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Abstract

Recommendation has been a highly relevant and lucrative field of expertise for
quite some time. Since the end of the last millennium, session-based recom-
mendation has emerged as an increasingly applicable branch of recommendation.
One of the main contributions to this is the ever increasing level of competi-
tion in e-commerce and web-services. The increased competition both leads to
smaller user-bases and more sparse user histories, because user information is
being spread between competing service providers. Furthermore, streaming ser-
vices and e-commerce services tend to operate on very large and sparse amounts
of recommendable entities. Thus, modern recommendation environments are of-
ten very sparse, both with regards to consumables and consumers. Over the
last few years, the use of Recurrent Neural Networks (RNNs) has shown great
promise in the field of session-based recommendation. Different additions have
been proposed for extending such models in order to handle specific problems or
data properties. Two of such extensions, are modeling of inter-session relations
and modeling temporal aspects of the recommendation. The former can allow
the session-based recommendation to utilize extended session history and inter-
session information when providing recommendations for the current session. The
latter has been used to both provide state-of-the-art return-time prediction and
also for improving the recommendation itself. In this thesis we propose a model
that combines these two extensions through joint modeling of inter-session re-
lations and inter-session temporal relations. In an effort to improve the quality
of the inter-session modeling, some effort was also put into improving the per-
sonalization of the model. The model is shown to improve the recommendation
on two datasets over strong recommendation baselines. At the same time, it is
shown to provide state-of-the-art predictions for when users will initialize their
next sessions, and the performance is compared with strong time prediction base-
lines. We also introduce a novel tuning parameter for tuning the model’s focus
on short-/long-term time-modeling, which can be used for adjusting to different
datasets and/or use-cases. Through experimenting with synthetic time distri-
butions, that are loosely based on the users they generate data for, we show
that the model is robust with regards to different time-models and is able to
capture user behaviour. Finally, the model provides an initial recommendation
for the first action in the next session, before said session is initialized, to ac-
company the time-prediction and providing the user an initial suggestion. This
recommendation is shown to be comparable, or better, than the first (regular)
recommendation after being provided the initial selection of the new session.
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Sammendrag

Anbefaling har vært et høyest relevant og lønnsomt felt av ekspertise i lang tid n̊a.
Siden slutten av sist millenium har nytten av økt-basert anbefaling økt drastisk.
En av de største årsakene til dette er den kontinuerlige økningen av konkur-
ranse innen e-handel og webtjenester. Større konkurranse fører b̊ade til mindre
brukerbaser og mer sparsomme brukerhistorikker, ettersom brukerinformasjon
blir spredt mellom konkurrerende tjenesteleverandør. Videre, strømningleverandører
og e-handel tjenester bruker å operere p̊a store og sparsomme mengder med an-
befalelses enheter. Dette medførere at moderne anbefalingsmiljø er veldig spar-
somme, b̊ade med tanke p̊a brukerdata og forbruksvarer. I løpet av de siste f̊a
årene har bruken av Recurrent Neural Networks (RNN) gitt lovendes resultater
innen feltet økt-basert anbefaling. Ulike tillegg har blitt foresl̊att for å utvide slike
modeller til å h̊andtere spesifikke problemer eller dataegenskaper. To slike tillegg
er modellering av inter-økt relasjoner og modellering av tidsaspekter ved anbe-
faling. Førstnevnte kan la økt-basert anbefaling utnytte utvidet økt-historikk og
inter-økt modelleringsinformasjon for å tilby anbefaling for den p̊ag̊aende økten.
Sistnevnte har blitt brukt til å b̊ade tilby state-of-the-art returtid prediksjoner og
til å forbedre selve anbefalingen. I denne avhandlingen foresl̊ar vi en model som
kombinerer disse to utvidelsene gjennom felles modellering av inter-økt relasjoner
og inter-økt tids modellering. I et forsøk p̊a å forbedre kvaliteten av inter-økt
modelleringen, ble det ogs̊a brukt litt energi til å forbedre personaliseringen til
modellen. Modellen er vist til å forbedre anbefalingen i to dataset over sterke
grunnlinjer. P̊a samme tid er den vist å tilby state-of-the-art prediksjoner for n̊ar
brukere vil starte sine neste økter, og ytelsen blir sammenlignet med sterke tid-
spredisjon grunnlinjer. Vi introduserer ogs̊a en original justeringsparameter for
å justere modellens fokus p̊a kort-/langtids tidsmodellering, som kan bli brukt
for å justere til forskjellige dataset og/eller bruksmønster. Gjennom å eksperi-
mentere med sytetiske tidsfordelinger, som er løst basert p̊a brukerene de generer
data for, viser vi at modellen er robust med tanke p̊a ulike tidsfordelinger og er
i stand til å fange brukermønstre. Til slutt, modellen tilbyr en initial-anbefaling
for første handling i den neste økten, før denne økten er startet, for å ledsage
tidsprediksjonen og tilby brukeren et initial-forslag. Denne anbefalingen er vist
å være sammenlignbar, eller bedre, enn den første (vanlige) anbefalingen etter å
ha blitt gitt initial-valget i den nye økten.
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Chapter 1

Introduction

The introduction will present the background and motivation for the proposed
model, as well as formalizing the goals for the thesis.

1.1 Background and Motivation

Recommendation is a broad field with many different approaches and proper-
ties. It can therefore be beneficial to structure the types in to distinct categories.
The distinctions can often be found in the recommending environment, particu-
larly in which type and quantity of data is available. The user, group or entity,
hereby referred to as simply user, to give recommendation can for instance be
known(access to user history), not known at all or somewhere in-between. An-
other type of distinctions can concern quantitative properties of the data, this
can for instance be the sparsity of the dataset or simply its overall size. There
can also be requirements related to the final performance of the system, which
can put restrict modeling choices. This can be illustrated by questions like: what
is the ”cost” of a prediction? Is it feasible to get real-time predictions with the
system, or do we have to reduce the computational cost of predicting? It may
be trivial to create a highly accurate model, but if the model needs to process
terabytes of data for every single recommendation, it might not be applicable in
for instance a real-time recommendation setting.

1.1.1 Background

A highly relevant type of recommendation systems, that have received astonish-
ing little attention considering its relevance, is session-based recommendation. In
modern times people, corporations and governments are becoming increasingly

1



2 CHAPTER 1. INTRODUCTION

aware of privacy concerns. Governments have seemingly increased their effort
in keeping up with the digital revolution and new regulations and restrictions
concerning information are becoming more prevalent and/or are revised for the
ever changing state of the digital world. For instance, the GDPR(General Data
Protection Regulation)1, became enforceable throughout most of Europe as re-
cent as 25.05.18, and enforces many new restrictions on personal data. There also
seems to be a greater focus on the dangers of the spreading of private information
as well as quite a few recent highly profiled cases where large web-communities
have been hacked and sensitive data have been spread online. This, as well as
the ever increasing number of competing e-commerce sites, are making session-
based recommendation more relevant than ever. People may refrain from using
services that requires log-in, services may not be allowed to store certain infor-
mation about a user, or the average user of the service might only have logged
on a few times because they use competing services as well. All this makes the
ability to provide good recommendation given limited user history, e.g. one or
more sessions, both very useful and lucrative.

Until quite recently, session-based recommendation systems were usually based
on item-to-item methods which in essence are types of nearest neighbor meth-
ods. The general idea behind these are to look at the last item in the session and
recommending a new similar item. Another approach is to look at the current
session so-far, and recommend items based on a similar old session. The process
of evaluating similarity does not scale well with item complexity, or the size of the
database, in case a session-to-session approach is used. This becomes even worse
if one tries to improve the recommendation by looking at more than one previous
items. Good item similarity measures often relies heavily on descriptive features,
preferably a great number of such features, and methods for comparing these. In
general, the quality of the similarity measure heavily affects the retrieval time.

While there have been efforts into making nearest neighbor methods scale better
with size and complexity of data, like approximated retrieval [Muja and Lowe,
2014] and other data structures for fast retrieval of similar entries [Liu et al.,
2006], the worst case time complexity is still quite intimidating. There is also
usually a trade-off between accuracy and time complexity when applying approx-
imate retrieval methods, which has to be carefully considered. Another issue with
nearest neighbor solutions are that they struggle to capture finer temporal dy-
namics. For the most basic nearest neighbor approaches, the order of the items
in the history is totally irrelevant for the recommendation. If a user first watched
movie A, then B, and was recommended C, then a user who first watched movie
B, then A would also be recommended movie C by such solutions. This might

1Link to official GDPR webportal: https://gdpr-info.eu/
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make sense in many cases, but is generally a naive assumption. A simple exten-
sion to the simpler nearest neighbor solution, that could consider some temporal
aspects, is to add a simple time based discount. This way the most recent item is
the most relevant and the ones before this are discounted based on their position
in the history. One could also add another discount factor based on actual time
since item was consumed as opposed to its position in the history alone. If the
last movie a user watched, was watched many months before she finally logged
onto the service again, it is not necessary true that she would want to continue
where she left off. One can observe that in an attempt to be better at using
temporal dynamics in the recommendation, the model has become increasingly
more complex. Not to mention that the simple suggestions provided are all based
on discounting, which can only remove information and not explicitly ”enhance
it”. They are also making serious assumptions about nature of the temporal
dynamics, e.g. the relation between time and relevance.

After taking a closer look at some problems with nearest neighbor models it
should be apparent that a model that can abstract the ”similarity measures”
of large quantities of discrete items, as well as inherently capturing finer tem-
poral dynamics of a recommendation/consumption sequence, could preform well
in session-based recommendation. At least in the sense of addressing many of
the shortcomings of the nearest neighbor solutions. A type of model that is
not only capable of this, but excels at it, are recurrent neural networks (from
here-on abbreviated to RNN). In the last couple of years RNNs have been used
for session-based recommendation to great success, often outperforming nearest
neighbor methods by large margins.

1.1.2 Motivation

One of the problems with fully generalized session-based recommendation where
each session is considered completely independent from all other sessions, is that
it is very difficult to give accurate recommendations during the first steps of a
new session. It is hard for the system to identify a ”user preference” given little
information. In order to remedy this, a few recent models [Ruocco et al., 2017;
Quadrana et al., 2017] have tried to model inter-session relations, while contin-
uing to model the intra-session relations. The intuition behind this is to gather
useful information from a limited history of previous sessions and using this to
help the initial recommendations in new sessions. This type of modeling requires
that the users are not anonymous and that, at the very least, some information of
their activity can be stored. Inter-session modeling can also serve as an implicit
form for personalization in the sense that the history will most likely contain some
of the user’s characteristics. Models that utilize this could be very relevant in ser-
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vices where the users have to log in, but where the service for some reason cannot
store extended information about their users. Examples of such reasons can be
legal restrictions, capability concerns or a need to optimize the recommendation.
Another reason for limiting the user history is that even though more information
most likely will give better recommendation, it is not given that it is practical to
go through all relevant user history for each recommendation. In such cases, a
limited history with the most relevant user information, might be the best possi-
ble compromise. Note that inter-session modeling can be used in models that do
not consider any intra-session modeling, for instance next-basket recommenda-
tion where the session is considered a basket. Such models could work well in for
instance an online retail service, where there are explicit sessions with multiple
items, but where the order of the items often is approximately random. Models
that both models inter-session and intra-session relations can be a better fit for
domains where the intra-session order can be of importance. Examples of this can
be music services, online discussion boards and video/media/art sharing services.

Another aspect of session-based recommendation that has been given some at-
tention recently, is to improve the temporal awareness of the recommendation or
to model temporal aspects explicitly. It is easy to see that time can affect recom-
mendation to a large degree. Food eaten for breakfast is usually quite different
from the food served for dinner. Music listened to when commuting to work
can be very different from the music played at parties attended during weekends.
Christmas themed movies tend to be more popular during Christmas. Thus,
the ability to capture such dynamics in a recommendation system can be very
valuable in many recommendation domains. Additionally, the ability to predict
when to recommend something could be very useful. Commercially, through well
timed advertisement/increased satisfaction with service or better estimation of
how much to stock up of different products. But also for more universally ben-
eficial purposes, like a health diagnosis system identifying potentials for future
health concerns, given sequences of symptoms. There is also the possibility that
consideration of user consumption history might also be helpful in time model-
ing. A user who is starting to lose interest in a service might start exhibiting a
certain behaviour in the period leading up to less activity levels, and a user who
is getting more interested in the service might exhibit another type of behaviour.
Thus, recommendation and time-modeling appears to be mutually beneficial in
many domains, for which joint models could have a lot of potential. Although
there have been some work put into this in the past, the application in session-
based recommendation, as opposed to recommendation of single actions, is still
relatively unexplored.
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1.2 Goal and Research Questions

Goal Jointly provide state-of-the-art session-based recommendation and inter-
session time-modeling

The motivation for jointly performing multiple tasks can be that the tasks ben-
efit each-other, or that the removed need for multiple models is worth potential
deterioration of performance. By attempting to jointly provide state-of-the-art
session-based recommendation and inter-session time-modeling, we would like to
see if there is any grounds for performing these two tasks jointly. Is it possible
to achieve state-of-the-art performances on both of these tasks simultaneously?
Since the return-time prediction can/should be performed before the next ses-
sion, there is also grounds for providing an initial recommendation along with this
prediction. This way, the users will have a suggestion ready when they do return.

Research question 1 Provide state-of-the-art return-time predictions for fu-
ture sessions

Research question 2 Provide state-of-the-art recommendations given the se-
lections, so-far, in current session

Research question 3 Provide initial recommendation for first selection in future
session

1.3 Contributions

The main contributions of this master’s thesis are:

• We apply the marked point process proposed in Du et al. [2016] in the
new domain of hierarchical session-based recommendation, and model inter-
session time-gaps through high-level inter-session modeling and time mod-
eling.

• We enhance inter-session modeling, by extending session-representations
with contextual information, in order to support a complex personalized
hierarchical-RNN architecture in jointly training for three different tasks.

• Our proposed architecture is capable of both providing estimations for when
a user will initialize a new session and providing an initial recommendation,
before said session is initialized. After initialization, it provides real-time
recommendations through combining inter- and intra-session modeling.
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• We introduce a novel tuning hyperparameter in order to allow adaptation
to different time-gap distributions and tuning the short- vs long-term con-
sideration of the model.

• We show that the time modeling is robust and capable of learning many
different time-distributions through testing on both real-world inter-session
time-gaps and synthetically generated ones.

• We evaluate the proposed architecture on two real-world datasets, where it
is shown to significantly outperform strong baselines in time-prediction of
the most frequent time-gaps, while simultaneously improving recommenda-
tion over strong recommendation baselines.

A full paper based on the thesis has been submitted to the Conference on Infor-
mation and Knowledge Management 2018(CIKM)



Chapter 2

Background Theory

This chapter is a brief introduction to the background theory. The purpose is
not to make the reader experts within the different fields, but to provide a basic
foundation that hopefully will allow even readers with no background in machine
learning or ANNs to grasp the overall intention and function of the proposed
model. The main topics discussed are ANNs, RNNs (in particular its modern
variants LSTM and GRU) and marked point processes.

2.1 Artificial Neural Networks

Artificial neural networks were first introduced in its first iteration in McCulloch
and Pitts [1943] and are essentially networks of linear algebra. Like the name
entails, ANNs are inspired by actual biologic neural networks found in nature,
but aside from a few borrowed concepts, that have been further simplified and
adapted for hardware and computational ease, these are two very different things
in terms of functionality. The history of ANN is long and rugged and contains
many smaller and greater innovation resulting in modern ANN-based models that
are capable of out-performing humans on extremely abstract tasks like image
recognition [He et al., 2015] and exceedingly complex task like playing the board
game Go [Silver et al., 2016].

2.1.1 Key concepts

ANNs are essentially networks of vertices and edges through which numbers can
flow, be transformed/altered, and finally outputted. Using analogy from bilogical
neural networks, the vertices(often referred to as neurons in ANN terminology)
are inspired by neurons and the edges between these are inspired by synapses.

7
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”Communication” between neurons are conducted through the synapses(edges)
and the neurons themselves can ”fire” signals through their output synapses
based on the signals they have received. The edges in ANNs are weighted, which
means that the numbers passing through an edge is scaled by the edge’s weight.
In the vertices of ANNs, the different contributions from incoming edges are ag-
gregated, then passed through an activation function before being propagated
through the out-going edges. The activation functions are usually classified as
either linear or non-linear. Linear activation functions apply a linear function
to the aggravated input. One of the more common linear activation functions is
to simply pass the aggregated input through unaltered. Linear activation func-
tions are good for simpler problems where linear relations are expected, or can
be a good approximation. Examples of such linear relations could be the conver-
sion between Celsius and Fahrenheit, or electric resistance of material for small
variations in temperature. An example of an ill-suited relation for a linear ac-
tivation function, is human growth per year. While the growth may be stable
for intervals of many years, there are usually periods of increased and decreased
growth, not to mention that it usually comes to a full stop at some point. More
complex activation functions are non-linear, where typically a sigmoid function,
hyperbolic tangent function or a rectified linear function is applied to the aggra-
vated input. The use of non-linear activation functions can allow the modeling
of more complex functions, because they do not impose a linear relation between
the input and the output. A common example that illustrates the limitations of
linear activation functions, is that a network which exclusively uses linear acti-
vation functions is not be able to model the simple XOR problem no matter the
number of neurons and computational power. XOR(eXclusive OR) is the simple
function of returning 1 if inputted a single 1, otherwise returning 0. By adding
simple non-linearities, like thresholds that outputs zero unless the input is greater
than the threshold, the XOR-problem can easily be solved by a 3-neuron network.

