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Problem Description 
In 2009, the petroleum industry was responsible for 26% of the total CO2 and NOx 

emissions in Norway. 90% of these emissions were due to power production. A 

reduction of these emissions would greatly decrease the total emissions of the 

country. One of the suggested solutions for reducing the emissions of offshore 

platforms is to supply them with electricity from shore.  

This thesis work should be focused on study of available control methods to 

ensure proper passive system control so that the need of a gas turbine on oil 

platforms can be significantly reduced. A control system for the full back-to-back 

voltage source converter configuration should be implemented, tuned and tested for 

worst-case load changes on the passive platform system. 
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Summary 
This thesis work shows implementation and testing of existing control strategies in a 

novel offshore passive platform configuration. Control of the platform voltage and 

frequency is done through control of a shore-based back-to-back voltage source 

converter configuration, when the frequency on shore differs from the frequency on the 

platform. An 80 km HVAC-cable and transformers separates the shore-based back-to-

back voltage source converters from the platform installation. The system is modeled 

and simulated in MATLAB
®
 Simulink™ SimPowerSystems™.  

The grid-side voltage source converter is applied conventional cascaded controllers, 

with an inner current control loop and outer loops controlling the DC-link voltage and 

the flow of reactive power from the grid.  

Two different control strategies were implemented for the platform-side voltage 

source converter, denoted as control strategy 1 and 2. Control strategy 1 controls the 

platform voltage magnitude, while keeping the frequency fixed, and is implemented 

with a simple PI-controller. Control strategy 2 controls both platform voltage magnitude 

and frequency, and was based on a cascaded control configuration, similar to that of a 

weak-grid system, implemented for the passive platform system.  

Both control strategies were implemented for the platform system and tested for three 

worst-case changes of platform load: loss of all loads, increase of passive load and large 

induction motor starting. The platform steady-state and transient voltages and frequency 

were evaluated based on the requirements for voltage and frequency defined in IEC 

61892: standard for mobile and fixed offshore units, electrical installations.  

Control strategy 1 was tested for both normal and autonomous operation, when a 

constant DC-link voltage was applied. It was also tested for full back-to-back voltage 

source converter configuration, with the grid-side system converter controlling the DC-

link voltage and flow of reactive current from the grid. In all the three configurations, 

control strategy 1 failed to meet the system requirements set by the IEC 61892 standard 

for allowable voltage magnitude transients during loss-of-all-load and large-induction-

motor-start.  

Control strategy 2 was tested with constant DC-link voltage when platform voltage 

measurements were available. The simulation results show no visible voltage or 

frequency transients for any of the three load change tests applied, and the system 

operation satisfies the IEC 61892 requirements for all the worst-case load change tests. 

The platform voltage and frequency are independent of the load dynamics, which is a 

desirable quality when controlling the voltage on a complex platform configuration. 

Control strategy 2 shows promising potential for controlling the platform voltage and 

frequency from shore. However, further research and testing must be done before this 

control strategy can be utilized in a real platform system.   

The proposed system controlled by control strategy 2 would allow significantly 

reducing the usage of low efficiency, high emission gas turbine driven synchronous 

generator that are the standard power source on oil platforms today. Reducing the usage 

of the gas turbine, for power production on offshore oil and gas platforms, could reduce 

the total CO2 and NOx emissions of the petroleum sector considerably. 



 

Sammendrag 
Denne masteroppgaven viser implementering og testing av to eksisterende 

kontrollsystemer, i en ny passiv plattformkonfigurasjon. Kontroll av platformspenning 

og -frekvens ble gjort gjennom kontroll av en en landbasert ”back-to-back” VSC 

konfigurasjon, som forsyner en offshore plattform med kraft fra land, gjennom en 80 

km HVAC-kabel. Frekvensen på land er ulik frekvensen på plattformen. Systemet er 

modellert og simulert i MATLAB
®
 Simulink™ SimPowerSystems™. 

Omformeren i B2B-konfigurasjonen som blir forsynt med kraft fra nettet ble 

implementert med kaskadekontrollere for å kontrollere DC-linkspenningen og reaktiv 

effektflyt fra nettet.  

To kontrollmetoder ble implementert for omformeren på plattformsiden av den 

landbaserte B2B-VSC konfigurasjonen, og angis som kontrollstrategi 1 og 2.  

Kontrollstrategi 1 kontrollerer RMS-spenningen på plattformen, og holder frekvensen 

konstant. Strategien er implementert ved hjelp av en enkel PI-kontroller. 

Kontrollstrategi 2 kontrollerer både RMS-spenningen og frekvens på plattformen. 

Denne kontrollmetoden er basert på en kaskadekontroll, lik  konvensjonell 

kaskadekontroll implementert for svake nett.  

Begge kontrollstrategiene ble implementert for plattformsystemet og tested for tre 

”worst-case” lastendringer: tap av all last, økning i passiv last og direkte start av stor 

induksjonsmotor. De resulterende platformspenning- og frekvenstransientene ble 

evaluert basert på krav til spenning og frekvens definert i IEC 61892: ”Standard for 

mobile og stasjonære offshore enheter, elektriske installasjoner”. 

Kontrollstrategi 1 ble tested for både normal og autonom operasjon, når konstant DC-

link spenning ble påtrykt. Strategien ble også tested for det fulle ”back-to-back” VSC-

systemet. Kontrollstrategien greier ikke å regulere plattform spenningen innenfor de 

grensene som er satt av plattformsystemkravene for alle lastendringstestene.    

Kontrollstrategi 2 ble testet for konstant DC-linkspenning, når målinger av 

plattformspenningen var tilgjengelige. Simuleringene viser at verken 

platformspenningen eller frekvensen blir påvirket av de store lastendringene på 

plattformen, og at kontrollsystemet tilfredstiller IEC 61892 kravene for spenning og 

frekvens for alle lastendringstestene. Plattformspenningen og -frekvensen er uavhengig 

av lastdynamikken, noe som er en svært god egenskap for offshore installasjoner som 

ofte har kompleks last. Kontrollstrategi 2 viser basert på dette stort potensiale for 

kontroll av plattformspenning og frekvens fra land. Implementering av 

kontrollstrategien i et ekte system krever derimot mer forskning.  

Systemet foreslått i denne masteroppgaven, med kontrollstrategi 2 implementert, vil 

gjøre redusert bruk av den konvensjonelle gassturbinen på offshore plattformer, med lav 

virkningsgrad og høye utslipp, mulig. Redusert bruk av gassturbiner for kraftproduksjon 

på plattformer kan redusere de totale utslppene av CO2 og NOx fra petroleumssektoren.  
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111   Introduction 

1.1 Electrification of Offshore Oil and Gas 

Installations  

In 2009, the petroleum industry was responsible for 26% of the total CO2 and NOx 

emissions in Norway [1]. 90% of these emissions were due to power production [2]. 

A reduction of these emissions would greatly decrease the total emissions of the 

country.  This is needed as Norway  has made a commitment, through the European 

Union, to reduce emissions by 20% by year 2020 [3].    

One of the suggested solutions for reducing the emissions of offshore platforms is 

to supply them with electricity from shore [1]. The Norwegian Government 

imposed a tax on CO2 and NOx emissions for the petroleum industry in January 

1991 [2]. This tax is designed to make electrification of offshore oil platforms more 

economically feasible. In February 1996, the Norwegian government voted to 

require that all new oil field development plans provide an analysis of powering the 

proposed installations. This overview must compare the two cases: 1) where all 

energy requirements are met with power from shore; 2) where all energy 

requirements are met with generators powered by gas turbines on the platform. The 

variables to be compared in each case are the generation efficiency and the costs 

required [1].  

Several platforms on the Norwegian continental shelf have been powered from 

shore since this law came into action. Below are several examples: 

The Troll A platform was the first offshore platform on the Norwegian continental 

shelf to be powered from shore. It is situated 65 km from shore and is powered 

through an HVAC-cable with a transmission capability of 17.5 MW and a 

transmission voltage of 52 kV-AC [4]. In 2005, two  additional HVDC-cables, each 

with a transmission capability of 40 MW, were added to supply the Troll A platform 

[5]. This was implemented with HVDC Light™, a VSC-HVDC technology 

patented by ABB [6].  

The Ormen Lange gas field, located 120 km off the coast of Norway, consists of 

subsea located equipment only  [7]. The field was supplied with power from shore 

through a long step-out power supply of 65 MW, and with a rated voltage of 120 

kV-AC.  A subsea mounted variable speed drive (VSD)  keeps the voltage 

variations and stability of the power supply system at an acceptable level and 

supplies subsea equipment as compressors and pumps [8].   

The Valhall field, situated 292 km south-west from the coast of Norway was, due 

to its large distance from shore, powered through a HVDC-cable with a voltage 

level of 150 kV-DC and a transfer capability of 78 MW. The VSC-station was 
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placed on a new platform and is powering the 6 platforms in the Valhall field. This 

system was ready for commercial operation in 2010 [9], and the HVDC-technology 

used was HVDC Light™. 

The Gjøa field, located 100 km from shore, contains a semisubmersible platform 

which is powered through a HVAC-cable, with a transfer capability of 40 MW. This 

field has been in commercial operation since 2010.  

The Goliat field, situated about 100 km from shore, is planned to contain a 

floating oil platform for production, and will also be supplied through an HVAC-

cable [10].  

The financial profitability and the positive environmental consequences of 

supplying offshore platforms with power from shore have been debated. In [11] it is 

stated that the costs of supplying offshore platforms with power from shore are, for 

most projects, significantly larger than the cost of the CO2-tax imposed.  

A reduction in CO2 - and NOx –emissions depends on how the supplied power is 

produced. It is commonly understood that supplying the offshore platforms with 

Norwegian hydropower is unrealistic, which means that the oil platforms could be 

supplied with imported power from coal power plants. To make electrification of 

offshore platforms beneficial to the environment, the platforms should be supplied 

with power produced from renewable energy sources or efficient gas power plants 

[11].  

The financial profitability for electrification of offshore platforms is not dependent 

on the CO2-tax cost exclusively. The gas that was previously used as fuel is made 

available for processing and sale, or for reinjection to increase oil production [4]. In 

addition to this the gas turbines supplying the platforms tend to need frequent 

maintenance, which imposes large maintenance costs.   

In 2003-2004, platforms in the Saudi Arabian oil field Abu Safah was powered 

through an HVAC-cable of 50 km, with a transfer capability of 100 MVA, and a 

voltage level of 115 kV-AC [10] [12]. The Qatar Petroleum owned PS4-platform 

and the gas processing plant on Halul island is going to be powered from an HVAC-

cable and a HVDC-system respectively [9]. The operators of these platforms are not 

influenced by the Norwegian Government imposed taxes, and powering the 

platforms from shore was profitable despite this.   

Several challenges must be overcome before power from shore will be 

advantageous for all offshore platforms, both financially and environmentally. This 

makes research on this topic, both to develop new technologies and to improve 

available technologies, very important and forms the basis of the research done in 

this master thesis work.   

1.2 Available Technologies for Powering Offshore 

Installations with Power from Shore 

As seen in section 1.1, there are two main technologies used for power 

transmission to offshore installations; HVDC and HVAC. The technology that is 
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chosen for a particular project depends on the distance from shore, required power 

transmission capability, space available on the platform and the estimated costs for 

each of the technologies.  

HVDC systems consist of an AC to DC converter, feeding DC power into a cable, 

and a converter at the end of the cable, transforming from DC- to AC- power. Two 

technologies are available for converting AC to DC or DC to AC; line commutated 

current source converters (LCC/CSC) or voltage source converters (VSC). HVDC 

in combination with line commutated converters or thyristor converters is referred 

to as “conventional HVDC” or “HVDC Classic” [13].  HVDC in combination with 

VSC is generally referred to as VSC-HVDC, HVDC Light™ or HVDC PLUS™ [6, 

14].  

Space and total weight of offshore oil and gas installations is limited. In the 

Norwegian petroleum industry a rule of thumb for fixed platforms has been that 1 

tonne of equipment requires 10 tonnes of construction material for support [4]. The 

relation for floating installations can be higher [4]. Equipment used on offshore oil 

platforms therefore needs to be light weight and compact. The LCC introduces large 

amounts of harmonics and consumes reactive power.  Due to this, it needs large and  

heavy filters and reactive power compensators. Therefore this is not a desirable 

solution for offshore platforms.  

The VSC consists of forced commutated switches; devices for which turn-on and 

turn-off can be controlled. It uses pulse width modulation (PWM) to modulate the 

wanted voltage magnitude and phase angle of the output voltage, and hence has two 

degrees of freedom for control [15]. It allows independent and fast control of active 

and reactive power, and does not need any reactive power compensation device. 

The transistors used depend on the required power rating. For applications as of 

those studied in this thesis, insulated gate bipolar transistors (IGBTs) could be used 

[16]. The VSC introduces very little harmonics and does not need large filters, it is 

compact and light weight, and it can feed weak or passive grid systems. All of these 

qualities make it a good candidate for powering offshore installations [6]. The VSC-

HVDC technology is therefore the only HVDC-technology that has been used for 

electrification of offshore platforms. The drawbacks of the VSC are that the 

transistors have lower power rating than the thyristors used in the CSC, and are 

more expensive. The power losses are also larger than for the CSC because of high 

switching frequency [16].   

A VSC-HVDC scheme for powering an offshore platform with power from shore 

is shown in Figure 1-1. The transmission system is isolated from the platform grid 

and the onshore grid due to the VSCs, this eliminates a need for synchronization of 

the systems. The HVDC-cable, transmitting the DC power to the platform, always 

operates at unity power factor since there is no production or transmission of 

reactive power. The distance of power transmission is not limited by any power 

stability limit, and hence the power can be transmitted over long distances [17].   
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Figure 1-1 VSC-HVDC configuration for electrification of offshore installations 
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Figure 1-2 HVAC configuration for electrification of offshore installation 

HVAC transmission has also been used for powering offshore installations, and a 

possible HVAC-system configuration for powering an offshore platform with 

electricity from shore is shown Figure 1-2. The HVAC configuration usually 

consists of transformers on each end of the cable, and some reactive power 

compensation device. HVAC cables produce and transmit reactive power,  have 

skin effect that contributes to losses, and a stability limit that is inversely 

proportional to the length of the line [17]. Transmission length and power rating are 

factors that will limit the possibilities for usage of HVAC transmission. 

Developments in cable technology have increased both the power transmission 

capability and the feasible lengths of transmission for HVAC [18] and is shifting the 

“break-even costs”-crossing between the HVAC and the HVDC technologies. 

From the platform electrifications presented in section 1.1 it can be seen that 

HVAC has been used for distances up to 120 km [8], and for power ratings up to 

100 MVA [12]. VSC-HVDC, for powering offshore platforms, has been used for 

distances up to ~300 km [9], and for power ratings up to 300 MW [6].  
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1.3 System Description 

 

Figure 1-3 Configuration for electification of  the oil platform system studied in this 

master thesis work 

The proposed system is an offshore platform system supplied with power from 

shore through an 80 km underwater HVAC-cable. The configuration can be seen in 

Figure 1-3. The onshore stiff grid is feeding a shore-based back-to-back (B2B) VSC 

through a transformer. The platform-side VSC has a voltage level of 3 kV which is 

transformed to 66 kV and is supplying power to the HVAC-cable. 

The lack of a synchronous generator on the platform for voltage and frequency 

regulation makes the system a passive grid, that is a system totally dependent on the 

voltage output of the platform-side VSC [19].   

The proposed system only requires a step-down transformer, a cable connector 

and protection relays on the platform, which is advantageous for existing platform 

installations with very limited space. The solution provides the controllability of the 

VSC-HVDC, and makes maintenance of the B2B-VSC easier, since it is based on 

shore.  

This thesis work should be considered a study to ensure proper passive system 

control so that the need of a gas turbine on the platform can be eliminated. This 

would reduce emissions of CO2 and NOx  and reduce the need of maintenance of the 

gas turbine [20]. The controllers implemented in the study of this system can also be 



Introduction 

6 

used to ensure acceptable platform operation in “islanded mode,” that is if the 

synchronous generator is lost.  

1.4 Scope of work 

This thesis work is focused on modeling the system shown in Figure 1-3 as 

realistically as possible for the purpose of controlling the offshore platform voltage 

from shore. All modeling and simulations will be done in MATLAB
®
 Simulink™. 

The converters and the DC-link will be implemented as an average model. The 

HVAC-cable will be modeled by a single pi-equivalent cable model, which is 

proven to be an accurate for the frequency range to be considered. The platform 

load will be modeled by using induction machines and passive load components 

available in SimPowerSystems™, a Simulink™ toolbox.  

The control strategies implemented for each of the VSC are based on existing 

control strategies that are modified and implemented in this system.    

The grid-side converter will be used to control the DC-link voltage and to keep the 

reactive current absorbed from the grid equal to zero.  

The platform-side converter will control the platform voltage and frequency. The 

main objective will be to keep the platform voltage and frequency at an acceptable 

level for possible platform load changes. Two platform voltage control strategies 

will be implemented in the system.  

The first control strategy studied, denoted as control strategy 1, controls the 

platform voltage magnitude, while keeping the frequency fixed. A power 

management system (PMS) provides voltage measurements for the closed loop 

voltage controller on shore. In cases where the connection to the PMS system is 

lost, voltage measurements would no longer be available. Modeling of a steady-

state platform voltage estimator will therefore be done to make sure platform 

voltage is kept within an acceptable range for autonomous operation. Control 

strategy 1 will be tested for measured platform voltage and estimated platform 

voltage.  

The second platform voltage control strategy to be implemented and tested, 

denoted as control strategy 2, controls both the platform voltage magnitude and 

frequency.  

Both control strategies will be tested separately, assuming a constant DC-link 

voltage. In addition to this, control strategy 1 will be tested when connected to the 

grid side-system, in the full B2B-VSC configuration.  

The full B2B-VSC systems will be detailed topologies that can form the basis of a 

new way of connecting power from shore to offshore platform systems, controlling 

the platform voltage and frequency from shore, without requiring a lot of new 

equipment on the platform. A system as such would allow for removal of the low 

efficiency, high emission gas turbine driven synchronous generator that are the 

standard power source on oil platforms today. 

The requirements for acceptable platform operation and control are defined in 

Table 1-1 and provide the control objectives for the platform voltage and frequency 
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control systems. The requirements are based on the IEC 61892 standard for mobile 

and fixed offshore units, electrical installations [21]. 

Cost of the solution and a study of where it might be applicable will not be 

evaluated in this thesis work.  

 

Table 1-1 Platform system requirements for acceptable operation and control 

Req. 

No. 

 

Requirement Title 

 

Description 

 

Value 

1 Steady-state voltage Deviations from nominal steady-

state voltage permitted for the 

system 

        
    

Transient voltage Deviations from nominal steady- 

state voltage permitted during 

system transients, and permitted 

duration of transients 

        

            

2 Steady-state 

frequency 

Deviations from nominal steady-

state frequency that is permitted 

for the system 

       

Transient frequency Deviations from nominal steady-

state frequency during system 

transients, and allowable duration 

of transients 

         

         

3 Stable operation Stable system operation during 

normal operation and normal 

system transients 

Not Applicable 

 

1.5 Report Outline 

In this chapter a through description of the technologies available for 

electrification of offshore oil platforms has been given. The proposed system that 

has been described and the scope of work have been defined.  

Chapter 2 provides the relevant theory for modeling the grid-side system, HVAC-

cable, platform load and converters is given. An overview of conventional control 

methods available for VSC-control is also provided. At last the per-unit system used 

throughout the thesis is defined.  

Chapter 3 describes the control strategies chosen for the grid- and platform-side 

converter systems, and provides the mathematical models for the controllers. 

The methods used for tuning of the controllers and the results from the controller 

reference step change tests are given in chapter 4.  

The mathematical model of the platform steady-state voltage estimator developed 

is given in chapter 5.   
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Chapter 6 provides the results from the system simulations. The ability of the 

platform voltage estimator to accurately estimate the platform voltage will be 

evaluated through load change tests, when no platform voltage controller is 

implemented. Control strategy 1 will be applied for control of the platform system, 

and simulations for both normal and autonomous operation will be run. The 

platform system will also be connected to the grid-side system, in the full B2B-VSC 

configuration.  All the systems will be tested for three worst-case load changes on 

the platform. Control strategy 2 will then be applied to control the platform side 

system, and tested for the three load change tests.   

