@NTNU

Norwegian University of
Science and Technology

Neural Network Based Characterization
and Feature Extraction from Analogue
Radio Signals for Verification Purposes

Morten Olsen Lykkedrang

Master of Science in Electronics
Submission date: June 2018
Supervisor: Kjetil Svarstad, IES

Norwegian University of Science and Technology
Department of Electronic Systems

Sammendrag

Mixed-signal applikasjoner er blant de raskest voksende markeds-segmentene innen elektronikk- og
halvleder-industri, og har foresaket at mange silisium produsenter hare mixed-signal designs som
en av sine primare fokusomrader. Mange SoC design i dag er derfor mixed-signal. En eskalerende
kompleksitet i elektroniske kretser har dermed fgrt til gkte utfordringer nar det kommer til mixed-
signal SoC verifikasjon[I].

Dene avhandlingen utforsker bruken av kunstige nevrale nettverk til & klassifisere strukturelle trekk,
samt position og signal-lengde av RVM radio signaler i stoyfylte omgivelser. Trening og testing av
disse nevrale nettverkene har blitt gjort ved help av MatLab R2018a, hvor de nevrale nettverkene har
blitt utviklet ved hjelp av network verktgykassen som og er en del av MatLab R2018a. Nettverkene
var testet bade med a bruke SGDM, RMSProp og ADAM algoritmene under treningsprocessen,
samt tatt i bruk inngangsdata bade i tids-domenet og frekvens-domenet.

Inngangsdataene var utsatt for hvit Gaussian stgy, hvor stgynivaet i dB er lagt i forhold til en sig-
nalkraft lik 25. Dette ga stgy-topper rundt 50-55 for 0S5, s /N R, hvorav amplituden pa radio signalene
er satt til 50. Den strukturelle klassifikasjonen oppnadde en ngyaktighet pa 0.9623 ved 0S,.;NR,
med en klassifiseringstid pa 34 * 10~%*s ved bruk av CPU. En mindre versjon av CNN arkitekturen
oppnadde en ngyaktighet pa 0.9529 med en klassifiseringstid pa 9.92 * 10~%. Klassifikasjonen av
signalets posisjon var gjort gjennom en heirarkisk arkitektur som hadde en total klassifiseringstid
pa 13.99%10~%s. Denne tiden inkluderer ikke tiden som kreves for & flytte data mellom dem. Denne
heirarkiske arkitekturen oppnadde en ngyaktighet pa 0.982 for a klassifisere riktig 1bit omrade for
start posisjon, med en 0.7104 ngyaktighet for a klassifisere riktig sample. Lengde-klassifiseringen
oppnadde en ngyaktighet pa 0.9359, med 0.9970 for & enten klassifisere riktig eller kun vaere 1 bit
fra riktig. Klassifiseringstiden for denne CNN arkitekturen var & 4.49 x 10~*s per iterasjon pa en
CPU. Disse resultatene er alle fra bruk av data fra tids-domenet, som viste en hgyere ngyaktighet
en bruk av frekvens-domenet for alle testene.

Abstract

Mixed-signal applications are among the fastest growing market segments in the electronics and
semiconductor industry, and have caused many silicon manufacturers to have mixed-signal designs
as one of their main focuses. Most SoC designs today are therefore mixed signal. With an esca-
lation in circuitry complexity, there are increasing challenges when it comes to mixed-signal SoC
verification[I].

This thesis explores the use of artificial neural networks for the classification of structural features,
position, and signal length of RVM radio signals in a noisy environment. The training and testing
data for the artificial neural networks where generated in MatLab R2018a, with the neural networks
themselves being developed using MatLab’s network toolbox. The networks were tested using the
SGDM, RMSProp and ADAM solver algorithms, using both time-domain and frequency-domain
input data.

The added white Gaussian noise was set based on a reference signal power of 25, which placed the
noise peaks for the test-scenarios around 50-55. The amplitudes for the actual signals were set to
50 throughout all test scenarios. The structural classification achieved an accuracy of 0.9623, with
a classification time of 34 * 10~%s on a CPU. A smaller version of the CNN achieved an accuracy of
0.9529, with a classification time of 9.92 x 10~%s per classification. The positional classification, in a
similar environment, managed to pinpoint the position down to a 1 bit region with an accuracy of
0.982, with an accuracy of 0.7104 of classifying the exact sample number. This solution followed a
hierarchical approach, using 4 CNNs and a total of 13.99 x 10~*s per classification, not counting the
time spent transferring data between the networks. The length classification achieved an accuracy
of 0.9359, with a 0.9970 chance of being either accurate or 1 bit off. The classification time for this
CNN was 4.49 x 10~%s for each iteration. All of these results are taken using time-domain input
data, which outperformed frequency-domain input-data throughout all test scenarios.

ii

Preface

This report is the result of the Master’s thesis conducted during the spring of 2018, concluding a
Master of Science degree in Electronics, with a specialization in Embedded Systems. The report
is submitted to the Department of Electronic Systems at the Norwegian University of Science and
Technology (NTNU).

I would like to thank professor Kjetil Svarstad from the Department of Electronic Systems at NTNU,
for valuable support, guidance, and feedback throughout the development process. I would also like
to thank my friends and family for their support during both this project, as well as throughout the
years spent on the degree.

iii

Contents

(1__Introduction| 1
[1.1 Background and motivation| L Lo 1
L2 Contribution] o 1
[LL3 Structure of thesislo 2

|2 Background)| 3
2.1 UVM based verificationl o 3
2.2 SPICE, Analog Mixed Signals and Real Value Modeling for verification purposes| . . 3
2.3 Machine learning and neural networks| L. 4

2.3.1 Machine learning|o 4
232 Artificial neural metworks 4
2.3.3 Training a neural network| oo oo oL 5
2.3.4 Neural network layers| oo 6

B_Related Workl 9

3.1 Modulation recognition in cognitive radio using artificial neural networks| 9
13.1.1 Biologically Inspired Radio Signal Feature Extraction with Sparse Denoising |

[Autoencodersl e e 9
13.1.2 Automatic recognition of both inter and intra classes of digital mdoualted |

signals using artificial neural networkl. oo 10

13.1.3 Algorithms for Automatic Modulation Recognition of Communication Signals| 10

8.2 Voice recognition| 10

iv

[4 Architecture and Test Development| 12

4.1 RVM features, parameters and test-cases|. 12
4.2 Generation of training and classification data] oL, 13
4.3 Neural network structure, training and validation| 15
4.4 RVM structural classificationl oo oo 16
4.5 RVM positional classification| oo oL 18
4.6 RVM length classification| 19
5 Analysis 21
b.1 Comparison between the SGDM, RMSProp and ADAM solvers| 21
p.2 Comparison between time-domain and FE'T with and without phase-component|. . . 22
[5.3 Comparison between the use of the ASK (OOK), FSK, and PSK modulation schemes| 23
b.4 Comparison between CNN and FNN| 24
p.5 Neural network for structural analysis of RVM signal| 25
p.5.1 Comparison of sampling rates|. oL, 25
5.5.2 Comparison of differently sized CNNs| 25
b.5.3 CNN performance for structural classification| 27

9.6 Neural network for positional analysis of RVM signal| 28
5.6.1 Comparison of sampling rates|. 28
5.6.2 Comparison of differently sized CNNs| 29
9.6.3 CNN performance for positional classification| 29

5.7 Neural network for signal length analysis of RVM signal| 31
5.7.1 Comparison of sampling rates|. 31
15.7.2 Comparison of differently sized CNNs for length classification| 31
p.7.3 CNN performance for length classification| 32
[6_Discussionl 34
6.1 Validity of generated data] 34
6.2 Accuracy and size of ANNs| o 35

6.3 Time-domain versus frequency-domain|

6.4 Results for the classification problems|

6.5 Possible improvements| Lo

IA.1 Comparison between the difterent solvers for analog structural feature analysis|

|A.2 Structural comparison of time-data and FF'T| 0.

1A.3 ASK, FSK and PSK comparison at different SNR for structural analysis[.

|A.4 Comparison compared to tully connected neural networks|

|A.5 Structural analysis for ditferent number of samples per bit|

IA.6 Structural comparison of differently sized CNNs|.

Artificial neural network results for positional test-cases|

IB.1 Comparison between the difterent solvers for analog positional analysis|.

IB.2 Positional comparison of time-data and FF1}|00 0000000

IB.3 ASK, FSK and PSK comparison at different SNR for positional analysis|

IB.4 Comparison between the CNN and FNN|.

IB.5 Positional analysis comparison of different number of samples per bitf

IB.6 Signal position comparison of differently sized CNNs|

IB.7 Final structure for positional analysis neural network{.

Artificial neural network results for signal length test-cases|

IC.1 Comparison between the different solvers for analog signal length analysis|

|C.2 Signal length comparison of time-data and FF1}.

|C.3 Signal length comparison beetween ASK, FSK, and PSK modulation scheme|

|C.4 Comparison between the CNN and FNN|.

vi

38

39

42

45

47

49

51

53

60

60

62

64

66

67

69

7

80

80

83

85

|C.5 Signal length comparison of different number of samples per bit|

|C.6 Signal length comparison of differently sized CNNg|

vii

List of Figures

[2.1 Example of convolutional filter with stride [2 2]| 7
4.1 Visual representation of a RVM signal with different levels of white Gaussian noise |
[addedl e 15
4.2 MatLab2018 syntax for specifying neural network layers| 16
4.3 Example of CNN structure] L 16
.1 CNN used as a basis tfor parameter alterations|. 27
b.2 High accuracy CNN for structural classification| 27
b.3 CNN used as a basis for parameter alterations for positional classification| 30
b.4 CNN used as basis for parameter alterations for length classification| 32
5.5 CNN optimized for accuracy for lengths classification|. 33

viii

List of Tables

.1 Comparison between the SGDM, RMSProp and ADAM solvers| 21
5.2 Comparison of time-domain input parameters versus frequency domain with and with- |
| out phase component|. L 22
9.3 Execution time of FF'T's compared to neural network classification timef 22
b.4 Comparison between ASK, FSK, and PSK modulation schemes for structural and |
| positional classification|. L Lo Lo 23
5.5 Comparison between ASK, FSK, and PSK modulation schemes for length classification| 23
5.6 Comparison of accuracy and execution time for CNN and FNN| 24
5.7 Size and operation comparison between CNNs and FNNs| 24
5.8 Accuracy and classification time for different number of samples per bit| 25
5.9 Details for CNNs with 2-5 convolutional layers| 26
19.10 Accuracy for each output neuron for structural classification tfor neural networn in |
| Figure[5.2] e 28
[5.11 Accuracy and classification time for structural classification at 05y /N It and 20 sam- |
| ples per bit| L 28
b.12 Accuracy and classification time for difterent number of samples per bit for positional |
| classification at 05,y NR| 29
15.13 Details for CNNs with CNNs with 2-4 convolutional layers at OSNR] 29
5.14 Performance and details for CNNs for positional classification. | 31
b.15 Accuracy and classification time for different number of samples per bit for length
[classification|. oL 31
5.16 Details for CNNs with 3-5 convolutional layers for length classification| 31

5.17 Accuracy and classification time for length classification at 0SNR and 20 samples per

[Ditl . . .

ix

Abbreviations

ADAM
Al
ALU
AMC
AMS
ANN
ASK
BNN
CDhV
CPU
DBPSK
DFT
DNN
DQPSK
DUV
EoF
FFT
FPGA
FSK
GFSK
GMSK
GPU
HDL
IC
IP
1/Q
MFCC
OOK
PSK
ReLU
RMSProp
RNM
RVM
SDR
SGDM
SoC
SoF
SSDA

Adaptive Moment Estimation
Artificial Intelligence
Arithmetic Logic Unit
Automatic Modulation Classification
Analog Mixed Signal
Artificial Neural Network
Amplitude Shift Keying
Binary Neural network
Coverage Driven Verification
Central processing Unit
Differential Binary Phase Shift Keying
Discrete Fourier Transform
Deep Neural Network
Differential Quadrature Phase Shift Keying
Device Under Verification
End of Frame
Fast Fourier Transform
Field Programmable Gate Array
Frequency Shift Keying
Gaussian Frequency Shift Keying
Gaussian Minimum Shift Keying
Graphics Processing Unit
Hardware Descriptive Language
Integrated Circuit
Intellectual Property
In-phase and Quadrature
Mel-Frequency Cepstrum Coefficients
On-Off Keying
Phase Shift Keying
Rectified Linear Unit
Root Mean Square Propagation
Real Number Modeling
Real Value Modeling
Software Defined Radio
Stochastic Gradient Descent with Momentum
System on Chip
Start of Frame
Stacked Sparse Denoising Autoencoders

Chapter 1

Introduction

1.1 Background and motivation

Mixed-signal applications are among the fastest growing market segments in the electronics and
semiconductor industry, and has caused many silicon manufacturers to have mixed-signal designs as
one of their main focuses[I]. Most system-on-chip (SoC) designs today are therefore mixed-signal.
With a continuous escalation in circuit complexity, there are increasing challenges when it comes to
mixed-signal SoC verification. These include both incomplete SoC-level and system level verification,
as well as uncertainties in coverage. A report [1] by Cadence Design Systems claims that, according
to industry estimates, over 60% pf SoC design re-spins at 45nm and below are due to mixed-signal
errors, with functional verification for digital ICs now taking up 70% of the logic design phase.
Adding analog and mixed-signal IP makes this task even more complex, resulting in verification and
simulation never being fast enough.

As described in the project assignment, the stimuli of the circuit is dynamically decided by a con-
troller based on on line monitoring of the response from the Design Under Verification (DUV) in
UVM based verification. While this works well for the digital domain, it is difficult to adapt for
the analogue domain such as radio signals. Realistic in Spice and analog mixed signal (AMS) are
typically too slow for this purpose, and difficult to integrate in UVM. Instead. real value modeling
(RVM) may be a relevant alternative for verification of digital and analog mixed behavior. The
challenge then becomes to extract relevant features from the real value signal which can be used for
monitoring and controlling the testbed.

1.2 Contribution

This thesis aims to examine the use of artificial neural networks (ANNs) to extract relevant features
from a RVM signal as a potential step in the UVM verification process. As ANNs have been utilized
in areas, such as image classification and voice recognition, the general strategy has been to look at
the solutions used for those domains and utilize these as a basis for a solution regarding RVM signals.
The assessment of each solution will primarily be based upon the solution’s accuracy, complexity in
terms of memory size and operation count, as well as the execution time.

Relevant features to look for in mixed-signal radio circuitry may range from anywhere between
correct signal power, frequency, rise and fall time, to more digitally leaned characteristics such as
delay, and features contained in the signal’s structure. In this thesis, it has been chosen to examine
the extraction of structural features, delay in form of the sample position equating to the start of a
signal, as well as signal length. The RVM signals will be inserted into the artificial neural networks
as either raw time-domain data, or as frequency domain-data with or without the phase component.
A number of fully connected and convolutional architectures will be explored in order to find a
suitable neural network architecture.

In more detail, the features that will be looked at are:

e Signal structure - This part primarily concerns with a ANNs ability to recognize certain pat-
terns or parts of a RVM signal. It concerns the existence of the correct header sequence and the
existence of a data payload. It also concerns with determining the existence of the package’s
end point, or EoF, as well as the start of frame (SoF) delimiter placed between the header
and the data payload. The checks for the SoF delimiter also serves as a test to see the ANNs
ability to recognize the existence of identifiers and similar small changes within a RVM signal.

e Signal start positions - One aspect of the verification process that’s often important to verify
is the verification of correct delay at different points of the design. Since in this case the neural
network will be unaware of the delay of the initial sampling data, it will instead give out the
position of where the it believes the first data sample resides. This should allow the rest of
the system to determine the actual delay. The distance between the start and end point of the
signal may also give information regarding correct length or frequency.

e Signal length - In some ways connected to the classification of signal position, the length of
the RVM signal may help determine whether or not all parts of the desired signal are present,
or whether or not the design output is of the desired output frequency when compared to the
sampling frequency.

All RVM signals will be expected to exist in a noisy environment, and will be subjected to white
Gaussian noise before entering the artificial neural network.

1.3 Structure of thesis

Chapter [2} Background elaborates on the use analogue and mixed-signals in the verification process,
including the use of RVM. The chapter also introduces key concepts for ANNs and its components.
Chapter [3} Related work will look at earlier studies and publications within the field of ANNs and
radio signal feature extraction. Chapter [4f Architecture and test development provides information
regarding the different test cases, including how the systems were built and how data for them
were generated. Chapter [5f Analysis contains the resulting data generated from the architectures
discussed in Chapter [as well including comparisons for their performance. Chapter [6} Discussion
discusses the the results and comparisons described in Chapter [f] as well as potential strengths
and weaknesses for the different solutions, as well as for the development process. The thesis
concludes with Chapter [7} Conclusion, which proposes some thoughts and possible routes for future
development within the same field. Further details regarding the neural networks explored in this
thesis can also be found in the appendices.

Chapter 2

Background

2.1 UVM based verification

The Universal Verification methodology (UVM) is a complete methodology that codifies the best
practices for efficient and exhaustive verification [2], with the goal of helping developers find more
bugs earlier in the design process. UVM aims to develop reusable verification components, and is
targeted to both verify small designs and large-gate count IP-based system on chip (SoC) designs.
UVM is an open sourced format primarily based on the Open Verification Methodology (OVM)
library, and has been tested to work on all major commercial simulators[2].

UVM provides the ability to cleanly partition a verification environment into a set of specific compo-
nents. It provides classes and infrastructure to enable fine-grain control for sequential data stimulus
generation, both for the module and system level, and provides built-in stimulus generation, which
can be customized. The UVM base classes are made to provide automation and help streamline
usage, allowing the creation of hierarchical reusable environments[2].

UVM is based around providing coverage driven verification (CDV), which combines automatic test
generation, self-checking testbenches, and coverage metrics to reduce time spent verifying a design.
A full description of UVM and its classes can be found in Universal Verification Methodology (UVM)
1.2 User’s Guide[3] and Universal Verification Methodology (UVM) 1.2 Class Referenceld] released
by accellera Systems Initiative.

2.2 SPICE, Analog Mixed Signals and Real Value Modeling
for verification purposes

Mixed-signal applications are today one of the fastest growing segments in the electronics and semi-
conductor industry. Electronic equipment is both expected to do more, and to have a wider specter
of operation. Growth opportunities in a wide array of electronic equipment has probed many silicon
vendors into refocusing their business on RF, high-performance analog, and mixed-signal designs.
Due to this trend, most SoC designs today are mixed signal, with all, or close to all, being mixed
signal at advanced process nodes in the near future[l]. [I] states that, according to industry esti-

mates, over 60% of SoC design re-spins at 45nm and below are due to mixed-signal errors. Many of
these re-spins are caused by commonplace, avoidable errors such as inverted or disconnected signals.

Mixed-signal verification is still primarily done by SPICE simulations, where [5], [6] and [I] all agree
that SPICE based verification is too slow to the point of chip-level simulations being impractical.
Because of this, Analog Mixed-Signal (AMS) and Real Value/Number Modeling (RVM/RNM) tech-
niques have been introduced in order to enhance simulation speed. [5] illustrates that UVM is suited
for both AMS and RVM simulations. While AMS and RVM models offer progressively higher per-
formance, it is worth noting that they give an extra cost when it comes to developing them [5]. [6]
offers a comparison for the different methods. As stated, the virtual prototypes based on purely
digital models and model description give the highest verification speed but may not offer an effi-
cient way to capture analog behavior, which is often an integral part of the embedded system. It is
also worth noting that while simulations that are purely digital are faster than real value modeling
(RVM), they can only represent an analog signal as a single logic value, which may only be sufficient
for connectivity checks[l]. RVM gains an advantage over AMS as it does not require an analog
solver [5]. Instead, RNVM utilizes discrete floating-point real numbers in order to enable the user
to describe an analog block as a signal-flow model, which can be simulated in a digital solver at
near-digital simulation speeds[I]. While this restricts RVM to a signal flow approach, it means the
issue of analog convergence becomes less of a problem due to not requiring an analog solver.

2.3 Machine learning and neural networks

2.3.1 Machine learning

Artificial neural networks (ANNs) are one type of machine learning which has seen much practical
value in the field of pattern recognition. Artificial intelligence (AI), and with it machine learning,
is today a thriving field with numerous active research topics[7]. Early implementations primarily
concerned solving problems that could be described by a list of formal, mathematical rules. In
contrast, the challenges for AI and machine learning nowadays often entail problems that may be
simple for a human to solve, yet difficult to describe formally. This includes problems like recognizing
spoken words or recognizing images. While these tasks are often trivial for a human being to solve,
yet hard to describe to a computer. Al aims to solve this by allowing computers to learn from
previous experiences. As defined by Tom M. Mitchell in [8] ”The field of machine learning is
concerned with the question of how to construct computer programs that automatically improve with
experience”. ANNs are one rapidly growing subset of Als, that aims to solve these problems through
mimicking the human brain by creating neural structures to handle decision-making

2.3.2 Artificial neural networks

Perhaps the easiest way to describe how a ANN works if by describing a type of artificial neuron
called a perceptron. Perceptrons were developed in the 1950s and 1960s by the scientist Frank
Rosenblatt, inspired by earlier work by Warren McCulloch and Walter Pitts[d]. A perceptron takes
a number of binary inputs z and produces a single binary output y, based on the values of said
inputs. Each input has an associated weight w, which determines the importance each input has to
to the output. The output value for a perceptron is determined by whether the weighted sum of the

inputs are above a threshold value, as described in Equation [2.1

output = 0, %f OZJ- wjx; < threshold 2.1)
1, if 03, wjz; > threshold

Modern ANNs are in many ways similar to Rosenblatt’s perceptrons. However, instead of using
threshold values, biases are introduced. A bias can be interpreted as a measure regarding how easily
one can turn a specific perceptron’s output to '1’. An activation function is also introduced, who’s
purpose is to make sure small changes made to weights and biases only cause a small change to the
network’s output. One additional change these have when compared to perceptrons is that outputs
are no longer limited to the binary values '0’ and '1’, but can instead take any value between 0 and
1[9). The form the activation function takes depends on the type of neuron, with a common type
being the sigmoid function. The new definition for this can be seen in Equation with weights
w;, inputs z; and bias b. The activation function for the sigmoid neuron can be seen in Equation
[2:3] where z in this case equates to Equation 2.2

y = fZ(me:ci +b) (2.2)
1
o= gy (2.3)

The neurons that constitute to making a neural network are set up in layers. The first of these
layers is commonly referred to as the input layer, with the last layer commonly being referred to as
the output layer. The layers in between are called hidden layers. The number of hidden layers, the
number of neurons they contain, as well as how these neurons are connected to both the previous
and the following layers depends on the type of layer in question. These layers will be explained
more in detail in Chapter Neural networks where all layer inputs derive from the previous
layer are labeled as feedforward networks, with networks that allow a cyclic form being labeled as
recurrent neural networks. This thesis will only focus on the feedforward networks[9].

The performance of convolutional neural networks (CNNs) in particular have improved significantly
in recent years, to the point where they now outperform other visual recognition algorithms, as well
as human accuracy on certain problems[10].

2.3.3 Training a neural network

The training of a neural network involves an optimization process of the network’s parameters,
such as weights and biases, in a process that essentially trains the network to recognize the desired
parameters through the correct output neuron.

As described in [I1], in order to train a neural network with a set of input vectors x,, where n =
1,...N, together with a corresponding set of target vectors t,,, one must minimize the error function
shown in Equation

N
Bw) = 3 3 lyn w) — ta] (24)

An algorithm is employed in order to minimize the error function. The primary objective of this
function is to alter the values of the network’s parameters, particularly weights and biases, by
updating them with small steps. Algorithms that handle this operation include Stochastic Gradient
Descent (SGD), alternatively Stochastic Gradient Descent with Momentum (SGDM), root mean
square propagation (RMSProp), and adaptive moment estimation (ADAM)[12] . The equations for
these algorithms can be seen in Equation (SGDM), (RMSProp) and (ADAM)[13].

E(0) is for these cases the loss/error function, with VE(6) being its gradient. « acts as the learning
rate, 6 as the parameter vector, with ¢ being the iteration number. In addition, SGDM utilizes the
~v parameter, which determines the contribution of the previous gradient, and is specified before
training starts. RMSProp and ADAM utilizes decay rates, notated as 5, and (o, that are also
specified before training starts. € is a small constant added to avoid division by zero [13].

9L+1 =0, — avE(eL) + 'Y(QL - eiota—l) (25)
_ ,aVE(@,)

0L+1 - GLW (26)

9L+1 =0, — \/%mﬁi B (27)

m, = ﬁlmb—l + (1 - BI)VE(GL) (28)

v, = Bavi—1 + (1= 52)[VE(8,))? (2.9)

An algorithm known as the backpropagation algorithm is responsible for computing the gradient
of the cost/loss function. While this will not be explained in detail here, the essence of it entails
first doing a forward pass using an input vector x,, to find the activations for all the neurons. The
error values on the outputs are then propagated backwards through the network, which are used to
calculate the gradients and perform updates[II][9]. The number of times the training vectors are
used once to update the network’s weights is referred to as an epoch.

2.3.4 Neural network layers

As previously mentioned, a neural network consists of a number of layers where both the method for
how they connect to the previous layer, as well as how they use their input parameters, depends on
the type of layer. This section will describe how some of these layers operate. Further information
regarding each layer, and ANNs in general, can be found in [I4] and [I5].