The simpler ANNs are ordered into different layers of neurons, where each neu-
ron is connected to each neuron or input/output of the neighbouring layers. The
propagation through the layers is usually strictly synchronized, meaning that all
the outputs of one layer are calculated, usually in parallel, then sent to the next
layer as input. The next layer then calculate all of its outputs before propagating
to the next etc. These structures are called feed-forward layers and still ap-
pear in most ANN model, albeit increasingly rarely throughout the entire model.
In essence, ANNs solve problems by modeling a high dimensional (non-)linear
function in order to approximate the target given the input. For instance, if a
network is used to determine if the inputted images contain a cat or a dog: the
network will try to find a function that outputs multi-dimensional points, when
being provided cat images, that can be well separated from those outputted when
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being provided dog images. These points are arrays of values where each entry
corresponds to one dimension. The separation between the two classes will be a
multi-dimensional plane through the point space. It might be easier to visualize
by only considering two dimensions, where the problem would be to output points
in the 2D-plane which can be separated well by a line, according to class. Thus,
if an image result in a point on the cat-side of the line/plane, it is classified to
be a cat image and vice versa.

2.1.2 Training

The output of a simple ANN is fully determined by the input, the weights and
the network ”structure”, which includes topology(layers and number of neurons
within each layer) and activation functions. The structure is typically kept static
while the weights are changed. For reasonable ANN structures, multiple different
functions over the input can be achieved by only changing the weights. Identifying
how to change the weights in order to learn a new function is not so straight-
forward, especially for networks with many layers. The most common solution is
a loss function, and then perform gradient descent through gradients found using
a backpropagation algorithm. The loss function is devised to define the correct
behaviour and outputs an error based on expected output of network and actual
output. Backpropagation identifies how each weight should be adjusted in ANNs,
i.e. should it be greater or smaller to decrease the error. Gradient descent is es-
sentially done by finding how a small change in each weight affects the loss and
then subtracting from each weight based on this differentiation. Thus, adjusting
the weights in the ”direction” found to decrease the loss. In ANNs, weights affect
the input to the next layer, whose weights affect the input to the layer after and so
forth. This means that differentiation with respect to a weight is a product that
involves the partial derivatives of weights and activations that appear later in the
network. This is also the reason why back -propagation goes backwards through
the graph, as the gradients of one weight is independent of what comes before but
dependent on what comes after. The final update of the weights can be done in
a few different ways: after each training instance (stochastic training), after the
full trainingset (batch training), or after a subset of the trainingset (mini-batch
training). Batch and mini-batch training tends to be more stable because the
adjustments are based on more ”opinions”, which has a normalizing effect and
can keep the weights from fluctuating heavily between updates. These training
schemes can also reduce the number of times the expensive backpropagation has
to be performed. For reasons like these, batch and mini-batch training are more
common than stochastic training.

Figure 2.1 is a simple illustration that visualizes several of the ANN concepts
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Figure 2.1: Simple illustration showing key concept and structure of ANNs as
well as a type of recurrent loop that could be used in RNNs

discussed in this section, and also the principals of recurrent edges in RNNs,
which will be discussed in the next section.

2.2 Recurrent Neural Network

Recurrent neural networks are formally ”ANNs with one or more feedback con-
nections”. A feedback connection is a directed cycle in the network structure.
In practice, this usually done by storing the output of one part of the network
during the processing of some input, and feeding this back to an earlier part of
the same network when future input is processed. This is often thought of as
an inner state or memory in the network, because the processing of new input
is dependent on previous input. Thus, RNNs are typically applied on sequence
data where there is some sort of dependencies between the units in the sequence,
such that the memory of earlier units can be useful when processing new units.
This can for instance be words in a sentence or letters in a word. RNNs have
been used in many state-of-the-art natural language processing models because
of its ability to capture dependencies in sequence data.

2.2.1 Elman

The Elman RNN was proposed in Elman [1990] and is one of the more common
of the simple earlier RNN architectures. When the Elman RNN is given an
input, the input is first passed through a set of weights and then added to the
output of the last state passed through another set of weights. An activation
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function is applied to the resulting vector, resulting in the new state which is
both propagated through a feed-forward layer with an activation function, to get
the output of the RNN, and to the next timestep as the new state of the RNN.

ht = σh(WhXt + Uhht−1 + bh)

yt = σy(Wyht + by)
(2.1)

Equations 2.1 shows the update done by the Elman RNN. x is the input, y is
the output, h is the hidden state, σ are activation functions, and W , U and b are
weight parameters/bias. The subcripts h and y is used on weights, biases and
activation functions in the respective updates for the hidden state and output,
while subscripts involving t are used on arguments to indicate the timestep they
belong to. Similar notation will be used further on.

2.2.2 Training and vanishing gradients

When looking at equation 2.1 one can observe that the output yt is not only de-
pendent on xt but also on ht−1. ht−1 will in turn be dependent on xt−1 and ht−2,
and this trend will continue until the first input and the initial hidden state is
reached. The weights Wh and Uh as well as the bias bh will be applied for each of
these h and x. Regular backpropagation is not capable of handling such models,
so a specialized class that is capable of this, called backpropagation through time
(BPPTT), has been devised. The key strategy introduced by these is to unroll
the timesteps in time and adding the different gradients of the same weights, but
from different timesteps, together for the combined gradient. Apart from this,
they are not that different from the regular backpropagation algorithms.

A problem with the simpler RNNs are that they are heavily affected by the
vanishing gradient problem. The vanishing gradient problem stems from the
aforementioned observation that the gradients of a weight early on in in a many
layered network is the product of many partial derivatives of the following weights
and activation functions. When some of the involved terms are very small, we
end up getting small numbers multiplied with small numbers, resulting in even
smaller number. If this is the case, the intensity of the gradients of the earlier
weights in a multi-layered network can end up being very close to zero, and it
becomes very difficult to both train and utilize such weights. This problem is
further increased if many activation functions are the classic sigmoids or hyper-
bolic tangents, because their activations tend to get saturated in the upper and
lower range, which result in very small gradient. Exploding gradients, albeit not
so common, can also be a problem if many of the partial derivatives conversely
are very large, and can result in very unstable learning or total divergence of
weights. RNNs are inherently deep and many-layered because of the unrolling
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of time. Moreover, each unrolling is often accompanied by one or more activa-
tion functions. This means that it can be very difficult to train earlier weights
given an early timestep but according to how this influenced the error of a later
timestep.

2.2.3 LSTM

Long Short-Term Memory (LSTM) were proposed in Hochreiter and Schmidhu-
ber [1997] with the intention to deal with vanishing and exploding gradients,
that often makes training simpler RNNs very difficult. The overall structure of
LSTM’s is pretty versatile and there are a lot of different variations. The key
components are the cell/unit itself, which contains the cell state, and three dif-
ferent ”gates”. The gates are: the input gate(controls what to be accepted from
the input), the forget gate(controls what information in the state/memory to be
forgotten), and the output gate(controls what to be outputted by the cell). The
gates allow the LSTM to discard information deemed irrelevant and only add
information deemed important across different timesteps. Since the cell state is
never in its entirety passed through an activation function, the cell can propagate
memory that is less affected by the vanishing gradient problem than the more
simpler RNNs. This can make LSTM-based models capable of learning very long
dependencies while still being able to also capture shorter dependencies.

ft = σg(Wfxt + Ufht−1 + bf )

it = σg(Wixt + Uiht−1 + bi)

gt = σc(Wgxt + Ught−1 + bg)

ot = σg(Woxt + Uoht−1 + bo)

ct = ft ◦ ct−1 + it ◦ gt
ht = ot ◦ σh(ct)

(2.2)

The update rules of one type of LSTM can be found in the equations 2.2. ft
is the forget gate, it is the input gate, gt is used with the input gate to update
the cell state, ot is the output gate, ct is the new cell state and ht is both the
output and the new hidden state. ◦ is the Hadamard product and the different
activation functions are denoted by σ. Note that here the three main gates share
the same type of activation function, which is usually the sigmoid activation,
but the activation functions used in gt and ht have different subscripts. Both of
these are usually hyperbolic tangent functions, but it is not unusual that they are
different from each-other. Note how the new cell state is the sum of a hadamard
product involving the old cell state and the forget gate, and a hadamard product
involving the input gate and gt, thus no activation function is directly applied to
the previous cell state.
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2.2.4 GRU

Gated Recurrent Units (GRU) Cho et al. [2014] is a quite recent addition to the
family of RNNs that have already been used to great success in many state-of-
the-art models. It is heavily inspired by the LSTM, and the largest differences
between the two is that the GRU switches out the gates with a ”reset” gate and
an ”update” gate. Furthermore, the GRU only operates with one hidden state,
whereas the LSTM both has a hidden state and a cell state. A bit simplified,
the update gate can be said to replace the input and the forget gate, while the
reset gate is similar to the output gate. One added benefit of using GRU over for
instance the LSTM described by equations 2.2, is that they are often significantly
less computational demanding and can reduce the training and computational
time considerably.

rt = σg(Wrxt + Urht−1 + br)

zt = σg(Wzxt + Uzht−1 + bz)

nt = σh(Wnxt + rt ◦ (Unht−1 + bnh) + bn)

ht = (1 − zt) ◦ nt + zt ◦ ht−1

(2.3)

The update rules of a common GRU can be found in the equations 2.3, where rt
is the reset gate, zt is the update gate and nt is used to update the hidden state.
The activation functions of the named gates are typically sigmoids while the σh
activation function is typically a hyperbolic tangent function.

2.3 Point process

Point processes are part of probability theory and describe distributions of points
in a mathematical space. For instance, the probability of sampling a specific point
in a uniform point process should by definition be the same as the probability of
sampling any other point in the domain.

2.3.1 Poisson

In the Poisson point process, each random event is completely independent of
each other. Thus, the presence of one point does not increase or decrease the
likelihood of any other point what so-ever. The inter-event time between Poisson
point processes is described by the exponential distribution.

f(t) = λe−λt, t ≥ 0 (2.4)

The exponential distribution can be seen in equation 2.4, where λ is the intensity
or rate. The intensity describes the rate at which events are expected to occur,
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and is fixed for the exponential distribution. For many other point processes, the
intensity is conditional on for instance time.

2.3.2 Hawkes

The Hawkes process, sometimes referred to as self-exciting process, is a class of
point processes that does not consider events to be independent. The intensity
of a Hawkes process at time t is conditional on each event that has happened
between t0 and t. Hawkes processes are often used to model relations where the
occurrence of one point increases the probability of a new occurrences.

λ(t) = λ0 +
∑
j:tj<t

γ(t, tj) (2.5)

Equation 2.5 is a general Hawkes process’s conditional intensity function. γ(t, tj)
is the contribution of the event that happened at time tj and is called a kernel.
A typical parameterization of a Hawkes kernel is exp(−β(t− tj)), which discribes
a situation where the occurence of event increase the probabiliy of future events.
The Hawkes process is more expressive than the Poisson process by being able to
also model dependent inter-event times, which is arguably more realistic in most
domains, instead of just fully independent ones.

Figure 2.2 is a simple illustration depicting how the intensity value of a Hawkes
process can be affected by close occurring events and consequently how events
increase the probability of future events in the immediate future.

2.3.3 Marked point processes

Marked point processes are point processes where each point has a belonging
marker, in other words, it has both a position and a marker/class. Furthermore,
the probability distribution of future marked points may be dependent on both
the time since- and markers from previous points.



2.3. POINT PROCESS 15

Figure 2.2: Simple illustration showing how the intesity of an arbitrary Hawkes
process can look like during a series of events.
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Chapter 3

State of the art

There are two main topics of interest when considering the relevant state-of-the-
art for the model proposed in this thesis, which are session-based recommendation
and temporal modeling in recommendation. This chapter will present and de-
scribe selected state of the art from these topics, focusing on the most relevant
research. A lot of focus has also been given to the ”original” RNN-based recom-
mendation model Hidasi et al. [2015] because it is usually used as the basis of
more recent and specialized RNN-based models.

3.1 Session based recommendation

Like discussed in the Introduction 1.1.1, session-based recommendation have up
until recently mainly been handled by item-to-item/ neighborhood-based meth-
ods, Sarwar et al. [2001]. While such methods can perform very well under the
right circumstances, they typically struggle in a general session-based recommen-
dation context. Many of the problems keeping such methods from achieving good
results in session-based recommendation, can be attended by considering sessions
as sequences of items and using a RNN-based model.

Hidasi et al. [2015] is widely credited to be the first to apply a RNN-based recom-
mendation model and achieving state-of-the-art results. The model they propose
is designed to make the most out of very limited information. They assume that
the users of the model are fully anonymous in the sense that the model does not
have any user-history beyond the live sessions. Furthermore, it assumes every
session to be independent. Thus, the only information the model can utilize in
order to customize the recommendation for a user during a live session, is the
items said user has selected so far in the current session. The model provides rec-

17
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ommendations for future selections, which is based on all preceding selected items
within the session. The structure they found to give the best results is quite sim-
ple: a single layer of GRU units followed by a single feed-forward-layer. The GRU
units, having recurrent connections, provide the state and captures the tempo-
ral dynamics of the sessions, while the feed-forward layer outputs non-normalized
scores for each item. Figure 3.1 is a simple depiction of the proposed architecture.

Figure 3.1: Figure of the best performing architecture (adapted from Hidasi et al.
[2015])

Furthermore, they propose three different additions to the training procedure.
First of which is a ”session-parallel mini-batching”-scheme, where sessions of dif-
ferent lengths are handled by interleaving rather than padding each session to a
fixed max length. Sessions are batched together, but since they are of different
lengths, sessions are continuously replaced as they are processed. The benefit of
this is not needing to process a lot of ”paddings”, nor having to find and extract
relevant output, stemming from non-padded entries, from the output. Subse-
quently, there is no need for splitting overly long sessions into smaller ones in
order to reduce padding. There is also a potential benefit of having equally many
targets affecting the loss for each mini-batch, as opposed to the number of non-
padded ones in the case of ignored paddings. The last point is less detrimental
for large batches where the statistical difference between number of contributing
sessions will be pretty stable even for padded sessions. Conversely, interleaved
sessions makes managing the state and performing weight updates more challeng-
ing because one need to consider the start and end of each session. The second
addition is a sampling of the output in order to avoid the need for evaluating
the score of every item for every single prediction. Instead they sample this by
only computing the score of the target item as well as a few negative examples,
which are set to be the other targets in the mini-batch. This selection of negative



3.1. SESSION BASED RECOMMENDATION 19

examples both removes the need for explicit sampling, while still ensuring that
items are adjusted according to popularity. The last point is achieved because
popular items will statistically appear more frequently in these targets. This is
useful because the user is more likely to be familiar with the popular items, so if
the user still prefers a less popular item, it might indicate a dislike of said pop-
ular items. The last addition is testing of different loss functions. In particular
they test two different pairwise-ranking losses. Pairwise means that the scores
are judged in pairs and not independently. One would in general want a positive
item to have a greater score than a negative one. In the context of the sampling
proposed, the positive item will be the target item while the negative items will
be the other targets in the mini-batch. First of the two is the BPR ranking loss,
which proposed in Rendle et al. [2012]. The second loss is called TOP1 and was
devised by the authors themselves. The losses are pretty similar, but differ in
their behavior for very small and very large differences between the target and
the evaluated sample, caused by the log function used in BPR. The article also
compare these with using cross-entropy loss, which is a common pointwise loss
function. For pointwise loss functions, the final loss is only dependent on the
score of the positive examples, the scores of negative samples does not affect it
at all.

The model proposed was tested on two different datasets and achieved a 20-
30% gain in the evaluated measures over the best performing baseline, which
is stated to be an item-to-item method which recommends based on returned
historical session retrieved through a cosine-similarity measure and the current
session so-far.

In Ruocco et al. [2017] the intra-session model from Hidasi et al. [2015] is altered,
and extended with a second level of RNNs in an attempt to capture inter-session
dynamics. So the proposed model is a hierarchical RNN where one level con-
siders inter-session dynamics and the other considers intra-session dynamics. As
opposed to assuming fully anonymous users and totally independent sessions,
this extension allows some simple and low-cost user history to be considered in
order to provide better recommendation for live sessions. The user history is in
the form of abstract representations of previous sessions. The inter-session level
RNN is fed a finite number of the most recent session-representations in chrono-
logical order, and the output is used as the initial hidden state of the intra-session
level RNN. The motivation behind this is to handle the cold-start problem. The
cold-start problem is very prevalent in highly generalized RNN models, and stems
from RNN’s reliance on state/memory. The RNNs captures temporal dynamics
within sequences, the longer the sequences the more data is available to infer
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from and the longer dependencies can be identified. Thus, for small sequences,
e.g. the first few items of a session, simple RNNs tends to perform worse. A
simple intuition is that when being fed a single item, the model will struggle to
identify which type of behavior this is, because there likely are many that fits
the bill. When the sequence is longer on the other hand, it can exclude many
options. So the purpose of the inter-sessions layer is to provide some form for in-
formation that will help the model in the first troublesome steps. By using RNN
units in the inter-session layer, Ruocco et al. [2017] attempts to capture both
finer temporal dependencies in the most recent sessions as well as functioning
as some form for personalization. Two different session representation methods
are proposed. First, and arguably simplest, is an average pool of all the item
embeddings within a session. It is pointed out that such a solution would fail
to capture any ordering of the items since any permutation of the same items
will result in the same representation. The second method exploits the nature of
RNNs, where the last output of the intra-session level RNN is used as the session
representation. In contrast to Hidasi et al. [2015], Ruocco et al. [2017] achieved
the best results when adding an embedding layer for the items. Additionally
Ruocco et al. [2017] did not use the interleaved session mini-batching scheme,
instead opting for padded sessions. Nor did they sample the output or use any
pairwise losses. GRU were used in both RNN layers. The results shows a gain
in the evaluated measuers of 7-12% on a dataset containing activity from the
music service LastFm over the best baseline. The best performing baseline was
an implementation of Hidasi et al. [2015] where the same omitting of interleaved
sessions, sampling and pairwise loss had been done. For the LastFM dataset, the
average pooling of item embeddings proved to be the better session representa-
tion. For the other dataset, which contains sub-forum activity on the popular
Internet-community reddit, the model achieved a 24-32% gain in the evaluated
measures in recommending sub-forums for the users. However for this dataset,
the use of the last output of the intra-session RNN as session representations
gave the best results. Figure 3.2 depicts the proposed model using last hidden
state as session representation.