The results are discussed in chapter 7, and the conclusion and further work 

proposed is given in chapter 8.  

In the appendices additional system parameters, the MATLAB Simulink 

SimPowerSystem simulation models and simulation results will be provided.  

In appendix D, the paper, “Kraftelektronikkens rolle ved elektrifisering av 

eksisterende offshore installasjoner, med kraft fra offshore vindpark og kraft fra 

land” is attached. The paper was written in cooperation between the author and the 

master student Atle Årdal, for the Norwegian Electro Technical Society conference 

in March 2011. The paper provides an overview over existing offshore 

electrification projects. It also describes two options for electrification of offshore 

oil and gas platforms: power from shore and power from offshore wind farms. 

Results from testing a platform system powered from shore through HVAC-cable 

for sudden loss of the synchronous generator, without controlling the shore VSC, 

are provided.  
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222   System Modeling 

The modeling of the proposed system components, that form the basis of the 

implementation of the system in MATLAB
®
 Simulink™, will be presented in this 

chapter.  

The system to be modeled and implemented is shown in Figure 1-3 and repeated 

in Figure 2-1 for the reader’s convenience. Simulations of this system requires 

accurate models for the grid-side converter, the DC-link and platform-side 

converters, which are responsible for supplying the platform system with power. 

The power is supplied through an HVAC-cable of 80 km; the model for this will 

also be presented here. Representation of loads for oil and gas platforms will be 

discussed, and the oil platform load model will be presented. The transformers used 

in the simulation model are from the SimPowerSystems™ toolbox and are not 

considered an important part of the thesis study, therefore will not be further 

discussed. 

Relevant theory, equations and figures will be provided, and the model 

simplifications that are made will be presented. 

 

Figure 2-1 Configuration for electrification of offshore platform system studied 
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2.1 The Clarke and Park Transform 

Three-phase induction machines have sinusoidal distributed three-phase windings 

which create a radially distributed magnetic field in the machine air gap. Each of the 

phase windings creates a magnetic field that peaks along its phase’s axis.  The three 

phase windings can be represented by three windings separated by 120 degrees each 

aligned with its phase’s axis [22]. They can also be represented by two-phase 

windings or even rotating two-phase windings. This forms the basis of the Clarke- 

and Park-transform [13]. These transforms are frequently applied to modeling and 

control of synchronous machines and induction machines, but also for other three-

phase quantity control systems, because it makes decoupled control of active and 

reactive currents possible, which will be shown in a later chapter in this thesis.   

All three-phase systems considered in this chapter are assumed to be balanced, 

and hence the zero sequence components are not included in the equations provided.  

Three phase quantities can be expressed as follows 

  

                    

                       

                        

 

(2-1) 

where    is the line-to-line, RMS voltage magnitude and   is the initial phase shift. 

The three phase quantities can be represented by a space vector. Space vectors will 

throughout this thesis work be represented with an arrow. The space vector is 

defined as follows [22] 

  

        
 

 
             

            
      

 

(2-2) 

The voltage space vector can be defined relative to other reference frames than the 

three-phase frame. The Clarke-transform represents three-phase quantities relative 

to a two-phase reference frame   . The  -axis is aligned with the a-axis of the 

three-phase system, and the  -axis is leading the  -axis by 90 degrees [22], see 

Figure 2-2.  
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The Clarke-transform from the three-phase reference frame to the fixed    

reference frame is given as follows [22] 

  

  
  
  
    

 
 
 
   

 

 
 
 

 

 
  

 
 
  

  
 
 
 

   

  
  
  
  

 

(2-3) 

where x represents current, voltage, flux linkage and other three-phase quantities, k 

is a constant that will be defined later in this section.    

The Park-transform, also called the dq-transform, represents three-phase quantities 

relative to a synchronously rotating two-phase reference frame dq, see Figure 2-2. 

There are several different practices for orientation of the two-phase axes of the 

Park transform. Equations for aligning the d-axis with the three phase system a-axis 

at time t = 0, while the q-axis is leading by 90 degrees is the practice of [22]. This 

practice for axis orientation will be used in this thesis work, unless otherwise stated. 

In [23] an axis orientation where the q-axis is aligned with the three-phase system a-

axis, while the d-axis is leading by 90 degrees is used. This transform results in the 

same equations as of those presented here, but the ordering of d and q will be 

opposite. Another variation of the axis orientation is with the d-axis is aligned with 

the system a-axis, but the q-axis is lagging by 90 degrees [24]. The equations for the 

dq-transform of a system with these axis orientations will have opposite signs for all 

sin-terms than the equations presented here.  

Im 

Re 

  

  

    

   d 

q 

a 

b 

c 

Figure 2-2 Relation between three-phase-,   - and dq-reference frame 
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The relation between the   - frame and the dq-frame, can be seen in Figure 2-2, 

and is given as follows [22] 

  

         
     

 

(2-4) 

    is the angle between the rotating d-axis and the fixed  -axis, that is changing 

with time, and can be expressed by      , where    is the rotational speed of the 

dq-axes.  

Equation (2-4) and Euler’s formula gives the following relation on matrix form 

between the   -components and the dq-components 

  

  
  
  
     

            
             

   
  
  
  

 

(2-5) 

Three-phase quantities can also directly be transformed to the dq-reference frame; 

this is illustrated by Figure 2-3, where the dq-components of the rotating voltage 

space vector     are shown.  

 

 

 
 

 

The direct abc- to dq-transform is given by the following equation 
  

  
  
  
     

              
  

 
         

  

 
 

                
  

 
          

  

 
 

    

  
  
  
  

 

(2-6) 

d 

q 
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c 

Figure 2-3 Space vector     represented by both abc- and dq- axis components 
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The inverse transform is found as follows 

  

  

  
  
  
     

 
 
 
 
 

              

        
  

 
          

  

 
 

        
  

 
          

  

 
 
 
 
 
 
 

  
  
  
  

 

(2-7) 

The Park transform can be voltage invariant, meaning that the voltage magnitudes 

are the same for the three phase quantities and the dq-quantities. For the voltage 

invariant transform, k is set to     [13]. The transform can also be done power 

invariant, meaning that the power is the same for the three-phase quantities and the 

dq-quantities. For the power invariant transform, k is set to      [13]. Unless 

otherwise stated, the voltage invariant transform will be used in this thesis work.  

2.2 Grid-Side Model 

The grid-side system consists of the stiff grid connected to the grid side converter 

through a transformer. The stiff grid has a constant voltage and a constant frequency 

of 50 Hz, and is modeled as a stiff three-phase voltage source. To simplify 

modeling and calculations the transformer is represented by a small resistance and 

an inductance in series [25], and the grid voltage    is assumed to have the same 

base as the converter voltage   . The grid-side system model can be seen in Figure 

2-4, and the parameters used for calculations and simulations can be found in Table 

2-1.  

 

Grid
Grid-Side Converter

Rtrafo VcVg

Ig

Ltrafo

 

Figure 2-4 Grid-side model 

Table 2-1 Grid-side parameters 

Description Value Unit 

                3 kV 

       0.01 pu 

       0.15 pu 
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2.3 Voltage Source Converter Models 

Due to its advantageous properties, as described in section 1.2, the three-phase 

voltage source converter (VSC) is the essential component of most new flexible 

AC-transmission system (FACTS) devices. Recently, this has been frequently used 

in HVDC-transmission configurations.   

This section will provide a description of the VSC model used for the system 

simulations and the equations for dimensioning the DC-link quantities. The 

advantages of the two degrees of freedom for control of the output signal of the 

VSC will be shown. The two levels of VSC control will be discussed and a brief 

summary of second level control strategies available for the VSC will be provided.    

2.3.1 VSC Model Used for Simulations 

The converter can be represented at different levels of detail: full switching 

models, switching models with ideal switches or average models.   

An average converter and DC-link model is chosen for this particular system 

study. The average model assumes that the switching frequency is infinite, which 

means that the output voltage of the converter is a pure sinusoidal wave, and hence 

all harmonics are neglected. It also neglects switching and conduction losses.  

This average converter model reduces the computational time for simulations 

considerably, and since neither harmonics nor switching losses are going to be 

studied, the average model provides acceptable accuracy for this thesis study.  
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Figure 2-5 Back-to-back voltage source converter average model 

The average converter and dc-link model used can be seen in Figure 2-5, where 

the converters are in B2B-configuration. The voltage source converter models 

consist of controllable voltage sources and a DC-link with controllable current 

sources. The voltage sources and current sources are controlled based on the power 

conservation equation, that is power needs to be conserved between the AC-and 

DC-sides of the converter at all times. For the converter system on the left side in 

Figure 2-5, this can be expressed as follows [19] 
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(2-8) 

This can be rewritten with dq-component voltages and currents as  

  

 

 
                       

 

(2-9) 

neglecting the losses through the transformer inductance and resistance. The current 

relation for the DC-link circuit is given as follows 

  

                

 

(2-10) 

Where     is the current consumed from or supplied to the DC-system, from the 

grid-side system,      is the current through the DC-link capacitor, and      is the 

current consumed by or supplied to the platform-side system.  

The power conservation equations for the converter system on the right side of 

Figure 2-5  is given as follows 

  

        

 

(2-11) 

This can also be rewritten as 

  

                               

 

(2-12) 

which can be written with dq-components as follows 

  

        
 

 
                

 

(2-13) 

These equations give the complete average model of the B2B-VSC system used 

for simulations in Simulink™ SimPowerSystems™.  

2.3.2 DC-link parameters 

 The parameters for the DC-link rated voltage and capacitor need to be chosen 

carefully to get the desired converter operation. The rated voltage has to be chosen 

so that it is able to control the output voltage to be sinusoidal [26].  

The dc-voltage level is calculated based on the rated voltage on the AC-side of the 

converter, and its maximum modulation index, as follows [16] 
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(2-14) 

where           is the AC-side base RMS-voltage, while    is the converter 

modulation index. To avoid over modulation, the modulation index should not be 

larger than one [16]. The modulation index is defined as the magnitude of the signal 

that is compared to the carrier signal, when carrier based modulation of switching is 

done [16]. Due to the average converter model implemented in this thesis work, 

PWM will not be done. The modulation index is therefore set to be the magnitude 

of the VSC output voltage, and denoted as     , from now on.    

The size of the capacitor chosen for the DC-link affects the steady-state voltage 

ripple, transient over voltages and the ability to rapidly control the power flow 

through the DC-link [26], and should therefore be carefully chosen. The DC-link 

capacitor for this system will be chosen based on the capacitor time constant, 

defined as the time it takes to charge the capacitor from zero to rated voltage. The 

equation for the capacitor time constant is given as follows [27] 

  

   
 
 
     

  

  
 

 

(2-15) 

where     is the rated dc-link voltage, C denotes the capacitor and    is the rated 

power of the converter. A time constant   of less than or equal to 5 ms is considered 

to give acceptable voltage ripple, small transient over voltage and fast control of 

active and reactive power, and is suggested by [27].  

The DC-link values for the system studied in this thesis are calculated based on 

equations (2-14) and (2-15), and are summarized in Table 2-2.  

 

Table 2-2 DC-link parameters used for modeling and simulations 

Description Value Unit 

Rated DC-voltage,     8 kV 

 DC-link capacitor,   16 mF 

 

2.3.3 Control Strategies for VSCs 

The voltage source converter uses pulse width modulation (PWM) for generating 

the VSC output signal. This means that both the converter output voltage magnitude 

and the phase angle can be independently controlled [28] and that the VSC has two 

degrees of freedom for control.  
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Figure 2-6 VSC configuration with IGBT switches 

The VSC configuration can be seen in Figure 2-6, and the active power supplied 

or consumed at the terminal G, can be calculated as follows [25] 

  

  
    

  
         

 

(2-16) 

The reactive power consumed or supplied at terminal G can be calculated as 

follows [25] 

  

  
             

  
 
  
 

  
 

 

(2-17) 

From these equations it can be seen that since the PWM can control both the 

converter output voltage magnitude    and the angle   independently, the active 

and reactive power flows can be controlled almost independently [28].  

The VSC uses pulse width modulation (PWM) to generate the desired output 

signal of the converter. To be able to provide the desired output signal, modulation 

of the converter switching needs to be done. There are several methods for 

modulation of  the converter switching, some examples are: sinusoidal-PWM and 

space vector PWM [29] [30]. There is also a need for external VSC controllers to 

generate the output voltage reference for the switch modulation. There are several 

conventional control strategies available for external control of VSC. 

In this thesis work an average VSC model is used, as described in section 2.3.1, 

and there is no need for switch modulation for the converter. Therefore only 

methods for external control of the VSC will be described in this thesis work.    

The external control strategy chosen depends on which type of AC-network the 

VSC is connected to, and the control objectives for that particular system. 

There are mainly three types of AC-networks: stiff grids, weak grids and passive 

grids. In a stiff grid the voltage and frequency are constant at the point of common 

connection (PCC), for all changes of active and reactive power flow [19]. In a weak 
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grid, the voltage and frequency at the PCC reacts to changes in active and reactive 

power flow. Weak grids are usually associated with long transmission lines, that 

have considerable resistive voltage drops [19]. A passive grid is a network where 

the voltage in the PCC is exclusively dependent on the voltage applied by a 

converter or a voltage source [19].  In such a system, the load is passive, and hence 

does not consist of any type of source. 

Five different control strategies for VSC, when connected to one of the AC-

networks presented above, were listed in [19] as follows:  

    

 Type 1: Vac  and frequency control (VSC connected to passive grid) 

 Type 2: Constant P-Vac control (VSC connected to weak grid) 

 Type 3: Vac-Udc control (VSC connected to weak grid) 

 Type 4: P-Q-control (VSC connected to stiff grid) 

 Type 5: Q-Udc control (VSC connected to stiff grid) 

Control strategy of type 2-5 uses cascade control, with an inner current control 

loop, and an outer control loop depending on the specific type of control strategy. 

The park transform, presented in section 2.1 is used for this control strategy. The 

control strategies used in this thesis work will be elaborated in chapter 3 .   

2.4 HVAC Cable  

The HVAC cable parameters are determined in this section, before the critical 

length of the cable is calculated and the reactive power production is discussed. The 

HVAC-cable model used for simulations is also presented.  

2.4.1 Cable Parameters 

Three-core, cross-linked polyethylene (XLPE) HVAC cables have been used for 

several offshore electrification projects [10], and are assumed to be the type of 

HVAC-cable used for electrification of the offshore platform in this thesis study. 

The XLPE cables can be continuously loaded to a conductor temperature of       , 

and the main cable losses are ohmic and occur in the conductor and metallic screen 

[31].  

The cable parameters used are based on [31], and given in Table 2-3.  

Table 2-3 Cable parameters 

Description Value Unit 

Rated power 40 MVA 

Rated voltage 66 kV-LL 

Cable length 80 km 

       resistance per unit length 0.10             
       inductance per unit length 0.4         

       capacitance per unit length 0.2       
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2.4.2 Critical Cable Length and Power Transmission Capability 

Underground or underwater high voltage AC power cables store and release 

electrical energy with voltage variations, like a shunt capacitor. This generates 

capacitive current, which increases linearly with the length of the cable. The 

charging current can, for long HVAC-cables, get so large that the the thermal 

current rating limit is reached for the cable. This will limit the capacity of the cable 

to supply active power to the load [32].  The critical length of an HVAC-cable can 

be defined as the cable length where the capacitive current produced by the cable is 

at the maximum thermal capacity of the cable. This is the length at which no active 

power can be transferred without overloading the cable. The critical cable length 

can be calculated as follows [32] 

  

           
      
  

  

      
  

 

(2-18) 

where   is the angular frequency of the system, C is the capacitance of the line per 

km,        is the rated current of the system and        is the rated voltage of the 

system.  

The critical length of the HVAC-cable calculated based on the parameters listed in 

Table 2-3, and the apparent power rating of 40 MVA and voltage rating of 66 kV-

LL, gives a critical cable length of 121 km, which is 41 km longer than the planned 

length of the cable. If needed, the critical length of the cable can be increased by 

over dimensioning the current capacity of the cable.  

The maximum active power transmission capability of a cable, for a certain 

apparent power input, is based on the general equation for apparent power, and is 

given as follows [32] 

  

       
           

 

(2-19) 

where    is the apparent power fed into the cable,   is the angular frequency of the 

system, C is the capacitance per km of the cable, L is the length of the cable and V is 

the voltage level of the cable. The term representing the reactive power of the cable 

in equation (2-19) is constant for a constant voltage level, and a given line length. 

For the parameters defined in Table 2-3, with the rated voltage of 66 kV, the 

reactive power term is equal to ~26 MVAr, which means that if the cable system 

should be able to supply 40 MW at full platform load, the system needs to be 

dimensioned for approximately 47 MVA. Another solution for reducing this 

reactive power tern would be to introduce a reactive power compensation device 

such as a phase reactor.  
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The platform load will be defined in section 2.5, and it can be seen there that the 

equipment will not only consume active power, but also some of the reactive power 

produced by the cable. Over dimensioning of the system for 47 MVA is therefore 

not considered necessary in this case. This is however a matter that should be taken 

into careful consideration when determining the cable and equipment rating for 

supplying offshore systems with power from shore through HVAC-cables.  

2.4.3 Modeling of the HVAC-cable 

There are two main approaches to modeling of transmission lines and cables; 

distributed parameters and lumped parameters [33]. The distributed parameter 

models tend to be more accurate than the lumped parameter models. Lumped 

parameter modeling is done by modeling the cable as pi-equivalents, which is an 

approximate of the distributed parameter model.   

A lumped parameter pi-equivalent cable model will be used in this thesis work, 

because it provides an acceptably accurate model of the behavior of the distributed 

parameters at each end of the cable. The circuit diagram for a single pi-equivalent 

circuit can be seen in Figure 2-7. Depending on the application and what is studied, 

the pi-equivalent circuit will be modeled with either SimPowerSystems™ 

impedance, resistance and capacitance, or with the SimPowerSystems™  single 

phase pi section line defined in [34]. The parameters specified in Table 2-3 are the 

input of the SimPowerSystems™ cable model, in addition to specifying the number 

of pi-equivalent circuits.  

 

C C

LlVL∟δL Vp∟δpRl

L P

 
Figure 2-7 Single pi-equivalent circuit 

Though the HVAC-cable is meant to carry power with a frequency of 60 Hz, due 

to switching transients and harmonics it will in reality be carrying frequencies in the 

kHz range as well. In this thesis work switching of the transistors is neglected, as 

described in section 2.3.1, fault analysis with protection relay switching is not 

considered and hence switching transients will not have an impact on the system nor 

the cable in the simulations. This means that the cable model used for the 

simulations need not be accurate at high frequencies.  

The number of cascaded pi-equivalent circuits needed can be calculated based on 

the following equation for the frequency range of which the cable model needs to be 

accurate [34] 
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(2-20) 

where N is the number of pi-equivalent circuits, c is the propagation speed in km/s 

and      is the total length of the line in km. 

The propagation speed on the line can be can simplified be calculated as follows 

[25] 

  

  
 

   
 

 

(2-21) 

where L is the cable inductance and C is the cable capacitance, both expressed in 

Henry and Farad per unit length of the cable respectively.  

For the cable parameters given in Table 2-3, the propagation speed is 111,803 

km/s. The maximum frequency, of which a cable model with one pi-equivalent will 

be accurate, is calculated with equation (2-20). A one pi-equivalent model will be 

acceptable for frequencies up to 174 Hz. This is considered sufficient due to the 

previously explained simplifications made for the converter switching and no fault 

studies. Hence a cable model of one pi-equivalent circuit can and will be used for 

simulation in this thesis work.   

2.5 Oil Platform  

The main part of the power supplied to an offshore oil and gas platforms is 

consumed by electric motors driving pumps, compressors or other equipment on the 

platform [4]. Other electrical load that is consuming electric power are heaters for 

the production process, lighting, comfort heating and auxiliary equipment [4].  

Based on this, the platform load is modeled by a large squirrel cage induction motor 

representing an accumulated model of induction motors on the platform; a smaller 

squirrel cage induction motor for testing of direct on line (DOL) starting on the 

platform; and passive PQ-load that represents process heating, lighting, comfort 

heating and auxiliary equipment. Though synchronous motors are also used for 

driving loads on platforms, this will not be included in the oil platform load model.  