The first of these layers is the convolutional layer, which is the core building block for a CNN. The
convolutional layer operates by having one or more filters move along the layer’s input data, handing
one section of the data at the time. Each filter has a number of weights equal to the product of the
filter’s dimensions, as well as a single bias. These values used for the weights and the bias remains
the same while the filter traverses the layer’s inputs. The important parameters for a convolutional
layer are the following:

e The number of filters, with each filter having its own weights and bias.

e The dimensions of these filters.
e The filters’ stride, which refers to the step size moved between each activation.

e The padding, which is rows or columns of zeroes added to the borders of the inputs

Each filter operates independently from the others, and produces its own set of neurons to be used
by the next layer in the neural network. The primary purpose of adding padding to the layer’s input
is to increase the significance of the input neurons located near the edges and corners of the previous
layer. Convolutional filters are generally two-dimensional, meaning the number of weights scales
with the number of channels (the 3rd-dimension) of the previous layer. As an example, should
a convolutional filter have the dimensions [3 3|, with the previous layer having 4 channels, the
convolutional filter will in total have 3x3x4 weights, and create a single output for each activation
in the height and width dimensions. A simple example of how the convolutional filter moves can be
seen in Figure [{1]

X(L1)*w(L1) |X(2.2)*w(2,2) [X(3,0)*w(3,1) |x(4,1) X(5.1) X(L1) X(2,1) X3, wiL1) |[X(4,0)* wi2,1) [X(5,1)*w(2.1)
X[1,2)*w (1,2} [X(2,2)*w(2,2) [X(3,2)*w(3,2} [x(4,2) X(5,2) X(1,2) X(2,2) X(3,2)* wi1,2) |X(4,2)*wi2,2) [X(5,2)*wi3.2)
X(1,3)*w(1,3) [X(2,3)7w(2,3) [X(3,3)"w(3,3) [x(4.,3) X(5,3) X(1,3) X(2,3) X(3,3)*w(1,3) |X(4,3)*w(2,3) |X(5,3)*w(3.3)
X(1,4) X(2,4) X(3,4) X(4,4) X(5.4) X(14) X(2,4) X(3.4) X(4,4) X(5.4)
X[L5) X(2,5) X(3,5) X(4.5) X(5,5) X(L5) X(2,5) X(3,5) X(4,5) X(5,5)
(a) Position 1 (b) Position 2
X(1,1) X(2,1) X(3,1) X(2,1) X(5,1) X(11) X(2,1) X(3,1) X(4,1) X(5,1)
X(1,2) X(2,2) X(3,2) X(2,2) %(5,2) X(1,2) *(2,2) X(3,2) X(4,2) X(5,2)
X(L,3)*wiL,1) [X(2.3) w(2,2) [x(2.3)*w(z.1) [x(4,3) %(5,3) X(L3) %(2,3) X(2,3) w(L 1) [X(4,2) w(2,1) [X(5,3)*w(2.1)
X(L4)*wiL,2) [X(2,4)*w(2,2) [x(3.4)*w(2.2) [x(4,4) X(5.4) X(L4) %(2,4) X(2,4) w(L2) [X(4,4)*w(2,2) |X(5,4)*w(3.2)
X(1,5)*wiL3) [X(2.5)*w(2.3) [x(2.5)*w(z.3) [x(4,5) %(5,5) X(L5) %(2,5) X(2,5)*w(L3) [X(4,5) w(2,3) |X(5,5)*w(2.3)
(c) Position 3 (d) Position 4

Figure 2.1: Example of convolutional filter with stride [2 2]

Another common layer type, and perhaps the easiest to understand, is the fully connected layer. As
the name implies, each of the N neurons in a fully connected layer are directly connected to the M
neurons in the previous layer. Each of these N neurons have a unique weight for each input in M,
as well as having its own bias. This means for neural networks with large layers, a fully connected
layer will require enormous amounts computations as well as physical memory.

The rectified linear unit are usually placed after either a convolutional or batch normalization layer.
It performs a threshold operation to each neuron, setting any input value that is less than zero to
zero, as can be seen in Equation [2.10[14].

0, ifz<O
z, ifx>=0

fla) = (2.10)

The batch normalization layer is commonly placed between convolutional layers and rectified linear
unit layers. The batch normalization layer aim to normalize the activations and gradients that
propagate though a network, in order to make network training into an easier optimization problem
[14][16]. The layer works by subtracting the mean pp of each mini-batch, and dividing it by the
mini-batch’s standard deviation 0%. The inputs are then scaled by a factor v and shifted by 3. An
€ parameter is also added for stability. The formula for the batch normalization layer can be seen in

Equation v and # are trained variables, with up and 0% being replaced with values that apply
the the entire training set, instead of just one mini-batch, after network training has completed.

T;—HUB

VoL +e

+ (2.11)

xXr; =

Chapter 3

Related Work

This chapter will present some recent works that are of interest when it comes to utilizing artificial
neural networks to extract features from a RVM signal. While were no articles for using ANNs to
extract features from a radio signal utilizing RVM for verification purposes, there were still papers
that can be considered relevant. Section entails different approaches for automatic modulation
classification (AMC) of radio signals and software-defined radio (SDR). Section touches briefly
on the use of ANNS in voice recognition. While not directly related to radio signals, both instances
entails using a stream of floating point values representing amplitude values. Section briefly
touches on the subject of binary neural networks (BNNs)

3.1 Modulation recognition in cognitive radio using artificial
neural networks

3.1.1 Biologically Inspired Radio Signal Feature Extraction with Sparse
Denoising Autoencoders

Automatic modulation classification (AMC) has become an important task for communication sys-
tems in the later years, with the challenge being when signal features and precise models for gen-
erating each modulation may be unknown[I7]. [I7] utilizes in-phase and quadrature (I/Q) signals
acquired together with stacked sparse denoising autoencoders (SSDAs) to generate features, and
then use those features to perform automatic modulation classification. Using this method, they
managed to achieve > 99% correct classification at 7.5 dB signal-to-noise ratio (SNR), and > 92 at 0
SNR, with as few as 100 I/Q timepoints in a 6-way classification test. The six modulation schemes
were:

e On-off Keying (OOK)
e Gaussian frequency-shift keying (GFSK)

e Gaussian minimum-shift keying (GMSK)
e Differential binary phase-shift keying (DBPSK)

e Differential quadrature phase-shift keying (DQPSK)

e Orthogonal frequency-division multiplexing (OFDM)

3.1.2 Automatic recognition of both inter and intra classes of digital
mdoualted signals using artificial neural network

[18] developed an AMR classifier used for classification of five digital modulation formats: 2ASK,
4ASK, 2FSK, BPSK, and QPSK. As opposed to the method used in [I7], this paper chose to look
extract information contained in the instantaneous amplitude, phase, and frequency of the incoming
radio signal. The four values extracted from those were:

® Vmaz - the maximum value of the power spectral density of the normalized-centered instanta-
neous amplitude of the intercepted signal segment.

® 0,y - the standard deviation of the absolute value of the centered non-linear component of the
instantaneous phase t time instant .

® 04, - the standard deviation of the direct value of the centered non-linear component of the
direct instantaneous phase.

e 0., - the standard deviation of the absolute value of the normalized centered instantaneous
amplitude

These extracted valued allows one to distinguish between the different modulation schemes by placing
them into subsets based on which modulation schemes contain, and which doesn’t contain, informa-
tion in each of these parameters. As an example 7,4, can be used to distinguish 2FSK from the
other four modulation schemes in question, as 2FSK contains no amplitude information. Utilizing
a multi-layer feed-forward neural network, they managed to achieve > 99% correct classification at
an SNR above 5dB, and > 98% correct classification at SNR values as low as -5dB.

3.1.3 Algorithms for Automatic Modulation Recognition of Communica-
tion Signals

[19] encompasses a more expansive, yet similar, version of the method for AMR utilizing informa-
tion contained in the instantaneous amplitude, phase, and frequency of the incoming radio signal.
Utilizing a structure of three connected ANNs, and a total of 9 parameters derived from the in-
stantaneous amplitude, phase, and frequency, they managed to achieve correct classification rate
between 13 different modulation schemes of > 96% at the SNR of 15dB.

3.2 Voice recognition

Speech signal recognition commonly utilize Mel-frequency cepstrum coefficients (MFCC) to, which
conveys vocal tract characteristics. The method extracts information from short time intervals
using Discrete Fourier Transform (DFT)). The DFT results then go through a bank of Mel-spaced
triangular filters, with the Mel-scale being linear below 1000Hz, and logarithmic above 1000Hz.

10

Lastly, as Duscrete Cosine Transform (DCT) is applied to the bank of the filter bank energies. [20]
reports having successfully implemented this using a convolutional neural network (CNN).

3.3 FINN

FINN: A Framework for Fast, Scalable Binarized Neural Network Interface[I0], compares the per-
formance of binary neural networks (BNNs) to that of CNNs. As opposed to CNNs, that normally
utilize 32bit floating point parameters, BNNs, as the name describes, instead utilize binary values
in either a fully binarized network (full BNN), or partly binarized networks. FINN achieved an
accuracy of 95.8% for the MNIST dataset with 12.3 million image classifications per second. The
platform used was a ZC706 FPGA platform, which drew less than 25 W of total system power.
They also achieved a 80.1% accuracy with the CIFAR-10 dataset, and a 94.9% accuracy with the
SVHN dataset. Their prototypes maintained an accuracy within 3% of other low-precision works,
which they state could have been improved by using larger BNNs[I0].

11

Chapter 4

Architecture and Test
Development

4.1 RVM features, parameters and test-cases

The neural networks focuses on verifying three primary features that may be of interest in when it
comes to verification of a RVM signal:

e Structural signal components
e Signal position/delay/timing

e Signal length

As was mentioned in Chapter [3] no previous cases of extracting radio signal features utilizing ANNs
and RVM were found. The papers regarding cognitive radio in Chapter describes both utilizing
the frequency domain, as well as higher order parameters derived from the instantaneous amplitude,
phase, and amplitude. However, since the classifications here assumes only a single modulation
scheme is used for each data-set, the higher order parameters may therefore not be useful. Voice
recognition also includes the use of a DF'T to translate the signal to the frequency-domain. However,
as the signals used in this thesis will be mostly randomized, looking going through additional filters
to find something akin to vocal tracts had been deemed unnecessary. It has therefore been chosen
to look at the ANNs ability to extract information from both time-domain and frequency-domain
data. For the case of frequency-domain, this will include versions both with and without including
the phase parameter.

In order to keep the scenarios as realistic as possible, the signals has been subjected to a constrained
randomization process. For all of the three classification scenarios mentioned, the position the signal
has within the RVM samples has been randomized, including having the samples be taken at different
points of the sinusoidal wave for each instance to signify the case where the receiver has not yet
synchronized with the signal. There will also be a comparison between basic ASK (OOK), FSK,
and PSK. The FSK will for these cases have a doubling in frequency to differentiate between logical
1’ and ’0’, with PSK following a binary form where the phases are 180 degrees apart. The following

12

cover points were made for each feature in an attempt to find a suitable neural network structure
for each of them:

e Comparison between the SGM, RMSProp and ADAM solver algorithms

e Comparison between time-domain input data and FFT input data. In the case of using FFT,
this included a version both with and without including the phase parameter (imaginary part).

e Comparison between the accuracy when utilizing ASK (OOK), FSK and PSK modulation
schemes for the RVM signal.

e Comparison between CNN and FNN

e Comparison between different ratios of sampling frequency and signal frequency, here referred
to as ”samples per bit”

e Comparison of performance between differently sized CNNs, including:

— Varying number of convolutional layers
— Varying sizes of filters, as well as varying number of filters
— Varying amounts of padding

— Varying amounts of stride

4.2 Generation of training and classification data

As no existing databases containing relevant data were found, these had to be generated for the neural
networks before training or validation could begin. The RVM signals used as input parameters were
generated using MatLab R2018a[2I]. Each feature that were to be examined utilized the same
method for constructing the training and testing data-sets.

The data generation started out with a procedure that goes through each of the neural network’s
intended output neurons, and creates appropriate input data that is randomized within that output’s
valid ranges. The parameters chosen here include:

e The appropriate modulation scheme

e The total number of samples, measured in how many bits the area is supposed to cover.
e The RVM signal as a binary sequence.

e The starting position of the RVM signal within the sampled region.

e The amplitude of the signal

e The signal to noise ratio

e The ratio between the signal’s frequency and the sampled frequency. In other words, how
many samples are used to cover each binary value of the RVM signal.

e The number of periods in the sinusoidal wave for a single bit of the RVM signal.

13

e At which points of the sinusoidal wave the samples are to be taken. This is meant to represent
the case where the receiver and the signal have not been synchronized.

A separate function is called that uses the above-mentioned parameters to transform the binary
sequence into amplitude values, as is required for a RVM signal. The formula used can be seen in
Equation A, f and ¢ are here parameters used to describe the ASK (OOK), FSK, and PSK
modulation schemes. Each test scenario will only ever utilize one of these modulation schemes for
a given data-set. NperiodsperBit 1S 0 this case an additional parameter with the same function as
the FSK parameter f, but is separate for clarity. ¢gsge. is the parameter responsible for altering
which points of the sinusoidal ware the samples are taken at. This value always remain within
the region covered by a single sample, as higher values would equate to adding a n-sample delay,
which would look identical to the system yet complicate the testing procedure due to the starting
position no longer being at the sample specified. Mp;tsampie Number a0d Mp;; are sequences holding
a number of elements equal to the number of samples used to describe one bit of data. The values
of MpitSampleNumber are equally spaced floating point values in the range [0 1].

MBit = Am * 603(27rfNPeriodsPerBitMBitSampleNumbeT + (b + ¢sk:ew) (41)

The RVM sequences for each of the signals were then concatenated together and placed at the
appropriate located within the sampled region. Values outside the region covered by the signal were
kept at the value 0. Lastly, the entire signal is subjected to white Gaussian noise. In order to keep
the actual noise values constant for each iteration, the SNR were set when compared to a signal
with a signal power of 25, with the actual signals commonly being given an amplitude of 50. As a
comparison, with a signal power of 25, the values of the noise levels can be seen in the table below.
Keep in mind the values are rough estimates with slight changes from case to case.

SrefNR (dB) | Average noise level (absolute value) | Peak noise level (absolute value)
6 dB 7.5 27
0 dB 15 55
-6 dB 27.5 110

A visual representation can be seen in Figure [f.I] The case used covers an area of 50 bits, with 10
samples being used to cover the period of 1 bit. The signal included utilizes the PSK modulation
scheme, with a 20 bit long sequence of alternating '1’s and ’0’s starting at sample number 250.

14

80 100

w : Ll
g H P uli NM«W»M”“V | M”

"o 50 100 15 200 250 300 350 400 450 500 0 5 100 150 200 250 300 350 400 450 500

I
&

8
B

IS
3

IS
3

(a) SregNR of 6 (b) SrefNR of 0

o I I i MM

0 50 100 150 200 250 300 350 400 450 500

(c) SrefNR of -6

Figure 4.1: Visual representation of a RVM signal with different levels of white Gaussian noise added

4.3 Neural network structure, training and validation

The ANNSs developed primarily took the form of convolutional neural networks (CNNs), that utilized
the layer sequence of convolutional layer, batch normaliation layer, and ReLu layer, repeated for
each convolutional layer. A comparison where the convolutional layers were swapped out with
fully connected layers were also made. The solutions were developed utilizing the network toolbox
included in MatLab R2018a[I5], which contains convenient tools for building, training and veryfying
the operations of ANNs.

Matlab R2018a includes convenient tools and functions that simplifies the specifications of the neural
network layers. An example for creating the structure of a CNN can be seen in Figure [4.2] The first
convolutional layer here consists of 40 filters with dimensions [100 1], with a stride of [2 1] and
padding of [10 0 0 0].

The same network as shown in Figure can be seen in more detail in Figure which utilizes
the neural network analyzer extension for the network toolbox to extract information such as layer
size and number of weights and biases for for each layer.

The network toolbox’s also includes functions for training the neural network, as well as using it to
classify a test-set. Both of these functions takes a 4-dimensional matrix as input, where iterations
are stacked along the 4th dimension. The network training function also takes includes parameters
for training and an output matrix corresponding to the 4-dimensional data-matrix as inputs in order
to train the network. The networks are set to train for a maximum of 100 epochs.

15

layers = [
(Input Layer
imageInputLayer ([S00 1 1])

(First Convolutional Layer

convolutionZdLavyer ([100 1], 40,"Stride",[2 1], "Padding™, [10 O O 0])
batchNormalizationLaver

relulayer

%S5econd Convolutional Layer

convolutionZdLayer ([50 1], 30, "Scride",[2 11, "Padding™, [10 O O O4])
batchNormalizationLayer

relulLayer

(Cutput Layers
fullyConnectedLaver (26)
softmaxLayer
classificationLavyer]:

Figure 4.2: MatLab2018 syntax for specifying neural network layers

+ | name TYPE A NS LEARNABLES TOTAL LEARNABLES

1 imageinput Image Input 5@0x1=1 = @
500x1x1 images with ‘zerocenter normalization
conv_1 Convolution 206x1x48 Weights 10@x1x1x49 2040
40 10011 convalutions with stride [2 1] and padding (10 00 0] Bias l1xlx4g
batchnorm_1 Batch Normalization | 206x1x48 Offset 1=1=4@ 8@
Batch normalization with 40 channels Scale 1=1x40
relu_1 RelU 206x1x40 - @
ReL
conv_2 Convolution 84x1x30 Weignts 50x1:40%32 60030
30 502140 stride [2 1] and pacding (10000 Bias 1x1x38
batchnorm_2 Batch Normalization | 54x1x30 Offset 1x1x30 60
Batch normalization with 30 channels Scale 1x1x30
relu_2 RelU B4x1x30 - o
ReLl
fc Fully Connected 1=1x26 Veights 26<2528 65545
26 fully connected layer Bias 26x1
softmax Softmax 1=1x26 - o
softmax
Classoutput Classification Output | - - @

crossentropyex

Figure 4.3: Example of CNN structure

4.4 RVM structural classification

As previously mentioned, the structural test-case had as its main objective to determine to what
extent the CNN was capable of recognizing certain sequences and identifiers when the signal is placed
at a random position with in a sampled range of a noisy environment. The specific points were the
following:

e Determine if the preamble sequence consisting of alternating ’1’s and ’0’s is present in the
signal

e Determine whether or not the start of frame (SoF) delimiter, here recognized as a 11’ sequence
at the end of the preamble, is present.

o Determine whether the signal contains any data bits (not including the preamble)

16

Determine whether or not the entire signal is present in the sampled region. In other words,
look for the end of frame (EoF).

The outputs were specified shown below, with the letters signaling the presence of the preamble
sequence (P), SoF delimiter (S), data packet (D), and EoF (E). Some combinations of these have
not been included, due to them not being possible. As an example, one cannot detect a SoF delimiter
without having the preamble and a data sequence both be present.

0: No signal detected

P: Only preamble detected

D: Only data detected. End-point not present within sampled data
DE: Only data detected. End-point found within sampled data

PD: Preamble and data detected. Correct SoF delimiter not found. End-point not found within
sampled data

PDE Preamble and data detected. Correct SoF delimiter not found. End-point found within
sampled data

PSD: Preamble and data detected. Correct SoF delimiter detected. End-point not found within
sampled data

PSDE: Preamble and data detected. Correct SoF delimiter detected. End-point found within
sampled data.

The input data generated for the neural network were done following the method described in
Chapter For this case, the parameters were set as follows:

The modulation scheme were set to either ASK (OOK), FSK, or PSK. However, only one were
ever used during the same set of data.

The sampled area were set to cover 50 bits worth of data, with the actual number depending
on the number of samples used to describe 1 bit of data (the ratio between signal frequency
and sample frequency)

The RVM signal was set as a binary sequence of length 0-25, not including the preamble.
The binary sequence for the data part of the signal was set to be entirely randomized for the
FSK and PSK modulation schemes. For the ASK (OOK) modulation scheme, the last bit was
always set to a logical '1’; as the network would be unable to see trailing zeroes for this scheme.
The sequence was re-randomized should the data sequence turn out identical to the preamble.

The starting position was randomized, with the constraint being that the last bit of the se-
quence had to have at least one sample in the sampled region. The start of the signal was
always placed within the sampled region.

The amplitude was chosen to a constant of 50 throughout all tests. The exact value of 50 holds
no significant importance outside the ratio between it and the signal power used for the SNR.

The SyerNR was varied between -6 dB and 6 dB, compared to a signal with a power of 25.

17

e The ratio between the sampled frequency and the frequency of the signal was kept at a rate
of 4-20 samples for each bit of data.

e The number of periods on the sinusoidal wave used to represent a single bit was kept at
a constant of 1, with the logic behind this being that systems where each binary value is
translated into several periods equate to having the same binary value repeated for this test
case. As an example, the binary sequence 11’ will in this case seem identical to a binary ’1’
in a system that utilizes two periods on the sinusoidal wave to represent one binary value.

e The points of where the samples are taken along the sinusoidal wave were randomized within
the region covered by each sample, and denote the case where the receiver has not yet syn-
chronized to the received signal.

4.5 RVM positional classification

The positional test-case had as its function to help estimate timing and delays for the device under
testing (DUT). Due to the neural network not knowing the actual sampling frequency, but rather
just the ratio between signal and sampling frequency, as well as not knowing how much of a delay
there’s been before the first sample in the sampled region, the neural network instead focuses on
determining at which sample the signal starts in a noisy environment.

The proposed solution for this test-case follows a hierarchical approach. This was done both to limit
the total number of output neurons, as well as to allow the networks with larger amounts of input
neurons to do more coarse grain classification. The hierarchy went as described below:

e The first neural network is set to take in a sampled region capable of holding at most 100 bytes
worth of data, and is tasked with ascertain in which 10 byte region the starting point of the
signal is located.

e The second neural network is set to take the 10 byte region ascertained by the first neural
network, and go through the same process to ascertain the starting position down to a 1 byte
region.

e The third neural network continues the process described above to ascertain the starting
position down to a 1 bit region.

e The forth neural network will then lastly ascertain which of these samples acts as the starting
point for the signal.

As a more concrete example, one can consider a 100 byte region where the sampling frequency is
10 times higher than the time-period used for each bit, meaning each bit is described within 10
samples. This causes the first neural network to have a total of 8000 input neurons, where it is
tasked to ascertain in which region of 800 samples the starting position is located in. The second
neural network further pinpoints this down to 80 samples, the third down to 10 samples, with the
last attempting to pinpoint the exact sample.

The input data generated for the neural networks were done following the method described in
Chapter with each neural network having its training data generated independently of the other
neural networks. The parameters for these neural networks were set as follows:

18

e The modulation schemes were set to either ASK (OOK), FSK, or PSK. However, only one
scheme was utilized for any given set of training and testing data.

e The sampled region for each neural network were set as described above.

e The RVM signal was set as a binary sequence of length 1-80 bits. The content of this binary
sequence was fully randomized for the FSK and PSK modulation schemes, while for the ASK
(OOK) modulation scheme the first bit is always set as a logic '1’ due to the network being
unable to see leading zeroes for this modulation.

e The starting position was randomized within the region covered by each output neuron.

e The amplitude was chosen to a constant of 50 throughout all tests. As mentioned earlier,
the exact amplitude value holds little significance, with the important factor being the ratio
between the amplitude and the noise levels.

e The S;.yNR was varied between -6 dB and 6 dB, compared to a signal power of 25.

e The ratio between the smapled frequency and the frequency of the signal was kept at a rate
of 4-20 samples for each bit worth of data.

e The number of periods for each bit was kept at a constant value of 1.

e The points where the samples were taken along the sinusoidal wave were randomized within
the region covered by a single sample to represent a lack of synchronization.

4.6 RVM length classification

Length of a RVM signal may be a relevant evaluation point to determine whether or not all parts of
a sent message are present. As the size of data and the accuracy needed are highly dependent on the
actual application, it has here been chosen to look for the differences in signal length for small signals
of a length of 0-25 bits in a noisy environment. The input data generated for the neural networks
were done following the method described in Chapter [£.2] utilizing the following parameters:

e The modulation schemes were set to either ASK (OOK), FSK, or PSK. However, only one
modulation scheme was utilized during a single set of training and test data.

e The sampled region was set to cover 50 bits worth of data, with the actual number of neurons
in the input layer depending on the number of samples used to describe one bit.

e The RVM signal was set as a binary sequence of length 0-25 bits. The actual sequence was
fully randomized for the FSK and PSK modulation schemes. For the ASK (OOK) modulation
scheme, the first and last bit of the signal were always set as a logical '1’, with the bits between
being randomized.

e The starting position was randomized within the sampled region, with the valid positions being
any position where the entire signal would fit within the sampled region.

e The amplitude was chosen to a constant of 50 throughout all tests, for the same reasons as
mentioned for the other test-cases.

e The S,.sNR was varied between -6dB and 6dB, with the noise levels being compared to a
signal with a power of 25.

19

e The ratio between the sampled frequency and the frequency of the signal was kept at a rate
of 4-20, meaning each bit worth of data covered 4-20 neurons in the input layer.

e The points of where the samples were taken along the sinusoidal wave were randomized within
the region covered by each sample/neuron.

20

Chapter 5

Analysis

5.1 Comparison between the SGDM, RMSProp and ADAM

solvers
Test-case Modulation Scheme | SGDM accuracy | RMSProp accuracy | ADAM accuracy
Structural ASK 0.8057 0.8115 0.7889
Structural FSK 0.9265 0.9300 0.9165
Structural PSK 0.9384 0.9350 0.9185
Position (10 byte NN) ASK 0.9129 0.9087 0.9102
Position (10 byte NN) FSK 0.9492 0.9388 0.9490
Position (10 byte NN) PSK 0.9469 0.9372 0.9450
Length ASK 0.3067 / 0.7130 0.3281 / 0.7368 0.3979 / 0.7980
Length FSK 0.6575 / 0.9775 0.6975 / 0.9792 0.7643 / 0.9898
Length PSK 0.6273 / 0.9726 0.7399 / 0.9848 0.7168 / 0.9779

Table 5.1: Comparison between the SGDM, RMSProp and ADAM solvers

The results when testing the performance of the different solvers can be seen in Table with the
accuracy shown for the length test scenario being written as Poorrect/ PCorrectoroneo rf- All tests
within the same test scenario were done using the same neural network structure. As denoted by the
table, the differences in accuracy for both the structural and position test-cases, who were both done
at an already high accuracy, were rather small. As the actual accuracy can vary slightly even when
using the exact same parameters, training, and testing data for each iteration, the differences here
are rather negligible. However, for the length test-case, which in this scenario was done at a lower
overal accuracy, the differences between the SGDM solver and the more sophisticated RMSProp
and ADAM solvers were more noticable. One of the highest being a difference in accuracy of over
10% for the FSK modulation scheme when using ADAM as opposed to SGDM. The ADAM solver
also attained quite significantly better results than the RMSProp for the ASK and FSK modulation
schemes for the length test-case, only performing slightly worse for the PSK modulation scheme.

Due to the RMSProp and ADAM solvers being rather close for the remaining instances shown in
Figure the remaining comparisons shown throughout this chapter all utilize the ADAM solver.
More information regarding the neural networks and parameters utilized for each comparison can

21

be seen in Appendix and

5.2 Comparison between time-domain and FFT with and
without phase-component

Test-case Modulation Scheme Time Frequency Frequency and phase
Structural PSK 0.9185 0.4960 0.6276
Position (10B NN) PSK 0.9450 0.9134 0.9140
Length PSK 0.7168 / 0.9779 | 0.2725 / 0.6592 0.2731 / 0.6601

Table 5.2: Comparison of time-domain input parameters versus frequency domain with and without
phase component

The results from the comparison between utilizing time-domain input data and frequency-domain
input data (with or without phase component) for the PSK modulation scheme can be seen in Table
The neural networks utilized remained the same for the time-domain version and the frequency-
domain version that did not include the phase. For the frequency domain version that included both
frequency and phase component, a single change was made to the neural network by introducing
another layer along the 3rd dimension. More clearly, the network was altered from having (X,Y,1,N)
input neurons to (X,Y,2,N) input neurons, essentially doubling the number of neurons in the input
layer. More details regarding each the time-domain and frequency-domain comparison can be found

in Appendix and

As can be seen from Table the frequency domain versions yielded significantly poorer accuracy
for both the structural and length test-cases, while only having a slight difference in the case of
determining position. Due to the poor performance, frequency domain input appear to be unsuited
for distinguishing structural differences in a signal, as well as for the signal length. On the other
hand, the due to the positional results being just above 3% apart for the three versions of the input,
there may exist neural network structures that utilize frequency domain input that can outperform
the time-domain version. However for the sake of this thesis, only the time-domain was further
looked into.