Quadrana et al. [2017] proposes an architecture that is very similar to the model
in Ruocco et al. [2017]. They also propose using an inter-session RNN layer in
order to handle the cold-start problem when one has access to a limited user
history in the form of previous sessions. However, they mainly refers to this as
personalization and not inter-session modeling. This article shares many of the
same authors as Hidasi et al. [2015] and applies all the additions of that model in
the new hierarchical model. The main difference between this hierarchical model
and the one presented in Ruocco et al. [2017] is that this is only considering a
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Figure 3.2: Figure showing the proposed hierarchical model (adapted from
Ruocco et al. [2017])

session-representation scheme based on the last hidden state of the intra-session
RNN. Additionally, these session-representations were created by passing the last
hidden state to a final single layer feed-forward layer with a hyperbolic tangent
activation function. They also experiment with propagating output of the inter-
session network to all time-steps in the intra-session RNN, which complicates the
model somewhat, but achieve slightly better results for one of the datasets eval-
uated. Another point of interest is the usage of an intra-session RNN baseline
where multiple sessions are concatenated together and are considered to be a sin-
gle long sequence. This performed quite a bit better than the non-concatenated
intra-session baseline on a dataset with highly repetitive sessions, but worse than
the best hierarchical setup for all datasets and all evaluation metrics. The hier-
archical model proved to be the best performing overall by significant margin.

Other notable work using RNNs for recommendation, have focused on how to
best handle context- and feature rich input like Liu et al. [2016] and Hidasi et al.
[2016]. In Liu et al. [2016] a simple intra-session RNN model is modified by ap-
plying different sets of weights based on the context of the input. This context
can for instance be time and date of different granularities, location, or weather at
the time of an event. This is an attempt to capture finer contextual dependencies
by using a dynamic structure, rather than enhancing the input with the context
explicitly. In Hidasi et al. [2016] the focus is put on how to handle feature-rich
input as opposed to input with a lot of context. An input can for instance be an



22 CHAPTER 3. STATE OF THE ART

image with a caption which has both textual and image features. A lot of differ-
ent RNN-based models are discussed: the simple baseline disregards all but one
of the different features and a somewhat more advanced model concatenate the
different features to a single input. The main contribution of the article are three
different models using parallel RNNs for different features. These differ in the
way outputs of the different parallel parts are combined for the final recommen-
dation. In general the parallel models were found to outperform the alternatives.

Tan et al. [2016] proposes a lot of different techniques that can be applied in aug-
mentation and pre-processing of data, designing of model and during training,
to improve the accuracy and make faster prediction/recommendation in RNN-
based models for session-based recommendation. The models proposed are based
on a single layer of RNN units, more specifically GRU units, similar to Hidasi
et al. [2015], and they use click-streams in e-commerce as data. The data is
augmented by creating smaller sessions from the original sequences by extracting
sub-sequences of all viable lengths that still includes the first event. This allows
them to consider many more sequences than they started out with. Dropout is
also applied in the embedding of the items, resulting in a probability that any
item within any sequence can potentially be dropped during training. This is in
order to make the model more robust for noisy input as well as for utilizing the,
often observed, generalizing effect of dropout. The article also proposes to only
train on sufficiently recent data by defining a temporal threshold where all data
before this threshold are discarded. This is very relevant in data where clear
trends can be observed, because things that were popular in years past might
well be all but forgotten in the present time. Another proposed addition uses
information from the future items in the session when recommending the next
item, and is claimed to be specially relevant if there is little data available. This
essentially trains a teacher model in parallel on the reversed sequences, which
provides a secondary ”predicted” target containing information about the future
targets. The loss for the regular student model is then a weighted sum of the
loss considering the real target and considering the predicted target. A final ad-
dition is proposed, mainly in order to make the recommendations faster, and is
essentially to output an item embedding instead of the individual scores for each
item. The latter is the usual practice, but scales pretty bad with the number of
recommendable items. Different models applying different combinations of the
mentioned additions were tested in order to find good synergies and consequences
of using the different techniques.

Jannach and Ludewig [2017] presents a nearest neighbor method that actually
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achieves better results than the RNN model proposed in Hidasi et al. [2015] on
multiple datasets. This method is adapted specifically for session-based recom-
mendation and the first step is to find similar sessions to the live session using
an item cosine difference similarity measure. Then each item is given a score
based on how many times they appear in the retrieved similar sessions. In order
to optimize the score calculation, each item is given an index table containing
the sessions they appear in. They also experimented with a hybrid/ensamble
version where the recommendation was a weighted sum of the nearest neighbor
recommendation and a RNN-based recommendation. The hybrid version ended
up outperforming both single models by a significant margin and it was discussed
that this indicates that the nearest neighbor’s strict similarity focus was compli-
mented/corrected by the RNN’s ability to model sequence dependencies. The
article further discusses the different benefits of the different models. Nearest
neighbor methods have the benefit of having very small setup-time as well as be-
ing easy to extend with new data. The nearest neighbor method was also found
to be more robust to reduction of the data size. On the other hand, the time
of single recommendation was found to be twice that of the RNN model and
this difference only increases for more data/larger action-spaces. However, the
training time of the RNN model was observed to be significantly larger than the
time needed to set up the nearest neighbor method and in order to add new data
to RNN models, one usually has to re-train the entire model.

In Ludewig and Jannach [2018] the authors from Jannach and Ludewig [2017]
compare multiple different models of multiple different types and introduces some
specialized models for the domain of session-based recommendation. Among the
represented models are association rule models, nearest-neighbor based models,
matrix factorization models and the RNN-based model of Hidasi et al. [2015].
The models are evaluated on many different measures like the more standard re-
ciprocal rank, precision and recall measures, but also so-called quality measures
like coverage rate, hit rate and a ”popularity” measure. The coverage rate and
popularity measure will both be able to tell if the models have a unreasonable
high bias towards recommending the most popular items, and conversely, whether
they are able to recommend many different items. The models are evaluated on a
total of 9 different datasets: four of which are from e-commerce, the next four are
music related and in the last dataset they consider ”read” events from a sports
news portal. Among their more specialized methods are 4 different item-to-item
methods which consider sessions as the ”item” and the specific selections as ”at-
tributes” as they did in their other work in Jannach and Ludewig [2017]. The first
of which is very standard, but the three others, referred to as ”session aware”,
apply different scaling based on the selections’ positions in the sessions. This way
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they add some order dynamics to the method, which the more simpler item-to-
item methods lack. They also design some association rule models with similar
thought put into incorporating order dynamics. Their results show that for most
of the datasets, Hidasi et al. [2015] is outperformed on many of the measures,
usually by one of the session aware item-to-item methods or the extended asso-
ciation rule methods. This is also the case for the more standard measures and
not just the additional quality measures introduced. They also look into memory
usage and computational time required for each recommendation. As one should
expect, the item-to-item models scale worse with data size, both in memory and
computational time. However, they claim that the upper computational time is
still well within what is realistic to allow in a real-time recommendation setting
due to fast look-up operations, approximations and/or sampling. On the other
hand, the same methods scale much better than the model from Hidasi et al.
[2015] when it comes to number of recommendable entities. The association rule
based models requires the least amount of memory and computational time for
both of the datasets used in this analysis. They conclude by stating that while
the introduction of RNNs in session-based recommendation has resulted in some
promising results, there is still much work to be done into improving their han-
dling of sequential information as simpler models have been shown to outperform
them on many datasets.

3.2 Temporal modeling in recommendation

Even though RNNs are inherently able to capture some temporal dependencies,
this is largely based on the order of the events in a sequence. Things like time
gap between events or sessions, the season, the year, the weekday, and the time
of the day, are all temporal aspects that may influence the ideal recommendation
in many domains, but which cannot easily be captured by the order of events
alone. There have been some attempts at both making recommendation time-
aware in the sense of it being able to use such temporal aspects to improve its
recommendation, and also some that combines this with attempting to predict
the time until the next item or session by explicitly modeling time.

Liu et al. [2016] proposed a temporal-aware extension to RNN-based recommen-
dation that is very similar to their aforementioned contextual extension. Here
they re-apply the idea of training contextual dependent sets of weights, but this
time the weights in question are used on the feedback loop in the RNN and not
the new input. So the hidden state from the last timestep is modified by these
temporal dependent weights. Because time is continuous it is not realistic to train
different weights for each different time, nor would it serve any purpose. Instead,
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the gap-time between events is made discrete by dividing the time-gap range into
buckets and classifying the time-gap by the bucket containing it. The classifi-
cation is then used to decide which weights that are to be used during training
or recommendation. The aforementioned contextual extension can also involve
temporal context like season, time of day etc and therefore further increases the
temporal-awareness. Using the proposed model, they observed increased accu-
racy over their best baseline on two different datasets.

The model proposed in Du et al. [2016] is not just time-aware but puts effort into
modeling the inter-event time itself. In addition to recommending the next item
for a user, it attempts to predict the time of return, which is the time the user
will return to the service, or the time until the next event. The architecture of
the model consists of a single layer of RNN units, GRU units were used in the
best setup, which is fed marker and timestamp pairs in sequences. The output
is fed to two different linear layers for the marker prediction and the time pre-
diction respectively. The time prediction is modeled as a marked point process
with an intensity function which is conditional on the history and the time to
the next event. The history component is the output of the hidden state fed
through a linear layer and contains abstract information of both previous inter-
recommendation gap times as well as the markers themselves. During training,
the temporal part of the intensity function is the actual time target, while dur-
ing the prediction it is an variable that is used in an expectancy calculation to
find the prediction. The final loss function is a weighted sum of the temporal
contribution and the marker contribution. These are respectively the negative-
loglikelihood of the point process given the time and the negative-loglikelihood of
the outputted multinomal score of the target marker. The results are compared
with many different baselines for both marker prediction/recommendation and
time prediction. Both real datasets and synthetically generated datasets, which
were generated by common point processes, were used for the evaluation. The
model outperforms all baselines on marker prediction and time predictions on the
real datasets. For the synthetic time predictions, it achieves highly comparable
results to models based on the actual point process that produced the data, and
beats most other. This showes that the model is robust and able to capture a mul-
titude of different time models. Lastly the model was trained using only marker
prediction loss and time prediction loss respectively. This showed that models
trained only using marker prediction loss performed worse on marker predictions
than the one trained using both losses, and the same for the reverse case. Thus,
proving the two different tasks are mutually beneficial in the proposed model.
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The model proposed in Jing and Smola [2017] is similar to Du et al. [2016] in com-
bining recommendation and time-modeling, but used survival analysis to model
the time instead of a marked point process. Another difference is that this model
is to be used on next-basket recommendation, not just a single sequence of items.
Furthermore, the time modeling is on the inter-session time-gaps, not the time
between each selection. The sessions are thought of as single entities with no
internal dynamics, making the recommendation a next-basket recommendation.
This means that they use a single level RNN for inter-session modeling directly,
in contrast to Ruocco et al. [2017] and Quadrana et al. [2017], who both do
some form of inter-session modeling, but do so in one of the two levels of their
hierarchical RNN models. These hierarchical models use the other level, as pre-
viously mentioned, to do intra-session modeling. This is not considered in Jing
and Smola [2017], and they can use a single level RNN model, making the main
part of the architecture more similar to those of Hidasi et al. [2015] and Du et al.
[2016] even though the modeling is higher-level. Using LSTM in the single level
RNN gave them the best results, so they chose this over GRU. The LSTM is fed a
pretty complex input that is a concatenation of four different embeddings. These
are: an embedding of the actions in a full session, an explicit user embedding,
an inter-session gap-time embedding and an embedding of weekday time. The
last is information about time of day and weekday combined such that the model
can distinguish between activity on, for instance, Monday morning from activity
on Friday afternoon. The user embedding allows the model to personalize the
model beyond the limited user history fed for each recommendation because the
same user embedding is used in all of the user’s training data. The output of
the LSTM unit layer is, similarly to Du et al. [2016], fed to two different linear
layers, one for time prediction and one for recommendation. The same output is
also fed to a unit they call ”3-way factor unit” along with the user embedding.
The output of this is added to the output of the respective linear layers and used
for the final recommendation and time prediction. In order to make the evalua-
tion of the survival analysis simpler and more efficient, a complex integration is
approximated by a summation. In order to do this, the model outputs a vector
of rates for different time intervals, and a separate method for setting the final
gradients had to be defined. They handled the infinite time horizon by setting
a fixed upper time bound after which no prediction could be made. The final
model’s recommendation capabilities was compared with two factorization based
baselines and one based on neural networks. It was shown to outperform all
of these on two different datasets. The time prediction was compared with ex-
pressive point processes, one of which was a Hawkes point process, and achieved
smaller time errors than all of these.
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Another approach for modeling time in RNN-based recommendation architecture
is to incorporate the temporal support into the RNN units themselves. Zhu et al.
[2017] propose three LSTM variant with explicit temporal support through ex-
plicit time gates. They note that while RNNs have been shown to perform well in
different recommendation setting, most recommendation setting have significant
temporal aspects that are not present in NLP(Natural Language Processing) and
other domains where RNN-models have excelled. RNN units are good at mod-
eling orders of entities, but does not offer any inherent support of time intervals
between the entities. That in mind, they propose three different LSTM variation
with the intention of better incorporating the time into the sequence modeling.
The simplest proposed architecture adds a single time gate, which is used to fur-
ther filter the input. This way the time since the last recommendation can affect
how the recommendation is considered in the current recommendation. Through
the cell state of the LSTM, the influence of each time interval is propageted to
future recommendation, thus making the model capable of long-term time con-
sideration. The second and third proposed models both extend LSTM with two
different time gates. The second architecture use one gate for filtering the last
time-gap’s influence on the current recommendation, while the second gate fil-
ters how much of it should be remembered long-term. The third architecture
is similar, but combine the input and forget gate and makes the first time gate
participate in the filtering of the previous cell-stat’s contribution to the current
recommendation. They evaluate the models by not assuming the presence of
sessions and feeding in the user histories continuously. This was done on two
different datasets and it was observed that all proposed models outperformed all
evaluated baselines, the strongest of which being the session-based RNN-model
from Hidasi et al. [2015]. Furthermore, they looked at the performance as the
number of fed test-cases increased, which showed that the models were able to
improve even after a great number of test cases. Thus exhibiting a capability
of exploiting long-term dependencies very well. Finally they tested a dynamic
training scheme where the models are first trained on long user histories, but is
continuously updated by being trained on a fixed number of new observations
as these become available. The motivation being that the old history might be-
come increasingly irrelevant for the new recommendation, so the models could
benefit from having seen the newest data. Doing this they observed a significant
improvement in Recall both for their own models and for the Hidasi et al. [2015]
model.
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Chapter 4

Architecture

In this chapter the proposed model will be described in great detail. This will
be done by looking at different parts of the system in turn and explaining the
overall functionality and purpose of the parts. In the case where multiple options
have been considered, the different options will be explained and the final choice
will be justified. While the explanations will be thorough, they will, for the most
part, not go into finer implementation details. The exceptions to this is where
non-intuitive solutions were applied to handle challenges or assure correctness.
In order to give a general understanding and overview, a high-level description of
the model and its functionality will be presented in the first section along with
a full figure. The code of all models and baselines, as well as pre-processing,
testing, and datahandling, can be found in this GitHub repository 1.

4.1 Key idea

The key idea is to design a joint model based on a hierarchical RNN structure
similar to those found in Ruocco et al. [2017] and Quadrana et al. [2017], thus,
both capable of intra- and inter-session modeling. By also considering inter-
session modeling, we want a more personalized model than the one used in Hidasi
et al. [2015], and seek to further improve this by including explicit user modeling
similar to what is done in Jing and Smola [2017]. The time modeling is to
be based on the marked point process defined in Du et al. [2016], but where
marker history with inter-marker time-gaps is switched out for abstract session
representations, user modeling and inter-session time-gaps. Modeling the time
between session is more similar to the motive in Jing and Smola [2017], however,

1GitHub repository: https://github.com/BjornarVass/Recsys
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their model does not perform intra-session modeling and considers sessions to be
single ”baskets”. Furthermore, we seek to provide an initial recommendation for
the next session before getting feedback from said session. While the intra-session
recommendation found in Hidasi et al. [2015], Hidasi et al. [2016], Ruocco et al.
[2017] and Quadrana et al. [2017] all provide recommendations within sessions
after every selection, none of them provide a recommendation for the very first
selection.

4.2 Overview

The proposed model is essentially a hierarchical-RNN model with added tempo-
ral modeling. The inputs to the model are representations of previous sessions
along with belonging contextual information, followed by the real-time selected
items in live sessions. The outputs are the predicted time of the next session, the
recommendation of the first selection in said session, and the live recommenda-
tions. The former two can be evaluated before the new session is initialized. The
live recommendation, on the other hand, is dependant on feedback from the new
session. The selected items are fed to the model, which then provides recommen-
dation(s) for the next item(s). This last type of recommendation will be referred
to as ”intra-session recommendation” while the recommendation of the first item
will be referred to as ”initial recommendation”. The main goal of the model is to
provide estimates for the start-time of the next session. Additionally, the intra-
session recommendation should ideally benefit from the time modeling or, at the
very least, not deteriorate significantly because of it. The initial recommendation
is mostly considered an added bonus that is not important enough to warrant
any optimization that can negatively affect the other tasks. Figure 4.1 depicts
the full proposed model. The figure is quite high-level and the finer details will
be thoroughly described in the following sections. Key things to note are the
Inter-session modeling and how data flows through this as well as the three dif-
ferent outputs of the model. The inter-session RNN and the intra-session RNN
together makes out the hierarchical RNN which is described in detail next.

