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Summary

This thesis develops and explores a way of understanding a macroeconomy; 
as a set of "nodes" interconnected via a network of money flows. A metaphor 
for this is a body with  a circulatory blood system, furnishing the different 
organs with the necessary oxygen and nourishment. Later on in the thesis 
we will study the effects of indebtedness, which — with the "body" metaphor
— may be compared to increasingly draining blood from the organism and 
sending it back in again - but as a non-flexible, damaging process.

This thesis does not concern itself with issues like the balance between 
consumption and investment, or what type of investment, or with the for-
eign sector. The view is that if a nation’s economy (the "body") is allowed 
sufficient and flexible flows of money ("blood") to all its parts, it will "make 
do", and then one may choose somewhat different policies on top of that 
without ending up in serious crises.

A prerequisite for the analysis to follow is that the country in question 
issues its own currency (it is not in the eurozone or dollarised).

The main (hopefully useful) contributions of this thesis are as follows:

1. An understanding of time lags and time dispersion of flows in mon-

etary circuits, and how this relates to money velocity and liquidity

preference.

2. An aggregation approach that gives an alternative and straightforward

connection between micro- and macroeconomic dynamics. This could

perhaps be useful in the persistent discourse within the economics field

about "microfoundations for macro".

3. A separate analysis of the advantages of time-continuous models, as

opposed to the commonly used time-discrete models in stock-flow eco-

nomics. All models are stock-flow consistent and achieve correct ac-

counting — which is easier to ensure in continuous time.
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4. It is argued that debt and money growth rates from commercial banks

following a Bank of International Settlements (BIS)-type capital ade-

quacy restriction will be inversely proportional to the mandated min-

imum capital/asset ratio. This is shown mathematically, and is a

further and more precise contribution to the increasing (verbally ex-

pressed) recognition in the economics field that commercial (licensed)

banks create money when they lend. It is shown that if banks only

lent out of their net interest income, the money growth rate would

be a magnitude lower than what empirical data say — while the "in-

versely proportional" rule gives a growth rate of a magnitude that

corresponds well with empirical data. It is demonstrated how a theo-

retical new bank can bootstrap itself from a start only with the new

owners investing their High Powered Money ("HPM"), and then con-

tinue with issuing an exponentially increasing loan flow, accompanied

by the creation of credit money ex nihilo at the same rate.

5. It is argued that credit money growth via licensed banks is a good thing

— in the sense that a system where all debt growth were accompanied

by net money growth at the same rate, would not end up in debt

crisis. Non-bank financial institutions (NBFIs) which extend loans,

but do not create money, are the problem.

6. A distinction between "non-discretionary" (forced) and "discretionary"

(more or less self-decided) money outflows from agents is introduced,

and exploited in a crisis model.

7. A new stock-flow model, and simulations of debt-related crisis col-

lapse mechanisms, are introduced and explored. Financialisation is

represented as a slowly time-growing parameter, inspired by Minsky’s

Financial Instability Hypothesis. An increased debt burden leads to

more insolvencies, leading to banks and NBFIs holding back in giving

new loans. This again reduces flows in the real economy, in the next

round leading to pessimism and increased liquidity preference among

firms, capitalists and households.

Increasing liquidity preference is represented by the time lags of these

groups (subsystems) in the model. This is inspired by J. M. Keynes’

and Irving Fisher’s writings. New loans not being given and increased

general liquidity preference result in a damaging positive feedback that

brings the system into crisis and collapse.

8. In the crisis model, the government is "embedded" as nodes and extra
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parallel flows in the circulatory real-economy network. This enables

an inclusion of the government debt burden together with the private

real sector debt burden. (Internal financial sector debt — which net to

zero — is ignored in this thesis.)

9. The advantages of a purely electronic monetary system is argued.

There is no longer a need for bank branches for anything but vet-

ting of potential borrowers (and perhaps giving advice on what sort

of savings to choose — among these a spectrum of paper that could

be offered at the Central Bank). Depositors can all have all types of

accounts at the central bank. (Or in a private bank, but then being

just as a mirror of a corresponding account at the CB.)

10. Electronic money enables a system where all circulating money is Cen-

tral Bank money (HPM, "base money"), and thus cannot be lost. Such

a system is proposed and described. It also has the property that only

bank owners take the hit when a bank becomes insolvent. The system

does not need government and Central Bank bailouts, and is extremely

robust against crisis. Depositors’ money cannot be lost, hence here will

be no bank runs in such a system.

11. Modern Mone(tar)y Theory ("MMT") is supported. The control tool

proposals in this thesis depends completely on the country issuing its

own currency, also central to MMT. Dollarised or eurozone countries

cannot implement the proposals. But see point 13 below.

12. It is explained how electronic money for the first time enables precise

control against inflation and deflation, in contrast to today’s sole, blunt

and slow-impact interest rate tool.

13. Electronic money can be introduced easily, fast and cheaply. Systems

where the main transaction tool is the mobile phone, are up and run-

ning — not the least in some poor countries — with an excellent track

record. One could easily introduce a parallel (also called "complemen-

tary") electronic national currency in a dollarised or eurozone country

that suffers from a debt-related crisis, and this will give a way to solve

problems. This is explained and discussed.

My own publications that are relevant to this thesis are found in the

reference list and are also referred to in the text when appropriate.
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Chapter 1

Introduction

This thesis sets out to contribute to a toolbox for macroeconomics with

approaches from the control systems field. Such tools are then applied to

the study of the dynamics of financial accumulation, mirrored by increased

general indebtedness — and crisis developing because of this. Reform ideas

for regulation are finally proposed and discussed.

This work is among other things motivated by the following factors:

1. The lack of recognition or interest among the academic economics

mainstream (the "neoclassicals") for debt/indebtedness as a central

system state in macroeconomic dynamics. It is fair to say that this

factor has been generally ignored. This is probably the main explana-

tion for why such a large share of the profession did not see the latest

global financial crisis coming, well documented in (Bezemer; 2009).

This general ignorance — or perhaps: choice of not seeing — is all the

more serious since the neoclassical academic mainstream has immense

influence on public discourse and policy choices.

2. The non-use in "heterodox" ("anti-neoclassical") academic economics

of convenient mathematical tools for dynamical systems. The good

thing however, is that debt build-up and its dangers are very much

recognised by many of these economists, primarily those associated

with the Post Keynesian school. Such economists however, are po-

litically much less influential than the mainstream. There is a large

literature among them on the topic of debt build-up and excessive

growth of the financial sector leading to crisis, with perhaps the most

well-known researcher being the late Hyman P. Minsky (Minsky; 1992).

Most of the analysis — however — is of a verbal type, which makes it
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lacking in some respects. Moreover, it does not help that a general

skepticism towards mathematical tools (mostly a reaction to mis-use

or over-use in the mainstream) is quite common and considered comme

il faut among the heterodoxy.

Admittedly, there are a few exceptions to this, like Godley and Lavoie’s

discrete-time stock-flow consistent monetary macroeconomic models

(Godley and Lavoie; 2007) and Steve Keen’s continuous-time business-

cycles-with-debt-accumulation models (Keen; 1995). We will return to

these.

3. The rich collection of tools and insights from control theory and engi-

neering practice, which has not been adopted by many economists. A

striking characteristic of economics seen from a control systems posi-

tion is the lack of interest in and understanding of the concept of stabil-

ity, which is crucial for a control engineer (although the global financial

crisis seems to have changed this slightly for the better). Generally,

there is skepticism from the mainstream in economics towards control

action ("regulation") as such, which for a national economy must be

executed by the government or some of its agencies. This may be seen

as a reaction to the failures of historical attempts at planned ("commu-

nist") economies, but one cannot because of this deny the need to to

stabilise — and in a sufficiently good manner run — a complex dynamic

system with inherent instabilities, which a macroeconomy arguably is.

A well-run macroeconomy could be compared to a process plant or a

power plant: when disturbances arise, the goal and control action is

to uphold the system running at constant and optimal settings.

4. Related to point 1 and 3: The recognition of the merciless mechanics

of accumulation due to compounding of interest/returns, also warned

against in different religious and other ancient writings (see appendix

B for some quotations). This insight, and corresponding repeated ad-

monitions all the way back to antiquity, is in modern times vigorously

promoted by Christian and Muslim groups, and by some left-wing ac-

tivist (or "green") groups. It seems that because such activity occurs

mostly outside university circles — on "the fringe" — this important

phenomenon is kept at an arm’s length by academics: not only by the

economics mainstream, but also by many within the academic hetero-

doxy (one could perhaps call this the "orthodox heterodoxy"). To this

writer this seems to be an example of throwing the baby out with the

bathwater. An academic exception to this is Michael Hudson’s excel-
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lent work on the role and dangers of compound interest since antiquity

(Hudson; 2000).

5. The importance for society of economics, and the level of animos-

ity between different schools and subcultures in academic economics.

Macro(and micro-)economics is not an exact science. Academic ac-

tivity being inexact is in many fields not a big problem: the disci-

pline of literature studies (or other esthetics-oriented disciplines) is

also inexact, but disagreements between different schools are mostly

just spice in the dish, and have no important negative consequences

for society. Macroeconomics however, is not only descriptive. It is also

(meant as) a science for real-time monitoring and control of dynamic

systems, and extremely important ones at that (national and global

economies). Consequences of large errors in control strategies (both

regulatory frameworks and running policy decisions) may thus be se-

vere.

The political-economic choices made by governments, supranational

economic organs and other powerful entities are not always popular.

But they are often implemented in spite of this. Therefore there is a

need for "scientific explanations" of why such economic policy choices

"must" be made. For this, academic economists are called for. They

become elevated to modern days’ version of the clergy in older times:

telling the populace why certain sacrifices must be made and then

things will be good later on, or in the afterlife. In academic economics,

this crucial ideological role in public discourse may ensure tenure, se-

cure funding and well-paid careers for those who adhere to the "right"

school of thought, while others are marginalised. Therefore more is

at stake in the academic economics profession compared to other dis-

ciplines. This partly explains the strong animosity between different

schools.

6. New promising technologies that may be applied to improve monetary

systems. One example is paperless ("electronic") currency with ex-

changes mediated via the internet and mobile phone networks. For

the first time in the history of economics some qualitatively better

ways to run monetary systems have become feasible, enabling reforms

that have earlier been proposed by creative economics thinkers and dis-

sidents. An early pioneer for alternative monetary thinking — whose

ideas have now become technically very feasible — is Silvio Gesell, with

his Schwundgeld concept (Gesell; 1958), tried out through the succes-
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ful parallel currency experiment in the town of Wörgl in Austria in

1932 (Lietaer; 2010), and the related "Stamp Scrip" proposal by Irv-

ing Fisher in the U.S., as a measure during the great depression in the

thirties (Fisher; 1933b).

7. A pro-enlightenment view ; that it should be — and is — possible for

human civilisation to progress, and that science and technology is the

central factor for this. In this however, understanding of the mecha-

nism of the self-fulfilling prophecy is crucial: For better futures to be

realised, they have to be aired and discussed in the public sphere, and

only by this they will gradually seem, and then actually become, more

realistic (Andresen; 2003).

8. Having an engineering background and working in an environment

where colleagues are studying and improving technical and industrial

systems, I am very much aware that a high living standard in a society

basically depends on the technical sophistication of its production, its

communications-, transport- health- and other infrastructure — and a

correspondingly educated population that is able to exploit and fur-

ther develop this. One may ask whether it is not paradoxical with

such a background to choose to focus on a non-material entity like

money. The answer is that a well-functioning monetary and finan-

cial system is a fundamental prerequisite for a high-tech society to

succeed. It may be considered a part of society’s transport and com-

munications infrastructure. And when this financial infrastructure is

well-designed and well-managed, it may — just like a highly automated

factory — be run smoothly with far fewer employees than today. One

goal of this thesis is to contribute towards a society where the financial

sector is shrunk to a lean but much more well-functioning minimum,

also liberating personnel for more meaningful work. With a better

understanding of the dynamics of money and finance, and of today’s

technical possibilities, this becomes a feasible future.

This thesis is cross-disciplinary and stands with one leg in the monetary

macroeconomics field, and the other in the system dynamics/control systems

field. A side effect of speaking to both camps is that parts of the material

here may be trivial (or difficult) for the economist reader, while other parts

may be trivial (or difficult) for the control engineer. This can hardly be

avoided.



Chapter 2

A Signals- and

Systems-based toolbox

A macroeconomy evolves through time, and may be viewed as a collec-

tion of connected sub-entities or "nodes" interacting with each other. It

is thus a dynamic system. Dynamics are mathematically and conceptually

much more complicated than statics, including the “comparative statics”

commonly used in economics (and critiqued in subsection 2.7.6). When do-

ing dynamics, algebraic equations (corresponding to the intersecting graphs

["schedules"] widely used in economics) are replaced by differential (or in

the discretised time case: difference) equations. These equations are diffi-

cult to work with in the sense that one can hardly — as one can in a static

framework — find graphic or algebraic (when possible) solutions to them

without computer-implemented solution software. It is also difficult to gain

any qualitative insights about the interactions governing a dynamic system

by inspecting the set of its differential (or difference) equations. The method

of representing the system graphically through block diagrams lends itself

much easier to such insights. This way of representing a system may be con-

sidered a graphical interface between the user and the equations describing

the model. It is extensively used in the signal and systems/control engineer-

ing community, but not much in economics. It will be used in this thesis.

2.1 Phillips’ pioneering stock/flow model

In two seminal papers, Phillips (1954) and Phillips (1957) A.W. Phillips

(who today is known in economics almost exclusively for something else — the

Phillips curve) modeled the macroeconomy as a dynamic system consisting
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of interconnected sub-entities and portrayed the model in the form of a

block diagram1. In the first paper he found the algebraic solutions to the

models, while in connection with the latter paper he had access to an analog

computer for numerical simulation. At the time, this was pioneering work.

It was a second stage after his initial and physical hydraulic simulation

macroeconomic model with vessels interconnected by tubes (Bissell; 2007).

Phillips had the advantage of a background as an electrical engineer, and

acquainted himself with the fairly new discipline of control engineering and

theory that had evolved strongly during the second world war. He saw that

it could be applied to economics:

Recommendations for stabilizing aggregate production and

employment have usually been derived from the analysis of mul-

tiplier models, using the method of comparative statics. This

type of analysis does not provide a very firm basis for policy rec-

ommendations, for two reasons.

First, the time path of income, production and employment dur-

ing the process of adjustment is not revealed. It is quite possible

that certain types of policy may give rise to undesired fluctua-

tions, or even cause a previously stable system to become unsta-

ble, although the final equilibrium position as shown by a static

analysis appears to be quite satisfactory.

Second, the effects of variations in prices and interest rates can-

not be dealt with adequately with the simple multiplier models

which usually form the basis of the analysis. Phillips (1954), p.

290)

Figure 2.1 shows a facsimile from Phillips’ 1954 paper, the simplest model

with fixed prices. The model is in continuous time. The thick dotted line

is added here. Above this line is the control subsystem. It compares actual

output  to desired output , and the error  is fed into a PID controller

which outputs a control variable called . All these variables are time-

varying money flows, with units2 [$]. The PID controller expresses the

intervention strategy of the government. The control action — among other

things a reaction to effects of an external disturbance  — is government

1For readers not familiar with control system concepts, see appendix A for explanation

of block diagram symbolism
2This is as opposed to what is typical in economic dynamics, where the time axis is

partitioned into periods, and the denomination of both stock and flow variables becomes

money amount [$]. The dollar symbol will be used as a generic symbol for money in the

following. And brackets [ ] signify denomination.
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Figure 2.1: Facsimile of original Phillips block diagram

spending, indicated by the symbol  (a circle around the symbol indicates

that it is inserted here and not part of Phillips’ original figure). This spend-

ing action is not immediate, but somewhat lagged, indicated by the block

. Other lags are also indicated in the structure.

It is not the purpose here to discuss the control strategy proposed by

Phillips, but only his model of the demand-to-output relationship, which is

given by equation (2.1) below. The dotted rectangle (added here) indicates

this part of his model, driven by the incoming aggregate demand flow ,

resulting in output  . The block is called  in Phillips’ notation. It is a

first order time lag3, represented by the transfer function4




() =

1

1 + 
(2.1)

which is equivalent to the linear first order differential equation

3We will also in between use the term "time constant", which is common in the controls

systems community.

Also note at this stage that the term "time lag" is used in this thesis for something that

is distinct from a time delay. This is discussed in section 2.4.
4See appendix A.
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Figure 2.2: Step function and first-order time-lagged step response

̇ () = − () +() (2.2)

The rationale for a model with the dynamics given by (2.1) (or (2.2)) has

traditionally been explained as follows: The economy needs time to adjust

to a change in demand. The first order time lag is the simplest continuous-

time model for such dynamics. Thus Phillips and others (Godley and Cripps;

1983) use an “Occam’s razor” type of justification for their choice of model.

In sections 2.8 and 2.9 we will strengthen the validity of the time lag model

by deriving it from the fact that the economy may reasonably be assumed

to consist of collections of a large number of agents (for instance aggregates

of firms and of households).

The time lag model corresponds well (at least as a linearised approxima-

tion) to a buffer vessel: A sudden increase in the incoming flow will initially

increase the level of fluid (in our case: money), which gradually leads to

increased outflow. This is portrayed in figure 2.2. An economy modeled

by (2.1) reacts to a jump in the demand flow with a time-dispersed out-

flow response asymptotically approaching the incoming flow level. When

the outflow  (theoretically) has reached that asymptotic level, we have

equilibrium.  is the time lag corresponding to the speed of adjustment.

2.2 Our approach

Inspired by Phillips’ simple first-order model of the macroeconomy, our ap-

proach may initially be explained by considering a subset, the aggregate of

firms.
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Assume a stepwise jump in demand. The increased inflow of money

percolates through the interconnected network of tens of thousands of firms

that constitute the demand-to-output part of the economy, and gradually

(but not immediately) the effect will show up as increased income for workers

and owners (i.e. the aggregate output flow). The lag for the firms sector is

a consequence of two different factors: the time lag of each separate firm,

and the degree to which the average unit of money flows via many other

firms before it leaves the firm sector as income. We are especially interested

in the effect of the last factor, and will present a related theorem in section

2.8.

Money stock () presently stored (or rather: in transit) within the

block  must be the integrated difference between in- and outflows. Using

the nomenclature in the Phillips block diagram, figure 2.1, we have the

stock/flow balance equation

̇() = − () +() (2.3)

At the same time we want a step response as in figure 2.2, corresponding

to the transfer function (2.1). If we choose

 () =() , (2.4)

this is satisfied. Furthermore, equation (2.4) is intuitively appealing in the

sense that the outgoing flow is proportional to money stock, which may

then be regarded (via the physical “vessel” analogy) as a “pressure” — due

to liquid level — driving this flow. And the larger the time lag  , the

less flow  for a given  , i.e. a large time lag means that money has to

accumulate significantly before it leads to increased outflow.

In Phillips’ model in figure 2.1, first order time lags are also used in

two other places, labeled  and . The first is a lag in the government’s

control action (spending), which may be interpreted as either sluggishness

in ascertaining the current economic situation, sluggishness in implementing

the intervention policy, or a combination of both. The second lag accounts

for some sluggishness in the investment response of investors to the rate

of change in output ( is a differentiation operator in the block diagram),

through an “accelerator” coefficient.

We note then, that first order time lags are used for two qualitatively

different purposes in Phillips’ paper:

• To correctly describe the relationships between money stocks and flows
— which may be called the “accounting part” of his model.
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• To account for the fact that actions are not instantaneous — thus in-
corporating a behavioural characteristic.

This indicates a general usefulness of the first order time lag in economic

modeling. We will employ it for both purposes in this thesis. We emphasise

the distinction between the stock-flow accounting part of a model and its

behavioural parts. The stock-flow accounting property is essential.

Until further notice we assume that the first order time lag is a realistic

model of the monetary stock-flow dynamics of the aggregates of firms and

households. We will also — in an average sense — consider this to be a

satisfactory representation of input-output properties of individual firms and

households. This will be justified later on.

In the following we will in between use the generic notation () and

() for inflow and outflow, so that 2.3 becomes

̇() = −() + () (2.5)

As mentioned earlier, money stocks in this thesis will be denominated

with brackets, like this: [$]. The doller symbol is used as a generic symbol

for money. Money flows will be denominated [$], where  signifies "year".

All monetary variables are in nominal values. There will be hardly be

any discussion of price or inflation dynamics, except fairly late in the thesis,

in section 7.3.

2.3 Why time-continuous models?

Any model is only an approximation to the real phenomena it aims to rep-

resent. The actual economy runs in continuous time. But most dynamic

macroeconomic models are time-discrete. Before the advent of computers

and today’s sophisticated simulation software, discrete-time models were

easier to solve by hand and calculator. An early example of dynamical mod-

eling with hand-calculated simulations is the multiplier-accelerator model

as presented in Samuelson (1939). This history partly explains the discrete-

time bias. It is also tempting to work in discrete time when important

macroeconomic indicators are measured and made available with regular

intervals, like years or quarters.

One problematic side effect of time-discrete models is that it becomes

easy to confuse flows with stocks, since the denomination of flow entities —

which actually is [$] — in the discrete representation becomes [$], just as if
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it was a stock. As Michal Kalecki ironically remarked circa 1936, according

to Joan Robinson:

I have found out what the science of economics is; it is the science

of confusing stocks with flows (Robinson; 1982)

Keen (2009), pp. 163 — 164, makes another important point, that

macroeconomic systems have a large span between the system time con-

stants: There are slow-moving governments, firms and banks, and fast-

moving households. This span is easily taken care of in a continuous-time-

system framework. But in a discrete time representation one has to choose

and stick with one specific discretisation step, which is an unsatisfactory

compromise.

A further argument in favour of a continuous-time-system framework is

that one may change system parameters without changing the simulation

model. In a difference-equation framework (i.e. discrete-time model), most

coefficients in the equations have to be changed whenever a system para-

meter is adjusted. The same has to be done if the time step (discretisation

interval) chosen for the discrete model is changed.

In a continuous-time-system framework the (small) time step used in the

numerical simulation algorithm — which is usually automatically set by the

software and transparent to the user — may be adjusted without impacting

any of the system’s parameters, like time constants ("lags") and gains. The

discrete vs continuous-time choice for modeling and simulation is considered

very important. We will therefore dedicate all of chapter 3 to the topic.

A possible argument for time-discrete models might be that transactions

between agents or sectors occur at discrete instances in time, and nothing

happens in between. However, such an argument assumes regularly spaced

events, while real-world transactions occur with uneven intervals. A precise

and elegant way of accounting for such unevenly spaced events is using time-

continuous models, but representing the discrete events with impulse (also

called delta-, Dirac-) functions: If a unit of money is passed at time  = 1
to an agent or a sector, this mathematically corresponds to an impulse func-

tion, commonly symbolised with (− 1). This function is a mathematical

idealisation: it may be considered (one of several possible definitions) as the

limit of a rectangular-shaped time function,

() = lim
−→0

() with () =

½
1 || ≤ 2

0 ||  2
 (2.6)

() has infinite amplitude and zero duration, but such that its area is unity.

() is (as approximated by ()) depicted to the left in figure 2.3. In an
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Figure 2.3: Impulse function (left) and impulse response (right)

economic model in continuous time, the impulse function allows a correct

representation of time-discrete transactions: an amount of money  passed

to a sector or an agent at time 1 is represented by the function (− 1).

The denomination of this function is money flow [$], while the area under

the function has denomination money amount [$]. The impulse response ()

of a unit (in our case an economic agent, a sector or the entire macroeconomic

system) is defined as the output signal5 resulting from a 1 [$] input at  = 0.

The impulse response of a first order time lag is found by solving (2.5) with

the input () = (). The result is

() = () =

½
1

−


   ≥ 0

0   0
(2.7)

() is shown to the right in figure 2.3. It is a flow [$] The area

under () is unity. This is as expected, since money is neither created nor

destroyed when passing by a unit. The mean time lag of () is

∞Z
0

() =

∞Z
0


1


−


  =  (2.8)

(The mean time lag  is also the value of  at the intersection between

the tangent of () at  = 0 and the time axis, as indicated to the right in

figure 2.3.)

5The symbol () is frequently reserved in the control systems (and signals and systems)

literature to signify the output response to an impulse function, as distinct from responses

to other input functions.
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Figure 2.4: sum of areas under impulses = area under curve [$]

A further argument in favour of choosing the continuous-time framework

is that a train of irregularly spaced impulses (which is the precise represen-

tation of transactions in continuous time) is very well approximated by a

continuous flow when the incidence of transactions is high. This is por-

trayed in figure 2.4. Furthermore: When we are working with aggregates

of many agents like firms and all households, “transaction impulses” be-

tween aggregates occur so frequently that continuous flow representation is

quite satisfactory. The term “frequently” begs the question: “frequently,

related to what?” The answer is that the dynamics of a sector with many

units is sluggish, related to the incidence of transactions. The constant  in

(2.1) above expresses this sluggishness (or “inertia”). In signals and systems

terms we may say that the block  in Phillips’ model is a low pass filter

with cutoff frequency 1. Sharp fluctuations in the input will be smoothed

out after having passed through. So the output will be similar whether the

input is (faithfully) described as a chain of sharp spikes as shown in figure

2.4, or approximated by the corresponding smooth graph in the same figure.

(A similar argument is used for population and epidemiological models:

infection events along the time axis, and also the current infected population

size may be treated as continuous, even if both are discrete, Sterman (2000).)

2.4 Lags, delays, velocity and dispersion

In economics the term “lag” is used in discrete models to signify one discrete

time step: a variable is a function of itself and some other variables from
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Figure 2.5: Impulse function and impulse response of a time delay unit

earlier periods. In a continuous-time setting this resembles what a control

engineer would call a time delay. If the input is () to a unit having a

time delay response, it will simply output a delayed impulse, as indicated in

figure 2.5. This is different from the "vessel" model with impulse response

as shown above in figure 2.3. In the following we will use the term "lag" for

this type of response, and "delay" for the response in figure 2.5.

The delayed response corresponds to a unit (agent or sector) having the

properties of a “tube”, as opposed to the vessel analogy. We may think of

the time delay in terms of a “packet” of money arriving at the tube’s inlet,

appearing at the outlet  time units later. Money stock () for the unit is

then the "volume" = stock of money presently in the tube. For the special

case with  =  = constant,  will also be constant. We have

 =  , or  = (2.9)

From the above follows that the unit’s velocity of money is

 = 1 (2.10)

Velocity  [1] is a central concept i macroeconomics, and will be used

frequently throughout6.

Consider the case when the unit is a model of an entire economy with

no government, no savings and where investment stems from profits that

are paid to owner households along with wages to workers (no lending from

banks). Then the “tube” metaphor for the macroeconomy may be portrayed

as in figure 2.6. The delay  is indicated along the tube’s length since

6A better term for  might be transaction frequency. It will also be used in between.
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Figure 2.6: A "tube" with firms ( ) and households ()

it is proportional to it. Every round for any “packet” of money will in

accordance with the tube metaphor lasts  [] time units. Stated another

way, a “packet” will traverse  = 1 [1] rounds during one time unit.

The delay associated with flows in general (as in process plants, pipelines,

etc.), will in the case of money be the time a given amount spends between

arrival and departure at a given unit (here: the entire aggregate of firms and

households), while flows between units are instantaneous. Money always

resides with some unit.

2.4.1 Dispersion in time

The introduction of money velocity above was based on the very restrictive

assumption of constant flow. The tube metaphor also presupposes that all

parts of money stock circulate at the same speed. These assumptions will

not be needed with the superior vessel metaphor. If we compare figures

2.3 and 2.5, we note that both responses have the same area and the same

mean time lag (or delay),  . The important difference is that the time lag

response in 2.3 is dispersed in time. This has an intuitive appeal: if an

amount of money is received by some sector at some instance, this amount

will be spread out in time on its way through. Parts of it will follow a

very convoluted path in the sense that it will be used by many agents for

transactions within the sector, before being spent out of the sector.

The same holds for money being received by a single agent7 within a

7 In this thesis the term "agent" signifies the smallest component in the macroeconomy,
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sector at a certain moment (example: a monthly wage); it will not all be

spent at once but spread out over time. The time lag (vessel) model expresses

the dispersed character of the response in a reasonable manner, while the

time-delayed (tube) response does not give dispersion at all.

The dispersion-in-time property, which holds for all input-output rela-

tionships for agents and sectors, invalidates the approach of analysing mon-

etary circuit dynamics by assuming that these unfold in distinct and con-

cluded “periods”. This common simplifying assumption among economists,

both in the mainstream and among those belonging to the Post Keynesian

and Circuitist schools, will be critiqued in section 3.1.

The time lag model has a time-dispersed, not exactly delayed response.

But it still gives the average time money takes to complete an economic

circuit (it also has an inverse; average money velocity). Equation (2.9),

which was based on the the tube metaphor with  =  = constant, also

holds for the vessel model, as long as we confine ourselves to the constant

flow case8.

For a first order time lag unit we assume, as already stated with (2.4)

and (2.3):

̇() = −() + () (2.11a)

() = () (2.11b)

This model allows varying flows, and differences between in- and outflows,

even with  = 1 = constant. And if we consider money velocity  to

be a behavioural characteristic for the unit, it is reasonable that it relates

only to outflow, not inflow, since the unit only has control over its outflow.

We will later on use the term discretionary for an outflow that is controlled

by the agent, and non-discretionary for flows demanded from the agent but

normally outside the agent’s control (debt service paid by a debtor is one

example, tax payment is another).

for instance a household or a firm. We also sometimes use the terms "unit" or "node" for

this. The last term is appropriate because it indicates that we describe the macroeconomy

as a network of nodes, interconnected by money flowing between them.
8A fascinating result is called Little’s law after the discoverer John Little (Sterman;

2000), pp. 421 - 423. When inflows and outflows are constant, any linear input-output

unit — regardless of impulse response shape as long as the area under the response is unity

— satisfies 2.9 (for a more precise statement, see subsection 2.6.2).