The time required to perform the FFTs remained small when compared to the execution time of
the neural network. As would be expected, the difference scales with the complexity of the neural
network structure, due to the FFT only being dependent on the number of neurons for the input
layer. The execution time for performing the classification and for the FFT can be seen in Table

B3l

Test-case FFT time (per iteration) | Classification time (per iteration)
Structural 0.38 10~ %s 0.96 x 10~ s
Position (10 byte NN) 0.24 % 10~*s 0.94 x 10~ %s
Length 0.19 % 10~ %*s 37110 %s

Table 5.3: Execution time of FFTs compared to neural network classification time

22

5.3 Comparison between the use of the ASK (OOK), FSK,
and PSK modulation schemes

Test-case | Mod. scheme | 6S,cf NR | 0S,cf NR | -65,cf NR
Structural ASK 0.8820 0.7889 0.4706
Structural FSK 0.9791 0.9165 0.6953
Structural PSK 0.9653 0.9185 0.7317
Position ASK 0.9897 0.9102 0.6580
Position FSK 0.9886 0.9490 0.8127
Position PSK 0.9871 0.9450 0.7981

Table 5.4: Comparison between ASK, FSK, and PSK modulation schemes for structural and posi-
tional classification

Test-case Mod. scheme | 6S,cf NR | 3.55.cfNR | 0S;cf NR
Length(Accurate) ASK 0.7073 0.5436 0.3979
Length(Accurate or 1 off) ASK 0.9377 0.9092 0.7980
Length(Accurate) FSK 0.9943 0.9632 0.7643
Length(Accurate or 1 off) FSK 1.0 0.9992 0.9898
Length(Accurate) PSK 0.9923 0.9881 0.7168
Length(Accurate or 1 off) PSK 0.9999 1.0 0.9779

Table 5.5: Comparison between ASK, FSK, and PSK modulation schemes for length classification

The modulation schemes examined were the basic versions of ASK (OOK), FSK, and PSK, with a
focus on how they behave at different levels of noise. As can be seen in Table [5.4 and Table the
accuracy for FSK and PSK remain relatively close to each other for all test-cases and noise levels.
The ASK on the other hand performed considerably worse for all the cases. ASK also appeared to
have a steeper drop in accuracy with increasing noise levels. As an example, the accuracy for ASK
dropped more than 33.17% in accuracy between a S,y NR of 6 and -6, while the FSK and PSK
modulation schemes dropped 17.59% and 18.90%. One possible explanation for this could be due
to on-off keying version describing logical '0’ as an absence of signal. This essentially means the
neural network received no visible difference between a logical ’0’ and pure noise. For a randomly
generated binary stream, this would equate to the neural network only having half the amount of
actual signal data to work with, which could explain why it performs worse than the FSK and PSK
modulation schemes.

An additional note to make from Table[5.4]and Table 5.5 would be that classifying the signal’s length
appear more subject to error when the noise levels increase than the other test-cases. However, if
one looks at the percentage of classifications for the length analysis that are either correct or just
1 off at 05,y NR, one can see that the values are comparable to the accuracy of the structural
test-case. The likely cause could therefore be that since the distinction between the output neurons
for the length analysis are rather small, a spike in the noise levels near the start- or end-point of the
signal may cause a wrong classification. Another possible reason could be that the length analysis
simply has more output neurons than the other cases.

23

5.4

Comparison between CNN and FNN

Test-case | CNN accuracy | CNN exe. time | FNN accuracy | FNN exe. time

Structural 0.9185 1.19ms 0.6440 10ms
Position 0.9450 0.83ms 0.7547 3.28ms
Length 0.7168 / 0.9779 3.94ms 0.2163 / 0.5585 62.18ms

Table 5.6: Comparison of accuracy and execution time for CNN and FNN

Layer # Neurons | # Weights | # Biases | # Multiplications | # Additions
Struct convl 6090 3000 30 618 000 618 000
Struct conv2 1680 30 000 20 2 520 000 2 520 000
Struct conv3 380 4000 10 152 000 152 000

Sum 8150 37 000 60 3 290 000 3 290 000
Struct fulll 6180 3 090 000 6180 3 090 000 3 090 000
Struct full2 1680 10 382 400 1680 10 382 400 10 382 400
Struct full3 380 638 400 380 638 400 638 400

Sum 8240 11 026 980 8240 14 102 560 14 110 800
Pos10 convl 3240 400 10 129 600 129 600
Pos10 conv2 1280 4000 10 256 000 256 000
Pos10 conv3 210 1000 5 42 000 42 000

Sum 4730 4610 25 427 600 427 600
Pos10 fulll 3240 2 592 000 3240 2 592 000 2 592 000
Pos10 full2 1280 4 147 200 1280 4 147 200 4 147 200
Pos10 full3 210 268 800 210 268 800 268 800

Sum 4730 7 008 000 4730 7 008 000 7 008 000
Length convl 8240 4000 40 824 000 824 000
Length conv2 2520 60 000 30 5 040 000 5 040 000
Length conv3 700 12 000 20 420 000 420 000
Length conv4 160 2000 10 64 000 64 000

Sum 11 620 78 000 100 6 348 000 6 348 000
Length fulll 8240 4 120 000 8240 4 120 000 4 120 000
Length full2 2520 20 764 800 2520 20 764 800 20 764 800
Length full3 700 1 764 000 700 1 764 000 1 764 000
Length full4 160 112 000 160 112 000 112 000

Sum 11 620 26 760 800 11 620 26 760 800 26 760 800

Table 5.7: Size and operation comparison between CNNs and FNNs

One aspect of the testing procedure was to compare the results given from a neural network primarily
made out of convolutional layers, and a neural network made out of primarily fully connected layers.
The convolutional and fully connected layers in the CNN and FNN are made to have roughly
matching number of neurons their corresponding layers. As shown in Table the CNN vastly
outperforms the FNN both in terms of execution time and accuracy, to the point where the FNN
networks are likely not even close to accurate enough to be viable to take part in a verification

process.

Furthermore, as shown in Table the FNN demands 4.3 (structural), 16.4 (position 10 byte
version), and 4.2 (length) times as many floating point operations in the form either multiplications
or additions. The higher disparity, however, is in the amount of storage space required by the FNN

24

compared to the CNN, the highest of which in this case is the FNN for length analysis with 20.76
million weights in total. Attempts using smaller sized FNNs also failed to challenge the accuracy
yielded by the CNN versions.

Please note that all layers shown in Table are followed by a batch normalization layer and a
rectified linear unit (ReLU) layer. These are not included in the calculations for storage space or
floating point operations required in this case, due to them being roughly equal due to the similar
sized convolutional and fully connected layers. An interesting detail would be that, in terms of
accuracy. both the CNNs and FNNs performed significantly worse without the batch normalization
layers. For some FNN structures, the difference was to the point where the training process would
break down entirely without the batch normalization layers, resulting in the network predicting the
same output regardless the input values.

The number of floating point operations for the CNNs should also be slightly lower in an actual
system than shown in Table as the numbers include floating point operations on padded areas
where the input values are 0.

5.5 Neural network for structural analysis of RVM signal

5.5.1 Comparison of sampling rates

Samples per bit | Accuracy | Classification time
4 0.8146 0.92 x 10~ 4s
10 0.9185 0.93 x 10~ 4s
20 0.9356 1.08 x 10~ 4s

Table 5.8: Accuracy and classification time for different number of samples per bit

As can be seen in Table there appears to be a strong correlation between the ratio of sampling
frequency versus signal frequency (here referred to as ”samples per bit”), and the accuracy the neural
network is capable of yielding. An important note is that, since the sampled window here scales
with the number of samples used to describe one bit, the input layer scales proportionally with the
number of samples used to describe each bit. The neural networks used to yield the data given
by Table have had the filter sizes, padding and stride of their first convolutional layer scaled
with the number of neurons in the input layer to make the networks as similar as possible. They
are, however, not entirely equivalent, as not all parameters were allowed to be scaled to a strictly
proportional value. The details regarding the networks used for each case can be found in Appendix
[A.5]

The networks in the following subsections will utilize the 20 samples per bit version, in an attempt
to optimize the accuracy.

5.5.2 Comparison of differently sized CNNNs

The CNN architectures for structural feature recognition appears, according to the results shown
in Table seems to peak around 4 layers when using a stride of [4 1] for the first convolutional
layer, and [2 1] for the remaining ones. The fifth layer on the 5 convolutional layer version in this

25

Layer 2CNN network 3CNN network 4CNN network 5CNN network
Convl 30x[200 1 1] filters | 30x[200 1 1] filters | 30x[200 1 1] filters | 30x[200 1 1] filters
Conv2 5x[20 1 30] filters | 20x[50 1 30] filters | 20x[50 1 20] filters | 20x[50 1 20] filters
Conv3 - 10x[20 1 20] filters | 20x[20 1 20] filters | 20x[20 1 20] filters
Conv4 - - 10x[20 1 20] filters | 10x[20 1 20] filters
Convbh - - - 5x[20 1 10] filters
Accuracy 0.9130 0.9356 0.9516 0.8601
Classification time 1.11% 107 %s 1.08« 10~ %s 1.12% 10~ %s 1.84 %10~ %s

Table 5.9: Details for CNNs with 2-5 convolutional layers

case does appear to be too small to be beneficial to the network, only having the dimensions [3 1 5].
Reducing the stride for the layers may yield better accuracy, at the cost of increased computational
and spacial needs.

Outside of the number of actual number of convolutional layers, the layers’ stride, padding, filter
size, and the number of filters used were also altered. The alterations that will be mentioned here
will all be alterations of a single parameter from the CNN described in Figure which is the
same CNN as the 3CNN network from Figure [5.9] The details of these experiments can be found
in Appendix [AZ6] Talking primarily about the first convolutional layer, since the remaining layers
scales off of it’s parameters, the accuracy does seem to have a peak somewhere around the [200 1 1]
value, yielding an accuracy of 0.8131 with a filter size of [40 1 1], 0.8896 for [100 1 1], and 0.8431
for [500 1 1]. The padding also appear to yield the best results around the values shown in Figure
with an accuracy of 0.9213 without any padding. An increase in padding to almost match the
filter size yielded an accuracy of 0.9386, which is within the normal deviation that can appear even
when retraining a neural network with the exact same parameters.

Reducing the stride does increase accuracy, yielding 0.9519 when the stride of the first convolutional
layer is reduced to [1 1]. However, this did more than double the time necessary to classify each
iteration to 2.23ms. Increasing the number of filters at each convolutional layer also increases the
accuracy, with a doubling of filters for all convolutional layers yielding an accuracy of 0.9559. A
combination of low stride and more convolutional layers and7or filters may allow one to approach
an accuracy of 1.0. However, the classification time will likely increase substantially as well. The
accuracy drops to 0.8915 when the S,.fNR is lowered to -6dB. This decrease is primarily caused
by a further drop i accuracy for detecting the end-point of the signal, as well as an added confusion
between instances of very short data packets ("D’) and instances with no data (’0’).

26

ANALYSIS RESULT -

+ [name TYRE ACTIVATIONS LEARNABLES
imageinput Image Input 1083x1:1
100011 images wit
Convolution 206x1<30 Weights 20@x1x1x30
Oxtx1 convalu Bias 1130
batchnorm_1 Batch Normalization | 2e6x1x38 Offset 1x1x3@
Batch normakization wth 30 channels Scale 1x1x30
relu_1 RelU 2061438
Convolution Bax1x20 Meignts 58x1:30%20
= Bias 1x1%20
batchnorm_2 Batch Normalization | 8ax1=2@ Offset 1x1x2@
Batch normakization with 20 channels Scale 1x1x20
relu_2 RelU Bax1x=20
conv_3 Convolution 38x1x10 ueignts 20x1:20v10
10 2051220 convolutions with stride [2 1] and padding [100.0 0 Bias 1=1=16
batchnorm_3 Batch Normalization | 38x1x1@ Offset 1x1x1@
Batch normakization wth 10 channels Scale 1x1x1@
relu_3 RelU 38x1x10
fc Fully Connected 1%1%8 Weights 8x38@
8 fully connected layer Bias &1
Softmax 1x1=3

Classification OQutput | -

Figure 5.1: CNN used as a basis for parameter alterations

5.5.3 CNN performance for structural classification

ANALYSIS RESULT

+ | NAME TYPE A\ ONS LEARNABLES
imageinput Image Input 10001x1
1000x1x1 images wi
Convolution 821130 Weights 200x1x1x3¢
11and padding [2 Bias 1x1x38
Batch Normalization | 821+1x30 Offset 1x1x38
Scale 1x1x38
ReLU 821x1x30
Convolution 391x1:20 Weignts S0x1x30%20
1] and padding [10.00 0 Bias
batchnorm_2 Batch Normalization | 391<1x28 Offset 1x120
Batch normalzation with 20 channsls Scale 1x1x28
relu_2 RelU 391=1x20
Rell
Convolution 191=1x20 Weights 20=1<20x20
20 convoutions with stride [2 1] and padding [10.0.0 0 Bi
batchnorm_3 Batch Normalization |191x1x28 Offset 1x1x20
Batch normalzation with 20 channels Scale 1x120
ReLU 191120
Convolution 91x1x10 Weights 201<26x1¢
stride [2 1] and padding [ias 1x1x18
Batch Normalization |91x1x1e Offset 1x1x1@
hannels Scale 1x1x1@
ReLU 91x1x10
Fully Connected 12158 ueignts 8+918
Bias 8x1
Softmax 12158

Classification Output |-

Figure 5.2: High accuracy CNN for structural classification

Figure shows structure for the CNN with the highest accuracy for structural classification,
without going to overboard on the number of filters at each convolutional layer. As shown in
Table this neural network achieves an accuracy of 0.9623, requiring 45 * 10~* seconds for each
classification on average. As can be seen in Table [5.10} where the letters P, S, D, and E represent
the presence of preamble, SoF delimiter, data, and EoF, the vast majority of the false classifications
regards not detecting the EoF. Since the neural network seems capable of detecting the difference
between a correct and incorrect SoF, which are differentiated by a single binary value, these wrong
classifications regarding the EoF are likely caused when the EoF is placed extremely close to the end
of the sampled region. The results of a second, smaller, neural network is also shown in Table [5.11
This neural network is identical to the one shown in Figure except the number of filters have
been reduced to [10 10 5 5] for the 4 convolutional layers. As can be seen by comparing the two,
one can maintain an accuracy only 0.01 below the larger network while only having to use roughly
0.22 times the weights and biases, and 0.21 times the floating point operations. The numbers in

27

the parenthesis in Table are the numbers needed to connect the last convolutional layer to the
output layers, with the other numbers just including the convolutional layers themselves.

Actual \Predicted 0 P D DE | PD |PDE|PSD|PSDE
0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
P 0.0 | 0969 | 0.0 0.0 | 0.018 0.0 0.013 0.0
D 0.023 | 0.001 | 0.959 | 0.002 | 0.010 | 0.005 0.0 0.0
DE 0.008 | 0.004 | 0.057 | 0.919 | 0.0 0.007 0.0 0.005
PD 0.0 | 0.005 | 0.0 0.0 | 0.994 | 0.001 0.0 0.0
PDE 0.0 | 0.009 | 0.0 0.0 | 0.057 | 0.933 0.0 0.001
PSD 0.0 | 0.002 | 0.0 0.0 | 0.001 0.0 0.993 0.004
PSDE 0.0 | 0.002 | 0.0 0.0 0.0 0.001 | 0.066 0.931

Table 5.10: Accuracy for each output neuron for structural classification for neural networn in Figure

2

Type Accuracy | Classification time | CNN weights+biases | CNN add+mult ops
Optimized for accuracy | 0.9623 45 %10~ %s 48080 (+7288) 37 096 000 (+14560)
Smaller version 0.9529 9.92 % 10~* 8530 (+3648) 7 667 000 (+7280)

Table 5.11: Accuracy and classification time for structural classification at 0S5,y N R and 20 samples
per bit

5.6 Neural network for positional analysis of RVM signal

The results shown in this chapter utilize the CNN responsible for narrowing down the position from
a 10 byte region to a 1 byte region when making comparisons, with the results for the other parts
being added in Chapter [5.6.3

5.6.1 Comparison of sampling rates

Table shows the comparison of accuracy and classification time for different number of samples
used to describe one bit of data. As the table shows, there appears to be a strong correlation between
accuracy and number of samples used to describe each bit. However, the accuracy remains above
the 90-percentile for all three cases shown. The neural networks used to yield these results are made
to be as similar as possible, having the filter sizes, stride, and padding scaled as proportionally as
possible to make the networks as similar as possible. This is reflected in Table[5.12) with the networks
having similar classification times, with the major difference being in the number of neurons in the
input layer.

The details regarding the networks used for each case can be found in Appendix The networks
in the following subsections will utilize the 20 samples per bit version, in an attempt to optimize the
accuracy.

28

Samples per bit | Accuracy | Classification time
4 0.9214 0.79 % 10~ 4s
10 0.9450 0.83 x 10~ 4s
20 0.9708 0.95 * 10~ 4s

Table 5.12: Accuracy and classification time for different number of samples per bit for positional
classification at 0S5y, NR

Layer 2CNN network 3CNN network 4CNN network
Convl 10x[40 2 1] filters | 10x[40 2 1] filters | 10x[40 2 1] filters
Conv2 10x[10 2 10] filters | 10x[10 2 10] filters | 10x[10 2 10] filters
Conv3 - 5x[10 2 10] filters | 10x[5 2 10] filters
Conv4 - - 5x[5 2 10] filters
Accuracy 0.9787 0.9739 0.9847
Classification time 0.83% 1015 0.90 * 10~ s 0.97 10~ %5

Table 5.13: Details for CNNs with CNNs with 2-4 convolutional layers at 0SNR

5.6.2 Comparison of differently sized CINNs

As can be seen in Table the CNN architectures for positional recognition appear to stay
extremely close to each other in terms of accuracy. All of these CNNs utilize a stride of [4 1] for
their first convolutional layer, and a stride of [2 1] for the remaining convolutional layers. This does
seem to point towards the neural network having little difficulty in classifying which position the
start of the signal appears in, allowing for a high accuracy without a high complexity.

Utilizing the neural network described in Figure[5.3] which is the same network as the 3CNN network
in Table the network appears to achieve a higher accuracy both when reducing and increasing
the filter size for the first convolutional layer. A reduction down to [20 2 1] gives an accuracy of
0.9799, while increasing the filter size to [80 2 1] gives an accuracy of 0.9823. The highest accuracy,
however, is achieved when reducing the stride along the 2nd dimension to 1, giving a filter size of
[40 1 1]. Utilizing this filter, the network was capable of achieving an accuracy of 0.9912. Reducing
the stride of the first convolutional layer, and adding additional padding to the convolutional layers
also increased the network’s accuracy. Still, these alterations did not manage to reach as high an
accuracy as changing the filter sizes did. Further details regarding each of the test-cases described
can be found in Appendix

5.6.3 CNN performance for positional classification

As mentioned earlier, the positional classification follows a hierarchical approach, where a sampled
region capable of holding up to 100 byte worth of data is first reduced from 100 byte region to 10 byte
region, from a 10 byte region to a 1 byte region, 1 byte region to 1 bit region, and then finally down to
a single sample. The examples shown up until now have all been from the neural network responsible
for reducing the area in question from a 10 byte region to a 1 byte region. The other CNNs have been
modelled based on the performance this CNN had through the previous test-cases. The details, such
as filter sizes and layer structure, regarding the structure of each CNN can be found in Appendix
[B7 The results for each of the CNNs can be seen in Table[5.14] with the measurements being from
the PSK modulation scheme at 0S,.;NR, and 20 samples per bit. The number of weights, biases

29

ANALYSIS RESULT
TIVATIONS LEARNABLES

NAME

1 imageinput Image Input 168101
160x10x1 im:

Convolution 33x9x10 Meights 48=2x1x18
Bias 1x1x18

Batch Normalization | 33x9x1@ Offset 1x1x18
Scale 1x1x1@

RelU 33%9x1@

5 | comv_2 Convolution 152810 Meignts 10w2x10x10
10 10x2x10 convolutions with strid Bias 1

1x1x18
Batch Normalization | 15=5=1@ Offset 1x1x10

& batchnorm_2
Btoh nomaliation with 10 shannels Scale 1x1x19

7 relu_2 ReLU 15x8x1@
ReLU
Convolution 4x7x5 Weights 19x2x19x5
Bias 1s1x5

Batch Normalization | 4=7x5 Offset 1x1x5
Scale 1x1s5

RelU 475

c Fully Connected 1x1x18 Meignts 10140
10 fully connected layer Bias 16=1

Softmax 1=1x18

: classoutpu Classification Output |-

Figure 5.3: CNN used as a basis for parameter alterations for positional classification

and floating point operations listed are the ones utilized for the convolutional layers, with the ones
needed for connecting to the output layer being placed in parenthesis.

The outermost CNN, which in Table has been called CNN(100B = 10B), showed a perfect
accuracy for the test-set in question. While the size of CNN(100B = 10B) may be reduced, the
version here was included due to keeping an accuracy of 0.9994 when the S,.;NR was reduced to
-6. However, one should keep in mind that since the position is randomized within the valid range,
and with that range in this case being rather large, the number of cases close to the borders between
the different output neurons would statistically be rather few. In addition, this version of the neural
network has a staggering 16000 input neurons in total.

As shown in Table the accuracy remains extremely high down to classifying the correct 1 bit
region of the input samples, maintaining an accuracy of 0.983 to the correct region. However, there is
a rather huge drop in accuracy to find the correct sample within that 1 bit region. As was mentioned
in Chapter the noise peaks for 0S,.y/NR can reach up to 55 in value. With a signal amplitude
set to 50, it should be understandable why the neural network struggles to reach high accuracy at
such a high precision. A spike in noise at the correct sample could either completely nullify the
signal at that sample, or heighten another sample to make it look like the start position. A note
to make is that CNN(1b = lsample) has a 0.88 chance of either predicting the correct sample or
be 1 sample off, which makes the system as a whole have a 0.865 chance of being at most 1 sample
off. Another note to make for CNN(1b = 1sample), which utilizes a single hidden layer trio, is that
it was the only case where a fully connected version got close in accuracy to its CNN counterpart.
In this case, a FNN managed to obtain an accuracy of 0.70. For the case of an S,y NR of -6, the
accuracy of CNN(10B = 1B) drops to 0.9285 and CNN(1b = lsample) to 0.8084, resulting in a
0.75 chance of correct classification within a 1 bit region. CNN(1b = 1sample) drops to an accuracy
of 0.3342, being mostly unusable at this point.

30

Neural Network Acc.(0Sref NR) | Class. time | #CNN weight+bias CNN FLOPS
CNN(100B = 10B) 1.0 12.0 10~ s 1925(+48 010) 5 174 400(496 000)
CNN(10B = 1B) 0.9912 0.90 x 10~%s 1925 (+3010) 624 000 (4+6000)

CNN(1B = 10b) 0.9918 0.96 * 10~%s 8460 (+5768) 1 000 800 (411 520)
CNN(1b = 1sample) 0.7226 0.13% 104 510 (+17 020) 17 000 (434 000)
Combined 0.7104 13.99 %1072 [12820 (+73 808) | 6 816 200 (4147 520)

Table 5.14: Performance and details for CNNs for positional classification.

Samples per bit | Accuracy | Accurate or 1 off | Classification time
4 0.3451 0.7955 4.08 x 10~ 4s
10 0.7168 0.9779 3.94 % 10~ 4s
20 0.9009 0.9985 4.76 x 10~ 4s

Table 5.15: Accuracy and classification time for different number of samples per bit for length
classification

5.7 Neural network for signal length analysis of RVM signal

5.7.1 Comparison of sampling rates

As should be apparent from Table[5.15] the number of samples used to describe one bit worth of data
has a significant impact on the accuracy of the neural network. This does makes sens, considering
the amount of samples directly correlate to how much of an actual difference there are between the
output neurons. Much more for the structural or positional cases, the classification of a signal’s
length randomly positioned in a noisy environment appears highly dependent on the sampling rate
of the receiver. As with structural and positional classifications, the CNNs utilized to yield the
results in Table had the parameters of their first convolutional layer scaled, in order to appear
as similar as possible.

The networks in the following subsections will utilize the 20 samples per bit version, as this one
appears to be the only one that may reach an acceptable accuracy.

5.7.2 Comparison of differently sized CINNs for length classification

Layer 3CNN network 4CNN network 5CNN network
Convl 30x[200 1 1] filters | 40x[200 1 1] filters | 50x[200 1 1] filters
Conv2 20x[50 1 30] filters | 30x[50 1 40] filters | 40x[50 1 50] filters
Conv3 10x[20 1 20] filters | 20x[20 1 30] filters | 30x[20 1 40] filters
Conv4 - 10x[10 1 20] filters | 20x[10 1 30] filters
Convb - - 10x[5 1 20] filters
Accuracy 0.6892 0.9009 0.9045
Accurate or 1 off 0.9727 0.9985 0.9887
Classification time 2.74 %1075 3.94% 10~ %s 7.57 107 %s

Table 5.16: Details for CNNs with 3-5 convolutional layers for length classification

31

Table shows a comparison between CNNs with different amounts of convolutional layers. While
the version utilizing 3 convolutional layers lacks behind, the 4 convolutional layers and 5 convolu-
tional layers versions are extremely close when it comes to obtaining the correct classification. With
a difference of only 0.0036, this remains within the area a neural network may deviate in accuracy
after training with the exact same input parameters. The details regarding these CNNs can be found

in Appendix and

using the 4CNN network from Table [5.16] as a basis, which can be seen in Figure [5.4] the neural
network’s stride, padding, and filters were altered in an attempt to achieve better accuracy. In
opposition to the results given when attempting to optimize for structural or positional classification,
reducing the stride of the first convolutional layer to the minimum amount ([1 1]) resulted in the
accuracy dropping to 0.5751, or 0.8755 for either being accurate or 1 sample off. Furthermore, both
increasing and decreasing the filter size of the first convolutional layer caused a loss in accuracy. For
a filter size reduced to [40 1], the accuracy dropped to 0.7241, and to 0.8027 for a filter increased to
[400 1] in size. Most results points to there being a middle-ground in complexity where the length
classification network has it’s peak in accuracy. Details regarding the neural networks used for each
of the test-cases can be found in Appendix

ANALYSIS RESULT =
NAME TYPE ACTIVATIONS LEARNABLES

1 imageinput Image Input 1000=1x1
1000x1x1 .