The total load of an oil platform depends on a range of things, such as the size of 

the field, whether water or gas injection is done, the amount of processing of the oil 

and gas done on the platform and which type of transportation system the platform 

uses for the oil and gas. The total load can vary from <100kW from small wellhead 

platforms to >100 MVA for large oil and gas platforms [4].   

The equipment for supplying power to the platform system studied in this thesis 

are all rated for 40 MVA, but the total load of the platform is set to 35 MVA. This is 

done because it is assumed that the equipment is rated for an increase of platform 

load in the future. 
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Table 2-4 Platform load used for simulations 

Description Value Unit 

Accumulated induction motor model 23 MVA 

Induction motor for DOL-starting 8 MVA 

Passive constant PQ-load  4 MVA 

Total platform load 35 MVA 

 

2.5.1 Induction Motors 

Induction motors are, as mentioned in section 2.5, the component on offshore 

platforms consuming the main part of the power. The way they are connected on the 

platform depends on the size of the machine and the short circuit current capability 

of the network. Induction machines of ratings up to 8 MVA are generally directly 

connected on the platform [4]. Induction motors with larger ratings than this are 

connected through variable speed drives (VSD), making soft-starting possible [4]. 

Both the directly connected and the VSD-connected induction motors are 

represented by the accumulated induction machine in this platform model. This is a 

simplification because most VSD on existing platforms are thyristor converters that 

will introduce considerable amounts of harmonics on the platform. 

2.5.1.1 Mathematical Representation of the Induction Motor  

A squirrel cage induction machine can be represented by a set of electrical 

equations for stator and rotor voltage and electrical torque, and a set of mechanical 

equations to represent the mechanical behavior of the machine. To simplify 

modeling and control the park transform, presented in section 2.1, is used to 

transform the three-phase machine equations into the qd-plane.  

The induction machine model used for simulations is from the 

SimPowerSystems™ toolbox [35], where the mathematical model of the induction 

machine is based on [23], and will be presented here. The induction machine stator 

voltages are given in matrix form as follows  

  

 
   
   

     
   
   

  
 

  
 
   
   

       
  
   

    
   
   

   

 

 

(2-22) 

where     and     are the stator voltages,     and     are stator currents and     and 

    are the stator flux linkages.    is the angular velocity of qd-reference frame in 

electrical rad/s, and is generally chosen to be equal to the synchronous speed [22]. 

The rotor voltage equations are given as follows 
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(2-23) 

where     and     are the rotor voltages,     and     are rotor currents and     and 

    are the rotor flux linkages. For a squirrel cage machine, the rotor voltages are 

zero, due to the shorted squirrel cage bars.    is the rotor angular velocity in 

electrical rad/s, which makes the term         equal the slip speed in electrical 

rad/s. 

These equations can be represented by the equivalent circuits in Figure 2-8.  
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Figure 2-8 Induction motor qd-winding equivalent circuit [22] [35] 

The electrical torque on the stator is given by the following equation [23] 

  

    
 

 
                 

 

(2-24) 
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The swing equation completes the mathematical model, and is given as follows 

  

 

  
   

 

  
               

 

(2-25) 

Where    is the mechanical angular speed, H is the combined rotor and load 

inertia constant, F is the combined rotor and load viscous friction coefficient and  

   is the mechanical shaft torque [23].  The mechanical speed is the derivative of 

the mechanical angular position   .  

This mathematical model is the full dynamic induction machine model. For 

steady-state operation, the time derivative terms can be cancelled, and the induction 

machine equivalent circuit seen in Figure 2-8 can be simplified by removing the 

voltage sources.  

The parameters used for the two induction machines can be found in appendix A.  

2.5.1.2 Induction Motor Load Profile 

The mechanical load profile has great impact on the motor operation. The load 

profile used for modeling is dependent on what the motor is expected to drive in a 

real system. Some applications of the induction machines on platforms are driving 

gas recovery compressors, cooling medium circulation pumps, sea water lift pumps 

and crude oil export pumps.  

In [36] the mechanical load profiles are divided in 4 torque profile groups 

 

1)                
2)       

3)             

4)              

The first group is for loads that need a constant power applied. The second group 

is for loads that need constant torque, for example machinery in conveyor belts.   

The third group is for machinery used for material processing; in rollers. The forth 

mechanical load profile is for machinery using centrifugal force, for example 

centrifugal pumps.  

The fourth load profile is the most similar to the load an induction machine would 

be driving on an oil platform, and hence is the load profile used for modeling of the 

induction machine load. This will be implemented by measuring the angular speed 

of the machine, and feeding the squared angular speed with the system dependent 

parameters a and b into the mechanical load input of the machine model. 

2.5.2 PQ-load  

The passive PQ-load used in simulation to represents process heating, lighting, 

comfort heating and auxiliary equipment is modeled as a constant impedance load 

at constant frequencies. The only available load model in the SimPowerSystems 

2010b toolbox is a constant impedance load; this will be utilized for the entire 
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passive PQ-load model. A more representative model for the platform load could be 

to model the process and comfort heating as impedance, while modeling the 

auxiliary equipment and lighting as a constant PQ-load.  

The impedance of the load is defined as follows 

  

                     

 

(2-26) 

It can be seen that the platform PQ-load is assumed to be strictly resistive and 

inductive, and does not have a capacitive component. The active power consumed 

by the load can be calculated as follows  

  

      
  
 

     
 

 

(2-27) 

The reactive power consumed by the load is found as follows 

  

      
  
 

      
 

 

(2-28) 

 

2.6 Per Unit system  

Per unit (pu) values for modeling and simulation of systems simplifies comparison 

between parts of the system with different ratings, eliminating the need to work 

with large values in calculations and simplifying the VSC control. The equations 

used to calculate the base values used to determine the system per unit values will 

be provided in this section. All simulation system and controller models will be 

implemented based on these per unit value definitions.  

2.6.1 AC-System Base Values 

The base values of a system, are usually defined as the rated values for apparent 

power, voltage, current and impedance. The apparent power rating should be set  

to one value for the entire system for simplification of per unit calculations. The 

voltage levels, and hence the rated voltages varies throughout a system. Base values 

need to be calculated for each part of the system with a separate voltage rating.  

The system base values of a specific voltage level are calculated as follows, where 

all voltages and currents are RMS-values unless otherwise stated  
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(2-29) 

The base value for the impedance is used as the base value for the resistance and 

reactance, and is found as follows [25] 

  

      
        

       
 
        
     

 

 

(2-30) 

Base values for inductances and capacitances are calculated in various ways 

throughout the literature, the base value calculation used in this thesis, unless 

otherwise stated, is defined as follows  

  

      
     
  

 

 

(2-31) 

The base value for the capacitance 

  

      
 

       
 

 

(2-32) 

In this thesis work dq-reference frame control will be done, which creates a need 

for base values for the system dq-quantities as well as for the three phase quantities. 

The dq-transform is, as previously stated, chosen to be voltage invariant, which 

makes it convenient to define their base values as follows [37] 

  

                           
  

  
         

 

(2-33) 

It can be seen that the dq-voltage bases are set to the line-to-neutral peak voltage. 

The corresponding base values for the dq-currents are given as follows [37] 

  

                               

 

(2-34) 

It can be seen from the equation above that the dq-current base is set to the peak 

base current.  
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2.6.2 DC-Link Base Values 

The base values for the DC-link circuit are defined based on the AC-system base 

values. The rated DC-link power is set equal to the AC-side rated power, as follows 

  

                 

 

(2-35) 

The base value for the DC-link voltage is chosen based on the per unit system 

used in [37], where the DC-link voltage is set to 2 times the AC-side line-to-neutral 

peak voltage as follows 

  

           
 

 
          

 

(2-36) 

By inputting equation (2-35) in the expression for the base DC-power in equation 

(2-34) and solving for the DC-current the following expression for current is 

obtained 

  

         
 

 
        

 

(2-37) 

The base value for the DC-link impedance is found as follows 

  

        
       
       

 

 

(2-38) 
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333   Control Strategy 

The system to be controlled was presented in section 1.3, and modeled in chapter 

2 . The mathematical modeling and implementation of the control systems for the 

B2B-VSCs placed on shore is presented in this chapter.    

The main purpose of the B2B-VSC controller is to regulate the offshore platform 

voltage and frequency. For proper operation, the controller also needs to keep the 

DC-link voltage constant, and to limit the reactive power drawn from the onshore 

grid. The control strategies implemented for each of the VSC are based on existing 

control strategies, modified for this system configuration. 

The control objectives of the system are defined as follows: 

 

 To keep the voltage of the DC-link constant for changes and disturbances 

on the grid side, and for changes of active and reactive power consumed on 

the platform side  

 To maintain unity power factor at the grid terminals  

 To keep the voltage on the platform within an acceptable range defined in 

Table 1-1 for all realistic changes in platform load, and for load dynamics 

- When platform voltage measurements are available 

-  For autonomous operation 

 To keep the platform side frequency within the acceptable range defined in 

Table 1-1 

 To maintain stability for normal system operation in steady-state and during 

normal system transients  

The grid side converter is connected to the stiff grid at the PCC, and the grid side 

VSC is chosen to control the DC-link voltage and the reactive power Q absorbed 

from the grid. This is the type 5 controller, defined in section 2.3.3.  

The platform side converter is connected to a passive grid at the PCC, and hence 

the voltage set by the converter output is the only voltage that will influence the 

platform system voltage. The platform voltage and frequency will be controlled by 

controlling the platform side VSC output voltage and frequency, and hence the 

platform side VSC-controller will be the Type 1 controller, defined in section 2.3.3.  

Two approaches for platform voltage control will be presented in this chapter, and 

later implemented, tuned and tested 

In section 2.3.1, the average model used for the VSC is described. No switching 

modulation scheme will be implemented, and the output quantities of the controllers 

are directly controlling the VSC output voltage, either through controlling the 

converter output RMS voltage magnitude     , or though controlling the signal 

directly.   
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All controllers are implemented based on the per-unit system defined in section 

2.6. The controller models are implemented and simulated in MATLAB® 

Simulink™.  

3.1 Grid-Side Converter Control 

The control objectives for the grid side VSC control system is to keep the DC-link 

voltage constant, and to make sure no reactive power Q is consumed from the grid. 

The control strategy implemented is based on the active system control strategy in 

[38] and is a cascade controller where the outer control loops are reactive power and 

DC-link voltage controllers that provide inner current control loops with their 

references. The inner current control loops sets the converter output voltage.  

An overview of the grid side converter control system to be modeled and 

implemented is shown in Figure 3-1.  
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Figure 3-1 Grid side converter control system overview 

3.1.1 Inner Control Loop 

The inner control loop is controlling the current on the line between the PCC and 

the VSC, by controlling the voltage at the converter terminals.  

The three phase currents flowing through the transformer equivalent resistance 

and impedance        are measured expressed as space vector        before it is 

transformed to the synchronously rotating dq-frame. Due to the fixed frequency of 

the grid, three-phase currents will have a constant frequency and, when referred to 

the synchronously rotating dq-reference frame, they will be DC-quantities.  
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The grid voltage         and the converter voltage        can also be expressed as 

space vectors         and        , based on equation (2-1) and (2-2).        is aligned with the dq-

reference frame d-axis, and the angle between the rotating d-axis and the phase a-

axis of the grid voltage is defined as    . The grid voltage q-axis component will at 

all times be equal to zero, due to the stiff grid frequency.  

The mathematical model of the grid side system is found by the equation of the 

voltage drop on the line between the PCC and the VSC, as follows 

  

                                   
       

  
 

 

(3-1) 

The voltage invariant dq- transform, provided in section 2.1 is used to transform 

the space vector equation to the dq-plane. The d-component equation is given as 

follows 

  

                        
    

  
             

 

 

(3-2) 

and the q-component equation is given as 

  

                        
    

  
              

 

 

(3-3) 

The obtained current differential equation can be expressed on matrix form as 

follows [22] 

  

      
 

  
 
   
   

   
   
   

    
   
   

    
   
   

           
  
   

   
   
   

  

 

 

(3-4) 

As can be seen from equation (3-4), the d and q-components are coupled. To 

enable decoupled control of both     and    , they need to be fed forward. 

Decoupled control of the current d- and q-control enables decoupled control of the 

DC-link voltage and reactive power. The grid voltage    is also fed forward. The 

resistance multiplied by the current term need not to be fed forward, since it is 

contributing to the damping of the system.  

The system controller is based on this, expressed as follows 
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(3-5) 

where    and    are the errors fed into the controller,      is the proportional gain of 

the controller,      is the integral gain of the controller. The resulting inner current 

control loop block diagram can be seen in Figure 3-2. 

Equation (3-4) and (3-5) describes the full mathematical model of the system and 

the controller.  
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Figure 3-2 Inner current control loop block diagram 

3.1.2 Outer Control Loop 

The outer control loops are controlling the DC-link voltage and the reactive power 

at the PCC, by applying references for the d-and q-component inner current control 

loops respectively.  By aligning the grid voltage space vector        with the dq-

reference frame d-axis, it will be shown that the DC-link voltage can be controlled 

by controlling the d-axis current, while the reactive power can be controlled by 

controlling the q-axis current. 

3.1.2.1 DC-voltage control 

For developing a control strategy for DC-link voltage control, a mathematical 

model for the relation between the AC and the DC-side of the grid side converter 

system is needed. This relation can be described based on the power conservation 

equations and the equation for the DC-link voltage, as follows [38] 

  

       
    
  

 

 

(3-6) 

where C is the DC-link capacitance and      is the current running through the DC-

link capacitor. 

Equation (2-10) substituted into equation (2-9), when    is known to be zero gives 
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(3-7) 

Equation (3-6) can be substituted into (3-7) 

  

 

 
            

    
  

         

 

(3-8) 

This can be rearranged to the following form 

  

    
  

 
 

 

   

     
    

   
    

     

 

(3-9) 

There is a strong correlation between the DC-voltage     and the AC-system d-axis 

current    , and hence the DC-link voltage should be controlled using the d-axis 

current component. The relation between them is, as can be seen from equation 

(3-9), not linear. The system can be linearized around the reference values by 

Taylor series expansion [28]. The linearized system is based on gross assumptions, 

and is only a simplification of the real system model. The linear system can be 

expressed as follows 

  

    
  

 
 

 

     

        
    

 

(3-10) 

where the term 
     

       
 is assumed to be constant. This gives a linear relation between 

the DC-link voltage and the grid current, and PI-controllers could be used for 

control of the DC-link voltage.  

The DC-controller provides the inner active current control loop with its reference. 

The line current should not however be set larger than the rated current of the grid 

side system. To avoid this, a current limiter or saturator is set to limit the active 

current as follows 

  

           
      

 

(3-11) 

The outer DC-voltage control loop can be seen in Figure 3-3.  
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Figure 3-3 Grid side VSC control block diagram 

3.1.2.2 Reactive power control 

The purpose of the reactive power control is to keep the reactive power consumed 

by the converter system equal to zero at the PCC. The reactive power supplied or 

consumed at the PCC can be expressed relative to the dq-reference frame, with the 

voltage space vector of the grid voltage space vector        aligned with the d-axis, 

making the q-component     equal to zero [13].  

  

     
 

 
       

 

(3-12) 

This shows that the reactive power can be controlled directly through controlling 

the reactive current component     .  

The difference between the reactive power reference and the measured reactive 

power at the PCC is fed into a PI-controller, with the reactive current reference    
  

as the output of the controller. There is no need for any feed-forward compensation 

terms for the reactive power controller.  

The reactive power controller is providing the inner reactive current control loop 

with its reference. The total rated current of the grid side system should not be set 

above its rated value. Therefore a dynamic current limiter or saturator will be set to 

satisfy the following condition, based on the measured active current reference   
  

[19] 

  

           
          

     
    

 

(3-13) 

The full grid side converter control system obtained through the control strategies 

presented in this chapter can be seen in Figure 3-3.   
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3.2 Platform Side Converter Control 

The control objectives of the platform side converter controller are to maintain the 

platform voltage and frequency within the acceptable range defined in Table 1-1, 

for all realistic changes in platform load. This will be done through the type 1 

controller defined in section 2.3.3. The platform load is defined in section 2.5 and 

consists of a passive load, an accumulated induction machine model and a smaller 

induction machine. The load is non-linear and unknown at time t, which poses 

challenges for the voltage and frequency controllers. They have to be able to 

regulate the voltage and frequency during changes in active and reactive power 

consumed on the platform due to induction machine starting, and other frequent 

load changes. Without proper control the performance and even the stability of the 

passive network with varying non-linear load can be jeopardized.   

This control problem has formerly been addressed with several control strategies. 

Classical control methods, based on simple PI-controllers, where the voltage 

magnitude is controlled and the frequency is fixed have been proposed by [38, 39], 

and are applied in several other publications. In [40] a voltage control strategy 

based on the steady-state equations of the VSC passive system side is proposed. The 

passive system load is assumed to be a constant impedance load. The VSC output 

voltage is controlled by controlling the load voltage d-and q-components, through 

PI-controllers, and compensating terms for the filter inductance steady-state voltage 

drop are included in the model. A classical voltage and frequency control approach 

with  a current mode control scheme, a synchronous dq-reference frame and a phase 

lock loop (PLL) has been suggested in [41]. A dynamic VSC passive system side 

mathematical model is applied; with variable frequency feed forward compensation 

terms for decoupled control of the voltage d-and q-components fed into the inner 

current control loop. The load is assumed to be unknown and possibly non-linear. In 

[42], a fuzzy controller strategy has been proposed for VSC voltage control in 

passive systems, the load is assumed to be a known RL-load. A robust control 

strategy is proposed in [43], where a RLC-load with uncertain parameters are 

defined as a frequently changing load.   

 Adaptive control or robust control methods could ensure stability and 

performance for variable loads or load changes. However, this is considered to be 

out of the scope of this thesis, and classical control methods for controlling the 

platform voltage and frequency are the only control methods considered.  

Two different approaches for voltage and frequency control of the platform 

passive network will be presented here. The first control system to be modeled and 

implemented is a simple platform voltage magnitude controller that is based on the 

control strategy described in [38, 39]. The second voltage control strategy is a  

based on [41]. Throughout this thesis the voltage control strategies will be called 

control strategy 1 and control strategy 2. The control tuning will be presented in 

chapter 4 .  
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3.2.1 Control Strategy 1 

Control strategy 1 is illustrated by Figure 3-4, and shows that the platform RMS-

voltage is controlled by controlling the shore converter output RMS-voltage     . 
The platform load is unknown, and there are two ideal transformers and an 80 km 

HVAC-cable between the platform side VSC and the platform.  

There is a stiff frequency applied to the system   , and hence no frequency 

control is implemented.  
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Figure 3-4 Platform-side converter control strategy 1 

It can be seen from Figure 3-4 that the platform voltage is measured, and the 

Clarke-transform provides the   -components of the platform voltage and the 

voltage phase angle  . This is used to transform the platform voltage to dq-

components where the d-axis is aligned with the three-phase system a-axis, and the 

q-axis is leading by 90 degrees, see section 2.1. The platform voltage is aligned with 

the reference frame d-axis.  

The voltage control method is, as previously stated, based on controlling the RMS 

platform voltage. Early RMS-value calculation methods were based on calculating 

the RMS-value over one period of the voltage waveform, which would introduce a 

time delay of one period at the input to the controller [39]. Now it is more common 

to use the instantaneous RMS-value, which is calculated based on the voltage space 

vector [39]. The voltage space vector can, as described in section 2.1, be 

decomposed into      and      components. The instantaneous RMS voltage,      

can after this transform be expressed as follows 

  

           
      

  

 

(3-14) 



Control Strategy 

36 

The voltage magnitude control strategy was chosen based on the steady-state 

mathematical modeling of the system in [39]. It has been modified to fit the 

proposed system, and is presented below.  

Equation (2-14) can be rewritten to express the platform side shore based 

converter output voltage [16] 

  

           
  

   
        

 

(3-15) 

If the total line impedance in steady-state is expressed by       and the platform 

load can by    , the relation between the platform voltage and the converter output 

voltage is found to be 

  

           
     

        
          

 

(3-16) 

Equation (3-15) substituted into equation (3-16) gives the following expression 

[39] 

  

          
  

   

     
        

        

 

(3-17) 

The DC-link voltage is controlled by the grid side converter and assumed to be 

constant, the converter output RMS-voltage magnitude      is the controlling 

variable, and    is the controlled variable. Equation (3-17) shows that the relation 

between      and    in steady-state is linear, and hence a PI-controller can be used 

to control the platform voltage [39].  