One may also make a chain of (not necessarily identical units), and the  for the whole

chain will be the sum of the individual lags, and satisfy 2.9 with an  being the sum of

the individual  ’s "in transit" with the respective units.
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2.4.2 Impulse response vs step response

If we compare figures 2.2 and 2.3, we observe how two different input signals

(step function and impulse function) give different output responses but with

a common characteristic; the shape of the response is a decaying exponential

with the same time constant. The first response is called a (unit) step

response. The step response is the time integral of the impulse response, and

the unit step input function is the integral of the impulse (input) function.

Both responses can and will be used to equivalently characterise a given unit.

We note that while the impulse represents a one-shot payment of money, the

step function represents a persistent flow of money starting at time  = 0.

In chapter 4 we will use the impulse response concept as a convenient

way to represent debt service: a loan given at time  = 0 is represented

by an impulse function and generates a debt service flow which then may

be considered to be the impulse response of a “debt service subsystem”.

This, together with modeling the debtor part of the economy as a first order

time lag unit, enables a simple but still valid analysis of the results of

persistent recycling of debt service income into new and overlapping loans,

something that is usually abstracted from in the monetary circuit literature

partly because it has been considered too difficult (due to time dispersion

of money flows).

2.4.3 Agent dynamics with no inflow

We have until now considered the dynamics of units with a one-shot payment

or a constant inflow of money starting at  = 0. If we alternatively consider

a situation with a certain initial money stock but no inflow, i.e. () = 0,

then our agent, from solving (2.11), spends her money following a decaying

exponential curve, which is reasonable behaviour in a situation with zero

inflow. See figure 2.7. This gives further support to the first order time lag

model.

2.5 On saving,"hoarding" and liquidity preference

In economic textbooks one mostly confines the description of what agents do

with their money to the alternatives "spending" and "saving". If an income

flow to an agent is called  , spending is given by (1 − ) and saving

by  , where  is "the propensity to save",   1 (we use the symbol 

throughout for the savings coefficient, since we reserve  as symbol for the

derivative operator/Laplace transform variable). More sophisticated models
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Figure 2.7: Spending with no income and (0) =0

incorporate a "portfolio" for what sort of saving the agent does; one may for

instance distinguish between stocks and bonds in such a savings portfolio.

Some Post Keynesian economists, among them Giuseppe Fontana (2000),

pp. 34 — 36, makes the point that one additionally should distinguish be-

tween saving and hoarding. The latter is holding on to money, while the

former is converting one’s money to some financial instrument. This is a

good point. But they go wrong by accounting for hoarding with a "mar-

ginal9 propensity to hoard", which called 1−, with   1. The share for

buying securities out of income, is then .

For an income flow  , then

spending = (1−)  saving =   and hoarding = (1−) (2.12)
The argument against this representation may most conveniently be done

using block diagrams. See figure 2.8. The upper diagram depicts Fontana’s

and others’ structure with a propensity to hoard, while the lower contains

the block diagram of the first order time lag which will be used frequently

throughout this thesis.

The upper structure implies that a unit receiving a money flow immedi-

ately channels this onwards, either to buy some financial instrument (bonds

and stocks), to consumption — or to the unit’s money hoard. This has two

problematic implications: the money hoard will grow persistently over time

without bounds, and the hoard is not used by the unit as a buffer in the

circulatory system, but removed from circulation. The first is obviously im-

possible, the second contradicts the actual behaviour of units like households

and firms.

Augusto Graziani writes:

9"Marginal" is in Fontana’s paper used in a non-marginal sense. 1 − is simply the

share of income flow that is split off from other spending.
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Figure 2.8: Two structures with hoarding

To the extent that wage earners, instead of spending their

whole incomes either on commodities or securities, keep their

savings in bank deposits, the firms are unable to repay their

banks debts. If the previous level of output has to be preserved,

the firms have to get new loans from the banks, which means

that the ‘stock’ of money has increased (Graziani; 1996), p. 144.

He is correct that loans must be given to compensate for existing ones

being re-paid, if circulation is to continue. But as long as this happens,

output may be upheld with zero net lending (i.e. no increase in money

stock) if wage earners do what we might call in-flow hoarding, as indicated

in the lower half of figure 2.8. We will return to this topic in subsection

2.7.5.

When money is spent in the in-flow-hoarding model, one may account

for the other portfolio choices by splitting the outflow via the remaining

propensities (the coefficients) that is used in the figure. The propensity to

hoard model has three outputs decided by two coefficients,  and . While
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our model has a time lag and two outputs decided by one coefficient, . In

our model the unit adjusts the hoarding rate by changing  in the same

direction.

A comprehensive critique of the concept of a propensity hoard is done

in (Andresen; 2006).

If one mainly considers a unit’s cash or deposit account (the "hoard") as

a buffer between in- and outflows — as in this thesis — the time lag (inverse

money velocity) also emerges out of the model. This parameter gives a rep-

resentation of liquidity preference. The concept is defined in Keynes (1936),

ch. 13 , part II. Keynes introduced the term to characterise how agents ad-

justed their spending behaviour in reaction to a change in the interest rate,

and as a precaution against possible extraordinary future expenses. We will

later on, in subsection 6.2.3, use his second point in a similar but slightly

different way, to characterise agents’ mood change in an economic downturn.

And money velocity (or its inverse, the time lag  ) in the lower model ex-

presses this well. In a downturn scenario with increasing pessimism, agents

will generally hold back in their spending, trying to safeguard their "money

hoard". Increased liquidity preference corresponds to a reduced  (increased

 ) by the agent. Money velocity is a behavioural variable. Metaphorically,

decreasing  means that the agent (household, firm) turns down the out-

flow "tap" on his/her "vessel". When many units do this, the result is a

general decrease in consumption and spending, in the next round increasing

pessimism, leading to even more liquidity preference and worsening the cri-

sis. This can lead to a death spiral towards depression. We will model and

simulate such a process in chapter 6.

2.6 Time lags for interconnected units

This section develops and discusses some rules for how to simplify inter-

connected time lag units. The goal is to find a reasonable single unit ap-

proximation, in the sense that the time lag of this single unit reasonably

approximates the time lag for the network. We accept that the precise dy-

namics of the network will remain unknown — we confine ouselves to finding

a fairly equivalent time lag. This is a special type of model reduction tech-

nique. Model reduction is frequently used in the control systems community.

The discussion to follow is valid for linear systems as such, not only economic

systems.
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2.6.1 Micro to macro?

Before proceeding however, some remarks about aggregation and models

of unit behaviour. Models of an individual agent used in neoclassical eco-

nomics are often assumed to also represent the aggregate of the agents in the

macroeconomy. In such models households maximize intertemporal "utility"

subject to their budget constraint. Robert Solow is very critical:

... a school of macroeconomic thought that dominates many

of the leading university departments and some of the best jour-

nals, not to mention the Federal Reserve Bank of Minneapolis.

They mean a macroeconomics that is deduced from a model

in which a single immortal consumer-worker-owner maximizes a

perfectly conventional time-additive utility function over an infi-

nite horizon, under perfect foresight or rational expectations, ...

(Solow; 2008)

Our household unit is a much simpler creature, (s)he just tries to up-

hold a buffer of money with respect to his/her own situation and how (s)he

sees the general economic prospects. Later on, we will distinguish between

"worker households" who spend all they receive — and "capitalist house-

holds", who in addition to upholding a buffer of money and consuming, also

extend loans and do real-economy investment.

There is a comprehensive literature in economics about whether one rea-

sonably may construct macroeconomic (aggregated) models based on some

replication of assumed models of individual agent behaviour. One central

point of disagreement is whether a large collection of heterogenous individ-

uals who obey the "Law of Demand" (downward sloping demand curves)

imply an aggregate (market) which obeys the same law. Keen (2011) ar-

gues against this, among other things referring to the Sonnenschein-Mantel-

Debreu conditions which proves that this is generally not the case.

A paper arguing against the proposition that a model of "the whole" (in

physics and other fields, not only economics) can be inferred from properties

of its parts, is (Anderson; 1972). He writes:

The main fallacy in this kind of thinking is that the reduc-

tionist hypothesis does not by any means imply a "construction-

ist" one: The ability to reduce everything to simple fundamental

laws does not imply the ability to start from those laws and re-

construct the universe. In fact, the more the elementary particle

physicists tell us about the nature of the fundamental laws, the
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less relevance they seem to have to the very real problems of the

rest of science, much less to those of society. The constructionist

hypothesis breaks down when confronted with the twin difficul-

ties of scale and complexity. The behavior of large and complex

aggregates of elementary particles, it turns out, is not to be un-

derstood in terms of a simple extrapolation of the properties of

a few particles. Instead, at each level of complexity entirely new

properties appear, and the understanding of the new behaviors

requires research which I think is as fundamental in its nature

as any other (p. 393).

While agreeing wholly with this, the approach of this thesis is to circum-

vent the "microfundations for macro" controversies in economics by looking

at both invidual agents and sectors in a different and much simpler way:

they are all modeled as stock-flow units connected via monetary flows. A

unit is characterised by one main parameter, its time lag. And with this

approach, it will be argued that it becomes meaningful to use the properties

of individual units to construct aggregate models.

Some might object that this is is to simple to allow any non-trivial and

useful insights to emerge. The reader must be the judge of this.

2.6.2 Definitions and introductory remarks

Until now all units have been assumed to have first order dynamics of the

type in figure 2.2, which is quite restrictive. We will from now rescind this

assumption, and allow all types of units that satisfy the following criteria

for their impulse responses:

causality, i.e. () = 0   0 (2.13a)

non-negative: () ≥ 0∀   0 (2.13b)

unit area:

Z ∞

0

() = 1 (2.13c)

non-zero duration: ()  0 for some finite time interval (2.13d)

We will call the class of impulse responses satisfying (2.13) "PUA" (positive,

unit area). For money stock-flow applications, these criteria are obviously

fulfilled: money cannot emerge from a unit before it is received (2.13a),

a money outflow cannot be negative (2.13b), money is not created or de-



2.6 Time lags for interconnected units 23

stroyed10 by the unit (2.13c), and money received is not passed on in one

lump (2.13d)(this last condition may be violated for certain units in certain

cases, but such non-dispersion cases are assumed to occur so rarely that

they may be abstracted from).

For an arbitrary type of PUA unit, we now define the mean time lag

̄ as the position along the time axis of the centroid of the area under

the impulse response (). Introducing the Laplace transform () (= the

transfer function)11 of () for a unit, we have that the mean time lag is

̄ =

∞Z
0

() =

∞Z
0

()−

¯̄̄̄
¯̄
=0

= − 


[()]

¯̄̄̄
=0

= −0(0) (2.14)

Note the compact notation of the rightmost term, which will be used for

convenience in the following. Dependence on , not , is implied. In the

more general case, if the response in question does not have unit area, we

have

̄ =

∞Z
0

()

∞Z
0

()

=

∞Z
0

()−

∞Z
0

()−

¯̄̄̄
¯̄̄̄
¯̄̄̄
=0

=

£− 

()

¤
=0

()|=0
=
−0(0)
(0)

(2.15)

We note that unit area implies ()|=0 = 1 12
We introduce a class of PUA units which have a rational transfer function

() =
()

()
=
1 + 1+   + −1

1 + 1+   + 
, (2.16)

10The sole exception is when the unit is a commercial bank, or the commercial bank

sector as an aggregate. This is first discussed in chapter 5.
11For convenience we use () both in the time domain and the  domain, in spite of

these functions being mathematically different. The context will tell which interpretation

applies. () then signifies the Laplace transform of ().
12 In control systems jargon ()|

=0 is called the static gain of the transfer function

(). A constant stepwise input from  ≥ 0 onwards may be interpreted as a cosine

function with zero frequency, switched on at  = 0 — thus the adjective "static". With

static gain = 1, the resulting output becomes constant with the same amplitude as the

input, after some transient period.
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Figure 2.9: Rectangular PUA pulse

(Note that  doesn’t have to be strictly proper : the degree of the numerator

may be equal to the degree of the denominator. If that is the case, the unit

in question has an instantaneous "by-pass" connection from input to output.

In monetary terms, this means that this unit immediately spends some of

the money received. This special case is not considered to be important,

and thus not considered further in this thesis.)

Using (2.14), we get

̄ =
(0)0(0)− (0)0(0)

2(0)
=

0(0)− 0(0)
1

= 1 − 1 (2.17)

For the special and simplest case of the first order time lag with () = 1

and () = 1 + , we know that ̄ =  , which is confirmed by (2.17). For

higher-order PUA rational transfer functions we note that ̄ is independent

of the coefficients  and    1.

Let us now consider a unit with a non-rational transfer function

() =
1


(1− −) (2.18)

the corresponding impulse response () is PUA with a rectangular shape

as shown in figure 2.9. By visual inspection the mean time lag is obviously

̄ = 2. It may also be found via (2.14):

̄ = lim
→0

µ
− 



½
1− −



¾¶
=



2
(2.19)
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2.6.3 The mean time lag for units in series and in parallel

For  PUA transfer functions in a series connection, the resulting transfer

function will also be PUA. (2.14) gives

̄ = −0(0) = −(12 · · · )0(0) = −(01(0) + 02(0) + · · ·+ 0 (0))
= ̄1 + ̄1 + · · ·+  (2.20)

This is reasonable, considering that ̄ may be seen as the lag of a flow which

is transmitted through a chain of  “agents” (referring to our economic

application). It also agrees with Little’s law, mentioned earlier (Sterman;

2000), pp. 421 - 423. The impulse response of a series connection of sub-

systems as in (2.20) is the convolution of PUA impulse responses in the time

domain:

() = 1() ∗ 2() ∗ · · · ∗  () (2.21)

An example: if we make a serial connection of three identical units of the

type (2.18), the transfer function is

3() =

µ
1− −



¶3
(2.22)

From (2.14), the mean time lag is

̄ = lim
→0

Ã
− 



(∙
1− −



¸3)!
=
3

2
, (2.23)

which can be more easily found by inspection of the resulting PUA impulse

response 3(),which is the triple convolution of the rectangular PUA pulse

with itself. See figure 2.10. The response 3() consists of three smoothly

spliced parabolic sections, with common tangents at the splicing points.

This response is a soft smooth pulse where nothing happens immediately

(as opposed to the response of the first order time lag unit) and which

tapers to zero after a finite time (as opposed to the infinite-tail response of

any PUA unit with a rational transfer function).
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Figure 2.10: PUA impulse response 3()

A “limit impulse response” for serially connected units has a nor-

mal distribution shape

(First, a warning: This result does not have any use for later considerations

and applications. I still insert it here since I find it very fascinating and

haven’t found it in the literature ...)

A PUA response is mathematically similar to a probability distribution

function in the sense that both are PUA (except that a p.d.f.-shaped time

function doesn’t necessarily satisfy condition (2.13a). From probability the-

ory we know that if we convolve  p.d.f.’s, the result is the p.d.f. for the sum

of the respective random variables, assuming they are i.i.d., see for instance

Casella and Berger (2002), p. 215. And the Central Limit Theorem (ibid.,

p. 236) tells us that the resulting p.d.f. will tend to a normal distribution

when  is large. If we return to the time domain and apply this to a linear

dynamic system consisting of a large number of  serially connected similar

PUA subsystems, this means that the impulse response of the total system

will have a shape approaching that of the normal distribution, with mean

time lag corresponding to the mean value of the distribution. To explore

this, we introduce the PUA transfer function

 () =
1³

1 + ̄


´ (2.24)

We use it in for a chain of  serially connected identical first order time

lags. Since each lag in the chain is ̄  , rule (2.20) tells us that the system’s

mean lag will be invariant = ̄ .
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Incidentally, we note that

lim
→∞

 () = −̄  (2.25)

so that the impulse response in the limit is trivially an impulse delayed by

̄ , as in figure 2.5. We want, however, to examine the responses for large

but finite  . The impulse response corresponding to (2.24) is

() =
1

( − 1)!
µ


̄

¶

−1−

̄ (2.26)

Figure 2.10 shows a selection of responses, with  = 1     100 and

̄ = 1. Responses for  = 1 2 3 are emphasised. The corresponding

normal distribution shape has mean ̄ and variance ̄ 2 , and is shown

as a dotted graph. These responses are all from transfer functions with a

constant = 1 in the numerator (no zeros). (We will introduce a zero and use

 = 2 for Monte Carlo simulations of an economic network in section 2.9.

We will see that a zero and two poles are sufficient to generate a very wide

range of different-shaped responses.)

Units in parallel

Now to the case of  arbitrary PUA units with time lags ̄, connected in

parallel. The transfer function becomes

 = 11 + 22 + · · ·+  (2.27)

Here we require all constant coefficients   0, and 1+2+· · ·+ = 1
so that () will also be PUA. The time lag for () is then a weighted

average,

̄ = −0(0) = −(11 + 22 + · · ·+ )
0(0)

= 1̄1 + 2̄2 + · · ·+  ̄ (2.28)

The series (2.20) and parallel (2.28) rules for calculating time lags may be

then employed to find the mean the time lag of a network of a more arbitrary

structure, which we will do later.
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Figure 2.11: Impulse responses ()

Figure 2.12: Equivalent transfer function ̄() from feedback
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2.6.4 Mean time lag for a system with feedback

Consider the block diagram in figure 2.12.Here 1() and 2() are transfer

functions of arbitrary PUA units, with time lags 1 and 2. Coefficients 

and 1 − , with 0    1, are necessary to ensure that the resulting unit

with transfer function ̄() is PUA. We have

̄ =
1

1− (1− )12
(2.29)

Using(2.29) in (2.14 and partial differentiation, the mean time lag of ̄() is

̄ = − 



½
1()

1− (1− )1()2()

¾¯̄̄̄
=0

=


1

½
1

1− (1− )12

¾
1 +



2

½
1

1− (1− )12

¾
2

¯̄̄̄
1=12=1

=
1 + (1− )2


(2.30)

We may relax the condition that ̄() shall be PUA. The gain at the

output in figure 2.12 may differ from  and have an arbitrary value. This

will not change the lag ̄ of ̄(), only its static gain.

We will use the feedback rule in subsection 3.1.1.

2.6.5 Mean time lag from a state space representation

Finally, consider a linear SISO (single-input, single-output) system in state

space form with a positive — not necessarily unit area — impulse response:

ẋ = x+ b (2.31a)

 = cx (2.31b)

The transfer function is

() = c ( −)−1b (2.32)

From (2.15) and (2.32) we then have the mean time lag

̄ =
−0(0)
(0)

=
c
£−( −)−1( −)−1

¤
=0

b

−c−1b = −c
−2b
c−1b

(2.33)

The state space representation (2.31) will be used for Monte Carlo simula-

tions of a network with 150 agents in section 2.9.
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2.6.6 Mean time lag via the step response

All time lag rules until now have been explored based on a PUA system’s

impulse response. We will now instead define the lag based on a PUA

system’s unit step response. For convenience we repeat these two types of

responses, for the 1st order time lag system, () = 1(1 + ). See figure

2.13. Before proceeding, note that in the case () = 1(1 + ), the two

Figure 2.13: Impulse and unit step response for () = 1(1 + )

responses have similar (decaying exponential) shapes and the step response

starts at the origin; this is always the case if the unit has a strictly proper13

transfer function. But the derivation to follow will be valid for any PUA

system of the type (2.16), repeated here for convenience:

() =
()

()
=
1 + 1+   + −1

1 + 1+   + 
=

()

()
(2.34)

13Strictly proper means that thet the degree of the polynomial in s in the denominator

is higher than the degree in the numerator.



2.6 Time lags for interconnected units 31

where  and  as earlier are the generic input and output symbols. For any

such system the unit step response will increase monotonically and converge

towards 1. With a persistent constant input (the unit step flow), the system

converges to an equilibrium where inflow  and outflow  is equal =  ,

and where the buffer stock  becomes constant.  must be the time-

integrated difference between in- and outflow in the initial build-up phase,

since we have ̇ =  − . In figure 2.13  is the shaded area. We define

the mean lag such that  =  =̄ , as already indicated in (2.11). We

will now use the Final Value Theorem for Laplace transforms, which says

that for a time-dependent function known to be tending to a constant value

as →∞, we have

lim
→∞

() = lim
→0

() (2.35)

We then get for the equilibrium value of  :

lim
→∞

() = lim
→0

() = lim
→0

µ




()()

¶
= lim

→0

µ




()
1



¶
= lim

→0

µ
1



()− ()

()

¶
= lim

→0

µ
1



∙
1− ()

()

¸¶
= lim

→0

µ
1− ()



¶
(2.36)

= lim
→0

µ
1+   + 

 − 1−   − −1

 (1 + 1+   + )

¶
= 1 − 1

Since the equilibrium value of  is unity, this gives

̄ =



(→∞) = 1 − 1 (2.37)

Thus we get the same time lag based on this definition as via the earlier

definition which was based on the impulse response, (2.14). If the input step

is of amplitude  6= 1 the area  will be scaled by the same factor (as this

is a linear system). We get ̄ = 

= (1 − 1) = 1 − 1; the same lag.

We may formulate the result as a verbal rule:

"regardless of the shape of the PUA system step response, the

time lag for the system is the equilibrium buffer (indicated by

the area between the input and output flow graphs) divided by

the height of the input step (which is the size of the equilibrium

in- and outflow)".
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For the discrete time case this rule is described in (Godley and Cripps;

1983) and (Godley and Lavoie; 2007).

Sterman (2000) discusses this for the continuous-time case. But instead

of characterising a unit through its (deterministic) impulse response, Ster-

man (on p. 423) employs the probability density function for when a "par-

ticle" appears in the outflow when it has been input at  = 0. The result

however, is the same whether one employs a p.d.f. or an impulse response.

We use deterministic dynamics in this thesis due to the homogeneity of

money: all "particles" in a monetary flow are identical. We may therefore

think of a money flow as if it was a homogenous liquid. This as opposed to a

network where the "particles" are heterogenous, for instance like the letters

and parcels in a postal system, used as an example in Sterman’s book. There

one should work with probabilities for when a letter or parcel will arrive.

2.7 Application: an economy with households and

firms

Before proceeding with further technical development of the "network of

time lags" concept, we will in this subsection apply some of what has been

derived until now. We will consider a simple textbook variant with house-

holds and firms, with no government and no financial sector. The diagram in

figure 2.14 is a “monetary-flow-and-vessels diagram” representation of this

economy. Below is the (mathematical) block diagram of the same system.

In the figures we have these entities:

 = aggregate demand [$].

 = aggregate output [$].

 = 1− = profit share of output [ ],  is workers’ share.

Π = profit [$]; all profits are invested, and there is no external source of

investment at this stage.

 = wages [$]; all wages are consumed, and there is no household savings

sink (or borrowing source).

 = consumption money stocks in the two sectors are  and  .

 = investment [$].
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Figure 2.14: Monetary flow diagram of system with firms and households

Figure 2.15: Elementary block diagram of firms/households system

Dependence on continuous time  is implied; we have () and so on.

Money stocks in the two sectors are  [$] and  [$]. As is clear from

figure 2.14, we assume that there are no external sinks or sources of money.

This assumption will be rescinded further below, among other things to

discuss the multiplier.

The mathematical block diagram of this system is shown in figure 2.15.

If we "reduce" (simplify) the two inner loop subdiagrams, using the rule in

figure A.3, appendix A, we get figure 2.16.

There is one important loop lacking in this block diagram: the profit =

investment loop depicted in figure 2.14. We should, however, note that figure

2.16 is entirely correct in the sense that in a system defined as consisting

of firms and households, the input to the firm sector is consumption only,
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Figure 2.16: Equivalent block diagram of firms/households system

and the output is wages only — investment is a flow that is internal to

the aggregate of firms14. So how do we extract profits, investment (and

aggregate demand/output) from this block diagram representation? This is

achieved by making the profit/investment flow loop external from the firms

block in figure 2.16. We demand that the two firm blocks shown in figure

2.17 are equivalent in an input-output sense.This gives an equation to find

Figure 2.17: Extracting the profit flow loop

the unknown transfer function,

1

1 +  
=



1− 
(2.38)

Solving for  and using  = 1− :

 =
1

1 +  
(2.39)

We observe that “extracting” the profit/investment loop leads to a reduced

time lag  for the modified firm sector (this is the opposite operation of

14Here we have chosen to define the household aggregate to be of the worker type,

not doing any investing. Later on we will define (or "extract" from the firm aggregate

used here) "investing" or "capitalist" households in parallel with worker households — an

alternative choice that is also useful.
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Figure 2.18: System with extracted profit loop

Figure 2.19: Elementary block diagram with extracted profit loop

incorporating a feedback loop, as given by (2.29) ). Figure 2.16 may now be

transformed into the equivalent block diagram shown in figure 2.18.

By making the profit/investment loop external to the firm sector, we are

able to account for output  in the block diagram. We may now expand

figure 2.18 into an elementary block diagram corresponding to figure 2.15.

The result is figure 2.19. (We have here substituted 1 −  for ). There

are two integrators in this system. In other words we have a system with

two states; household and firm money stock. This system is autonomous (it

has no exogenous inputs), and its time path is therefore decided solely by

the initial distribution of the money stock between the two sectors. We will

now use this example to illustrate the use of Simulink, and then to find the

equilibrium state of this system. The trajectory of the system is shown in

figure 15. Initial values are assumed to be 0 = 1400 and 0 = 800 [$].

System parameters chosen are time lags  = 2 and  = 20 [weeks], and

wages’ share of output is  = 07.
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Figure 2.20: Simulink block diagram corresponding to figure 2.19

A Simulink block diagram15 corresponding to the one in figure 2.19 is

shown in figure 2.20. This setup gives the responses shown in figure 2.21.We

note how supply adjusts to demand in equilibrium. The graphs also indicate

that in equilibrium, money stocks are proportional to the respective time

lags in the two sectors. This is easy to see by considering figure 2.15: In

equilibrium we must have  = . This follows since

 = and  = (2.40)

Our main interest, however, is to focus not on equilibrium but dynamics.

In this simple case we can find the algebraic solution for the trajectories,

which is

 () = 0
− +




(1− −) (2.41a)

() = 0
− +




(1− −) (2.41b)

15Note that summation points in this Simulink diagram are symbolised with rectangles

with plus and minus signs, as opposed to circles used in the diagrams elsewhere in this

paper and in most control engineering or signals and systems literature. The blocks with

a cross ("X") imply that the output is the product of the inputs.
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Figure 2.21: Step responses after increase in 0

where  = +


. Total money stock, () =  () +() = 0 +

0 = constant, since there are no sources or sinks for money in this system.

The system is linear and therefore amenable to algebraic solution. In a more

realistic model with non-linearities, algebraic solutions are very difficult to

find, if they exist at all. In such cases, numerical simulation is needed.

2.7.1 The economy simplified to a single first-order block

Consider the earlier discussed “tube” model in figure 2.6. We now want

to replace the “tube” with a corresponding “vessel” (1st order time lag

model), where — just as in figure 2.6 — an input demand flow  +  results

in an output flow which is recycled to the input. We will make use of the

firm/households model in figure 2.18. The profit flow is now assumed to

be paid out to stockholding owner households along with wages to workers,

and households recycle the profit flow as investment to firms, in parallel with

their consumption out of wages. This means that the profit flow is assumed

to be lagged in the household sector with the same time constant  as the

consumption flow. (This change is only done to make the presentation below

simpler — a similar presentation could have been made with a model where



38 A Signals- and Systems-based toolbox

Figure 2.22: Vessel type model with output connected to input

investment out of profits are internal to the firm sector and not lagged, as

in figure 2.16). We define a new  := 
16. The modified figure 2.18

can now be portrayed in a way that is structurally similar to figure 2.6.

We have added an exogenous input 0, which might be flows from banks

(loans), or injected via government spending. Note that the order of the

firms and household blocks has been changed, so that the input to the first

block (firms) is now  + .

We may now as an approximation simplify the system to just one first-

order time lag, using the series rule (2.20). This gives ̄ =  +  . Then

we have a first-order block 1
1+̄ 

representing the shaded area in figure 2.22.

The advantage of lumping firms and households together in this way is that

we do not have to distinguish between lending, debt service, taxation and

government spending for households, as opposed to firms. There is just one

common injection (government spending, loans) and extraction (taxes, debt

service) point, indicated by 0 in figure 2.22. This simple model will be seen

to be mostly sufficient for parts of this thesis.

.... and as an integrator

From the block diagram in figure 2.22 we find the transfer function from 0
to , which is



0
() =

1
1+ 

1− 1
1+ 

· 1
1+

=
1

̄

1 + 

1 + 
̄


· 1


(2.42)

16The notation := is used to signify a new interpretation of a symbol, related to the

former use of the same symbol: “ is from now on to be interpreted as  times the

former  ”



2.7 Application: an economy with households and firms 39

Figure 2.23: One-shot injection leads to sustained increase in 

The transfer function contains a pure integrator 1

. A one-shot exogenous

injection (an impulse) of money 0() = () will give an output response as

indicated in figure 2.23. Due to the integrator, this injected money leads to

an output flow that jumps up and stays permanently higher than before the

event. This is intuitively reasonable, since there are no leakages of money

out of the circuit — any extra money injected must lead to sustained higher

output. The increase17 in money stock is 1. To find the corresponding

stationary increase in  — which we will signify with (∞) — we may use
the same argument as that leading to (2.40). Then (∞) is 1

(+)
= 0046

(using the parameter values from the simulation of the model in 2.20). The

not perfectly rectangular shape of the response is due to the transient process

of the emerging flow from the firm sector having to fill up an initially empty

household money stock,  . When this has been achieved, the system

settles to a stationary state where (∞) is slightly lower, since some of
the initially injected money now resides with households, and the rest with

firms, with (∞) = .

We have ̄ = + . With  ¿  (above we assumed 2 respectively

20 weeks). When output is fed back to the input, this results in the transfer

function



0
() =

1 + 

̄ 
' 1

̄ 
(2.43)

17For simplicity, the simulation is done with money stock and other initial values = 0.