2 |comv_1 Convolution 206x1x40 Weights 20@x1x1x40
and padding [20 000 Bias 1141

Offset 1x1=40
Scale 1x1x49

Batch Normalization 284

ReLU
Convolution 84130 Weights 5@=1x48x3
ias 1x138

Batch Normalization | 84:=1x3@ Offset 1x1x30
Scale 1x1x30

T rel_2 ReLU 84x1%30
E conv_3 Convolution 35x1=20 Weights 20x1x3@=2@
20 20x1x30 convolutions with si [2 1] and pad 5000 Bias 1x1x20

o | batchnorm_3 Balch Normalization | 35x1x20 Offset 1x1%20
Batch normalization with 20 ch: Scale 1x1x2@

o |rew_3 ReLU 3551220

1 |conv_4 Convolution 16%110 Weignts 10%1%20w10
10 101x20 convolusions 50 Blas 1x1x1B

Balch Normalization | 16=1x18 Offset 1x1x10
Scale 1x1x18

2 | batchnorm_4

2 rel_d RelU 16x1x10
ReL

< i Fully Connected 1x1x26 Weights 26x160
28ty commesies layer Bias 26%1

Softmax. 1x1x26

Classification Output | -

Figure 5.4: CNN used as basis for parameter alterations for length classification

5.7.3 CNN performance for length classification

Figure [5.5] shows the CNN structure that yielded the highest accuracy. As shown in Table [5.17]
the accuracy this CNN achieved was 0.9359 for correct classification, and 0.9970 for being at most
one bit off. This CNN is, however, extremely large to the point of being comparable to the FNNs
discussed in Chapter Out of the 26 output neurons, the only one which differentiated from the
rest in form of accuracy is the ’0’ length neuron. This neuron had an accuracy of 0.998, having only
a single false classification out of the 500 instances that went through the classification procedure
for this output.

The accuracy of the CNN drops significantly when the S,.f/NR increases. With a S,.tNR of -6,
the accuracy drops to 0.3432, with the chance of it being either accurate of 1 bit off being 0.7868

32

ANA

1

LYSIS RESULT
+ | nane

imageinput
1000x 11 images with zerocenter normalizstion

conv_1
50 20011 comvolutions with siride [4 1] and pacding (20 000

batchnorm_1
Baich normakzstion with 50 channels

rei_1
ReLD

<50 convolutions with stride [2 1] and padding [10 0 0 0;

batchnorm_2
Batch normakzation with 40 channels

rely_2

ReLll

conv_3

30 20x140 convalutions with stride [2 1] and padding [5 0 0 0]

batchnorm_3
Batoh normalization with 20 channels

rel_3

x30 convolutions with stride [2 1] and padding [5 0 0]

batchnorm_4
Batch narmalization with 20 channels

reiu_4
RelU

26 fully connected layer

softmax
softmax

classoutput
crossentrapyex

TYPE

Image Input

Convolution

Batch Normalization

RelU

Convolution

Batch Normalization

ReLU

Convolution

Batch Normalization

ReLU

Convolution

Batch Normalization

RelU

Fully Connected

Softmax

ACTIVATIONS LEARNABLES

1680x1x1

20651550 Weights 20@x1x1%50
Bias 1x1x50

206x1x50 OFfset 1x1x50
Scale 1x1x50

206x1x50

8ax1x40 Veights 50x1x56x40
Bias 1xlxdn

Bax1xa OFfset 1x1x40
Scale 1x1x40

Bax1x4

35x1x30 Veights 20x1xdgx3p
Bias 1x1x30

35x1x30 OFfset 1x1x30
Scale 1x1x30

35x1x30

16x1x20 Meights 10x1x30x20
Bias 1x1x20

16x1x20 Offset 1x1x20
Scale 1x1x20

16%1%20

1x1x26 Meights 26x320
Bias 26%1

1x1%26

Classification Cutput | -

Figure 5.5: CNN optimized for accuracy for lengths classification

Accuracy

Accurate or 1 off

Classification time

CNN weights+biases

CNN add+mult ops

0.9359 0.9970

4.49 %10~ %5

134140 (+8346)

22 792 000 (+16640)

Table 5.17: Accuracy and classification time for length classification at 0SNR, and 20 samples per

bit

33

Chapter 6

Discussion

This chapter will discuss the methodology chosen, as well as the results presented in the previous
chapters.

6.1 Validity of generated data

As was mentioned during Chapter the generation for the RVM training and testing data was
done using manually using MatLab R2018a. This was done due to no existing databases with
relevant data being found. One aspect that should be kept in mind with this, is that since since
the data was made using programmed logic, there may be a risk of the ANNs managing to re-create
that logic, which would be an unintended effect. Also, because the data has been generated and
not sampled, some parameters have perfect replication, while in an actual sampled situation they
would not. An example of this would be that in the generated data, the ratio between the sampling
frequency and the signal frequency is a perfect integer with no deviation. Each bit is covered buy
an exact number of samples, and each instance have the exact same signal frequency. In a real
application, the sampled values may have small deviations in these aspects.

The case where the ratio between sampling frequency and signal frequency is not a perfect integer
value could have an effect on the overall accuracy. While the sampling points on the sinusoidal wave
have been skewed to represent a non-synchronized design, the sampling points remain the at the
same points for each bit-period of that instance. This essentially means that each binary value '1’
and ’0’ holds the same pattern, when not considering the added noise. For a non-integer ratio, the
points on the sinusoidal wave the samples are taken at would change depending on where the bit is
located in the sampled region, possibly causing an added complication for the classification process.
This would naturally have a higher impact when the ratio between sampling and signal frequency
is low, as for higher values, the difference would likely just act as a small addition of noise.

34

6.2 Accuracy and size of ANNs

The results shown throughout Chapter [5| usually points towards larger neural networks being more
accurate, up to a certain point. As should be apparent from Table in Chapter the fully
connected neural networks are far outmatched by the convolutional neural networks both in terms
of speed and accuracy. As further noticed in Chapter [5.5.9, [5.6.9}, and [5.7.3, the CNNs also appear
to perform best when the filter sizes of medium size. The likely cause could be that, while too
small may fail to gather sufficient parameters for a correct classification, a larger neural network
may end up with too many parameters that has no importance for the classification process, but
instead simply adds noise throughout the layers. As previously mentioned, the only case where
a fully connected network had a comparable accuracy was for the smallest neural network in the
positional classification. This neural network had a single convolutional or fully connected layer,
followed by a batch normalization layer and ReLU layer. Adding additional layers in this case only
caused the accuracy to decrease.

The amount of filters used in the convolutional layers probably have the largest impact when it
comes to the comparison of both physical (storage) and computational size versus the accuracy
achieved. While an increased number of filters does have a positive impact on the accuracy, they do
have a massive impact on both the computational requirements, and the amount of storage space
required. This increase in accuracy does seem to level out eventually. However, as exemplified in
Table one can gain a massive difference in terms of size and computational requirements at
only a small loss in accuracy. As long as a slight loss in accuracy isn’t a critical problem, it should be
considered to utilize a smaller CNN, especially in the case of limited storage, such as on a FPGA. Of
the other parameters, filter size padding appeared to have a window where they work best, meaning
changing them either to become smaller or larger than this area would have a negative impact on
the CNNs accuracy. With exception of the length classification, reducing the stride generally saw a
minor increase in accuracy, at the cost often having a significantly larger computational and spatial
footprint.

The amount of storage space required is also highly dependent on the amount of neurons in the last
layer before the output layer. Since the connection to the output is fully connected, it required a total
of n x m weights and m biases, with m being the number of neurons in the output layer, and n the
number of neurons in the layer connected to it. As is best seen in Table this number may be far
larger than that of the convolutional layers combined. An increase in the number of convolutional
layers may therefore actually cause a net gain in both size and computational requirements. A
comparison between the 5 convolutional layer networks shown in Table and the accuracy
appears to be more linked to the number of neurons connected to the output layer than the actual
number of convolutional layers.

A common trend that goes throughout the entire testing procedure would be that the accuracy is
highly linked with how many input neurons are used to differentiate between two output neurons. In
other words, the robustness is directly linked with how many samples the noise must distort before
invalidating that section of the input. This should come as no surprise, as it essentially equates to
increasing how distinct each output neuron appears from the others.

Network sizes influenced the training time for the networks. While the training times have not been
included as part of this thesis, a general understanding in the difference in training time can be
seen by looking at the classification times for each ANN. A thing to keep in mind would be that all
of these classification times are taken using CPUs, meaning devices with more parallelism such as
GPUs or FPGAs should require a much lower time for both training and classification.

35

6.3 Time-domain versus frequency-domain

One of the early decisions made during for this thesis was to look at the comparison between how
time-domain input data and frequency-domain input data. While these two domains essentially
contains the same data, the CNNs proved much better at recognizing differences in the time-domain
for these cases than for the frequency domain. As the cases looked at could be described as primarily
an evaluation of signal amplitude, this shouldn’t be that much of a surprise. One would, however,
still expect the frequency domain version to outperform the time-domain for cases more closely
related to the signal’s frequency, as those should have a greater distinction in the frequency domain.

Other parameters, such as the higher-order parameters utilized to classify modulation scheme in
cognitive radio, as described in Chapter [3.I] may also be of use as input parameters, either as an
addition or as a replacement to having the time-data inputs. An advantage that could be made
if higher-order variables prove accurate enough would be that the neural network structures they
utilize could potentially be of a significant smaller size than the ones the time-data CNNs utilize.

6.4 Results for the classification problems

The choice of solver algorithms used to minimize the loss/error function does appear to have quite
the impact on how well the ANN is able to be trained. As shown in Table[5.1] this difference appears
to be largest when the accuracy is low, with the ADAM solver pulling ahead of both RMSProp and
SGDM for these cases.

The modulation scheme also seems to have an impact on the classification process. However, the
difference appears to be more linked to the amount of data visible to the neural network, and not
as much as to the actual modulation scheme. As an elaboration for this, the FSK and PSK has
remained extremely close in terms of accuracy throughout all tests, commonly within 1% of each
other, usually taking turns on who’s most accurate. Even when using the same neural network and
the same set of training data, the resulting accuracy tends to deviate up to around 0.3%. This is most
probably caused by a combination of the randomized initial weights and biases in combination with
the random order the training data. The difference between FSK and PSK is therefore basically
negligible. ASK, on the other hand, had consistently worse results than the other two. Since it
utilizes on-off-keying, the binary value '0’ is described as an absence of signal. This results in the
neural network essentially having half the amount of visible data to work with. The amount of visible
data the modulation scheme gives the neural network therefore appears to be far more significant
than how the visible data is structured.

As previously mentioned, the accuracy appears to correlate mostly with how many samples that
differentiate the output neurons. As an be seen in Table the false classifications are primarily
a failure to detect the end-point of the data package. These cases are most probably the cases
where the end point is located only a few samples from the end of the sampled region, making a
few, or even a single, spike in the added noise enough to cause a wrong classification. This would
also mean the accuracy is dependent on the size of the sampled region for this classification. Since
the signal’s position is randomized, a larger sampled region would make it less likely for a signal to
be placed close to the edges. An added note would also be that the most accurate solution for the
structural may prove too large to be implemented on an FPGA or a similar device. As the structural
classification is trained to look for specific patterns, it must also be trained specifically for a set of
structures to look for. CNNs does however appear to be capable of distinguishing between single
binary differences, as the cases where their only difference was the binary value of the 1-bit SoF

36

delimiter had an accuracy of 0.994 and 0.993 respectively for OSNR.

Positional classification appears highly accurate down to the 1bit region, which for the case shown
equated to a region of 20 samples. These neural networks, even combined, are significantly smaller
than the ones used for both structural and length analysis. The largest CNN in the hierarchy could
also probably be reduced in size without much loss in accuracy, due to how well it holds up even at
a SNR of -6. However, one should keep in mind that much of the reason why the larger networks
have such a high accuracy is due to how unlikely the randomized position in the training and test
set are to be placed near the edges of each region. This CNN hierarchy may be the one most likely
to be useful for more general cases, with the primary challenge for implementing it on a FPGA
being funneling data to the 16000 input neurons. The network does by no means have to start out
covering such a large region, as the size was mostly chosen to verify if the network would be able to
pinpoint the position from such a large set of data.

Out of the three, the length classification is the worst performer both in terms of accuracy, and in
terms of size and computational requirements. Considering the high accuracy of the positional clas-
sification hierarchy, it will probably be more beneficial to just run the region through this hierarchy,
reversing the order of the neurons to find the end-point.

6.5 Possible improvements

While the CNNs have gone through an optimization process, this does not mean they cannot be
improved further in terms of accuracy, size, or computational requirements. Out of the three,
positional architecture is probable the only one that could have any use for a general case.

One optimization could be to look for the amount of convolutional filters that would yield the
smallest amount of storage requirement while maintaining a near peak accuracy. Attempting to
make the cases more generalized would also be a possible optimization. Also, as mention in Chapter
finding structures that work for binary neural networks would be a possible optimization option,
as it could reduce both the number storage registers needed, as well as being able to utilize counters
instead of arithmetic logic units (ALUs)

6.6 Additional features

This thesis has mostly focused on looking for structural characteristics contained in a RVM signal.
More analogue values such as amplitude, frequency, rise times, and so on could also be of interest.
The main challenge with more analogue values would be that, since a neural network’s output has
a binary form, these characteristics would most likely be classified within ranges instead of exact
values.

37

Chapter 7

Conclusion

This thesis aimed to develop and test a series of artificial neural networks for classification of features
in a radio signal described through real value modeling. The thesis chose to focus on three primary
characteristics: the search for structural characteristic, the search for delay, by finding the starting
position of a signal within a sampled region, and by finding the length of a RVM signal. The
data generation and test environment were done using MatLab R2018a. All data was subjected to
Gaussian white noise with a SNR compared to a reference signal power of 25. This resulted in noise
peaks roughly equal to the signal amplitude at 0S5,.; N R.

Of the three different solvers tested, the ADAM solver proved to yield the highest accuracy when
the resulting accuracy could be considered low, especially sub 50%. SGDM, RMSProp, and ADAM
all having roughly equal performance for high accuracy systems, especially above 90%. Of the three
modulation schemes utilized, the FSK and PSK performed roughly equal, while the ASK (OOK)
modulation lacked behind for all tests completed. This seems to be more a result of FSK and PSK
providing the neural network with more data, as ASK (OOK) does not provide data for binary
‘0’ values, as opposed to the actual form the data takes. CNN architectures outperformed FNN
architectures by 20-50% in accuracy, while maintaining a far smaller physical and computational
footprint. Time-domain input data yielded higher accuracy results than frequency-domain input
data. The closest comparison here was the positional classification, yielding 0.9450 in accuracy for
time-domain input data, and 0.9134 for frequency domain input data.

The structural characteristics achieved an accuracy of 0.9623 at 0S,..y N R with a classification time
of 34.0 x 10~%s on average for each classification. The sum of weights and biases for this network
was 55360, requiring roughly 37.1 million floating point operations for its convolutional layers, plus
the connections to the output layer. A smaller version which achieved an accuracy of 0.9529, with
a classification time of 9.92 * 10~%s, 12178 weights and biases, and roughly 7.7 million floating point
operations for its convolutional layers and the output layer. The network had an accuracy of 0.993
at recognizing a single-bit identifier, with the primary source of false classifications being detecting
the signal end-point when placed close to the edge of the sampled region.

The positional characteristics was developed in a hierarchical fashion, where the first CNN took in a
sampled region capable of holding 100 bytes worth of data, and determining in which 10 byte region
the start of the signal was located in. The second CNN would further pinpoint the region down to
a 1 byte region, the 3rd down to a 1 bit region, and the forth attempt to find the exact sample.
The CNN hierarchy achieved an accuracy of 0.983 to classify the right bit region at 0S,.yNR, and

38

0.7104 for classifying the correct sample. The total classification time for the entire hierarchy was
13.99 * 10~%s, not counting the time needed to move data from one network to the other. The
sum of weights and biases for the entire network was 86628, whereas 73808 were between the last
convolutional layer and the output layers in the CNNs. The total number of floating point operations
for the convolutional layers and output layers were roughly 7.0 million. The hierarchy achieved a
0.75 accuracy for classifying the correct bit region at -60S,..5/N R, with the last CNN being unable
to reliably classify the correct sample at this 05,y N R value.

The length characteristics achieved an accuracy of 0.9359, with a 0.9970 chance of being either
accurate or 1 bit off. The classification time for the network was 4.49 * 10~%s per classification.
The sum of weights and biases for the convolutional layers plus the output layer 142486, with the
number of floating point operations performed by these layers being roughly 22.8 million. The
accuracy dropped to 0.3432 when the S,y NR was decreased to -6, with a 0.7868 chance of being
either accurate or 1 bit off. Running through the positional CNN hierarchy twice to obtain the start
and end position should generally outperform using the CNN for length characteristics.

7.1 Future work

A natural way forward would be to attempt to characterize other radio signal utilizing real value
modeling and artificial neural networks. Examples of such features could be signal power, frequency,
and rise/fall times. Further exploration into possible higher-order parameters to use as inputs for
the ANNs could also be a viable next step.

Another path forward would be to implement the CNNs into an FPGA, analyzing the classification
times and comparing them to that of SPICE or AMS. One may also attempt to include the CNN
architectures into an actual verification procedure and measure their performances. One may also
wish to generalize the structures to create a wider area of use.

A separate route, as mentioned during Chapter [6 would be to utilize fixed data types with a reduced
precision. Binary neural networks are a valid candidate to explore, but so is reducing the data types
down to 8 bit fixed point.

39

Bibliography

Pete Hardee Sathishkumar Balasubramanian. Solutions for mixed-signal soc verification using
real number models.

Kathleen A. Meade Sharon Rosenberg. A Practical Guide to Adopting the Universal Verification
Methodology (UVM). Cadence Design Systems, Inc., 2010.

Accellera Systems Initiative. Universal Verification Methodology (UVM) 1.2 User’s Guide,
October 2015.

Accellera Systems Initiative. Universal Verification Methodology (UVM) 1.2 Class Reference,
June 2014.

Hao Fang Neyaz Khan, Yaron Kashai. Metric driven verification of mixed-signal designs.
Martin Barnasconi. Systemc ams extensions: Solving the need for speed.

Tan Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016. http:
//www.deeplearningbook.org,

Tom M. Mitchell. Machine Learning. McGrac-Hill Science/Engineering/Math, March 1997.

Michael Nielsen. Neural Networks and Deep Learning. Online Book, Dec 2017. http://
neuralnetworksanddeeplearning.com/index.htmll

Giulio Gambardella Michaela Blott Philip Leong Magus Jahre Kees Vissers Yaman Umuroglu,
Nicholas J. Fraser. Finn: A framework for fast, scalable binarized neural network inter-
face. FPGA ’17 Proceedings of the 2017 ACM/SIGDA International Symposiom on Field-
Programmable Gate Arrays, pages 65—74, February 2017.

Christopher M. Bishop. Pattern recognition and machine learning. Springer,
2006. http://users.isr.ist.utl.pt/~wurmd/Livros/school/Bishop/%20-%20Patterny,
20Recognition’20And%20Machine’20Learning?20-%20Springer20%202006 . pdf.

Jimmy Ba Diederik P Kingma. Adam: A method for stochastic optimization, Dec 2014. |arXiv:
1412.6980v9l

Deep learning training from scratch: Options for training deep learning neural network. https:
//se.mathworks.com/help/nnet/ref/trainingoptions.html.

Howard B. Demuth Mark Hudson Beale, Martin T. Hagan. Neural network toolbox user’s
guide, March 2018. https://se.mathworks.com/help/pdf_doc/nnet/nnet_ug.pdf.

MathWorks Inc. Neural network toolbox. https://se.mathworks.com/help/nnet/index.
html.

40

http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://neuralnetworksanddeeplearning.com/index.html
http://neuralnetworksanddeeplearning.com/index.html
http://users.isr.ist.utl.pt/~wurmd/Livros/school/Bishop%20-%20Pattern%20Recognition%20And%20Machine%20Learning%20-%20Springer%20%202006.pdf
http://users.isr.ist.utl.pt/~wurmd/Livros/school/Bishop%20-%20Pattern%20Recognition%20And%20Machine%20Learning%20-%20Springer%20%202006.pdf
arXiv:1412.6980v9
arXiv:1412.6980v9
https://se.mathworks.com/help/nnet/ref/trainingoptions.html
https://se.mathworks.com/help/nnet/ref/trainingoptions.html
https://se.mathworks.com/help/pdf_doc/nnet/nnet_ug.pdf
https://se.mathworks.com/help/nnet/index.html
https://se.mathworks.com/help/nnet/index.html

[16]

[17]

[18]

[19]

Christian Szegedy Sergey loffe. Batch normalizaiton: Accelerating deep network training by
reducing internal covariate shift, March 2015. arXiv:1502.03167.

Daniel Grady Daniel Gebhardt Benjamin Migliori, Riley Zeller-Townson. Biologically inspired
radio signal feature extraction with sparse denoising autoencoders, May 2016. arXiv:1605.
05239.

Jide Julius Popoola. Automathic recognition of both inter and intra classes of digital modu-
latated signals using artificial neural networks. Journal of Engineering Science and Technology,
9:273-285, 2014.

E.E. Azzouz Asoke K. nandi. Algorithms for automatic modulation recognition of com-
munication signals. IEEE transactions on communications, 46(10), April 1998. https:
//ieeexplore.ieee.org/stamp/stamp. jsp?arnumber=664294.

Ole Martin Skafsa. Fpga implementation of a convolutional neural network for ”wake up word”
detection. Master’s thesis, June 2017.

MathWorks Inc. Matlab r2018a. https://se.mathworks.com/products/new_products/
latest_features.html?s_tid=srchtitle.

41

arXiv:1502.03167
arXiv:1605.05239
arXiv:1605.05239
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=664294
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=664294
https://se.mathworks.com/products/new_products/latest_features.html?s_tid=srchtitle
https://se.mathworks.com/products/new_products/latest_features.html?s_tid=srchtitle

Appendix A

Artificial neural network results for
structural test-cases

0: No signal detected

P: Only preamble detected

D: Only data detected. End-point not present within sampled data
DE: Only data detected. End-point found within sampled data

PD: Preamble and data detected. Correct SoF delimiter not found. End-point not found within
sampled data

PDE Preamble and data detected. Correct SoF delimiter not found. End-point found within
sampled data

PSD: Preamble and data detected. Correct SoF delimiter detected. End-point not found within
sampled data

PSDE: Preamble and data detected. Correct SoF delimiter detected. End-point found within
sampled data.

42

A.1 Comparison between the different solvers for analog struc-
tural feature analysis

Signal information:

Modulation Scheme ASK, FSK, PSK
Amplitude 50 peak
Noise Levels 0 SNR: approx 14.0 average amplitude , approx 50 peak
Input size 50 bit area
Data bits 0-25
Samples per bit 10
Periods per bit 1
Phase-scew Randomized within timespace of 1 sample

Training options:

Solver sgdm, rmsprop, adam
Epochs 100
Iterations per epoch 62
Learning rate Constant 0.01 (sgdm), Constant 0.001 (rmsprop, adam)

Network Structure:

ANALYSIS RESULT
NAME TYPE ACTIVATIONS LEARNABLES

+ | imageinput Image Input
50011 images with ‘zerocsnier normalization

2 |conv_1 Convolution

Batch Normalization 26
RelU

= |comv 2 Convolution

Batch Normalization 4x1=20

7 |reu_2 ReLU

= |comy_3 Convolution

Batch Normalization | 38=1x1@

ReLU J8<1-10
Fully Connected 1x1=3 Weights Bx38@

Bias 8
Softmax 1=1%8 -

Classification Cutput |-

Analog signal structural feature analysis using SGDM:

Accuracy ‘ 0.8057 ‘
ASK Execution time 1.0465s (for 8000 iterations)
Execution per iteration 1.00 * 10~ 4s
Accuracy 0.9265
FSK Execution time 0.8373s (for 8000 iterations)
Execution per iteration 1.05 % 10~ %s
Accuracy 0.9384
PSK Execution time 0.8085s (for 8000 iterations)
Execution per iteration 1.01 % 10~ %s

43

Analog signal structural feature analysis using RMSProp:

Accuracy \ 0.8115 \
ASK Execution time 0.8565s (for 8000 iterations)
Execution per iteration 1.07 % 10™4%s
Accuracy 0.9300
FSK Execution time 0.8159s (for 8000 iterations)
Execution per iteration 1.02 % 10™4s
Accuracy 0.9350
PSK Execution time 0.7630s (for 8000 iterations)
Execution per iteration 0.95 % 10~ *s

Analog signal structural feature analysis using ADAM:

Accuracy 0.7889
ASK Execution time 1.2283s (for 8000 iterations)
Execution per iteration 1.54 % 10™4s
Accuracy 0.9165
FSK Execution time 0.8003s (for 8000 iterations)
Execution per iteration 1.00 % 10~ %s
Accuracy 0.9185
PSK Execution time 0.9534s (for 8000 iterations)
Execution per iteration 1.19 % 10~ %s

44

A.2 Structural comparison of time-data and FFT

Signal information:

Modulation Scheme PSK

Amplitude 50 peak

Noise Levels

0 SNR: approx 14.0 average amplitude , approx 50 peak

Input size 50 bit area

Data bits 0-25

Samples per bit 10

Periods per bit 1

Phase-scew

Randomized within timespace of 1 sample

Training options:

Solver

adam

Epochs

100

Iterations per epoch

62

Learning rate

Constant 0.001

Network Structure for time data and FFT (amplitude only):

ANALYSIS RESULT
NAME

imageinput
500x1x1 images wit

batchnorm_3

rei_3

fc

softr

—
Image Input
Convolution

Batch Normalization
ReLU

Convolution

Batch Normalization
ReLU

Convolution

Batch Normalization
RelU

Fully Connected

Softmax

ACTIVATIONS

5e@x1x1

206%1%30

206%1%30

206x1x30

84x1x20

54x1x20

54x1x20

35=1x10

38=1x10

38x1x10

1x128

1158

Classification Cutput |-

45

LEARNABLES

Weights 10@x1x1x3@
Bias 15130
OfFfset 1x1x30
Scale 1x1x38

Weights 5@x1x38x20
Bias 1x1x20
Offset 1x1x20
Scale 1x1x20

Weights 20=1x20x10
Bias 1x1x18

Offset 1x1x18
Scale 1x1x1@

Weights 8380
Bias ax1

Network Structure for FFT (amplitude and phase):

ANALYSIS RESULT

NAME

imageinput
500:x1x2 images with ‘zerocenter’ normalization
2 [conv_1
30 103K 12 convoiutions with sride [2 1] 2nd padaing [10 00 0

batchnorm_1

PSK time-domain classification results

Accuracy

0.9185

Execution time
Execution per iteration

PSK FFT classification results with amplitude and phase:

Accuracy

0.9534s (for 8000 iterations)
1.19 % 10™%s

0.6276

FFT time
FFT time per iteration

1.6516s
2.06 % 10~ 4s

Execution time
Execution per iteration

PSK FFT classification results with only amplitude:

Accuracy

1.1462s (for 8000 iterations)
1.43 %107 %s

0.4960

FFT time
FFT time per iteration

0.3029s
0.38 % 10~ 4s

Execution time
Execution per iteration

0.7653s (for 8000 iterations)
0.96 % 10~ s

46

TYPE

Image Input

Convolution

Batch Normalization

ReLU

Convolution

Batch Normalization

ReLU

Convolution

Batch Normalization

RelU

Fully Connected

Softmax

oNs

50@x1=2

206x1x30

206x1x30

206x1x30

84x1x20

84x1x20

B4x1x20

38x1x1@

38x1x1@

38+1x10

Classification Qutput |-

leignts
Bias

10@x1x2=30
1x1x38

Offset 1x1x3@
Scale 1x1%3@

Heights
Bias

58=1x39=20
1x1x20

Offset 1x1x20
Scale 1x1x20

Weights
Bias

20=1x20=1@
1x10

Offset 1x1x1@
Scale 1x1x1@

Weights
Bias

8x380
Bl

A.3 ASK, FSK and PSK comparison at different SNR for

structural analysis

Signal information:

Modulation Scheme

ASK, FSK, PSK

Amplitude 50 peak
Noise Levels Varies
Input size 50 bit area
Data bits 0-25
Samples per bit 10
Periods per bit 1

Phase-scew

Randomized within timespace of 1 sample

Training options:

Solver adam
Epochs 100
Iterations per epoch 62
Learning rate Constant 0.001

Network Structure:

ANALYSIS RESULT
NAME

+ | imageinput
500x1x1

2 |co

= |batchnorm_1

= |comv_2

s | batchnorm_2

E \CTIVATIONS LEARMABLES
Image Input Sevx1x1
Convolution 05138

Weights 10@x1x1x3@
Bias 153

Batch Normalization | 2e6x1x3@ Offset 1x1=3@

Scale 1x1x30
RelU 06x1x30
Convolution B4x1x20 Weights S@x1x3@x20
Bias 1x1x20
Batch Normalization | 84x1x20 Offset 1x1x20
Scale 1x1x20
RelU 84120
Convolution 8110

Weights 20=1x20x10
Bias 1x1x18

Offset 1x1x18
Scale 1x1x1@

Batch Normalization | 38=1x1@

ReLU 5<1x10
Fully Connected 1x1=3 Weights Bx38@

Bias 8x1
Softmax 1=1%8

Classification Cutput |-

6SNR
Accuracy ‘ 0.8820 ‘
ASK Execution time 0.8027s (for 8000 iterations)
Execution per iteration 1.00 % 10~ %s
‘ Accuracy ‘ 0.9781 ‘

Execution time

FSK
Execution per iteration

0.8243s (for 8000 iterations)

1.03 x 10 4s

47

‘ Accuracy ‘ 0.9653 ‘
PSK Execution time 0.8968s (for 8000 iterations)

Execution per iteration 1.12 % 10™%s
-6SNR
Accuracy ‘ 0.4706 ‘
ASK Execution time 0.7542s (for 8000 iterations)
Execution per iteration 0.94 % 10~ %s
Accuracy 0.6953
FSK Execution time 0.7545s (for 8000 iterations)
Execution per iteration 0.94 % 10~ %s
Accuracy 0.7318
PSK Execution time 0.8005s (for 8000 iterations)
Execution per iteration 1.00 x 10~4%s

48

A.4 Comparison compared to fully connected neural net-
works

Neural numbers for each layer have been chosen to match the number or neurons each CNN network
in Chapter Please refer to this, and and other chapter describing CNN results, for comparisons.
The FNNs below all utilize the same set of training and test data.