The difference between the calculated instantaneous RMS platform voltage and 

the reference platform voltage is applied to a simple PI-controller, where the VSC 

output RMS- voltage       is the output of the controller, see Figure 3-5.  

 

PIv
+
-

|Vp|

|Vp*| |Vl|
|Vl|,max

|Vl|,min

 
Figure 3-5 Platform voltage controller block diagram 

Generation of the reference voltage signal for the controlled voltage sources is 

illustrated in Figure 3-6, and is based on the signal modeling done in [19] for 

passive network AC-voltage control. 
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The applied angle    is increasing linear with time, and the angular frequency is 

constant.  
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Figure 3-6 Generating platform side converter controlled voltage source input signal 

There are several weaknesses in this controller model when it is applied for the 

system studied in this thesis. The mathematical model is based on steady-state 

equations assuming a linear relation between the shore voltage and the platform 

voltage. This is not valid for non-linear loads and load switching transients. The 

load of an oil platform is complex, and the control model does not include any 

compensation for load dynamics. Tests will show if the control strategy will be able 

to recover the voltage during and after transients within the required limits defined 

in Table 1-1. 

3.2.2 Control Strategy 2 

Control strategy 2 is a cascaded control strategy, consisting of an inner current 

control loop; controlling the platform-side shore based VSC output voltage       , 

outer voltage control loops; providing the inner current control loops with their 

references, and a third outer control loop; controlling the platform angular 

frequency. A phase lock loop (PLL) is also implemented for providing the platform 

voltage phase angle   to the voltage dq-transform. The control strategy is illustrated 

in Figure 3-7.  

 



Control Strategy 

38 

Vdc

DC-link

Platform

Load

T1 T2

Ideal

Platform Side Converter

Vl,abc
Vp,abc

dq-

transformOuter voltage 

control loop

ig,d*
Vp,d

Vp,q

C
Rl

Ll

Vp,q*

PCC

PLL

Frequency 

control loop

Vp,d*

ω

ω*

Inner 

current 

control 

loop

ig,q*

ig,d ig,q

dq-to-abc 

transform

θ

θ

Vl,d

Vl,q

Vl,a Vl,b Vl,c

il,abc iL,abc

ic,abc

To Grid Side 

VSC

ω ω ωCF

 

Figure 3-7 Platform voltage control strategy 2 

This control strategy has previously been implemented and tested in [41], for 

controlling the voltage at the node of the VSC output filter capacitance. 

Implementation of this control strategy in a system as the proposed system, for 

controlling the voltage above a capacitor on an oil platform, separated from the 

shore based VSC by an 80 km HVAC-cable and transformers, has not been found in 

literature.  

Control strategy 2 controls both the platform voltage magnitude and frequency, 

and the control strategy is based on conventional control strategies that would be 

implemented for a weak grid system. This is particularly advantageous for 

electrification of an oil platform, because most platforms that are provided with 

power from shore would have a synchronous generator operating on the platform 

for process heat or backup. Expensive additional equipment for controlling the 

system when the synchronous generator is disconnected might not be considered. 

This control strategy would only require small modifications in the weak grid 

control system to allow for passive system control, which would make it possible to 

reduce the usage of, or for eliminating the low efficiency, high emissions gas 

turbine on the platform.    

This section will provide the mathematical models for each of the cascaded 

control loops and the phase lock loop. Tuning results will be provided in section 

4.2.2.  

3.2.2.1 Phase Lock Loop 

A phase lock loop (PLL) is used to track the phase and frequency of the platform 

voltage, that is used for voltage and frequency control of the passive platform 

system. The PLL implemented is based on the synchronous reference frame (SRF) 

PLL described in [44] and is expanded to include the feed-forward center frequency 
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term, introduced in [45]. The PLL presented in [45] is proven to have better 

performance while also having better noise rejection in variable frequency systems.   

The PLL configuration is illustrated by Figure 3-8, and it can be seen that the 

three-phase voltage is transformed to the dq-reference frame, using the estimated 

phase angle. When the voltage q-component is equal to zero, the phase angle is 

equal to the actual phase angle of the voltage. The desired system frequency is fed-

forward after the PI-control block. This feed forward frequency is called the center 

frequency    , and is ~377 rad/s for this system. Due to the feed-forward frequency 

term, the PI-controller only has to eliminate the phase angle error, and not the 

frequency variations [45].  

+
-

Vp,q

Vp,q*= 0

dq-

transform

θ

Vp,abc

Kp,pll(Ti,plls+1)
Ti,plls

1
s

+
+

ωCF

ω

 
Figure 3-8 Block diagram of PLL 

3.2.2.2 Inner Current Control Loop 

The inner current control loop used for this controller has the same structure and 

mathematical model as inner current control loop developed for DC-link voltage 

and reactive power control, with a few exceptions. 

Since the shore transformer is non-ideal, it introduces impedance and resistance to 

the line equivalent circuit. This should be taken into account when developing the 

differential equations for the line current. The total impedance is denoted as      
and is expressed as follows 

  

                 

 

(3-18) 

The total resistance is denoted as      and is expressed as follows 

  

                 

 

(3-19) 

The differential equations for the dq- line currents flowing on the platform system 

line are therefore given as follows 

  

    
 

  
 
    
    

   
    
    

    
    
    

       
    
    

        
  
   

   
    
    

  

 

(3-20) 
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It can be seen from this equation that the current d- and q-components are 

coupled. To allow for decoupled control, these terms are fed forward. The 

frequency of the passive platform system is not fixed as it is on the grid side system, 

and the current feed-forward compensating terms are dependent on the varying 

frequency. Since the frequency controller should maintain the frequency at an 

allowable range for the system, the fixed angular frequency of 377 rad/ s is used in 

the feed-forward terms this current control loop as well. The platform voltage terms 

are also fed forward. The total resistance multiplied by the current term need not to 

be fed forward, since it is contributing to the damping of the system.  

A PI-controller will be used for the current control loop, and the full current 

controller is expressed by the following equation 

  

 
    
    

         
  
   

   
    
    

   
    
    

       
  
  
        

  
  
    

 

 

 

 

(3-21) 

(3-20) and (3-21) complete the inner current control loop of control strategy 2. 

The block diagram of the current controller can be seen in Figure 3-9. 
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Figure 3-9 Block diagram for inner current control loops 

3.2.2.3 Outer Voltage Control Loop  

The platform system model used for developing the mathematical model of the 

outer voltage control loops is shown in Figure 3-10. The pi-equivalent cable model 

has been modified for implementation of control strategy 2, by removing the shore 

based pi-equivalent capacitance. This is done because the controlled current is the 

current flowing into the platform-side pi-equivalent capacitance node. If the shore-

side pi-equivalent capacitance was there, the VSC output current would not be 

equivalent to the current to be controlled. This would require modification of the 

control structure, which is suggested as future work.  
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The shore transformer is non-ideal, while the platform transformer is assumed to 

be ideal. The platform voltage        is going to be controlled by controlling         , 

that is the current flowing through the cable lumped parameters    and   .        is 

the current consumed by the platform load and         is the current consumed by 

the platform side lumped capacitor    .   

 

Platform

Load

T1 T2

Ideal

Platform Side Converter

Vp,abc

Cl2

Rl

Ll
PCC

Vp,abc
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Figure 3-10 System model used for developing controller equations for voltage 

control strategy 2 

All three-phase quantities are transformed with respect to the rotating dq-reference 

frame. As explained in section 3.2.2.1, the platform q-axis voltage component      

is forced to zero by the PLL, the platform voltage q-component is also used to 

control the platform frequency. The platform d-axis voltage      will be controlling 

the platform voltage magnitude.  

Control of      and      in this manner is not straight forward due to many factors. 

     and      are coupled, the relation between the controlled current       and the 

voltages is highly non-linear, the load current       are functions of both      and 

    . It is also shown in [41] that the dynamics of a simple RL-load or RLC-load is 

non-linear and of high dynamic order [41]. The load on a platform system is much 

more complex than RLC-loads, and hence would introduce complex current 

dynamics. 

 The control scheme that is presented here, developed by [41], has shown to 

largely overcome these issues, and is therefore of interest for the purpose of passive 

system platform voltage and frequency control.      

The platform voltage space vector                   , is the voltage over the lumped 

capacitance. The equation for voltage over a capacitor is expressed as follows 

  

   
                   

  
                                    

 

(3-22) 

This can be expressed with respect to the d-axis as follows 
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(3-23) 

The q-axis equation is given as follows 

  

   
     

  
                       

 

(3-24) 

It can be seen from (3-23) and (3-24) that the d- and q-axis voltage components 

are coupled. These terms will be fed forward and multiplied with the fixed variable 

frequency of 377 rad/s and the capacitance. This is done to allow for decoupled 

control. The frequency of the passive system is not fixed, and hence the voltage 

feed-forward decoupling terms are dependent on the variable frequency. Since the 

frequency controller should maintain the frequency at an allowable range for the 

system, the fixed angular frequency of 377 rad/ s is used in the feed-forward terms 

of the outer voltage loops. 

The load currents are also fed forward to mitigate the impact of load dynamics on 

the system, which may have a significant influence on the system stability and 

performance for some types of platform loads.  

The transient terms of (3-23) and (3-24), when transformed to the Laplace domain, 

are proved to be negligible if the time constant of the inner current control loop is 

small enough [41]. The relationship between the d- and q- axis platform voltage and 

the dq-line current can then be assumed to be linear, and hence PI-controllers can be 

used to ensure fast and stable response of the outer control loop.  

The outer voltage control loops can therefore be expressed as follows 

  

 
    
    

         
   
  

   
    
    

   
    
    

       
  
  
        

  
  
    

 

 

 

 

(3-25) 

These equations complete the outer loop control model for the system shown in 

Figure 3-10.  

The block diagram of the cascaded control system with the inner and outer control 

loops are shown in Figure 3-11. The reference for the d-axis voltage     
  , is set to 

the desired platform voltage magnitude. The reference for the q-axis voltage     
  is 

provided by the outer frequency control loop described in section 3.2.2.4.  
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Figure 3-11 Block diagram of outer platform voltage controller, and inner current 

controller 

The pi-equivalent cable model is only a simplified model of a real HVAC-cable, 

as was discussed in section 2.4.3. The capacitors only model the behavior of the 

cable at each end, and there are no physical capacitors on shore or on the platform. 

To be able to apply this voltage control strategy to a real system as such, a physical 

capacitor should be added at the platform side. If the current and voltage that the 

shore VSC must provide in order to obtain the desired current at the platform 

physical capacitor could be calculated, the voltage        over the capacitor could 

be controlled. The realistic platform side system model is shown in Figure 3-12.  
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Figure 3-12 Realistic platform side system model 

The VSC current output can be calculated if the dynamic relation between the 

shore VSC current and the current at the end of the 80 km HVAC-cable can be 

estimated.  This relation is simplified as follows 
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(3-26) 

where        is the measured current flowing into the PCC,          is the current 

applied by the VSC on shore, and            is the current absorbed or supplied by 

the capacitive cable.  

Dynamic and accurate estimation of the cable current            would require an 

accurate mathematical model of the cable. This estimation is considered to be out of 

the scope of this thesis and is suggested as future work to make the controller 

applicable for a real platform system.    

3.2.2.4 Frequency controller  

The frequency control loop provides the q-axis control loop voltage      with its 

reference. Due to the integrator in the PLL, the frequency controller only needs a 

proportional gain to control the frequency to a set reference     of 377 rad/s, 

without any steady-state error [41].  The simple block diagram of the frequency 

controller can be seen in Figure 3-13.  
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Figure 3-13 Block diagram for frequency controller, providing the platform voltage 

q-component with its reference 
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444   Tuning of Controllers 

This chapter presents the tuning techniques applied for tuning of the controllers 

that were modeled in chapter 3 All the controllers to be tuned are based on PI-

controllers, operating alone or in cascaded configurations. For a PI-controller there 

are two parameters to be tuned: proportional gain   , and integral time   . These 

parameters need to be set so that the speed of response and stability, for both small 

and large system disturbances are acceptable. Controllers that can track their 

references for large variations in platform load, fluctuations in the active and 

reactive power drawn, are more important than optimal performance for some 

system conditions.  

The methods used for determining the PI-control parameters for each of the 

respective control configurations will be presented here. The system response for 

step changes in the references will be shown, and the controller performances will 

be evaluated.   

Tuning of the grid-side VSC controllers will be presented in section 4.1, and the 

results from the tuning of the platform side VSC control strategies will be presented 

in section 4.2.   

4.1 Tuning of Grid Side VSC Controllers  

Tuning of the cascade control system with the inner current control loop, the outer 

DC-voltage and the outer reactive power control loop will be done in this section. 

Cascaded control requires the inner control loop to have a faster speed of response 

than the outer control loop. Therefore the inner current control loop is tuned to 

achieve fast response, while the outer control loops are tuned to achieve a stable 

system, with good regulation [28]. 

The “modulus optimum” criterion is used to tune inner current control loop, while 

the “symmetrical optimum” criterion will be used for tuning the outer DC-voltage 

loop. The outer reactive power control loop controller parameters will be 

determined based on testing a large range of controller parameters, and studying the 

system response for a step change test in the reactive power reference. 

4.1.1 Inner Current Control Loop 

The modulus optimum tuning criterion can be used to determine the control 

parameters of a PI-controller, when the plant consists of two poles in the left half 

plane (LHP), one of which is considerably smaller, and hence closer to the right half 

plane (RHP).  
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Modulus optimum is achieved through using the PI-controller to cancel the largest 

time constant of the system, which is equivalent to the pole closest to the RHP, 

while the closed loop gain is larger than unity for as large frequencies as possible 

[37].   

For the system studied in this thesis the switching frequency of the VSC is, as 

previously described, assumed to be infinite. The average converter model used 

assumes infinite switching frequency. If the control parameters are dimensioned for 

a specific switching frequency the controller will be valid for both average 

converter models and switching converter models with this specific frequency. This 

is desirable, and the switching frequency is set to 1 kHz for determining the 

modulus optimum parameters.  

As presented in section 3.1.1, the dq-transform of the three-phase currents results 

in DC-quantities that are controlled through feeding the error between the reference 

and the measured value through a PI-controller. The full linearized control scheme 

is shown in the block diagram shown in Figure 4-1.  
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Figure 4-1 Reduced block diagram of grid-side current control scheme 

The base value calculations of the values used to calculate the controller 

parameters are, with one exception, the same as the base values used throughout this 

thesis report, presented in section 2.6. The exception is for the inductance, where 

the per unit calculation is done as follows 

  

     
     
     

 

 

(4-1) 

Usage of this base value gives seconds as the result when calculating the system 

time constant with per unit values.  

It can be seen in Figure 4-1 that the VSC is modeled as a time delay     
 

    
 , 

where    is the switching frequency of the VSC. The plant is the transfer function 

between the converter output voltage and current in the grid side system. This is 

expressed as follows 

  

      
 

      
 

 

         
   

 

(4-2) 
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where        is the time constant of the LR-circuit defined as follows 

  

        
         

         
 

 

(4-3) 

The VSC time constant    is much smaller than the plant time constant       , due 

to the high switching frequency. This means that the pole introduced by the VSC is 

further left than the pole introduced by the plant model, and the controller should be 

set to cancel the effect of the time constant of the plant rather than the time constant 

of the VSC.   

The PI-controller integral time, based on the modulus optimum criterion is given 

as follows [37] 

  

           

 

(4-4) 

The proportional gain of the PI-controller is given as follows [37] 

  

       
            

   
  

 

(4-5) 

In Simulink™, the integrator gain constant     is implemented. This value can be 

calculated based on the proportional gain and the integral time constant, as follows 

  

    
  

  
 

 

(4-6) 

The values obtained for the current control loop, calculated based on the equations 

presented above, are given in Table 4-1. 

 

Table 4-1 PI-controller parameters for inner current control loop 

Description      [pu]      [s] 

Modulus optimum calculated, controller values  0.4879 0.04396 

 

The current controller with the modulus optimum obtained parameters is tested for 

a step change in the respective d-and q-axis current references. At time t = 0.1 s, 

there is a step change in the d-axis current reference from 0 to 0.6 pu.  

The resulting grid-current response can be seen in Figure 4-2. The d-axis current is 

tracking its reference within 5 ms, with no overshoot. The influence of the d-axis 

current step-change in the q-axis current component is very small.  

At time t = 0.12 s, there is a step change in the q-axis current reference from 0 to 

0.3 pu. The q-axis current is tracking its reference within 5 ms, with no overshoot. 
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The influence of the q-axis current step change in the d-axis current component is 

not visible. Based on these results it can be concluded that decoupled control of the 

d- and q-axis grid-current is successfully implemented. The current control loops 

have shown to provide fast tracking of its reference, with no overshoot.  

 
Figure 4-2 Grid current response for changes in the d- and q-current component 

references  

4.1.2 Outer Control Loop 

4.1.2.1 DC-voltage controller  

For representing the DC-control loop on linear form the inner current control loop, 

presented in section 4.1.1, is simplified to an equivalent time delay    . The value 

for the equivalent time delay has been found to vary in literature. For this system it 

is set to     in [37]. The outer DC-control loop cannot have an integral time 

constant smaller than this value.   

The plant model is represented based on the power conservation equations, and 

the DC-link capacitance voltage equation, both given in section 2.3. This can be 

seen in the reduced block diagram for the DC-voltage control scheme, presented in 

Figure 4-3.  
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Figure 4-3 Reduced block diagram for DC-voltage control scheme 

The open loop system transfer function, ignoring the feed forward term, is given 

as follows 

  

          
        

      
  

 

      
  

     
    

 
     
 

 

 

(4-7) 

The open loop transfer function in (4-7) has a multinomial polynomial in the 

denominator and the number of integrators are 2. If the controller parameters were 

set to cancel the inner current control loop time constant, there would be two poles 

at the origin and the system would be unstable. The symmetrical optimum method 

is specially suitable for determining the control parameters for a system as such 

[46], and is therefore applied here.  

The smallest integral time constant that should be used for the controller is given 

by the symmetrical optimum method as follows [28] 

  

             

 

(4-8) 

The constant parameter   influences the pole placement of the closed loop transfer 

function and hence the damping factor. Both     and     are used in literature 

[37] [46],      is chosen for this controller. As seen from equation (4-8), a larger 

value for   gives a slower controller since the integral time increases with the 

square of  . A larger   also gives a larger phase margin [37].  

The controller gain for the DC-link controller can be given as follows [37] 

  

          

 
 

     
 

    
   

         

 

 

(4-9) 

The parameters for the system DC-voltage controller are calculated based on the 

equations presented, and given in Table 4-2.  
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Table 4-2 PI-controller values for outer DC-voltage control loop 

Description       [pu]       [s] 

Symmetrical optimum, DC-voltage controller values 4.267 0.018 

 

The grid-side system with the DC-voltage controller is tested for a step change in 

the DC-voltage reference from 1 pu to 1.5 pu, at time t = 0.3 s. This test is done to 

study the performance of the DC-controller. For normal operation the controller will 

have a constant reference, equal to 1 pu, since its task is to keep the DC-voltage at a 

constant level.   

The step change test is applied for the system, first with the integral time        

kept constant at 0.018 s, while the proportional gain       of the controller is varied 

to see the influence the proportional gain has on the step response. The result can be 

seen in Figure 4-4, where proportional gains below and above the symmetrical 

optimum criterion determined value shows larger overshoots and slower reference 

tracking. The step response with the symmetrical optimum obtained parameters 

provides the fastest step response, that tracks the reference within 0.06 s and with an 

overshoot of 25%, which is the smallest overshoot of all the proportional gains 

tested.  

  

 
Figure 4-4 DC-controller step response for different controller proportional gains 

Kp, when Ti = 0.018 

The step response test is then applied for the system, with the proportional gain 

kept constant at 4.267, while the integral time is varied. The symmetrical optimum 

calculated time constant is the smallest time constant that can be applied to the 

system, and hence only larger time constants are tested.  