This is acceptable since for a linear system dynamics are the same as if the system instead

was started (more realistically) with initial values  0.
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The  impulse response is now a step (= perfect rectangular-shape) func-

tion. Its amplitude is the same as the stationary value in figure 2.23. With

this ultimate simplification we see more clearly how the entire closed-loop

economy observed from an outside money injection perspective is simply an

integrator — which means a stock of money that is increased when additonal

money is injected. This is what remains when all loops are considered to be

internal to the system (no loops are extracted).

If the outside injection 0() is not an impulse, but a persistent constant

exogenous inflow of money [$], money stock and output  ≈̄ will

increase without bound. This is the case if the government runs a persistent

deficit, which will be discussed in section 5.2.

2.7.2 Velocity and existence of money in the circuit

Augusto Graziani was a central researcher belonging to the circuitist school

of economists, (Arestis and Sawyer; 2007). In several articles he discusses

the effect of uncertainty, the velocity of money circulation and the seemingly

strange question: why, actually, is there money in the circuit? He employs

a simple circuit consisting of of firms, households and banks:

Let us now assume a world free from uncertainty and popu-

lated by perfectly rational agents. In this world, any agent will

go into debt only at the very moment in which he has to make

a payment. Similarly, any agent who receives a money payment

tries to spend it as soon as possible on goods or on securities.

Both kinds of expenditure bring the money back to the firms,

who immediately repay their debt to the bank. In a hypotheti-

cal world free from uncertainty and from frictions, the aforemen-

tioned steps would take place in an immediate succession with

no time lag. This means that money is created, passed on from

one agent to the next, and destroyed in the same instant. If this

is the case, money is no longer an observable magnitude and the

paradoxical result emerges of a monetary economy being defined

as an economy in which money, in spite of its being by definition

necessary for exchanges to take place, escapes any observation

and any possible measurement. If all agents behaved as J.B.

Say imagined, namely spending any amount of money as soon

as received, the velocity of circulation would be infinite, money

would be destroyed as soon as it was created and any attempt

to measure the money stock in existence at any given moment
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of time would invariably produce a zero result. As a paradoxical

consequence, the image would emerge of a monetary economy (in

the sense of an economy having ruled out barter and in which

all payments are regulated in terms of money) in which money

did not exist. (Graziani; 2003)

The problems pointed to by Graziani are simply and elegantly resolved

by the use of time lag blocks in the circuit. The rules for aggregation of time

lag blocks give us the relation between the amount of money in the circuit,

the flow sizes, and money velocity. Here we use only firms and households,

banks are not necessary for the argument. Consider figure 2.22. Imagine

that after a while the exogenous injected flow 0 is switched off. A constant

amount of money is is now circulating. If we aggregate the household and

firm block into one, the time lag is ̄ ≈  +   Simplifying the system,

as indicated in figure 2.24, we end up with the equation

() =


̄
=, where  is money velocity (2.44)

Money moves infinitely fast from the output and back to the input (in reality,

from one account to the other), but stays within the aggregate block for a

while, giving a finite ̄ , or  = 1̄ . With  constant, the upper system

in figure 2.24 can be simplified down to just one integrator, generating the

income flow  =̄ .

Further down Graziani writes:

For money to be an observable magnitude, it must be kept

by single agents for a finite period of time, no matter how short,

thus taking the form of a cash balance, be it notes or bank de-

posits. Since, as mentioned earlier, liquid balances are kept as a

protection against uncertainty, this means that, for money to be

an observable magnitude, the market must be operating under

uncertainty. If we move in a hypothetical market free from uncer-

tainty, liquid balances disappear, and with them the possibility

of observing and measuring the money stock in existence.

Uncertainty is one reason for holding cash balances. But one does not

need the assumption of uncertainty to justify that money velocity is not

infinite — and finite money velocity is equivalent to agents holding buffers

of money. It suffices that any agent, whether a firm or a household, needs

to cope with the fact that outlays are not happening at the same time and
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Figure 2.24: First-order blocks ensure finite money velocity and account for

the existence of  .

with the same size as incoming amounts of money. For instance, a wage

earner that receives money once a month, has to gradually portion out

payments over the coming weeks, like portrayed by the impulse (input) and

its response (output) in figure 2.13.

2.7.3 A time lag block with a small  is simply unity

Assume again the realistic case  ¿  , and consider the households block

to the right in figure 2.22. The transfer function for this block is

() =
1

1 + 
=




() (2.45)

where we have introduced the symbol  for aggregate demand from house-

holds, i.e. the outflow from the household block. Eq. (2.45) corresponds to

the differential equation

 ̇ = − +  (2.46)

If we let  → 0, the differential equation is reduced to  = , i.e. the

outflow is now strictly equal to the inflow at any time, with no lag. We have

instantaneous dynamics. This is reflected in the transfer function which
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Figure 2.25: Money flow diagram with multiplier and exogenous inputs

becomes () = 1. In block diagram symbolism we may then simply

remove the households block and substitute it with a line connecting the

former input and output, since such a line implicitly means multiplication

by 1. It implies the simplifying but unrealistic assumption that households

hold no money18.

2.7.4 The system with a multiplier

We will now discuss the multiplier. Historically, but also in today’s eco-

nomics textbooks, the multiplier was and is explained by partitioning the

time axis into equidistant intervals (i.e. discrete time), and using a geo-

metric series to derive how an exogenous injected flow of money leads to

an increase in output that converges to a higher level. See for instance

(Mankiw; 2008). We employ the common textbook model where all profits

are paid to households together with wages, and where households consume

a share  of their income and save the rest. See the monetary flow diagram

in figure 2.25.The difference is that we do this in continuous time, and use

the Laplace transform instead of a geometric series. We have two (exoge-

nous) input money flows 0 and 0, and a money flow is leaving the system

as savings, through the savings coefficient 1− . Using the vessel metaphor,

money is persistently poured into the system at a constant rate, but drains

out of the system also. The block diagram for the system, corresponding to

18This assumption is implicit in an attempted "dynamical extension" of the comparative

statics IS-LM model which is critiqued in subsection 2.7.6 below.
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Figure 2.26: Block diagram with multiplier and exogenous inputs

figure 2.25, is shown in figure 2.26.We observe that a change in exogenous

investment or consumption must have the same effect, so we use investment

only. The transfer function from investment to output is



0
() =

1 + 

2 + ( + )+ 1− 
(2.47)

If we assume that investment increases as a step function with amplitude

40 at time  = 0, the Laplace transform of this step function is 40

. We

then have for the change in output:

4() =
1 + 

2 + ( + )+ 1− 
· 40


(2.48)

Applying the Final Value Theorem19 to (2.48), we get

lim
→∞

4() = lim
→0

4 () = 40
1

1− 
(2.49)

where 1(1− ) is the familiar expression for the multiplier.

If all income is consumed ( = 1), the multiplier is infinite. The system

is on the border of stability: One of two eigenvalues for the system (equiv-

alently: one of two poles in the transfer function) is at the origin. Outside

sustained injection of money will increase circulation persistently between

the two sectors, since no money is taken out of circulation by households

saving part of income. Output increase will never stop.

For the case   1, the Final Value Theorem is a fast and convenient

tool to find equilibrium outcomes (if any) for a linear system, even if it tells

19 explained in most control engineering textbooks, for instance (Dorf and Bishop; 2017)



2.7 Application: an economy with households and firms 45

Figure 2.27: Time path with multiplier

nothing about the transient dynamic behaviour of the system (i.e. before

equilibrium is reached).

We do not bring the algebraic solution for the system in in figure 2.26

here, but instead show the time path from a Simulink run, in figure 2.27.

The system is initially in equilibrium with 0 + 0 = 357 when investment

money flow is increased as a step function by 40 = 5 at  = 25. The

propensity to consume is assumed to be  = 075, i.e. we have a multiplier

of 4. A 5 [$/w] flow injection (as an exception we use increase in investment

flow) results in output asymptotically increasing by 20 [$/w].

The time of adjustment, estimated from the graphs, seems to be in the

order of 80+ weeks. We may now use the rule (2.17) to check this by

calculating the mean time lag of this response20. To do this via the earlier

derived rules, we first have to modify the transfer function (2.48) to be PUA:

(1− )


0
() =

1 + 


1− 2 +

(+)
1− + 1

(2.50)

Even if the response for (2.50) has a smaller magnitude, it has the same

shape and thus the same mean time lag. It is PUA, and we may use (2.17).

We get

̄ = 1 − 1 =
( + )

1− 
−  = 86 (2.51)

20As opposed to this method, a drawback of the "classical" discrete-time method of

using a geometric series to find the multiplier, is that the time constant of the process

is lost. More generally: the loss — or abstracting from — actual and physical time is a

disadvantage with time-discrete models.



46 A Signals- and Systems-based toolbox

The same result may be derived by using the series and feedback rules from

subsection 2.6.4.

2.7.5 A Kalecki-inspired application

We will in this subsection use the developed approach for a model inspired

by Michał Kalecki. One of his models is a simple circulatory system with

capitalists and workers only. A famous quote credited to Kalecki by Joan

Robinson and others (López G and Assous; 2010) is

Workers spend what they get, capitalist get what they spend.

We will present a model that expresses this. In addition, we will add an

equation for the profit rate.

Readers are recommended to study the block diagram below, figure 2.28.

All information needed is contained in that diagram.The model, however,

will also be presented based on equations. We will see that it boils down to

a three-state linear dynamical system.

We define the following variables and parameters; denominations are

indicated in brackets:

 = time lag for the aggregate of non-financial firms []. There are no

banks in this model.

 = lag for the aggregate of (non-saving) worker households [].

() = aggregate income to be shared between workers and capitalists

[$].

() = aggregate demand to firms, for consumption and investment [$].

() = capitalists’ accumulated capital [$].

 = depreciation rate on  [1].

 = profit rate [1].

 = share of aggregate income that capitalists receive [ ]; 0    1 .

The workers’ share is then 1− .

 = share of capitalists’ profit flow that is invested, not used for consump-

tion [ ]; 0    1.

() = flow of investment [$]
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 () = workers’ wages flow [$]; workers are assumed to use their entire

wages for consumption =  (), with a lag
21  .

Π() = profit flow to capitalists [$].

() = capitalists’ aggregate consumption flow [$]

() = total consumption flow [$], we have  =  +  .

In the following, dependence on time () is omitted for convenience. We

start the presentation with the input/output dynamics of the two defined

aggregates: firms and worker households. These dynamics may be explained

via the firm aggregate which has time lag  — properties for the worker

aggregates is similar, except for the time lag being  . We assume that

all lags are of the first-order type, corresponding to a differential equation

(using the aggregate of firms):

 ̇ = − +  (2.52)

The money held at any time by the aggregate of firms, must satisfy

̇ = − +  , (2.53)

so that

 =



(=  ) (2.54)

where  is firm money velocity [1] (but we will time lags in the following).

With such input-output dynamics, a stepwise change in the input flow gives

an output response that adjusts asymptotically to the input in the form of

a stable exponential with a lag  . The worker household subsystem has

similar properties. Equations are:

 ̇ = − + (2.55)

with

 =



(2.56)

The last differential equation is for capital accumulation and deprecia-

tion:

21We ignore the lag of capitalist households for simplicity. It might have been accounted

for, but would not have made any difference for the arguments and conclusions.
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̇ = − +  (2.57)

which is not part of the circuit but only a measure of success seen from the

capitalists’ position.

To complete the model, we need some additional (non-differential-) equa-

tions. The profit flowing to capitalists is:

Π =  (2.58)

For workers’ wages we have their share of output:

 = (1− ) (2.59)

For demand to firms we have:

 =  +  (2.60)

where

 =  +  = (1− )Π+  , (2.61)

and

 = Π, (2.62)

This completes the set of equations describing the system.

The model until now described through a set of equations, is shown in

figure 2.28 in the form of a block diagram:

This is a dynamic version of the Kalecki model. And we don’t need to

discuss how some equilibrum supposedly is achieved within a "period", since

we use continuous time.

We now, however, wish to check whether a stationary system state is

feasible, where the aggregate profit flow is positive and constant. We also

want to examine which model parameters influence the profit rate, and how.

Since the system is in equilibrium (= stationary), all derivatives are zero.

From (2.53) we get the trivial result

 =  =  (2.63)

Capitalists invest the flow  = Π =  , cf. (2.62) and (2.58). They

extract the flow Π =  . (As long as   1, i.e. capitalists consume some

of their profits, this corresponds to ’   in Marxian terms.)
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Figure 2.28: Block diagram for monetary circuit with capitalists and work-

ers.

Turning now to the profit rate, and setting the left side of (2.57) to zero,

we get

 =  = Π =  =⇒  =



(2.64)

leading to the equilibrium profit rate

 =
Π


=

 


=




(2.65)

Capitalists’ profit rate in equilibrium is not dependent upon their profit

share  of output. And the higher capitalists’ consumption out of profits

is (i.e. small ), the higher the profit rate, giving support to the Kalecki

quote. Capitalists also decide the profit rate in the sense that it is higher

with a higher depreciation rate.

There are no banks in this model. But it is equivalent to a system

with banks added, a special case where new loans plus banks’s expenses are

exactly equal to the debt service flow back to banks.

Two controversial conclusions emerge from this very simple model. The

first is

1. This economy can prevail without persistently increasing bank credit. This

is contested by many Post Keynesians, for instance Marc Lavoie, quote:

The debt of firms vis-à-vis banks must increase from period
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to period, unless households decide to diminish their bank de-

posits.” Lavoie (1992), p. 156.

He also (ibid.) quotes colleague Paul Davidson:

... every repayment of the credit advanced by the authority

must immediately be re-lent if activity is to be maintained.

In chapter 4 and later chapters we will see — using continuous time, not

discrete "periods" — that it is feasible for an economy with bank lending to

exist indefinitely even if new bank credit is not issued immediately when

loans are repaid. It is also (theoretically) feasible for an economy to stably

survive on a constant circulating money supply, as argued in this subsection.

This presupposes falling prices with real growth (but this thesis does not go

into price dynamics).

The second controversial conclusion from the above model is:

2. The profit rate can be upheld regardless of long-term technological change.

This is contested by many Marxian economists, who subscribe to the the-

ory of the persistently falling profit rate. This topic will not however, be

discussed in this thesis.

2.7.6 An application: critique of a "dynamic" IS-LM model

We have up to this point tried to show how system-theoretic, block diagram-

type tools are useful for macroeconomics, and to justify the first order time

lag (“vessel”) model as a main component in such models. We will now

use this and a well-known dynamic extension of the static IS-LM model to

demonstrate that IS-LM as such is fundamentally flawed. IS-LM is to this

day a central tool in macroeconomic discussion and decision-making, and is

taught in macroeconomics undergraduate courses. Because of its central role

there is also much critique of IS-LM. The brief analysis given below is also

a critique, but more fundamental in the sense that it completely invalidates

IS-LM. It is not based on arguments and considerations that may be more

or less convincing depending on which economics camp one identifies with —

but simply on a gross mathematical inconsistency, which if true cannot be

contested.

We start with the static IS-LM equilibrium equations, where aggregate

demand must equal output,  =  =  ; and demand for money,  must

equal money stock,  . The interest rate is  :

 = ( ) + () +0 (2.66)
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 = ( ) (2.67)

This is a simple IS-LM variant, with exogenous net government spending,

and with investment being independent of output. But this simplified choice

is sufficient for the arguments to be made. The model corresponds to the

one given in Ferguson and Lim (1998), pp 2 - 3. The relations for consump-

tion, investment and liquidity demand are assumed linear in output and/or

interest. Then we have

 = ( ) + () +0 = 0 +  + 0 −  +0 (2.68)

 = ( ) =  −  (2.69)

Here     are constant parameters  0.

We remind ourselves at this stage that this “comparative statics” model

has as its premise that it is a simplified representation; it is an "equilibrium-

in-each-period version" of something that in reality is continuously varying

dynamic system. John Hicks, the inventor of the IS-LM model, writes:

The IS-LM diagram, which is widely, but not universally, ac-

cepted as a convenient synopsis of Keynesian theory, is a thing for

which I cannot deny that I have some responsibility. It first saw

the light in a paper of my own, "Mr. Keynes and the Classics"

[1937], but it was actually written for a meeting of the Econo-

metric Society in Oxford in September 1936, just eight months

after the publication of The General Theory ....

....

... one can hardly get a plausible rule while confining attention

to what happens within a single period. So it would seem that

the proper place for such a proceeding is in sequential models,

composed of a succession of periods, in each of which the rele-

vant parameters have to be determined; there is then room for

linkages between the periods, and so for lags. I have myself made

some attempts at the construction of such models. I think they

have their uses, but they are not much like IS-LM.

If one is to make sense of the IS-LM model, while paying proper

attention to time, one must, I think, insist on two things: (1)

that the period in question is a relatively long period, a "year"

rather than a "week"; and (2) that, because the behavior of the



52 A Signals- and Systems-based toolbox

economy over that "year" is to be determined by propensities,

and suchlike data, it must be assumed to be, in an appropriate

sense, in equilibrium (Hicks; 1981).

Recognising the weaknesses of "statics within a period", Ferguson and

Lim attempt to construct a "dynamic extension" of this model:

̇ = ( − ) = (0 +  + 0 −  +0 − ) (2.70)

̇ = (−) = ( −  −) (2.71)

  are constant parameters  0. Verbally, these two differential equations

state that the rate of change of output is proportional to the difference be-

tween aggregate demand and output, and that the rate of change of the

interest rate is proportional to the difference between demand for liquid-

ity22 and money stock. The denominaton for the stock  is still [$], while

  0 0 0 now get the denomination [$] and become flows — in con-

trast to their denomination in the comparative statics model, which is [$].

We will now argue that this model is fundamentally flawed, in spite of being

dynamic.

We represent equation (2.70) by a block diagram, see figure 2.2923.

For the block diagram corresponding to the money market equation

(2.71), see figure 2.30.

Before combining these two diagrams to one representing the whole sys-

tem, we reformulate equation (2.70). It may be written as

̇ = ( − ), which obviously must be = ̇ , (2.72)

since  −  is the net money flow into the firm sector. By this we have

incorporated firm money stock in the model. Equation (2.72) explains the

slightly reformulated but equivalent “firm” substructure in figure 2.31 be-

low, which — except for this modification — is a result of a straightforward

22One could reasonably argue that the transaction demand for money in (2.71) should

instead be , but the choice is to follow Ferguson and Lim. And this choice does not

have any impact on the argument to be made.
23Note that this dynamic model implies that the household sector has instantaneous

dynamics, signified by the block with unity gain. Comparing with figure 2.22, this corre-

sponds to the time lag in the household sector being set to zero. This assumption may

be acceptable, since the time lag of the firm sector is much larger in comparison, due to

a high amount of between-firm transactions, which is discussed later in section 2.8. One

should however, be aware that this assumption implies that money stock in the household

sector is zero: there is no buffer there, only a through flow.



2.7 Application: an economy with households and firms 53

Figure 2.29:

Figure 2.30:
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Figure 2.31:

connection of the two sub-diagrams for the real economy and the money

market24.

By this modification we have accounted for the dynamics of the firm

sector money stock, which in fact must be identical to the entire money

stock of the economy, since households in this model are implicitly assumed

to have no money stock, and the financial sector only appears indirectly via

exogenous flows.

By now the inconsistency of the IS-LM model may be clearly observed:

While money stock in reality is endogenous ( ) and a system state, it is

at the same time assumed to be an exogenous (input) variable (). What

makes this inconsistency go unnoticed, is that the actual presence of money

stock within the the  to  dynamics, disappears in the (comparative)

statics framework.

24The modification (2.72) may alternatively be explained by exploiting a rule for block

diagram manipulation: Interchanging the sequence of blocks on a path (in this case the

two blocks containing  and 1

) does not change the transfer function along that path.
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The correct (or at least: much less erroneous) model, in its most simpli-

fied version, should then be as shown in figure 2.32.

Figure 2.32:

The model reduces to one dimension only. And  becomes a controlled

input variable, not a system state, while  is no longer a controlled input

variable, but a system state,  .

Conclusion

If we "dynamise" the static IS-LM model on the terms of its adherents

(IS-LM has in later years been strongly promoted in the public sphere for

instance by Krugman (2011)), it rigorously follows that their view of money

stock  being an exogenous control variable and the interest rate  being

a system state (i.e. endogenous), has to be substituted by the interest

rate becoming a control variable (exogenous) and  becoming a system

state. They should then logically transit to the Post Keynesian or Modern

Mone(tar)y Theory position on the role of the interest rate — exogenous and

controlled by the Central Bank:

(Modern money theory) shares with the “endogenous money”

or “horizontalist” approaches the view that the Central Bank

cannot control the money supply or bank reserves. Instead the

Central Bank must accommodate the demand for reserves.

.....

On the other hand, the Central Bank’s target interest rate is

clearly exogenous in the control sense: the Central Bank can
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set its target at 25 basis points, or raise it to 150 basis points.

Finally, the control sense and the theoretical sense are related

but not identical. Let us say a country has a fixed exchange rate

and uses the interest rate policy to hit the peg. We can say the

interest rate is exogenously controlled (set by the Central Bank)

but it is not theoretically exogenous because the overriding policy

is to peg the exchange rate. In the theoretical sense, the Central

Bank’s concern is to hit the exchange rate target so that it has

surrendered control of the interest rate (it uses the interest rate

as a tool to hit the targeted exchange rate). On the other hand,

let us say that the Central Bank targets full employment and

uses the interest rate to achieve that target. Again we would say

the interest rate is exogenous in the control sense, but not in the

theoretical sense because it is used to target full employment,

(Wray; 2012, section 3.5)

Wray’s qualifications that the interest rate is not freely set by the Central

Bank, but is often used to accommodate needs related to the exchange rate

or employment, does not invalidate the fact that when the Central Bank sets

its target rate based on some policy considerations, this is decisive for the

other rates in the financial sector. These rates are not decided by "demand"

for liquidity, as assumed in IS-LM.

2.8 Aggregating agents into a sector

We now choose the first-order time lag model as a description of the behav-

iour of an individual “micro” agent; a single household or firm. The generic

symbols () and () signify in- and outflow of money. Money stock()

may — as stated earlier — be interpreted as the agent’s necessary liquid buffer

to handle discrepancies between in- and outgoing money flows.

The agent is, just as in the aggregate case, assumed to react to a mone-

tary step function income flow with a time-dispersed exponential spending

response asymptotically approaching the incoming flow level, as already de-

picted in figure 2.2. We repeat the equations for the first-order time lag

model, but use  to distinguish it from , which shall be reserved for the

lag of the aggregate of agents:

̇() = −() + () (2.73a)

() =
()


=() (2.73b)
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The agent’s transaction frequency (money velocity) is  = 1 , which is

also a measure of confidence, a topic which we will return to later. The

parameter (or the inverse, ) is our first behavioural assumption for the

generic agent. One may let  ble influenced by other system variables, for

instance it could increase sharply due to falling confidence/optimism in a

recession/depression. Such modifications will make a model containing such

agents nonlinear. But for the time being we will stick to the assumption of

a constant  for all agents, which gives a linear system. The  ’s are also

assumed identical.

2.8.1 An aggregation theorem

We assume that our aggregate consists of a large number of identical indi-

vidual agents as described above. An aggregate of agents (a sector) may

typically represent all firms, as in Phillips’ macroeconomic model. The in-

dividual agents that constitute a given sector will of course have different

“sizes” in the sense that money stock and flow magnitudes will vary widely

between them. But we assume that (2.73) holds for all agents in a given

aggregate, i.e. that the outflow from an agent is proportional to the agent’s

money stock, by a common constant velocity  = 1 (the assumption of a

common  will be relaxed later on). Thus all agents in the sector is repre-

sented by the transfer function

() =
1

1 + 
(2.74)

We further assume that any (in an average sense) individual agent’s

outgoing money flow is divided into a share  (out of the sector) and 1− 

(to other agents within the sector), where 0   ≤ 1. We will call  an

outflow coefficient, or outside spending coefficient. See the flow diagram in

figure 2.33. The shaded arrows indicate a network of interactions, where any

individual agent in principle interacts with any other agent. Our interest is

focused on two aspects, input-output characteristics of the aggregate, and

the dynamics of aggregate money stock.

Under the above assumptions, the transfer function for the sector turns

out to be surprisingly simple:

Theorem 2.1 Given a network of an infinite number of identical units

which are all first order transfer functions (2.74), and which have identical

outflow coefficients , and where the outflow share for each transfer function

that goes to all other agents, sum to 1−. Then the transfer function for the
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Figure 2.33: A flow network of “vessel” agents

network, regardless of how the input to the network is partitioned between

agents in the network, is

() =



() =

1

1 + 
, where  =




(2.75)

The proof is given in (Andresen; 1998), but will be repeated here. Be-

fore proceeding, some comments to indicate that this result is intuitively

satisfying. Let us first consider a type of sector where the population of

agents have a low volume of monetary transactions between them, even if

the number of agents may be large: A case in point is the aggregate of all

households. In this case  is close to unity. Referring to figure 2.33, this

means that the agents simply act “in parallel”, with negligible flows between

them. Money received by a specific agent will emerge from the the agent and

also the household sector, without having to “detour” via other household

agents first. People use most of their income for purchasing goods and ser-

vices from firms, not paying it to other households. Thus one should expect
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the aggregate of households to have the same fast response as an individual

agent. This fits with (2.75), since  =  when  = 1.

The other extreme is when the “aggregate agent” is such that agents

mostly do their transactions with other agents within the aggregate. This

case fits well with what financial sectors have developed into for the last

decades. An outside agent who injected money into such an aggregate,

would — if she had the means to trace that amount of money — observe that

it would take a very long time before the last residue of the injected amount

emerged from the aggregate. This case corresponds to  being close to zero.

It is consistent with (2.75), where a small  means a large lag , giving just

the type of low-amplitude, drawn-out response that seems reasonable. We

call this the detour effect from now on.

We will now prove Theorem 2.1.

Proof. In deriving the transfer function for the aggregate agent, we may

assume that the outside incoming monetary flow arrives at one agent only,

because of the symmetry between the agents, and because of the superpo-

sition principle that applies to a linear system: If the incoming flow was

instead distributed between several agents, the resulting response would be

the sum of responses to each component of the incoming flow, transmitted

through identical transfer functions, which would then sum up to the same

result we get when the incoming flow is assumed to arrive at a single agent

only.

Consider the structure in figure 2.34. This block diagram accounts for the

way an incoming monetary flow branches through the aggregate of agents.

As already argued we may assume that the entire inflow enters at one single

agent without loss of generality — in figure 2.34 chosen as the top agent.

This results in an outflow from that agent which is partioned into a share

 leaving the aggregate, and a share 1−  to another identical agent within

the aggregate. The latter flow again results in a flow that is partioned into a

share leaving the aggregate, and a share to another agent within the aggre-

gate, and so on. Feedback loops are indirectly accounted for by the structure

in figure 2.34, since the effect of any feedback loop may be equivalently rep-

resented by an infinite succession of series and parallel connections through

identical transfer functions. For the transfer function for the aggregate we

have

() =



() (2.76)

as indicated in figure 6 by the light shaded area. If we now remove the upper

single agent from the aggregate, and assume that the remaining number of

agents is so large that this does not significantly affect the dynamics of the
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Figure 2.34: Block diagram of an input-output equivalent network that is

without feedback loops

aggregate, then () may also be found as indicated by the dark shaded

area, so that

() =
̃

̃
() (2.77)

Employing rules for manipulating block diagrams where blocks are in parallel

and in series, we get

() =


1 + 
+
1− 

1 + 
() (2.78)

Solving for () , we get (2.75).

For use later on we will give an alternative proof:

Proof. Consider the block diagram in figure 2.35. As already defined,

() = 1(1 + ). Again we assume that all transfer functions in the

network are identical so that the incoming money flow to the network may

be considered to arrive at one agent only. A unit of money arriving at the

input will first be lagged through the upper transfer function (). Then a

share  leaves the system, and the remaining share 1−  is lagged through

an identical transfer function (the lower one). The output from this transfer
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Figure 2.35: An input-output equivalent network with one feedback loop

function is split in a similar way, and the remainder is input to the upper

transfer function, lagged and split, and so on. Thus the feedback structure

must give the same aggregate input/output-dynamics as the structure in

figure 2.34. Using block diagram manipulation and reduction rules, the

transfer function from input to output in figure 2.35 must then be




() = () =



1− (1− )22
{1 + (1− )} = 

1− (1− )
(2.79)

Substituting  = 1(1 + ) and simplifying, gives (2.75).

From the intermediate result (2.78) follows

() =


1+

1− 1−
1+

(2.80)

This corresponds to the block diagram shown in figure 2.36.It may be

formulated as an “equivalent simplified structure” corollary:

Corollary 2.2 Given a network as defined in Theorem 2.1. The associated

input-output dynamics are equivalent to that of a system with one agent 1
1+

where an outflow share 1− is fed back to the input and a share  flows out
of the system.

This is intuitively satisfying, since we may look upon this structure as

arranging all identical agents in parallel and bundling all their outflows that

go to other agents into one common feedback flow, while the remaining flows

leave the system as another aggregated bundle.
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Figure 2.36: Equivalent structure corresponding to network of agents

From Theorem 2.1 follows a “look-inside corollary”:

Corollary 2.3 Given a network as defined in Theorem 2.1, and an output

flow () from the network. Then the sum of internal flows within the

network is

() =
1− 


() =

 − 


(2.81)

Related to this, we have a “loop extraction corollary” — which was al-

ready implied in (2.39):

Denote the time lag of a given aggregate  . Assume that one wants to

“extract” a bundle of internal flows summing to  and then add it to the

originally defined outflow , so that the redefined outflow is ̂ = +.

Assume that the coefficient   1 is given so that 


= 
1− . Then the

transfer function ̂

() becomes

̂


() =

1

1 +
(2.82)

This is what we did in connection with figure 2.17.

The opposite is “loop inclusion”:

Corollary 2.4 Call the time lag of a given aggregate  . Assume that one

wants to include or “hide” a share 1− of the outflow  inside the aggre-

gate, so that the remaining outflow is ̂ = . Then the transfer function
̂

() becomes

̂


() =

1

1 + 



(2.83)
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Another result is a “liquidity preference corollary”:

Corollary 2.5 Assume that liquidity preference is increased, which in our

model is expressed by a larger  . This means that both aggregate output flow

and the aggregate of internal flows will be lower, since

() = 
()


and () = (1− )

()


(2.84)

Such a mechanism is at work during serious economic downturns. De-

creased flows may lead to a more pessimistic mood leading to further increase

in  , which — following (2.84) — means further decreased flows, and so on.