Signal information:

Modulation Scheme ASK, FSK, PSK
Amplitude 50 peak
Noise Levels 0 SNR: approx 14.0 average amplitude , approx 50 peak
Input size 50 bit area
Data bits 0-25
Samples per bit 10
Periods per bit 1
Phase-scew Randomized within timespace of 1 sample

Training options:

Solver adam
Epochs 100
Iterations per epoch 62
Learning Constant 0.001

Network Structure: The network below is made to have equal number of nodes in each of the
three fully connected layers as the standard CNN size used in Appendix

ANALYSIS RESULT =
NAME TYPE ACTIVATIONS LEARNABLES

imaget Image Input 506x1x1
500x1x s
2 i1 Fully Connected 1=1x56158 Meights 6150<500
8180 Bias 61801
Baich Normalization | 1<1x5158 Offset 1x1x6150
Scale 1x1x6180
ReLU 1=1+6180
Fully Connected 1<1x1658 Meights 1650=6180
Biss 16891
Batch Normalization | 1<1+1680 Offset 1<1x1680
Scale 1%1%1680
ReLU 1=1x1680
Fully Connected 1=1x380 Meights 380<1680
Bias 38051
Batch Normalization | 1=1x382 Offset 1x1x380
Scale 1x1%380
ReLU 1x=1x38@
Fully Cennected 121%8 ueights 8=382
Bias 8«1
Softmax 1x1%8

Classification Output |-

Batch Normalization layers are include here, as otherwise the training reaches a certain point before
the training accuracy breaks down, causing the network to give the same prediction regardless of
input.

Classification results:

‘ Accuracy ‘ 0.6440 ‘
Execution time 8.3247s (for 8000 iterations)
Execution per iteration 10.0 * 10~ %s

49

One aspect worth noting is that training this FNN required a total training time of 194 minutes,
while the CNN equivalent can requires only around 10 minutes for the same case.

50

A.5 Structural analysis for different number of samples per
bit

A comparison to 10 samples per bit can be found in Appendix

Signal information:

Modulation Scheme ASK, FSK, PSK
Amplitude 50 peak
Noise Levels 0 SNR: approx 14.0 average amplitude , approx 50 peak
Input size 50 bit area
Data bits 0-25
Samples per bit varies
Periods per bit 1
Phase-scew Randomized within timespace of 1 sample

Training options:

Solver adam
Epochs 100
Iterations per epoch 62
Learning rate Constant 0.001

20 samples per bit

Network Structure:

ANALYSIS RESULT -
NAME ACTIVATIONS LEARNABLES
+ | imageinput Image Input 160011
1000x1x on
2 |conv_1 Convolution 2061%38 Weights 20@x1x1x30
30 200 padding [20 800 Bias 1x1x38
3 batchnorm_1 Batch Normalization | 286x1x3@ Offset 1x1x30
Batch normalization with 30 channels Scale 1x1<39
RelU 206x1x30
Convolution B84x1=20 veights 50x1x30=28
ias 1x1x20
Batch Normalization 84x1x28 Offset 1x1x2@
Ba Scale 1x1x2@
7 relu_2 ReLU Bax1=20
E conv_3 Convolution 38=1x10 Weights 20x1x20=1@
10 2 1] and padding [10 0 Bias 1x1x18
Batch Normalization | 38x1x1@ Offset 1x1x1@
Scale 1x1xl@
o |rew_3 RelU 38%110
fc Fully Connected 1x158 Weights 8<380
8 ted layer Bias 8x1
2 |softma Softmax 1x1%8
: | classoutput Classification Output | -
crossentrapye

Results:
‘ Accuracy ‘ 0.9356 ‘
Execution time 0.8623s (for 10000 iterations)
Execution per iteration 1.08 % 10~ %s

o1

4 samples per bit

Network Structure:

ANALYSIS RESULT

+ | nAmE TvPE ACTIVATIGNS
1 imageinput Image Input 209=1x1 =
200x1x1 images with ‘zeracenter normalization
2 Convolution 165x1x30 Weights 49=1x1x30
1 convoltions with strd [1 1] and padding [4 0 0 0] Bias 1x1x30
2 | batchnorm_1 Batch Normalization | 165x1x3@ Offset 1x1x30
Batoh nermalization with 30 channels Scale 1x1=3@
4 relu_1 ReLU 165x1x30 -
ReLU
5 conv_2 Convolution £3x1x20 Weights So=1x3@x20
20 50%1x30 canvalutions with stride [2 1] and padding [10 00 0] Bias 1x1x20
& | batchnorm_2 Batch Normalization | 63x12@ Offset 1x1x20
Batoh nermalization with 20 channels Scale 1x1=20
7o rel_2 ReLU 63x1x20 -
RelU
8 Convolution 27x1x10 Weights 20=1x28x19
0 convolutions with stride [2 1] and padding [10 00 0] Bias 1<1x10
¢ | batchnorm_3 Batch Normalization | 27x1x1@ Offset 1x1x10
Batch normalzation with 10 channels Scale 1x1x1@
o re_3 ReLU 27x1=10 -
ReLU
1 |fc Fully Connected 1x1=8 Weights 8279
8 fully connested layer Bias gx1
2 | softmax Softmax 1x1x8 -
sofimax
: | classoutput Classification Output - -

crossentropyex

Results:

Accuracy ‘ 0.8146 ‘
Execution time 0.7340s (for 10000 iterations)
Execution per iteration 0.92 * 10~ *s

52

A.6 Structural comparison of differently sized CNNs

Signal information:

Modulation Scheme

PSK

Amplitude

50 peak

Noise Levels

0 SNR: approx 14.0 average amplitude , approx 50 peak

Input size

50 bit area

Data bits 0-25
Samples per bit 20
1

Periods per bit

Phase-scew

Randomized within timespace of 1 sample

Training options:

Solver adam
Epochs 100
Iterations per epoch 62
Learning rate Constant 0.001

Unmodified structure with results:

Network Structure:

ANALYSIS RESULT
NAME

1 imageinput
1000x1x1

T relu_2

s conv_3

Results:

Accuracy

E ACTIVATIONS
Image Input 1008x11
Convolution 206x1=38
Batch Normalization | 2e6x1+32
RelU 206%1%30
Convolution B84x1x20
Batch Normalization | 84x1x2¢
RelU 8ax1x20
Convolution Bx1x10

Batch Normalization | 38x1x1@

RelU 8x1x1@
Fully Connected 1x1x8
Softmax 1x1x8

Classification OQutput | -

0.9356

Execution time
Execution per iteration

4 CNN layers

Network Structure:

Results:

0.8623s (for 10000 iterations)

1.08 % 1045

53

LEARNABLES

Meights 200=x1x1x38
Bias %138

Offset 1x1%30
Scale 121%3@
Weights 5@x1x30x20
Bias 1%1%28
Offset 1x1%20
Scale 1x1x20
Meignts 20x1:20v10
Bias 1%1x18
Offset 1x1x10

Scale 1x1x18

ueignts 8x380
Bias &+l

ANALYSIS RESULT

+ | naue TvPE ACTVATIONS LEARNABLES
1 imageinput Image Input 1089=1=1 =
10001 images with ‘zerocenier’ nomalization
2 [conv_t Comvolution 206+1x30 Weights 20@x1x1x38
30 20011 convolutions wih stride. [4 1] and psdaing (200 0 0] Bias 1elx3p
2 |batchnorm_1 Balch Normalization | 206<1x38 Offset 1x1<38
Baton nomaEaton with 20 crannels Scale 1x1:38
4 [re_t ReLU 206+1x30 -
ReLU
s [comv_2 Comvolution Bax1-20 Weights 50x1x32%20
20 50x130 convoluons with stide [2 1] and padding [10 0 0 0 Bias 1elx28
s |batchnorm_2 Balch Normalization | 84x1<28 Offset 1x1<28
Batch normakizaton with 20 channels Scale 1x1x28
c ez ReLU Bax1x20 -
ReLU
B Convolution 38w120 \eignts 20%1%28%20
20 convoluions with stide [2 1] and padding [10 00 0 Bias 1x1x28
@ | batchnorm_3 Batch Normalization | 38=1x2@ Offset 1x1x28
Batch normaiizaton with 20 channels Scale 1x1x28
o relu3 ReL 38x1x20 -
ReLU
" Convolution 15w112 \eignts 20%1x2010
convalutions with stide [2 1] and padding 100 0 0] Bias 1slx1p
2 | batchnorm_4 Batch Normalization 15=1x1@ Offset 1x1x18
Batch normaiizaton with 10 channels Scale 1xixle
S relud ReL 15w112 -
ReLU
4 |fc Fully Connected 1x1x8 Weights 8x150
& fully connected layer Bias 8xl
5 |softmax Softmax 1x1x8 -
sofimas
: | ciassoutput Classification Outout | - -
crozsentropyex
Execution time 0.8994s (for 10000 iterations)
Execution per iteration 1.12%x107%s
Network Structure:
:
ANALYSIS RESULT O]
+ [naue |rvee CTIVATIONS LEARNABLES
1 imageinput Image Input 1089=1=1 =
1000x 11 images with ‘zerocenter’ normaiization
2 [conv_t Comvolution 206+1x30 Weights 20@x1x1x38
30 20011 convolutions wih stride. [4 1] and psdaing (200 0 0] Bias 1elx3p
2 |batchnorm_1 Balch Normalization | 206<1x38 Offset 1x1<38
Baton nomaEaton with 20 crannels Scale 1x1+3e
4 [rew_1 ReLU 206+1=30 -
ReLU
s Comvolution Bax1-20 Weights 50x1x32%26
20 convolutions with stride (2 1] and padaing (1000 0 Bias 1elx28
s |batchnorm_2 Balch Normalization | 84x1<28 Offset 1128
Baton normaEaton with 20 crannels Scale 1x1x28
c ez ReLU Bax1x20 -
ReLU
B Convolution 38w120 \eignts 20%1%2820
e [2 1] and padding [10 0 0 0 Bias 1x1x28
¢ |batchnorm_3 Balch Normalization | 38x1<28 Offset 1x1<28
Batch normaiizaton with 20 channels Scale 1x1x28
o relu_2 ReLU 38=1<20 -
ReL0
 conv 4 Convolution 15w112 \eignts 20%1x2010
10 20x1x20 convalutons with skide [2 1] and padding [10 0 0 0 Bias 1elxld
2 | batchnorm_4 Batch Normalization 15=1x1@ Offset 1x1x18
Batch normaiizaton with 10 channels Scale 1xixle
5 relud ReL 15x1x12 -
ReLU
4 |conv_5 Convolution 3x1%5 Weights 2@x1x1@xs
201210 convelutions with strid (2 1] and padding [10 0 0 @] Bias 15
5 | batchnorm_5 Batch Normalization | 3x1x5 Offset 1x1=5
Bstoh normalzation with & channsls Scale 1x1x5
s relus ReL 3e1n5 -
ReLU
7T Fully Connected 1x1x8 Weights 8=15
& fully connected layer Bias 8xl
| sonmax Softmax 1:1+8 -
softm

classoutput Classification Qutput | - -
crossentropyex

Results:

| Accuracy | 0.8601 |
Execution time 1.4734s (for 10000 iterations)
Execution per iteration 1.84 %10~ %s

54

2 CNN layers

Network Structure:

ANALYSIS RESULT

+ [Name

imageinput
1000x1x1 images with 'zerocenter’ nermalization

conv_1
30 200x1x1 canvolutions with stride [4 1] and padding [200.0 0

batchnorm_1
Batch nermalization with 30 channels

relu_1
Rell

conv_2
5 20x1x30 convolutions with stride [2 1] and padding [10.0 0.0]

batchnorm_2
Baich normalzation with 5 channsls

relu_2
Rl
8 fully connected layer

softmax
softmax

classoutput
crossenropyex

Results:

Accuracy ‘ 0.9130 ‘

Execution time 0.8902s (for 10000 iterations)

Execution per iteration 1.11 %10 %s

95

TYPE

Image Input

Convolution

Batch Normalization

RelU

Convolution

Batch Normalization

RelU

Fully Connected

Softmax

Classification Qutput

AGTIVATIONS

100@:1x1

206x1x30

206x1x30

206x1x30

99x1=5

99x1x5

99x1x=5

1158

1=1x3

Weights
Bias

Offset
scale

Weights
Bias
Offset
Scale

Weights
Bias

200=1x1x32

1x1=38
11232
1x1%3@

20x1=30x5

115
1x1x5
1x1x5

8495
81

Smaller sized convolutional filters

Network Structure:

ANALYSIS RESULT

1 imageinput Image Input 1066=1<1 E
2 Convolution 246x1=38 Meights 48x1x1x38
3 batchnorm_1 Batch Normalization | 246x1x38 Offset 1x1x30
4 relu_1 ReLU 246x1=30 -
RelU
5 cony_2 Convolution 184x1x20 Meights 5@x1x3@=20
e s s e o 10500 P
L batchnorm_2 Batch Normalization 184x1x28 Offset 1x1x20
Batch normalization with 20 channels Scale 1x1=20
7 lrelu_2 ReLU 16451520 -
RelLU
2 conv_3 Convolution 48x1x3 Meights 20@x1x2@x5
5 20x1x20 eonvelutions with stride [2 1] and padding [100 00] Bias 1x1x5
¢ batchnorm_3 Batch Normalization | 48x1x5 Offset 1x1xS
5 |rel_3 ReLU 43x1x5 -
" |ic Fully Connected 15158 Meignts 82249
8 fully connected layer Bias 81
2 softmax Softmax 1x1x8 -
= | classoutput Classification Output | - R
Results:
\ Accuracy \ 0.8131 \
Execution time 0.8660s (for 10000 iterations)
Execution per iteration 1.08 % 10™*s
Network Structure:
ANALYSIS RESULT E
+ | NAME TYPE ACTIVATION S LEARNAI
1 imageinput Image Input 100@x1x1 -
e
2 conv_1 Convolution 231x1x30 Weights 10@x1x1x3@
30 100x1x1 convolutions with stride [4 1] and padding [20 00 0] Bias 1x1x30
3 batchnorm_1 Batch Normalization | 231x1x3@ Offset 1x1x30
Batch normalization with 30 channels Scale 1x1x3@
5 relu_t RelU 23151530 -
5 Convolution 96x1:20 Weights Sox1x3@x20
0 eonvolutions with stride [2 1] and padding [10 00 0] Bias 1x1%28
8 batchnorm_2 Batch Normalization 96x1x20 Offset 1x1x20
B
7 |rel_2 RelU 0611220 -
s |com_3 Convolution prm Weignts 20w1x2@x5
2 batchnorm_3 Batch Normalization 44x1x5 Offset 1x1x5
Batch normalization with 5 channels Scale 1x1x5
o |re_3 RelU 44x1x5 -
| Fully Connected 1x158 Weignts 8x220
12 | softmax Softmax 1=1=8 -
= | classoutput Classification Output |- R

crossentropyex

Results:

‘ Accuracy ‘ 0.8896 ‘
Execution time 0.8362s (for 10000 iterations)
Execution per iteration 1.05 % 10~ %s

56

Larger sized convolutional filters

Network Structure:

ANA

LYSIS RESULT

t | nane

imageinput
1000x1x1 images with ‘zeroeenter’ normalization

batchnorm_1
Batch nermalization with 30 channels

relu_1
ReLU

cony_2
20 5

x30 convaluiens with stride [2 1] and padding [10 0 0 0]

batchnorm_2
Baich normahestion with 20 channels

rei_2
ReLD

Tx20 convoiutions with strid [2 1] and padding [10 00 0]

batchnorm_3
Batsh normaization with 5 channels

relu_3

ReLll

fe

8 fully connected layer

softmax
softmax

classoutput
crossentropyex

Results:

Accuracy

0.8431

Execution time

Execution per iteration

0.7471s (for 10000 iterations)
0.934 % 10~ %s

Doubled amount convolutional filters

Network Structure:

ANALYSIS RESULT

+ | NAI
imageinput
1000x 11 images with ‘zerccenter’ normalizaton
conv_1
60 200x1x1 convolutions with stride [4 1] and padding [20 00 0]

batchnorm_1
Batch normalization with 80 channsis

relu_1
RelD

<60 convolutions with stride [2 1] and padding [10 0 0 0;

batchnorm_2
Batoh normaizaton with 40 channsls

relu_2
ReLD

batchnorm_3
Bateh normalization with 20 channels

relu_3
RelU

fc

onnected layer

softma

sofimax

classoutput
crossentropyex

Results:

Accuracy

%40 convalutions with stride [2 1] and padding [10.00 0]

0.9559

Execution time

Execution per iteration

1.3155s (for 10000 iterations)

1.64 x 10~ 4%s

57

TYPE

Image Input

Convolution

Batch Normalization

RelU

Convolution

Batch Normalization

RelU

Convolution

Batch Normalization

RelLU

Fully Connected

Softmax

Classification Qutput

TYPE

Image Input

Convolution

Batch Normalization

RelU

Convolution

Batch Normalization

RelU

Convolution

Batch Normalization

ReLU

Fully Connected

Softma:

Classification Output

ACTIVATIONS

1002=1x1

131=1-30

131=1-30

131x1x30

46x1x20

46120

46x1x20

19515

19=1x5

19=1x5

1x1=8

1x1x8

ACTIV

NS

1080x1x1

206x1x68

2065158

206x1x58

8ax1x40

Bax1x40

Bax1x40

38x1x28

38x1x28

38x1x28

1x1x8

1158

LEARNABLES

Weights 50@x1x1x3@
Bias 1x1x30
Offset 1x1x30
Scale 1x1x38

Weights 50x1x38x20
Bias 11220
Offset 1x1x20
Scale 1x1=28

Weights 20x1%20x5
Bias 1x1!
Offset 1x15
Scale 1x1x5

Weignts =95
Bias 81

LEARNA

Meights 208x1x1x60
Bias 1x1%6@

Offset 1x1x60
Scale 1x1x69

Meights 58x1x68x40
Bias 1x1x¢a
OFfset 1xlx40
Scale 1x1x40

Meights 28x1xd@x20
Bias 1x1x20
Offset 1x1x20
Scale 1x1%20

Meights 8x760
Bias BN

No padding

Network Structure:

ANALYSIS RESULT

+ | NAME TYPE ACTIVATION S LEARNAELES
1 imageinput Image Input 1002x1x1 =
1000x1x1 images with ‘zerocenter’ normalization
2 conv_1 Convolution 201=1x3@ Mieights 20@x1x1x3@
S s i s e 000 e
3 batchnorm_1 Batch Normalization | 2e1x1x3@ Offset 1x1x3@
Batch normalization with 30 channels Scale 1x1x3@
4 re_1 ReLU 201=1x3@ -
RelU
5 conv_2 Convolution T6x1=20 Meights 58x1x38x28
R e
8 batchnorm_2 Batch Normalization | 76x1x28 Offset 1x1x20
Batch normalization with 20 channels Scale 1x1x2@
7 |ren_2 ReLU 76x1x20 -
8 Convolution 29x1=10 Meights 28x1x28x18
0 convolutions with stride [2 1] and padding [0 0 0 0] Bias 1x1=18
B batchnorm_3 Batch Normalization | 29x1x1@ Offset 1x1x1@
e
o |rew_3 RelU 29x1x10 -
e Fully Connected 1x158 \eignts 8290
2 softmax Softmax 1x1x8 -
= | classoutput Classification Output |- R
Results:
‘ Accuracy ‘ 0.9213 ‘
Execution time 0.6473s (for 10000 iterations)
Execution per iteration 0.81 %10~ *s
.
More padding
Network Structure:
ANALYSIS RESULT ;
1 imageinput Image Input 1063=1x1 =
A
2 |comv_1 Convolution 25051x30 Weignts 20@s1x1x30
3 batchnorm_1 Batch Normalization | 25@x1x3@ Offset 1x1=3@
e
4 re_1 ReLU 25@=1x3@ -
RelU
5 Convolution 125=1=2@ Weights 58x1x38x28
0 convolutions with stride [2 1] and padding [48 00 0] Bias 1x1x20
& batchnorm_2 Batch Normalization | 125x1x2@ Offset 1x1=20
Batch nermalization with 20 channels Scale 1x1=20
7 |rel_2 ReLU 125x1x2@ -
RelU
g Convolution 82x1x1@ Weights 20x1x20x1@
convolutions with stride [2 1] and padding [18 0 0 0) Bias 1x1x10
2 batchnorm_3 Batch Normalization 62x1x1@ Offset 1x1x18
e
o relu_3 RelU 62110 -
n | Fully Connected 1x158 Weignts 8520
2 | softmax Softmax 1x1x8 -
= | classoutput Classification Gutput | - R

crossentropyex

Results:

Accuracy ‘ 0.9386 ‘
Execution time 0.9785s (for 10000 iterations)
Execution per iteration 1.22 %10~ %s

o8

Less stride

Network Structure:

ANALYSIS RESULT [©]
+ [nauE TrPE AGTIVATIONS

1 Imageinput Image Input 1089=1x1 =
1000x1::1 images with ‘zeroeenter” normalization

2 |conv_1 Convolution 821x1x30 Vieights 20@<1x1x30
30 200x1x1 convalutions with stride [1 1] and padding [20 00 0] Bias 1x1x30

2 | batchnorm_1 Batch Normalization | 821x1<3@ Offset 1x1x39
Batch normalization with 30 channels Scale 1x1%3@

s |relu_t ReLU 821130 -
ReLU

5 Convolution 391x1x20 Vieights 5@x1x30x20
20 50x130 convalutions with stride [2 1] and padding [10 00 0] Bias 1x1x20

& | batchnorm_2 Batch Normalization | 391x1x28 Offset 1x1=20
Batch normalization with 20 channels Scale 1x1x28

T relu_2 RelU 391x1x28 -
ReLD

= |conv_3 Convolution 191x1x18 \eignts 20%1x20%10
10 20x1:20 convalutions with stride [2 1] and padding [10.0 0 0 Bias 1x1x1@

= baichnorm_3 Baich Normalization | 191x1x18 Offset 1x1x19
Bateh normalization with 10 channels Scale 1x1x18

o relu_3 ReLU 191x1+18 -
ReL

n i Fully Connected 1x1x5 Vieights 8191
8 fully connected layer Bias 8+l

2 softmax Softmax 1x1x8 -
sofimax

2 | classoutput Classification Output | - -

crossentropyex

Results:

‘ Accuracy ‘ 0.9519 ‘
Execution time 1.7823s (for 10000 iterations)
Execution per iteration 2.23 %10~ %s

More stride

Network Structure:

IALYSIS RESULT

+ | name TYPE AGTIVATIONS LEARNABLES
1 imageinput Image Input 1086x1x1 -
100011 images with 'zeracenter normalization
2 conv_1 Convolution 83x1x30 Veights 26ex1x1x30
30 20011 convolutions with stride [10 1] and padding [20 0 0 0 Bias 1x1x38
2 | batchnorm_1 Batch Normalization | 83=1x3 OFfset 1x1x3p
Batch normaiization with 30 channels Scale 1x1x3@
4 rel_t ReLU 83x1x30 -
ReLU
5 |conv_2 Convolution 22x1x20 Weights S6x1x39x20
20 50%1x20 convolutions with stride 2 1] and padding [100 0.0 Bias 1x1x28
5 batchnorm_2 Batch Normalization | 22x1x20 OFfset 1x1x20
Batch normaiization with 20 channels Scale 1x1x20
T el 2 RelU 22x1x29 -
RelU
2 |conv_3 Convolution 7x1x10 Veights 26x1x20x10
10 20¢1x20 convelutions with stride [2 1] and padding (1000 0 Bias 1x1x18
@ batchnorm_3 Batch Normalization | 7=1x18 Offset 1x1x18
Batch normaiization with 10 channels Scale 1x1x1@
o relu_3 ReLU 7x1x189 -
RelU
n |ic Fully Connected 1=1x8 Veights 8x78
8 fully connected layer Bias 8x1
2 softmax Softmax 1x1x8 -
softmax
3 classoutput Classffication Output |- -

crossentropyex

Results:

‘ Accuracy ‘ 0.8769 ‘
Execution time 0.8616s (for 10000 iterations)
Execution per iteration 1.08 % 10~ %s

99

Appendix B

Artificial neural network results for
positional test-cases

B.1 Comparison between the different solvers for analog po-
sitional analysis

Signal information:

Modulation Scheme ASK, FSK, PSK
Amplitude 50 peak
Noise Levels 0 SNR: approx 14.0 average amplitude , approx 50 peak
Input size 80 bit area
Data bits 1-80
Samples per bit 10
Periods per bit 1
Phase-scew Randomized within timespace of 1 sample

Training options:

Solver sgdm, rmsprop, adam
Epochs 100
Iterations per epoch 78
Learning rate Constant 0.01 (sgdm), Constant 0.001 (rmsprop, adam)

Network Structure:

Analog signal positional analysis using SGDM:

Accuracy ‘ 0.9129 ‘
ASK Execution time 0.9224s (for 10000 iterations)
Execution per iteration 0.92 %10 4s

60

ANALYSIS RESULT
NAME

1 imageinput
80x10x1 images w

& [retu_t
= |conv_2
10 10x2x10 convol
5 | batchaorm_2
T relu_2
s |conv_3

o | batchnorm_3

1 |fe
10 ful
2 | softmax

: | classoutput

Accuracy 0.9492
FSK Execution time 0.9913s (for 10000 iterations)
Execution per iteration 0.99 * 10~ s
Accuracy 0.9469
PSK Execution time 1.1098s (for 10000 iterations)
Execution per iteration 1.11 %10~ %s

Analog signal positional analysis using RMSProp:

Accuracy 0.9087
ASK Execution time 0.8868s (for 10000 iterations)
Execution per iteration 0.89 % 10™4s
Accuracy 0.9388
FSK Execution time 0.8176s (for 10000 iterations)
Execution per iteration 0.81 %10 %s
Accuracy 0.9372
PSK Execution time 0.8648s (for 10000 iterations)
Execution per iteration 0.86 % 10~ %s

Analog signal positional analysis using ADAM:

Accuracy 0.9102
ASK Execution time 0.8351s (for 10000 iterations)
Execution per iteration 0.84 % 10~ %s
Accuracy 0.9490
FSK Execution time 0.8440s (for 10000 iterations)
Execution per iteration 0.84 % 10~ %s
Accuracy 0.9450
PSK Execution time 0.8267s (for 10000 iterations)
Execution per iteration 0.83 % 10~ %s

61

Ima-ge Input
Convolution

Batch Normalization
RelU

Convolution

Batch Normalization
RelU

Convolution

Batch Normalization
RelLU

Fully Connected

Softmax

Classification OQutput | -

LEARNABLES

Meights 29x2x1x1
Bias 1=

Offset 1x1x10
Scale 1x1x18

leignts 1ew2s10x
Bias 3

Offset 1x1x10
Scale 1x1x18

ueignts 10x2:10x

Bia 115

Offset 1x1x5
Scale 1xlx5

ueignts 10x218
Bias 10x1

a

10

s

B.2 Positional comparison of time-data and FFT

Signal information:

Modulation Scheme PSK
Amplitude 50 peak
Noise Levels 0 SNR: approx 14.0 average amplitude , approx 50 peak
Input size 80 bit area
Data bits 1-80
Samples per bit 10

Periods per bit 1
Phase-scew Randomized within timespace of 1 sample

Training options:

Solver adam
Epochs 100
Iterations per epoch 78
Learning rate Constant 0.001

Network Structure for time data and FFT (amplitude only):

ANALYSIS RESULT

NAME TreE LEARNABLES
imageinput Image Input 8ex10x1
B0x10x1 images with ‘zerocenter’ normalization
conv_1 Convolution 36=0x10 Meights 20x2<1x18
10 2021 conve Bizs *1x10
batchnorm_1 Batch Normalization | 36=8x1@ Offset 1x1x10
Bat alization with 10 channels Scale 1x1x1@
ReLU
Convolution Meights 18x2<18x10
0 convalutio ias *1x10
batchnorm_2 Batch Normalization | 16=8x12 Offset 1x1x10
Batch normalization with 10 channels it
relu_2 ReLU 16=8x10
Convolution 6x7x5 Meights 10x2x18x5
Biss <15
Batch Normalization | 6x7x5 Offset 1=1x5
Scale 1s1xS
ReLU 6x7x5
Fully Connected 1x1x18 Meights 1@x21@
Biss lexl
Softmax 1x1x18

Classification OQutput | -

62

Network Structure for FFT (amplitude and phase):

ANALYSIS RESULT
NAME

imageinput

80x10:2 images with

‘zeracenter' normalization

conv_1

batchnorm_1

relu_1

conv_3

PSK time-domain classification results

Accuracy

Accuracy 0.9450
Execution time 0.8267s (for 10000 iterations)
Execution per iteration 0.83 %10 %s

PSK FFT classification results with amplitude and phase:

0.9140

FFT time
FFT time per iteration

1.7156s
1.72 % 10~ 4s

Execution time
Execution per iteration

PSK FFT classification results with only amplitude:

0.9364s (for 10000 iterations)
0.94 % 10~4s

Accuracy 0.9134
FFT time 0.2425s
FFT time per iteration 0.24 %10 %s
Execution time 0.9370s (for 10000 iterations)
Execution per iteration 0.94 % 10~ s

63

ST

Image Input

Convolution

Batch Normalization |3

RelU

Convolution

Batch Normalization

ReLU

Convolution

Batch Normalization

RelU

Fully Connected

Softmax

80182

36x9x10

16%8x10

16x5=10

16x8=10

Classification OQutput | -

veights 20x2x2x18
ias 1x1x18

Offset 1x1x10
Scale 1x1x1@

Offset 1x1x1@
Scale 1x1x1@

Weights 10x2x10x5
Bias 1x1s5
Offset 1x1x5
Scale 1x1x5

ueignts 16%218
Bias 10%1

B.3
positional analysis

Modulation Scheme

ASK, FSK, PSK

Amplitude 50 peak
Noise Levels Varies
Input size 80 bit area
Data bits 1-80
Samples per bit 10
Periods per bit 1

Phase-scew

Randomized within timespace of 1 sample

Training options:

Solver adam
Epochs 100
Iterations per epoch 78
Learning rate Constant 0.001

Network Structure:

ANALYSIS RESULT

& [retu_t

T relu_2

@ |conv_3

£ CTIVATIONS LEARNABLES
Image Input gexlexl
Convolution 36=9x10

Batch Normalization | 36=8x1@ Offset 1x1x1@

Scale 1x1x1@

RelU 36%9x1@
Convolution 16=8x12 Meights 1@x2x1@x
Bias 1x1x18

Offset 1x1x10
Scale 1x1x1@

Batch Normalization | 16x8x1@

RelU 16x8x1@

Convolution 6x7x5

Bia 1x1x5
Balch Normalization | 6x7x5 Offset 1x1x5
Scale 1xlxS
RelU 6x7%5
Fully Connected 1x1x18 veignts 10210
Bias 101
Softmax 1x1x18

Classification Cutput | -

6SNR
\ Accuracy \ 0.9897 \
ASK Execution time 0.8672s (for 8000 iterations)
Execution per iteration 0.87 % 10~ %s
Accuracy 0.9886
FSK Execution time 0.8285s (for 8000 iterations)
Execution per iteration 0.83% 10~ %s
Accuracy 0.9871
PSK Execution time 0.7933s (for 8000 iterations)
Execution per iteration 0.79 * 10~ s

64

Meights 29x2x1x1
Bias 1=

Meights 19x2x19x

ASK, FSK and PSK comparison at different SNR for

a

10

5

-6SNR

‘ Accuracy ‘ 0.6580 ‘
ASK Execution time 0.8736s (for 8000 iterations)
Execution per iteration 0.87 % 10~ %s
Accuracy 0.8127
FSK Execution time 0.8517s (for 8000 iterations)
Execution per iteration 0.85 % 10~ %s
Accuracy 0.7981
PSK Execution time 0.8182s (for 8000 iterations)
Execution per iteration 0.82% 10 %s

65

B.4 Comparison between the CNN and FNN

Signal information:

Modulation Scheme

PSK

Amplitude

50 peak

Noise Levels

0 SNR: approx 14.0 average amplitude , approx 50 peak

Input size

80 bit area

Data bits

1-80

Samples per bit

10

Periods per bit

1

Phase-scew Randomized within timespace of 1 sample

Training options:

Solver adam
Epochs 100
Iterations per epoch 78
Learning rate Constant 0.001

Network Structure:

ANALYSIS RESULT
NAME

imageinput
80x10x1 images with ‘zero

T relu 2

fe_3

batchnorm_3

softmax

classoutpu
crosseniropye

‘ Accuracy ‘ 0.7547

Execution time

Execution per iteration 3.28 % 10~ %s

66

3.2751s (for 10000 iterations)

TYPE

Image Input
Fully Connected
Batch Normalization
ReLU

Fully Connected
Batch Normalization
ReLU

Fully Connected
Batch Normalization
ReLU

Fully Connected

Softmax

ACTIVATIONS

8ex10x1

1x1x324@

1x1%3240

1x1%3240

1=x1x1280

1x1x1280

1x1x1280

1x1%210

1x1%210

1x1%210

1x1x1@

1x1x1@

Classification Output |-

LEARNABLES

veights 3249-390
ias 324851

Offset 1x1x3249
Scale 1x1%3249

veights 1289=3249
Bias 128051

Offset 1x1x1289
Scale 1x1x1239

ueights 21@x1280
Bias 21@%1
OFfset 1x1x210
Scale 1x1<218

ueignts 10x218
ias 8x1

B.5 Positional analysis comparison of different number of
samples per bit

A comparison to 10 samples per bit can be found in Appendix

Signal information:

Modulation Scheme PSK
Amplitude 50 peak
Noise Levels 0 SNR: approx 14.0 average amplitude , approx 50 peak
Input size 80 bit area
Data bits 1-80
Samples per bit Varies
Periods per bit 1
Phase-scew Randomized within timespace of 1 sample

Training options:

Solver adam
Epochs 100
Iterations per epoch 78
Learning rate Constant 0.001

20 samples per bit

Filter and stride have here been doubled when compared to the 10 samples/bit version in order to
make the two cases as similar as possible for the system. Padding has also been adjusted to be equal
to half the filter size.

Network Structure:

ANALYSIS RESULT >
NAME TYRE ACTIVATIONS LEARNABLES
< imageinput Image Input 168x10%1
160x10x on
2 |comv_1 Convolution 36x9x10 Veignts 4@x2s1x18
10 4052 adding [20 0 0 0 Bias =
= | balchnorm_1 Balch Normalization | 36x3=10 Offset 1x1x10
Batsh normakzation with 10 channels Scale 1x1x1@
RelU 35x510
= |comv_2 Convolution 16x5<10 Meights 18x2<18x10
10 1032410 convolutions with stride [2 1] and padaing [5 0 0.0 Bias 1x1x1@
& |batchnorm_2 Balch Normalization | 16x8=10 Offset 1x1x10
Ba Zation with 10 channels Scale 1#1x19
RelU 16x8x10
Canvolution 6x7x5 Weights 1@x2x1@x5
Bias 1x155
Batch Normalization | 6x7x5 Offset 1x1x5
Scale 1x1x5
RelLU 675
Fully Connected 1x1x18 Weignts 10%218
Eias 161
Sofimax 1x1x18

Classification Output | -

Results:
‘ Accuracy ‘ 0.9708 ‘
Execution time 0.9526s (for 10000 iterations)
Execution per iteration 0.9526 * 10~ %s

67

Same scenario except for the padding at the first convolutional layer being 10 instead

of 20

‘ Accuracy

0.9832

Execution time
Execution per iteration

4 samples per bit

Filter and stride have here been reduces when compared to the 10 samples/bit version

0.9153s (for 10000 iterations)

0.92 % 10™%s

in order to

make the two cases as similar as possible for the system. Padding has also been adjusted to be equal

to half the filter size.

Network Structure:

ANALYSIS RESULT
NAME

imageinput
3241021 Images with ‘zersoenter’ normalization
cony_1

batchnorm_1

relu_

ReLU

conv_2
1010210 co

5o

relu_2
ReLU

conv_3

batchnorm_3

relu_3

classoutpu
crossentrapyex

Results:

‘ Accuracy

0.9214

Execution time
Execution per iteration

0.7916s (for 10000 iterations)

0.79 % 10~ 4s

68

TYPE

Image Input
Convolution

Batch Normalization
ReLU

Convolution

Batch Normalization
ReLU

Convolution

Batch Normalization
ReLU

Fully Connected

Softmax

ACTIVATIONS

32x10=1

29x9x10

29x5x10

29x5x10

13:8x10

13=5x10

13=5x10

5x7x5

Classification Output | -

LEARNABLES

Meights Bx2x1x10
Bias 1x1<18
Offset 1x1x10
Scale 1x1x1@

uieights 18x2%10x10
Bias

Offset 1x1x18
Scale 1x1x18

ueignts 10x2x19s5
Bias 1x1x!
Offset 1x1x5
Scale 5

ueights 16%175
Bias 16<1

B.6 Signal position comparison of differently sized CNNs

Signal information:

Modulation Scheme PSK

Amplitude

50 peak

Noise Levels

0 SNR: approx 14.0 average amplitude , approx 50 peak

Input size

80 bit area

Data bits 1-80
Samples per bit 20
Periods per bit 1

Phase-scew

Randomized within timespace of 1 sample

Training options:

Solver adam
Epochs 100
Iterations per epoch 78

Learning rate

Constant 0.001

Unmodified structure with results:

Network Structure:

ANALYSIS RESULT
NAME

1 imageinput
16010

2 |conv_1

2 batchnorm_1

Results:

Accuracy

Image Input

168=18=1
Convolution 3=9x10
Batch Normalization | 33x9x1@
ReLU 39%10
Convolution 15x8+18
Batch Normalization | 158<10
ReLU 15+810
Convolution 4e7s
Batch Normalization | 4x7x5
ReLU 4x7%5
Fully Connected 1¥1x1a
Softmax 1¥1x18

Classification Output |-

0.9739 |

Execution time

Execution per iteration

4 CNN layers

Network Structure:

Results:

0.8983s (for 10000 iterations)

0.90 * 10~ 4s

69

LEARNABLES

Weights 49x2x1<10
Bias 1x1x10

Offset 1x1x18
Scale 1x1x1@

leights 10x2x10%1@
das 1x1=18

Offset 1x1x1@
Scale 1x1x1@
Weights 19x2x19x5
ias 135
Offset 1x1x5

Scale 1x1s5

ueignts 10x140
Bias 101

ANALYSIS RESULT -

+ | na

ACTIVATIONS

+ | imageinput Image Input 168x10x1 -
160x10x1 images wih ‘zerocentar’ nomaiizaton

2 Convolution 33x9x10 Weignts 4@zxl1x1s
comaiutions with stride [4 1] and padding (1000 0] Bias 1x1x1p
2 |batchnorm_1 Balch Normalization | 33=gx16 Offset 1x1x18
Batch normalization with 10 channels Scale 1x1=18
4 |rel_1 RelU 33x0x10 -
ReLl
5 |conv_2 Convolution 15x5x10 Weights 19=2x18<10
10 1032410 convolutions with stride [2 1] and padding (50 0 0] Bias 1x1x10
& |batchnorm_2 Balch Normalization | 15=8x16 Offset 1x1x18
Batch nermalization with 10 channels Scale 1x1x=1@
7 |re_2 ReLU 15=8x10 -
RelU
s |conv_3 Convolution 7x7%10 Weights 5<2x1@<18
10 5210 convolutions with stride [2 1] and padding [2 0 0 0] Bias 1slx1@
¢ |batchnorm_3 Batch Normalization | 7x7x18 Offset 1x1x1@
Batch normalization with 10 channels Scale 1x1x18
o relu_3 RelU 7x7510 -
ReL
11 |conv_4 Convolution 3xBx3 Welghts Sx2x1@x5
10 convalution: ride [2 1] and padding [2 00 0] Bias 1slxs
2 |baichnorm_4 Balch Normalization | 3=6x5 Offset 1x1x5
Batch normalization with 5 channels Scale 1x1x5
3 |relu_d RelU IxgxS -
ReLl
s e Fully Connected 1x1x10 Weignts 1008
10 fully connected fayar Bias 10=1
5 | softmax Sofimax 1x1=16 -
softmax
= | classoutput Classification Qutput | - -

crossentropyex

Accuracy ‘ 0.9847 ‘
Execution time 0.9742s (for 10000 iterations)
Execution per iteration 0.97 * 10~ s

2 CNN layers

Network Structure:

IALYSIS RESULT

+ | name TYPE AGTIVATIONS LEARNABLES

1 imageinput Image Input 168~18=1 -
16010x1 images with ‘zerocenter nomaiization

2 con_1 Convolution 33+9x18 lieights 48x2=1<18
10 407241 conusiutions with stride 4 1] and padding [1000.0] Bias 1xl<1@

2 batchnorm_1 Batch Normalization | 33x3<16 Offset 1x1<18
Batch normaizaton with 10 channsis Scale 1x1x19

4 rel_t ReLU 33x9x1¢ -
ReLl

5 conv_? Convolution 15+8x18 lieights 16x2=19%10
10107210 convoluns with stide [2 1] and padding (5 00.0] Bias 1xl<1@

8 batchnorm_2 Batch Normalization | 15x8=1@ Offset 1x1x18
Batch normazation with 10 channsis Scale 1x1x19

Torel2 ReLU 15+61¢ -
RelU

s fc Fully Connected 1=1x18 lieights 18<1200
10 fully connected layer Bims 101

@ softmax Softmax 1x1x18 -
sofimax

o classoutput Classification Output |- -

crossentropyex

Results:

‘ Accuracy ‘ 0.9787 ‘
Execution time 0.8338s (for 10000 iterations)
Execution per iteration 0.83 %10 %s

70

Smaller sized convolutional filters

Network Structure:

ANALY SIS RESULT =
1 imageinput Image Input 16@x18x1 -
o A S
2 conv_1 Convolution 38x9x10 Meights 28x2x1x1@
O comsctons w1 an sy 100001 w2
3 batchnorm_1 Batch Normalization |38x9x1@ Offset 1x1x1@
R
4 relu_1 ReLU 38x9x18@ -
RelU
5 conv_2 Convolution 17=8x10 Meights 18x2x18x18
2 comstons i s 2 1 end o (50001 s
[batchnorm_2 Batch Normalization 17=8x1@ Offset 1x1x1@
A
T relu_2 ReLU 17x8x1@ -
RelU
s |conw_3 Convolution &x7x5 Weights 5x2x16x5
oo i S 1) oo 90 et 2l
& batchnorm_3 Batch Normalization Bx7x5 Offset 1x1x5
Batch normalization with § channels Scale 1x1=5
relu_3 ReLU Bx7x5 -
RelU
fc Fully Connected 1=1x19 Weights 18x280
ot g i
2 softmax Softmax 1x1x10 -
softmax
2 | classoutput Classification Output | - -
Results:
\ Accuracy \ 0.9799 \
Execution time 0.9236s (for 10000 iterations)
Execution per iteration 0.92x107%s
Network Structure:
ANALY SIS RESULT
1 | imageinput Image Input 168x16<1 -
2 |conv_1 Convolution 33x10x10 eights 48x1x1x10
3 batchnorm_1 Batch Normalization | 33x1e=18 Offset 1x1x18
PR
s |relu_1 RelU 33x16=18 -
5 Convolution 151010 Weignts 10x1x10510
oo i s 2 1) v i 0051 wies o
8 batchnorm_2 Batch Normalization | 15x1e=18 Offset 1x1x18
Batch normalization with 10 channels Scale 1x1x1@
7 relu_2 RelU 15=16=18 -
s |conv_3 Convolution 6x18x5 eights 18x1x10s5
e batchnorm_3 Batch Normalization | 6x1@=5 Offset 1x1x5
relu_3 RelU 6x1855 -
ic Fully Connected 1x1x10 Weignts 10%308
10 fully connected layes Bias 18x1
2 |softmax Softmax 1x%1x10 -
3 | classoutput Classification Qutput | - -

crossentropyex

Results for filters with size 1 along 2nd dimension:

\ Accuracy \ 0.9912 \
Execution time 0.9007s (for 10000 iterations)
Execution per iteration 0.90 * 10~4s

71

Larger sized convolutional filters

Network Structure:

ANALYSIS RESULT -
+ | uame TvPE ons
1 imageinput Image Input 166x18x1 -
160:x10x1 images with zerocenter normalizaton
2 Convolution 23x0x10 Weignts 8@w2x1x18
«1 convolutions with stride [4 1] and padding (1008 0] Bias 1x1x18
= batchnorm_1 Batch Normalization | 23x9=16 Offset 1x1<18
Batch normalization with 10 channeis Scale 1x1<1@
5 relu_1 RelU 23x0x18 -
ReLO
5 Convolution 18x5x10 VWeights 16x2x18<10
0 convolutions with stride [2 1] and padaing (50 0 0] Bias 1x1x10
& | baichnorm_2 Batch Normalization | 16516 Offset 1x1<18
Batch normalization with 10 channeis Scale 1x1x10
7o rel_2 ReLU 10x§=10 -
RelU
& |conv_3 Convolution 2x7%5 VWeights 16x2x185
5 10x210 convolutions with strdz [2 1] and padding [2 0.0 0] Bias 1x1x5
¢ | batchnorm_3 Batch Normalization | 2x7x5 Offset 1x1x5
Baich normalzation with 5 channels Scale 115
relu_3 ReLU 2x7x5 -
RelU
Fully Connected 1x1x18 Weights 10<7@
10 fully connected layer Bias 1exl
z | softmax Softmax 1x1x10 -
softmax
: classoutput Classification Qutput |- -

crassentropyex

Results:

‘ Accuracy ‘ 0.9823 ‘
Execution time 0.7320s (for 10000 iterations)
Execution per iteration 0.73 %107 %s

Network Structure:

IALYSIS RESULT

+ [name TrPE AGTIVATIONS LEARNABLES
1 imageinput Image Input 168x18x1 -
160x10x1 images with ‘zerocenter normalization
2 |conv_1 Convolution 33x1x10 Veights 46=18x1x10
10 40%10x1 convolutons with stride [4 1] and padaing (1000 0 Bias 1x1x10
= baichnorm_1 Baich Normalization | 33x1x16 Offset 1x1x18
Batoh normalization with 10 channeis Scale 1x1x10
4 relu_t ReLU 33x1x10 -
RelU
5 |conv_2 Convolution 15x1x10 Veights 16=1x18<10
10 10%1x10 convolutions with stride [2 1] and padaing (50 0 0] Bias 1x1x10
@ batchnorm_2 Batch Normalization | 15x1x1@ Offset 1x1x1@
Batoh normalization with 10 channeis Scale 1x1x10
T relu2 ReLU 15x1x10 -
RelU
= |conv_3 Convolution 61x5 Veights 16=1x18<5
5 107 10 convsiutions with stride [2 1] and padding [5 00 0] Bias 1xlx
@ batchnorm_3 Batch Normalization | 6x1x5 Offset 1x1x3
Batch nermalization with § channals Scale 1x1%5
relu_3 ReLU 61x5 -
RelU
Fully Connected 1x1x18 Weights 19x3@
10 fully connected layar Biaz 10x1
2 softmax Softmax 1x1x18 -
sofimax
s | classoutput Classificafion Output |- -

crossentropyex

Results with filter size of 10 along 2nd dimension:

‘ Accuracy ‘ 0.7769 ‘
Execution time 0.3225s (for 10000 iterations)
Execution per iteration 0.32 % 10~ %s

72

Network Structure:

ANA

Results with filter size of 4 along 2nd dimension:

LYSIS RESULT
+ | name

imageinput

180x10x1 images with ‘zerocenter' normalization

conv_1

10402411 convoiLtions witn strde [4 1] 300 padeing [100.0.0]

batchnorm_1
Batch normarzation with 10 channels

relu_1
Rell

0 convoluiions with stride [2 1] and padding [5 0 0.0]

batchnorm_2
Baich normalzation with 10 channls

relu_2
Rl

conv_3
5 10210 convolutions with strde [2 1] and padding [5 0 0.0]

batchnorm_3
Baich normalzation with 5 channels

relu_3
Rell
10 fully eennected layer

softmax
sofimax

classoutput
crossenirapyex

Accuracy

0.9626

Execution time

Execution per iteration

0.81 % 10~ %s

Increased number of convolutional filters

0.8116s (for 10000 iterations)

TYPE

Image Input
Convolution

Batch Normalization
RelU

Convolution

Batch Normalization
RelU

Convolution

Batch Normalization
RelU

Fully Connected
Softmax

Classffication Output

16@<18x1

332718

332718

332718

15%6x18

15x6=18

15x6=18

6555

6555

6555

1x1x18

1x1x18

Number of filters for each CNN layer is here doubled compared to the unmodified

Network Structure:

ANALYSIS RESULT

+ [NamE

imageinput
180101 images with ‘zersoenter normalzaton

batchnorm_1
Batch normalzation with 20 channels

relu_1
Rell

con
201

convolutians wi

batchnorm_2
Batch nermalization with 20 channels

relu_2
RelU

con
101

batchnorm_3
Baich normalzation with 10 channsls

relu_3
Rell

fc

10 fully connected laye:

softmax
softmax

crossentropyex

Results:

Accuracy

convclidions with stride [4 1] and padding [100.0 0]

ide [2 1] and padaing [50 0 0]

convolutions with stride [2 1] and padding [5 0 0 0]

0.9836

Execution per iteration

Execution time

1.8991s (for 10000 iterations)

1.90 x 10~ 4s

73

TvPE

Image Input
Convolution

Batch Normalization
ReLU

Convolution

Batch Normalization
ReLU

Convolution

Batch Normalization
ReLU

Fully Connected
Softmax

Classification Output

ACTIVATIONS

156=18x1

33928

33928

33920

15x5=28

15x8=20

15%8x20

6x7x10

67x18

67x18

1x1x18

1=1x18

LEARNABLES

Weights 4@x4x1x1p
Bias 1x1x18
Offset 1xlx10
Scale 1x1x19

Weights 10x2x10x10
Bias 1x1x18
Offset 1x1x10
Scale 1x1x19

Weights 1@x2x1@%S
Bias 1x1x!
Offset 1x1x5
Scale 1x1x5

Weights 18%158
Bias 1ex1

version

LEARNABLES

Weights 48x2=1x20
Bias 1x1=28
Offset 1x1x20
Scale 1x1x2@

Weights 18x2=28x20
Bias 1x1=20
Offset 1x1x20
Scale 1x1x20

Weights 18x2x28x10
Bias 1x1x18

Offset 1x1x10
Scale 1x1x1@

ueights 16%420
Bias 10<1

No padding

Network Structure:

ANALYSIS RESULT

+ |NAME TYPE ACTIVATIONS LEARNAELES
1 imageinput Image Input 168w10%1
180x10:1 imsges with ‘zerccenter’ normalizaton
Convolution 31x9x10 lleights &8x241%10

volutions wath siride [4 1) and padding [0.0.0 0] Bias 1:1x10

batchnorm_1 Batch Normalization | 31x9=1@ Offset 1x1x1@
Scale 1x1x19

Batch normalization with 10 channels

5 relu_1 RelU 31x0x10
ReLl
cony_2 Convolution 11x8x10 Vieights 10%2x18x10
101052210 convalutions with stride [2 1] and padding [0.0 0 0] Bias 1x1x1@
batchnorm_2 Baich Normalization | 11x8x10 Offset 1x1x19
Bateh normalization with 10 channels Scale 1x1x1@

T |rel_2 ReLU 11x§x1@
RelU
cony_3 Convolution 1x7%5 Veights 18x2x18x5
5 105210 conuelutions with strde [2 1] and padding [0 0.0 0] Bias 1xlx5

¢ | batchnorm_3 Batch Normalization | 1x7x5 Offset 1xlx5
Batch normalization with § channels Scale 1x1x5
refu_3 ReLU 1x7%5
RelU
fc Fully Cennected 1x1x18 Weights 1@x35
10 fuly connected layer Bias 1exl

2 softmax Softmax 1=1x18
clazzoutput Classification Output | -

erossentropyex

Results:

‘ Accuracy 0.9661 ‘
Execution time 0.7845s (for 10000 iterations)
Execution per iteration 0.78 % 10~ *s

Maximum padding

Maximum padding in this case means that the outermost activations only include a number of inputs
(that are not part of the padding) equal to the size of the stride. With a stride of 2, this means only
the 2 first samples are part of the first position of the filter, and equivalently for the last position.