4.3 Hierarchical RNN

The Hierarchical RNN is inspired by work in Ruocco et al. [2017], and consists of
an inter-session RNN and an intra-session RNN. In this model some small changes
to the input of the inter-session RNN was done in order to better support the
inter-session modeling and time modeling.
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Figure 4.1: Figure showing the full proposed model. Some finer details have been
abstracted away to make the figure clearer.

4.3.1 Session-representation

Ruocco et al. [2017] considered two different schemes for creating session rep-
resentations. The first of which is to create an average pooling of all the item
embeddings in the session. The other is to use the last hidden state of the intra-
session RNN after the session to be represented has been fed to the network. We
decided on focusing on the latter scheme after preliminary tests showed that this
had better synergy with our model.

4.3.2 Inter-session RNN

Like in Ruocco et al. [2017], the inter-session RNN is fed a fixed number of
preceding session-representations. However, in our model, relevant contextual
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information is concatenated to this input. Specifically information about the
user, and the time since the last session, in the form of embeddings. The em-
beddings will be described in further detail in 4.4. Figure 4.2 illustrates how the

Figure 4.2: Figure showing the embeddings and concatenation involved in pro-
viding input to the inter-session RNN

different embeddings are gathered and concatenated with the session representa-
tion to create the input to the inter-session RNN.

Despite the additions, one of the tasks of the inter-session RNN remains to out-
put an initial state for the intra-session RNN, like in Ruocco et al. [2017]. This is
done by propagating the final hidden state of the inter-session RNN, which serves
as an abstract representation of the inter-session information/user behavior. The
intuition is that this information could help the intra-session recommendation
to identify, in fewer steps, the current interests of the current user, and circum-
vent the cold-start problem. In our model, we use the same last hidden state
for the two new tasks of predicting the time until the next session and the first
selection within it. By including additional contextual information in the inter-
session modeling part of the model, we seek to support the two new tasks while
continuing to support the original intra-session recommendation task.
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4.3.3 Intra-session RNN

The intra-session RNN uses the last hidden state of the inter-session RNN as
initial state, and is then fed embeddings of the items in a new/live session. For
each item embedding in the input, the corresponding output of the RNN is passed
to a linear layer which outputs scores for each target items. The recommendation
given the last item and the hidden state of the RNN, will be the item(s) with
the highest score(s). The intra-session RNN will inherently perform intra-session
modeling since it is fed the session selections in sequence, and by having the inter-
session RNN provide the initial hidden-state, the intra-session recommendation
will be based on both intra- and inter-session modeling.

4.3.4 RNN choices

GRU units are used in both the intra-session and the inter-session RNNs. GRU
was chosen due to its ability to remedy the vanishing gradient problem and since
it was found to work better than LSTM for this problem and model structure.
Of the many different flavours of GRUs, the decision fell on the default GRU
implementation found in the deep learning framework that was used, PyTorch.
Optimization through choice/design of RNN-cell is not considered to be within
the scope of the thesis, so we did not spend any effort beyond testing both the
default LSTM-cell and the default GRU-cell before making the decision. The
update rules that are used can be found in equation 2.3, where σg is set to be the
sigmoid activation function and σh is set to be the hyperbolic tangent activation
function

Dropout is applied to both the input and the output of both RNNs. While
Ruocco et al. [2017] observed improvements only when applying dropout when
considering the LastFM dataset, dropout was found to also improve the perfor-
mance of our model on the Reddit dataset.

4.3.5 Last hidden state extraction

The extraction of the last hidden state has to be done in both the inter-session
RNN and the intra-session RNN. The final hidden state of the inter-session RNN
is used for all three model tasks, and the final hidden state of the inter-session
RNN is needed for storing ”hidden state”-based session-representations. Due to
the use of padded sequences, where paddings are ignored, this extraction is not
completely straight forward. Because of the highly parallel nature of SIMD(Single
Instruction Multiple Data) operations, which are used extensively in ANN compu-
tations on both GPU and CPU, it is in many cases more efficient to compute the
output for both valid entries and paddings alike. Trying to filter out the paddings
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during computation can cause a lot of branching which is handled poorly by SIMD
operations. Thus, the correct final hidden states is gathered from the full output
by using the non-padded sequence lengths to index the outputs.

4.4 Embeddings

There are a total of three different types of embeddings used in the model. The
purpose of embeddings is to learn finer dynamics and representations of the em-
bedded entities. For instance, if two different artist often are listened to by users
with similar tastes, an embedding layer would most likely learn artist representa-
tions that are quite similar to each-other. By using RNNs, learned representations
can reflect certain temporal dynamics in addition to the more general ”similarity
measure”. A simplified example of such representational knowledge could be:
”Artist A is almost always listened to before Artist B”. Embeddings can also
learn dissimilarity and non-linearity. For instance, when considering time-gaps
between sessions, there might be a higher correlation between gap durations of
24 and 48 hours(daily/periodic behaviour) than between 12 and 24 hours, even
though the quantitative difference is less in the latter example. The dimensional
size of the embedding directly affects its expressional complexity, consequently
the size of the embeddings used should be scaled by how complex the contextual
data is and how many unique embeddings are needed.

4.4.1 Item embedding

First and foremost is the embedding of the input items. This is a rather large
embedding table with an embedding for each unique item in the dataset as well
as the 0-embedding reserved for the ”padding-item”. The 1-indexed item IDs
are used to index their respective embeddings. The learned embeddings are only
directly handled by the intra-session RNN and consequently only trained by the
resulting loss of this part of the model. However, both schemes for getting session-
representations are in some way affected by the item embedding. This means that
the item embeddings will affect earlier parts of the network, but then as input,
not computational graphs. Hence, their gradients are unable to flow back to
the embedding layer, and cannot be used to train the embeddings further. An
additional detail here is that the 0-entry of the embedding table could be set to
be a vector of zeros. This will allow average pooling to be done haphazardly over
all item embeddings in a session because the 0-embeddings will not contribute
with anything, which is useful in case the average pooling session-representation
scheme is to be used. The number of valid embeddings can easily be found using
the sequence lengths and be used in the division to get a representative average.
Because the model ignores the paddings, this embedding is never updated during



4.4. EMBEDDINGS 35

training meaning that the described strategy above can always be used. Due to
the large number of items present in all considered datasets, the dimensionality
of this embedding is the largest by far.

4.4.2 Inter-session gap-time embedding

The time gaps between sessions are first normalized and then divided into dis-
crete buckets. The resulting bucket ID’s can then be used to index embedding
tables/layers to propagate the corresponding embedding. Two different normal-
ization schemes were examined, each having their own pros and cons. Both are
first given an upper bound, which sets a threshold of the time-gap after which we
don’t consider the user active enough to be provided accurate time predictions.
The time-gaps that are greater than this bound is set to the upper-bound, result-
ing in them ending up in the very last embedding no matter the normalization
scheme. The more straight-forward of the two normalization schemes, simply
divides the time-gap range into uniformly sized buckets. The benefit of this is
that all the values in the time-gap range will belong to a bucket of equal size,
causing no time-gap to be in the same bucket as a much higher or lower time-gap.
A disadvantage of using this is that the earlier ”popular” buckets can be over-
crowded and the later ones can end up being almost empty, which can make such
embeddings hard to train. One also needs a high resolution to cover the finer
differences in the smaller time-gap ranges, which further increases the problem of
sparse buckets. The second normalization looked at is one where the time-gaps
are first transformed with a log function, before the transformed range is divided
uniformly into buckets. This results in a more evenly distributed number of ob-
served time-gaps in the different buckets, but at the cost of cruder resolution for
larger time-gaps where the corresponding buckets covers much more time in the
log transformation than the earlier ones. The larger time-gap buckets may there-
fore become over-generalized. It was found that the log scaled scheme worked
pretty good for small resolutions, but was overall out-performed by the uniform
scheme with higher resolution. Since having high resolution was observed to be
a non-issue, both with regards to model performance and run-times, the uniform
scheme was deemed the better option.

4.4.3 User embedding

User embedding is an explicit embedding of a user that can learn user specific
behaviour beyond the limited history of session representations. This is inspired
by Jing and Smola [2017] where the same type of embedding was used. This
could be very useful when there are long user histories. For instance, if a user
behaves a bit unusual and sporadic in the last few sessions, a model with user
embeddings can have information about long term user behaviour, which can help
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making sense of/override the recent noisy behaviour. A slight problem of using
such embeddings is that the model cannot easily be used for new users without
extensions. A way to handle this problem could be to add an ”unknown user”
embedding. This could for instance be trained on the known users after the main
training, but only updating the weights in the user-embedding. This is far from
optimal since the rest of the model might be biased towards having specific, as
opposed to general, information about the user. In this case, the training of the
general embedding would just attempt to make the best out of a bad situation.
For our use-case, it was deemed reasonable to only consider known users since
improved personalization is a sub-goal of the thesis. Thus, all setups of the model
utilize explicit user embeddings.

4.5 Time modeling

The main goals of this model is to predict the time until the next session is
initialized, given a fixed length history in the form of abstract session representa-
tions and corresponding contextual temporal information. This is both because
knowing the time of return can be very useful but also to examine whether the
improved time modeling can improve the other tasks through better utilization of
temporal information, and the other way around. By basing the time prediction
on previous time-gaps and user selection history, we hope to achieve better time
prediction than those of models that only considers time-gaps alone.

4.5.1 Parameterization

The time modeling is heavily inspired by Du et al. [2016], where time modeling
is used to both predict the time of the next item recommendation given a single
sequence of previous items, and to improve the recommendation itself. In their
model, the time-gaps between selected items are considered to be drawn from
a marked point process. The parameterization of the marked point process is
defined by the authors, and is both dependent on the previous selection history,
with corresponding inter-selection time-gaps, and on the time since the last selec-
tion. The most important detail here is that the history is provided by an RNN.
Since the output of RNNs can contain abstract information about previously
processed input, RNNs can be used for creating an abstract history or summary
of inputted sequences. Instead of devising a complex scheme for parameterizing
all the history and the contained dependencies, this is left completely up to the
output of an RNN. We adapt this marked point process for applying it in our
hierarchical model. The main difference is that the main part of our history
are abstract session-representations and not individual items. Consequently, the
corresponding time-gaps are the times between the concurrent session representa-
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tions in the history. This inter-session modeling with application of concatenated
embeddings is more similar to what was done in Jing and Smola [2017]. How-
ever, Jing and Smola [2017] did not consider any intra-session modeling and used
a non-hierarchical single layered RNN in a next-basket recommendation model.

λ∗(t) = exp(v>t · hj + wt · (t− tj) + bt) (4.1)

The resulting intensity function can be seen in equation 4.1, where hj is the j-th
hidden state, tj is the last timestamp in the last session, t is the time variable,
vt is a vector of weights with the same dimensionality as hj , wt is a single weight
and bt is a bias term. v>t · hj comprises the historical influence on the intensity
function, while wt · (t − tj) is the current influence. Note that t and tj always
appear together. t − tj can therefore be replaced with gj which is a variable
of the time since the last session. We will use this notation when we consider
fixed time-gaps, as provided during training. When considering time-prediction
we will stick with t− tj as this makes it clear that the time-gap is dependent on
the variable t.

f∗(t) = λ∗(t)exp
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}
(4.3)

The full conditional density function of the marked point process is given in
equation 4.2. In equation 4.3 the intensity equation 4.1 has been substituted
into the conditional density function 4.2, resulting in the full expression of the
marked point process. Time was modeled as number of days, both because this
granularity fits all evaluated datasets, and since finer granularites made it difficult
to scale the learning rate of time specific weights. Scaling of learning rates was
found to be necessary in order to avoid that these weights diverged/exploded,
which is not all that surprising, considering that the time-gap is multiplied with
a weight within an exponential function in the time-loss equation 4.6.

4.5.2 Temporal additions to the model

The three main additions introduced in order to model the time are: the weights
vt and w, and the bias bt. vt is a vector of weights and bt is a scalar bias term.
In the model, these two terms are combined in a single linear layer with bias.
This linear layer is applied to the output of the inter-session RNN and results in
a single scalar output. w is a single weight and is also modeled as such in the
model.



38 CHAPTER 4. ARCHITECTURE

4.5.3 Performing the time predictions

An intuitive way of getting a single prediction from a distribution is to find the
expectation, which essentially is a weighted sum/area over the probability distri-
bution. For discrete distributions, the expected value can be found by summing
the products of the discrete entities and their respective probabilities. In the
same estimation for the continuous case of density functions, the summation is
replaced by integration.

t̂j+1 =

∫ ∞
0

t · f∗(t)dt (4.4)

Equation 4.4 is the expectation calculation of the distribution, where t̂j+1 is the
expectation and is considered to be the time prediction. A slight challenge is that
the density distribution equation of the point process 4.3 cannot be integrated
analytically. Thus, prediction has to be approximated by numerical integration.
To handle the infinite upper integration bound, a simple upper cut-off time is de-
fined. While this is another approximation, the approximation becomes negligible
when setting the cut-off time a bit higher than the vast majority of gap-times
found in the data. Additionally, defining a point in time after which predictions
cannot be made, can help the model perform better by reducing the impact large
infrequent time-gaps has during training, relative to the impact of smaller and
more frequent ones. Focus put into modeling infrequent time-gaps is, more often
than not, wasted effort in the first place. Firstly because there are not enough
data beyond a certain point to accurately learning such predictions. Secondly,
because for many services the users can safely be considered inactive after a cer-
tain time of inactivity has passed. If, or when, the user becomes active again is a
problem of its own, and will often only be noise in a recommendation setting. In
general, uncertainties tend to grow larger with time, making it difficult to make
accurate predictions far into the future.

The model utilizes two upper bounds concerning time-gaps. The first of which
describes the upper target bound. Time-gaps that originally are larger than this
are set to the upper target bound before they are used as time prediction target
and before their time-embedding is retrieved in order to be fed to the inter-session
RNN. The second bound is the upper integration bound and is set a bit higher
than the upper target bound. If this had been set to the same as the upper target
bound, the modeled probability distribution would have to be an infinite valued
spike at the upper target bound for the model to output the upper target bound.
By setting the upper integration bound a bit higher, we don’t have to expect
the modeled probability distribution to have such infeasible shape in order for
the time predictions to be evaluated to a value close to the upper target bound.
Consequently, this theoretically opens up the possibility of predictions that are
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greater than the upper target bound. For reasonable upper bounds, this will most
likely never happen due to loss function optimization and the discussed futility
of predicting far into the future.

4.6 Initial recommendation

In Ruocco et al. [2017] the model is only applied after a user has selected an
initial item, which is fed to the model for recommending the second item. Our
model predicts the time until the start of the next session as well. This being the
case, it would be useful to also predict/recommend the very first item as well in
order to provide the user with an initial recommendation when she eventually do
return. In order to do this, a single linear layer is added to the model. The new
layer is fed the last hidden state of the inter-session RNN, like the time modeling
and the intra-session RNN. The goal is to use inter-session information from the
hidden state to recommend the first item in the future session. The layer outputs
scores for all the recommendable items and is therefore very similar to the linear
layer after the intra-session RNN. Figure 4.3 shows the data-flow and different

Figure 4.3: A simple figure summarizing the dataflow and different tasks pre-
formed by the model. The different tasks are illustrated by three dashed boxes.

tasks of the model with an example session containing the items A, B, C, D
etc. The individual recommendations have been denoted with the target letter,
but also with an asterisk to make it clear that the recommendation might not be
correct. Note the difference between the initial recommendation and intra-session
recommendation, as this might not be apparent without experience in dealing
with sequence models. The figure also makes it clear how the time prediction
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and initial recommendation only considers inter-session modeling, while the intra-
session recommendation also have intra-session modeling available.

4.7 Loss function

As stated in the overview and later individually elaborated, there are three differ-
ent outputs of the full model. These are the intra-session recommendation, the
initial recommendation and the prediction of when the next session will start.
Both recommendation outputs are in the form of non-normalized scores for the
recommendable items, while the time output is the scalar contribution of the
history v>t · hj + bt from Equation 4.1. These two types of output are treated by
different types of loss functions, and then all three losses are combined for the
backpropagation.

4.7.1 Recommendation loss

For both different recommendation losses, cross-entropy is used. Cross-entropy
works by first normalizing all values between zero and one, by applying softmax,
and then taking the negation of the log transformation of these values. Usually
when applying cross-entorpy loss, all losses except that of the actual target are
evaluated to zero, which is also the procedure applied in this model. Negative log
transformation can be used as loss because the scaled scores are all between zero
and one. In the ideal situation, the scaled score of the target will be one, making
its negative log transform zero. Negative log transformation diverges towards
infinity when the input approaches zero, meaning that small scores will result in
large losses.

The model ignores losses originating from padded items by masking these out.
This was deemed the best option when judging pros and cons of ignoring/partly
ignoring padded items. If all losses had been used, the padding item would be the
most frequent item in all datasets, and would most likely be recommended often.
An hybrid option is to consider the loss of the first padded-item, but ignoring
the remaining. This could make the model consider the padding as an ”end-
of-session symbol”, consequently teaching the model to recommend the padding
item when it believes the session is over. While such results could be interesting,
the use-case of such knowledge is pretty limited and was therefore not applied in
this model.

Lrec(sj+1, i) = −log

(
e−s

i
j+1∑N

k=1 e
−skj+1

)
(4.5)
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Equation 4.5 is the full expression of the loss criterion used for recommendation.
i is the id of the target item, sj+1 is the item scores and N is the total number
of unique items.