We may get an unstable process towards a depression. This is explored in

chapter 6.

Closely related to corollary 2.5 is this, on "internal flow depletion":

Corollary 2.6 Assume that there is an imposed lower bound () on the

outflow () with ̇() ≥ 0, and that the inflow () is not increasing at

the same rate. Then the sum of internal flows must decrease relative to ()

( ⇐⇒  must increase) if individual agents’ time lags  are not decreased to

compensate.

Such imposed or “non-discretionary” flows for a sector (or an agent)

may typically be taxes or debt service. But it is perhaps more correct to let

non-discretionary flows be accounted for by subtracting them at the input

of the unit in question. The unit simply has to abide with them, it is not a

choice of the unit. We will choose this alternative in the rest of this thesis.

2.8.2 Allowing for differing agent transfer functions

We will now relax some restrictions: all agents are still PUA and have the

same time lag and same outflow coefficient . Except for that, agent trans-

fer functions and the corresponding impulse response shapes may now be

completely arbitrary and different. Consider figure 2.34, but with such more

general transfer functions in the blocks. We apply the series connection rule

(2.20) and the parallel connection rule (2.28) to a structure corresponding

to the intermediate result, equation (2.78). This gives

 =  + (1− )( + ) (2.85)

Solving for  gives  = , as expected.
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2.8.3 Example: Lag of a sector with consumption goods, in-

termediate and investment goods

We consider a model where the sector of firms is partioned into two categories

(two subsectors): Consumption goods firms ("C") on one hand, and firms

producing intermediate or investment goods ("I&I") on the other. Figure

2.37 shows the flow structure. For this example, we define both investment

Figure 2.37: Flows in a firms sector with a consumption goods subsector

and an intermediate/investment goods subsector.

and intermediate goods as flowing internally in our firm sector, so that the

incoming flow to the sector as a whole is consumption only (from workers

who are assumed not to save/invest, plus capitalists’ consumption)25. Out-

flow coefficients are  and  as indicated in the figure. C firms buy I&I

goods indicated by the flow with a factor 1 −  , and the I&I subsector

purchases from itself indicated by the flow with the factor 1−  . The lags

of the two subsectors are  and  . The outgoing flow is wages plus profits

to be used for consumption. We now seek the lag  of the firm sector as a

whole, which we will expect to be greater the smaller  and/or  are. We

apply two of the rules developed in section 2.6. First we find the effect on

the lag of the I&I sector of the sector’s purchase flow from itself through the

factor 1 −  . Corollary 2.4 (loop inclusion) in section 2.8 gives the time

lag  . Now we are left with two parallel branches which taken together

are serially connected to the subsector with time lag  . The upper parallel

branch with coefficient  has zero lag. Using rule (2.28) the lag of the par-

allel branches taken together is then (1−)·+ ·0 =  ·(1−) .
25The implicit assumption here is that all investment is made out of retained earnings,

nothing from bank loans. For the point to made here, this is acceptable.
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The next and last step is to include the subsector with time lag  . We use

the series connection rule (2.20) which gives

 =  +
1− 


 (2.86)

The "detour effect" is more pronounced the smaller the outflow coefficients

are (i.e. the closer to unity the feedback coefficients are). This means a

larger time lag for the firms sector as a whole. This is confirmed by (2.86).

2.9 Aggregation check through Monte Carlo sim-

ulations

2.9.1 Network of units with rational transfer functions

We will now examine the dynamics of the aggregate of a large number of

agents, chosen such that they differ in several ways. Results cannot be

reached algebraically and have to be worked out through numerical simula-

tion. We assume that a PUA second order rational transfer function with

one zero and real poles is sufficient for furnishing the necessary variability

in individual agent properties. We express the agent PUA transfer function

in the form

() =
1 + 1

1 + 2+ 2
=

1(1 + )

(+ 11)(+ 12)
(2.87)

The point of the zero −1 is to account for some agents spending a
certain share of incoming money immediately, when received. For a large

, the agent’s spending reaction will start with a fairly strong initial spike

followed by a correspondingly small exponential tail. Figure 2.38 shows

a collection of spending impulse responses for 10 agents, where all have a

transfer function of the type (2.87). They are all PUA, and they have the

same time lag, here  = 1. The same set of responses is shown in both

windows, but with different scaling. In the lower left window we note the

large initial amplitude of some responses; these are the cases with a fairly

large . The first-order time lag response is shown with a thick dotted line

for comparison, and its tangent (and ) is also indicated.

Each response corresponds to a specific parameter set  1 2 where

−11 and −12 are the poles of (2.87). Each set is generated by uniform
probability density functions, through the following procedure: First a 
is generated in the range 0    05 (the factor 05 is fairly ad hoc).
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Figure 2.38: Ten impulse responses of (2.87), all with  = 1
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According to (2.17) and (2.20), the sum of the denominator time constants

must be  +  . The next step is generating the pair 1 2 via drawings

from a uniform p.d.f., but scaled afterwards such that this condition is sat-

isfied. We then have 1 =
1

12
and 2 =

1
1

+ 1
2
. These ’s are used

in the matrix  below. This procedure ensures that any response generated

will be PUA.

We observe in figure 2.38 that the first order time lag is not a good

approximation to most of the responses that are generated. Our conjecture

however, is that if we interconnect a large number of agents with differing

responses, we will observe that the first order time lag as an approximation

for a sector improves with

1. the number of interconnected agents that constitute the sector.

2. the degree of interconnectedness between these agents.

To explore this, a state space model is defined. It consists of subsystems

of the type (2.87), interconnected such that the total system is still PUA.

The state space model is realized as a controllable canonical form (see for

instance (Belangér; 1995), pp. 100-104). Let

ẋ = x+ b (2.88a)

 = cx (2.88b)

The matrix  =⎡⎢⎢⎢⎢⎣
0 1 0 0 0 0 · · ·
−11 −12 2121 21212 3131 31313   

0 0 0 1 0 0   

1211 12111 −21 −22 3231 32313   

                    

⎤⎥⎥⎥⎥⎦ (2.89)

Each subsystem has transfer function (2.87). The subsystems (agents) are

indexed  = 1 · · ·  . With  subsystems the state space model has order

2. The coefficients 1 2 and  correspond to those in (2.87). Note

that indices in (2.89) are not matrix element indices since they pertain to

the subsystems. Each coefficient  accounts for the flow from subsystem

 to subsystem . For each subsystem  there is an outflow coefficient .

Then  must satisfy
X

=1 6=
 = 1−  (2.90)
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The column vector b has 2 elements and is b =
£
0 1 0 2    0 

¤
It must satisfy

X
=1

 = 1 (2.91)

Conditions (2.90) and (2.91) are necessary to achieve unit area impulse

response for the total system, i.e. such that no money is created or destroyed

within it.
The row vector c has 2 elements and is

c=
£
111 1111    1 1

¤
, all   1 (2.92)

Now to the procedure for assigning values to the above parameters: for

each Monte Carlo run, a complete new set is generated. All probability

distributions employed are uniform. The procedure is executed for each

subsystem i: First, a lag   is drawn. Based on this, the parameters 1 2
and  are generated as already described. Then an outflow coefficient  

1 is drawn. Next, coefficients  are also drawn, but scaled afterwards such

that condition (2.90) is satisfied. Now we also have the next two elements

in c . After repeating this for all subsystems, all elements in b are drawn

and then scaled such that (2.91) is satisfied.

One should expect widely differing responses, since all parameters are

allowed to vary quite independently, and the distributions employed are

chosen to have a fairly wide range. This makes the test of our conjecture

more severe. The ranges chosen are

01     19 0    05  01    07 (2.93)

The mean of   is then 10 and the mean of  is 04. Based on this,

the approximate first order time lag impulse response for the total system

is predicted to be

() = 04−04 (2.94)

We start simulations with a system of only 10 agents. The lower left

window in figure 2.39 shows the responses for each individual agent. We

note that the responses, as opposed to those in figure 9, are much more

dispersed now since also the time lags differ between them (in the range 01

to 19). The mean first order response and its tangent is also indicated. The

upper right window shows the impulse response of the “sector” consisting of

these ten agents, together with the first order time lag response. We observe

that this proposed approximation is not too bad, as predicted.



2.9 Aggregation check through Monte Carlo simulations 69

Figure 2.39: Ten individual responses (LL), and the corresponding aggregate

response (UR)

A population of as little as ten agents in a sector is quite unrealistic. We

therefore do the same with a 150-agent system, which means a 300 × 300
system matrix. In figure 2.40 are given 10 impulse responses for a 150-

agent system, in the lower left window. For comparison, 10 responses for

a 10-agent system are given in the upper right window. We observe that

the first order approximation is better for the sector with the higher agent

population.

Now to the impact of the outflow coefficients, previously chosen in the

range 01    07. If instead all  were close to unity, this would mean

that agents do not interact, but spend most of their money directly out of

their own sector, like in the household case. In this case the sector response

is simply a weighted mean of individual responses. On the other hand, if all
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Figure 2.40: Aggregate responses for a 150-agent system (LL), and a 10-

agent system (UR)

 were close to zero, this means that a unit of money in an average sense

has to pass by many agents before it is spent out of the sector. We have

simulated such a case, with 005    015, i.e. a mean of 01. Figure 2.41

shows ten Monte Carlo responses for a 150-agent system and the predicted

first-order response, which now is () = 01−01. In this case the time lag
is 10 for the aggregated system, in accordance with (2.75). Compared to

figure 2.40, lower left window, we see that

• the responses are closer to the proposed first-order approximation.

• the initial spikes, which are due to zeroes in transfer functions for
individual agents in the network, still leave a mark on the aggregate
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Figure 2.41: Ten aggregate responses for a 150-agent system with low ’s

response in the form of a corresponding initial peak, but a smaller and

narrower one.

We will now try to explain this by exploiting an intermediate result from

the proof given for Theorem 2.1. We again make the simplifying assumption

that all agent transfer functions and all outflow coefficients  are identical.

But now the agent transfer functions are identical, of the type (2.87). We

divide by 1 in the numerator and denominator, and get

() =
1 + 

1 + 1+ 22
=

()

()
(2.95)

The intermediate result (2.78) may be generalised to

 = 



+




(1− ) (2.96)

(here dependence on  is omitted). Solving for  and using (2.95), we may

write

() =
1 + (



)

1 + (1 − [1− ])
³



´
+ 2

³



´2 (2.97)
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We compare this to the first order approximation, which, following (2.75)

and (2.17), is

() =
1

1 + (1 − )
³



´ (2.98)

Eq. (2.97) confirms that the zero will make itself felt26 also for the ag-

gregate system, as already observed through the Monte Carlo runs shown

in figure 2.41. But (2.97) also tells us that its relative influence on system

dynamics is less when  is small, which is supported by a comparison of fig-

ures 2.40 and 2.41. Furthermore, when  is reduced, the influence on system

dynamics of the second-order term in the denominator in (2.97) decreases

in relation to the first-order term. This also supports the observation that

the system response is closer to that of the first-order approximation (2.98)

when  is small.

2.9.2 Networks of units with irrational transfer functions

We will do an additional exercise to test the generality of the decaying

exponential as a reasonable approximation to the response of an arbitrary

network of linear units. We revert to the assumption in section 2.8 that

all networks units are identical, so the simulation will be deterministic, not

Monte Carlo. But now the dynamics of each unit are characterised by a

rectangular impulse response, as indicated in figure 2.42. For comparison

is shown the impulse response of the transfer function 1(1 + ) which

we employed in connection with the derivation of the aggregation theorem.

Both responses are PUA and have the same time lag.

Will an infinite network of such identical rectangular response units ex-

hibit the same approximate exponential dynamics that we have seen till now?

This cannot be solved algebraically, since these units (and therefore also the

network consisting of them) cannot be described by differential equations

(even if the system is still linear). But we can do this numerically, by em-

ploying the structure from the alternative proof of the aggregation theorem,

see figure 2.35. The two blocks are now of the rectangular response type.

Simulation is done in Simulink, where the block diagram looks like in fig-

ure 2.43. The two identical rectangular response units are indicated with

26A response with a sharp initial spike in additon to a correspondingly smaller (so that

the total is still PUA) exponential tail indicates that the transfer function () is close to

not being strictly proper, i.e. the numerator having the same order as the denominator.

This is a system where part of the input is (nearly) directly transmitted to the output.

An economic unit with such a response spends a large part of received money immediately

on receipt.
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Figure 2.42: Rectangular PUA impulse response, compared to stable expo-

nential

dashed outlines. The entity “tdel” is the length of the pulse, so that tdel =

2 . In the lower part of the diagram is a representation of the correspond-

ing aggregate first order time lag. Its response is simulated and logged for

comparison. Simulation results are shown in figure 2.44 for three values of

the outflow coefficient:  = 05 015 005. We again observe the decaying

exponential shape, except for an initial transient phase. The explanation

for the strongly non-exponential graph for  = 05 is that when “leakage”

out of the sector (network) from each unit is strong ( closer to unity), the

non-exponential character of each unit’s dynamics will be reflected also in

the network’s dynamics. A small  gives a much more exponential-like re-

sponse. This is also what we observed in subsection 2.9 where the network

consisted of widely different second-order rational transfer function units.

Note the time scales for the three responses. For a sector consisting of

these “far-from-exponential” units we still have that the lag of the network’s

impulse response is . This holds exactly when all units are identical. It

also holds exactly in the more general case where units are arbitrarily and

structurally different from each other, as long as they are PUA and have the

same time lag. This was demonstrated in connection with the derivation of

the series and parallel rules for calculating network time lags — equations

(2.20) and (2.28), respectively.

2.9.3 Conclusion

The first order time lag approximation for a sector is supported by the above

experiments. It works best for sectors with strong interaction/detour effect

(for instance firms, as opposed to households).
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Figure 2.43: Simulink diagram with two rectangular impulse response blocks

Since individual agents’ time lags and outflow coefficients are constant in

each simulation, behavioural assumptions have been quite restrictive. But

the model can easily incorporate time-varying parameters, so that for each

agent, any of its coefficients may change at any time. The time lag of

the sector will change accordingly. But decaying exponential dynamics will

remain, and the sector time lag will be inversely proportional to (a somehow

defined) mean .

Parameters may also be dependent upon system states. In this case the

model will become non-linear. We will see examples of this in chapter 6.
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Figure 2.44: Three impulse responses for the system in figure 2.43,

 = 05 015 005
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Chapter 3

Discrete versus continuous

time

We will in this chapter more comprehensively develop the argument that

continuous-time modeling is superior to using discrete time. The analysis

uses an example from Godley and Lavoie’s book (Godley and Lavoie; 2007)

that is in time-discrete format, and develops a continuous-time equivalent

for the same model. This thesis is completely supportive of their stock-

flow modeling paradigm. But the point of this chapter is to argue that

continuous-time representation is superior for working with such models.

3.1 A time-discrete model

Figure 3.1 is a facsimile from table 3.4 in (Godley and Lavoie; 2007). It is

the first and simplest of a series of discrete-time stock-flow macro models

presented in their book.

We will use the symbols from figure 3.1, and the same values for para-

meters and variables, so that we may check whether we get the same time

path as indicated in the columns 1, 2 , 3, ∞ in the figure. As usual $ is the

generic monetary unit. ”” is a generic time unit (but could be a quarter

or a year). We have

 = government spending = constant = flow = 20 [$]. from period 2

onwards.

 = gross income [$]

 = tax flow [$]
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Figure 3.1: A time-discrete G & L macro stock-flow model

  = disposable income [$]

 = taxation rate = 02 [ ]

 = consumption flow [$]

1 and 2 = coefficients, giving consumption out of disposable income and

out of wealth (money stock) respectively; 1 = 06 [ ] and 2 = 04 [ ]

 = current wealth (= money stock) [$]. In this simple model, all money

is held by households. −1 is the value from the previous period,

discrete time.

∆ =  −−1 = ∆ = ∆ in figure 3.1

All variables are zero before a government spending flow  is switched

on at the start of period 2 and held constant during this period. This

results in a gradual build-up of economic circulation and money stock .

As indicated in figure 3.1, variables converge towards an equilibrium after

several periods.

We will discuss this model and its dynamics. First, we portray the model

in the book as a discrete-time block diagram, figure 3.2.

The block containing −1 is a backwards discrete time step operator,
signifying the connection between  and −1. Ignore the dotted rectangle
for the time being. The textbook way to approach the model is to partition

the analysis into short-run "multiplier" dynamics, and (sometimes) long-run
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Figure 3.2: Godley & Lavoie model, diagrams are equivalent

dynamics. We will argue that this distinction is an unnecessary and artificial

consequence of working in discrete time.

Consider the short-run situation (one period). We observe, especially

from figure 3.2 b), that there is an infinitely fast loop (containing 1 and

indicated by the shaded closed arrow) in the system: Government spending

 gives an immedate demand   which immediately increases consumption

 which, added to government spending , immediately increases   and

so on. The mathematically correct way to approach this is to eliminate the

instantaneous feedback loop by solving the set of equations:

  =  (1− ) (3.1a)

 = +  (3.1b)

 = 1  + 2−1 (3.1c)

Substituting (3.1c) in (3.1b), and inserting the result of this in (3.1a), and

then solving for  , we get

  =
1− 

1− (1− )1
+

(1− )2

1− (1− )1
−1 (3.2)
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  may alternatively be found numerically by iteration, but this is just

a solution technique for a set of static algebraic equations and has nothing

to do with dynamics (and iteration was not needed in this case since a closed

algebraic result was easily found). But G & L choose to consider this to be

a process that unfolds via a "multiplier" within the period, on p.69:

The initial $20 government injection thus has ripple effects

throughout the economy. The government injection has a mul-

tiple effect on income. This is the well-known Keynesian mul-

tiplier process, to be found in all elementary macroeconomics

textbooks. Because perfect foresight has been assumed, house-

holds must know precisely how much will be produced and how

much income the initial injection of government expenditures is

able to generate. They must also know with certainty the vari-

ous parameters of the overall economy (the average tax rate and

the average propensity to consume out of disposable income)

and they must know the initial injection. Here, all these multi-

plier effects are assumed to take place within the single period.

Starting with no economic activity at all in period 1, the gov-

ernment expenditures taking place at the beginning of period 2

along with the standard multiplier process will bring about the

numbers given at the end of period 2, as shown in Table 3.4.

( — in the book, facsimile in figure 3.1 above.)

The assumption that agents think forward and proceed in lockstep over

some agreed upon period, is not credible. And as long as all variables are

assumed constant within a period, there are no dynamics there, only the

solution to the equation set (3.1).

In addition to being a bad model, it also unnecessarily complicates the

issue. If one assumes that there are dynamics unfolding within a "period",

then that period is simply chosen too large. It should then be made so short

that there is no need to assume movement within it. So criticism of this

should not only, as Godley and Lavoie do on pp. 69 —71, be that short-term

equilibrium is not enough because one has to check out the long term. A

more correct and stronger criticism should be that there simply is no "short-

term equilibrium"; the concept is meaningless because it is just an artifice

of using discrete time.

We will now portray the model given by (3.2) in a block diagram, see

figure 3.3. The instantaneous feedback loop is now eliminated, but at a price:

the explanatory power of the diagram (figure 3.2) in showing connections

and causalities between key variables, is lost.
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Figure 3.3: Block diagram with instantaneous loop resolved

Before proceeding with a time-continuous model of the same system, we

will find the difference equation governing the dynamics of this first order

discrete model. It is the equation for update of the sole system state, money

stock . From two equations in figure 3.1 we have  =  +  −  . We

also have  =  =    (1− ). Using (3.2) for   and solving for 

we get

 =
(1− 1) (1− )

1− (1− )1
+

1− (1− )1 − 2

1− (1− )1
−1 (3.3)

which is also given on p. 87 in the book.

3.1.1 A time-continuous and better model

We will now present a model in continuous time that closely emulates the

behaviour of the original model, but which in many ways is superior (as

will be demonstrated). We define continuous time to run in the same units

(called ””) as used in the discrete model. This simplifies comparisons,

since all flows and parameters will then have the same numerical values

(while  — since it is a stock and not a flow — will always be numerically

the same regardless of time units employed). The time-continuous model is

given in figure 3.4. This model is faithful to the original structure of the

discrete G & L model. It embodies the same detailed information as in

figure 3.2. We will see that it gives (nearly) the same transient behaviour

and tends to precisely the same equilibrium values.

The model avoids infinite-speed money circulation (which does not oc-

cur in the real world) by introducing a very small time lag  in the upper
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Figure 3.4: Continuous-time Godley-Lavoie model

branch. And in continuous-time simulation, the software allows us to choose

— or it automatically chooses — an even smaller numerical simulation time

step    . This time step can be changed without impacting any para-

meter or variable values in the model.

Another advantage is that we can tweak the time constants  and 

without this changing anything else in the system’s equations. This is in

contrast to a discrete model, where the time step is always dimensionless

"unity" (and often too large in relation to possible fast modes1 of the sys-

tem). Also, any change in the system’s time lag(s) or the discrete time

step require changes in most of the numerical values of the discrete model’s

parameters, and its input value(s).

The model in figure 3.4 is second-order, so in that sense one pays a price

compared to the simpler first-order discrete model. But with today’s simu-

lation software this is no problem. The dots in figure 3.5 are the responses

of the G&L model (as given in figure 3.1). Comparing these to the cor-

responding continuous responses (of the model in figure 3.4), we observe a

1 In dynamic state space terminology, a mode is a component of system states with

dynamics related to a corresponding eigenvalue of the system. The simulation time step

should as a general rule be chosen smaller than the inverse of the largest absolute value

among the eigenvalues, corresponding to the fastest mode. In discrete models, one doesn’t

have this freedom of choice, but is stuck with a simulation step size identical to the discrete

time interval chosen.
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Figure 3.5: Discrete-time and continous-time responses

close resemblance. The lower right graphs are magnifications of the first two

time periods.

Note that the time periods in figure 3.1 are shifted compared to the

continuous time axis: The discrete  input is switched on at the start of

"period 2", while the corresponding continuous is switched on at time zero.

Another possible source of confusion is that in the table in figure 3.1, the

columns for periods 2 and 3 have the system state  positioned (seemingly)

synchronously with the  input. But the discrete dynamics are such that 

changes after the  step has made itself felt. So column 2 in figure 3.1 must

be understood such that the  value of 123 is associated with the end of

period 2 while the  step of 20 in the same column occured at the start of

period 2. Only with this interpretation may both be associated with period

2 as done in figure 3.1. This is also emphasised in the book, p. 69.

We note that the continuous-time responses converge towards the same

equilibrium values as in the discrete case. The initial jump in   is also

close to the corresponding discrete jump, see the magnified lower right graph

in figure 3.5. The slightly higher time lag for the continuous version is mainly

a consequence of the upper branch for household spending not being fully

instantaneous. The household transfer function from   to  is of the type

indicated in figure 2.41 (with  = 1), and by eq. (2.97) — a transfer function
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with one zero and two poles. The zero implies that the impulse response

starts with a sharp but finite spike (due to the upper branch which implies

spending a share 1 of received money very fast on reception), and then an

exponential tail based on spread-out spending out of wealth . Since the

two branches have static gain 1 and 1−1 which sums to one, the household
transfer function is PUA — no money is destroyed or created there.

We will now find the time lag from  to  , which we call ̄ , using

rules developed in section 2.6. Figure 3.6 is the block diagram in figure 3.4

reformulated. We first use the parallel rule (2.28) to find the lag of the lower

Figure 3.6: Re-drawn block diagram, equivalent to figure 3.4.

feedback branch, which is the lag for the household sector,

̄ = (1− 1) + (1− 1) =
(1− 1) + (1− 1)

2
, using  =

1

2
(3.4)

Using ̄ for 2 and  instead of  in (2.30), we have

̄  =
0 + (1− )̄


=
(1− ) [(1− 1) + (1− 1)]

2

≈ (1− )(1− 1)

2
= 4, (3.5)

(we simplify by assuming  = 0 instead of the actual small value used, 001).

The lag ̄  = 4 has the same value as the corresponding entity in the

discrete model, called "the mean lag", see p. 93 in Godley and Lavoie’s

book.

Easily inserting or removing lags

We will now discuss a further advantage of the continuous model: it allows us

to easily introduce or remove lags in the circulatory structure, and examine
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consequences. For every extra lag introduced (and each lag implies a money

buffer in the same location/sector), the system’s order increases by one,

but as already stated this is no practical obstacle with modern simulation

software. Figure 3.7 shows a possible version. We have now introduced a

Figure 3.7: Continuous model with a firm sector and "split" government

spending

sector of firms, corresponding to the dotted square suggested in the earlier

block diagrams in this chapter. This implies more realism in the model:

households and the government buys from a firm sector, and households are

paid income by the government and firms. We have split the government

spending flow into a wage flow to pensioners and households employed in

the public sector, and a flow directly to the firm sector, accounting for

government purchases. With two sectors, households and firms, the model

resembles the one introduced in section 2.7.

Compared to the adjustment speed of the model in figure 3.4, observed

in figure 3.5, dynamics will be much slower. The circular money flow is

additionally lagged when passing through the firm sector, and more so there

than in the household sector, as already argued in section 2.8. Again we

wish to calculate the time lag from  to  . We build upon figure 3.6, and

extend it with the firm block connected in series and also in the feedback

loop, see figure 3.8 This block diagram is the same as figure 3.7, slightly

manipulated, and with  =  = 12. We use the same procedure as

above to find the time lag from  to  . The lag of the lower feedback
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Figure 3.8: Slower dynamics when adding a firm sector to the model.

branch is, using (3.4) and the series rule:

̄ = ̄ +  =
(1− 1)

2
+  , (3.6)

again simplifying by exploiting  ≈ 0 Using the parallel rule on the two

branches containing , then the series rule, then using ̄ for 2 and 

instead of  in (2.30), we get

̄ 2 = (0 +  ) +
0 + (1− )̄


(3.7)

Choosing numerical values  = 02 and  = 3 = 32 gives ̄ 2 =

355 a much slower adjustment process than the earlier process with lag

̄  = 4 , as expected. Responses to the step function  = 20 are shown in

figure 3.9. The lag of  () is indicated by a line in the figure. The system

is fourth order, so the line is not the precise tangent to the graph at the

origin. But it gives a very good indication of adjustment speed. It does not

intersect with the horizontal asymptote at ̄ 2 = 355, but at a somewhat

higher value. We will find this value — doing an additional exercise in model

reduction and in applying the time lag rules developed earlier. We seek a

good first order approximation to the transfer function from  to  . It

must be of the form

 () =
1 + 1

 (1 + 2)
, (3.8)

which gives  (∞) = 100 for  = 20 as required. 2  ̄ 2 is the time

of "tangent" intersection with the  (∞) asymptote that we are searching.
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Figure 3.9: Output  and money stock  for system with firm sector.

And with a 1  0 in  , the step response starts above zero, at
1
2

(this follows from using the Initial Value Theorem2 for Laplace transforms).

From figure 3.8 we observe that there is a direct contribution to  at  = 0

of value (1− ), giving the size of the initial jump. We then have

(1− ) =
1

2
(3.9)

We also have, using (2.17),

̄ 2 = 2 − 1 (3.10)

These two equations may be solved for 1 and 2, giving

2 =
̄ 2

1− (1− )
=
355

084
= 4226 (3.11)

Concerning the long-term equilibrium, we get  (∞) = 100 as before.

This is to be expected since the system still satisfies  (∞) = . There

2The initial value theorem is lim
→0

() = lim
→∞

()
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are now, however, two equilibrium states (buffers) in the system, in the

household and the firm sector. Their sum () is shown in the upper part

of the figure. Corresponding to the much larger time lag, the amount of

money in circulation when equilibrium has been reached, is also much larger,

cf. (2.37).

Generally, splitting up flow paths and/or insertion of additional time lags

anywhere in the network, as long as the associated transfer functions are, or

remain, PUA, will not change  (∞). One could. for example, detail the sys-
tem further by partitioning the firm sector into an investment/intermediate

goods sector and a consumption goods sector, like in subsection 2.8.3, with-

out impacting  (∞)
By the above, the superiority of working in continuous time should hope-

fully have been demonstrated.



Chapter 4

Lending and financial

accumulation

Conventional macroeconomic modeling has to a large degree abstained from

incorporating money and debt. Here is a "mea culpa" about ignoring debt

— inspired by the global financial crisis from approximately 2008 onwards:

If there is a single word that appears most frequently in dis-

cussions of the economic problems now afflicting both the United

States and Europe, that word is surely debt.

...

Given the prominence of debt in popular discussion of our cur-

rent economic difficulties and the long tradition of invoking debt

as a key factor in major economic contractions, one might have

expected debt to be at the heart of most mainstream macroeco-

nomic models, especially the analysis of monetary and fiscal pol-

icy. Perhaps somewhat surprisingly, however, it is quite common

to abstract altogether from this feature of the economy. Even

economists trying to analyze the problems of monetary and fis-

cal policy at the zero lower bound — and yes, that includes the

present authors [references not listed in this thesis] 1— have often

adopted representative agent models in which everyone is alike

and the shock that pushes the economy into a situation in which

even a zero interest rate is not low enough takes the form of

a shift in everyone’s preferences. Now, this assumed preference

1We use [brackets] to indicate when quotations contain references which are not listed

in the bibliography of this thesis.
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shift can be viewed as a proxy for a more realistic but harder to

model shock involving debt and forced deleveraging. (Eggertsson

and Krugman; 2012)

The next three chapters (4, 5, 6) of this thesis will extensively try to

incorporate debt, its dynamics and crisis mechanisms based on the already

developed stock-flow toolbox. We will add a financial sector in our stock-flow

structure in this chapter.