ANALYSIS RESULT

+ | name TveE ACTIVATIONS LEARNABLES

1 imageinput Image Input 1621051
160x10:x1 images wih ‘zerocenter’ normaizston
conv_1 Convolution prrs lleights &ox2x1x18
10 40521 convolutions with strd (4 1] and padding [28 0.0.0 Bias 1x1x18
batchnorm_1 Batch Normalization | 4@xs=1e Offset 1x1xle
Batch normakzation with 10 chsnnsis Scale 1xixlo
relu_1 ReLU 40x3=10
conv_2 Convolution 20x8+10 lleights 1ew2x18x10
10 102210 comvolutions with stids [2 1] and padding [8 0.0.0 Bias 1x1x18
batchnorm_2 Batch Normalization | 20x8+1¢ Offset 1x1xle
Batch normalization with 10 channels. Scale 1x1x1@
relu_2 ReLU 20<8+10
ReLD
conv_3 Convolution 10x7%5 lleights 10w2518x5
5 10:5610 convolutions with sind [2 1] and padding [8 0 0.0] Bias 1xl<s
batchnorm_3 Balch Normalization | 10<7x5 OFfset 1slxs
Batch normalization with 5 channels. Scale 1x1x5
relu_3 ReLU 105755
ReLD
fe Fully Connected 11210 lieignts 1ex3se
10 fully connected layer Bias 181
softmax Softmax 1x1x18
sofimax

classoutput Classification Output | -

crossentropyex

Results:

‘ Accuracy 0.9875 ‘
Execution time 1.0406s (for 10000 iterations)
Execution per iteration 1.04 % 10~ %s

74

Less stride

Network Structure:

ANALYSIS RESULT
+ | Name

i imageinput
180x10x1 images with 'zerocenter’ normalization

! convelutions with stride [1 1] and padding [100 0 0]

2| batchnorm_1
Bateh narmalization with 10 channels

4 [relu_t
ReLD

0 canvolutions with stride [1 1] and padding [5 0 0]

= batchaorm_2
Bateh normalization with 10 channsis

T rel_2
ReLD

s |com_3
5 10x2210 convolutions with sirde [1 1] and padding [50 0 0]

@ batchnorm_3
Batoh normaizaton with 8 channels

o |relu_3
ReLl
10 fully connected layer

2 softmax

sofimax

classoutput
crossentropyex

Results:

‘ Accuracy

0.9799

Execution time
Execution per iteration

Network Structure:

ANALYSIS RESULT
1 | Name

4 imageinput
180x101 images with ‘zerocenter’ nomalization

convolutions with stride [2 1] and padding [100.0 0]

2 batchnorm_1
Batch normalzation with 10 channels

4 rel
Rei

u_1
L0

0 convolutions with stride [2 1] and padding [5.0 0 0]

5 batchnorm_2
Batch normalization with 10 channels

T relu_2
ReLD

z |conv_3
5 10x2x10 convolutions with stride [2 1] and padding [50 0. 0]

¢ | batchnorm_3
Bateh normalization with § channels

0 relu_3
RelU
1 |
10 fuly connected layar

2 softmax

softmax

classoutput
crosseniropyex

Results:

‘ Accuracy

8.66 * 10~ 4s

0.9824

8.6617s (for 10000 iterations)

Execution time
Execution per iteration

1.8013s (for 10000 iterations)

1.80 x 10~ 4s

75

TYPE

Image Input

Convolution

Batch Normalization

RelU

Convolution

Batch Normalization

RelU

Convolution

Batch Normalization

RelLU

Fully Connected

Softmax

Classification Qutput

TYPE

Image Input

Convolution

Batch Normalization

RelU

Convolution

Batch Normalization

RelU

Convolution

Batch Normalization

ReLU

Fully Connected

Softmax

Classification Qutput

ACTIVATIONS

16@x10=1

131x9=18

131x9=18

131%9x18

127x8=18

127%8x18

127x8=18

1235755

123x7=5

123x7=5

11x18

1x1x1

168x18=1

66x9x18

66x9x18

66x9x18

31x8x10

31x8x10

31x8x10

18x7x5

18x7x5

18x7x5

1=1x18

11x18

Meights 49x2x1x18
Bias 1x1x1@

Offset 1x1x1@
Scale 1x1x19

Meights 19x2x18x10
Bias 1x1x1@

Offset 1x1x10
Scale 1x1x19

Veights 1@x2x1@xS
Bias 115

Offset 1=1x5
Scale 1x1x5

Meights 18<4385
Bias =1

LEARNABLES

Weights 4@x2x1x18
Bias 1x1x10
Offset 1xlx19
Scale 1x1x12

Weights 10x2x18x12
Bias 1x1x10

Offset 1x1x19
Scale 1x1x12

Weights 19x2x18x5
Bias 1x1x5

Offset 1x1x5
Scale 1x1x5

Weights 1@x49@
Bias 18x1

More stride

Network Structure:

ANALYSIS RESULT o
+ [name TveE ACTIVATIONS

1 imageinput Image Input 166=18x1 -
16010x1 images with ‘zercenter nomaiizaton

2 Convolution 33x5x18 Weights 48x2x1x18

<1 convolutions with siride [4 2] and padding 100 0 0] Bias 1x1x18

3 batchnorm_1 Batch Normalization | 33x5x16 Offset 1x1x18
Batch normalzation with 10 shannels Scale 1x1x18

4 rel_1 ReLU 33x5:1¢ -
RelU

5 conv_2 Convolution 15x4x18 Weights 18x2x18<1@
10107210 convoluons with stide [2 1] and padding [0 0.0] Bias 1x1<18

L} batchnorm_2 Batch Normalization | 15x4x1@ Offset 1x1x10
Batch normalization with 10 channels Scale 1=1x1@

T rel2 ReLU 15wax10 -
RelU

H conv_3 Convolution Bx3x5 Weights 18x2x18x5
§ 10x2x 10 convolutions with stride [2 1] and padding [500 0] Bias 1x1x5

o batchnorm_3 Batch Normalization | 6+3+5 Offsat 1x1x5
Baich normalzation with 5 channsls Scale 1x1s5

5 relu3 RelU 6x3x5 -
Rell

n | Fully Connected 1%1x10 uieignts 10x90
10 fully connected faye Bias 101

2 | softmax Softmax 1x1x10 -
sofmax

13 classoutput Classification Output |- -

crossentropyex

Results:

\ Accuracy \ 0.9557 \
Execution time 0.4877s (for 10000 iterations)
Execution per iteration 0.49 x 10~%s

76

B.7 Final structure for positional analysis neural network

For 10 byte region

Network Structure:

ANALYSIS RESULT
+ | name

1 imageinput
160x10x1 images wih ‘zsrocenter’ normaizaton

ns with siride [4 1] and padding

Bateh normalization with 10 channels

de [2 1] and padding [

batchnorm_2
Bateh normalization with 10 ehannels

relu_2

conv._

5 10x1x10 convelutions with stride [2 1] and padding [500 0]

¢ | batchnorm_:

Bateh narmalization with § channels

relu_3
ReLU

fc
10 fully co

softmax

sofimax

classoutput

crossentrapyex

Results

‘ Accuracy

0.9912

Execution time
Execution per iteration

0.9007s (for 10000 iterations)
0.90 x 10~4s

TYPE

Image Input
Cenvolution

Batch Normalization
RelU

Convolution

Batch Normalization
RelU

Convolution

Batch Normalization
RelU

Fully Connected

Softmax

ACTIVATIONS

160:10x1

33xl0v1e

33x10x18

33x10x18

15x10=18

15x10x18

15x10x18

6x18x5

6%18%5

%105

1x1=10

1x1=10

Classification Cutput | -

LEARNABLES

ueights 4e=1x1<10
Bias 1x1=10
Offset 1x1x18@
Scale 1x1x1@

Weights 18x1x18x18
Bias 1x1=18
Offset 1x1x1@
Scale 1x1x1@

Weights 18x1x18%5
Bias 1x1s5
Offset 1x1x5
Scale 1wlxS

Weights 16x300
Bias 10x1

A note to make is that this is identical to one of the test-cases shown earlier, using optimization for
stride. Combining this optimization with optimization to padding or number of convolutional layers
did not yield higher accuracy. Increasing the number of filters also did not increase accuracy

For 100 byte region

Network Structure:

ANALYSIS RESULT
+ |NAME
1 imageinput
1800x10x1 images with ‘z=rocenter nomslization

2 |conv_1

10 40x1x1 eonvolutions with stride [4 1] and padding [100 0 0]
batchnorm_1

4 relu_t
conv_2
10 10%1x10 comvokutions wih stride [2 1] and psdding [5 0 0.0
batchnorm_2

T rel_2
ReLD

conv_3
5 10x7x10 convolutions with sirde (2 1] and padding [5 0 0.0

batchnorm_3
Batoh normaizaton with 5 channels
relu_3

ReLD

fc

10 fully connected layer

softmax
softmax

classoutput
srossenopyex

7

TYPE

Image Input
Convolution

Batch Normalization
ReLU

Convolution

Batch Normalization
ReLU

Convolution

Batch Normalization
ReLU

Fully Connected

Softmax

ACTIVATIONS

1588%18x1

393x10x18

393x10x19

393x10x19

195%10x19

195x10x19

195x18=19

95%10x5

95x10=5

95x10=5

1=1x18

1=1x18

Classification Qutput | -

LEARNABLES

Weights 49x1x1x18
Bias 1x1x18
Offset 1x1x10
Scale 1x1x1@

Weights 1@x1x10x10
Bias 1x1xlg
Offset 1xlxle
Scale 1xixle

ueights 1ex1x10x5
Bias 11
Offset 1x1x5
Scale 1x1x5

Weights 10<4388
Bias <1

Results at 0 SNR:

Accuracy 1.0 \
Execution time 12.2042s (for 10000 iterations)
Execution per iteration 12.0 % 10™%s

Results at -6 SNR:

Accuracy 0.9994 ‘
Execution time 12.16812s (for 10000 iterations)
Execution per iteration 12.0 % 10~ %s

A point to make here is that due to the data being randomly placed inside the area covered by each
output neuron, the number of corner cases, referring to cases where the starting position is only one
or a few samples from the border between the areas covered by two output neurons, are probably
few in number.

For 1 byte region

Network Structure:

ANALYSIS RESULT =
NAME TreE AcT LEARNABLES
imageinput Image Input 16@x1x1
180x1x1 images with ‘zerocenter’ normalization
conv_1 Convolution 151=1x20 Meights 20=1x1x2
20 20x1x1 corweiutions w and padding [100 00 Blias 1
batchnorm_1 Batch Normalization | 151x1x20 Offset 1x1x20

rmalization with 20 channels Scale 1120
ReLU 151x1x20
Convolution 74x1x20 Weights 10x1x20x20
1and padding [3.0 0] Bias 1x1%28
Balch Normalization | 74=1x20 Offset 1x1x20
Scale 1120
RelU T4x1%20
Convolution Weights 10x1x20x20
addin Bias 1x1%20
batchnorm_3 Batch Normalization 36x1x2@ Offset 1x1x=20
rmalization with 20 channels Scale 1x1=20
relu_3 RelU 36x1%20
Fully Connected 1x1x8 Meights 8x720
d layer Bias
Softmax 1x1x8

Classification Output | -

Results at 0 SNR:

‘ Accuracy ‘ 0.9918 ‘
Execution time 0.7651s (for 10000 iterations)
Execution per iteration 0.96 + 10~4s

78

For 1 bit region

Network Structure:

ANALYSIS RESULT (-]

+ | NAME TYPE ACTIVATIONS .LEARNAELES
1 |imageinput Image Input 20x1x1
20x1x1 images with 'zerocenter' normalization
2 cony Convolution 17x1x50 Veights 18x1x1x58
50 10x1x1 convolutions with stride [1 1] and padding [6 0 0 0] Biac 1x1%50
2 batchnorm Batch Normalization 17x1x3@ Offset 1x1x3@
Batch normalization with 50 channels Scale 1x1x=5@
4 relu ReLU 17x1=5@
RelU
fc Fully Connected 1x1x20 Weights 2@=858
20 fully connested iayer Bias 201
L softmax Softmax 1x1x20
softmax
classoutput Classification Output -
crossentropyex

Results at 0 SNR:

| Accuracy | 0.7226 |
Execution time 0.2693s (for 10000 iterations)
Execution per iteration 0.13%107%s

79

Appendix C

Artificial neural network results for
signal length test-cases

C.1 Comparison between the different solvers for analog sig-
nal length analysis

Signal information:

Modulation Scheme ASK, FSK, PSK
Amplitude 50 peak
Noise Levels 0 SNR: approx 14.0 average amplitude , approx 50 peak
Input size 50 bit area
Data bits 0-25
Samples per bit 10
Periods per bit 1
Phase-scew Randomized within timespace of 1 sample

Training options:

Solver sgdm, rmsprop, adam
Epochs 100
Iterations per epoch 101
Learning rate Constant 0.01 (sgdm), Constant 0.001 (rmsprop, adam)

Network Structure:

Analog signal length analysis using SGDM:

Accuracy 0.3067
Accuracy with max 1 bit wrong 0.7130

ASK
Execution per iteration 3.95 % 10~ %s

Execution time 5.1360s (for 13000 iterations)

80

ANALYSIS RESULT

NAME

4+ imageinput
500x1x1 i
2 |com_1
40 1001x1 can

2| batchnorm_1

vith 40 channels

o |ren_3
Rell

conv_4
10 10:61x20 convoluiions with siride [2 1] and padding [5 0 0.0

2 | batchnorm_4
Batch nermalization with 10 channels

Accuracy
Accuracy with max 1 bit wrong

0.6575
0.9775

Ima;e Input
Convolution

Batch Normalization
RelU

Convolution

Batch Normalization
RelLU

Convolution

ACTIVATIONS

50011
206x1x40
206x1x40
286x1=40
54x1x39
B4x1x30

34x1x30

Batch Normalization | 35x1x2(

ReLU

Convolution

Batch Normalization

RelU

Fully Connected

Softmax

Classification OQutput | -

FSK

PSK

Execution time
Execution per iteration

Accuracy
Accuracy with max 1 bit wrong

5.4057s (for 13000 iterations)

4.16 % 10~ 4s

0.6273
0.9726

Execution time
Execution per iteration

5.2802s (for 13000 iterations)

4.06 * 10~ %s

Analog signal length analysis using RMSProp

ASK

FSK

Accuracy
Accuracy with max 1 bit wrong

0.3281
0.7368

Execution time
Execution per iteration

Accuracy
Accuracy with max 1 bit wrong

5.0345s (for 13000 iterations)

3.87 %107 4s

0.6975
0.9792

PSK

Execution time
Execution per iteration

Accuracy
Accuracy with max 1 bit wrong

4.9742s (for 13000 iterations)

3.83 % 10~ 4s

0.7399
0.9848

Execution time
Execution per iteration

4.9100s (for 13000 iterations)

3.78 % 10~ %s

Analog signal length comparison using ADAM

ASK

Accuracy
Accuracy with max 1 bit wrong

0.3979
0.7980

Execution time
Execution per iteration

4.7087s (for 13000 iterations)
3.62 % 10745

81

LEARNABLES

Weights 100x1x1x40
Bias 1x1x40

Offset 1x1x4@
Scale 1x1x49

veights S58x1x49x38

Offset 1x1x30
Scale 1x1x3@

Meights 20x1x39x2@
Bias 1x1=28
Offset 1x1x20
Scale 1x1x2@

veights 18x1<29=18
Bias 1%1x18
Offset 1x1x1@
Scale 1x1x18

weights 26%168
Bias 26x1

Accuracy 0.7643
FSK Accuracy with max 1 bit wrong 0.9898
Execution time 4.9796s (for 13000 iterations)
Execution per iteration 3.83 %10 %s
Accuracy 0.7168
PSK Accuracy with max 1 bit wrong 0.9779
Execution time 5.1230s (for 13000 iterations)
Execution per iteration 3.94 % 10 %s

82

C.2 Signal length comparison of time-data and FFT

The matrix size for time-data: (500,1,1,13000), with 500 instances for each output.

The matrix size for FFT with amplitude and phase: (500,1,2,13000), where first index of 3rd dimen-
sion are absolute values, and 2nd index of 3rd dimension is phase.

The matrix size for FFT with only amplitude: (500,1,1,13000), with 500 instances for each of the
26 outputs.

Training options:

Solver adam
Epochs 100
Iterations per epoch 101
Learning rate Constant 0.001

Modulation Scheme PSK

Amplitude 50 peak
Noise Levels 0 SNR: approx 14.0 average amplitude , approx 50 peak
Input size 50 bit area

Data bit length 0-25

Samples per bit 10

Periods per bit 1
Phase-scew Randomized within timespace of 1 sample

Network Structure for time data and FFT (amplitude only):

ANALYSIS RESULT ~
/ATIONS LEARNABLES

NAME

1 imageinput Image Input 509x1x1
500x1x1 images with ‘zerccen izatio

2 |comv_1 Convolution 206x1=40 Weights 10@x1x1x40
40 100:x1x1 con Bias 1x4

Batch Normalization 2e6x1x4@ Offset 1x1x48
Scale 1x1x4@

ReLU 2061x40
Convolution 84x1x30 leignts Sexls4ex3e
ding [10000 Bias 1x1<38
Balch Normalization | 84x1x30 Offset 1x1x30
Scale 1x1x30
7 relu_2 ReLU B4x1=30
Rell
s |conv_3 Convolution 35x1220 Welghts 20=1<38x20
20 2071420 sonvo 2 Bias 1x1x28
e batchnorm_3 Batch Normalization 35x1x2@ Offset 1x1x20
Baich nermalization with 20 channels Scale 1#1%20
RelU 35%1%20
1+ |conv_4 Convolution 16+1%10 leignts 1ex1s20%10
0 10x1x20 convol 0 Bias 1x1x18
2 |batchnorm_4 Batch Normalization | 16x1x10 Offset 1x1x1e
aization Scale 1x1xle
2 |relu_4 ReLU 16x1x10
ReLD
Fully Connected 1+1x26 Weignts 26168
Bias 261
Softmax 1+1x26

Classification Output | -

s | classoutput
srossentrapyex

83

Network Structure for FFT (amplitude and phase):

ANALYSIS RESULT
NAME

imageinput

PSK time-domain classification results

Accuracy
Accuracy with max 1 bit wrong

0.7168
0.9779

Execution time
Execution per iteration

Accuracy
Accuracy with max 1 bit wrong

5.1230s (for 13000 iterations)
3.94 % 10~ 4s

PSK FFT classification results with amplitude and phase:

0.2731
0.6601

FFT time
FFT time per iteration

1.2611s
0.97 x 10~ 4s

Execution time
Execution per iteration

Accuracy
Accuracy with max 1 bit wrong

5.1012s (for 13000 iterations)
3.92% 10 %s

PSK FFT classification results with only amplitude:

0.2725
0.6592

FFT time
FFT time per iteration

0.2485s
0.19 % 10~ 4s

Execution time
Execution per iteration

4.8185s (for 13000 iterations)
3.71 % 10745

84

TYPE

Image Input
Convolution

Batch Normalization
ReLU

Convolution

Batch Normalization
RelU

Convolution

Batch Normalization
ReLU

Convolution

Batch Normalization
ReLU

Fully Connected

Softmax

ACTIVATIONS

508x1x2

206x1x40

206x1x40

84x1x30

54x1x38

35%120

35x1x28

35x1x20

16=1x1@

16=1x1@

16x1x18

11%26

11%26

Classification Output |-

LEARNABLES

Weights 108x1x2x40
Bias 1x1x20
Offset 1x1x49
Scale 1x1=48

Meights 59x1<42x39
Bias 1x1x30
Offset 1x1x30
Scale 1x1x39

Weights 20x1x3@x20
ias 1x1x20
Offset 1x1x20
Scale 1x1x20

Meights 19x1<22x10
Bias 1=1-10
Offset 1x1x10
Scale 1x1x10

veights 26x168
Bias 26<1

C.3 Signal length comparison beetween ASK, FSK, and PSK
modulation scheme

Results for 0SNR can be seen in Appendix

Signal information:

Modulation Scheme ASK, FSK and PSK (separately)
Amplitude 50 peak
Noise Levels varies
Input size 50 bit area
Data bits 0-25
Samples per bit 10
Periods per bit 1

Phase-scew Randomized within timespace of 1 sample
Training options:
Solver adam
Epochs 100
Iterations per epoch 101
Learning rate Constant 0.001

Network Structure:

ANALYSIS RESULT
/ATIONS LEARNABLES

NAME

1 |imageinput Image Input 5@@x1x1
500x1x1 im:

z |conv_1 Canvolution Weights 10@x1x1x49

Offset 1x1x40
Scale 1x1x4@

Batch Normalization | 2

4 relu_ ReLU 2061x43
= |comv 2 Convolution 84x1x30 leignts Sexls4ex3e
30 505140 convolusions with stride (2 1] and paddin Bias 1x1=38

s | batchnorm_2 Balch Normalization | 84x1x30 Offset 1x1x30
Batch nermalzation with 20 Scale 1x1x30
ReLU 84x130
Convolution 35%1x20 Weights 201=36x2¢
Bias 1x1=2¢
Batch Normalization 35x1x2@ Offset 1x1x20
Scale 1=1x2@
o |rew_3 RelU 35%1%20
1 |conv_4 Convolution 16+1%10 ueignts 1ex1s20%10
Bias 1x1<18
Batch Normalization | 16x1x10 Offset 1x1x1e
Scale 1x1x18
2 |relu_4 ReLU 16x1x10
Fully Connected 1+1x26 Weignts 26168
Bias 261
Softmax. 1x1x26

Classification Output | -

6SNR

ASK classification results:

Accuracy 0.7073
Accuracy with max 1 bit wrong 0.9377
Execution time 5.2538s (for 13000 iterations)
Execution per iteration 4.04 %10 s

85

FSK classification results:

Accuracy 0.9943
Accuracy with max 1 bit wrong 1.0
Execution time 4.9542s (for 13000 iterations)
Execution per iteration 3.81 % 10~ %s
PSK classification results:
Accuracy 0.9923
Accuracy with max 1 bit wrong 0.9999
Execution time 5.1648s (for 13000 iterations)
Execution per iteration 3.97 %« 10~ %s
3.5NR
ASK classification results:
Accuracy 0.5436
Accuracy with max 1 bit wrong 0.9092
Execution time 4.7313s (for 13000 iterations)
Execution per iteration 4.18 % 107 4s
FSK classification results:
Accuracy 0.9632
Accuracy with max 1 bit wrong 0.9992
Execution time 4.7454s (for 13000 iterations)
Execution per iteration 3.65 % 10~ %s
PSK classification results:
Accuracy 0.9771
Accuracy with max 1 bit wrong 1.0
Execution time 4.85233.73s (for 13000 iterations)
Execution per iteration x1074s

86

C.4 Comparison between the CNN and FNN

Signal information:

Modulation Scheme PSK

Amplitude

50 peak

Noise Levels

3.5 SNR: approx 10.0 average amplitude , approx 37 peak

Input size

50 bit area

Data bits

0-25

Samples per bit 10

Periods per bit 1

Phase-scew

Randomized within timespace of 1 sample

Training options:

Solver

adam

Epochs

100

Iterations per epoch

101

Learning rate

Constant 0.001

Network Structure:

ANALYSIS RESULT
NAME

imageinput

500x1x1 images with "zerocenter’ normalization

fe1

classoutput
srossentrapyex

Accuracy

0.2163

Accuracy with max 1 bit wrong 0.5585

Execution time 80.8351s (for 13000 iterations)
Execution per iteration 62.18 x 10~ 4s

87

Image Input
Fully Connected
Batch Normalization
ReLU

Fully Connected
Batch Normalization
RelU

Fully Connected
Batch Normalization
ReLU

Fully Connected
Batch Normalization
RelU

Fully Connected

Softmax

ACTIVATIONS

5e@x1x1

1158240

1x1x2520

1%1x2520

1%1x2520

1%1%700

Classification Output | -

LEARNABLES

ueights 8§240%520
Bias 8240<1

Offset 1x1x5240
Scale 1x1x8240

ueights 2528<8248
Bias 2520%1
Offset 1x1%2520
Scale 1x1%2529

ueights 7002520
ias 780<1
Offset 1x1x780
Scale 1x1x700

ueights 16@x702
Bias 160x1

Offset 1x1x16@
Scale 1x1x16@

ueignts 26%168
Bias 26x1

C.5 Signal length comparison of different number of samples

per bit

A comparison to 10 samples per bit can be found in Appendix

Signal information:

Modulation Scheme PSK
Amplitude 50 peak
Noise Levels 0 SNR: approx 14.0 average amplitude , approx 50 peak

Input size

50 bit area

Data bits 0-25
Samples per bit varies
Periods per bit 1

Phase-scew

Randomized within timespace of 1 sample

Training options:

Solver adam
Epochs 100
Iterations per epoch 101
Learning rate Constant 0.001

Network Structure:

ANALYSIS RESULT

T rel_2
s |conv_3

o | batchnorm_3

conv_4

2 | batchnorm_4

o | classoutput
crassentropye:

Signal length with 20 samples per

= VATIONS LEARNABLES

Image Input 1002=1x1

Convolution 206+1x40 Weights 20@x1x1x49
Bias 1x1x4

Batch Normalization | 2@6=1x4

Offset 1x1x4
Scale 1x1x48

RelU 206148

Convolution B4x1=30 Weights 5@x1x48x3@
Bias 1x1x30

Batch Normalization | 84x1x30 Offset 1x1x30
Scale 1x1x38

RelU B84x1=30

Convolution I5w1%20 Weignts 20%1x36%28
Bias 1x1x28

Batch Normalization | 35x1x28 Offset 1x1x2@
Scale 1x1x2@

ReLU 35x1228

Convolution 16x1x10 veights 10=1x20=18
Bias 1x1x18

Batch Normalization |16x1x1@ Offset 1x1x1@
Scale 1x1xl@

ReLU 16+1<16

Fully Connected 1x1=26 Weights 26x16@
Bias 26%1

Softmax 1x1526

Classification Cutput |-

bit

Filter of the first convolutional layer has been doubled in length. The stride and padding for the first
convolutional layers have also been doubled. This is done to create a neural network that should be
as equivalent as possible to the 10 samples/bit version.