Figure 4-5 shows that the larger time constants provide slower tracking, but 

smaller overshoots. The symmetrical optimum calculated values overshoot of  25% 
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is not of concern since the DC-bus voltage reference is kept constant in a real 

system. For charging of the DC-bus capacitor the overshoot could be limited by 

ramping the voltage up to its reference value instead of introducing the large step 

change in dc-link voltage reference. The symmetrical optimum obtained values are 

therefore kept as the DC-link voltage controller parameters. 

 
Figure 4-5 DC-voltage controller step response for different integral times Ti, when 

Kp = 4.267 

4.1.2.2 Reactive power controller 

The block diagram for the reactive power controller is presented in Figure 4-6, it 

consists of the PI-controller, the simplified current time delay which is defined in 

section 4.1.2.1. The plant model only consists of the grid d-axis voltage component, 

due to the simple relation between reactive power and the reactive current     , 

given in equation (3-15).  
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Figure 4-6 Block diagram for reactive power control scheme 
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The open loop transfer function for this system is given as follows 

  

            
       

    
  

 

      
         

 

(4-10) 

This transfer function shows that if the reactive power control parameters are set 

to cancel the current control time delay, the resulting transfer function has one pole 

at zero, which will give a marginally stable system. This means that the modulus 

optimum method should not be applied for the system.  

There is not straight forward to apply the symmetrical optimum method for this 

system [37, 46], since it is not on the general form described in [46]. Developing a 

mathematical tuning method for this controller is considered to be out of the scope 

of this thesis. The controller parameters will therefore be determined based on 

testing of a large range of different parameters for proportional gain      and 

integral time constants     .  

The reactive power controller is tested for a step response in its reactive power 

reference from 0.5 pu to 0 pu, for various proportional gains     , while the integral 

time     of the reactive power controller is kept constant at 0.018 s. This integral 

time is the smallest that can be applied to the outer reactive power control loop, due 

to the inner current loop delay, defined in section 4.1.2.1. This is not a realistic test 

of the system behavior, since the reactive power reference will be zero at all times 

during normal system operation. The test is done to illustrate the ability of the 

controller to track the reference.   

The system response to a step in the reactive power reference can be seen in 

Figure 4-7. The smaller the proportional gain is, the slower the tracking of the 

reference is. The largest proportional gain shown,        gives the fastest 

response. The increase of proportional gain from 10 to 20, gives a marginally faster 

response of less than 0.01 s. An increase of      beyond 40 gives an unstable 

system that is not able to track the reactive power reference.  

Due to the focus of the robustness of the controller, instead of optimal reference 

tracking, the proportional gain of 10 is chosen for the reactive power controller.   
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Figure 4-7 Reactive power controller step response for different controller 

proportional gains, when the integral time      is set to 0.018 s 

The controller is then tested for a step response in the reactive power reference, 

when the controller proportional gain is kept constant to 10, and the integral time is 

varied. The results are presented in Figure 4-8, where it can be seen that the larger 

the time constant, the slower the reference tracking.  

Based on these results, the integral time constant is set to 0.018 s. This provides a 

reference tracking in 0.08 s, with no overshoot. The reactive power controller 

parameters used are summarized in Table 4-3.  

Figure 4-8 Reactive power controller step response for different integral time 

constants, when the controller proportional gain      is set to 10 
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Table 4-3 PI-controller parameters for reactive power controller 

Description      [pu]      [s] 

Reactive power controller values 10 0.018 

 

4.2 Tuning of Platform Side VSC Controllers 

The main objective of the platform side VSC controllers is to maintain the voltage 

and frequency of the platform system to its rated values, for all realistic changes in 

load. The platform load model is described in section 2.5, and due to load switching 

on the platform, the load is unknown at a random time t. This makes linearization of 

the platform load for tuning of the controller very difficult.  As discussed in section 

3.2, adaptive control or robust control methods with gain scheduling could ensure 

stability and optimal operation for a wide range of platform loads. However, this 

thesis is focused on using classical control methods, and adaptive and robust control 

methods are considered out of the scope. The PI-controllers used for platform 

voltage and frequency control are expected to regulate the platform voltage and 

frequency for a large range of load conditions, when only one proportional gain    

and one integral time constant    is set. The main focus for the tuning of control 

strategy 1 and 2 is therefore to obtain controllers that will maintain stable systems 

for large load changes, while recovering the platform voltage within 1.5 seconds 

and the frequency within 5 seconds, as defined in the system requirements Table 

1-1.  

The platform load will during the tuning tests will consist of a 23 MVA induction 

machine operating in steady-state, with a power factor of 0.8, and a passive load of 

2 MW. The results from the step change tests in the respective controller references 

will be shown and evaluated in this section.   

4.2.1 Control Strategy 1 

The block diagram of the system consisting of control strategy 1, the VSC and the 

plant can be seen in Figure 4-9. As described in section 4.2, determining the 

platform voltage controller parameters based on this model is not straight forward, 

due to the unknown platform load at time t.   

The tuning of control strategy 1 will therefore be done through studying the 

response for a step change in the voltage magnitude reference    
   for a large 

amount of proportional gains     , while keeping the integral time       constant. 

When an appropriate value for the proportional gain is chosen, the system will be 

tested for various integral times, and the integral time      providing the desired 

response will be determined.  
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Figure 4-9 Block diagram for control strategy 1 controlling the voltage of the 

platform system 

The integral time constant      of the controller should not be smaller than the total 

time delay of the transformers and the HVAC-cable model. Simplifying the 

transformers and HVAC-cable to an RL-circuit, the total time delay based on the 

transformer leakage inductances and the cable accumulated RL-parameters is given 

as follows  

  

  
 

 
  

         

        
          

 

(4-11) 

This gives the following restriction on the integral time constant 

  

               

 

(4-12) 

The initial controller integral time constant      is initially set to 0.03 s, while the 

controller proportional gain is varied.  

The system is applied a step change in the platform voltage magnitude reference 

   
   at time 2 s, from 1 pu to 1.3 pu.  

 The system response for proportional gains of 0.1 and 0.08 can be seen in Figure 

4-10 , larger proportional gains introduce oscillations in the response and thus are 

not suitable. Smaller gains than 0.08 give a slower response, and are therefore not 

depicted. It can be seen that the proportional gain of 0.1 provides a faster response 

than the proportional gain of 0.08. Since the proportional gain of 0.1 provides the 

fastest response without giving an overshoot, this gain is chosen for the controller. 
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Figure 4-10 Voltage step response for system, tested for different proportional gains 

    , when the integral time      is kept constant at 0.03 s 

The controller is then tested for the same step change in reference, for various 

integral time constants     , when the proportional gain is kept constant at 0.1. The 

result from the test can be seen in Figure 4-11. The results show that the smaller the 

time constant is, the faster the reference voltage is tracked. The overshoot increases 

with a decreasing integral time constant. The controller should ensure system 

stability for large changes of load, and an overshoot in the response is not desirable. 

The integral time constant providing the fastest response, while not having an 

overshoot is 0.02 s, and is the integral time chosen for the controller.  

 The controller parameters determined based on this tuning are summarized in 

Table 4-4. The controller response, with these parameters tracks the reference 

within ~ 0.35 s, with no overshoot. 
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Figure 4-11 Voltage step response of system for various integral times, while the 

proportional gain is kept constant at 0.1 

Table 4-4 PI-controller parameters for the control strategy 1 

Description      [pu]      [s] 

Platform voltage controller values 0.1 0.02 

 

4.2.2 Control Strategy 2 

Control strategy 2, as described in section 3.2.2, consists of an inner dq-current 

control loop, outer dq-platform voltage control loops and a third outer frequency 

control loop, providing the platform q-axis voltage control loop with its reference. 

A PLL is also implemented to track the platform frequency and phase angle.  

Cascaded control requires the inner control loop to have a faster speed of response 

than the outer control loops. Therefore the inner current control loop should be 

tuned to achieve fast response, while the outer control loops should be tuned to 

achieve a stable system, with good regulation.  

Conventional control tuning techniques starts to tune the inner control loop, 

moving outwards. This approach was also used for tuning of this cascaded 

controller. The inner current control loop of control system 2 cannot operate without 

the outer control loops, without applying fixed frequency to the system. The initial 

tuning of the inner current control loop was done when the frequency was fixed, and 

the results had to be adjusted for the full cascaded loop, since the real system 

operates with variable frequency. Thus the results from tuning of the inner current 

control loops with fixed frequency were not directly applicable for the real system 

and will not be shown here.  
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The full cascaded controller will be tested for step changes in the outer loop 

references;    and   
 , and the resulting response of the dq-currents        and        

and the q-axis voltage      are plotted.  

The parameters used in the PLL, determined using the Wiener method, are also 

provided.  

4.2.2.1 Phase Lock Loop 

The transfer function of the phase lock loop PI-controller is expressed as follows 

  

            
         

       
 

 

(4-13) 

An equivalent block diagram of the system can be developed based on the phase 

lock loop system shown in Figure 3-8. The relation between the phase angle error 

and the q-axis voltage can be expressed as follows 

  

             

 

(4-14) 

where    is the amplitude of the platform voltage and       , where    is the 

platform voltage phase angle, and   is the desired phase angle. Assuming   is very 

small, the equation can be linearized and rewritten as follows [44] 

  

         

 

(4-15) 

Based on these equations, the equivalent block diagram of the PLL can be seen in 

Figure 4-12 [45].  
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Figure 4-12 Equivalent block diagram of PLL 

The general form of the second order transfer function is given as follows 
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(4-16) 

where   is the damping ratio, and    is the natural frequency.  

The closed loop transfer function of the PLL can, based on this, be expressed on 

general form as follows 

  

     

          
        
      

              
        
      

 

 

(4-17) 

The relation between the PI-controller parameters and the damping ratio and the 

natural frequency can be used to tune the PLL. The square of the natural frequency 

is given as follows 

  

  
  

        
       

 

 

(4-18) 

The damping ratio is given as follows 

  

  
        

   
 

 

(4-19) 

The method that is most frequently used to determine the PLL parameters is the 

Wiener method [44]. Determining the stochastic information required to use the 

Wiener method is a complex process, and is considered to be out of the scope of this 

thesis. Since the system frequency parameters resembles the parameters used in 

[44], the damping ratio and the natural frequency used there will be used to 

determine the PI-controller gain and time constants for the PLL implemented for 

control strategy 2. The damping ratio is therefore set to  

  

  
 

  
 

 

(4-20) 

and the natural frequency is set to 

  

              

 

(4-21) 
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The voltage input of the system will be in per unit values. Therefore the voltage    

is set to 1 pu for calculating the controller parameters. The PI-controller parameters 

calculated based on this are summarized in Table 4-5.  

 

Table 4-5 PI-controller parameters for PLL 

Description        [pu]        [s] 

PLL, Wiener method based tuning 888 0.00225 

 

4.2.2.2 The Cascade Controller  

The parameters of the cascaded controllers are determined during the 

implementation of the cascade controller. The inner current control loop parameters 

are given in Table 4-6, while the outer voltage loop parameters are provided in 

Table 4-7. The frequency proportional gain is given in Table 4-8. These parameters 

are used for the cascaded controllers when the step response tests are done.      

 

Table 4-6 Inner current control loop parameters 

Description        [pu]        [s] 

Inner current control loop  45 0.0004 
 

Table 4-7 Outer voltage control loop parameters 

Description       [pu]        [s] 

Outer voltage control loop  5 0.01 

Outer voltage control loop  10 0.005 

 

Table 4-8 Outer frequency control loop proportional gain 

Description      [pu] 

Frequency controller -2.5 

 

The platform system with control strategy 2, experiences a step change in the 

angular frequency reference from 1 pu to 1.1 pu, at time t = 0.2 s. The resulting 

responses of the system frequency and the dq-voltages can be seen in Figure 4-13.  

The system angular frequency track its reference within 5 ms. The step change in 

the frequency makes the reference of the q-component voltage   , that is set to 

control the frequency, to change. The response of    has a small delay when it is 

tracking its reference, so that the drop of the reference can be seen to be larger than 

the actual drop in   . It can also be seen that the voltage d-component is not 

influenced by the step change in frequency. The voltage d-axis component is 

however influenced by the small oscillations about the reference frequency.  
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Figure 4-13 Platform voltage and frequency response for step change in angular 

frequency reference  

The outer voltage loops provides the inner current control loops with its 

references, and the respective d-and q- current references are plotted with the 

measured d- and q-currents in Figure 4-14. The currents can be seen to track its 

reference perfectly, also during the step change in frequency.   
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Figure 4-14 Current response for a step change in angular frequency  

At time 0.4 s, the system experiences a step change in the d-axis voltage reference 

   
  from 1 pu to 1.3 pu. The response of the measured d-axis voltage is plotted 

together with its reference in Figure 4-15. The d-axis voltage manages to track its 

reference in 14.9 ms, with a very small overshoot of 0.014 pu. The overshoot is 

assumed to be due to the small frequency variations in the system.  

It can be seen that the voltage q-axis component is barely influenced by the step 

change in the d-axis voltage.  
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Figure 4-15 DQ-voltage response for a step change in the d-axis voltage reference 

 

Figure 4-16 Current response for a step change in d-axis voltage  
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The step change in the voltage reference     
  makes the reference of the d- and q-

current components change. The response of the inner current control loops to the 

step change in the outer control loop d-axis voltage can be seen in Figure 4-16. The 

currents are perfectly tracking its reference, with only very small time delays. Both 

the d-and q-axis currents are influenced by the step change of     . This is expected 

due to the feed-forward terms with the measured q-and d-component voltages 

respectively. 

Based on the step response tests for the cascaded controller it can be concluded 

that decoupled control of the d- and q-axis platform voltage has been successfully 

implemented. Changes in the d-axis voltage have very little influence on the q-axis 

voltage, and changes in the q-axis voltage have very little influence on the d-axis 

voltage.  

Both the step change in the platform frequency reference and the platform voltage 

magnitude reference are tracked within 5 ms and 14.9 ms respectively.  
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555   Platform Voltage Estimation 

For platform systems similar to the one studied in this thesis, measurements of 

voltages and currents on the platform will be available through a power 

management system (PMS). If the connection is lost and measurements from the 

platform are not longer available, the voltage control system should still be able to 

maintain the voltage at the platform at an acceptable level. For the platform system 

to be able to operate autonomously, the platform voltage has to be estimated for the 

control system to get feedback from the platform.  

The measurements available for the estimator are the converter output voltage on 

shore and the current supplied to the platform system, measured at the beginning of 

the HVAC-cable on shore.  

Close to exact parameters for real HVAC-cables can be available for a new cable 

installed, though there will still be variations in the cable parameters due to 

variations in temperature. As the lifetime of the cable passes, degrading of the cable 

performance will cause the cable dynamics to change [47]. A voltage estimator, 

measuring the current and voltage input to the cable, estimating the output voltage 

of the cable needs to have access to close to exact parameters to be able to provide 

an accurate estimate of the output voltage. A voltage estimator also needs to provide 

somehow accurate results for aberrations in cable parameters as well as for exact 

cable parameters available.  

This chapter will provide the estimator mathematical model based on steady-state 

equations. The estimator will be simulated for load changes in chapter 6  when no 

platform voltage controller is implemented. The estimated platform voltage will 

then be applied as the input of control strategy 1, and used for testing for 

autonomous operation of the platform system, when exact cable system parameters 

are not available.  

5.1 Equations Derived for Voltage Estimation 

Sinusoidal currents and voltages can be represented by a phase vector also called a 

phasor. The phasor has an amplitude and angle, and it is time-invariant. Phasor 

representation can simplify calculations considerably, and is therefore used for this 

platform voltage estimation. They are only valid for sinusoidal voltages and 

currents in steady-state, and will therefore not be accurate during transients and 

changes in the system.  

An HVAC-cable can be modeled by one or several pi-equivalents, as discussed in 

section 2.4. The cable is, as defined in section 2.4.3, as a single pi-equivalent 
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circuit. The system model can be seen in Figure 5-1, and the equations are 

developed based on this model. 

 

Platform Side Converter Load

T1 1/jωC 1/jωC

jωLl

T2

VL∟δL Vp∟δp

I∟θ

IC∟θC

IL∟θL

Rl

L P

 

Figure 5-1, Equivalent circuit used for platform voltage estimation, with ideal 

transformers 

To be able to estimate the platform voltage, the current flowing on the line, 

through the inductor and the resistor out from point L, must be known. This current 

can be found as follows  

  

                 

 

(5-1) 

Where     is the measured current flowing into point L,       is the current 

absorbed by the capacitor and       is the current running through the inductor and 

resistor. To be able to calculate      ,       must be found.  

  

      
     

  
 
  

                   

 

(5-2) 

This can be divided into a real and an imaginary part. Euler’s law gives   

  

                        

                       

 

(5-3) 

Then        can be written as 

  

                                  

                                

 

(5-4) 

This can also be expressed by the phasor magnitude and angle, and is founds as 

follows 
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(5-5) 

The phase angle is given as follows 

  

           
                       

                        
   

 

(5-6) 

When       is found, the platform voltage, that is the voltage in point P, can be 

calculated as follows  

  

                                    

 

(5-7) 

This can be rewritten as 

  

                                               

                                           

 

(5-8) 

The platform voltage can also be expressed by the magnitude  

  

  
                                          

  

                                        
  

 

(5-9) 

and angle 

  

           
                                      
                                    

   

 

(5-10) 

The platform voltage equations do now only consist of known quantities, and the 

steady-state platform voltage can be estimated.  

The equations provided here forms the basis for implementation of voltage 

estimation in MATLAB® Simulink™. 
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666   System Simulations 

This chapter will present the simulations results for the systems. The simulations 

will be described in section 6.1. Section 6.2 will present the results from testing the 

voltage estimator; section 6.3 will present the results from testing control strategy 

1for the different system configurations; section 6.4 presents the results from testing 

control strategy 2. These results will be further discussed in chapter 7     

6.1 Simulation Description  

6.1.1 Platform Voltage Estimator  

The purpose of the platform voltage estimator simulations is to determine the 

accuracy of the platform voltage estimator during and after large changes in 

platform load.  

The platform voltage estimator will be tested for the HVAC-cable model used for 

developing the equations given in section 5.1. Exact cable parameters, defined in 

Table 2-3, are used for the voltage estimator. The transformers are non-ideal, and 

the estimator uses measurements of voltage and currents onshore on the secondary 

side of the shore-based transformer. The voltage estimated is equivalent to the 

voltage of the primary-side platform transformer. This is done to eliminate the 

effect of the voltage drop over the non-ideal transformer in the initial estimator 

tests.  

The system is initially operating in steady-state with a 4 MW passive load. Three 

load tests will be applied for the system: loss-of all-load, increase-of-passive-load 

and induction-motor-starting. The load tests are summarized in Table 6-1, but the 

values in first row of the table are not applicable for testing of this system. No 

platform voltage control system is implemented for the platform system, so the 

changes in voltage on the platform will be visible for changes in platform load.  

6.1.2 Control Strategy 1 and 2 

The main purpose of these simulations is to study the performance of control 

strategy 1 and 2, when regulating the platform voltage and frequency for worst-case 

changes in load.  

The performance of the controller voltage and frequency regulation will be 

evaluated based on the requirements defined for the platform system, based on the 

IEC 61892 standard for fixed and floating offshore installations.  

The initial load of all the systems to be tested is the 23 MVA accumulated 

induction motor model, operating in steady-state on the platform with a power 

factor of 0.8, and a 2 MW passive load. All the system configurations will be tested 
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for 3 different types of worst-case load changes: loss-of-all-load, induction-motor-

start and increase-of-passive-load. The load tests are summarized in Table 6-1.  

It should be noted that the voltage controlled to 1 pu by control strategy 1 is the 

line-to-neutral peak voltage, see the per unit system defined in section 2.6. When 

the estimated platform voltage is compared to the measured platform voltage in this 

section, the RMS-value of the line-to-neutral voltage will be plotted. This voltage 

value will be 
 

  
 pu when the line-to-neutral peak voltage is 1 pu.   