4.7.2 Time loss

Any conditional probability density functions will result in ”one” when integrated
from negative infinity to positive infinity by definition. The higher the values in
an interval in the density function, the higher the probability of of drawing from
said interval. Ideally, one would like value of the density function to be as high as
possible given the target. This means that the negative log transformation could
be used for getting a loss measure for time as well.

While the integration over the legal range over any probability density func-
tion will result in one, this does not restrict it from being greater than one in
small intervals. Thus, we might end up taking the negative log transformation
of a value greater than one, which results in a negative loss. This does not cause
any problems since the object is not to have a loss of zero but to minimize the
loss. A negative loss is obviously less than zero and therefore even better than
zero.

Ltime(tj+1, hj , w) = −
(
v>t ·hj+wt·gj+1+bt+

1

w
exp(v>t ·hj+bt)−

1

w
exp(v>t ·hj+wt·gj+1+bt)

)
(4.6)

The resulting loss is the negative log transformation of equation 4.3 which can
be seen in equation 4.6, where gj+1 is the target time-gap.

Finally we introduce a new tuning parameter for customizing the impact of the
target time-gap. The key motivation for this introduction was the observation
that the large losses from longer time-gaps could make the model focus on middle-
long time-gaps even though both datasets mostly contain short-time gaps. The
hyper-parameter, κ appears as an exponent of the time-gap. Setting it to 1,
makes it identical to 4.6 but if it is set somewhere between 0 and 1, it will scale
down the contribution of the longer time-gaps relative to the shorter ones. It
could also be set to a value higher than 1 if one wants to scale the contribution of
the longer time-gaps up relative to the shorter ones. The tuning parameter can
be set differently, based on observation and motives, for different datasets with
different time-gap distributions.

Ltime(gj+1, hj , w, κ) = −
(
v>t ·hj+wt·gκj+1+bt+

1

w
exp(v>t ·hj+bt)−

1

w
exp(v>t ·hj+wt·gκj+1+bt)

)
(4.7)



42 CHAPTER 4. ARCHITECTURE

The final time loss expression ends up being 4.7 where we have added the κ
tuning parameter. The introduction of κ is also supported by looking at the

gradient of the negative log-likelihood with respects to wt: ∂−log f∗(t)
∂wt

= −gj+1 +
c1

(wt)2
exp(gj+1wt)(gj+1wt − 1) + c2 ( where c1 and c2 are fixed terms which do

not depending directly on the time-gap gj+1 or the weight wt). This expres-
sion has two main conditional contributions: one linear from the time since last
session(short-term) and one exponential from the history of past interactions(long-
term). Hence, applying an exponent to the time-gap in equation 4.6 will affect
these two contributions differently, which can be exploited in order to tune the
influence of long and short time-gaps relative to each-other. This intuition can
also be seen by observing that the gradient is approximately linear for small
time-gaps, but exponential for long time-gaps.

4.7.3 Combined loss

In order to combine the different losses into one single loss, every different loss are
summed up over the entire mini-batch. In order to get the most accurate feedback
during training, the average of the losses is found by dividing the summed losses
with the number of non-padded contributions. Otherwise a mini-batch with a
lot of padded items could appear to have a much smaller loss than it really does.

Ltotal = αLavgtime(Gj+1, Hj , w, κ) + βLavgrec (Sj+1, I) + γLavgrec (Fj+1,K) (4.8)

The combined loss is set to be a weighted sum of the three different averages
and is given in equation 4.8. I is the target items of the intra-session recom-
mendation and K is the target items of the initial recommendation. Sj+1 is the
scores of the intra-session recommendations, Fj+1 is the scores of the initial item
predictions and Gj+1 is the target time-gaps. The avg superscript on the loss
contributions is added to indicate that this is the averaged losses that disregards
paddings, and that this is the full expression of the mini-batch loss. Note that
for each session there are only one initial recommendation target and one time
target, but there are necessarily as many intra-session recommendation targets
as the current session-length. α, β and γ are scaling factors used to weight the
different loss contributions and are hyperparameters of the model.

4.8 Training

The training of the model relied heavily on PyTorch 2, which is the framework
used to implement the model. No changes were done concerning the gradients
and how these were found. Additionally the library implementation of the Adam

2PyTorch GitHub repository: https://github.com/pytorch
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optimizer [Kingma and Ba, 2014] was used with the default parameters. This
was chosen for its use of momentum and adaptive learning rates while remaining
computational viable. Dropouts and consequent output scaling are used during
training, but turned off during evaluation. This is also handled at a library
level. The use of mini-batches deserve further explanation and is given its own
sub-section.

4.8.1 Mini-batch scheme

The mini-batches were created such that no users were represented with more
than one session in any mini-batch. Otherwise some mini-batches could end up
specializing the model too much towards a single user. Because the users can have
different numbers of sessions, a scheduler, that prioritize users with many sessions
left, was implemented. For significant differences in number of sessions per user,
the scheduler can still end up outputting many mini-batches towards the end
with very few user. This is because even though some users are present in every
single mini-batch, if their number of sessions is great enough, most other users
may exhaust all their sessions by filling the remaining slots in the mini-batches
before the last batch is compiled. This is avoided by stopping at the moment a
mini-batch is less than half-full. Because the scheduler has to prioritize users with
many sessions and we split training and testing data chronologically, the scheduler
ends up being deterministic. This means that each epoch goes through the same
mini-batches in the same order. Ideally, the scheduler should be randomized, but
this is difficult to achieve without the overhanging probability of ending up with
many more half-full mini-batches. Considering the relatively small number of
epochs needed for training, a badly distributed epoch towards the end of training
might end up adding a lot of bias to the final model. In the end, the deterministic
option was deemed to be the better of the two, which is partly justified by the
fact that many of the potential problems with deterministic batches are remedied
by using relatively large datasets. For instance, having many mini-batches makes
it improbably for the model to overfit on the mini-batch order.
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Chapter 5

Experimental Setup

In this chapter will describe everything related to how the experiments were con-
ducted. This involves a discussion of the different datasets that were used for
the evaluation as well as how these were pre-processed. Then the hyperparam-
eter settings will be listed and explained, before rounding off by describing the
baselines and the different experiments.

5.1 Datasets

The evaluation was done on two different datasets. These are the LastFM dataset
from Bertin-mahieux et al. [2011] and the Reddit dataset 1, and are the same
datasets as the ones used in Ruocco et al. [2017]. Last.fm is a music website
where users can keep track of the songs they listen to as well as sharing this
with their peers. Its data is in the form of tuples containing user-id, artist, song
and timestamp, each representing a single listening event. Reddit is a popular
forum/discussion website, where users can share and comment on different news,
creations, pictures and other topics. Its structure is divided into different sub-
forums, named subreddits, which define the topics of the posts to be posted there,
the interests or affiliations of the users who frequent them. This data is in the
form of tuples containing a user, a subreddit and a timestamp, and each of these
represents a single event where the user has commented on a post within the
specific subforum at the time of the timestamp. Table 5.1 contains key statistics
of the final pre-processed datasets used in the different experiments.

1Subreddit interactions dataset: https://www.kaggle.com/colemaclean/subreddit-
interactions
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Reddit LastFM
Number of users 18,271 977
Number of sessions 1,135,488 630,774
Avg # sessions per user 62.1 645.6
Average session length 3.0 8.1
Number of items 27,452 94,284

Table 5.1: Table containing statistics of the different datasets after pre-processing

5.2 Pre-processing

The format of the data in both datasets are quite simple, but it was deemed nec-
essary pre-process the data in a few different ways. These are mainly concerned
with ordering it into distinct sub-sequences/sessions, removing noisy or irrelevant
data and defining the items/markers in the data. Most of the pre-processing is
done exactly like in Ruocco et al. [2017], with the exception of a small change
applied during the splitting of long sessions to ensure that time modeling only
considers time between identified separate sessions.

5.2.1 Dividing into sessions

Neither of the datasets were explicitly ordered into different sessions, so this had
to be done in the pre-processing. The scheme for doing this is based on the time
between the consecutive events for a single user. If the inter-event time is above
a certain threshold, it is assumed that they belong to different sessions. For the
Reddit data, this threshold can be quite large was set to 1 hour or 3600 sec-
onds. This is justified by the fact that a user might still be browsing subreddits,
posts and comments, but be perceived as inactive because they don’t comment
themselves. The threshold can arguably be set a bit less in the LastFM dataset,
because the events represents songs listened to, and the vast majority of songs
last way less than 1 hour. The threshold for the LastFM dataset was set to half
an hour or 1800 seconds, which should cover the length of most songs and also
allows for small breaks without identifying continued activity as a separate new
session.

During run-time, the final sessions are split into input and target sequences,
where the input sequence is the full session except for the last item. Conversely
the intra-session recommendation target sequence is the full session except for
the very first item. In order for this to work, the session must at least be two
items long, which is enforced throughout the following pre-processing steps.
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5.2.2 Marker definition

The markers/items in the Reddit set was simply set to be the subreddit provided
in each data entry. In the LastFM set however, the items were set to be the artist
rather than the song title. This was done because the sheer number of different
song titles is very great and the resulting data would be extremely sparse, making
it highly unlikely that any decent recommendation accuracy could be achieved.
The number of different artists is still very large and the resulting data is quite
sparse, but not exceedingly so. For the most part, people tend to like songs
from the same artist or at least have a bias towards liking other songs of the
same artist. Thus, considering two different songs of the same artist as the same
marker, is not completely unreasonable.

5.2.3 Removing consecutive reoccurring items

In some cases, a user might comment multiple times in a row on posts belonging
to the same subreddit, or listen to the same song or artist multiple times in a
row. While this is valid behavior, to feed in such data could train the model to
often output the same marker it was fed. It is not very useful to recommend a
user posting in a certain subreddit, that same subreddit, nor recommending a
user listening to a certain artist to listen to the same artist. In both cases the
user is perfectly aware of the item they are currently ”consuming” and does not
need to be reminded of it. Such recommendation could be useful in a more com-
plex model where one could do further recommendation by first recommending
subreddit/artist then post/song, but such behaviour is not considered for this
model. Thus, consecutive reoccurring items are handled by reducing these to
only one occurrence.

5.2.4 Splitting long sessions

While real sessions lengths can have arbitrary lengths, this is difficult to incor-
porate in the training of RNNs. The sequences need to be unrolled for a certain
number of timesteps in order to get meaningful contributions of the previous
timesteps. While one can train for half a session and then continue in the next
mini-batch by feeding in the last hidden state of the first half of the session, it is
difficult to allow the gradients to go across separate mini-batches. This is because
the initial hidden state will be a scalar input, not a computational graph that
can be backpropagated over. Additionally, certain trends for session lengths can
usually be found, so setting the maximum session length to a value that is a bit
higher than the average length, can often cover the vast majority of the sessions.
There are a lot of benefits by setting a maximum session length that covers most,
but not all, session lengths when using session-paddings. For instance, setting the
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maximum session length to the longest observed session, will most likely result
in session-paddings making up a large fraction of the total data, which is very
inefficient. The largest session lengths can additionally be outliers which ideally
should be ignored by the model and definitely not have a large say in its design.
Furthermore, even though GRU and LSTM can learn long dependencies, this is
not by any means unbounded in practice. While GRU/LSTM models usually
perform better after being provided e.g. 5 vs no items in a sequence, but the
difference is usually pretty small between e.g. 20 and 40 items. This in mind, a
maximum session length L was defined and set to be L = 20, a number found
by looking at the different session length statistics of the datasets. Sessions with
lengths l in the interval L < l < 2L were split into two separate sessions. Sessions
with lengths l >= 2L were discarded entirely, because such behaviour was found
to be significantly rare and raising the possibility that they stemmed from bot
activity. Note that this is done after other pre-processing steps that affects the
individual session lengths.

Because sessions that are split because of their length are not considered sep-
arate sessions, trying to model the inter-session gap-time of these could be a
source of noise. This is avoided by setting the last timestamp in the first half,
and the first timestep in the second half, to be the start time of the full session.
This way the inter-session time-gap will be calculated to be 0 and the contribu-
tion will be masked away from the time loss, making sure that the model does
not train on these time-gaps.

5.2.5 Paddings

After the sessions have been split, the sessions are still of varying lengths, but
now no sessions are longer than L. In order to have equally long sessions that
easily can be handled by RNNs, the sessions have to be padded such that all
sessions are of length L. Sessions were therefore padded with 0s. Note that legal
items have been given unique integer ids starting with 1 and ending with the
number of unique items. This way the paddings can easily be distinguished from
the actual items, and subsequently ignored by the model.

5.2.6 Splitting into test and training set

In the end the datasets are split into separate testing and training set. 80% of the
data was put into the training set and the remaining 20% went into the testing
set. The split was done for each user and chronologically, such that the most re-
cent 20% of a users sessions went into the testing set. The intuition behind this is
that a recommendation system should strive to make the best recommendations
for the future sessions. Trends and interests comes and goes, so achieving good
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results on the newest data should be the best way of evaluating the model.

A potential problem with the split strategy described above is that splitting
within each user according to a fraction will usually not result in a fine chrono-
logical split. One user might have ceased to be active, thus having only old
sessions, while another might just have started using the service. This can result
in hindsight information being available for the models to exploit. Say one artist
becomes very popular at one point, and that this is covered in the training set of
most users. The model then has the ability to generally favour this artist more
than if the popularity surge was not observed at all. When a user that have not
observed this surge in popularity within its training data is evaluated, the model
may appear to anticipate a sudden interest in said artist around the point the
artist became popular. In reality it may simply have exploited hindsight informa-
tion from other users. However, note that since the baselines and the proposed
model are tested on the same datasets, any hindsight information will be avail-
able for all of them. So unless one model is able to exploit such information much
better than the others, the comparison can still be reliable. It is possible to cre-
ate a dataset which is split strictly chronologically, but this does not guarantee
anything about how the users’ data is distributed between testing and training.
Since the proposed model utilizes explicit user embeddings, users with little or
no training data will have close to randomized embeddings, or highly biased due
to having observed very few observations. A solution could be to balance the
users better chronologically in the pre-processing, but then one would have to
disregard some data. In the end we opted for the the first strategy since this
requires less pre-processing, ensures good user data distribution, utilizes almost
all data and since we have no reason for believing that any model will be able to
exploit hindsight information better than the others.

5.3 Hyperparameters

The model contains a large number of hyperparameters, three of which are set
specifically based on the dataset used, while the others are universal. The sheer
number of hyperparameters combined with the great training time means that it
cannot be claimed with confidence that all are set optimal, but the settings are
of course the best values that were observed.

5.3.1 Data-specific hyperparameters

Table 5.3.1 contains the data specific hyperparameter settings. The number
of different items or classes is much higher in the LastFM dataset than in the
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Hyperparameter Reddit LastFM
Item embedding size 50 100
Epoch nr 28 24
Min-time 1h 0.5h

Table 5.2: Table containing dataset specific hyperparameters

Reddit dataset, so it is not surprising that the best embedding size was found to
be greater as well.

5.3.2 Universal hyperparameters

There are a great number of universal hyperparameters so these can for struc-
turing purposes be divided even more.

Learning and loss

Hyperparameter Value
Learning rate 0.001
Learning rate, time 0.0001
Dropout rate 0.2
α 0.45
β 0.45
γ 0.1

Table 5.3: Table containing universal hyperparameter settings concerning learn-
ing and loss function.

Table 5.3.2 contains the different learning rates, the dropout rate and the set-
tings of loss scaling hyperparameters found in equation 4.8. The learning-rate of
weights w in equation 4.6 had to be reduced because otherwise it has a tendency
of diverging, which caused other weights to diverge. The learning rate of vt in the
same equation was also reduced the same amount because otherwise the time loss
oscillated heavily between batches. These are collectively referred to as ”time”
in table 5.3.2 because they are the only parameters strictly related to the time
prediction.
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Hyperparameter Value
Batch size 100
Max Sequence length 19
Max number of representations 15

Table 5.4: Table containing universal hyperparameter settings concerning batch
control

Batch control

Table 5.3.2 contains the hyperparameter settings concerned with batch control.
These are the number of sessions in one batch, how long the sessions are and how
many previous session representations are provided for each session. The sequence
length is one less than the session length described in the pre-processing because
the input sequence and intra-session recommendation target sequences are both
missing one item each(last and first items respectively) of the full session.

Context embeddings

Hyperparameter Value
User embedding size 10
Time-gap embedding size 5
Time-gap embedding number 500
Upper time target bound 500

Table 5.5: Table containing universal hyperparameter settings concerning the
context embeddings.

Table 5.3.2 list universal hyperparameters concerned with the context embed-
dings. The number of user embeddings is not listed as this is not a hyperparam-
eter since it is set by the number of unique valid users in the evaluated dataset.
The table also contains the ”upper time target bound” as this is a hyperparameter
that affects the time-gap embeddings.

5.4 Temporal baselines

The time results were compared to Hawkes-process, see section 2.3.2, based base-
lines. A Hawkes-process was chosen because it is good for modeling situations
where activity increases the probability of more activity in the near future. This
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is often a simple, but good, approximation of user behaviour in many different do-
mains. This allows Hawkes-processes to model periodic behaviour, that switches
between frequent activity and infrequent activity, much better than for instance
a Poisson-process, which assumes a static rate of activity.

5.4.1 Baseline hyperparameters

Hyperparameter Value
History length 15/training data length
Number of prediction samples 100

Table 5.6: Table containing hyperparameter settings concerning the temporal
baseline. The history length has two alternatives since the baseline was fitted in
two different schemes.

Table 5.4.1 contains the hyperparameters settings of the Hawkes-based baseline.