Outflows from units discussed until now have been such that they are

solely controlled by the unit or sector of units, with their time lag  as

the crucial parameter. But as earlier mentioned, there are outflows that

are not under the control of the agent/sector in question, but imposed on

them from other parts of the economy — non-discretionary flows. A crucial

assumption in later chapters is that non-discretionary flows in the form of

debt service may become too large in relation to discretionary flows in the

macroeconomic monetary network, and this will lead to crisis.

4.1 The basic moneylending structure

In this section we will start by examining lending and debt dynamics based

on a simple "classic moneylender" model: The lender lends, and based on

this, receives a stream of money (think: physical cash, "gold coins") which

is the sum of interest and repayment (= debt service). The lender can then

choose to recycle a share of this flow as new loans, and spend the rest. The

coeffcient that decides the recycling share is called  with   1. Obviously

the size of  is important for whether the aggregate of loans will grow or not.

This model is too simple for a reasonable description of how banks behave

in a modern framework. We will discuss that in the next chapters, but

will observe that the basic compound interest mechanism is at work there,

too. Furthermore, the moneylender model to be presented here correctly

describes non-bank lending, which — as we will see later — constitutes the

most serious factor for development of debt-related crisis.

Debt service, like taxes, is a non-discretionary flow. Taxes are dynam-

ically trivial since a taxation event (in continuous time expressed as an

impulse function) imposed at some moment, implies no future related flows.

Debt service flows however, has interesting dynamics that unfold over time:

the initial one-shot input (received loan) leads to a stream of future events

(debt service). A loan may in our terms be considered an impulse input

to a unit, and then the debt service flow becomes the impulse reponse of a

debt service subsystem ( from now on abbreviated “DSS”). Seen from the



4.1 The basic moneylending structure 91

Figure 4.1: A bank subsystem with recycling of loans

debtor’s position this is a non-discretionary flow. The model may be ex-

plained via the block diagram in figure 4.1. In the lower part of the figure is

a debtor unit, which may be a single agent or a sector as discussed earlier.

If the unit is the entire aggregate of firms and households,  is recycled to

the input, indicated by the shaded arrow lowermost in the figure (then we

will in between use the term "the real economy" — "RE" — for this unit in

the following). The flow  is what is left over for wages and the purchase

of goods and services after debt has been serviced and new loans have been

received.

A new phenomenon is introduced in this block diagram:  is not the

outflow from an agent or sector, but the result of a rule (the loan contract).

This rule decides a (non-discretionary) flow , which is subtracted at the

real economy input and inserted as an inflow to the bank unit (which is the

aggregate of all banks if the debtor unit is an aggregate). By this the ac-

counting remains correct: money removed from one flow is input somewhere

else. Even if  is paid out by the unit, it is subtracted at the input not

the output, since  is non-discretionary. The output consists only of such

flows that the unit can control itself, i.e. discretionary flows.

To indicate the presence of rule-based interaction as opposed to interac-

tion flows due to “vessel dynamics” only, the corresponding lines are dotted
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in the figure. The use of arrows to indicate "influence" in a block diagram

represents a break with the additional convenient symbolism of arrows in

these diagrams until now, where they have been synonymous with money

flows. The actual flow direction of money in the figure is indicated with

thick shadowed arrows.

We have here assumed a scenario where the flow of new loans is a strict

feedback from what banks receive in debt service on current loans; a share

 is re-lent. This is pure lender-controlled financial accumulation. Later we

will discuss cases where the flow of new loans is not directly a result of what

inflows banks receive. We will use the term “‘bank” here in a generic sense:

any type of unit that has a financial claim (here called a “loan”) on another

unit as long as the claim implies a contracted future stream of returns. We

will call  the financial reinvestment coefficient, abbreviated FRC 2.

The interest rate is  and duration of loans is . Debt service is mod-

eled here as a continuous flow, while in the real world debt is serviced in

time discrete packets. In our continuous-time setting this could have been

precisely accounted for by a train of impulse functions, but this is not nec-

essary, following the earlier given argument in subsection 2.3, in connection

with figure 2.4.

The model in figure 4.1 has a great advantage: It allows for calculating

the dynamics of an aggregate economy where current debt service is used

continuously to extend new loans, and where both the effects of interest rate

and loan duration is accounted for. This is in contrast to much of the Post

Keynesian and Circuitist literature, where one often — because of the tools

used — has to abstract from interest and also assume that loan extension

and repayment takes place in distinct and synchronised “rounds”.

The (aggregate) “bank” in the figure is modeled as a first order linear

system, assuming that the flow received by the bank is output again, dis-

persed with some lag This implies that the money held by the bank
3

is  = . The outflow  consists of both the bank’s paying for

expenses, and its new loans flow which is a share  of .

It now remains to explain the DSS in the figure. The transfer function

2 It may be considered a "savings coefficient" for the bank. In this thesis we use the

greek  instead of the usual  for "savings coefficient". The symbol "" is reserved for the

Laplace transform free variable or the differentiation operator. See also appendix A.
3Some readers may object that the concept of banks “holding money” is meaningless,

since banks may be considered to create money when lending, and destroy money when

loans are repaid. This is the Post Keynesian position, which this author supports. We will

treat this topic in chapter 5. But at this stage, it is for purposes of simplified presentation

convenient to assume that the bank works like a non-bank financial institution (from now

on, just "non-bank"), in the sense that it does not create or destroy money.
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Figure 4.2: Equivalent debt service block

is

() =
1 + 

1 + 
(4.1)

which may be explained by introducing the equivalent "exploded" structure

shown to the right in figure 4.2. Now debt  is visible in the subsystem.

This DSS, with inflows and outflows as in figure 4.1, corresponds to the

equations

̇ =  − 1


 (4.2a)

 = (+
1


) (4.2b)

This scheme (from now on called the “exponential debt service scheme") is

unconventional, since both the principal and interest component is propor-

tional to remaining debt. This differs from for instance an annuity scheme

where the sum of principal and interest is constant, or a bond-type scheme

where principal is only paid (in its entirety) when the loan matures. The

advantage of the scheme (4.2) is that it allows for analysis using eigenval-

ues, and finding algebraic solutions — while annuity or bond-type dynamics

involve time delays and are therefore algebraically not tractable. It will,

however, be demonstrated that differences in total system behaviour are

unimportant in regard to which scheme is assumed. Figure 4.3 shows the

debt service flows for the exponential debt service scheme compared to the

annuity-type scheme. If we consider a loan of 1 $ extended at  = 0, these

debt service flows are the impulse responses of the debt service subsystems.

For approximate equivalence, we suggest that both types of DSS should have

the same mean lag. This means that loan durations differ, with 2 = 21
(this multiplicative factor will be somewhat adjusted below, in subsection
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Figure 4.3: Debt service for annuity and exponential schemes

4.3.2). Mathematically, the duration of the exponential debt service scheme

is infinite, but we define it to be 1, since this is the mean lag of the graph.

The areas under the graphs correspond to the accumulated debt service

sums. They are  1, so the DSS is not PUA (it would have been if  was

0)4. The value of the constant parameter  in the figure, which gives the

annuity debt service flow, is derived below.

4.2 The annuity-type debt service subsystem

We assume that a loan of 1 $ is extended at  = 0, and demand that the

discounted value of a received constant flow  between 0 and  shall be

equal to 1:



Z
0

− = 1, which gives  =


1− −
(4.3)

If the loan is a perpetuity i.e.  = ∞, (4.3) gives  =  as expected.

For the special case  = 0, L’Hopital’s rule, or the integral in (4.3), gives

 = 1, also as expected.

We may now construct a subsystem for this annuity type DSS, that has

a rectangular impulse response with amplitude . It is shown in figure 4.4.

The subsystem works like this: A new loan (an impulse) is received, and the

4Note at this stage that the rules for model reduction to a first order model derived in

section 2.6 do not allow debt service subsystems in the network to be included. A DSS

is not PUA, and the rule-based outflow implies a type of connection with the rest of the

network that does not allow such simplification.
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Figure 4.4: Debt service subsystem with annuity scheme

integrator makes the value in the upper branch jump to the size of the loan

and stay there. After a duration of , the lower branch jumps to the same

level and is subtracted from the upper branch value. This ensures that debt

service for that particular loan stops when the loan terminates. We have a

rectangular response with amplitude equal to the size of the loan, multiplied

with the factor  to give the correct debt service outflow from the DSS.

This DSS contains a time delay, and algebraic solution of systems con-

taining time delays is generally not possible. But the system is still linear.

Therefore a continuous inflow of new loans will, by convolution with the

DSS impulse response, still give the precise debt service outflow. In other

words: the effect of continuous recirculation of loans in a macroeconomic

model may be correctly accounted for also in the annuity case. And we will

see below that in this special case, stability may be verified algebraically in

spite of eigenvalues not being available.

4.3 When may debt “explode”?

A widely covered topic in the literature and a persistent political-economic,

moral and religious issue since ancient times is the mechanism of lenders ac-

cumulating financial claims on the rest of society by re-lending income from

current loans. The problem of compund interest leading to exponential debt

growth is recognised for instance in the Bible, where a “jubilee” is proscribed

every 50ieth year to reset outstanding debt to zero (see appendix B). A

contemporary historical treatment of debt and corresponding accumulation

is (Hudson; 2000).

Obviously, a persistent re-lending of financial income may lead to finan-

cial debt/asset polarisation in a society. The structure in figure 4.1 allows us

to check the conditions for this to occur with our model. Debt/asset polari-

sation corresponds to instability of this linear system. If we initially confine
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ourselves to a system with an exponential debt service scheme, stability may

be checked by considering system eigenvalues. By inspection of figure 4.1,

we see that system dynamics are decided entirely by the shaded “bank” part

of the structure. The dynamics of the lower “debtor” part do not feed back

to the bank part and is therefore decided solely by what happens there. The

characteristic equation for the bank part is

(1 + )(1 + )− (1 + ) = 2
2 + 1+ 0 = 0 (4.4)

A necessary (and for a second order system like this also sufficient) con-

dition for the system’s two eigenvalues to be negative (i.e. stable system) is

that all coefficients  in the characteristic polynomial have the same sign.

1 and 2 are always positive, while 0 = 1− (1 + ) may be  0 for

certain parameter values. Then one eigenvalue is in the right half plane. We

have instability (= debt growth = financial accumulation). 0  0 — which

gives debt growth — corresponds to:

 
1

(1 + )
, or equivalently: (4.5a)

 
1


(1− ), or (4.5b)

 
(1− )


(4.5c)

We note that  is not part of the instability condition. If the condition (4.5)

is fulfilled, debt growth is exponential (abstracting from an initial transient

component due to the other, stable eigenvalue). Loan duration  may be

in the order of — say — a decade. The bank time lag  should realistically

be in the weeks/months range. So we may assume  ¿ . Following the

argument in subsection 2.7.3, this means that the bank time lag subsystem

in figure 4.1 may reasonably be substituted by unity. If we also ignore the

debtor subsystem which has no impact on dynamic properties as already

mentioned, the simplified remaining system needed to discuss debt build-up

dynamics becomes as shown in the block diagram to the left in figure 4.5.

To the right we have inserted the equivalent DSS from figure 4.2 so that

the sole system state, , is shown. This block diagram corresponds to the

autonomous first order linear differential equation

̇ =

µ
− 1


+ (

1


+ )

¶
 =  (4.6)
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Figure 4.5: Simplified accumulation system

which has the solution  = 0
, where 0 is initial debt. We have

exponential growth for   0, which corresponds to condition (4.5).

We will now discuss the roles of the three parameters   : From

(4.5c) we observe that a percentual increase in  has a stronger effect towards

accumulation than a similar increase in . This may seem counter-intuitive,

since the focus in this type of discourse is usually the impact of .

For  = 1, (4.6) becomes ̇ =  the “classic” differential equation

for accumulation through compound interest, which will then take place for

any   0. An expression of the fascination with — and alarm against — this

phenomenon is the table in figure 4.6 which is a facsimile from (Kennedy;

1991). One pfennig (001 Deutsche Mark — this was written before the

advent of the euro) deposited in year 0 at 5% interest is by 1990 worth 134

billion massive spheres of gold, each the size of the Earth. Admittedly, 5%

is in real terms a fairly high interest rate, but the table still illustrates the

dramatic dynamics of exponential (financial) growth5. In the following we

will term such a runaway process debt-asset polarisation.

Another implication of (4.5) is that cet. par., a large  means steeper

debt growth. If the loans are perpetuitities ( =∞), we have debt growth
regardless of the size of  and ,with ̇ = .

The same is the case if the lender relends all the repayment and spends

only out of interest income (which will be a premise in chapter 5). Then we

also get

̇ =

µ
− 1


+ (

1


+ )

¶
 =  (4.7)

5Allegedly also commented by Albert Einstein: “the most powerful force in the universe

is compound interest.” Ironically, this quotation is mostly used today not in the spirit of

its critical originator: it is touted to market financial investment.
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Figure 4.6: The dramatic dynamics of exponential growth

4.3.1 Pyramid game ("Ponzi") dynamics

The feedback model in figure 4.5 may be applied to a pyramid or Ponzi-

type (Zuckoff; 2005) "investment" scheme 6.The debt service flow plus Ponzi

agent consumption must be matched by a flow of additional borrowing (from

current and additional gullible investors). See figure 4.7, which — except for

the added input of a required consumption flow — corresponds to figure 4.5

with  = 1. Money flows are indicated with thick arrows. As pointed

out above,  = 1 always results in runaway exponential dynamics with

growth rate , regardless of values of . An addition is that the Ponzi

agent demands a consumption flow (), which is an exogenous input in the

model. The time path of () may be constant or increasing with time. As

long as its increase rate is lower than that given by the endogenous dynamics

due to the positive feedback from debt service to additional lending, it does

6A very large such scheme was run by Bernard Madoff, New York. His promised return

rate was  = 15% . Madoff defrauded his clients of almost $65 billion in the biggest Ponzi

scheme in history. The operation was revealed to authorities in December 2008.
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Figure 4.7: Ponzi (pyramid game) process

not impact much on the debt growth rate. Assume that the Ponzi agent

demands a consumption flow

() = e, where 0 ≤    (4.8)

Without loss of generality (since this is a linear time invariant — "LTI" —

system) we have chosen (0) = 1 [$], and we start the Ponzi process with

no initial debt, (0) = 0 = 0 [$]. Then the algebraic solution for the time

path () is

() =
e

− 
(1− e−(−)), (4.9)

where the last exponential term → 0 as →∞.
Note that this simple linear model is only acceptable for the pre-crisis

phase, where the Ponzi agent is able to borrow all that is needed to continue

the process. A model that also accounts for the (sooner or later) collapse of

the scheme could be developed by introducing nonlinearities and additional

feedbacks in the system.

4.3.2 Accumulation with annuity-type debt service

We now want to check conditions for accumulation (instability) when the

DSS is not of the exponential type as in figure 4.2, but of the annuity type,

shown in figure 4.4. We also in this case choose to ignore the bank time lag

subsystem, which is set to unity. The transfer function for the annuity DSS

is

() =



(1− −) (4.10)
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Figure 4.8: Polar diagrams of 0 for stability check; annuity and exponential

DSS

where  is given by (4.3), and  is the duration of the loan. When we

close the loop, we don’t obtain a characteristic polynomial but an irrational

expression, due to the term −. Therefore we cannot check instability via
eigenvalues. But since the system is still linear, we may use the Nyquist

stability criterion (described in most control engineering textbooks). It is

based on a frequency response polar plot of the loop transfer function 0(),

which in this case is

0() = −

(1− −) (4.11)

(a minus sign has to be used in 0 because in Nyquist criterion the feedback

must be negative, while the feedback is positive in our case.) The frequency

response, given by setting  =  in 0(), is displayed in a polar diagram
7

in figure 4.8. When  takes on values from −∞ via 0 to ∞, we get a
corresponding closed graph for the frequency response 0() as displayed

7 In a polar diagram the length of the radius vector to a point on the graph of a complex-

valued function 0() is |0()|, while the angle between the positive real axis and the
radius vector is ∠0().
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in the figure. The dotted half of the graph corresponds to 0() for   0.

When 0 is open-loop stable, which it is in this case (since the impulse

response goes to zero with increasing ), the Nyquist criterion simply says

that the closed-loop system is stable when the leftmost part of the graph

crosses the negative real axis to the right of the point −1. The figure also
shows the corresponding graph when the DSS is of the exponential type

(where we used eigenvalues to check instability). The graph with this DSS

is simply a circle, indicated with a thin line. In the figure, the choice of

parameters    is such that both graphs go precisely through −1, which
means that the two corresponding closed-loop systems are on the border of

(in)stability. The chosen parameter values correspond to the two dots in

figure 4.9 below.

While the Nyquist criterion as a general rule only gives a result based on

a graph, in this special case we may employ it algebraically. If we consider

(4.11) with  = , we see from angle and absolute value that the leftmost

crossing of the negative real axis must take place for  = 0. We have

0(0) = lim
→0

µ
− 


(1− −)

¶
= (real) = − (4.12)

We substitute (4.3) for . The Nyquist criterion, and (4.12) then gives the

condition for financial accumulation:

 
1− −


(4.13)

This may be compared to (4.5) for the exponential DSS. A better comparison

is achieved if we plot borderline stability graphs for both types of DSS, for

different sets of parameters   . This is done in figure 4.9, with  on

the  axis,  on the  axis, for four different values of . The graphs for

the exponential DSS case are solid, while the annuity case graphs are dash-

dotted. From the graphs we observe, as expected, that cet.par., high interest

rates or long loan durations give instability (i.e. debt growth, financial

accumulation), for both types of DSS. And as already pointed out, an FRC

closer to 1 gives debt growth, cet. par. We observe that the graphs for

both types of DSS lie fairly close and have similar shapes (all graphs are

hyperbolae). This gives support to the notion that the exponential DSS may

be used for studying debt growth dynamics instead of the less algebraically

tractable annuity DSS.

In the figure, loan duration 2 for the annuity DSS has been adjusted

in relation to 1 for the exponential case, following the argument in con-

junction with figure 4.3. In the figure, the  on the  axis = 1. By
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Figure 4.9: Regions of debt growth ("instability") for values of   

experimenting it was established that 2 = 161, not 2 = 21 as

suggested in figure 4.3, gave the best coincidence for the graphs over a rea-

sonable range of values of . This adjustment does not, however, invalidate

the use of the exponential DSS instead of annuity DSS, since the stability

properties of both are so similar.

As an example of how stability information may be extracted from the

figure, it is seen that at an interest rate of 5% and  = 06, a loan duration

1 =   133 will give accumulation when the DSS is exponential, and

loan duration 2  16 = 16 · 141 = 226 gives accumulation for the

annuity DSS case.
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4.3.3 Firms with no income during a start-up period

The model of the firm sector presented here assumes that money arrives to

firms in the form of demand for consumption and investment goods. This

presupposes that the firm sector delivers a corresponding flow of products

in the opposite direction. How then account for a not untypical situation

where a firm receives a loan, but for a fair amount of time will not have

any further monetary inflow since it has no products to deliver during its

build-up phase?

Essentially, the solution is to modify the time profile of debt service, i.e.

the impulse response of the debt service subsystem (DSS). If a new loan is

extended at  = 0, the impulse response of the DSS is now set to zero for an

initial period  (perhaps in the order of a year). The firm is exempt from

debt service in this period. After  =  , debt service starts and follows the

same profile(s) as already discussed, but after the original loan has first been

amplified by a factor  since compound interest must be added before debt

service starts. Conditions for accumulation with this modified debt service

profile changes somewhat, but the changes are not important for the analysis

and are quite simple to derive. We will modify the exponential debt service

scheme in eq. (4.1) so that it has the above properties (we could have done

the same with the annuity scheme, but it does not make any significant

difference for our analysis). The modified transfer function is

2() =  −
1 + 

1 + 
(4.14)

The term  accounts for amplifying the debt, and − accounts for the
time delay before debt service starts. Since 2() is irrational due to the

term −, we use the Nyquist criterion to check stability. Following a

similar argument as that leading to (4.11), we now get

0() = − − 1 + 

1 + 
(4.15)

Again we may confine ourselves to considering (4.15) for  =  with  = 0.

We have

0(0) =

∙
− − 1 + 

1 + 

¸
=0

= (real) = − (1 + ) (4.16)

The system is unstable (i.e. accumulation occurs) for −  (1 + ) 

−1. This corresponds to conditions for accumulation resembling those in
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(4.5):

 
1

(1 + )
, or equivalently: (4.17a)

 
1


(1−  ), or (4.17b)

 
(1−  )


(4.17c)

As expected, relieving firms of debt service for an initial period with the

loan growing correspondingly, moves the system somewhat closer to the

instability border for the same set of the three parameters interest, loan

duration and banks’ financial re-investment coefficient. Comparing (4.17)

to (4.5), we see that stability-wise, a model with debt relief in an initial

period, is equivalent to amplifying the FRC to  =  in the original

model (4.1).

With debt service relief in an initial period and the extreme special case

  1 ⇐⇒   − , conditions (4.17) tell us that accumulation will
always occur.

4.3.4 Can capitalists earn any profits when money is debt-

created?

There is a view among many Post Keynesians and Circuitists — see for

instance Rochon (2005) — that if investment is debt-financed, the borrowing

capitalists cannot receive any profits from their firms after servicing debt.

At best, seen from the capitalists’ position, it is a zero-sum game in the sense

that non-financial capitalists that receive profits can only achieve this at the

expense of other non-financial capitalists who run corresponding deficits.

We may discuss this using the model in figure 4.1. Simply put, if

  , (4.18)

 =


will be  0, and profits and wages are possible. The capitalists’

share  of output after debt service depends on the balance of power between

owners and employees. The profit flow is

Π = 



(4.19)

The size of the profit share  is peripheral to this discussion, since as long

as there is some money left in the real economy after debt service, a profit
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flow  0 is feasible. Profits (and wages)  0 will be possible indefinitely if

 
1

(1 + )
(4.20)

cf. condition (4.5).

In the model discussed here, both  and  result from the accumu-

lation process and are outside debtors’ control. But  is a behavioural

variable for this aggregate. Owners can achieve  =



  by reduc-

ing  , cf. corollary 2.6. In a setting with slow instability (accumulation),

this is not possible indefinitely — there is some practical lower limit for 

(correspondingly: some upper limit for real economy transaction frequency

 = 1 ).

But the issue was here only to make the point that, in principle, capi-

talists in the aggregate may perfectly well enjoy a profit flow after servicing

debt. This position is also supported by (Keen; 2010), making the point that

this is a question — also touched upon earlier in this thesis — of avoiding

the confusion of stocks (the initial loan) and flows (wages and profits). The

reader is also referred to the simple model presented earlier, in subsection

2.7.5.

4.3.5 An intuitive, brief description

At this stage we will give an intuitive, non-mathematical description of the

process that may lead to debt-induced crisis. See figure 4.10. The positive

feedback from debt service to new loans is indicated with plus signs. Wages,

dividends and expenses paid by the financial sector may then be considered

a beneficial "leakage" back to the real (the non-financial) economy that

weakens the accumulation process. In this sketch all households (also those

working in finance) are located in the lower gray circle. The upper white

circle does not contain any agents, but indicates a bundle of flows and their

role.

Note that the debt service money flowing to lenders is in its entirety

returned to the real economy. Abstracting from the effects of some lag in

the financial sector this means that money will not disappear from the real

economy, all of it will be cycled back. Due to accumulation however, it

will to an increasing degree come back with strings attached — appearing as

added debt. So we have a growth of the positive feedback flows to and back

from the financial sector that leaves the aggregate of flows ( ) within the

real economy behind.
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Figure 4.10: Debt polarisation

Debt service is a non-discretionary flow while the  flows are discre-

tionary, at least within some bounds. When non-discretionary flows become

dominating, the economy as a whole becomes more fragile. This is the basic

premise of the crisis mechanism we will explore later on.

4.3.6 Real growth does not save the system

A "law" of macroeconomics formulated by Thomas Piketty (Piketty and

Goldhammer; 1995) is that as long as the real growth rate "" is larger

than the real rate of return on capital, the economy cannot end up in crisis

(ignoring here the issue of ecological consequences of long-term persistent

real growth). We will now discuss this briefly: The best-case situation is

then when the real growth rate is high. Assume that that this unfolds in

parallel with debt-asset polarisation. Inflation will be low due to high real

growth. But the economy will still experience increased fragility due to
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the relative growth of the non-discretionary (debt service) flows — high real

growth does not make a fundamental difference for this.

One mechanism that might ameliorate the situation, is money growth

keeping up with debt growth. Then a high real growth rate may at least

stave off the inflation that is due to this money growth. The type of lending

described in this chapter however, does not incorporate money growth. With

such a model, ending up in debt-induced crisis is unavoidable when condition

(4.5) is fulfilled, regardless of Piketty’s .

A more sophisticated model incorporating money growth — where out-

comes may be better — will be presented and examined in the next two

chapters.

4.3.7 A measure of financial fragility

We return to figure 4.1, which in a mathematically more precise manner

corresponds to figure 4.10 above. A measure of financial fragility  may now

be defined as debt service  divided by real economy output  (= 
above):

 =  (4.21)

If this debt service burden increases above some percentage, a reasonable

modeling assumption is that this will bring the economy into crisis: an

aggregate of non-discretionary flow ougrows the aggregate of discretionary

flows8.

But when crisis sets in, aggregate debt will increasingly be reduced

through defaults, so that a feedback term should be introduced in the ̇

equation, like this:

̇ =   − ()    =   −     (4.22)

Here  = () is some positive monotonic function, which will be called the

loss rate. With such an added feedback, the system becomes nonlinear. In

a crisis situation the loss rate could possibly have an ameliorating effect,

countering the effect of a large . We will explore this through simulations

in chapter 6.

We may — as an initial linear approximation — add a constant loss rate

to (4.7), which then becomes

̇ = ( − ) (4.23)

8 Income distribution is abstracted from in this thesis. Whether too much debt is to

firms or households (and even the government), or a mix — it is considered to have a

similar impact. This is as opposed to the Steve Keen’s Goodwin cycle models, where firm

owners are assumed to be the sole borrowers. More on this model in section 6.3.
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This equation shall be compared with an important equation (5.8) that is

derived in the next chapter.

4.3.8 Summing up

In this chapter we have discussed lending dynamics for a system with con-

stant money stock, where the lending sector may accumulate or not — based

on the share of received debt service flow is re-lent, the interest rate, and

the duration of loans. The outcome is either (slowly) exploding debt, or

decaying debt. (The in-between "equilibrium" may occur only for a specific

set of parameter values.)

Empirical data show that macroeconomies world wide have not been

in an "indebtedness equilibrium" or a path with shrinking debt. Indeed,

aggregate debt has persistently grown, and steeper than GDP. See figure

4.11. These "slow explosion" dynamics have largely been overlooked since

the yearly growth rate has been low, and — more importantly — mainstream

macroeconomics have mostly abstracted from debt (burden) dynamics.

The "moneylender" model in this chapter however, is not sufficient.

Money actually grows. And the loan growth behind money growth is de-

cided in a more complex manner, mainly by capital adequacy rules, which

is treated in the next chapter. Later we will also account for the effects

of the general mood among economic agents (both potential borrowers and

lenders) which again is a function of other endogenous variables.
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Figure 4.11: Debt outruns GDP in OECD countries (courtesy: Reserve Bank

of Australia)



110 Lending and financial accumulation



Chapter 5

A modern financial system

and dynamics

Today’s international regulation regimes for banks have been moving away

from minimum reserve requirements and instead to demand that a bank’s

claims on others must exceed others’ claims on the bank by some reason-

able margin. More precisely expressed, banks are required to stay above

some given lower bound for their capital/asset ratio (capital adequacy), also

incorporating some risk weighing of different types of assets. This is a regu-

latory regime that stems from the Bank for International Settlements (BIS),

and which is implemented nationally in most developed countries. We will

in between call this the "BIS regime".

The only (acknowledged) rationale for this banking regulation regime —

like the older one of minimum reserve requirements — is robustness against

insolvency and bank runs. Here we will examine a side effect of a minimum

capital/asset ratio regime. This chapter shows that it allows endogenous

credit money1 growth. It turns out that the maximum growth rate is in-

versely proportional to the required minimum capital/asset ratio, and that

staying at this limit allows the steepest profit growth (abstracting from

losses).

The model to be discussed is very simple, as indicated by the assump-

tions made below. Hopefully, it still embodies the properties needed for the

analysis to be of value.

The bank’s liabilities are its deposits. We assume no physical currency

1We distinguish between credit money which is created through bank lending, and

Central Bank money (reserves, HPM, base money). Credit money appears in the form of

the public’s demand deposits with commercial banks.
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(bills and coins) in circulation, so that money stock is simply the aggregate

of deposits.We initially also abstract from the presence of a government, a

Central Bank and bank reserves. Except for government bonds, we also

abstract from BIS rules for risk weighting of different types of assets. Until

further notice we assume that all lending is done by commercial (licensed)

banks — as opposed to non-banks (NBFIs) which we will introduce in the

next chapter.

Later in this chapter we introduce a Central Bank and a government.

5.1 A generic bank model without a Central Bank

All monetary entities are as always in this thesis in nominal terms. We

define the following variables and parameters for our bank:

()() = assets, liabilities [$].  = money stock, as stated above.

0 = the required minimum capital/asset ratio [ ]

 = interest rate on assets (= loans = debt) [1].

 = interest rate on liabilities (= deposits = money) [1];   

 = “equivalent net interest rate”(explained below) [1]

 = loan repayment rate [1].  is defined such that the loan repayment

flow is proportional to the loan, as discussed in the previous chapter.

 = loss rate [1]; a flow () is written off due to borrowers defaulting

on their loans

 = share of net interest income that is left for banks after they have

paid their expenses including wages [ ]; 0    1 In "expenses"

we also include investment-type outlays to increase the productivity

of the banks. Banks are assumed to pay no taxes at this stage.