 

Table 6-1 Platform load tests summarized 

Load Test No. Title Description Value 

1 Loss of all load At time t, all platform load is 

lost 

-23 MVA, 

-2MW 

2 Increase of passive 

load 

At time t, there is an increase 

of passive platform load of 2 

MVA 

2 MVA,  

Pf = 0.9 

3 Induction motor start At time t, a 8 MVA 

induction machine is directly 

started on the platform 

8 MVA 

 

6.2 Platform Voltage Estimator 

6.2.1 Loss of all load 

The system is initially operating in steady-state with a 4 MW passive load. At time 

t = 0.5 s, all load is lost. The measured voltage plotted versus the estimated platform 

voltage can be seen in Figure 6-1. The results show that the estimated voltage is 

very accurate for steady-state operation. During the fast transients from the loss-of-

all-load, the estimation error is larger.  
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Figure 6-1 Measured platform voltage versus estimated platform voltage, for loss-

of-all-load 

6.2.2 Increase of passive load 

The system is initially operating in steady-state with the 4 MW passive load, at 

time t = 0.5 s, there is an increase in passive load of 2 MVA, with a power factor of 

0.9. The resulting measured platform voltage is plotted versus the estimated 

platform voltage in Figure 6-2. The estimated voltage can be seen to track the 

measured voltage very accurately, both for steady-state operation and for system 

transients.  

 
Figure 6-2 Measured platform voltage versus estimated platform voltage, for 

increase-of-passive-load  

6.2.3 Induction motor start 

The system is initially operating in steady-state with a 4 MW passive load, at time 

t = 0.5 s, an 8 MVA induction motor is directly started on the platform. The 

resulting measured platform voltage plotted versus the estimated platform voltage 

for the induction motor start is shown in Figure 6-3. The voltage estimator is 

tracking the platform voltage, for both transients and steady-state operation. When 

studying the waveforms very closely it can be seen that there are small errors in the 

estimated platform voltage oscillations. This is due to the mathematical being based 

on steady-state equations.  
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Figure 6-3 Measured platform voltage versus estimated platform voltage, for 8 

MVA induction-motor-starting  

6.3 Control Strategy 1 

The platform system is first tested separately, when applied a constant DC-link 

voltage, with control strategy 1 controlling the platform voltage magnitude, while 

the frequency is fixed. Three load change tests, defined in Table 6-1, are run for 

both normal operation, when measured platform voltage is available, and for 

autonomous operation, when the estimated platform voltage is used as input to the 

controller.  Control strategy 1 is also tested when the grid-side VSC is connected to 

the platform-side VSC, through the DC-link. When the system is connected in full 

B2B-configuration the DC-link voltage variations will influence the platform-side 

system, and hence the platform-side controller.  

The results from the load change tests are evaluated based on the system 

requirements defined in Table 1-1, based on the IEC 61892 standard. The only 

requirements applicable for the systems tested with control strategy 1 are the ones 

for steady-state and transient platform voltage, and stable operation. These are 

summarized in Table 6-2.  

It should be noted that the voltage controlled to 1 pu by control strategy 1 is the 

line-to-neutral peak voltage, see the per unit system defined in section 2.6. 

All measurements from the plots are provided in tables in Appendix C.  

 

Table 6-2 Control strategy 1, requirements for operation of platform system 

Req. No. Requirement Title Value 

1 Steady-state voltage         
    

Transient voltage         

            

3 Stable operation Not Applicable 
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6.3.1 Platform System 

6.3.1.1 Loss of all Load 

The platform system is initially operating in steady-state, with the accumulated 23 

MVA induction machine and a 2 MW passive load. At time t = 2 s, the platform-

system experiences loss-of-all-load.  

The platform voltage magnitude response to the loss of all loads can be seen in 

Figure 6-4. The moment all load is lost there is a large voltage transient that peaks 

at 1.62 pu. This is due to the sudden change of current through the transformer 

inductance, which would give a large voltage spike on the platform, as can be seen 

from the figure. The voltage controller is not fast enough to limit the voltage 

magnitude of this transient. The voltage controller manages to regulate the platform 

voltage back to its rated value within 0.45 s.     

 

 

Figure 6-4 Platform voltage transient for sudden loss-of-all-load 

Figure 6-5 shows the system response for loss-of-all-load, when the estimated 

voltage is applied to the system, and the operation is autonomous.  

Compared to the platform system response during normal operation, shown above, 

the voltage transient peak is considerably lower for autonomous operation. It is still 

right above the allowable limit for voltage transients on the platform, that is 20.9 % 

over the platform rated voltage. The estimated voltage tracks the voltage reference 

within 0.6 seconds.  
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Figure 6-5 Platform voltage transient for sudden loss-of all-load during autonomous 

operation 

The estimated voltage is plotted together with the actual platform voltage in the 

bottom graph of Figure 6-5. It can be seen that the initial estimated voltage is 

0.0236 pu larger than the actual platform voltage. This is due to the voltage drop 

over the non-ideal transformer on the platform. This voltage difference is 3.3 % 

smaller than the desired line-to-neutral voltage of 
 

   
 pu.  

The estimated voltage is regulated back to its initial value 0.6 seconds after all 

load is lost. The actual platform voltage increases to 0.0677 pu above the rated 

platform voltage, which is 9.4 % larger than the rated platform voltage, and is not 

acceptable as a steady-state voltage error for the system.  

The estimator is estimating the platform transformer primary-side voltage, and 

does not include the voltage drop or increase across the transformer equivalent 

inductance and resistance. When all load is lost, the current flowing through the 

transformer inductance and resistance is changing. At that point no active power is 

drawn by the platform, so the active current goes to zero. The reactive power 

consumption on the platform also decreases, but the reactive current supplied by the 

platform-side pi-equivalent capacitance does not change, which makes the platform 

voltage to increase, while the primary-side voltage of the transformer is regulated 

back to its rated value of  
 

  
 pu.  
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6.3.1.2 Increase of Passive Load 

The system is initially operating in steady-state with the large accumulated 

induction motor of 23 MVA and a passive load of 2 MW. At time t = 2 s, there is an 

increase in the platform load of 2 MVA, with a power factor of 0.9. 

It can be seen from Figure 6-6 that the platform voltage has a dip of 1.4 % of the 

rated platform voltage during the increase of load. The platform voltage recovers 

within 0.4 seconds.  

 

Figure 6-6 Platform system transient for increase of passive load of 2 MVA, with a 

power factor of 0.8 

 

Figure 6-7 Platform voltage transient for increase-of-passive-load during 

autonomous operation  
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The increase of load test is applied to the system in autonomous operation, and the 

resulting system response is plotted in Figure 6-7. The estimated platform voltage 

transient during increase of passive load has the same peak and recovery time as for 

the system in normal operation. The estimation error of the platform voltage is still 

3.3 % before the load change. The steady-state estimation error after the load 

change is 4.2 % below the rated platform voltage. This is acceptable according to 

the system requirements and the platform voltage controller and estimator provides 

acceptable operation for autonomous operation during and after an increase in 

passive platform load. The change in the actual platform after the increase of load is 

0.8 % of the initial actual platform voltage value. 

6.3.1.3 Induction Motor Starting 

The platform system is operating in steady-state with the accumulated induction 

motor model of 23 MVA and a passive load of 2 MW on the platform. At time t = 2 

se an 8 MVA induction motor is directly started on the platform. The resulting 

platform voltage magnitude and the reactive power consumed at the platform can be 

seen in Figure 6-8.  

When the induction machine is starting it draws a large amount of reactive current 

and hence reactive power. This increased reactive power consumption makes the 

platform voltage drop to 0.7621 pu, which is 23.8 % lower than the rated platform 

voltage. The voltage controller manages to recover the platform voltage within 0.62 

s.  
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Figure 6-8 Platform system transient for 8 MVA direct induction motor start 

When the induction motor is reaching the low slip region of operation, which is 

when the rotor speed is approaching the synchronous speed, the reactive power 

consumption of the induction machine decreases. This can be seen in the figure. 

When the reactive power consumption on the platform decreases, the voltage 

increases to 1.166 pu, which is 16.6 % larger than the rated platform voltage. The 

voltage controller recovers the platform voltage within 0.967 s, and the second 

induction motor starting platform voltage transient has an acceptable magnitude and 

recovery time.   
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Figure 6-9 Platform voltage transient for induction motor start during autonomous 

operation 

The results from the induction motor start for the platform-system operating 

autonomously can be seen in Figure 6-9. The platform voltage transient has 

considerably more oscillations in autonomous operation than for the normal 

operation, and the transient voltage peaks are approximately      of the rated 

platform voltage during the induction motor start. The platform voltage recovers in 

approximately 0.62 s.  

When the induction motor is reaching the low slip region, it draws less reactive 

power. This makes the voltage peak at 1.026 pu, 2.6 % larger than the rated voltage. 

The voltage recovers within 1.029 s.  

The actual platform voltage is plotted in the bottom graph of Figure 6-9. The 

initial estimation error is 3.3 %. The induction motor start makes the load active and 

reactive current increase, which makes the voltage drop over the transformer 

inductance and resistance larger, and hence the voltage estimation error larger. The 

estimation error during the induction motor start is -35 % of the rated voltage. This 

large estimation error makes the actual platform voltage operate at 0.4589 pu for 2 s 
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during the motor start.  When the induction motor is reaching low slip speed and the 

reactive power consumed decreases, the voltage estimation error decreases to -7.69 

% of the rated platform voltage. The platform voltage is not within the limits 

defined by the system requirements for acceptable operation and control when the 

estimated platform voltage is applied.   

6.3.2 Full B2B-VSC System 

The grid-side system is connected with the platform side-system, and applied 

control strategy 1. The grid-side system is controlling the DC-link voltage and the 

reactive power drawn from the grid, while the platform-side system is controlling 

the platform voltage, while keeping the frequency fixed.   

6.3.2.1 Loss of all Load 

The full B2B-VSC system is operating in steady-state with control strategy 1. At 

time t = 2 s, all platform load is lost. The resulting platform voltage, DC-link 

voltage and reactive power drawn from the grid is shown in Figure 6-10.  

The platform voltage has a peak of 1.424 pu, which is 42.2 % larger than the rated 

platform voltage, and hence not an acceptable voltage transient for the platform. 

The voltage recovers within 0.412 seconds.  

The DC-link voltage can be seen to have a transient of 1.797 pu, which is 8 % 

larger than the rated DC-link voltage. The change in power drawn from the grid-

side to the platform-side system makes the DC-current flow drop, which yields a 

DC-link transient voltage increase.  

There are not defined any requirements for the DC-link voltage directly. It is 

apparent that fast tracking of DC-link voltage is essential for ensuring fast control of 

the platform voltage.  

The reactive power drawn from the grid is not visibly influenced by the sudden 

loss-of-all-load on the platform.   
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Figure 6-10 Full B2B-VSC experiences sudden loss-of-all-load  

6.3.2.2 Increase of Passive Load 

The full B2B-VSC system is operating in steady-state with the 23 MVA 

accumulated induction machine and a 2 MW load on the platform. At time t = 2 s, 

there is an increase of passive load of 2 MVA, with a power factor of 0.9. The 

platform voltage response to the load change can be seen in Figure 6-11, together 

with the load change influence in DC-link voltage and reactive power drawn from 

the grid.    

The platform voltage can be seen to have a voltage drop of 3.4 % of the rated 

platform voltage. The voltage recovers within 0.39 seconds.  The voltage transient 

is acceptable based on the requirements set for the system.  

The figure also shows that the increase of platform load makes the DC-voltage 

drop, due to the increase of power consumed by the platform system, and hence an 



System Simulations 

80 

increase of DC-link current drawn on the platform side. The DC-link voltage drop is 

2.3 % of the rated DC-link voltage, and recovers within 0.228 seconds. 

The reactive power consumed from the grid is not influenced by the sudden 

increase of passive load on the platform.   

 
Figure 6-11 Full B2B-VSC system experiences increase of 2 MVA load with a 

power factor of 0.8  

6.3.2.3 Induction Motor Starting 

The full B2B-VSC system is operating in steady-state with the 23 MVA 

accumulated induction machine and a 2 MW load on the platform. At time t = 2 s, 

an induction machine of 8 MVA is directly started on the platform.  

The resulting platform voltage, the platform reactive power consumed on the 

platform, DC-link voltage and the reactive power consumed by the grid can be seen 

in Figure 6-12.  

 



System Simulations 

81 

 

Figure 6-12 Full B2B-VSC system experiences DOL starting of an 8 MVA 

induction machine on the platform 

When the induction motor starts the reactive power consumed on the platform 

increases, which makes the platform voltage drop. The platform voltage transient is 

23.3 % lower than the rated platform voltage, which is below the lower allowable 

limit for a voltage transient, and hence not acceptable for the system. The platform 

voltage controller regulates the voltage within 0.686 seconds. At time 3.5 seconds 

there is another large voltage sag on the platform, right before the induction motor 

is about to reach the low slip operation region. The DC-link voltage has a large drop 

at this time, of about 60 % of the rated DC-link voltage.  
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The DC-link voltage is controlled by controlling the d-axis current in the grid-side 

system. Maintaining the DC-link voltage at its reference for the motor start requires 

a certain increase of d-axis current, and hence a lower voltage at the grid-side 

converter terminals. The limiter for the DC-voltage controller output d-axis current 

reference is set to 1 pu, and when this current value is reached, the d-axis current 

can no longer follow its reference. This limit is reached at time t = 3.5 s, and there is 

a large drop in DC-link voltage. The drop in DC-link voltage makes the platform-

side VSC output voltage drop, which again makes the platform voltage drop 25 % 

of its rated value, to 0.7467 pu. As long as the d-axis current cannot track its 

reference, the DC-link voltage is not following its reference. At time t = 4.8 s, the d-

axis grid current reference is no longer at its maximum value 1 pu, and the DC-link 

voltage and platform voltage is regulated to its reference.  

Though the grid-side d-axis current is reaching its limit and the DC-link voltage 

and the platform voltage drops, the 8 MVA induction machine manages to start on 

the platform. The transients due to the induction motor starting, when the DC-link 

voltage cannot track its reference are not acceptable for the system.  

The motor start for the full B2B-system shows gives a very clear picture of the 

relation between the converters in the configuration. The limitations on the grid 

currents set very specific limitations for the DC-link voltage regulation and hence 

the platform voltage regulation abilities.  

6.4 Control Strategy 2 

The platform system is tested separately, when applied a constant DC-link 

voltage, with control strategy 2 controlling the platform voltage magnitude and 

frequency. The system is tested for three worst-case load changes: loss-of-all-loads, 

increase-of-passive-load, and large induction-motor-start. The load tests are 

summarized in Table 6-1.  

Control strategy 2 is evaluated based on the system requirements defined in Table 

1-1, based on the IEC 61892 standard. Since it controls both the platform voltage 

magnitude and frequency, all the system requirements defined are applicable for the 

system tested in this section. The requirements are summarized in Table 6-2.   

It should be noted, when studying the results provided in this section, that the 

reactive line current component, that is the q-axis current component, is defined as 

consuming reactive power when it is positive and it is defined as supplying reactive 

power when it is negative. The reactive power shown is defined as consuming 

reactive power when it is positive and supplying reactive power when it is negative.  

The voltage controlled to 1 pu, by control strategy 2, is the line-to-neutral peak 

voltage, as defined in section 2.6. 
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Table 6-3 Control strategy 2, requirements for acceptable operation of platform 

system 

Req. No. Requirement Title Value 

1 Steady-state voltage         
    

Transient voltage         

            

2 Steady-state frequency        

Transient frequency          

         

3 Stable operation Not Applicable 

 

6.4.1 Loss of all Load 

The platform system is operating in steady-state with a 23 MVA induction motor 

with a power factor of 0.8 and a passive load of 2 MW. At time t = 0.4 s, all 

platform load is lost. The resulting platform voltage magnitude and frequency can 

be seen in Figure 6-13. There are no visible transients in the platform voltage 

magnitude or frequency for loss-of-all-load. There are however some small periodic 

oscillations in the platform voltage magnitude, due to the small periodic oscillations 

in the system angular frequency. This is not due to the loss of load.  

The changes in the line currents can be seen in Figure 6-14, and are very apparent 

at time 0.4 s when all load is lost. The feed-forward terms in the controller, 

described in section 3.2.2.3, compensates for the changes in load current, and the 

coupling of the platform d- and q-voltage components over the capacitor.   

The active current component goes to zero when all load is lost since the platform 

is no longer consuming active power. The reactive current component increases, 

that is becomes more inductive, and absorbs the residual reactive power produced 

on the platform. This way the platform voltage is maintained at its reference value. 

The reactive current can be seen to have considerable oscillations compared to the 

active current.  
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Figure 6-13 Platform voltage and frequency for sudden loss-of-all-load  

 
Figure 6-14 Controlled line currents for sudden loss-of-all-load  
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6.4.2 Increase of Passive Load 

The platform system, controlled by control strategy 2, is operating in steady-state 

with a 23 MVA accumulated induction machine and a 2 MW passive load. At time t 

= 0.4 s, a 2 MVA passive load, with a power factor of 0.9, is connected to the 

platform.  

The resulting platform voltage and frequency can be seen in Figure 6-15. There 

are no visible changes in platform voltage or frequency for the increase of the 

platform load.  

 

 

Figure 6-15 Platform voltage and frequency for increase of passive load of 2 MVA, 

with a power factor of 0.9 

The controlled line currents are shown in Figure 6-16, where the passive load 

increase can be seen to visible influence the active current, while the influence in 

the reactive currents are small.  

Both the active and reactive current components are oscillating, and the reactive 

current has noise in its signal.  

The frequency oscillations on the platform are very small, and both transient and 

steady-state operation is acceptable according to the system requirements.  
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Figure 6-16 Controlled line currents for increase of passive load at time t = 0.4 s 

6.4.3 Induction Motor Starting 

The platform system is operating in steady-state with a 23 MVA accumulated 

induction motor with a power factor of 0.8 pu and a 2 MW passive load. At time 0.4 

s, an 8 MVA induction motor is directly started on the platform.  

The resulting platform voltage magnitude, reactive power consumption and 

angular frequency can be seen in Figure 6-17. There are some very small 

oscillations in the platform voltage magnitude when the large induction motor is 

starting on the platform, but they are damped after one second.  

The reactive power consumption on the platform has the characteristic motor 

starting shape, and there are large oscillations in the reactive power consumed.   

The angular frequency is not influenced by the induction motor start. 
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Figure 6-17 Platform voltage magnitude, reactive power and frequency for 8 MVA 

induction-motor-starting  

Figure 6-18 shows that there are considerable amounts of oscillations in the active 

and reactive line currents. The oscillations in the active currents are damped after 

the induction motor start, while the reactive current still has a considerable amount 

of oscillations after the induction motor start.   
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Figure 6-18 Line currents for 8 MVA induction-motor-starting  
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777   Discussion 

7.1 Platform Voltage Estimator 

The platform voltage estimator developed in section 5.1 is based on equations 

only valid for steady-state conditions. The results from testing the platform voltage 

estimator show that when the estimator is provided with accurate cable parameters, 

as in section 6.2, it is able to track the voltage perfectly in steady-state. 

By comparing the results from the loss-of-all-load test, which has very fast 

transients, with the increase of passive load test, which has slower transients, it can 

be concluded that the voltage estimator tracks slow transients more accurately than 

fast transients. This is further validated by the results from the induction motor 

starting, where the transients are smaller and slower and the voltage estimator 

manages to track the platform voltage with reasonable accuracy.   

It should be noted that all of these tests are done in a system with fixed frequency. 

This means that there are close to no frequency transients in this system. The 

voltage estimator is expected to show worse performance in a variable frequency 

system, due to the mathematical model only being valid for steady-state operation.  

The cable model used in this thesis work, and for developing the voltage 

estimation equations, is very different from the 80 km HVAC-cable of a real 

system. Also in a real system the voltage and current estimation should be realized 

with equations valid for transients as well as for steady-state operation, to ensure 

proper autonomous operation of the system.  

A dynamic voltage estimator should be based on a distributed parameters HVAC-

cable model, or with a cable consisting of a considerably larger amount of pi-

equivalents. Developing such a model for the voltage estimator is suggested as 

future work.  

An accurate dynamic cable model used to estimate the current and voltage on the 

platform side of the cable would not only be interesting for usage during 

autonomous operation, but also for applying the control method suggested in 

section 3.2.2 to a real platform system.       