5.4.2 Setup

Users are considered to be independent so the Hawkes-process baseline is used to
model one user at a time and having one dimension. For each time prediction, the
Hawkes-process is fitted on the last 15 time-gaps observed by the same user with
a MAP EM method (Maximum APosteriori Expextation-Maximization) [Morse
and Chodrow, 2016]. 15 was chosen since it is the same as the number of previous
session representations, consequently also the number of time-gaps, the proposed
RNN-based model is provided. The hope is that the limited recent history will
contain traits of the user’s current short-term behaviour but at the same time
also contain traits of some of the more ”static” long-term behaviour. This is used
throughout the testing, meaning that the baseline is trained/fitted on data that
is only tested on in the proposed RNN-based model. This is a feasible solution
since fitting the Hawkes process on few observations can be done in run-time,
which means that there is no real reason not to use the most recent data.

Simply fitting a Hawkes-process and using it to generate a single event, cold-
start, would return an exponential distributed prediction with intensity equal to
the base intensity of the Hawkes-process. In order to account for how the pre-
vious events affect on the intensity function, the initial intensity is simulated by
feeding in the same 15 most recent time-gaps. Generation is done by applying
an Ogata’s thinning method [Ogata, 1981]. Ogata’s thinning is used to simulate
time dependent intensity functions by considering the intensity to be part-wise
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static. Events are generated using the newest evaluation of the intensity, but
these can be rejected according to a probability that decreases over time based
on re-evaluations of the intensity. Because the generation can vary heavily, it is
done 100 times for each prediction, where the resulting numerical prediction is
the average time of the first generated event in the 100 runs. The implementation
was adapted from 2, and the main changes are the added abilities to simulate
intensity during a sequence of events and to provide an initial intensity to the
generation. This setup of the baseline will be referred to as ”short-term fitted”
in order to differentiate it from the following alternate baseline.

5.4.3 Long-term fitting alternative

A second ”long-term fitting” scheme was also applied using the same parameter-
ization. For each user, the Hawkes-process is fitted once on the full training-set,
which then is used for the full testing-set with no re-fitting. This allows the
baseline to have observed the full training-set, which is the same as the proposed
RNN-based model. However, due to the limitations of the baseline parameteri-
zation, it will be very difficult to both model long-term and short-term depen-
dencies. The result will likely be parameters tuned to maximize the long-term
performance on the full training data, weighting the old observation equally to
the newest. On the other hand, this might give the baseline enough data to
capture the individual user behaviour better than by only using the most recent
sessions, which certainly could benefit the recommendation given consistent user
behaviours. This will be referred to as ”long-term fitted” baseline.

5.5 Intra-session recommendation baselines

The intra-session recommendation was compared with two different RNN-based
models. No other baselines were considered on the ground that both baselines
had been shown to outperform other types of models in other work, also on the
same datasets evaluated in this thesis.

5.5.1 RNN

The simplest baseline is referred to as RNN, and is the best performing baseline
considered in Ruocco et al. [2017]. It is an edited adaption of the model in Hidasi
et al. [2015] and its main parts are an item embedding layer followed by a GRU
layer and ending in a final feed-forward layer.

2Steve Morse’s Github repo: https://github.com/stmorse/hawkes
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5.5.2 HRNN

HRNN is an abbreviation for ”Hierarchical Recurrent Neural Network” and is
the model proposed in Ruocco et al. [2017]. It shared many structural similarities
with our model, as our model was built upon it. It was shown to significantly
improve upon RNN in the work done in Ruocco et al. [2017] and is therefore
considered a strong baseline.

5.5.3 CHRNN

CHRNN is an abbreviation for ”Contextual Hierarchical Recurrent Neural Net-
work” and is HRNN extended with the contexts added in the proposed model.
Equivalently, it is the proposed model trained by only considering intra-session
recommendation loss. It is used extensively in the discussion on whether or not
the intra-session recommendation benefits from the joint training.

5.6 Syntetic time-gaps

In order to test the robustness of the method, some tests were conducted where
the model was tested on synthetic time-gaps. Two different types of distribu-
tions were used for generating synthetic time-gaps. When applying the proposed
model, the real time-gaps of the data were replaced with synthetic ones. While
this does not preserve most dependencies between session content and time-gaps,
both distributions are used in a way that preserves some connection with the data
of the users they generate time-gaps for.Thus, there is some correlation between
the synthetic time-gaps and the users they are assigned to. The goal of the test
is therefore two-fold: test the models ability to fit other time-distributions and
test how well the model can utilize user-modeling.

5.6.1 Hawkes distributed time-gaps

The same Hawkes-process parameterization that was used in the temporal base-
line 5.4 was fitted on the time-gaps of each user in turn. This results in parameters
based on the users’ long-term behaviours, which then are used to generate a long
continuous sequence of events that are used to get the synthetic time-gaps. Since
the baseline is based on this type of Hawkes-process, it should perform very well
on the synthetically generated data, making this test a very tough benchmark
for the proposed model.
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5.6.2 Normal distributed time-gaps

The second type of distribution used to create synthetic data are gaussian dis-
tributions where the standard deviation are set to be half a day and the mean
are set to each user’s mean time-gap. This way the different users will have dif-
ferent distributions but the same variance. Because the normal distribution is
symmetrical, the error of a good model should converge towards a value close to
the standard deviation as the best strategy is to always predict the user’s mean
time-gap.
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Chapter 6

Result and Discussion

In this chapter all the results will be presented and then discussed. In order to do
so in an ordered fashion, the evaluation metrics used will first be described and
argued for. This is then followed by the detailed description of the most relevant
results and a thorough discussion of these.

6.1 Evaluation Metrics

In order evaluate the results of the model, a few different evaluation metrics
were applied. Because the model both provides recommendations and predict
the time, it is difficult to identify an evaluation metrics that tells a lot about the
performance in both tasks, or the combined performance. In the end a total of
three different metrics were used.

6.1.1 Recall@k

Recall@k is a metric often used in recommendation and is evaluated by checking
if the target recommendation is among the top k scored items. k is typically
set in the range 5 to 20. The returned score is the number of times the target
recommendation was within top k, divided by the total number of recommenda-
tions. Because the sessions can be of different lengths, recall@k is first calculated
and averaged over for each position in the maximum session length. So we have
one score for items that are third in their respective sessions and so forth. The
aggregated values are then combined cumulatively step-wise such that the third
score is the combined score of items that are in the three first positions. This
also means that the final score is the cumulative score over all items. k-values of
5, 10 and 20 are used.

57
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6.1.2 MRR@k

Mean Reciprocal Rank is also useful in recommendation evaluation. It is cal-
culated by taking the mean of the inverse ranks for each recommendation. The
rank is the position of the target item in the sorted scores. So if the target is
ranked second, its Reciprocal Rank is 1/2 = 1

2 . Like for recall, the k parameter
denotes how many of the top scores we consider. If the target item is not in top
k, its Reciprocal Rank is 0. This metric provides a measure of the performance,
beyond simply checking if the target is among the top k, by weighting better
ranks higher. An identical scheme for scoring individual individual positions like
the one described in 6.1.1 is applied here as well. k-values of 5, 10 and 20 are
used.

6.1.3 MAE

Mean Absolute Error is used for the time prediction. A global score here could
be quite miss-leading. An absolute error of 4 days could be quite reasonable for
a target of 40 days, but is most likely not good if the target was 1 day. This in
mind, the targets are sorted into different buckets based on their magnitude, and
MAE scores are calculated for each of these individually. The two smallest bucket
intervals contains time-gaps in the range 0-2 hours and 2-12 hours respectivly.
The The following buckets are 1 day wide, e.g. 2.5-3.5 days, all the way up to the
11.5-12.5 days interval, after which they are increased to be 2 days wide. MAE
was chosen over RMSE(Root Mean Squared Error) mostly since it is easier to
interpret. A MAE of 2 days means that the error is on average 2 days, a RMSE
of 2 days is difficult to say anything about since this measure penalizes greater
errors more than smaller ones. For the most part, we consider being off by e.g.
2 days to be roughly twice as bad as being 1 day off, so there is no real reason
for penalizing greater errors more than smaller ones. Furthermore, testing was
not the bottleneck of the model, so even if the absolute function is computational
heavy, it did not affect the total training time of the model in any significant way.

6.2 Results and discussion introduction

In the following sections, all results of the different experiments will be presented.
For the most part this will be in the form of tables and plots, but all additional
information that is not covered in the experimental setup 5 will be noted in the
text. In the results our proposed model will be denoted THRNN for Temporal
HRNN. All presented results are the average value of using at least 5 different
random seeds, results from fewer seeds might be mentioned in the text but then
it will be explicitly stated that these are preliminary. For structuring purposes, it
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was decided to combine the results and discussion, such that the results are first
presented and then discussed immediately afterwards. The alternative is to have
a pure results part and then backtrack in the discussion part, which would most
likely make it difficult for readers to retain overview of the different experiments.

6.3 Main setup

This subsection contains the main results gotten from the default setup of the
model. These are time prediction results, intra-session recommendation and ini-
tial recommendation. We will also take a closer look at how the joint training
affects the intra-session recommendation.

6.3.1 Time results

LastFM

Figure 6.1: Full plot of the time prediction results along with observation counts
for time-gaps of different durations. LastFM

Figure 6.1 is the full plot of the time prediction MAE on the LastFM dataset.
As shown by the observation count plot in the same figure, most time-gaps in
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this dataset are less than 4-5 days. For gaps greater than this, it is very clear
that the baseline with short-term fitting outperforms the other two significantly.
The relative difference between THRNN and the best baseline is the most at the
interval 7.5-8.5 days where it is 0.97 days which is a difference of 19.9%. Towards
the end, the MAE of all models appear to increase at the same linear rate.

Figure 6.2 focuses on time-gaps that are less than 5 days in order to better

Figure 6.2: Focused plot of the time prediction results. LastFM

visualize the differences for the most frequent observations. One can observe
that THRNN is quite a bit better than the short-term fitted baseline for time-
gaps less than 3.5 days. It is also mostly better than the long-term fitted baseline
overall, with the exception of the 0.5-1.5 days interval, where the long-term fitted
baseline is ever so slightly better. For the 0.5-1.5 interval, THRNN has a MAE
of 10.32 hours while the MAE of the short-term fitted Hawkes-process is 15.84
hours. This is a difference of 5.52 hours or a 34.8% improvement over the base-
line. The difference is even greater for the 1.5-2.5 days interval, at 8.16 hours. For
this interval, the performance of the long-term fitted baseline is also considerably
worse than that of THRNN.
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Even though the short-term baseline is thoroughly outperforming THRNN for
most time-gap durations, THRNN is considerably better on time-gaps that are
more frequent in the dataset. Given their frequency, it makes a lot of sense to
optimize for them as well. We can also observe that after a certain time, the
performance decrease similarly for all models, which is typically observed in pre-
diction data for predictions significantly far into the future. The long-term fitted
Hawkes-process is, for the most part, outperformed by THRNN in intervals with
many observations, but it is better than the short-term fitted Hawkes-process on
shorter time-gaps. This is not all that surprising since long-term optimization
usually make the model excel at the most common observations. The short-term
fitted Hawkes-process outperforms the other models for longer and less common
time-gap durations, which is likely a product of it being more consistent in its use
of short-term behaviour. THRNN is capable of considering short-term behaviour,
but it may end up disregarding recent trends in favour of long-term trend, if the
more recent behaviour is sufficiently uncommon. The short-term fitted baseline
only observe the most recent data, so for periods of great inactivity, it will usually
predict the continuation of similar inactivity.

The time-modeling is very stable, resulting in very small differences between
different runs. The largest standard deviations are in the scale 0.02 days, which
is approximately 30 minutes. This means that any error bars will usually be less
wide than the default line thickness of the plots. Hence, error-plots will not be
provided for any time-prediction results presented in this chapter.

Reddit

Figure 6.3 is the full plot of the time prediction MAE on the Reddit dataset.
Like in the LastFM dataset, shorter time-gap durations are more frequent, but
the observation count fall-off, when moving in the direction of longer time-gaps,
is significantly less for this dataset. No intervals have less than 1500 observations
in the Reddit dataset, while half of the intervals in the LastFM dataset have less
than 1000 observations each. THRNN outperforms the other models on time-
gap durations between 1 and 10 days, but for all other time-gap intervals, the
short-term fitted Hawkes-process is the best model. The long-term fitted baseline
starts off worst, and is never really excelling at any time-gap intervals.

Figure 6.4 is a focused plot on the time prediction results for targets that
are 10 days or less, on the Reddit dataset. One can observe that no model have
a MAE of less than 1.32 days for any interval. This means that all models are
significantly off for the smaller time-gaps, where the errors are on average much
greater than the time-gaps themselves. However, every model exhibits a slow in-
crease in MAE for the smaller time-gap intervals. Especially THRNN, for which
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Figure 6.3: Full plot of the time prediction results along with observation counts
for time-gaps of different durations. Reddit

the the MAE only increases by 0.91 days from the 0.5-1.5 days interval to the
5.5-6.5 days interval. So the prediction targets are on average 5 days greater, but
the MAE is less than a day greater. For the 4.5-5.5 days interval, THRRN achieve
a MAE that is 15.4 hours less than that of the short-term baseline, which is a
difference of 23.2% relative to the score of the short-term fitted Hawkes-process.

It is apparent that the long-term fitted baseline struggles with this dataset. It
achieves slightly better results than the short-term fitted baseline for time-gaps
in the range 2-7 days, but is in the same interval significantly outperformed
by THRNN. For the greatest time-gaps it achieves slightly better results than
THRNN, but as both MAE’s are mostly greater than 9 days for these intervals,
it is difficult to identify a scenario where this difference will matter. The short-
term fitted baseline is for the most part better than THRNN for time-gaps of 1
day or less. However, neither can be claimed to be accurate for the smallest time-
gaps. Data analysis of the Reddit dataset reveals that there was an explosion in
activity in the last year of the 9-10 recorded years of data. Only in the last 6
month, one can observe a 4-fold increase in number of sessions. It would not be
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Figure 6.4: Focused plot of the time prediction results. Reddit

surprising if the large increase in activity will cause, directly or indirectly, changes
in the overall user dynamics. While THRNN and the long-term fitted baseline
both will train/fit on user data from when the service was much less active, the
short-term fitted baseline use the most recent user data available. We can see that
the short-term fitted baseline is strongly outperforming THRNN for the smallest
time-gaps, but is then strongly outperformed for many middle-long time-gap in-
tervals. Interesting enough, further analysis shows that the time-gap distribution
is near identical in testing and training data, which does not necessarily mean
that the dynamics is entirely the same, but at least that the users have more or
less the same average time-gap durations in both training and testing data. So
it is not entirely apparent why the short-term fitted baseline is so dominating for
the smallest time-gaps. The long-term considering models might struggle more
with this dataset because the time-gap distribution is not as centered on the
smallest time-gaps as what can be observed in the LastFM dataset. Since there
are non-negligible numbers of observations for even the largest time-gaps, these
can affect the modeling by shifting the focus towards larger time-gaps. This is
the leading theory, and is also one of the key motivations behind the introduction
of the κ tuning parameter, which is tested in 6.5.
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6.3.2 Intra-session recommendation results

LastFM

R@5 R@10 R@20 MRR@5 MRR@10 MRR@20
HRNN 0.1415 ± 0.0005 0.1993 ± 0.0007 0.2751 ± 0.0006 0.0876 ± 0.0004 0.0952 ± 0.0004 0.1004 ± 0.0004

THRNN
0.1437 ± 0.0004 0.2026 ± 0.0006 0.2795 ± 0.0006 0.0889 ± 0.0002 0.0967 ± 0.0003 0.102 ± 0.0003
(+1.6%) (+1.7%) (+1.6%) (+1.6%) (+1.6%) (+1.6%)

Table 6.1: Table with intra-session recommendation results compared with
HRNN. LastFM

Table 6.1 contains the aggregated intra-session recommendation results on the
LastFM dataset. Aggregated in the sense that it includes scores from all posi-
tions in the sessions and averaged over the total number of scores as described
in 6.1.1. As shown by the relative differences, THRNN achieves a statistically
significant improvement of 1.6% over the baseline in all measures.

While the improvements cannot be claimed to be revolutionary, they are not
insignificant either. They indicate that the extended model does manage to im-
prove the session modeling somewhat, and provide a better initial hidden state to
the intra-session RNN than the one provided in the baseline. Since the difference
between the model is not just the joint training, but also some added contexts,
these results cannot conclude that the model benefits from the joint modeling. It
is possible that the improvements origin in the added contexts alone. Thus, we
test this claim by comparing with a version of the model that apply the contexts
but does not predict time nor recommend an initial item in section 6.3.4.