 = flow of new loans [$]

We asume that the general mood among lenders and borrowers is not

pessimistic (when both sides or one side hold back). In that sense the models

we are discussing here are only valid in a phase before crisis sets in. Then

banks lend as much as they are allowed to, i.e. they (manage to) stay at the

lower limit 0. We have
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0 =
 −


, or  − = 0, or  = (1− 0) (5.1)

The differential equation for asset change is

̇ =  −  −  (5.2)

The differential equation for liability change is

̇ =  −  − ( − ) (5.3)

Note that net bank income (− ) appears with a minus sign in

̇ , not with a plus sign in ̇: net income to the aggregate of banks appears

in the form of reduced bank liabilities (= customers’ deposits). Using the

rightmost equation in (5.1), the last term in (5.3) becomes

− [ − (1− 0)] = −where  =  − (1− 0) (5.4)

Here  may be termed an “equivalent net interest rate”. In  we now also

include all types of fees on borrowers and depositors. These fees are assumed

proportional to  and  , and may therefore be considered to represent an

extra interest-like income for the bank.

We substitute (5.4) in (5.3), and substitute for with the the righmost

variant of (5.1). This gives

̇(1− 0) =  −  −  (5.5)

We subtract (5.5) from (5.2) and divide the result by 0 on both sides.

This gives

̇() =
− 

0
(), (5.6)

which has the solution

() = 0e
, (5.7)

where we have introduced the aggregate assets growth rate

 =
− 

0
 (5.8)

and 0 is the value of the bank’s assets at  = 0.

We note that  increases with the equivalent net interest rate and the

bank’s profit share of income , which is not surprising. Note also from
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(5.8) that  is very sensitive to ; we need    for assets to grow at all.

A more interesting result is that

the growth rate is inversely proportional (5.9)

to the minimum capital/asset ratio

This growth rate also applies to the money stock, since we have  =

(1− 0) from (5.1) and may differentiate this on both sides:

̇() = (1− 0)0e
 =

(1− 0)− (1− 0)

0
0e

 (5.10)

We observe that endogenous credit money growth will occur for 0  1. This

is (as far as this author knows) a non-recognised side effect of a Basel-type

regime. If 0 = 1 we have no money growth. Banks only lend out already

existing money.

Using (5.3), (5.4), (5.7) and (5.8), the bank’s net lending flow  − 

is

 −  = ̇ + ( − ) (5.11)

= (1− 0) +  =
− (1− 0)

0
0e

,

which we will return to further below. Comparing (5.10) and (5.11), we note

that the net lending flow is somewhat larger than the net money creation

flow ̇ , which is reasonable since the bank also lends its own profit flow,

and this is not accompanied by net creation of money.

The bank’s profit flow is the difference between (5.11) and (5.10):

() = 0e
, (5.12)

That this flow grows steeper the lower the capital/asset ratio is, explains

banks’ wish — at least in optimistic times — to operate at the limit 0.

5.1.1 A realistic and interesting result?

See figure 5.12. The thick graph gives an aggregate indicator of M1 growth

in the OECD countries. (The other graphs are for individual countries — we
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Figure 5.1: Aggregate indicator for M1 growth in OECD countries

will ignore them here). The growth rate extracted from the figure is 86%.

For comparison, we try a set of numerical values to check out  from (5.8)

above:

 = 0055  = 003  = 028  = 0002 and 0 = 008 (5.13)

This gives a growth rate  = 7 % per year. The point of this exercise

is simply to check out whether the theoretical  from (5.8) calculated with

some reasonable parameter values, is of the same order as indicated by the

(for different countries admittedly quite spread out) empirical data for M1

growth. This is the case. Compare (5.8) to (4.23) in the previous chapter.

We observe how a BIS regime allows dramatically steeper growth (more than

ten times with 0 = 8%) than what we get in the "moneylender" scenario

in the last chapter, which would give much too low growth rates compared

to empirical data — in the fraction of a percent range.

(There is no taxation of banks here. But  = 028 is fairly low, so even

if there is no government in the model, the effect of taxation may be thought

of as incorporated.)

2 (OECD; 2017)
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We have a ballpark result that is reasonable. But is it interesting? To

discuss this, we will consider a recent debate between some well-known

economists. But first, let us refer to what is taught in many macroeco-

nomic textbooks, and which is a common belief among economists, financial

commentators and of course the public. Here, from a much-used economics

textbook:

When banks loan out some of their deposits, they increase the

quantity of money in the economy (Mankiw; 2008), p.355.

Yes, money supply increases when banks lend, as already argued. But

banks do not lend out of people’s deposits. Deposit accounts are a liability

of the bank, as indicated by he role of  in (5.1) above — not something for

a bank to lend.

That banks lend out of other customers’ deposits — the loanable funds

theory — is increasingly contested among economists and bankers. Paul

Krugman, in a debate with Steve Keen, supports the loanable funds theory:

Keen then goes on to assert that lending is, by definition

(at least as I understand it), an addition to aggregate demand.

I guess I don’t get that at all. If I decide to cut back on my

spending and stash the funds in a bank, which lends them out

to someone else, this doesn’t have to represent a net increase in

demand. Yes, in some (many) cases lending is associated with

higher demand, because resources are being transferred to people

with a higher propensity to spend; but Keen seems to be saying

something else, and I’m not sure what. I think it has something

to do with the notion that creating money = creating demand,

but again that isn’t right in any model I understand (Krugman;

2012)

Steve Keen replies to Krugman:

From the neoclassical vision of saving as modelled by Krug-

man (after inserting an implicit banking sector into Krugman’s

bank-less model), lending makes no difference to the level of

aggregate demand (unless the impatient agent has a markedly

higher propensity to spend) because lending does not change

the amount of money in circulation–it only alters its distribu-

tion by reducing the amount in Patient’s account and increasing
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the amount in Impatient’s. The banking sector’s assets are ig-

nored because the bank is treated as a “mere intermediary” that

facilitates the loan between depositors (and maybe charges a fee

for the service) but otherwise does nothing.

Real world lending is not a transfer of money from one de-

positor’s account to another’s, but a contract between a bank

and a borrower in which the bank credits the borrower’s account

(thus increasing the bank’s liabilities). in return for the bor-

rower agreeing to be in debt to the bank for the same amount

(thus increasing the bank’s assets). This increases the aggregate

amount of money in circulation, increasing aggregate demand in

the process–and predominantly finances investment or specula-

tion rather than consumption (Keen; 2014).

Lately, also Central Banks — traditionally quite reticent in airing "con-

troversial" views in academic debates — have voiced opinions on this issue.

Here is the Deputy Governor of the Norwegian Central Bank.

So how do banks create money? The answer to that question

comes as quite a surprise to most people.

When you borrow from a bank, the bank credits your bank

account. The deposit — the money — is created by the bank the

moment it issues the loan. The bank does not transfer the money

from someone else’s bank account or from a vault full of money.

The money lent to you by the bank has been created by the bank

itself — out of nothing: fiat — let it become.

The money created by the bank does not disappear when

it leaves your account. If you use it to make a payment, it is

just transferred to the recipient’s account. The money is only

removed from circulation when someone uses their deposits to

repay a bank, as when we make a loan repayment (Nicolaysen;

2017).

Also fairly recently, the German Bundesbank:

... banks can create book money just by making an account-

ing entry: according to the Bundesbank’s economists, "this re-

futes a popular misconception that banks act simply as inter-

mediaries at the time of lending — ie that banks can only grant

credit using funds placed with them previously as deposits by
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other customers". By the same token, excess Central Bank re-

serves are not a necessary precondition for a bank to grant credit

(and thus create money) (Bundesbank; 2017).

And the Bank of England, which in fact was early (2014) among Central

Banks in arguing this view:

The vast majority of money held by the public takes the form

of bank deposits. But where the stock of bank deposits comes

from is often misunderstood. One common misconception is that

banks act simply as intermediaries, lending out the deposits that

savers place with them. In this view deposits are typically ‘cre-

ated’ by the saving decisions of households, and banks then ‘lend

out’ those existing deposits to borrowers, for example to com-

panies looking to finance investment or individuals wanting to

purchase houses

In fact, when households choose to save more money in bank

accounts, those deposits come simply at the expense of deposits

that would have otherwise gone to companies in payment for

goods and services. Saving does not by itself increase the de-

posits or ‘funds available’ for banks to lend. Indeed, viewing

banks simply as intermediaries ignores the fact that, in reality in

the modern economy, commercial banks are the creators of de-

posit money. This article explains how, rather than banks lend-

ing out deposits that are placed with them, the act of lending

creates deposits – the reverse of the sequence typically described

in textbooks(McLeay, Radia and Thomas; 2014).

This thesis supports and adds to this analysis, by demonstrating not

only that money is created ex nihilo when banks lend. It also

1. derives the mathematical connection between the minimum capital/asset

ratio requirement and the maximum endogenous growth rate of money

(and profit, debt), and

2. that this theoretical growth rate is of the same magnitude as what is

actually occuring, and suggesting that banks — at least in good times

when there are enough willing borrowers — manage to stay close to the

minimum capital/asset ratio limit.
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5.2 Including a Central Bank

We now introduce a Central Bank (CB) and banks’ reserves (banks’ deposits

with the CB). It is assumed that banks’ reserves fluctuate with government

spending and taxation (also introduced), and grow due to interest paid for

these deposits.

Any CB where the country in question has its own national currency

(as opposed to for instance the eurozone), is in the final instance an arm of

the government. Hence, a government’s "debt" that builds up with its CB

through deficit spending in excess of the proceeds from selling bonds, is only

an accounting and legal convention. In line with this, the government is in

this thesis considered to be able to spend at its own discretion (and thus

net create money) by debiting its account at the CB. (A possible economic

impact of this type of net HPM creation is of course inflation, but that is no

more an issue than the possible inflationary effect of banks’ exponential net

money creation, established in the previous section and also in the following.)

5.2.1 The bank model with a Central Bank and taxation

We distinguish between risk weight of reserves (zero) and all other assets in

the Basel rule (these are for simplicity assigned a 100 % risk weight). We

now define some additional parameters:

() = reserves = the bank’s deposit with the CB = high-powered money

(HPM) [$]. We assume that   0. The bank’s total financial assets

are now  +, where  = loans as before.

() = government net spending ( = deficit) flow. It may be negative,

corresponding to a surplus budget.  is an exogenous fiscal control

variable for the system [$].

 = tax rate for banks, 0    1. All other taxation in the model is

incorporated in () [ ]

̄ = profit share for banks after tax, ̄ = (1− ) [ ].

 = interest rate on HPM deposits to banks from the CB. This is an

exogenous monetary control variable for the system [1]

̄ = after-tax interest rate on HPM to banks from the CB, ̄ = (1−)

[1].
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Remembering the Basel rule that risk weights shall only apply in the

denominator, we get

0 =
 +−

 + 0 · , or +− = 0, or  = (1− 0)+ (5.14)

The differential equation for non-reserve asset change is

̇ =  −  −  (5.15)

The differential equation for change in the bank’s reserves is

̇ = (1− )−  [( − )− ] +  (5.16)

= ̄− ( − ) +  + 

The bank pays taxes by drawing on its reserves . Taxes are assumed to be

paid both on interest income from , and from the profits extracted from

its banking activities after losses  are subtracted.

The differential equation for liability ( = deposit money) change now

becomes

̇ =  −  − ( − ) + , (5.17)

where the second last term in (5.17) may, using (5.14), be written as

− [ − (1− 0)] +  = − +  (5.18)

where  =  − (1− 0) as before. Using (5.18), (5.17) becomes

̇ =  −  −  + + , (5.19)

We substitute for ̇ in (5.19), using a differentiation of the rightmost

variant of (5.14), and also substitute (5.16) for ̇. This gives

̇(1− 0) + ̄+  − ( − ) +  (5.20)

=  −  −  + + , (5.21)

where  cancels out on both sides, ̄ and  may be moved to the right

side, and we use ̄ = (1− ):
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̇(1− 0) =  −  − ̄ −  + ̄− ̄ (5.22)

We subtract (5.22) from (5.15) and divide the result by 0 on both sides.

This gives

̇() = () +
̄ − ̄

0
(), where  =

(− ) (1− )

0
(5.23)

Compare this to equation (5.6). The growth equation has a similar

structure, but it is now also influenced by the variable , whose growth is

decided by the two control variables/parameters  and ̄ in (5.16). The

growth rate  will also be lower the higher the tax rate, since we have

̄ = (1− ).

But  and will still grow exponentially. For the system to uphold the

balance between monetary aggregates,  must grow at the same rate. If 

is depleted, banks will increasingly lack reserves for their transactions with

each other, to the government and the public (for notes and coins). Per-

sistent government deficit spending, i.e. positive  (what is usually talked

about in admonitory terms as "printing money"), achieves net HPM cre-

ation. The same is the result of the CB buying government bonds to achieve

an interest rate target.

The basic assumption in the above is that the government (or monetary

authorities) allows a commercial bank and its potential borrowers to gener-

ate debt and money growth, the bank only being constrained by a BIS-type

capital/asset-ratio requirement. And the Central Bank accomodates banks

by ensuring reserve () growth.

But one might instead take the position that the monetary authorities

should decide the rate of  growth. This can be achieved in a 100% re-

serve system. In chapter 7 we will discuss this, and propose a solution variant

which has the advantage of 100% reserves (money cannot be lost) but avoid-

ing the main disadvantage (reduced flexibility and less easy availability of

loans for investment).

5.2.2 A remark on government bonds

This thesis abstracts from the selling and buying of government bonds, and

there is no corresponding financial market. The reason from this is as fol-

lows: the composition of reserves vs government bonds for a bank does not

impact on the value of banks’ capital/asset ratio, since government bonds
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are weighted with zero in the denominator, like reserves. And when the gov-

ernment sells an [$] bond to the bank, the government adds  to its deficit

spending flow  just as if the government had deficit spent  by debiting its

CB account.

By abstracting from government bonds (and corresponding debt) we are

at this stage ignoring a component in the aggregate of non-discretionary

flows in the economy — the part of taxes that are collected to service debt

to bondholders. When we in the following examine mechanisms for debt

crisis, we initially confine ourselves to non-discretionary flows due to private

sector — not government — debt. But we will later argue, in subsection 6.1.1,

that the introduced model can easily incorporate government debt and debt

service.

Related to this: in subsection 7.2.1 we launch a proposal that largely

removes the rationale for today’s (dangerously powerful) government bond

markets.

5.2.3 Money growth pari passu with debt — a good thing!

The assumption in this chapter has been that the government (or monetary

authorities) allows the bank to decide debt and money () growth, only

being constrained by a BIS-type capital/asset-ratio requirement (dependent

also on borrowers’ demand for loans).

But one might instead take the position that the monetary authorities

— not banks — should decide the rate of  growth. Much of the criticism

against banks — especially during the recent global financial crisis years —

has been about banks creating money when extending loans. This has been

contrasted with the (allegedly better) solution of money creation by the

government: "spending money into existence" instead of "lending it into

existence". This leads to a 100% reserve system, where reserves mirror

deposits 100%, i.e.  = . It is the historically well-known proposal

put forward by, among others, Irving Fisher during the Great Depression

(Fisher; 1936), pp. 406-420. It has been persistently promoted to this day

by individuals or groups that are more or less considered to belong to the

economics "fringe", and has (in this author’s opinion: undeservedly) not

been considered worth serious discussion by the academic mainstream.

That said, we will now argue "heretically" (at least seen from a heterodox

position) that bank money creation when lending is actually a good thing.

Consider (5.14). Ignoring  (i.e. we then have the worst case for money

growth in relation to debt growth), the relation is simply
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 = (1− 0) (5.24)

so  and  grow at the same exponential rate. From earlier we have for

output (2.44),

() =, where  is money velocity (5.25)

Assume now that money velocity  doesn’t vary too much in non-crisis

times, at least staying within the same magnitude3. The debt service burden

introduced earlier in subsection 4.3.7, may be written as

 =
(+ )


=

(+ )

(1− 0)
=

(+ )

(1− 0)
 (5.26)

so  does not increase exponentially — nominal  grows (abstracting from

shorter-term business cycles and external shocks) approximately pari passu

with . So how can one have  actually growing faster than  as indicated

by empirical data, shown in figure 4.11? This will be a topic in the next

chapter.

5.3 "Bootstrapping" a money-creating bank

We will in this section try to explain how a newly established bank — "from

scratch" — is able to create extra credit money when lending, at an ex-

ponentially growing rate. When a bank extends a loan, a corresponding

increase occurs in the borrowing depositor’s account. This means that the

bank creates money "out of thin air" when lending. In principle, if a bank

was unconstrained by regulation, it could create as much extra money (and

debt) via this process as it wanted, as long as there were willing borrowers.

But banks are as already discussed constrained in their lending by the

BIS rules on a minimum capital-asset ratio. The capital/asset ratio for our

bank is chosen as the same simplified variant used earlier,

 =
 +−


, (5.27)

which must be ≥ 0 , the mandated minimum C/A ratio.

3M1 in for instance USA was not constant in pre-crisis times, but had a long-term

velocity growth around 2% from 1960 to 2008, then diving sharply when crisis hit. The

very simplified assumption here of constant velocity in pre-crisis times will therefore be

discussed later, in subsection 6.2.7.
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In our exercise we start at time zero with investors pooling their money

to start a new bank. The bank has no outstanding loans and no deposit(or)s

at  = 0. We assume that the bank’s investors have supplied an initial capital

0 at  = 0. The invested amount 0 resides at the new bank’s account at

the Central Bank, and are thus reserves. For simplicity, we hold  = 0
constant in the simulation interval. This is a fairly non-dramatic assumption

with respect to  growth, and does not invalidate our argument.

Before proceeding, we list the variables and parameters that are used in

this section. Some "benchmark" parameter values are chosen for this exer-

cise, shown in {braces}:

() = the bank’s outstanding loans [$].

() = deposit money [$].

() = the bank’s reserves at the Central Bank [$]

() = the bank’s capital,  =  +− [$]

 = interest rate on loans given {0055} [1].

 = interest rate on deposit money {003} [1],

 = pre-crisis loss rate on loans {0002} [1],

 = loan repayment rate {01} [1].

 = share of net interest income that is left for the bank after payment

of wages, dividends, taxes and other expenses {028} [ ]; 0    1.

Note that we from now on, for simplicity, incorporate taxes in this

. This is in contrast to the more complicated model used above, in

subsection 5.2.1.

 : The bank’s profit flow after all expenses, before losses,

are = ( − ) = ( −  [1− 0]) = 

() = flow of new loans from the bank [$]

0 = required minimum capital-asset (C/A) ratio {008} [ ]
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() = current actual C/A ratio [ ], () must be ≥ 0.

As a first step we assume — unrealistically — that our bank immediately

lends an amount 00 precisely at  = 0. This gives the system initial

values 0 = 00 = 0, which — following (5.27) — places (0) exactly

at 0 for  = 0, and then we will also have () = 0 for the whole time

path We choose a time interval of 50 years, which we will use for all later

simulations. With these conditions, we may derive the debt and money

creation path algebraically, by using equation (5.23). For simplicity we

here assume no taxation and no interest on bank reserves . We get a

corresponding simplified version:

̇() = ()− 

0
0, where  =

(− )

0
(5.28)

With the given initial values the solution is

() = 0e
 − 

0
0
1


(e − 1) = 0

0
e − 

0
0
1


(e − 1) (5.29)

The resulting graph is shown in dashed line in figure 5.3 (we will comment

on the other graphs further below).

A weakness of this algebraic approach is that we assumed that the bank

was able to immediately lend the necessary amount to reach the allowed

C/A ratio lower bound. This — and other improvements — can be achieved

by formulating the bank’s behaviour as a control system:

5.3.1 The bank as a control system

In this approach the mandated minum capital/asset ratio 0 is a reference

input, () is a resulting output and the loan-issuing flow () is the

control action.

We choose a proportional plus integral (PI ) controller, since integral

action ensures that the control error (between desired minimum C/A ratio

0 and the actual ratio () tends to zero. Even if the bank’s officers obvi-

ously don’t behave like a (non-human) controller in a technical system, we

assume that they act in a similar way, to ensure as much lending as possible

without being in breach of the minimum C/A requirement. This reasonably

corresponds to the effect of PI control.

The "control system" is portrayed4 in figure 5.2. It contains the PI

4To indicate that an output is a function of an input, as opposed to a block that

indicates that the output is just the input multiplied by the block content, a thick outline

is used.



126 A modern financial system and dynamics

Figure 5.2: The Bank bootstraps itself to 10 through feedback

controller which adjusts the lending flow based on the error in the current

capital-asset ratio. For reasons explained below, we use as a reference value

not 0, but its inverse, 10. The control error is then

() = 10 − 1() (5.30)

We set 0 = 008, 10 = 125. 10 gives a ceiling for how the bank is

allowed to operate. The PI controller’s output is multiplied with a factor

 = +− . The scaled output from this modified (and now non-linear)

controller gives the the control action in our system, the flow of new loans

(). We run a simulation with this model. The time horizon is 50 years.

We choose (0) = () = 1 = constant. There are no initial liabilities

(credit money created by the bank is (0) = 0) and no initial claims on

other entities (the bank’s loan assets are (0) = 0) This means that the

initial capital asset ratio is (0) = ∞, but the initial inverse capital asset
ratio is 1(0) = 0. This is the reason for working with 10 in (5.30). With

1(0) = 0 there is ample headroom for ramping up lending until the output

1() approaches 125.

Consider figure 5.3. As the magnified right half of the figure shows, the

bank steeply increases lending in an initial transient period until () ≈ 0
, and then it settles down to exponential growth at the rate , achieved by

keeping  at 0. We observe how credit money  (dashed line) is created
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Figure 5.3: Debt and credit money growth without government and a CB.

Right half is magnified, close to  = 0.

"out of thin air" along with debt  in the process. Parameter values are

the same as in (5.13), and the simulation tends to the graph given by (5.29),

as expected. The slight discrepancy between  given by (5.29) and the

 graph resulting from ramping up via PI control, is due to the transient

difference close to  = 0, as observed in the magnified right half of the figure.

The horizontal dash-dotted line is the bank’s reserve account 0, which for

convenience is held constant = 1 in this exercise.

An objection to the above is that the bank might not be able to lend

as much as it was allowed to by the capital adequacy rule. One might try

to account for this by letting the loan flow be less than the () output

given by the PI controller, using a coefficient 0  ()  1 so that the

modified loan flow is ()(). This was tried, but didn’t work. After

some thought, the reason was obvious: decreasing the gain of the controller

was compensated automatically by an increased control error, so () was

upheld at the allowed maximum level.

An alternative way out is to let the reference input 10 be multiplied

by a similar factor, so that we now have a varying reference, ()0. This

has a reasonable interpretation. If a bank doesn’t find or experience demand

from enough customers, and/or potential borrowers are not considered cred-

itworthy, it will reduce its lending ambitions, corresponding to ()  1.
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This will be the case in economic downturns or crises, where the general

mood turns more pessimistic: banks will hold back in their lending and po-

tential borrowers will voluntarily choose to abstain. We will later on use 0
not as a constant, but as a variable dependent on other parts of the system.

The model introduced above will be used as a subsystem in the next

chapter, where we will model and simulate dynamics leading to an an over-

indebted economy, financial crisis and collapse.



Chapter 6

Debt build-up and crisis

We have by now looked at two types of banking systems: A "moneylender"

system (non-bank financial institutions, aka non-banks) where debt may

accumulate but money supply is constant. And the modern system with

licensed commercial banks (only capital adequacy but no reserve require-

ments), where we have concluded that debt and money grow pari passu.

Before discussing crisis mechanisms, we will add to our commercial bank-

based model from section 5.3, so that the model also accounts for the effects

of non-bank lending. The commercial bank is now a submodel; the ag-

gregate of commercial banks. What we call non-banks corresponds to the

earlier used term NBFIs (non-bank financial institutions). Non-banks re-

ceive flows from a subgroup of the NFF (non-financial firm) capitalists who

are owners of real economy firms, but who channel a share of their profits to

financial investment with non-banks, not only to direct investments in the

real economy.

This extended model — shown in figure 6.1 — will be used in the following

exercise:

6.1 A "Minskyan" long-term crisis model

We continue with an economy where, at  = 0, we start "from scratch" with

no credit money and a (from now on aggregate) of banks. This aggregate

of banks (called “the Bank” with a capital B) has one type of asset, which

is the aggregate of loans to households and real-economy firms; "the real

economy". Since all banks are lumped together in an aggregate, lending

between them cancels out.

This aggregate holds a constant small amount of reserves 0 at the CB
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(0 will still be held constant for simplicity — this does not impact much on

the analysis to follow). The real economy starts borrowing from the Bank,

which creates credit money ex nihilo at the exponential rate described in

section 5.3. This enables the real economy to circulate money and achieve a

corresponding exponentially increasing GDP at the same rate (as always in

this thesis, in nominal terms). GDP is shared between worker households

who are assumed to spend their whole income, and "capitalists" who spend

some, and invest or lend the rest.

The time horizon is long, set to 50 years. At a some time into this period,

there is a gradual change in the attitude to investment, so that capitalists

increasingly prefer to invest financially (lending to the real economy), not in-

vest profits directly into real-economy firms. They also increasingly prefer to

channel their investment money to a financial asset sector (i.e. non-banks),

not to the real economy. This will be expressed by a "financialisation coef-

ficient" 0  ()  1 , with effects described in the model further below.

Through an initially small but growing  , we first have a fifties/sixties-like

real economy-dominated period (low ), gradually changing into a later

eighties/onwards "financialised" period (high ). This coefficient is as-

sumed to grow exponentially, so that there is a long initial period where it

has negligible impact The introduction here of such a coefficient is inspired

by Hyman P. Minsky. In his works, he presents his Financial Instabilty

Hypothesis. He briefly sums it up like this (Minsky; 1992):

The first theorem of the financial instability hypothesis is

that the economy has financing regimes under which it is stable,

and financing regimes in which it is unstable.

The second theorem of the financial instability hypothesis is

that over periods of prolonged prosperity, the economy transits

from financial relations that make for a stable system to financial

relations that make for an unstable system.

The second theorem describes what in the debate today is called "finan-

cialisation".

 is in our model given exponential — not linear — growth, because

financialisation is a process of forgetting and of contagion. Forgetting the

lessons from the last crisis, and contagion since agents (slowly but increas-

ingly) transit to more reckless behaviour, following the herd.

Furthermore, there is a positive feedback regarding what we could call

re-lending pressure: A persistently increasing income due to financial ac-
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cumulation gives a persistently increasing incentive to throw loans after

borrowers that are not creditworthy. This pressure adds to recklessness.

The new and extended model is shown in figure 6.1.

The additional variables and parameters in figure 6.1 are listed below.

Parameter values for the Bank part of the model are the same as in section

5.3. Some parameters are assigned constant values in initial simulations.

Their values are shown in {braces}. Other parameters vary from the outset,

this is explained further below.

 = input-output time lag for the aggregate of non-financial firms (NFFs)

{05} [].

 = time lag for spending and real-economic investment for the aggregate

of NFF capitalists, out of real-economic profits {03} [].

 = time lag for lending money from the aggregate of NFF capitalists

[].

 = time lag for the aggregate of (non-saving) workers/households,

approx. 1 month = {008} [].

̇() = net flow of Bank-created money to the real economy [$].

() = flow of new loans to the real economy from NFF capitalists [$].

() = aggregate demand for non-bank products and services [$].

() = aggregate real economy output [$].

() = NFF owners’ (capitalists’) financial assets = loans, bonds but not

stocks [$].

 = interest rate (net after taxes, fees and costs) on  {004} [1].

 = non-crisis loss rate on  , always assumed 25 times the loss rate

on bank loans {0005} [1].

 = loan (bond) repayment rate {01} [1].  is defined such that

the loan repayment flow = (), proportional to the aggregate of

NFF capitalist loans.

() = share of NFF output that capitalists receive [ ]; 0    1 . The

workers’ share is then 1− .
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Figure 6.1: Model with the Bank (top), a real economy and non-bank-

lending
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 = share for real-economic investment as opposed to consumption share

1 −  , out of real economy profits not going to lending {025} [ ];
0    1.

 = share for capitalist lending as opposed to consumption share 1 −
  this share out of their interest income plus repayment flow {075}
[ ]; 0    1.

() = "financialisation coefficient", the central time variable expressing

degree of financialisation in the economy [ ]; 0    1.

Π() = profits from () that capitalists receive [$]

Π () = profits from () that capitalists receive and allocate for lending

[$]

Π() = net interest income plus repayment from lending that capitalists

receive [$]

We will build on the model in figure 6.1. First a caveat: We have already

noted that the dimension of parameter space in the pre-crisis model is large,

and we have by trial and error explored a few points in parameter space to

get responses that seems reasonably realistic. This dimensionality problem

grows further when we now endeavour to introduce additional interactions,

functional relations and associated parameters.

To cut through this knot and not become bogged down in what could

in itself constitute a separate dissertation, the following procedure has been

chosen: Introduce a few new parameters and related interactions in stages,

examine responses and adjust parameters to avoid absurd outcomes, and

finalise with a parameter set that give acceptable responses.

Then add some further relations and repeat the procedure. All parame-

ters are up for adjustment. Finalise the crisis model with a parameter set

that give an inuitively "reasonable" outcome. Discuss. Constant parameters

will in later simulation stages become variables, connected to other system

variables. In the first simulation experiment only () will vary, the other

parameters are held constant.

We note that in this model — and in this thesis as a whole — there is

no connection between the Bank and the non-banks. Non-banks here don’t

buy Bank-issued debt, and the Bank does not borrow from non-banks. This

is a weak point, and something that should be pursued in further research.

But it is not believed to have a decisive impact on the main insights and

conclusions in this thesis.
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6.1.1 Including a government and Central Bank

Before embarking on a series of simulations, we will argue that the model in

figure 6.1 can easily incorporate a government and Central Bank, and that

such an addition may be be simplified to such a degree that the structure

remains unchanged, with no significant loss of explanatory power:

At several points in the circulatory network in 6.1 the government extract

tax flows, even if these are not shown. These goverment-related flows are

split off and enter a time lag block (expressing part of government stock-flow

dynamics), leave this block, and re-enter somewhere else in the same real-

economy circulatory system. The extracted (split-off) flows — taken together

— constitute an aggregate tax flow, and is returned via a collection of time

lag government blocks as wages, pensions, subsidies, purchases — back to the

real economy at different injection points.