Network Structure:

88

ANALYSIS RESULT
t | nane

1 imageinput
100011 images with zarosenter nomalizaton

2 |com

2 |batchnorm_1
Batoh normalization with 40 channels

4 |re_1
Rell

5 |conv_2
305

& | batchnorm_2
Batch normalization with 30 channels

T rel_2

o | batchnorm_3
Baich normahzstion with 20 channels

3 |rew_3
ReLD

2 |batchnorm_4
Bath normaization with 10 channels

3 |rel_d
Rell

s |fc
26 fully connested layer

5 | softmax
softmax

o | classoutput
crossentrapyex

Accuracy

Accuracy with max 1 bit wrong

w_1
40 20011 convalutions with stride [4 1] and padding (20 0 0 0

x40 convoluiens with stride [2 1] and padding [10 0 0 0]

0 canvaluions with stride [2 1] and padding [5 00 0]

0 convoluiions with stride [2 1] and padding [5 00 0]

0.9009
0.9985

Execution time
Execution per iteration

Signal length with 4 samples per bit

6.1875s (for 13000 iterations)
4.76 x 10~ s

TYPE

Image Input

Convolution

Batch Normalization

ReLU

Convolution

Batch Normalization

RelU

Convolution

Batch Normalization

RelU

Convolution

Batch Normalization

ReLU

Fully Connected

Softmax

Classification Cutput

ACTIVATIONS

1008=1x1

206x1x40

206+1x40

206+1x40

84x1x30

84x1x30

84x1x30

35x1%20

35x1%20

35x1x20

16x1x10

16=1=10

16=1=10

1x1=26

1x1x26

LEARNAE!

Weights 20@~1x1x4f
Bias 1x1=40
Offset 1x1x40
Scale 1x1=4

Weights 50x1x48x30
Bias 1x1x30

Offset 1x1x30
Scale 1x1x38

Weignts 20w1x30x20
Bias 1x1x28

Offset 1x1x20
Scale 1x1=28

Weignts 10x1x28x10
Bias 1x1x10

Offset 1x1=10
Scale 1x1x1@

Weights 26x16@
Bias 261

The fiter for the first convolutional layer has been reduced to 40. The stride and padding for the
first convolutional layer have also been reduced when compared to the 10 samples/bit version. This
is in an attempt to create a network that is as similar as possible to the 10 samples/bit version.

Network Structure:

IALYSIS RESULT

+ | name
1 imageinput

20011 images with ‘zerooenter normalization
2 conv_1

40 4011 convolutions with stride [1 1] and padding [4 00.0]

2 batchnorm_1
Batch normazaton with 40 channsis

4 ekt
ReLD

5 conv_2
2050

s batchnorm_2
Batch normazaton with 30 channsis

T rel_2
Rell

2 conv_3
20 20%

@ batchnorm_3
Batch normaization with 20 channsis

o relu_3

2 batchnorm_4
Batoh normalization with 10 channels

:orelud
RelD
26 fully connected layer

5 softmax
softmax

s classoutput
srossenmopyex

¥40 convolutions with stride [2 1] and padging (10 0.0 0

0 canvolutions with stride [2 1] and padging [50 0 0]

0 canvolutions with stride [2 1] and padging [50 0 0]

89

TYPE

Image Input
Convolution

Batch Normalization
ReLU

Convolution

Batch Normalization
ReLU

Convolution

Batch Normalization
ReLU

Convolution

Batch Normalization
ReLU

Fully Connected
Softmax

Classification Qutput

ACTIVATIONS

208x1=1

165x1=40

165x1=40

165x1=40

63x1x38

63x1x38

63x1x38

25x1x28

25x1x28

25x1x2@

11=1x18

11=1x18

11=1x1@

1=1x26

1x1x26

LEARNABLES

Weights 4@x1x1xdp
Bias 1x1=48
Offset 1x1=40
Scale 1x1x4@

Weights 5@x1x48x30
Bias 1x1=38
Offset 1x1x30
Scale 1x1x3@

Weignts 28x1x38x20
Bias 1x1x20
Offset 1x1x20
Scale 1x1x2@

Weignts 18x1x28x10
Bias 1x1x18
Offset 1x1x10
Scale 1x1x1@

Weignts 26=11@
Bias 261

Accuracy 0.3451
Accuracy with max 1 bit wrong 0.7955
Execution time 5.2753s (for 13000 iterations)

Execution per iteration 4.08 %10~ *s

90

C.6 Signal length comparison of differently sized CNNs

Signal information:

Modulation Scheme PSK
Amplitude 50 peak
Noise Levels 0 SNR: approx 14.0 average amplitude , approx 50 peak
Input size 50 bit area
Data bits 0-25
Samples per bit 20
Periods per bit 1
Phase-scew Randomized within timespace of 1 sample

Training options:

Solver adam
Epochs 100
Iterations per epoch 101
Learning rate Constant 0.001

CNN with 3 convolutional layers

Network Structure:

ANALYSIS RESULT

NAE 3 ACTIVATIONS LeARNABLES
1 |imageinput Image Input 10081x1
0
2 |conv_1 Convolution 206130 ueignts 2001x1s30
o Bia <38
= |batchnorm_1 Batch Normalization | 206~1x38 Offset 1x1x38
Steh ot Teaton Scale 1x1x38
ReLU 206x1x30
= |conv_2 Convolution 8ax1x20 lieignts Sexlx3axze
20502130 comvos Bias 1x1x28
5 | batchaorm_2 Batch Normalization | 84x1x28 Offset 1x1x20
Zation with 20 chnnis Scale 1x1x28
ReLU Bax1x20
Convolution 35%1x10 lieignts 20w1x20%1e
Bias 1x1<18
Batch Normalization | 35%1x1e Offset 1x1x18
Scale 1x1x18
5 |rel_3 ReLU 355110
1 |t Fully Connected 1x1x26 ueignts 26350
2 Bias 261
Softmax 1x1x26

2 | softmax

3 | classoutpu Classification Qutput | -
crossentropye:

Accuracy 0.6892
Accuracy with max 1 bit wrong 0.9727
Execution time 3.5636s (for 13000 iterations)
Execution per iteration 2.74 % 10~ %s

CNN with 5 convolutional layers

Network Structure:

91

ANALYSIS RESULT

+ [naue

imageinput

1000x11 images with ‘zerocenter’ normalization

conv_1

50 20011 convalutions ide [4 1) and padding [20 0 0 0]

batchnorm_1
Batoh normalization with 50 channels

re_1
ReLU

th stride [2 1] and pacding [10 00 0

batchnorm_2
Bath normaizaton with 40 channsis

rei_2
ReLD

conv_3
30 205140 convolutions wit

stride [2 1] and padding (50 0 0]

batchnorm_3
Baich normakzation with 30 channsis

rei_3
ReLU

20 10% stride [2 1] and padding (50 0 0]

batchnorm_4
Batch normalization with 20 channels

reu_4
RelU

convolutions with stride [2 1] and padding (2 0 0 0]

batchnorm_5
Batoh normalization wit

rel_s

ReLU

c

28 fully connected layer

softmax
softmax

classoutput
=sentropyex

Accuracy

Accuracy with max 1 bit wrong

0.9045
0.9887

Execution time
Execution per iteration

9.8385s (for 13000 iterations)
7.57 %107 %s

92

TvRE
Image Input

Convolution

Batch Normalization

RelLU

Convolution

Batch Normalization

RelU

Convolution

Batch Normalization

RelU

Convolution

Batch Normalization

RelU

Convolution

Batch Normalization

RelLU

Fully Connected

Softmax

Classification Output

ACTIVATIONS
1002x1x1

206+1x50

206+1x50

206+1x50

34x1x40

34x1x40

34x1x40

35x1x30

35x1x30

35x1x30

16=1=20

16x1%20

16%1%20

7x1x20

7x1x20

7x1x20

1x1=26

1x1=26

LEARNABLES

Weights 20@=1x1x50
Bias 1x1x58
Offset 1x1x50
Scale 1x1x5@

Weights S@x1x5@~40
Bias 1x1=48
Offset 1x1x40
Scale 1x1x4@

Weignts 20w1x4@x30
Bias 1x1x38

Offset 1x1x30
Scale 1x1x38

Weights 18x1x32=20
Bias 11220

Offset 1x1x20
Scale 1x1x2@

Weights 5x1x20x20
Bias 1120
Offset 1x1x20
Scale 1x1=2@

Weignts 26=140
Bias 261

CNN with different amount of padding

No padding

ANALYSIS RESULT -
+ | name TYPE ACTIVATIONS

1 imageinput Image Input 1066x1x1 -
100011 images with ‘zerocenter’ normaiization

2 conw_1 Convolution 201x1x50 lieignts 20@x1%1¥50
50 20511 conuoutions with stride [4 1] and padding [00 0 0] Bias 1x1x50

2 batchnorm_1 Batch Normalization | 2e1%1x50 Offset 1x1x5@
Batch normalization with 50 channsis Scale 1x1x58

4 [relu_1 RelU 201x1=58 -
RelD

s conv_2 Convolution Tex1xa0 Veignts Sex1x52:40
0 convoluions wit stide (2 1] and padding [000.0] Bias 1x1x48

= batchnorm_2 Batch Normalization | 76x1x40 Offset 1x1xdd
Batch normalization with 40 channels Scale 1x1x4@

T rel2 ReLU 76x1x48 -
ReLD

s conw_3 Convolution 20%1%30 leignts 26%1x49%30
30 206140 conuoutions with stride [2 1] and padding [00 0 0] Bias 1x1x38

[batchnorm_3 Batch Normalization | 29x1x3@ Offset 1x1x38
Batch normaization with 30 channsis Scale 1x1x38

o relu_3 ReLU 29<1x38 -
ReLD

1 conv_4 Convolution 10x1x20 Meights 18x1x38x28
20 10%130 conuoutions wth stride [2 1] and padding [00 0 0] Bias 1x1x20

2 batchnorm_4 Batch Normalization | 18x1x26 Offset 1x1x28
Batch normazation with 20 channsis Scale 1x1x20

s relu_d ReLU 10=1<28 -
ReLD

i+ |fc Fully Connected 1x1x26 Weights 26<268
26 fully eonnected Iayar Bias 261

5 softmax Softmax 1x1x26 -
sofimax

5 classoutput Classification Output |- -

crossentropyex

Accuracy 0.9125
Accuracy with max 1 bit wrong 0.9961
Execution time 7.2252s (for 13000 iterations)
Execution per iteration 5.56 % 10~%s

Large amounts of padding

The padding introduced in this iteration is equal to half the filter size at each convolutional layer.

ANALYSIS RESULT

+ | naue TreE ACTIVATIONS LEARNABLES
1 imageinput Image Input 1002x1x1 =
1000x1x1 images with ‘zerocenter’ normalization
2 |conv_1 Convolution 226+1x50 Weights 20<1x1x50
50 200x1x1 convalutions with stride [4 1] and pading [100 60 0] Biss 1x1x50
2 | batchnarm_1 Batch Normalization | 226+1<5@ Offset 1x1x5@
Batch normalization with 50 channels Scale 1x1x5@
4 |relu_1 ReLU 226x1+50 -
RelU
5 Convolution 101=1=48 Weights 50x1x50<40
0 convolutions with stride [2 1] and padding [25 00 0 Biss 1x1=40
& |batchnorm_2 Batch Normalization | 101x1=42 Offset 1x1xd4@
Batch normalization with 40 channels Scale 1x1%49
T |rew_2 ReLU 101=1=40 -
RelU
8 Convolution A5x1x30 Veights 20x1x48x30
40 Sonvolutions with stride [2 1] and padding [1000 0 Biss 1x1=30
¢ |batchnorm_3 Batch Normalization | 46=1x30 Offset 1x1x3@
Bateh normalization with 30 channels Scale 1x1<3@
o |rew_3 ReLU 46130 -
RelU
11| conv_4 Convolution 21=1x20 eights 16x1x30x20
20 10x1230 convalutions with stride [2 1] and padaing [5 0 0 0] Biss 1x1=20
2 | batchnorm_4 Batch Normalization | 21=1x20 Offset 1x1x20
Bateh normalization with 20 channels Scale 1x1x20
: |re_d4 ReLU 211x20 -
RelU
< |fc Fully Conneced 1x1x26 Veights 26x42p
26 fuly connected layer Bias 26x1
5 | softmax Softmax 1x1x26 -
sofmax
= | classoutput Classification Quiput | - -

crossentropyex

Accuracy 0.9142
Accuracy with max 1 bit wrong 0.9925
Execution time 8.6235s (for 13000 iterations)
Execution per iteration 6.63 % 10~ %s

93

CNN with different amounts of stride

CNN with stride of first convolutional layer minimized

ANALYSIS RESULT

+ [nauE TvPE ACTIVATIONS
1 imageinput Image Input 1060x1=1 -
1000x 11 images with zerocenter” normalization
2 lconv_1 Convolution 811x1x50 \eignts 208x1x150
50 200x1x1 convolutions with stride [1 1] and padding [10 000 Bias 1x1x5@
= baichnorm_1 Baich Normalization | 511x1x58 Offset 1xlx5p
Bateh normalization with 50 channels Scale 1x1x50
4 relu_1 ReLU 811x1=50 -
5 Convolution 386x1x48 Vieights 58x1x58x40
0 sonvolutions with stride [2 1] and padding [10 00 0] Bias 1x1xa@
¢ | batchnorm_2 Batch Normalization | 386x1x48 Offset 1x1xd9
Batch normalization with 40 channels Scale 1:1%40
7 |relu_2 RelU 386x1=40 -
E Convolution 186x1x38 Vieights 20x1x40x30
%40 convolutions with stride 2 1] and padding [5 0 0 0] Bias 1x1x38
& | batchnorm_3 Batch Normalization | 186x1x38 Offset 1=1=3@
Batch normalization with 20 channels Scale 11230
relu_3 ReLU 186x1x30 -
ReLU
cony_4 Convolution 91x1x20 Meignts 10%1x30%20
20 10x1:30 convolutions with stride [2 1] and padding [5.0 0 0] Bias 1x1x20
2 batchnorm_4 Batch Normalization | 91x1x2@ Offset 1x1x20
Batch normalization with 20 channels Scale 1x1x28
2 |relu_d RelU 91x1x20 -
ReL
s Fully Connected 1x1x26 Vieights 26<1828
26 fuly connected layer Bias =1
5 sofimax Sofimax 1x1x26 -
sofmax
s | classoutput Classification Output | - -

crossentropyex

Accuracy 0.5751
Accuracy with max 1 bit wrong 0.8755
Execution time 6.2462s (for 13000 iterations)
Execution per iteration 4.81 %107 %s

Stride increased

ANALYSIS RESULT (O]
+ | NAI TYPE LEARNAE

1 imageinput Image Input 100x1x1 -
100011 images with ‘zerocenter’ normslizaton

2 conv_1 Convolution 41x1%50 Meights 208x1¢1x58
50 20011 convolutions with stids [20 1] and padding (1000 0 Bias 1elx5B

3 batchnorm_1 Batch Normalization |41x1x5@ Offset 1x1x5@
Baich normalzstion wih 50 channe's Scale 1x1x5

4 rel_1 ReLU 41x1x50 -
Rell

5 conv_2 Convolution 21x1x48 Weights 18x1x58=4@
40 101480 convolutions with stide [2 1] and padding (1000 0 Bias 1v1x48

L} batchnorm_2 Batch Normalization | 21x1x4@ Offset 1x1x48
Batch normalization with 40 channels Scale 1x1=40

T rel2 ReLU 21x120 -
Rell

s conv3 Convolution w1430 Meignts 10w1xaax30
30 101240 convolutions with stide [2 1] and padding (500.0] Bias 1<1x38

o batchnorm_3 Batch Normalization | 9x1+30 OFfset 1x1x30
Baich normalzstion wih 20 channe's Scale 1x1x30
relu_3 ReLU 9x1x30 -
Rell
conv_4 Convolution 3x1x20 Meights 18x1x38x28
20 101420 convolutions with stide [2 1] and padeing (5 00.0] Bias 1x20

2 batchnorm_4 Batch Normalization | 3x1x28 Offset 1x1x28
Batch normalization with 20 channels Scale 1x1=20

: relu4 ReLU 31420 -
Rell

|1 Fully Connected 11426 uieignts 2660
26 fully connected layer Bias 26%1

15 | softmax Softmax 11426 -
<oftm

s classoutput Classification Output |- -

crossentropyex

Accuracy 0.7018
Accuracy with max 1 bit wrong 0.9801
Execution time 1.6127s (for 13000 iterations)
Execution per iteration 1.24 %10~ %s

Stride and number of filters increased

94

ANALYSIS RESULT

+ | NAME TYPE ACTIVATIONS LEARNABLES

1 imageinput Image Input 1008x1+1 -
1000x1x1 images with ‘zsrocenter’ normalizaton

2 conv_1 Convolution 41=1x10@ Weights 20@x1x1x10@
100 200x1x1 convelutions with stride [20 1] and padding [100 0 0] Bias 1x1x180

2 | batchaorm_1 Batch Normalization | 41x1x12e Offset 1x1%128
Bateh normakzation with 100 channsis Scale 1x1x108

4 relu_t RelU 21414108 -
RelD

5 |conv_2 Convolution 21x1x82 lieignts 18%1x100w80
80 10x1x100 convolutions with stride [2 1] and padding [10 00 0] Bias 1x1=80

5 | batchnorm_2 Batch Normalization | 21+1x82 Offset 1x180
Batch normakzation with 80 channsis Scale 1x1x88

T relu_2 RelU 21x1x88 -
RelD

s |conv_3 Convolution 9160 lieignts 101x80%60
50 10180 comvolutions with stide [2 1] and padding [500.0] Bias 1x1xa8

o | batchnorm_3 Batch Normalization | 9x1x68 Offsat 1xlsa
Batch normakzation with B0 channsis Scale 1x1x60

o relu_3 ReLU 9x1x60 -
RelD

1 |conv_4 Convolution 31540 lieignts 101x60x40
40 10150 comvolutions with stide [2 1] and padding [500.0] Bias 1x1x48

12 | batchnorm_4 Batch Normalization | 3x1x48 Offset 1slxdd
Batch normakzation with 40 channsis Scale 1x1x4d

| relu_d ReLU 3x1x40 -
ReLD

1 |l Fully Connected 1126 Meignts 26x128
26 fully connected layer Bias 261

15 |softmax Softmax 1x1x26 -
sofimax

& | classoutput Classification Output | - -

crossentropyex

Accuracy with max 1 bit wrong

Accuracy

0.6583
0.9742

Execution time

Execution per iteration

2.2124s (for 13000 iterations)
1.70 % 10™%s

95

CNN with different filter sizes

Filter size [20 1] for first convolutional layer, and 25 for second convolutional layer

ANALYSIS RESULT

1 imageinput Image Input 1080x1x1 =
e
2 Convolution 243=1x48 Meights 28x1x1x48
convolutions with stride [4 1] and padding [10 0 0 0] Bias 1x1=48
3 batchnorm_1 Batch Normalization | 248<1x4a Offset 1x1x48
Batoh normalization with 40 channels. Scale 1x1x4@
s |rel_1 RelU 245<1x40 -
5 conv_2 Convolution 117=1x38 Meights 25x1x48<3@
30 25x1x40 convolutions with stride [2 1] and padding [10 0 0 0; Bias 1x1x38
8 batchnorm_2 Batch Normalization | 117x1x3@ Offset 1x1x3@
Batoh normalization with 20 channels. Scale 1x1x3@
7 |rel_2 RelU 117<1x38 -
8 Convolution 52x1x20 Meights 28x1x38x20
20 20x1x30 convolutions with stride [2 1] and padding [5 0 0 0] Bias 1x1x28
] batchnorm_3 Batch Normalization 52x1x28 Offset 1x1x20
Batch normalization with 20 channels. Scale 1x1x20@
relu_3 RelU 52x1x20 -
conv_4 Convolution 28x1x10 Veignts 18x1%20%10
T e it e
2 batchnorm_4 Batch Normalization 24x1x18 Offset 1x1x18
Batch normalization with 10 channels. Scale 1x1x1@
3 |re_d RelU 24x1x10 -
w e Fully Connected 1x1%26 \eignts 26%240
LR P
5 softmax Softmax 1x1x26 -
s | classoutput Classification Output |- R
Accuracy 0.7241
Accuracy with max 1 bit wrong 0.9521
Execution time 5.0418s (for 13000 iterations)
Execution per iteration 3.88 %« 10~ *s
Filter size [400 1] for first convolutional layer
ANALYSIS RESULT
1 Imageinput Image Input 1208=1x1 =
1000x1x1 images with 'zerocenter’ normalization
2 conv_1 Convolution 153=1=48 Weights 48@x1x1x48
R PP
3 batchnorm_1 Batch Normalization | 153x1x4@ Offset 1x1=4@
Batoh normalization with 40 channels Scale 1x1<4@
4 relu_1 ReLU 153x1=48 -
RelU
5 Convolution 57x1x38 Meights 58x1x48x38
s s 1t 100 P
L batchnorm_2 Batch Normalization | 57x1x3@ Offset 1x1=3@
Batch normalization with 20 channels Scale 1=1x3@
T rel_2 ReLU 57x1x3@ -
RelU
2 Convolution 22x1x28 Weights 28x1x30x28
%30 convolufions with stride [2 1] and padding (5 0 0 0] Bias 1x1x20
[batchnorm_3 Batch Normalization | 22x1x2@ Offset 1x1=20
Batch normalization with 20 channels Scale 1=1x28
relu_3 RelU 22x1%20 -
RelU
Convolution 9x1x189 Weights 18x1x20x1@
0 convolutions with stride [2 1] and padding (50 0 0] Bias 1x1x10
2 batchnorm_4 Batch Normalization | 9x1x18 Offset 1x1=1@
Batch normalization with 10 channels Scale 1=1x1@
2 |relu_d ReLU 9x1+10 -
RelU
4 e Fully Connected 1x1x26 Weights 2698
26 fully connected laye: Bias 26%1
5 | softmax Softmazx 1x1%26 -
softmax
5 classoutput Classification Output |- -

erossentropyex

Accuracy 0.8027
Accuracy with max 1 bit wrong 0.9890
Execution time 4.3073s (for 13000 iterations)
Execution per iteration 3.31 x 10~ %s

96

	Introduction
	Background and motivation
	Contribution
	Structure of thesis

	Background
	UVM based verification
	SPICE, Analog Mixed Signals and Real Value Modeling for verification purposes
	Machine learning and neural networks
	Machine learning
	Artificial neural networks
	Training a neural network
	Neural network layers

	Related Work
	Modulation recognition in cognitive radio using artificial neural networks
	Biologically Inspired Radio Signal Feature Extraction with Sparse Denoising Autoencoders
	Automatic recognition of both inter and intra classes of digital mdoualted signals using artificial neural network
	Algorithms for Automatic Modulation Recognition of Communication Signals

	Voice recognition
	FINN

	Architecture and Test Development
	RVM features, parameters and test-cases
	Generation of training and classification data
	Neural network structure, training and validation
	RVM structural classification
	RVM positional classification
	RVM length classification

	Analysis
	Comparison between the SGDM, RMSProp and ADAM solvers
	Comparison between time-domain and FFT with and without phase-component
	Comparison between the use of the ASK (OOK), FSK, and PSK modulation schemes
	Comparison between CNN and FNN
	Neural network for structural analysis of RVM signal
	Comparison of sampling rates
	Comparison of differently sized CNNs
	CNN performance for structural classification

	Neural network for positional analysis of RVM signal
	Comparison of sampling rates
	Comparison of differently sized CNNs
	CNN performance for positional classification

	Neural network for signal length analysis of RVM signal
	Comparison of sampling rates
	Comparison of differently sized CNNs for length classification
	CNN performance for length classification

	Discussion
	Validity of generated data
	Accuracy and size of ANNs
	Time-domain versus frequency-domain
	Results for the classification problems
	Possible improvements
	Additional features

	Conclusion
	Future work

	Artificial neural network results for structural test-cases
	Comparison between the different solvers for analog structural feature analysis
	Structural comparison of time-data and FFT
	ASK, FSK and PSK comparison at different SNR for structural analysis
	Comparison compared to fully connected neural networks
	Structural analysis for different number of samples per bit
	Structural comparison of differently sized CNNs

	Artificial neural network results for positional test-cases
	Comparison between the different solvers for analog positional analysis
	Positional comparison of time-data and FFT
	ASK, FSK and PSK comparison at different SNR for positional analysis
	Comparison between the CNN and FNN
	Positional analysis comparison of different number of samples per bit
	Signal position comparison of differently sized CNNs
	Final structure for positional analysis neural network

	Artificial neural network results for signal length test-cases
	Comparison between the different solvers for analog signal length analysis
	Signal length comparison of time-data and FFT
	Signal length comparison beetween ASK, FSK, and PSK modulation scheme
	Comparison between the CNN and FNN
	Signal length comparison of different number of samples per bit
	Signal length comparison of differently sized CNNs