Figure 6.2 contains the same results as the previous table but relative scores are

R@5 R@10 R@20 MRR@5 MRR@10 MRR@20
RNN 0.1349 ± 0.0004 0.184 ± 0.0002 0.2474 ± 0.0002 0.086 ± 0.0003 0.0925 ± 0.0002 0.0969 ± 0.0002

HRNN
0.1415 ± 0.0005 0.1993 ± 0.0007 0.2751 ± 0.0006 0.0876 ± 0.0004 0.0952 ± 0.0004 0.1004 ± 0.0004
(+4.9%) (+8.3%) (+11.2%) (+1.8%) (+2.9%) (+3.7%)

THRNN
0.1437 ± 0.0004 0.2026 ± 0.0006 0.2795 ± 0.0006 0.0889 ± 0.0002 0.0967 ± 0.0003 0.102 ± 0.0003
(+6.6%) (+10.1%) (+13.0%) (+3.4%) (+4.5%) (+5.3%)

Table 6.2: Table with intra-session recommendation results compared with RNN.
LastFM

now from comparing with the results from using RNN.
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Reddit

R@5 R@10 R@20 MRR@5 MRR@10 MRR@20
HRNN 0.4432 ± 0.0013 0.5316 ± 0.0009 0.616 ± 0.0012 0.317 ± 0.0016 0.3288 ± 0.0016 0.3347 ± 0.0015

THRNN
0.4468 ± 0.0013 0.5366 ± 0.001 0.6228 ± 0.0009 0.3191 ± 0.0015 0.3311 ± 0.0014 0.3371 ± 0.0014
(+0.8%) (+1.0%) (+1.1%) (+0.7%) (+0.7%) (+0.7%)

Table 6.3: Table with intra-session recommendation results compared with
HRNN. Reddit

Table 6.3 contains the aggregated intra-session recommendation results on the
Reddit dataset. The same aggregation was applied here as on the LastFM
dataset, so the scores are weighted over all outputted data, regardless of the
position they appeared in in the sessions. We can also observe improvements
over all measures for this dataset, but they are not in the same scale as those
observed on the LastFM dataset. There is also a difference between the improve-
ments on Recall measures and MRR scores. Because MRR does not scale linearly,
it is difficult to say anything about how much the improvements in the Recall
would look in the MRR score. x% increase in Recall@k indicates that the model
successfully recalls x% more recommendations, but the same improvements in
MRR@k can be caused by better Recall, better ranking, positive fluctuations in
rankings or a combination of these. In any case, the % improvement over the
baseline is less for the MRR score than for the Recall score. Ruocco et al. [2017]
(HRNN ) observed a greater improvement in MRR scores than in Recall scores
on the Reddit dataset, but the opposite was observed on the LastFM dataset.
So it is not unlikely that our observation is simply a product of the non-linear
nature of MRR in relation to Recall.

Figure 6.4 contains the same results as the previous table, but relative scores

R@5 R@10 R@20 MRR@5 MRR@10 MRR@20
RNN 0.3208 ± 0.0004 0.3959 ± 0.0005 0.475 ± 0.0003 0.2346 ± 0.0006 0.2445 ± 0.0006 0.25 ± 0.0006

HRNN
0.4432 ± 0.0013 0.5316 ± 0.0009 0.616 ± 0.0012 0.317 ± 0.0016 0.3288 ± 0.0016 0.3347 ± 0.0015
(+38.1%) (+34.3%) (+29.7%) (+35.1%) (+34.5%) (+33.9%)

THRNN
0.4468 ± 0.0013 0.5366 ± 0.001 0.6228 ± 0.0009 0.3191 ± 0.0015 0.3311 ± 0.0014 0.3371 ± 0.0014
(+39.3%) (+35.6%) (+31.1%) (+36.0%) (+35.4%) (+34.8%)

Table 6.4: Table with intra-session recommendation results compared with RNN.
Reddit

are now from comparing with the results of RNN.
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Step R@5 R@10 R@20 MRR@5 MRR@10 MRR@20
initial 0.1275 ± 0.0007 0.1821 ± 0.0011 0.2521 ± 0.0013 0.0776 ± 0.0006 0.0848 ± 0.0006 0.0896 ± 0.0006
2 0.1296 ± 0.0006 0.1836 ± 0.0011 0.2552 ± 0.0011 0.0797 ± 0.0004 0.0868 ± 0.0004 0.0917 ± 0.0004
3 0.1493 ± 0.0005 0.2067 ± 0.0006 0.2808 ± 0.0012 0.0948 ± 0.0005 0.1024 ± 0.0005 0.1075 ± 0.0005

Table 6.5: Table with Recall and MRR scores from the LastFM dataset. The ini-
tial recommendation is presented with the intra-sessions recommendation results
evaluated on the two first selections.

6.3.3 Initial recommendation results

LastFM

Table 6.5 contains the initial recommendation results on the LastFM dataset, as
well as the individual scores on early items in the intra-session recommendation.
Overall, the results are slightly worse than the first intra-session recommenda-
tion, i.e. when the initial selection of the new session has been provided to the
model to be used in the recommendation of the ”second” item. This indicates
that the model is able to use the inter-session modeling to return a decent rec-
ommendation of the initial item, but that when the first item of the new session
is provided as well, the recommendation is improved beyond this. From analysis
of both dataset, it has been noted that the first and second items should be sim-
ilarly difficult to predict using a simple frequency-based recommendation model.
Furthermore, observations show that in general, the model is able to provide
better recommendations longer into sessions, which indicates strong intra-session
relations. Thus, it is not surprising that the model is able to provide better rec-
ommendation for the ”second” item, since it at this point can apply both inter-
and intra-session modeling.

Reddit

Step R@5 R@10 R@20 MRR@5 MRR@10 MRR@20
initial 0.4564 ± 0.0012 0.5415 ± 0.0014 0.6218 ± 0.0014 0.3108 ± 0.0006 0.3222 ± 0.0006 0.3278 ± 0.0006
2 0.4144 ± 0.0011 0.5031 ± 0.001 0.5896 ± 0.001 0.2884 ± 0.0015 0.3003 ± 0.0014 0.3063 ± 0.0014
3 0.482 ± 0.0017 0.5677 ± 0.0013 0.6501 ± 0.0012 0.3591 ± 0.0016 0.3706 ± 0.0015 0.3763 ± 0.0015

Table 6.6: Table with Recall and MRR scores from the Reddit dataset. The initial
recommendation is presented with the with the intra-sessions recommendation
results evaluated on the two first selections.

Table 6.6 contains the initial recommendation results from the Reddit dataset
and some scores of the early selections in the intra-session recommendation. In
contrast to the results from the LastFM dataset, the performance on the initial
item is actually better than that of the first intra-session recommendation. This
might mean that the inter-session modeling can say more about the next sessions
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in this dataset, which is supported by the observation that HRNN ’s improvement
over RNN is much greater on the Reddit dataset than on the LastFM dataset.
However, it also means that even though the second item should have both good
inter-session information and intra-session information, it is outperformed by
a recommendation that is purely based on inter-session modeling. First and
foremost, the initial recommendation train a single set of weights for the sole
purpose of recommending the initial item, while when the hidden state is passed
to the intra-session RNN, all the weights affecting its propagation is also trained
for the more general intra-session recommendation. Secondly, the initial hidden
state is the only propagated hidden state which is not propagated from the intra-
session RNN itself, so its structure and form might not be equally optimized for
the weights as those that do. Thus, even if the inter-session information is of high
quality, part of this may be lost or disregarded during propagation. This may
indicate that there is a potential for improvement by looking into how the last
hidden state of the inter-session RNN is propagated to the intra-session RNN.
When looking at the third item, we can see that these scores are considerably
better than the initial recommendation, so it is clear that at this point, the
combined forces of intra- and inter-session modeling outperforms inter-session
modeling alone.

6.3.4 Effect of training joint model

Du et al. [2016] and Jing and Smola [2017] both observed an improved recommen-
dation when training their temporal models with time prediction loss. In 6.3.2
we show that our model outperforms the baseline in recommendation, but our
model has also extended the baseline with contexts in addition to the temporal
aspects. So this section aims to properly test whether or not the intra-session
recommendation of our model benefits from jointly training on the three different
tasks.

LastFM

R@5 R@10 R@20 MRR@5 MRR@10 MRR@20
CHRNN 0.1443 ± 0.0003 0.2038 ± 0.0007 0.2817 ± 0.0005 0.0889 ± 0.0001 0.0967 ± 0.0002 0.1021 ± 0.0002

THRNN
0.1437 ± 0.0004 0.2026 ± 0.0006 0.2795 ± 0.0006 0.0889 ± 0.0002 0.0967 ± 0.0003 0.102 ± 0.0003
(-0.4%) (-0.6%) (-0.8%) (+0.1%) (-0.0%) (-0.1%)

Table 6.7: Table with Recall and MRR scores from the LastFM dataset. CHRNN
is HRNN extended with the same contextual information used in THRNN.

Table 6.7 compares the intra-session results of THRNN with and without con-
sidering time prediction and initial recommendation loss during training, on the
LastFM dataset. The difference in the MRR scores are statistically insignificant.
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For the Recalls, one can actually observe a small statistical significant difference
in favour of the single task model, which indicate that the joint training is slightly
deteriorating the models intra-session recommendation performance.

Reddit

R@5 R@10 R@20 MRR@5 MRR@10 MRR@20
CHRNN 0.4471 ± 0.0009 0.5365 ± 0.0009 0.622 ± 0.0007 0.3197 ± 0.0012 0.3316 ± 0.0011 0.3376 ± 0.0011

THRNN
0.4468 ± 0.0013 0.5366 ± 0.001 0.6228 ± 0.0009 0.3191 ± 0.0015 0.3311 ± 0.0014 0.3371 ± 0.0014
(-0.1%) (+0.0%) (+0.1%) (-0.2%) (-0.2%) (-0.2%)

Table 6.8: Table with Recall and MRR scores from the Reddit dataset. CHRNN
is HRNN extended with the same contextual information used in THRNN.

Table 6.8 compares the intra-session results of THRNN with and without con-
sidering time prediction and initial recommendation loss during training, on the
Reddit dataset. As can be seen from the standard deviations, all differences are
covered by a single standard deviation. So the results does not support any sta-
tistical difference between training with or without time prediction loss on the
Reddit dataset.

Effect of joint training discussion

Du et al. [2016] and Jing and Smola [2017] both observed improved recommen-
dation when including time modeling. However, this can not easily be compared
with our results as they both used single-level RNNs for making a single recom-
mendation with an adhering time-prediction. While Jing and Smola [2017] do
model inter-session time-gaps, like our model, the recommendation and time pre-
diction are more tightly connected in their model. Since our model is hierarchical,
the only way time prediction can improve the intra-session recommendation is
by allowing for better initial hidden states to be propagated to the intra-session
RNN. Both Ruocco et al. [2017] and Quadrana et al. [2017] showed that by go-
ing from a default initial hidden state to one provided by a hierarchical RNN
level, based on previous user history, it is possile to improve recommendation
significantly. However, it was also shown that the vast majority of the improve-
ments could be observed in the first few recommendations of the sessions. Thus,
decreasing the difference in performance between when the model has seen few
selections in the session and when it has seen many. This could indicate that
there is a practical limit to how much simpler RNN-based recommendation can
be improved by better initial hidden states alone. Furthermore, since the hid-
den state is used in the two other tasks of our model as well, there might arise
conflicts from the three different gradient contributions. Thus, even if the time
prediction training allows for better general time-modeling, this might come at
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the cost of inter-session modeling trained by the intra-session recommendation.
The overall effect may therefore be equal or worse than not considering the time
prediction loss at all.

The initial recommendation loss comes from the same type of loss function that
is used for intra-session recommendation, but is both weighted less and has a
single contribution for each training case as opposed to the session length. It is
therefore not likely that it affects the model very much, with the exception of its
exclusive linear layer. It is therefore largely ignored in this discussion.

It is not very straight-forward to devise a plan for testing with certainty whether
or not the recommendation is considering any time-modeling. If it does in fact
do so, but the improvements are hidden through worse general recommendation
modeling, it might be better for the joint model to use higher dimensionality
tensors in the inter-session RNN. The intuition being that more weights can
more easily be distributed between conflicting ”opinions”. However, by doing
so, observed changes might stem from the increased dimensionality and not the
improved time modeling. Considering this, we could compare both joint- and
pure recommendation setups using two different dimensionalities. If we only
want to increase the dimensionality in the inter-session RNN, we need to intro-
duce a linear layer for reducing the dimensionality of the initial hidden-state to
the intra-session RNN, which is new potential source of noise. The best option
is probably to increase the dimensionality of both the inter- and intra-session
RNN, if the greater dimensionality shows improvements when the joint model
is used, it should be an indication that the time-modeling can in fact help the
recommendation, also in a hierarchical model.

Tables 6.9 and 6.10 contains the intra-session recommendation results on both

R@5 R@10 R@20 MRR@5 MRR@10 MRR@20
CHRNN* 0.1458 ± 0.0005 0.2054 ± 0.0006 0.2835 ± 0.0004 0.0898 ± 0.0001 0.0977 ± 0.0001 0.103 ± 0.0001

THRNN*
0.145 ± 0.0 0.2042 ± 0.0002 0.2817 ± 0.0006 0.0898 ± 0.0002 0.0976 ± 0.0002 0.1029 ± 0.0002
(-0.6%) (-0.6%) (-0.7%) (-0.0%) (-0.1%) (-0.1%)

Table 6.9: Table with Recall and MRR scores from the LastFM dataset. * is
added to denote that the dimensionality of the hidden state has been increased
in these models. Increased by 20 from 100 to 120.

datasets when the dimensionality of the hidden states have been increased by
20. Results from LastFM are near identical to those from using the regular di-
mensionalities. The new Reddit results show some improvement in the MRR
scores, however, the results are far from being statistically significant. Thus, the
conclusion remains that it is not fully clear whether or not the model can achieve
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R@5 R@10 R@20 MRR@5 MRR@10 MRR@20
CHRNN* 0.4632 ± 0.0006 0.5523 ± 0.0003 0.6365 ± 0.0007 0.3318 ± 0.0017 0.3437 ± 0.0016 0.3496 ± 0.0015

THRNN*
0.4631 ± 0.0005 0.5525 ± 0.0004 0.6366 ± 0.0004 0.3327 ± 0.0011 0.3447 ± 0.001 0.3505 ± 0.001
(-0.0%) (+0.0%) (+0.0%) (+0.3%) (+0.3%) (+0.3%)

Table 6.10: Table with Recall and MRR scores from the LastFM dataset. * is
added to denote that the dimensionality of the hidden state has been increased
in these models. Increased by 20 from 50 to 70.

improved recommendation by training jointly on all three tasks.

It might be possible to achieve better results by devising a different training
scheme for training the different tasks and the joint model. Some experiments
was performed where the model was first trained on different tasks in turn, then
in pairs and finally all three. None of the setups we tried performed better than
jointly training on all tasks throughout the training, however, this does not fully
exclude the possibility that a more complex scheme might work.

6.4 Synthetic time-gaps with real sessions

In order to test the robustness of the model, we created some datasets where
the time-gaps between the sessions are switched out with synthetically generated
ones. By doing so, the relation between the content of the sessions and the inter-
session time-gaps disappears/is altered, but it will both test the models capability
of fitting different parameterizations and at the same time perform the tasks of
recommendation. All synthetic time-gaps are in some way related to the user they
were generated for, so the content of the sessions and the synthetic time-gaps are
not completely independent. This will provide some long-term user behaviour,
allows the experiments to also test the models personalization capabilities.

6.4.1 Normal distributed time-gaps

LastFM

Figure 6.5 is the time prediction plot of the LastFM dataset with normal dis-
tributed time-gaps. The reason all models show a dip in MAE for some of the
smaller time-gaps is because the time-gaps cannot be smaller than the smallest
allowed time-gap, which for the LastFM dataset is half an hour. Thus, all drawn
time-gaps that were less than half an hour, was set to half an hour. This effec-
tively reduces the variance for users with a mean close to this value, which one
can see from the observation count plot, is most users. We can see that all models
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Figure 6.5: Time prediction results on the LastFM dataset using synthetically
generated time-gaps drawn from normal distributions with mean equal to the
users’ average time-gaps, and standard deviations of 0.5 days.

are pretty close, but that the long-term fitted baseline outperforms the other two
later on, while the short-term baseline trails behind.

Since the distributions was set for each user based on their personal time-gap
mean, it is no surprise that the long-term fitted baseline is the best at accurately
identifying this mean. That THRNN performs better than the short-term fitted
baseline supports the notion that it is capable of considering both long- and
short-term dynamics better than the short-term Hawkes-process. After the initial
intervals with smaller variance, all models have an MAE that is slightly greater
than the standard deviation. This makes it likely that they have all adapted
strategies that essentially is to consistently predicting an estimated mean.

Reddit

Figure 6.6 is the time prediction plot of the Reddit dataset with normal dis-
tributed time-gaps. For both baselines we observe the same dip in MAE for the
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Figure 6.6: Time prediction results on the Reddit dataset using synthetically
generated time-gaps drawn from normal distributions with mean equal to the
users’ average time-gaps, and standard deviations of 0.5 days.

smallest time gaps, however THRNN starts off with a much greater MAE. We
can also observe that there clearly are a larger fraction of the Reddit users with
higher mean time-gaps than those observed in the LastFM dataset. For longer
time-gaps we can see the MAE of both baselines starting to diverge from the
standard deviation. This indicate that both baselines struggle with many of the
users with greater time-gap means.

The performance of the long-term baseline only affected by the training data,
while the short-term baseline is more concerned with the testing data(as long as
the training data is much larger than the length of the observed history). The
fact that neither of these are able to capture the user means could indicate that
many of the relevant users have very little data, making it difficult to fit the
processes. This is also supported through analysis of the data. The fact that
THRNN still manages to perform well for these may indicate that it is able to
apply knowledge learned from similar users to make up for the lack of data for
the less active users. What is peculiar about this is that it appears to be able
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to infer a lot from users with little data, but struggles with many of the users
with shorter time-gap means, despite the fact that the shorter time-gaps appear
much more frequently. An explanation for this may be the skewed relationship
between number of user with certain means, and the number of sessions the
users have, combined with the usage of user embeddings. Perhaps numerous low
activity users, with longer time-gap means, ”hijacks” user embeddings through
their sheer number. This could end up leaving little room for the fewer, but
more active users. Since the number of users in the Reddit datset is very large,
it becomes improbably to give each user a highly distinct embedding, thus the
model might learn broader ”general” users instead. If this is the case, the model
might be tuned for having general users who all behave pretty similarly, and
therefore struggles with the few ”specialized” users.