All these flows are split off from and re-injected into the already defined

circulatory flows, such as consumption and investment. By collecting all

extraction points using rules for block diagram manipulation, and collecting

all injection points using similar rules — and also using rules developed in

this thesis for calculating aggregate time lags — we may achieve an equivalent

government net aggregate flow entering at the main summation point indi-

cated in front of the "firms" block in figure 6.1, without changing anything

except (somewhat) the time constants    and  . This aggregated in-

jection flow may be positive (the government runs a deficit) or negative (the

government runs a surplus).

We may now account for government debt and related debt service by

considering the government as embedded in the network of nodes (blocks)

in the real economy. By this, total debt  +  in the model includes

government debt, and government debt service to the Bank and non-banks

are correspondingly included in the debt service flows in the model.

What remains after these strong — but valid — simplifications, is simply a

net government flow entering at one point in the circulatory system. We may

then continue using the model in figure 6.1, with just an added government

net flow at the main injection point. We return to this later in subsection

6.2.8

Running a surplus budget (note: "surplus" here defined as net of borrow-

ing and debt service) corresponds to a negative flow, i.e. money is extracted

from circulation ("blood is drained from the body").

Concerning the opposite case — a positive net flow — we have earlier stated

in section 5.2 that the generic nation assumed in this thesis issues its own

currency. Then the government may ensure a positive net government flow
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by simply debiting its account at the Central Bank, "spending, not lending

money into the economy". By this we follow the position of modern money

theory , which rejects the dogma of "Central Bank independence". MMT

stipulates that a government issuing its own currency can always spend the

amount needed for full employment and full capacity utilisation by debiting

its account at the Central Bank, i.e. creating money ex nihilo. This is

politically controversial, but it will — based on the analysis in this thesis —

be supported as a crucial control tool. We will come back to this in detail

in chapter 7.

Summing up: The above simplified way of accounting for a government’s

role in the macro circulatory system, allows us to lump government and

private sector debt together when we in the next section examine crisis

dynamics.

6.2 Simulation experiments

We continue with a 50-year time horizon, as in section 5.3. We will do five

simulations, and start with the simplest variant:

6.2.1 All time lags and loss rates constant, only varying 

The central parameter is (), which will be used in functions that decide

other parameters. Experiments with many values have been done, and re-

sulted in this choice:

() = 005 exp

µ
ln(055005)

50


¶
(6.1)

This is an exponential function giving (0) = 005 and (50) = 055. It

expresses increasing financialisation in the economy over a long time horizon,

and impacts on other parameters that are discussed below.  will be given

influences in several ways in the model. In this first run, the only impact of

 is to channel more of capitalists’ real economy profit towards financial

investment. We assume that real-conomy profits received by the capitalist

subgroup is increasingly channeled away from consumption/real-economy

investment, and to lending. The real-economy profit flow that capitalists

allocate to lending is

Π () = () ()() (6.2)

At  = 50 we have () () = 055 · 02 = 011. This is quite low. But

note that the non-bank subgroup in addition to this also receives profits +
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repayment Π from their lending. Note also that profit-related parameters

express net flows after taxes.

All other parameters are kept constant, not impacted by (). The

results are shown in figure 6.2.

Graph (c) shows how non-bank debt starts at zero, stays very low for

many years and takes off after approcimately 30 years. This is explained

by the growth in  , shown in figure 6.2(b). Total debt/GDP ratio is

shown in graph (d). The increase to approx. 120% there is due solely to

non-bank debt and not Bank debt, a point made early in section 5.3. But

things proceed without crisis occuring, and the nominal output growth rate

increases persistently towards 7%, corresponding to the endogenous growth

rate we got from Bank loan and money growth in subsection 5.3.1. (Ignore

the sharp vertical transient to the left in graph f); it is due to the system

starting up from zero at  = 0).

We will now change the above idyllic scenario into a more realistic one

(and other changes follow further below):

6.2.2 Increasing , also  and 

We now assume that increasing financialisation implies that more of the

capitalists’ income that is destined for lending is channeled to other capi-

talists, and not to the real economy. In our model this simply corresponds

to a higher time lag  . Money arriving to this subsystem spends more

time there since it to larger degree circulates inside for intra-non-bank lend-

ing/borrowing and speculative trading in assets, before emerging as ().

Based on this, we assume an increasing time lag

 = 0801 (1 + 5 ())0 (6.3)

where 0 is a constant, a fairly short time interval 03 [].

(6.3) gives  ((0)) = 03 [] and  ((50)) = 09 [] At  = 50,

out of 3 arriving dollars to a non-bank capitalist, only one dollar is re-lent

to the real economy, without first being channeled into the NFF capitalist

subgroup. The "outside spending coefficient" introduced in 2.8 falls with

, and is 13 at  = 50 .

Debt within the non-bank subgroup nets to zero. This adds to system

fragility in the long run, but we will not go into this in this thesis. Ignoring

it here gives a "best case scenario" regarding crisis dynamics. We restrict

the treatment here to the increased time lag before money emerges from the

NFF capitalist subgroup for new loans () to the real economy.
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Figure 6.2: Increasing  only
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An interesting point implied in this model is that "internal" non-bank

lending and speculative trading within the NFF capitalist subgroup is mostly

a zero-sum game for participants (one agent’s win is another’s loss), as

opposed to lending to the real economy. One might object that "why then

would non-bank capitalists lend to or invest financially with each other?"

The answer is that if you believe that you are more clever than the other

guy, you will do this even if your gain is dependent on others’ loss; the

financial market has a poker game psychology. Furthermore, observation of

increasing flows into the subgroup attracts activity to it, a positive feedback

mechanism.

This said, it should be added that speculation in real estate is not nec-

essarily a zero-sum game, since it implies power for the owner to extract

rent (a non-discretionary flow) from tenants who have no alternatives. This

effect may be accounted for by the following: We now introduce a change

in the power relationship between capitalists and workers, so that the profit

share  of output  increases with (). We choose

() = (02 + 015 ()) (6.4)

This gives (0) = 021 and (50) = 0283

Simulation results are shown in figure 6.3.

If we compare figures 6.2 and 6.3, we observe that output growth culmi-

nates, see f), and the debt burden d) increases. Output growth culminates

because money is drawn away from the real economy to circulate in the non-

banks subsector, and because a larger share of output goes to capitalists.

The increase in debt burden is due to two factors: larger non-bank debt c)

and lower output e).

But still the scenario is too optimistic. Even with a much heavier debt

burden, there is no increase in Bank loss rate  and capitalist loss rate

 . There is also no holding back in non-discretionary spending by firms,

workers and capitalists, even when increasing losses after some time also is

recognised and felt among the general public. This is corrected in the third

simulation:

6.2.3 Growing , profit share, time lags & loss rates

This is the full-on pessimistic but most realistic model. The system is now

stressed by an increasing debt burden

 =



(6.5)
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Figure 6.3: Also increasing  and  with 
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Since we assume interest and repayment rates constant1, we can use the debt

burden instead of the earlier introduced debt service burden ( + )
introduced in subsection 4.3.7.

Debt service is a non-discretionary flow — you can’t decide the size of

the payment flow, it is decided by the loan contract and you are obliged by

it — while consumption flows are discretionary, at least within some fairly

flexible bounds (the worker has to eat and pay rent, but he may postpone

the purchase of a new TV or holiday). Furthermore, for a capitalist, one may

postpone investing in new equipment and buildings, and sack employees or

hire fewer of them, and one may reduce own consumption.

When there is persistent relative growth in non-discretionary flows like

debt service, the economy as a whole becomes less resilient and more fragile.

The first result of this is a rise in the frequency of insolvencies. So now the

loss rate  on loans will no more be constant, but a variable. We have by

experimenting ended up with the polynomial relation

() = 001(18)6 + 0002 (6.6)

which gives  ≈ 0002 for the intial debt burden  ≈ 04, and  = 001 for

a closer-to-crisis debt burden  = 2.  = 25 always. With this choice

of parameters, simulation gives a  that stays close to 0002 for around 40

years , but increases sharply after that.

Before proceeding, it is useful to consider the simulation results. They

are shown in figure 6.4.

There is a collapse before  = 50. In graph f) we observe how output

growth tapers off. The simulation was stopped at  = 47 since the flow

of new loans  from the Bank became zero and then negative, which is

meaningless. At  = 44  culminates, and falls from 252 to 230 (48%) in

two years. So our crisis may be considered to break out around years 44 to

45.

Both the Bank and non-banks react to the increasing loss rate  on loans,

by reducing their lending. For the Bank this is expressed by an increase

in the target capital asset ratio, above the minimum ratio demanded by

authorities. Experiments led to

0() = 0078 + 10  (6.7)

1Obviously, after crisis has broken out, this is not an acceptable simplification. But

our purpose is to examine and discuss the run-up to debt crisis and its outbreak, not

the ensuing years in deep recession where the policy response is to reduce interest rates

strongly.
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Figure 6.4: Increasing , all time lags and loss rates =⇒ collapse
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Figure 6.5: Flow  of new loans dives to zero

which gives 0 = 008 for  = 0002, and 0 = 0082 for  = 004,

the state at  = 45. This is seems quite low, but it turned out via many

experiments that crisis and collapse became unreasonably dramatic with a

steeper increase in 0(), so (6.7) was chosen. The PI controller reacts very

strongly to the combination of a slight increase in the targeted 0 and a small

but fast decline in the actual () due to increasing losses. As mentioned,

the controller outputs a loan flow which dives to zero, see figure 6.5.

For non-banks, withdrawal from lending means that the average capi-

talist chooses to hoard cash instead of lending it. This is expressed by an

increased  as already mentioned.  can now increase for two dif-

ferent reasons: The first reason has already been introduced in subsection

6.2.2: that the aggregate of non-banks — as financialisation progresses — in-

creasingly lends and transact with others within in the aggregate instead

of lending to the real economy. On top of this we now introduce the effect

that when crisis is recognised, each non-bank capitalist simply holds back

in their lending. Compare the effect of increasing  in (2.75) or decreasing

. Both changes result in an increasing time lag for the aggregate.

We extend the already introduced relation (6.3) from the before-crisis
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model, and also introduce the effect of the non-bank loss rate  :

 = 0535(0998 + 100) (1 + 5 ())0 (6.8)

which increases  strongly when going from  = 0005 to  = 005

At the crisis year  = 45  has33 increased from 03[] to slightly above

one year.

Increasing loss rates  and  give lenders an incentive to hold back.

There is however, as already mentioned in subsection 4.3.7, an ameliorating

feedback effect of the increasing loss rate. Abstracting from other factors,

it decreases debt and thus the debt burden. On the other hand, holding

back on further lending reduces demand and thus output, which cet. par.

increases the debt burden (6.5). So there is a "race" between these factors.

But we observe in figure 6.4 that debt reduction because of insolvencies

cannot stop crisis and collapse.

We also want to account for the gradual spread of pessimism in the wider

population. We do this by introducing a lagged variant of the insolvency

(loss) rate. We assume the relation

() =
1

1 + 
() (6.9)

where () then is an expression of general pessimism, simply the one-year

lagged Bank loan loss rate. Increasing pessimism leads to agents holding

back on their non-discretionary flows. For simplicity we assume that cap-

italists and workers react in the same way. They increase their time lags

(decrease their money velocities) following similar equations. Capitalists

spending for real investment and consumption is also assumed to be reduced

to the same degree when () increases. We set

() = 055(0998 + 400)0 (6.10)

Here 0 = 03[], which is the value used for the pre-crisis fixed 
introduced earlier. Remembering that  is just a lagged , (6.10) increases

 from 03 to 082 when going from  = 0002 to  = 001, the loss rate

around  = 45.

For workers we assume

 () = 083(0998 + 100 )0 (6.11)

Here 0 = 008[] ( = approx. 1 month), which is the value used for the

pre-crisis fixed  introduced in section 6.1. (6.11) increases  from 008
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to 013 when going from  = 0002 to  = 001 The less dramatic relative

increase in  () is chosen because worker households cannot — because

their payments are to a larger degree non-discretionary — hold as much back

in their spending as the more well-off capitalists, even if there is a crisis.

To sum up this stage: The dynamics towards crisis follow from growing

financialision as expressed by ():

• It increases the profit share of output,

• it channels an increasing share of profits to non-bank lending and less
to real-economic investment and capitalist consumption,

• this flow increasingly takes a tortuous route inside the non-bank sector
before emerging for non-bank loans to the real economy,

• potential lenders (the Bank and non-banks) hold back in their lending
when they feel increasing insolvency rates sufficiently,

• and all agents in the economy gradually get pessimistic with a year’s
time lag or so after the crisis hits the financial sector, and reduce their

spending.

This sets in motion a positive feedback process (a "downward spiral").

6.2.4 Holding all time lags except  constant

We now wish to let both financialisation and the increase in loss rates and

the time lag in the NFF sector increase as in the collapse scenario above,

but examine how much better things turn out if firm, worker and capitalist

real conomy time lags are not impacted. The results are shown in figure 6.6.

If we compare this to the collapse scenario shown in figure 6.4, we observe

that increasing time lags (decreasing money velocity) as a lagged response in

the real economy to an increased insolvency rate, have a strong impact. This

confirms what Irving Fisher wrote about the importance of money velocity

and pessimism, which we will return to in section 6.3 further below.

On the other hand, comparing the above outcome in figure 6.6 with that

in figure 6.3, we observe that this last experiment gives trajectories closer

to crisis. That is explained by the loss rate  being held constant = 0002

in the experiment that led to figure 6.3.
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Figure 6.6: Crisis scenario, except constant RE time lags
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6.2.5 Constant  i.e. unchanging financialisation

We finally wish to examine the effect of (a very hypothetical) constant finan-

cialisation. We set  = 02 a fairly high value. Capitalists are behaving

"financially" from the outset — but with no change with time in the strength

of this behaviour. All the impacts of other parameters, that led to the crisis

displayed in figure 6.4 above, are upheld. The results are shown in figure

6.7. There is now — obviously, following (6.2) — less build-up of non-bank

debt. The debt burden converges towards slightly above 100%, and GDP

growth rates increases slowly towards 007, which is close to the growth

rate of money and Bank-issued debt. Output  and Bank debt still grow

approximately pari passu. Output rises persistently, see graph e). Non-bank

debt () also (not shown here) converges towards a growth rate of 007

This may seem puzzling, since there now is a debt () that grows

due to "internal" exponential dynamics in a system which addtionally is

driven by Bank exponential money growth as a system input. But this is

a consequence of the external injected money growth rate from the Bank

being larger than the internal "inherent" growth rate of  given by the

non-banks’ re-lending (accumulation) loop. More generally stated: a linear

system with an internal unstable exponential dynamic with a growth rate ,

which is excited by an exponentially growing input , will exhibit a growth

rate converging towards  — and not higher — if   . (Incidentally, the

algebra here is the same as in (6.2), if one interchanges  there with , and

 with .)

Admittedly our system is only approximately linear, and only so in its

first phase along the time axis. We do a last simulation where we increase

our constant  50%, to  = 03. The results are shown in figure 6.8.

The system collapses, and much earlier than in the crisis shown in figure

6.4 above. So there must be a bifurcation when the constant  is changed

from 02 to 03.

Because of much earlier collapse, debt, money and output don’t grow to

the levels seen in the earlier simulations.

6.2.6 An endogenous  instead?

A possible twist on the model would be to not let  grow as an exogenous

function of time, but decided by feedback, for instance like this:

 = 

µ


 +Π

¶
 (6.12)
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Figure 6.7: Simulation with  = const. = 02
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Figure 6.8: Simulation with  = const. = 03
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Figure 6.9: Velocity of M1, M2 and MZM in the U.S.

where () is some positive monotonic function. This looks like a reasonable

modification. Verbally it says that when capitalists observe that profits

from financial investment increase as a share of total profits, perhaps they

should allocate (even) more of their income to lending. This would cet. par.

accelerate the path towards crisis and collapse.

We will not explore this in this thesis however, but conclude the modeling

and simulation exercises by stating that the simulation with results shown in

figure 6.4 seems to be a reasonable generic representation of what occurs in

the real world. It also fits well with Minsky’s financial instability hypothesis.

6.2.7 More on money velocity

See figure 6.9: M1 in the U.S. dived sharply and continued falling after the

last crisis hit. The fall fits well with the simulations done and the arguments

behind our model. But M1 had a long-term velocity growth rate around

2% from 1960 to 2008, in contrast to our model, which assumes constant

velocities (expressed by the velocity inverse: time lags of firms, capitalists,

workers) over the long-term run-up to the last debt crisis. While M1 is the

most important and have grown in that period, MZM has fallen since 1980

and M2 has been largely constant until the crisis arrived around 2008. But

all three measures of velocity have fallen persistently since the last crisis
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started.

We could perhaps — based on the importance of M1 — have assumed

a persistent pre-crisis  increase in our model (which uses only a single

"generic" measure of money velocity), instead of the simplification with

constant  for the pre-crisis period. That said, it is easy to see what a

slowly growing  will accomplish. It will cet. par. reduce the growth rate of

the debt burden as defined in (5.26) since output will increase steeper than

commercial (money-creating) bank debt.

To achieve crisis, one may then tweak parameters somewhat to favour

steeper non-bank debt growth. This is not explored in this thesis, but is a

possible topic for future research.

6.2.8 A simple graphic portrayal of the model

For clarity we will now show a simple graphic portrayal of our model. This

is also because we are going to use variations of it in presenting the control

solution proposals in the next chapter. See figure 6.10. The symbolism

resembles the one shown in figure 4.10. The grey double arrow is just to

remind the reader that we have left out the impact of flows between banks

and non-banks, mentioned earlier.

We will later build on figure 6.10 to display a circulatory model with

an expanded role for the Central Bank and where all money is HPM. This

model is shown in the next chapter, figure 7.1.

6.3 Further about debt crisis models

There are a few well-known debt-related crisis models in the literature. One

is Irving Fisher’s debt deflation mechanism. When crisis has set in, the

economy goes into a depressive phase, described by Fisher like this:

Assuming, accordingly, that, at some point of time, a state

of over-indebtedness exists, this will tend to lead to liquidation,

through the alarm either of debtors or creditors or both. Then

we may deduce the following chain of consequences in nine links:

(1) Debt liquidation leads to distress selling and to (2) Con-

traction of deposit currency, as bank loans are paid off, and to

a slowing down of velocity of circulation. This contraction of

deposits and of their velocity, precipitated by distress selling,

causes (3) A fall in the level of prices, in other words, a swelling

of the dollar. Assuming, as above stated, that this fall of prices
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Figure 6.10: Flow diagram of real economy with banks and non-banks
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is not interfered with by reflation or otherwise, there must be

(4) A still greater fall in the net worths of business, precipitating

bankruptcies and (5) A like fall in profits, which in a "capital-

istic," that is, a private-profit society, leads the concerns which

are running at a loss to make (6) A reduction in output, in trade

and in employment of labor. These losses, bankruptcies, and un-

employment, lead to (7) Pessimism and loss of confidence, which

in turn lead to (8) Hoarding and slowing down still more the

velocity of circulation (Fisher; 1933a).

His emphasis on slow-down of velocity and increasing pessimism is in

accordance with central assumptions behind the model presented here. But

Fisher’s model mostly is about what happens after the collapse, while the

model here describes the build-up and the collapse, and stopping there.

Our model is not valid for the ensuing depressed phase, where Fisher’s debt

deflation is at work.

Another work is Steve Keen’s long-term debt collapse model, where he

builds on the Goodwin business cycles model (Goodwin; 1967), (Blatt; 1983).

Goodwin’s model was a pioneering work, a blow to the erroneous convential

wisdom in economics that cyclical swings in the macroeconomy can only be

due to "external shocks". His model exhibits endogenously generated cycles.

But it contained no financial sector, and no debt.

Keen has extended it to incorporate debt (burden) growth and its in-

teraction with Goodwin-type cyclical dynamics (Keen; 1995). His model

exhibits debt-induced collapse for large debt burdens to firms, under rea-

sonable assumptions. But mechanisms behind the collapse are different

from the model in this thesis. One could envisage a modification and ex-

tension of the model developed here, where Goodwin-type "predator-prey"

worker/capitalist dynamics that give business cycle oscillations are added.

But this is outside the scope of this thesis.

6.3.1 A suggested cycles, bubbles and waves taxonomy

The macroeconomy is cyclical on many time scales, and cycles have been

and is a very large field of economic research. A (too) general term often

used by economists is "business cycles".

What I miss are attempts at classification and differentiation between

bubbles, cycles and other periodic time paths, among other things related

to their time scale. I have observed Minsky type analysis being applied to

what the speaker/writer often calls "business cycles". In my opinion this is
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unsatisfactory.

The following is an attempt to make things clearer:

1. Business cycles have a duration of single-digit years. They may be

explained by worker-capitalist struggle over their shares of output (as

in the Goodwin cycle model) — and/or time lags in capacity build-up

to overcapacity, bust and recession, (Sterman; 2000), ch. 20.

2. But Minskyan analysis relates to much more long-term and slow dy-

namics (several decades), with a bigger and more dramatic end. The

time paths in this analysis do not put weight on the shorter term

cycles, but on slowly growing exponential paths that undergo a final

collapse. The mechanism may be explained like this: for the financial

sector and the public to forget the last severe depressed period (like

the 30’ies Great Depression and today’s global financial crisis), and for

the political atmosphere to change so much that the regulatory system

may be weakened, decades are needed (in the order of 40 to 50 years).

The same time scale applies to the classical financial accumulation

mechanism due to compounding of interest, emphasised by Michael

Hudson — see for instance (Hudson; 2010). It needs several decades

to make itself dangerously felt, and is closely related to the Minsky

process. The compounding mechanism in itself increases the pres-

sure on the economy, while the Minsky mechanism is also psycholog-

ical/political. I will call this process a Minsky-Hudson (M-H) wave.

This is a wave that is not easily noted before it is too late, since its

growth rate per year is so low, in the order of a few per cent.

3. We also have a third — and in the later "financialised" years more

important — category, what should be called a bubble and not a cycle,

which are booms in asset prices — for instance in property or stock

markets, and which differ from category 1. and 2. above. Their time

scale is of the same order as business cycles or somewhat longer, but

they are not that much related to category 1, worker/capitalist conflict

or time lags and overcapacity build-up.

This last category is, however, related to the Minsky-Hudson wave in the

sense that when the M-H wave approaches its end, the increased pressure for

profitable reinvestment of the huge incoming financial income flows increases

recklessness and pressure on authorities for (further) financial deregulation.

Deregulation in the next round results in more frequent and dramatic bubble
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events. So, imposed on the long M-H wave (type "2") there will be shorter-

period bubbles (type "3") with increasing strength as collapse of the long-

term M-H wave approaches. And the collapse of the latest bubble may be a

triggering factor for the larger crisis that terminates the M-H-wave2. This

leads to many analysts and commentators focusing on the asset bubble —

and by this losing sight of the underlying main cause of the crisis, the slowly

but mercilessly growing M-H indebtedness wave.

Summing up, a (hopefully) useful taxonomy and terms are proposed,

listed by their degree of severity:

• Business cycle,
• Asset bubble,
• Minsky-Hudson wave.

2 I generalise here, perhaps to much, because one might argue that the collapse of Soviet

Union around 1990 weakened the socialist left and the unions. This changed the power

balance and partly explains the increased frequency of speculative bubbles at the end of

the current M-H wave.



Chapter 7

Reform proposals

As initially stated, this author and thesis has one foot in the control sys-

tems community and one foot in macroeconomics. Over the years I have

observed a certain difference between the social sciences and engineering sub-

cultures. Academics in the social sciences (economists included) seem often

to be satisfied with describing problems, while engineers describe problems

or challenges with the intention of solving them.

In the spirit of engineers — and to be fair I have to include Karl Marx1,

Irving Fisher in Stamp Scrip ch. VI, and the MMT economists — here

follows a chapter with solution proposals. This chapter mainly builds on

three papers, (Andresen; 2013),(Andresen; 2014) and (Andresen; 2012).

7.1 The two unsolved problems

The main unsolved problems in avoiding debt crisis, examined in the pre-

vious chapter are:

1. Persistent debt/GDP growth leading to crisis, and ...

2. crisis and collapse finally occuring, leading to years of depression /

deep recession.

When discussing how to respond, one should distinguish between these

two.

1"Philosophers have hitherto only interpreted the world in various ways; the point is

to change it"

- Karl Marx, Eleven Theses on Feuerbach
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7.1.1 Avoiding debt burden growth

The best solution is of course to avoid the first problem altogether: Growth

in  to dangerous heights. The primary measure here is higher taxation

rates on non-banks and curbing related speculative activity there. In the

model in figure 6.1, increased tax rates correspond to a lower equivalent

(after taxes) interest (or return) rate  , leading to the intended weaker

 growth. One should probably aim for a constant  ratio — there

is no rationale for persistent growth in this ratio.

Commercial (licensed) banks need — theoretically — not be included in

such a stricter tax regime, since they create money at the same growth rate

as debt. One could make non-bank lending so unattractive (also through

different regulation measures, not only higher tax rates) that it was largely

eradicated. The alternative for would-be investors would then be investing

in real-economy firms or saving in commercial banks. Increased savings

with commercial banks would not change their debt and money creation

rates, since their solvency (capital-asset ratios) would largely be unchanged

(following the analysis in the previous two chapters).

The remaining issue and potential problem would be the possible infla-

tionary effect of money creation at the same rate as debt. Then real growth

has to keep up (and we have the issue of environmental sustainability, which

— however — is not a topic for this thesis). But inflation is a possible prob-

lem also in today’s regulatory environment with endogenous credit money

growth.

That said, inflation may actually be controlled much more effectively,

and we will present a new idea on this later in subsection 7.3.3.

7.1.2 How to get out of a debt-induced crisis?

One also needs to have recipes for what to do if a debt-induced crisis has

arrived because  has been allowed to grow to a dangerous level. A

method that has been used much during the global debt-induced deep re-

cessions since 2008 is "Quantitative Easing" ("QE"), where Central Banks

buy "rotten" financial paper from banks to avoid insolvencies there. This

puts banks on a much better footing concerning their capital/asset ratios —

(hopefully) giving them an incentive to invest in the real economy to get the

economy moving and reducing unemployment. But even if banks become

solvent through QE, this cannot force them to invest in the real economy.

This is like pushing on a string. Even if they have received HPM for rotten

paper, they may still hold back in lending to the real economy. It turns
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out they have, to a problematic degree, instead chosen to speculate in asset

markets.

Another tool that has been extensively used is reduced interest rates,

which are basically controlled by the Central Banks. But interest rates

cannot go below zero, where they have been held near for many years now

(per 2018). And interest rates close to zero is cet. par. an incentive for

banks to speculate in asset markets because real-economy loans are not very

profitable.

We will use the rest of this chapter to describe and argue for tools and

reform ideas that are more potent than today’s, also for getting out of

a depression-like crisis. These tools and reforms presuppose the advent of

(mostly) cashless, electronic money. Luckily, what seems to be unstoppable

developments in this direction are occuring quite fast worldwide — also in

poorer countries.

7.2 Possibilities with an electronic money system

Physical currency is being phased out as an important means of exchange

both in developed and developing countries. Today it is technically feasible

to discard bills and coins completely and do all transactions by debit card,

personal computers (both quite common in developed countries), and/or

via the mobile phone network. Mobile phone money transfers have a proven

track record especially in poor countries, for instance the pioneering "M-

Pesa" in Kenya (Hughes and Lonie; 2007). With electronic money (“EM”)

all transactions are reflected in movements between accounts in the involved

banks.

In the proposed implementation here however, there are no deposits with

private banks: All accounts are at the Central Bank.

All citizens and firms are offered EM accounts at the CB. The advantages

are obvious and many:

1. The system is very cheap to run, compared to a system with bills and

coins.

2. Adjustments that turn out to be needed can be implemented in soft-

ware, therefore very easily and cheaply. No cumbersome and expensive

printing/stamping and distribution of bills and coins.

3. Forgery is impossible. So are robberies.
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4. This is a 100% reserve system. All deposits are HPM (base money), at

the CB. No deposit insurance needed. Money cannot be lost as argued

earlier. This is clear to the public — no bank runs.

5. EM is an extremely inclusive and convenient system, giving rural sec-

tors of a poorer country — where ATMs and bank branches may be far

between and not all people have accounts — a tool for easy economic

participation and exchange.

6. A black economy in EM close to impossible. The same holds for tax

evasion. Intelligent software can monitor transactions 24/7, and flag

human operators when suspicious patterns emerge. Knowledge of this

implies a credible threat, so that agents to a significant degree will

abstain.

7. EM cannot be used for capital flight, since it only resides at the CB.

All foreign transactions are logged and thus controllable, as mentioned

in the previous point.

Finally, two unconventional advantages/possibilities:

8. Negative interest on money held ("demurrage") may be easily imple-

mented, to speed up circulation if that is needed.

9. A new possible control tool with the opposite effect is feasible by money

only existing as accounts at the CB: A tiny but adjustable transfer tax

between any accounts.

We will return to these two tools further below.

EM is taking over for bills and coins. This is technologically driven. It is

not something one can decide to abstain from, it is unstoppable. The tech-

nological development process that allows electronic transactions instead of

exchanges using physical currency, has the same merciless and irreversible

character as the advent of the electronic calculator in the 70s and digital

photography in the 90s: it meant the unavoidable death of the slide rule

(then) and photographic film (more recently). Based on the nature of tech-

nological innovations and the market economy’s exploitation of such, we

may predict the death of physical currency. It is a question of when, not if,

this will take place.

So we should discuss how to adapt — and of course how to exploit the

possibilities that such systems give for better monetary and economic con-

trol. These developments enable some very useful implementations, among
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these new and — for society — beneficial roles for the Central Bank. We

assume a scenario where the country in question issues its own currency,

and all money is “electronic” — no bills and coins. We also assume that all

deposits are at the Central Bank — designated "sovereign money".