7.2 Control Strategy 1 

7.2.1 Autonomous Operation 

In Control strategy 1, the platform voltage magnitude was regulated, while the 

frequency was kept fixed. The platform voltage estimator had access to the accurate 

parameters of the HVAC-cable model, but it did not compensate for the voltage 
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drop over the non-ideal transformers. Due to this, the results showed steady-state 

errors in the estimated platform voltage. The steady-state error varied with the load 

current, and hence the voltage drop over the transformer.  

The controller tracked the estimated platform voltage within the required time and 

without violating the voltage transient upper and lower voltage limit for all three 

tests. However, due to the voltage estimation error, only the system with the 

increase of passive load satisfied the platform system requirements for both steady-

state and transient operation.  

 The voltage estimation error was largest during the induction motor starting, 

when the actual platform voltage was 35 % lower than the rated platform voltage. 

The voltage estimation accuracy could have been improved considerably by 

estimating the load current and calculating the actual platform voltage on the 

secondary side of the transformer. This is suggested as future work.  

7.2.2  Constant and Variable DC-link Voltage 

The platform system has been tested for operation with both constant and variable 

DC-link voltage, when control strategy 1 is regulating the platform voltage. The 

variable DC-link voltage can be seen in Figure 7-1 to have a very similar response 

to the system with applied constant DC-link voltage.  

 
Figure 7-1 Platform system loss of all load and increase of passive load, tested for 

constant DC-link voltage and full B2B-VSC system with variable DC-link voltage 

The transient in the DC-link voltage is small, and recovers fast for both the loss-

of-all-load and increase-of-passive-load tests. The system with the variable DC-link 

voltage has fewer oscillations in the platform voltage during the transient.    
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The system with constant DC-link voltage can be seen to have a larger voltage 

spike when all loads are lost, while the system with the variable DC-link voltage has 

a smaller, but still not acceptable voltage transient when the load is lost.  

The platform voltage plotted for both constant and variable DC-link voltage can 

be seen in Figure 7-2. The induction motor start transient is almost identical for the 

two systems as the motor is starting. When the induction motor is approaching the 

low slip region the DC-link voltage controller does not manage to track its 

reference, due to a limitation in the grid side current to its rated value of 1 pu. This 

leads to a voltage drop in the DC-voltage, and hence a voltage drop in the platform-

side VSC output voltage, which again leads to the platform voltage drop.  

At time t = 4.8 seconds, the grid current is again able to regulate the current 

because the applied DC-link voltage is below 1 pu, and hence the platform voltage 

reaches its reference after the large voltage transient. This could be avoided by 

increasing the grid-side current limit, trough increasing the grid-side system rated 

current. If the grid current limit was larger, the response of the full B2B-VSC 

system would be expected to have the same response for the induction motor start 

as the platform system operating alone with constant DC-link voltage.  

 

Figure 7-2 Platform system induction motor starting, tested for constant DC-link 

voltage, and full B2B-VSC system with variable DC-link voltage 

7.2.3 Requirements Satisfied 

Control strategy 1 has been tested for constant DC-link voltage, when both 

platform voltage measurements and estimated platform voltage has been available. 

It has also been tested with variable DC-link voltage, when it is connected in the 

full B2B-VSC configuration. Control strategy 1 controls the platform voltage 

magnitude, while the frequency is fixed.  

If this control system was to be implemented for a real platform system, it needs to 

be able to regulate the platform voltage within the IEC 61892 standard limits for 

transient and steady-state peak voltage and recovery time. It also has to be able to 

maintain the voltage in steady-state within given boundaries. In addition to this, the  

system has to maintain stability for all normal system transients.  
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Table 7-1 Platform system requirements satisfied by control strategy 1 

 

 

Test 

no 

Requirements 

Steady-state voltage Transient voltage 

Platform system 1 X  

2 X X 

3 X  

Platform system, 

autonomous 

operation 

1   

2 X X 

3   

Full B2B system 1 X  

2 X X  

3 X  

 

Control strategy 1 is not able to regulate the platform voltage within the specified 

voltage peak transient limit of        of the rated platform voltage for any of the 

three different conditions it is tested for, that is: normal operation with constant DC-

link voltage, autonomous operation, and full B2B-VSC operation, with variable 

DC-link voltage. A summary of the requirements satisfied for the three system 

configurations operating with the control strategy 1 is given in Table 7-1.  

Loss-of-all-load and 8 MVA induction motor starting are worst-case load changes, 

and might not be representative for operation on all offshore platforms. Control 

strategy 1 shows good performance for the second load change test: the increase-of-

passive-load test. Implementation and testing of control strategy 1 in systems with 

smaller expected load changes could be successful, and should be tested further.   

Implementation of faster voltage magnitude control is expected to limit the 

voltage transient peaks, allowing the controller maintain the voltage at a more 

acceptable level. A faster voltage magnitude controller would make the system 

more likely to become unstable for large changes of platform load.   

7.3 Control Strategy 2 

Control strategy 2 regulates both the platform voltage magnitude and frequency. 

This strategy has been tested for three worst-case load changes when constant DC-

link voltage is applied. The platform system was somehow modified to be able to 

apply the control strategy proposed in [41]. The modifications of the platform 

system included removing the shore-side pi-equivalent capacitance, and assuming 

the platform-side transformer to be ideal. Tests of this control strategy, in a system 

with high power and voltage levels, large line inductance and resistance, and with a 

load of 35 MVA, with load changes as those tested here, are not found in literature. 

Control strategy 2 shows excellent performance for platform voltage and frequency 

control. None of the load changes in the system are influencing the platform voltage 

and frequency visibly, and the system operation with controls strategy 2 satisfies all 
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the requirements for acceptable operation and control for all three load change tests. 

The requirements satisfied are summarized in Table 7-2.  

 

Table 7-2 Platform system requirements satisfied by control strategy 2 

 

 

Test 

no 

Requirements 

Steady-state 

voltage 

Transient 

voltage 

Steady-state 

frequency 

Transient 

frequency 

Platform 

system 

1 X X X X 

2 X X X X 

3 X X X X 

 

 There are small oscillations in the frequency and platform voltage, but these are 

acceptable according to the requirements for platform system operation. The shore 

output voltage signal has considerable amounts of noise. This can be limited by 

placing a capacitor on shore, which would smooth the voltage out. There are also 

considerable oscillations in the line current. The SimPowerSystems™ inductances 

are modeled as current sources, and there are large inductances in both the induction 

motor and on the line. The platform transformer is modeled as an ideal transformer 

with a very large magnetizing inductance with almost no current flowing through it. 

Due to this, the cable inductor and the induction motor are nearly in series both 

before and after the increase of load. Having components as such in series has 

previously been shown to give oscillations in the three phase currents, which would 

introduce oscillations in the dq-currents. This is assumed to be part of the reason for 

the large oscillations in the system.  

The dq-transform is referred to the platform angular frequency. Since the dq-

currents are oscillating it can also be assumed that their frequency is somehow 

different from the frequency on the platform, which could be a sign of frequency 

variations throughout the system. 

The noisy platform-side VSC output voltage is also assumed to draw distorted 

reactive power, and hence contribute to noise and oscillations in the reactive current 

component.  

The results from testing control strategy 2 when applied to the full pi-equivalent 

circuit, including the shore based capacitor, are not provided here. Control strategy 

2 is not able to regulate the platform voltage and frequency for load changes, in 

steady-state operation, with the large 23 MVA accumulate induction motor model, 

and the passive load of 2 MW, and hence was not able to regulate for load changes 

on the platform.  

For control strategy 2 to be able to be implemented in the full platform system 

model presented in this thesis work, the current consumed or supplied by the shore 

pi-equivalent capacitor needs to be compensated for after the outer voltage control 

loops. The voltage drop over the non-ideal platform transformer would need to be 

compensated for after the inner current control loops.  
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A real 80 km HVAC-cable has more complex dynamics than the single pi-

equivalent circuit that was used to model the cable model in this thesis work. The 

current flowing into the shore pi-equivalent capacitor would not be possible to 

measure as both the shore and offshore pi-equivalent cable capacitor would be non-

existent.  

A suggestion for how to implement this control strategy for a real system was 

presented in section 3.2.2. If a physical capacitor could be placed on the platform, 

the voltage at the capacitor node could be controlled based on the same principle as 

the one used for implementing control strategy 2. Implementation of a control 

system as such would require an accurate, dynamic current estimator. This current 

estimator should, based on the measured shore voltage and current and platform 

voltage, estimate the relation between the VSC output current on shore, and the 

current output of the HVAC-cable on the platform. The relation between these 

currents would have to be based on an accurate HVAC-cable model, and would 

clearly not be linear.  This requires further research, but the results from the tests of 

control strategy 2 in this, modified platform system, shows a large potential for 

regulation of a real platform system with passive load.  

If an active platform system was to be powered from shore, that is a platform 

system with a synchronous generator operating on the platform, supplying process 

heat and serving as a back-up device, control strategy 2 could be combined with the 

control system of the weak platform system controller, if implemented through the 

conventional weak grid control methods, summarized in section 2.3.3. The same 

controller components, that is the inner current control loop, the outer controllers 

could be used for the passive system control. This would increase the ability to 

disconnect the low efficiency gas turbine when it is not needed on the platform, 

which could reduce greenhouse gas emissions, gas turbine maintenance costs and it 

would make the gas previously used as fuel available for processing and sale, or 

reinjection to increase the oil production.   

Implementation of the weak-grid controller and the interaction between the control 

modes for weak and passive grid is suggested as future work.  

Testing of the full B2B-VSC configuration, that is operation of the system with 

variable DC-link voltage, is also suggested as future work.   
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888   Conclusion and Future Work 

8.1 Conclusion   

This thesis investigated the control of passive offshore platform voltage and 

frequency by means of a shore-based voltage source converter. The work completed 

in this thesis has contributed to the state of research by applying two existing 

control strategies in a novel manner, as described below.  

An 80 km HVAC-cable and two transformers separate the shore-based B2B-VSCs 

from the passive platform installation to be controlled. Conventional stiff-grid 

controllers have been implemented for the grid-side VSC, controlling the DC-link 

voltage and reactive power drawn from the grid. The two platform voltage control 

methods implemented are denoted as control strategy 1 and 2. Control strategy 1 

controls the platform voltage magnitude while keeping the frequency fixed, and is 

implemented by a simple PI-controller. Control strategy 2 controls both the 

platform voltage magnitude and frequency. This second control strategy is based on 

a cascaded control configuration, similar to a weak-grid controller. Both controllers 

were tested for three worst-case changes of platform load: loss of all loads, increase 

of passive load, and large induction motor starting. Testing and comparison of 

control strategy 1 and 2, for these types and magnitudes of load has not previously 

been conducted. The platform voltage and frequency transients of the system, and 

the steady-state voltage and frequency were evaluated based on the defined platform 

system requirements for acceptable operation and control.  

Control strategy 1 was tested for both normal and autonomous operation, when a 

constant DC-link voltage was applied. In addition to this, it was tested in a full 

B2B-VSC configuration where the grid-side VSC was controlling the DC-link 

voltage and the flow of reactive power from the grid. In all of the three 

configurations, control strategy 1 failed to meet the system requirements defined by 

IEC 61892, for allowable voltage transient during loss of all load and large 

induction motor start. The worst system voltage transient was during motor start, 

when the platform system was operating autonomously, with the estimated platform 

voltage applied. This was partially due to estimation errors in the developed steady-

state platform voltage estimator. Improvement of the platform voltage estimator is 

suggested as future work.  

Control strategy 2 was tested with constant DC-link voltage, when platform 

voltage measurements were available. The simulation results show no visible 

voltage or frequency transients for any of the three load change tests applied, and 

the system operation satisfied the system requirements for all the tests. The platform 

voltage and frequency is independent of the load dynamics, which is a desirable 

quality when controlling the voltage on a complex platform configuration. The 



Conclusions and Future Work 

96 

platform-side VSC shore output voltage had noise which distorted the reactive line 

current waveform; a filter should be placed on shore to avoid this.   

 Control strategy 2 shows promising potential for controlling the platform voltage 

and frequency from shore. However, further research must be done before this 

control strategy can be utilized in a real system.   

It should also be noted that control strategy 2 consists of the same components as 

a conventional weak-grid control system that would be implemented in a platform 

system supplied from shore, when a gas turbine driven synchronous generator is 

operating on the platform. This is very advantageous because expanding the weak-

grid system control to include passive system control would allow the platform 

operator to more easily disconnect the low efficiency gas turbine when it is not 

needed on the platform. This could reduce greenhouse gas emissions and gas 

turbine maintenance costs and make the gas previously used as fuel available for 

processing and sale, or reinjection to increase the oil production.   

8.2 Future work 

Many specific improvements can be done for the models implemented in this 

thesis. The steady-state voltage estimation model needs to be expanded to include 

estimation of the load current, and hence the actual platform voltage on the 

secondary side of the platform transformer. For autonomous operation of an actual 

platform system, implementing dynamic voltage estimation should be considered. 

This would be more accurate for fast voltage transients but would require a more 

accurate mathematical model for the HVAC-cable.   

The modified platform model used for implementation and testing of control 

strategy 2 should be extended to include the shore side pi-equivalent capacitor, and 

the non-ideal platform transformer. The current flowing through the shore capacitor 

should be measured and compensated for after the voltage control loop, while the 

voltage drop over the non-ideal transformer should be compensated for at the output 

of the inner current control loops. Control strategy 2 should also be tested for 

operation in the full B2B-VSC configuration with variable DC-link voltage. 

Implementation of the weak-grid system controller, and interaction between the 

control modes for weak and passive grid should also be done.  

Further research on the possibility of implementing control strategy 2 for control 

of a real platform system, through control of the voltage at the node of a physical 

capacitor based on the platform, needs to be done. This would entail developing an 

accurate dynamic current estimator to provide the non-linear relation between the 

platform-side VSC output current, and the current output of the HVAC-cable on the 

platform, again requiring a more accurate mathematical model of the HVAC-cable.   

Many improvements can be made to make the system more like that of a real one. 

The platform load can be modeled more accurately and a larger range of load 

changes can be applied to test the system, a full switching model for studying the 

effect of switching losses and harmonics in the system could be used, all of which is 

proposed as future work. 
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A  Additional Parameters 

A.1 System Base Values 

Table 9-1 System base apparent power, voltages and currents 

Parameter Value Unit 

System rated apparent power [         ] 40 MVA 

Grid-side rated voltage [      ] 3.3 kV-LLrms 

Platform-side converter voltage [      ]  3.3 kV-LLrms 

Rated cable voltage [      ] 66 kV-LLrms 

Rated platform voltage [      ] 6.6 kV-LLrms 

Grid-side rated current [      ] 7698 A-rms 

Platform-side converter rated current [      ] 7698 A-rms 

Rated cable current [      ] 349.91 A-rms 

Rated platform current [      ] 3499.1 A-rms 

 

 

 

A.2 Transformer parameters 

Table 9-2 Shore-based transformer, T1 parameters 

Parameter Value Unit 

Rated power [         ] 40 MW 

Rated primary voltage  [     ] 3 kV 

Rated secondary voltage [     ] 66 kV 

Primary side resistance [     ] 0.002 pu 

Secondary side resistance  [     ] 0.002 pu 

Primary side leakage inductance  [     ] 0.1 pu 

Secondary side leakage inductance  [     ] 0.1 pu 

Magnetizing resistance [     ] 500 pu 

Magnetizing inductance [     ] 500 pu 
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Table 9-3 Platform-side transformer T2 parameters 

Parameter Value Unit 

Rated power [         ] 40 MW 

Rated primary voltage  [     ] 66 kV 

Rated secondary voltage [     ] 6.6 kV 

Primary side resistance [     ] 0.002 pu 

Secondary side resistance  [     ] 0.002 pu 

Primary side leakage inductance  [     ] 0.1 pu 

Secondary side leakage inductance  [     ] 0.1 pu 

Magnetizing resistance [     ] 500 pu 

Magnetizing inductance [     ] 500 pu 

 

Table 9-4 Platform-side ideal transformer T2 parameters 

Parameter Value Unit 

Rated power [         ] 40 MW 

Rated primary voltage  [     ] 66 kV 

Rated secondary voltage [     ] 6.6 kV 

Primary side resistance [     ] 0 pu 

Secondary side resistance  [     ] 0 pu 

Primary side leakage inductance  [     ] 0 pu 

Secondary side leakage inductance  [     ] 0 pu 

Magnetizing resistance [     ] 500 pu 

Magnetizing inductance [     ] 500 pu 

 

 

A.3 Induction Motor Parameters 

Table 9-5 Accumulated induction motor parameters 

Parameter Value Unit 

Rated apparent power [          ] 23 MVA 

Rated voltage [          ] 6.6 kV 

Stator resistance [  ] 0.009 pu 

Rotor resistance [  ] 0.020 pu 

Stator leakage inductance[   ] 0.196 pu 

Rotor leakage inductance [   ] 0.026 pu 

Magnetizing inductance [   ] 2 pu 

Inertia coefficient [H] 0.65  
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Friction factor [F] 0.05479  

Number of poles [p] 2  

Starting torque [        ] 0.05 pu 

 

Table 9-6 Induction motor parameters, for induction motor starting 

Parameter Value Unit 

Rated apparent power [          ] 8 MVA 

Rated voltage [          ] 6.6 kV 

Stator resistance [  ] 0.009 pu 

Rotor resistance [  ] 0.020 pu 

Stator leakage inductance[   ] 0.196 pu 

Rotor leakage inductance [   ] 0.026 pu 

Magnetizing inductance [   ] 2 pu 

Inertia coefficient [H] 0.65  

Friction factor [F] 0.05479  

Number of poles [p] 2  

Starting torque [        ] 0.05 pu 
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B MATLAB® Simulink™ 
SimPowerSystems™ Model 

B.1 Voltage Estimator Model 

 

Figure 9-1 Voltage estimator overview of inputs and outputs 
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B.2 Grid Side Model 

 

Figure 9-3 Overview of grid-side model connected to DC-link 
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B.2.1 Grid Side Controllers 

 

Figure 9-4 Inner current control loop, grid-side system 
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Figure 9-5 Outer control loops for DC-link voltage control and reactive power control 
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Figure 9-6 Power conservation block diagram 
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B.4 Platform System Model 

 

Figure 9-7 Overview of platform-system model used for tests with control strategy 1 
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Figure 9-8 Platform-side system connection to grid-side system through power conserved equations 
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B.4.1 Control Strategy 1 

 

Figure 9-9 Block diagram of control strategy 1 
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B.4.2 Control Strategy 2 

 

Figure 9-10 Platform system model, used for testing of control strategy 2 
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Figure 9-11 Phase lock loop implemented in control strategy 2 
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Figure 9-12 Outer voltage and frequency control loops, implemented for control strategy 2 
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Figure 9-13 Inner current control loop, implemented for control strategy 2 
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Figure 9-14 Conversion between line-to-line RMS-values and line-to-neutral peak values 
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C  Additional Simulation 
Results 

C1. Control Strategy 1 

C.1.1 Platform System Tests 

C.1.1.1 Loss of all loads 

Table 9-7Results from control strategy 1, loss of all load test 

Description       %       

Control Strategy 1  1.62 +62 0.45 

Control Strategy 1,  autonomous 1.209 +20.9 0.6 

 

Table 9-8 Results from voltage estimation, loss of all load test 

Description Error % 

Estimation error before loss of all load - 0.0236 pu 3.3 

Estimation error after loss of all load + 0.0677 pu 9.4 

Platform voltage error after loss of all load + 0.0926 pu 14.1 

 

C.1.1.2 Increase of passive load 

Table 9-9Results from control strategy 1, increase of load 

Description       %       

Control Strategy 1, real voltage applied  0.986 -1.4 0.4 

Control Strategy 1,  estimated voltage applied 0.986 -1.4 0.4 

 

Table 9-10 Results from voltage estimation, increase of load 

Description Error % 

Estimation error before increase of load - 0.0236 pu 3.3  

Estimation error after increase of load - 0.296 pu 4.2 

Platform voltage error after increase of load -0.006 pu 0.8 
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C.1.1.3 Induction motor starting 

Table 9-11Results from control strategy 1, induction motor start 

Description       %       

Control Strategy 1, Transient 1 0.7621 -23.8 0.62 

Control Strategy 1, Transient 2 1.166 +16.6 0.967 

Control Strategy 1,  estimated voltage applied, 

Transient 1 

1.058 +5.8 0.62 

Control Strategy 1,  estimated voltage applied, 

Transient 1 

1.026 +2.6 1.029 

 

Table 9-12 Results from voltage estimation, induction motor start 

Description Error % 

Estimation error before motor start -0.0236 3.3 

Estimation error during motor start -0.2479 35 

Estimation error after motor start 0.0544 pu 7.69 

Platform voltage error after motor start 0.031 pu 4.4 

 

C.1.2 Full B2B-VSC configuration 

C.1.2.1 Loss of all load 

Table 9-13 Result from full B2B-VSC system loss of all load test 

 Peak %      

     1.424 +42.4 0.412 

    1.797 +8 0.145 

  0 0 0 

 

C.1.2.2 Increase of passive load 

Table 9-14 Result from full B2B-VSC system increase of passive load 

 Peak %      

     0.966 -3.4 0.39 

    1.624 -2.3 0.228 

  0 0 0 
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C.1.2.3 Induction motor starting 

Table 9-15 Full B2B-VSC system, induction motor starting 

 Peak 1 %       Peak 2 %       Peak 3 %       

     0.7673 -23.3 0.686 0.7467 -25.24 0.957 1.32 32 1.08 

    1.672 2.3 0.06 0.6507 -60 1.53 1.91 6.3 0.22 

  0.1811 18.11 0.097 - - - - - - 
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D  NEF-Paper 



KRAFTELEKTRONIKKENS ROLLE VED ELEKTRIFISERING AV 

EKSISTERENDE OFFSHORE INSTALLASJONER, MED KRAFT 

FRA OFFSHORE VINDPARK OG KRAFT FRA LAND 

 

Av Atle Rygg Årdal og Kristin Høvik, Prof. Tore M. Undeland 

(NTNU), Dr. Ing Kamran Sharifabadi (Statoil) 
 

Sammendrag: 

Gassturbindrevne synkrongeneratorer med lav 

virkningsgrad dekker offshore plattformers kraftbehov, og utgjør 

en stor del av Norges CO2-utslipp. Dette kan reduseres ved 

kraftforsyning fra mindre utslippsintensive kilder. 