6.4.2 Hawkes distributed time-gaps

LastFM

Figure 6.7: Time prediction results on the LastFM dataset using synthetically
generated gaps drawn from Hawkes-processes fitted on individual users’ time-
gaps.
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Figure 6.7 is the time prediction plot of the LastFM dataset with Hawkes dis-
tributed time-gaps. All in all, there does not appear to be a great difference
between the models. The short-term fitted baseline is best on the two smallest
time-gap intervals, THRNN is best on the following two and the long-term fitted
Hawkes is best for all the remaining greater time-gap intervals.

Since the time-gaps are drawn from a Hawkes process, both baselines are ex-
pected to perform well in this experiment. The long-term fitted baseline will
most likely, on average, fit parameters that are closer to that of the generating
process than the parameters fitted by the short-term fitted baseline. So it is not
surprising that the long-term fitted baseline performs better for most time-gap
intervals. The reason the short-term fitted baseline is better for the smallest
time-gaps is most likely tied with the fact that the long-term fitted version gets
to consider all the history, and while the shortest time-gaps are the most frequent
ones, there is also a significant amount of larger ones also present in the train-
ing set. Due to the nature of the Hawkes process, we can get periods with very
high intensity caused by many short time-gaps being drawn. While the long-term
fitted baseline clearly is able to capture this somewhat, the short-term fitted base-
line might be able to fit specialized Hawkes processes that are good at predicting
in such intensive periods. The fitted parameters might not be very similar to
those of the generating process, and would most likely perform bad when used
on all testing data, as opposed to just the current prediction. THRNN is clearly
able to keep up with the Hawkes-based baselines, thus proving that it is robust
in the sense of being able to model different distributions. We also see that it is
the best performing model for some of the time-gap intervals it performed well
on in the real dataset. This can most likely be explained by it being able to use
general user-behaviour learned from having observed all users, and since the loss
function appears to optimize for certain time-gap durations depending on the
distribution of observations(see 6.5).

Reddit

Figure 6.8 is the time prediction plot of the Reddit dataset with Hawkes dis-
tributed time-gaps. Many of the same observations and remarks done on the
results from the same experiment, but on the LastFM dataset, can be applied
on these results as well. Like for LastFM, one can observe that THRNN out-
performs the other models on time-gap intervals it performed well on in the real
time-gap dataset. The difference is greater than what it was in the LastFM
dataset, but that was also the case for the datasets with real time-gaps. Looking
at the observation count plots, we can see that the time-gap distributions of the
synthetic and real time-gaps are comparable, with Reddit having a greater and
more significant tail. As the generating Hawkes processes are fitted on the real



6.5. κ HYPERPARAMETER TESTS 75

Figure 6.8: Time prediction results on the Reddit dataset using synthetically
generated gaps drawn from Hawkes-processes fitted on individual users’ time-
gaps.

data, this is no surprise.

6.5 κ hyperparameter tests

In this section we will look at time-prediction results from different settings of
the κ hyperparameter described in section 4.7.2.

LastFM

Figure 6.9 contains the time prediction results on the LastFM dataset for differ-
ent initializations of the κ hyperparameter. All tested values are 1.0 or less which
intuitively will make the model weight the larger time-gaps less relative to the
smaller ones. This is fully supported by the observations represented in the plot.
When κ is set close to 1.0, we get better performance on longer time-gaps but
worse for smaller ones. The performance of all initializations seems to meet at
1.5 days time-gaps which is on the middle point between the 0.5-1.5 days interval
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Figure 6.9: Comparing time prediction MAE from different values of the κ hy-
perparameter evaluated on the LastFM dataset. Runs from 0.1 are not included
as time-specific gradients diverged for this initialization.

and the 1.5-2.5 days interval. For time-gaps greater than 3 days, the performance
of all settings appear to deteriorate at the same rate. It is also worth noting that
the plots looks more and more linear the smaller κ is set. For κ = 0.3 the plot
looks very similar to one produced by predicting an averaged time-gap for every
single prediction. Since the relative loss contribution of longer time-gaps gets
smaller as κ is set smaller, it is not surprising for the model to end up returning
predictions in a small interval centered close to the average time-gap length. The
plot is a good illustration of the ensuing trade-off between prediction error for
the most frequent time-gaps and the dynamic prediction range of the model.

Figure 6.10 compares the time prediction MAE of the model when κ = 0.7,
with the Hawkes baselines.

By comparing with figure 6.2, we can see that by tuning κ, our model goes
from being outperformed by the long-term fitted Hawkes process on some of the
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Figure 6.10: Time prediction MAE compared with Hawkes baselines when ini-
talizing κ to 0.7. LastFM

smaller time-gaps, to significantly outperforming it for all time-gaps that are less
than 4 days. This did come at the cost of being outperformed by the short-term
fitted Hawkes for all time-gaps greater than 3 days as opposed to those greater
than 3.5 days which was the case for κ = 1.0. Since 90% of the time-gaps are
less than 3 days and only 2% of the time-gaps are between 3 and 3.5 days, the
improved performance on smaller time-gaps might be well worth the decreased
performance on infrequent time-gaps and the narrower dynamic prediction range.

Reddit

Figure 6.11 contains the time prediction results evaluated on the Reddit dataset
for different initialization of the κ hyperparameter. This is quite different from
the similar analysis on the LastFM dataset, as the MAE starts off very high for
greater κ, but deteriorates very slowly. This indicates that the model has a much
greater prediction range when trained on the Reddit dataset compared to when
trained on the LastFM dataset. However, we see that by reducing κ slightly, we
can shift the focus to smaller time-gap intervals. This can significantly improve
the model’s performance on these, while still keeping a greater prediction range
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Figure 6.11: Comparing time prediction MAE from different values of the κ
hyperparameter evaluated on the Reddit dataset. Runs from 0.1 are not included
as time-specific gradients diverged for this initialization.

than what observed on the LastFM dataset. For κ = 0.3 we can observe a pre-
diction pattern which is very similar to the most limited LastFM setups, so the
predictive range is clearly deteriorating fast for small κ. One can also see that
when going from κ of 0.9 to 0.7, there is a much greater deterioration of perfor-
mance on long time gaps than those seen/indicated when looking at 1.0 to 0.9 and
0.7 to 0.5. Similarly, it can be observed that for smaller-middle time-gaps, going
from κ of 0.9 to 0.7 improves the performance more than any other transitions.
This could indicate that there is a good candidate κ somewhere between 0.7 and
0.9 which has similar performance of 0.7 on smaller-middle time-gaps but closer
to 0.9 performance on longer time-gaps.

In figure 6.12 one can see the time prediction evaluated on the Reddit dataset,
when κ = 0.7, compared with the Hawkes baselines.

The difference between figure 6.3 where κ = 1.0 and the new plot is striking.
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Figure 6.12: Time prediction MAE compared with Hawkes baselines when ini-
tializing κ to 0.7. Reddit

For κ = 1.0 THRNN was outperformed on the three smallest time-gap intervals
by the short-term fitted Hawkes. When κ = 0.7, the MAE of the most frequent
time-gap interval is approximately half of that of the best performing baseline.
The difference in performance is highly significant for time-gaps that are less than
4 days, but decreases rapidly for larger time-gaps. THRNN is outperformed on
time-gaps that are greater than 5 days by both baselines. For κ = 1.0, THRNN
is outperformed on time-gaps greater than 10 days, meaning that the performance
on time-gaps between 5 and 10 days has deteriorated significantly. However, as
85% of the time-gaps are less than 5 days, this might very well be a favorable
trade-off in many scenarios. Like previously mentioned, the plots could indicate
a ”better” value of κ between 0.7 and 0.9 which balances short and long time-
gaps well. That being said, what one defines as well is highly dependent on the
domain/environment the model is used in.
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6.5.1 Summarized plot

Figure 6.13: Left column: LastFM. Right column: Reddit. From top to bottom,
κ settings: 0.3, 0.5, 0.7 and 0.9

Figure 6.13 contains plots of the different κ settings compared with the Hawkes
baselines, on both datasets.



Chapter 7

Conclusion

Being able to model time in relation to recommendation is a highly relevant abil-
ity that have a lot of different useful use-cases. In this thesis we have presented
our joint personalized model for session-based recommendation and time model-
ing. By basing the model on a hierarchical RNN architecture, we were able to
use a low-cost user session-history for personalization of the recommendation and
for providing time prediction for future sessions. The time prediction was shown
to be highly competitive when combined with state-of-the-art time-prediction
models, even without altering the loss function. We further introduced a tun-
ing parameter to the loss function, which was shown to be capable of adapting
the time-model’s short-/long-term consideration. For both evaluated datasets,
we found parameter settings which made the model outperform all baselines sig-
nificantly on more than 85% of the testing data, only performing worse on the
<15% of the longest and most infrequent time-gap durations. We also showed
that the time modeling was robust, and able to adapt different time-gap distri-
butions, by testing on synthetic generated time-gaps from different distributions.
By loosely basing the generating distributions on the individual users, we got
results which indicates that the model is able provide more personalized time-
predictions through utilization of explicit user-modeling.

The model was also shown to achieve state-of-the-art intra-session recommenda-
tion based on comparisons with strong baselines. We observed that a non-joint
setup of the model, where only intra-session recommendation was considered,
preformed as good or better than the joint setup. This indicates that the intra-
session recommendation of the model itself did not benefit from the joint training.
However, our results does not exclude the possibility that it got better at mod-
eling time in relation to recommendation, only that the final results were equal
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or worse. We also showed that the model is capable of providing initial recom-
mendations, based on inter-session modeling, which are comparable to the first
intra-session recommendation(based on both inter- and intra-session modeling).
However, we also uncovered that there is most likely room for improvement in
the way inter-session modeling knowledge is propagated to the part of the model
concerned with intra-session modeling and intra-session recommendation.

Overall, the goals from the research questions have been fulfilled, with the caveat
that we did not see any improvement in the recommendation stemming from the
time-modeling. As stated in the discussion, this might be due to conflicting gra-
dient from the different tasks, where potential improvements in time modeling
might come at the cost of general recommendation modeling. Furthermore, our
model models time between abstract session representation, which is not tightly
connected with the intra-session recommendations. Models that have observed
significant improvements in recommendation through time modeling, usually have
a more direct connection between the main recommendation and the time predic-
tions. That being said, our model architecture allows it to jointly perform many
tasks that are not usually combined. Furthermore, we have shown that the joint
model performs all tasks well, so while the tasks might not be mutually beneficial
for the model, they are clearly not incompatible either.

One area of interest for further work could be to add modeling of intra-session
temporal aspects. This would most likely not be useful in domains where the
intra-session time-gaps mostly are pre-defined action durations, e.g. song dura-
tion in music services. But for domains that involves idle time/periods of unob-
servable activity, it could be quite useful to model such inter-action time-gaps in
addition to the inter-session time-gaps. If such modeling is applied, the new time-
modeling will be more directly connected with the individual recommendations,
which might prove to be mutually beneficial. There might also be insight to be
gained from looking into other ways of incorporation the inter-session modeling
into the intra-session RNN. This could for instance be a specialized RNN-cell
architecture for temporal consideration. A third direction could obviously be
to look into other time modeling parameterizations, which might reveal better
options capable of more dynamic time predictions or better balancing of long-
/short-term time prediction performance.



Bibliography

Bertin-mahieux, T., Ellis, D. P. W., Whitman, B., and Lamere, P. (2011). The
million song dataset. In In Proceedings of the 12th International Conference
on Music Information Retrieval (ISMIR.

Cho, K., van Merrienboer, B., Gülçehre, Ç., Bougares, F., Schwenk, H., and Ben-
gio, Y. (2014). Learning phrase representations using RNN encoder-decoder
for statistical machine translation. CoRR, abs/1406.1078.

Du, N., Dai, H., Trivedi, R., Upadhyay, U., Gomez-Rodriguez, M., and Song, L.
(2016). Recurrent marked temporal point processes: Embedding event history
to vector. In Proceedings of the 22Nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD ’16, pages 1555–1564, New
York, NY, USA. ACM.

Elman, J. L. (1990). Finding structure in time. COGNITIVE SCIENCE,
14(2):179–211.

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Delving deep into recti-
fiers: Surpassing human-level performance on imagenet classification. CoRR,
abs/1502.01852.

Hidasi, B., Karatzoglou, A., Baltrunas, L., and Tikk, D. (2015). Session-based
recommendations with recurrent neural networks. CoRR, abs/1511.06939.

Hidasi, B., Quadrana, M., Karatzoglou, A., and Tikk, D. (2016). Parallel recur-
rent neural network architectures for feature-rich session-based recommenda-
tions. In Proceedings of the 10th ACM Conference on Recommender Systems,
RecSys ’16, pages 241–248, New York, NY, USA. ACM.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural
Comput., 9(8):1735–1780.

83



84 BIBLIOGRAPHY

Jannach, D. and Ludewig, M. (2017). When recurrent neural networks meet the
neighborhood for session-based recommendation. In Proceedings of the Eleventh
ACM Conference on Recommender Systems, RecSys ’17, pages 306–310, New
York, NY, USA. ACM.

Jing, H. and Smola, A. J. (2017). Neural survival recommender. In Proceedings
of the Tenth ACM International Conference on Web Search and Data Mining,
WSDM ’17, pages 515–524, New York, NY, USA. ACM.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization.
CoRR, abs/1412.6980.

Liu, Q., Wu, S., Wang, D., Li, Z., and Wang, L. (2016). Context-aware sequential
recommendation. CoRR, abs/1609.05787.

Liu, T., Moore, A. W., and Gray, A. (2006). New algorithms for efficient high-
dimensional nonparametric classification. J. Mach. Learn. Res., 7:1135–1158.

Ludewig, M. and Jannach, D. (2018). Evaluation of session-based recommenda-
tion algorithms. CoRR, abs/1803.09587.

McCulloch, W. S. and Pitts, W. (1943). A logical calculus of the ideas immanent
in nervous activity. The bulletin of mathematical biophysics, 5(4):115–133.

Morse, S. and Chodrow, P. (2016). Parameter estimation for persistent commu-
nication cascades. https://stmorse.github.io/docs/6-867-final-writeup.pdf.

Muja, M. and Lowe, D. G. (2014). Scalable nearest neighbor algorithms for
high dimensional data. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 36(11):2227–2240.

Ogata, Y. (1981). On lewis’ simulation method for point processes. IEEE Trans-
actions on Information Theory, 27(1):23–31.

Quadrana, M., Karatzoglou, A., Hidasi, B., and Cremonesi, P. (2017). Per-
sonalizing session-based recommendations with hierarchical recurrent neural
networks. In Proceedings of the Eleventh ACM Conference on Recommender
Systems, RecSys ’17, pages 130–137, New York, NY, USA. ACM.

Rendle, S., Freudenthaler, C., Gantner, Z., and Schmidt-Thieme, L. (2012). BPR:
bayesian personalized ranking from implicit feedback. CoRR, abs/1205.2618.

Ruocco, M., Skrede, O. S. L., and Langseth, H. (2017). Inter-session modeling
for session-based recommendation. CoRR, abs/1706.07506.



BIBLIOGRAPHY 85

Sarwar, B., Karypis, G., Konstan, J., and Riedl, J. (2001). Item-based collabora-
tive filtering recommendation algorithms. In Proceedings of the 10th Interna-
tional Conference on World Wide Web, WWW ’01, pages 285–295, New York,
NY, USA. ACM.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G.,
Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman,
S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach,
M., Kavukcuoglu, K., Graepel, T., and Hassabis, D. (2016). Mastering the
game of Go with deep neural networks and tree search. Nature, 529(7587):484–
489.

Tan, Y. K., Xu, X., and Liu, Y. (2016). Improved recurrent neural networks for
session-based recommendations. CoRR, abs/1606.08117.

Zhu, Y., Li, H., Liao, Y., Wang, B., Guan, Z., Liu, H., and Cai, D. (2017).
What to do next: Modeling user behaviors by time-lstm. In Proceedings of the
26th International Joint Conference on Artificial Intelligence, IJCAI’17, pages
3602–3608. AAAI Press.


	Introduction
	Background and Motivation
	Background
	Motivation

	Goal and Research Questions
	Contributions

	Background Theory
	Artificial Neural Networks
	Key concepts
	Training

	Recurrent Neural Network
	Elman
	Training and vanishing gradients
	LSTM
	GRU

	Point process
	Poisson
	Hawkes
	Marked point processes


	State of the art
	Session based recommendation
	Temporal modeling in recommendation

	Architecture
	Key idea
	Overview
	Hierarchical RNN
	Session-representation
	Inter-session RNN
	Intra-session RNN
	RNN choices
	Last hidden state extraction

	Embeddings
	Item embedding
	Inter-session gap-time embedding
	User embedding

	Time modeling
	Parameterization
	Temporal additions to the model
	Performing the time predictions

	Initial recommendation
	Loss function
	Recommendation loss
	Time loss
	Combined loss

	Training
	Mini-batch scheme


	Experimental Setup
	Datasets
	Pre-processing
	Dividing into sessions
	Marker definition
	Removing consecutive reoccurring items
	Splitting long sessions
	Paddings
	Splitting into test and training set

	Hyperparameters
	Data-specific hyperparameters
	Universal hyperparameters

	Temporal baselines
	Baseline hyperparameters
	Setup
	Long-term fitting alternative

	Intra-session recommendation baselines
	RNN
	HRNN
	CHRNN

	Syntetic time-gaps
	Hawkes distributed time-gaps
	Normal distributed time-gaps


	Result and Discussion
	Evaluation Metrics
	Recall@k
	MRR@k
	MAE

	Results and discussion introduction
	Main setup
	Time results
	Intra-session recommendation results
	Initial recommendation results
	Effect of training joint model

	Synthetic time-gaps with real sessions
	Normal distributed time-gaps
	Hawkes distributed time-gaps

	k hyperparameter tests
	Summarized plot


	Conclusion
	Bibliography

