Accuracy with max 1 bit wrong 0.9801

Execution time 1.6127s (for 13000 iterations)
Execution per iteration 1.24 ∗ 10−4s

Stride and number of filters increased

94

Accuracy 0.6583
Accuracy with max 1 bit wrong 0.9742

Execution time 2.2124s (for 13000 iterations)
Execution per iteration 1.70 ∗ 10−4s

95

CNN with different filter sizes

Filter size [20 1] for first convolutional layer, and 25 for second convolutional layer

Accuracy 0.7241
Accuracy with max 1 bit wrong 0.9521

Execution time 5.0418s (for 13000 iterations)
Execution per iteration 3.88 ∗ 10−4s

Filter size [400 1] for first convolutional layer

Accuracy 0.8027
Accuracy with max 1 bit wrong 0.9890

Execution time 4.3073s (for 13000 iterations)
Execution per iteration 3.31 ∗ 10−4s

96

	Introduction
	Background and motivation
	Contribution
	Structure of thesis

	Background
	UVM based verification
	SPICE, Analog Mixed Signals and Real Value Modeling for verification purposes
	Machine learning and neural networks
	Machine learning
	Artificial neural networks
	Training a neural network
	Neural network layers

	Related Work
	Modulation recognition in cognitive radio using artificial neural networks
	Biologically Inspired Radio Signal Feature Extraction with Sparse Denoising Autoencoders
	Automatic recognition of both inter and intra classes of digital mdoualted signals using artificial neural network
	Algorithms for Automatic Modulation Recognition of Communication Signals

	Voice recognition
	FINN

	Architecture and Test Development
	RVM features, parameters and test-cases
	Generation of training and classification data
	Neural network structure, training and validation
	RVM structural classification
	RVM positional classification
	RVM length classification

	Analysis
	Comparison between the SGDM, RMSProp and ADAM solvers
	Comparison between time-domain and FFT with and without phase-component
	Comparison between the use of the ASK (OOK), FSK, and PSK modulation schemes
	Comparison between CNN and FNN
	Neural network for structural analysis of RVM signal
	Comparison of sampling rates
	Comparison of differently sized CNNs
	CNN performance for structural classification

	Neural network for positional analysis of RVM signal
	Comparison of sampling rates
	Comparison of differently sized CNNs
	CNN performance for positional classification

	Neural network for signal length analysis of RVM signal
	Comparison of sampling rates
	Comparison of differently sized CNNs for length classification
	CNN performance for length classification

	Discussion
	Validity of generated data
	Accuracy and size of ANNs
	Time-domain versus frequency-domain
	Results for the classification problems
	Possible improvements
	Additional features

	Conclusion
	Future work

	Artificial neural network results for structural test-cases
	Comparison between the different solvers for analog structural feature analysis
	Structural comparison of time-data and FFT
	ASK, FSK and PSK comparison at different SNR for structural analysis
	Comparison compared to fully connected neural networks
	Structural analysis for different number of samples per bit
	Structural comparison of differently sized CNNs

	Artificial neural network results for positional test-cases
	Comparison between the different solvers for analog positional analysis
	Positional comparison of time-data and FFT
	ASK, FSK and PSK comparison at different SNR for positional analysis
	Comparison between the CNN and FNN
	Positional analysis comparison of different number of samples per bit
	Signal position comparison of differently sized CNNs
	Final structure for positional analysis neural network

	Artificial neural network results for signal length test-cases
	Comparison between the different solvers for analog signal length analysis
	Signal length comparison of time-data and FFT
	Signal length comparison beetween ASK, FSK, and PSK modulation scheme
	Comparison between the CNN and FNN
	Signal length comparison of different number of samples per bit
	Signal length comparison of differently sized CNNs