 Denne artikkelen diskuterer motivasjonen bak 

elektrifisering, og gir en oversikt over eksisterende prosjekter. 

Ulike teknologier som benyttes blir presentert, med hovedfokus på 

bruk av kraftelektronikk. Videre beskrives to alternativer til 

kraftforsyning av offshore oiljeplattform: Tilknyttning av kraft fra 

land og tilknytting av kraft fra offshore vindkraft. Systemet med 

kraft fra land til plattformen simuleres for tap av 

synkrongenerator på plattformen for å belyse problemer som kan 

oppstå i forbindelse med dette. Systemet med kraft fra offshore 

vindpark tilknyttet plattformen simuleres for start av en stor 

direktekoblet induksjonsmotor. Her illustreres det hvordan 

reaktiv effektkompensasjon fra frekvensomformere i vindturbiner 

kan redusere spenningsvariasjoner ved hendelser på plattformen.  

Simuleringer er utført i PSCAD® og MATLAB® Simulink™ 

SimPowerSystems™.  

 

1 INTRODUKSJON 

Global oppvarming er en stor utfordring for verdens 

befolkning. Konsekvensene kan bli fatale hvis det ikke iverksettes 

tiltak for å redusere utslippene av CO2 og andre klimagasser. En 

stor del av verdens CO2-utslipp kommer fra 

elektrisitetsproduksjon, og det er et sterkt fokus på både å 

forbedre ekstisterende produksjonsmetoder og på nye fornybare 

energikilder. Landbasert elektrisitetsproduksjon i Norge er i all 



hovedsak utslippsfri vannkraft, men gjennom overføringskabler 

til utlandet importeres det store mengder kullkraft i år med lite 

nedbør. 

Olje- og gassinstallasjoner i Nordsjøen er tradisjonelt 

forsynt av gassturbiner. Driftstekniske krav og restriksjoner på 

arealbruk gjør at disse har en lav virkningsgrad, og dermed høye 

CO2-utslipp per produsert energienhet. Virkningsgraden er rundt 

35 % for en vanlig offshore gassturbin [1]. Den norske 

kontinentalsokkelen er estimert til å stå for 29 % av Norges totale 

CO2-utslipp, hvorav 90 % kommer fra elektrisitetsproduksjon [2].  

En reduksjon i utslipp fra petroleumssektoren kan være en viktig 

bidragsyter til å nå målene som Norge har forpliktet seg til 

gjennom Kyotoavtalen og Gøteborgprotokollen [3]. 

For at elektrifisering av oljeplattformer skal føre til 

reduksjoner i CO2-utslipp må den alternative energien komme fra 

en kilde med mindre utslipp enn det eksisterende kraftverket på 

plattformen. Et moderne kombinert gass- og dampkraftverk på 

land kan ha virkningsgrad rundt 60 %, og produserer dermed 

renere elektrisitet enn gassturbinene på plattformer. Flere 

momenter påvirker imidlertid regnestykket. Det er knyttet 

overføringstap til elektrifisering, og overskuddsvarme fra 

gassturbiner på sokkelen blir i dag utnyttet til oppvarming. 

Konklusjonen i [1]  er at plattformer må elektrifiseres fra 

fornybare energikilder for å oppnå store reduksjoner i CO2-

utslipp.   

Blant fornybare energikilder blir ofte offshore vindkraft 

trukket frem som et lovende alternativ. Potensialet er stort, men 

det kreves mye arbeid for å redusere de høye kostnadene som er 

assosiert med offshore vindkraft i dag. Få vindparker er blitt 

bygget, men mange prosjekter er i planleggingsfasen. 4,5 GW er 

meldt til NVE i norske havområder [4]. Det er gjort forskning på 

å koble en offshore vindpark til oljeinstallasjoner. [5] presenterer 

simuleringer og beregninger på et slikt system uten tilkobling til 

land.  

CO2-avgift på gassen som blir brukt til å lage elektrisitet er 

den viktigste økonomiske drivkraften til offshore elektrifisering. I 



tillegg representerer gassen en tapt kostnad siden den kan selges 

til markedet i de fleste tilfeller. På den andre siden må det kjøpes 

elektrisitet i en situasjon med elektrifisering fra land. 

Denne artikkelen har som mål å studere elektrifisering av 

offshore plattformer for å på lang sikt kunne redusere bruken av 

gassturbiner til elektrisitetsproduksjon på oljeplattformer. 

Hovedfokus er på rollen til kraftelektronikk ved elektrifisering av 

eksisterende oljeplattformer. I avnsitt 2.1 gis det en beskrivelse av 

teknologien som benyttes i HVDC- og HVAC-overføring. 

Hvordan kraftelektronikk kan utnyttes i offshore vindturbiner 

diskuteres i avsnitt 0. Avsnitt 3 gir en beskrivelse av de to 

systemene som undersøkes, med referanser til to masterprosjekter 

ved NTNU. I avsnitt 4 presenteres simuleringer av systemene, for 

å belyse utfordringer og muligheter ved elektrifisering. Avsnitt 5 

oppsummerer og konkluderer resultatene fra simuleringene, og 

den generelle diskusjonen i artikkelen.  

 

  



2 KRAFTELEKTRONIKK I OFFSHORE SYSTEMER 

Bruk av kraftelektronikk ved elektrifisering av plattformer 

øker kontrollmulighetene fra land og fra vindparken. Dette 

kapittelet gjennomgår grunnleggende omformerprinsipper, bruk 

av omformere i elektrifisering av plattformer via HVDC eller 

HVAC-kabler, og drøfter til slutt kraftelektronikk som benyttes i 

vindturbiner. 

2.1 Kraftelektronikk ved tilknytting av HVDC og HVAC 

til oljeplattform 

Kraftelektronikk har en sentral rolle i elektrifisering av 

oljeplattformer, og i flere av de dominerende 

generatorteknologiene i en vindpark. AC/DC-omformere er en 

nødvendighet i alle HVDC-anlegg, og stadig flere 

vindturbinprodusenter benytter frekvensomformere i sine 

generatorer. Det benyttes i dag hovedsakelig to teknologier for 

frekvensomformere. Den tradisjonelle strømstyrte omformeren, 

eller ”current source converter” (CSC), er det billigste alternativet 

og den har minst tap. Begrensingene til CSC er at den krever et 

sterkt AC-nett for å fungere, og den tar mye plass. Dette gjør at 

den ikke er så attraktiv i offshore applikasjoner. Spenningsmatet 

omformer, også kalt ”voltage source converter” (VSC), har bedre 

egenskaper. Figur 1 viser en prinsippskisse av VSC. Dagens 

teknologi muligjør overføring av maksimalt 1200 MW ved en 

spenning på ± 320 kV [6].  

VSC baserer seg på transistorer av typen IGBT. Med en 

svitsjefrekvens på 1-2 kHz er det mulig å oppnå rask kontroll og 

et minimum av lavfrekvente harmoniske komponenter. Videre har 

VSC den fordelen at den kan styre aktiv og reaktiv effekt 

uavhengig av hverandre, og den har bedre egenskaper under feil i 

AC-nettet. Valg av kontrollstrategier er sterkt tilpasset 

bruksområdet, og generelt er VSC en svært fleksibel komponent i 

kraftsystemet.  



 

 

Figur 1: Voltage Source Converter i HVDC-system 

 

Tilknyttning av kraft fra land gjennom HVDC-kabel, hvor 

omformerene er av CSC-type omtales med et samlebegrep 

”HVDC Classic”. Det er to teknologier som benytter VSC, 

”HVDC Light™” og ”HVDC Plus™” [7]. 

Figur 2 viser en prinsippskisse av kostnader ved å 

elektrifisere en plattform med kraft fra land. HVDC har større 

oppstartskostnader på grunn av omformere. HVAC blir dyrest for 

lange avstander på grunn av problemer knyttet til reaktiv 

kompensering. Krysningspunktet er avhengig av avstand fra land, 

frekvens på plattformen, plass på plattform og kostnader. For 

korte avstander, og kraftoverføring mellom 30-50 MVA kan 

HVAC anses som den mest kostandseffektive løsningen. For de 

lengste avstandene benyttes HVDC [8]. Krysningspunktet ligger 

vanligvis rundt 50-100km. 

Landbasert omformer Offshore omformer

HVDC-kabel

Plattform-

last



 

Figur 2: Kostnad for HVAC vs. HVDC 

 

”HVDC Classic”-teknologi ble brukt da den 240 km lange 

HVDC-kabelen mellom Kristiansand i Norge til Tjele i Danmark 

ble lagt i 1977 [9]. Denne teknologien ble også benyttet da den 

580 km lange HVDC-kabelen ble lagt mellom Norge og 

Nederland, i NorNed-prosjektet [10].  

HVDC Light™ har blitt brukt til forsyning av flere 

eksisterende plattforminstallasjoner, blant annet til elektrifisering 

av kompressorer på Troll A-plattformen i 2005 [11]. Da 

Valhallfeltet ble elektrifisert ble det bygget en ny plattform for 

omformeren, som gjorde elektrifisering gjennom HVDC Light™ 

mulig [12].  

HVAC har nylig blitt brukt til elektrifisering av den nye 

offshore installasjonen Gjøa [13], og er planlagt for Goliatfeltet 

[13]. 
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2.2 Kraftelektronikk i Offshore Vindparker 

Direkte tilkoblede induksjonsgeneratorer er enkel og 

etablert teknologi i vindturbiner, men de har sine begrensinger i 

offshore vindkraft. For det første er det ønskelig å kunne variere 

rotorens omdreiningshastighet med vindfarten. Dette gir høyere 

effekt ved moderat vind, og beskytter det mekaniske systemet 

under feil. Videre er det ønskelig med en teknologi som har mer 

styrbarhet mot kraftnettet. Girboks i vindturbiner trenger mye 

vedlikehold, og må skiftes ut flere ganger i løpet av levetiden. En 

generator med et tilstrekkelig antall poler gjør et mekanisk 

girsystem overflødig.  

Permanent magnet synkron generator (PMSG) med en 

frekvensomformer mellom turbinrotor og nett løser problemene 

nevnt over. Omformeren gir mulighet til å variere 

generatorfrekvensen og dermed omdreiningshastigheten til 

rotoren uavhengig av nettfrekvensen. En omformer av typen VSC 

gir en ekstra frihetsgrad til en rask kontroll av reaktiv effekt til 

nettet. Det er mulig å benytte frekvensomformere på både 

induksjonsgeneratorer og vanlige synkrongeneratorer, men PMSG 

er valgt for å fjerne girboksen fra systemet. 

 

3 SYSTEMBESKRIVELSE 

I denne artikkelen studeres to måter å elektrifisere en 

plattform på. I system 1 forsynes plattformen med kraft fra land 

og system 2 er et isolert system med plattform tilknyttet en 

offshore vindpark. Se Figur 3 og 4 for systemskisser. Systemene 

har utspring i to masteroppgaver ved NTNU. 

Synkrongeneratorer med gassturbiner dekker vanligvis 

oljeplattformers kraftbehov alene. Eksiterings- og governorsystem 

regulerer henholdsvis spenningen på generatorterminalene og 

frekvensen i systemet [14]. Ved tilknytting av ekstern kraft er det 

ønskelig at synkrongeneratorens kraftproduksjon er så liten som 

mulig, på denne måten minimeres plattformens CO2-utslipp. 

Frekvensen på plattformsystemet som studeres er 60 Hz, noe 

som er ganske vanlig i Nordsjøen siden mange av plattformene 

har hatt amerikanske operatorer.  



Lasten på plattformen som er studert består hovedsakelig av en 

stor induksjonsmotor som er å betrakte som en akkumulert 

modell, og en liten passiv last som representerer lys og 

servicefunksjoner.  

Se avsnitt 6 for verdier for spenning og merkeeffekter. 

  



3.1 System 1: Elektrifisering fra land 

System 1 er basert på et lignende system studert i [15]. Ulik 

frekvens på land og på plattform gjør en frekvensomformer 

nødvendig. VSC plasseres i dette tilfellet på land, og plattformen 

forsynes med HVAC-kabler, se Figur 3 for systemskisse.  Dette 

gir kontrollmulighetene som VSC-HVDC introduserer, samtidig 

som den ikke tar opp plass på plattformen.  

Simuleringene fokuserer på å vise systemets svakheter før 

VSC-kontroll er implementert, og simuleringsmodellen består av 

en stiv spenningskilde på land, tilknyttet plattformen gjennom en 

HVAC-kabel.  
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kabel
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frekvensomformer
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Figur 3: System 1, Elektrifisering av plattform med kraft fra land 

3.2 System 2: Elektrifisering fra offshore vindpark 

Systemet er basert på [16]. En offshore vindpark er koblet til en 

oljeplattform uten forbindelse til land som vist i Figur 4. Dette gir 

flere utfordringer. Energiproduksjonen fra en vindpark er variabel 

og vanskelig å kontrollere. Gassturbinene med sine 

synkrongeneratorer må balansere aktiv og reaktiv effekt for å 

unngå for store avvik i spenning og frekvens.  

Simuleringene som presenteres skal illustrere 

kontrollmulighetene i vindturbinene sine frekvensomformere. De 

har mulighet til rask kontroll av reaktiv effekt uavhengig av aktiv 

effektflyt. Kontrollen er implementert med spennings-droop (V-



droop), der vindturbinene leverer reaktiv effekt proporsjonalt med 

avviket mellom terminalspenning og en referansespenning [17].  
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Figur 4: System 2, Elektrifisering fra offshore vindpark 

 

4 SIMULERINGER 
 

System 1 og 2 er modellert i henholdsvis MATLAB® 

Simulink™ SimPowerSystems™ og PSCAD®. Under følger 

simuleringsresultater fra hvert system. For system 1 simuleres tap 

av synkrongenerator. For system 2  simuleres start av en stor 

direktekoblet induksjonsmotor på plattformen.  

4.1 System 1: Frakobling av synkrongenerator 

En akkumulert modell av induksjonsmaskiner og en liten 

passiv last drives på plattformen som initielt er i stasjonær 

tilstand. Synkrongeneratoren på plattformen frakobles ved t = 4 s. 

Systemet som simuleres har  HVAC-kabler på henholdsvis 10 

km, 50 km og 80 km. Figur 5 viser spenningsendringene på 

plattformen før, under og etter frakobling av synkrongeneratoren. 

For alle lengdene på HVAC-kabelen viser resultatene 

tydelig at spenningsfallet på plattformen etter tap av 

synkrongenerator er høyere enn hva som aksepteres av IEC-

standarden gitt i [18]. Dette betyr at det være nødvendig med en 



form for kontroll av spenningsnivået på plattformen ved en 

eventuell frakobling av synkrongeneratoren.   

Elektromagnetisk moment for induksjonsmaskiner er 

tilnærmet proposjonalt med spenning [19]. Et spenningsfall vil 

dermed medføre at induksjonsmotoren får et lavere 

elektromagnetisk moment. For kabelen på 10 km stabiliserer 

induksjonsmotoren seg på et lavere mekanisk og 

elektromagnetisk moment, som fremdeles er innenfor et 

akseptabelt arbeidsområde for motoren. På tross av dette er 

spenningen for lav i følge [18]. Når kabelen er 50 km og 80 km er 

spenningsfallet så stort at induksjonsmotoren ikke greier å 

opprettholde et elektromagnetisk moment som kan drive 

motorlasten. Dette gjør at motoren bremses ned og stopper. 

 

Figur 5: Frakobling av synkrongenerator i system 1 
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Figur 6: Motorstart med og uten V-droop i system 2 

4.2 System 2: Motorstart 

En direkte tilkoblet 5 MW induksjonsmotor blir startet i 

systemet som er vist i Figur 4. Figur 6 viser simuleringer med og 

uten V-droop i vindturbinene. Resultatene viser en stor reduksjon 

i spennings-transienten under oppstart når V-droop er 

implementert. VSC-omformere har kortere tidsforsinkelser enn 

AVR-eksiteringssytem, slik at de responderer fortere under 

forstyrrelser. Begge resultatene er innenfor grensene til offshore 

grid-code for transiente forstyrrelser [18], men start av en noe 

større motor kan gi problemer for tilfellet uten V-droop. 

 

5 KONKLUSJON 

For å redusere CO2-utslippene fra gassturbiner som 

benyttes til elektrisitetsproduksjon på oljeplattformer, må andre 

og renere kilder tilknyttes. I denne artikkelen har forsyning med 

HVAC-kabler tilkoblet land og kraft fra offshore vindkraft blitt 

studert. 

Artikkelen påpeker hvordan kraftelektronikk  muliggjør 

elektrifisering av oljeplattformer, og kan bidra til et mer 

driftssikkert elektrisk system. 

Simuleringene av system 1 viser at kraftelektronikk er helt 

nødvendig for kontroll av plattformspenning og aktiv og reaktiv 

effektforsyning hvis plattformens synkrongenerator faller ut eller 

kobles fra. Simuleringene viser også hvordan spenningsfallet på 

plattformen varierer med lengden på HVAC-kablene.  

Simuleringene av system 2 viser at spenningsvariasjoner 

ved direkte start av induksjonsmotor reduseres betraktelig hvis 

reaktiv effektkompensasjon implementeres i vindturbinens 

frekvensomformer.   

En kombinasjon av tilknyttning av kraft fra land til 

plattform, og kraft fra offshore vindpark til plattform vil kunne 

eliminere behovet for synkrongeneratoren på plattformen, og 

dermed redusere utslipp ved elektritetsproduksjon ytteligere 

gjennom at kraft fra land er produsert fra fornybare energikilder. 



Et studie av et slik kombinert system foreslås som fremtidig 

arbeid, hvor samordning mellom kraftelektronikk er nødvendig 

for kontroll av spenning og frekvens i systemet.  
 

6 VEDLEGG 

Table 6-1, Systemverdier brukt ved simulering 

 Verdi Enhet 

Plattformspenning  13,8 kV 

Synkrongenerator merkeeffekt, system 1 20 MVA 

Synkrongenerator merkeeffekt, system 2 50 MVA 

Stor induksjonsmotor merkeeffekt 28 MVA 

Induksjonsmotor brukt til motorstart 5 MVA 

Passiv last 2 MW 

Et typisk plattformsystem i nordsjøen er i størrelsesorden 

20 MVA og opp mot 100 MVA. 
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