7.2.1 The Central Bank and electronic money

The role of a CB has up to this day been as an interest-rate setter behind

the scenes and — in crisis — “lender of last resort” for the network of pri-

vate licensed (“commercial”) banks. The public has had no relationship

with the Central Bank, but only with commercial banks. The commercial

bank network has historically been quite dense, with branches of competing

banks within a reasonable distance from customers. The reasons for this

geographical diversity has been twofold:

1. Handling deposit accounts and receiving or furnishing customers with

physical currency.

2. Vetting potential borrowers and extending loans.

With the advent of electronic transactions (via PC, debit card and mo-

bile phone) the need for a dense network of branches has decreased, and

commercial banks have started the process of closing down an increasing

share of these. If we envisage an expected future without physical currency,

the first point above will disappear as a reason for having bank branches.

What remains is the second point, the need for offices to handle decisions

about loan applications, which to a fair degree will be best handled by per-

sonnel having local and/or specialised knowledge. Except for this, most

decisions can be made at a bank’s central office.

So, simply because of no more need for branches to acquire or deposit

physical money — for purely technological reasons, not society’s economic

policy considerations — it becomes feasible for all “agents” (persons, firms) to

only have their checking accounts directly at the CB. Then one may dispense

with bank credit money and let all money in circulation be base money (high-

powered money; HPM). For the public this means that their deposits are

completely safe, and in that sense it matches the 1930ies “Chicago plan” and

its “100% money” proposal. But it goes further, because in the 100% money

plan, banks would hold people’s deposits (although fully covered by the

banks’ deposits at the CB) and furnish them with physical currency, while in

the above electronic money scenario liquid deposits only exist directly at the

CB. This is the sovereign money alternative (Huber; 2017). Technological
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possibilities today give a new impetus to this alternative, which has until

now only been promoted based on political economy arguments.

We will from now on describe and argue for a banking scenario based

on the sovereign money alternative, but with only electronic currency, using

the acronym “ESMA — Electronic Sovereign Money Alternative”.

We will first address an argument raised against both 100% money and

sovereign money: “when banks are not allowed to create credit money, the

economy and employment will suffer because of lack of credit for invest-

ment”.

7.2.2 The "heterodoxy" is partly hostile to 100% money

The famous pre-WWII Fisher et al Chicago Plan, was more recently re-

examined (Benes and Kumhof; 2012), and in conclusion supported. They

write in the abstract:

At the height of the Great Depression a number of leading

U.S. economists advanced a proposal for monetary reform that

became known as the Chicago Plan. It envisaged the separation

of the monetary and credit functions of the banking system, by

requiring 100% reserve backing for deposits. Irving Fisher [ref-

erence in paper] claimed the following advantages for this plan:

(1) Much better control of a major source of business cycle fluc-

tuations, sudden increases and contractions of bank credit and of

the supply of bank-created money. (2) Complete elimination of

bank runs. (3) Dramatic reduction of the (net) public debt. (4)

Dramatic reduction of private debt, as money creation no longer

requires simultaneous debt creation. We study these claims by

embedding a comprehensive and carefully calibrated model of

the banking system in a DSGE model of the U.S. economy. We

find support for all four of Fisher’s claims. Furthermore, output

gains approach 10 percent, and steady state inflation can drop

to zero without posing problems for the conduct of monetary

policy.

Ann Pettifor disagrees (Pettifor; 2013), and argues (p. 20) that 100%

reserve banking will lead to lack of credit:

The Kumhof and Benes proposal is indeed based on the mon-

etarist ideas of the Chicago School, one that seeks to limit the

quantity of money, and that would restore the role of banks to
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intermediaries between savers and borrowers. Only now the pro-

posal is to eclipse the role of the private sector altogether, and

only allow lending backed by a 100% reserve requirement. In

other words, all banks or lenders would first have to mobilise

100% of the funds needed for lending. This would massively

constrain the availability of credit. (...)

Limiting the quantity of credit is certainly one way of limiting

employment. Thus monetarist theory and policies both tolerated

and sustained a massive rise in unemployment in the 1930s and

1980s. The Kumhof and Benes proposal is no more than a revival

of these policies: the ‘barbaric relic’ that was the gold standard.

Pettifor is hostile to the 100% reserve concept — and her platform is anti-

neoliberal. She is not alone in this; many central authors in the heterodox

Modern Mone(tar)y Theory (MMT) and/or Post Keynesian camps share her

position. One of these is Jan Kregel, who describes and supports Hyman

Minsky’s critique of what he termed “narrow banking” (this corresponds

to banks subjected to a 100% reserve requirement) in a paper that argues

along similar lines (Kregel; 2012):

In the absence of a large government sector to support in-

comes, liabilities used to finance investment could not be vali-

dated in a narrow bank holding company structure. But, even

more important, it would be impossible in such a system for

banks to act as the handmaiden to innovation and creative de-

struction by providing entrepreneurs the purchasing power nec-

essary for them to appropriate the assets required for their in-

novative investments.

Emphasising the need for easy access to credit for “Schumpeterian cre-

ative destruction”, Kregel argues that if banks are not allowed to create

extra money when lending, what is left:

... is not a bank, but simply a safe house or piggy bank for

government issues of coin and currency.

Kregel, however, points to a possible solution to — or amelioration of —

lack of capital for investment:

In the absence of private sector “liquidity” creation, the Cen-

tral Bank would have to provide financing for private sector in-

vestment trust liabilities, or a government development bank
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could finance innovation through the issue of debt monetized

by the Central Bank. (...) such a system would have to com-

bine Keynes’s idea of the “socialisation of investment” with the

“socialisation” of the transactions-and-payments system. (...)

the real problem that must be solved lies in the way that reg-

ulation governs the provision of liquidity in the financial system.

We will now describe regulation that may achieve what Kregel suggests,

but by the unconventional road of letting commercial (licensed, “narrow”)

banks decide on creation of HPM at the Central Bank. This will be explained

in the following.

Ample credit lines for banks at the Central Bank

Consider an economy where all money is base money (HPM): Could banks

not — if they trust they have a worthwhile and fairly safe lending opportunity

— just borrow HPM from the Central Bank and re-lend it at a somewhat

higher interest rate? This is in contrast to today’s state of affairs where

credit money is created directly through bank lending, completely dominat-

ing money growth.

Such bank borrowing from the CB implies that HPM will grow as an

effect of this, not only through government deficit spending (if we follow

the MMT advice of financing government deficits by directly “borrowing”

from its CB, instead of selling bonds to banks and the public). In such a

scenario, some money will not only be spent into circulation (government

deficit), some will also be lent into circulation (via banks). But all of it will

be HPM : The amount of extra money created and subsequently put into

circulation due to bank borrowing from the CB will be completely safe, not

credit money which carries some risk for the owner.

Banks could also gather money for their lending by selling bonds or offer

time deposits to the public. Then the amount of extra money created by

bank borrowing from the CB would constitute only a share of new loans

given. But we argue that this alternative, which puts the saver at some risk,

is not necessary.

To sum up at this stage, our ESMA scenario assumes that all government

deficits are financed by “loans” from the CB (“loans” in quotation marks,

if we regard the CB a tool of the government — following MMT), and that

all bank lending is financed by corresponding loans to banks from the CB.

Banks will resemble “franchisees” of the CB, living off the difference on

interest rates in and out. The role left for banks is to be pure intermediaries.
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7.2.3 Ensuring that only bank owners take the hit

With ESMA, if a bank defaults, the bank owners would lose all their equity.

Only the bank owners, not tax payers or society as such, take the hit. Hence,

any bank would have a much stronger incentive for responsible behaviour

than in today’s environment. And there would be no need or reason what-

soever for society to step in with bailouts. This will be a credible threat

that banks’ owners have to take extremely seriously.

The impact on the CB would be much less dramatic. The only “loss”

to the CB and society when a bank defaulted on loans from the CB, would

be that the corresponding HPM that was supposed to be destroyed though

repayments with interest to the CB, remained in circulation. Instead of so-

ciety increasing taxes to pay for bailing out a bank, money that was already

in circulation would not be retired. The effect of this would then be spread

thinly over society as a whole. At worst this would give a small impulse for

inflation. We may contrast this small disadvantage with the big advantage

of directly hitting the bank owners in this proposal; they would lose their

assets. And this no-need-for-bailouts system should — even with interbank

lending — be 100% robust in a systemic sense.

Based on the above, licensed banks can be given very ample credit lines

to the CB, at reasonably low rates. This is the main reason that society’s

need for credit would not be constrained in a damaging way, as Pettifor

fears.

That said, banks should not be allowed unlimited borrowing from the

CB. This is discussed in the next subsection.

7.2.4 A BIS-type capital adequacy constraint still feasible

In today’s regulatory environment, banks are to a decreasing degree reserve

constrained in different countries. The trend is towards implementing Bank

for International Settlements-type regulation that only sets a lower threshold

for commercial banks’ capital adequacy. We will discuss this based on the

simplified representation of this regulatory framework that has been used in

earlier chapters, and in the next stage suggest a very similar capital adequacy

requirement tailored for the ESMA scenario.

We define:

() =deposits = money stock [$], a bank’s liability.

() = loans from the bank [$].

() = reserves = a bank’s deposit with the CB [$].

The Bank’s total financial assets are  +.
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0 = the required minimum capital/asset ratio [ ]. This entity is dimen-

sionless, thus the [ ].

 = the actual capital/asset ratio [ ].

Variables’ dependence on time () is from now on not shown. Remem-

bering the Basel rule that risk weights shall only apply in the denominator

and that reserves R carry zero risk weight, we have

 =
 +−


, and get the requirement  ≥ 0 (7.1)

What happens when the bank extends a loan ∆?

Since both (the bank’s asset side) and (liabilities side) increase with

∆, the numerator remains the same, while the denominator increases with

∆. The result is a fall in  towards 0. This may imply a restriction on

further lending, and that is the purpose of the regulation: to achieve some

minimum robustness against insolvency.

Now to the ESMA scenario. We additionally define:

 = the bank’s debt to the CB [$].

 = loans from the bank as above [$].

We now have for the bank,

 =
 +−


, demanding  ≥ 0 (7.2)

The liability towards the CB here plays the same role as today’s bank

liability  towards its depositors. When the bank extends a loan ∆, the

situation for the bank afterwards is:

 =
 +∆ +− ( +∆)

 +∆
(7.3)

The ratio  is decreased in the same way as today. We thus achieve a

regulatory constraint on banks’ lending behaviour which formally is quite

similar to that given by the current regulations, except for one difference:

in today’s environment we have a two-way relationship (the bank and the

borrower), while the relationship in the ESMA scenario becomes triangular:

the bank, the CB, and the borrower. The bank gets a claim ∆ on its

borrowing customer like today, but now the CB gets the same extra claim

on the bank. The balance sheet of the customer at the bank increases with

∆ on his liability side, while the customer’s checking account at the CB

is credited with ∆.

The change from a today’s dual to this triangular relationship is shown

in 7.1, lower right. Compare it to today’s system, earlier shown in figure 6.10
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and for convenience repeated here, upper left. Now all money is HPM and

cannot be lost. Capitalists (or their behaviour) are divided into to types.

Type "II" invests financially with the CB, which offers a choice of paper,

interest rates and maturities — also to banks and the wider public. Note

that direct investments in firms are not part of the flow structure; these

flows occur inside the real economy.

Note also the double arrow from the CB into the real economy. One

signifies injection of HPM via Bank lending. The other is the government’s

deficit spending — not accompanied by a correponding debt increase. Money

is spent, not lent, into the economy. This second flow means that money

growth can be steeper than debt growth, in contrast to today’s state of

affairs, analysed in chapter 5. And all money is HPM, not credit money.

7.2.5 The CB as a lending and savings hub for society

So far about CB lending to banks. On the savings side, the CB can — due

to the information technology revolution discussed above — offer individual

accounts not only for banks, but for all agents: citizens and firms; both a

checking account and a spectrum of time deposits yielding different rates,

payment profiles and durations. Since individual depositors’ money at the

CB — whether from persons or businesses — would be completely risk-free,

a checking account there should yield zero interest. Such accounts could be

cost-free for the user, considered part of a modern welfare state’s shared free

infrastructure, like healthcare and schools.

By tweaking interest rates on its lending, the CB can ensure that banks

get the necessary incentives to borrow and lend, by a sufficient difference

between bank lending rates and (for them) CB borrowing rates. On the

other side, by offering sufficient rates on its spectrum of time deposits and

other instruments, the CB can withdraw money from aggregate demand —

from banks, firms and individuals. This largely removes the need for the

bond markets we have today, and by this the damaging power they hold

over the political-economic choices that are made.

7.3 Inflation and deflation control

7.3.1 Electronic money and MMT

In this author’s opinion, the best theoretical platform for the understanding

of today’s macroeconomies and what might be done to improve them, is

Modern Mone(tar)y Theory — MMT — also labeled "neo-chartalism". MMT
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Figure 7.1: Flow diagrams of today’s and a HPM-based economy
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has since the onset of the debt crises around 2008 gained influence in the

global discourse on macroeconomic theory and crisis solutions. A compre-

hensive text explaining MMT is (Wray; 2012).

In the MMT framework, the government and the Central Bank is seen

as one unit. The "independence" of CB’s that is the rule in most countries

is a political and legal construct, and may as such be reversed by a national

assembly. Any CB is constitutionally, at least in some final instance, an arm

of the government. This is generally accepted, not solely by MMT adherents.

For a country issuing its own currency (this is a prequisite for MMT to be

valid as a platform for policy), a government’s "debt" that builds up with its

CB through deficit spending in excess of the income from selling bonds, is

only an accounting convention. A government does not need to "finance" its

spending through tax income or to borrow by issuing government bonds — a

government may spend (and thus net create money) by debiting its account

at the CB. Such a government is not revenue constrained. It can never “run

out of” its own issued currency, and can always pay any debt if this debt

is in its own — not foreign — currency. The role of taxes in MMT is to give

money value, drain money to control demand and limit possible inflation,

and to redistribute income. In the MMT view, money has value and enjoys

confidence since it is the only accepted means to pay taxes, and since the

state can enforce tax payment. It does not need to be backed by any asset.

MMT assumes flexible exchange rates. Rigidly binding one’s currency

to foreign currency(-ies) removes the advantages of MMT: one is then on a

de facto “gold standard”, and this is incompatible with MMT.

So far on the main characteristics of MMT.

The obvious and common objection to MMT is "it will be inflation-

ary". Yes, inflation may be an issue. This is a reasonable objection and will

therefore be discussed below. That said, inflation is a possibility under any

macroeconomic regime if aggregate demand is near or surpasses some ca-

pacity limit. The possibility of inflation is not in itself an argument against

MMT. Through taxation and other methods, inflationary pressures can ef-

fectively be taken care of within an MMT paradigm. How to achieve this is

one of the topics below.

As discussed, a government may use the option of injecting new fiat

money (base money — HPM) into circulation. But in today’s system we

have net creation of money through bank lending. This credit money — as

already argued — grows endogenously. Control of money supply from the

CB, as told in the monetarist and mainstream economics money multiplier

story, is not possible.
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That said, control of money supply is not the central point in this paper —

it will focus on control of another entity: money velocity. Control of velocity

is much more effective, and it becomes feasible — for the first time in the

history of money — with electronic money and no physical currency.

In a recession or even depression-like situation — the case in many coun-

tries today — the attraction of MMT is obvious: since a government with

own-issued currency is not financially constrained, such a crisis can be reme-

died by running arbitrarily high fiscal deficits as long as needed, i.e. spending

extra HPM into the economy to employ people and buy goods and services.

A government issuing its own currency can always employ all the unem-

ployed.

But there is a challenge to MMT that has not been much discussed by its

proponents: in the opposite scenario, if an economy is running close to full

capacity or beyond (for instance after a crisis where a large amount of money

was injected, remaining in circulation), and there are ensuing inflationary

pressures: how can a government restrict money flows? This is a genuine

problem, and is not easily solved in today’s technical monetary environment.

But there are solutions to this if all circulating money is electronic.

7.3.2 A problem — injection and drainage asymmetry

There will be negligible opposition in a depressed situation if a government

hires more people and buys more goods and services, with brand new HPM,

created ex nihilo at the CB. Such policy becomes possible with an MMT

understanding of macroeconomics. And in an economically depressed situa-

tion, people will gratefully accept this, in spite of alarms from deficit hawks

and many financial pages pundits.

But when a government tries to drain money back later on in a boom,

running a surplus over time through increased taxes, there will probably be

strong popular resistance. Furthermore, in a boom there will usually also

be a widespread over-optimistic mood in the population, enhancing such

resistance — which can take many forms: media campaigns, demonstrations,

capital flight, tax avoidance, stashing away cash, voting for parties arguing

for "small government" with low taxation.

MMT proponents have to address this issue, even if this is a hypothetical

scenario diametrically opposite to today’s (2018). For it is difficult to con-

vince the public, academics and decision makers today of the acceptability

of large and persistent (over years) deficit spending, if one does not have a

recipe for what to do in a later boom. Paul Krugman writes:
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It’s true that printing money isn’t at all inflationary under

current conditions– that is, with the economy depressed and

interest rates up against the zero lower bound. But eventually

these conditions will end. At that point, to prevent a sharp rise

in inflation the Fed will want to pull back much of the monetary

base it created in response to the crisis, which means selling off

the Federal debt it bought. So even though right now that debt is

just a claim by one more or less governmental agency on another

governmental agency, it will eventually turn into debt held by

the public (Krugman; 2013).

7.3.3  and  control

It is first necessary to make an important point about money supply and

money flows. Demand in an economy is not decided by the aggregate money

supply (a stock [$]), but by the aggregate  of money flows [$]. Using

nominal entitites we have  () = ()(), where  is aggregate money

stock and  is average money velocity. This is the quantity equation, es-

poused by monetarists, and (much for the same reason) derided by the

economics heterodoxy. In this author’s opinion, the monetarists are wrong

because they ignore  and focus solely on  . There are also mainstream

economists who point to the insufficiency of using  as a control variable:

In terms of the quantity theory of money, we may say that

the velocity of circulation of money does not remain constant.

“You can lead a horse to water, but you can’t make him drink.”

You can force money on the system in exchange for government

bonds, its close money substitute; but you can’t make the money

circulate against new goods and new jobs (Samuelson; 1948).

But many in the heterodoxy are also wrong — not because they (correctly)

argue that is not a sufficient control variable — but because they consider

 of no importance:

Unfortunately, most economists are brainwashed with the

trivializing formula  =  . The idea is that more money

() increases “prices” ( ) — presumably consumer prices and

wages. (One can ignore velocity, “ ,” which is merely a tau-

tological residual.) “” is “transactions,” for GDP, sometimes

called “” for Output (Hudson; 2010).
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This might be characterised as throwing the  baby out with the 

bathwater.

In contrast to this, Irving Fisher really recognised the importance of

velocity:

Free money may turn out to be the best regulator of the

velocity of circulation of money, which is the most confusing

element in the stabilization of the price level. Applied correctly

it could in fact haul us out of the crisis in a few weeks ... I am

a humble servant of the merchant Gesell (Fisher; 1933b).

Fisher argued for a parallel money in the depression-ridden U.S. (Fisher;

1933b), and levying a holding fee (negative interest, demurrage — originally

proposed by the German-Argentinian merchant and monetary theorist Silvio

Gesell) on this money to force agents to spend. Thus it would be possible to

increase activity even for a small  , due to higher .

Fisher understood that  is not a "residual" as Hudson calls it, but an

important behavioural variable, and that it would be low in a depression,

and needed to be boosted. It is strange that this is not more recognised, since

 is in a one-to-one relation to (inverse) liquidity preference, and liquidity

preference is a concept that is widely accepted and used among macroecono-

mists — not the least by Post Keynesians, who are very much against the

quantity theory.

With electronic money one is able to not only enhance control of , but

also achieve control of , which until now has been mostly ignored (among

several reasons because such control is very difficult in a system containing

physical currency). While cannot be changed significantly within a short

time span (since it is a stock and needs time to change, and since draining

 wil be a politically controversial extra tax), this may be done with 

(since it is a behavioural variable not a stock, and no liquid assets are taken

from the holders). By having control of both and (especially) , one may

exercise potent control of their product,  =.

There are (theoretically) a quadruple of ways to do  = control:

1. A fee (negative interest, demurrage) on money held:  decreases

slowly,  increases strongly and immediately, therefore  increases

immediately. And a government can exploit shrinking  by creating

a corresponding extra HPM flow and thus spend more. This is a bonus

in a recession/depression.
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2. A fee on transferring money between accounts:  falls slowly,  falls

stronger and immediately, therefore  decreases immediately.

3. Positive interest on deposit money, the opposite of item 1. This is

today’s sole tool:  increases slowly,  may decrease a little but slowly,

therefore  hopefully decreasing, but this is very mood-dependent.

4. A small reward for transferring money between accounts: the opposite

of item 2,  increases strongly,  grows persistently,  "explodes".

Item 4 is obviously absurd, since agents can then increase their money

holdings just by transferring money back and forth. It will be ignored in the

following.

I will now discuss the new possibilities given by items 1 and 2, and es-

pecially item 2. Negative interest on money held (item 1) works, as demon-

strated by local crisis parallel currency issued in the Austrian town Wörgl

in 1932 (Lietaer; 2010), where money velocity turned out to be 12 — 14

times the velocity of the Austrian schilling . This was also an inspiration

for Irving Fisher’s (futile) attempts to get a similar solution implemented in

the depression-ridden U.S. But the Wörgl technical demurrage solution was

cumbersome: one had to buy a stamp every month and glue it to a bill, in

order for the bill to uphold its validity. And with coins one cannot even do

that. With electronic money however, it is exceedingly simple: every day a

tiny proportion of the amount in a checking account is deducted. And this

proportion may be easily adjusted as the state of the economy changes.

Now to item 2: a fee on transferring money between accounts. As far

as this author knows, this is a new concept — easily implemented in an

electronic money framework — that has not been considered in the large

economics literature on inflation control. One could object that it resembles

a value added tax, but the important difference is that the fee is on all

transfers, not only for purchases from firms (one should of course have a

VAT like today, in parallel with an account transfer fee). This property,

combined with all money residing as checking accounts at the CB, makes

avoiding the fee impossible and removes all need of human control. The size

needed for such a fee to have an impact is difficult to decide ex ante, but a

conjecture is that this measure will be quite potent. One could start with

a very low (and therefore economically and politically harmless) level — say

0.1% — and monitor the impact. If the impact in a trial period is too small,

increase the fee a little.

This type of fee would be incredibly more effective to damp an overheated

economy, than today’s blunt tool of a CB interest rate increase. It can stop
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too much spending in its tracks.

7.3.4 Fiscal policy and capital controls

From an MMT perspective, fiscal policy is more important than monetary

policy. All money as electronic HPM in accounts at the CB will make

taxation and levying of fees easier. This will be the case both for collection,

control and adjustment. Tax evasion and crime will be sharply reduced as

already mentioned. The need for human control will be much lower, since

detailed monitoring may be done by software which alerts human operators

only when suspicious patterns are detected.

Possibilities for capital flight will be sharply reduced, even if this cannot

be completely eradicated (capital controls in an electronic money environ-

ment should be a topic for further research).

Electronic money, applied with an MMT understanding, enables a rev-

olution in macroeconomic control. But this insight will probably not be at

the center of media hype and attention as electronic money becomes more

widespread. The ambition here is to contribute to that the most important

advantages of electronic money are not lost in the process.

7.4 Parallel electronic currencies

A premise until now has been that a country absolutely needs to issue it

own currency to have the necessary tools for macroeconomic control. So

what can be done when the currency is issued by an institution above and

outside the country? Examples are dollarised countries like Ecuador and

El Salvador, and the eurozone countries. One of the hardest hit countries

by the debt-induced crisis is Greece. In a number of papers I have since

2010 argued for the introduction of an electronic parallel (also called "com-

plementary") national currency there (it would also work in other similarly

crisis-hit countries). One paper is (Andresen; 2012), which is the basis for

this section.

An indebted eurozone government has to extract euros out of the non-

government economy to service its debt, by taxing more than it spends.

The foreign-indebted private sector also extracts euros, sending these to

creditors. The only way to (theoretically) counter these two "bloodletting"

flows from a domestic economy is to increase net exports to a level that

surpasses the sum of these two outgoing flows. This is exceedingly difficult,

especially after debt service burdens have increased on the real economy,

and because of idle production capacity due to the crisis. The other "way
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out" is to sell off public property, which is unsustainable and economically

destructive.

Debt could be partly written off and/or the debt service rates could be

ameliorated, but to the degree the creditors refuse this, the domestic econ-

omy will be increasingly starved for money. Firms and individuals simply do

not have enough of the instrument for the conducting of regular economic

activity. This again leads to lower government income due to reduced tax

payments and larger social outlays. The crisis is also amplified by increasing

pessimism among individuals and firms: to the degree they possess euros,

they hold back in spending, hiring and investment — and/or they move their

money out of the country. All this contributes to further pessimism. We

have an unstable downward spiral.

7.4.1 The proposal

Politically, both the EU elite and the elites in the crisis countries are strong

supporters of the euro. There is also a majority in the general populace for

sticking with the euro — mostly based on fear of what will happen if one

reverts to a national currency. The mainstream advice seems to be to stick

with the euro and hope for an internal devaluation of wages and prices to

enhance the crisis country’s competitiveness so much that future net exports

will enable it to service its debts. This is a painful and slow process for the

population (at best lasting several years, if working at all). Furthermore,

the outcome is doubtful, especially since many trading partners are trying

the same recipe.

A way out could be to furnish both households and firms with an addi-

tional domestic countrywide means of exchange, so that the large amount

of unemployed may get jobs, and firms’ spare capacity may be utilised. A

euro-debt crisis country has a large output gap, and such a gap could be

much diminished, without giving rise to significant inflation effects. Utili-

sation (and very fast activation) of this idle capacity may be achieved by

nationally issued "electronic parallel money". This will quickly reduce un-

employment and enable people and firms to exchange goods and services.

It will also increase confidence, put a brake on the downward spiral, and

even — as it will be argued below — enhance the circulation and net national

acquisition of euros.

This proposed parallel medium of exchange will from now on be termed

"emergency currency", abbreviated "EC". A unit of this currency will also

be called "EC". The EC corresponds to HPM in one important and good

sense: it cannot be lost.
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7.4.2 How does it work?

Transactions are done (mostly) via mobile phone and automatically received

and accounted for on a server with ample capacity at the country’s Central

Bank. Such a mobile banking system may be implemented through one

of the technically proven schemes already in succesful operation in some

developing countries. There are no physical/paper EC’s in circulation. The

government (and local governments) have an EC account at the Central

Bank. This account is debited whenever the government pays wages or

pensions, or buys goods or services. All citizens and domestic firms have

accounts there too, also interested foreign entities (but we will expect EC’s

to circulate only domestically in an initial phase). By this EC’s are created

ex nihilo, "printed" by the Central Bank.

The government pays employees, pensioners and suppliers both in EC’s

and euros. The proportions may be adjusted based on how the process

develops. Taxes are also collected in a mix of the two currencies. The

government-issued EC will be fiat money, and will have some intrinsic value

since it may be used by the public to settle tax obligations (as argued by

MMT). An EC will therefore be initially accepted to a fair degree as a means

of payment by an agent — individual or firm — that is obliged to pay taxes.

Employees and firms offering goods and services will gradually — as the

scheme gets more popular — decide to accept a certain share of EC’s as

payment, while the rest must still be in euros. While the government pays

wages and taxes in a government-decided mix of the two currencies, the

mix in private sector transactions may be decided freely by the involved

parties, and will differ between trades. Both the government mix and private

sector mix will necessarily have to be adjusted with time and circumstances.

Employers and employees may locally negotiate the share of wages being

paid in EC’s, based on how things develop.

An additional positive effect of introducing EC’s is this: By enabling

activation of idle labour and production capacity, exports increase. Thus,

even if this extra activity is mediated (partly) with EC’s, this enhances the

ability of the country to service its debt burden in euros.

Another positive effect is that pessimism is reduced. This will decrease

the liquidity preference of individuals and firms that posess euros but have

been holding back in their spending. Money velocity in euros will become

greater: for a given amount of euro stock held by agents, the aggregate euro

flow will increase, i.e. we get increased money velocity.
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7.4.3 Discussion

The discussion will be done by addressing some counterarguments against,

or expected questions about, the EC proposal.

The question of "confidence"

The EC is a fiat currency, not purely based on faith: A basic confidence

is ensured because it may be used to pay (a share of) taxes, as already

mentioned. One may in spite of this expect that initial confidence will be

very low, not the least because of widespread distrust in authorities that

until now haven’t done much to ameliorate the effects of the crisis.

To discuss the prospects of an EC, it might be useful to define two

entities, "trust" and "need". Even if trust is very low at the outset, need

is very high: people and firms will have the choice of trying out an EC

that is paid out to individuals and offered to firms, or let it accrue in their

accounts or not accepting it in payment. Therefore some initial use of the

EC should be expected becase of the alternative of no work or no sale is

considered even worse. Need will ensure some EC circulation, even if trust

is low. With time, a positive feedback process will emerge: agents observe

that transactions with EC’s are happening, and this will increase trust,

leading to more acceptance of EC’s, and so on. This will — in addition to

accept EC’s in payment — in the next round also encompass wages. When

firms receive a share of EC’s in payment, they will ask their employees to

accept a share of EC’s in their wages. And employees will often have the

choice between accepting this, or unemployment. This again leads to firms

becoming more willing to accept EC’s in payment.

Inflation in EC’s?

Assume that the government declares at the outset that the exchange rate

EC to euro ought to be unity, and that firms are asked not to set prices

in EC’s high, but instead safeguard themselves in the start-up period by

setting the initial EC share of an item’s price low. What the government

recommends will of course not necessarily be followed by vendors, but many

will try this as a starting point. We should expect that firms (and individ-

uals) that offer products or services where the dominant input factors are

domestic, will be most willing to try offering a significant share of EC’s in

what they accept as payment. At the other end we have products that are

imported, and the domestic input factors are subordinate: cars and petrol

are examples. Here one can expect that only with time will such sellers
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start accepting EC’s, and the share will never become high. But there will

be a mechanism at work in the right direction also there: when EC use has

reached a reasonable and still growing level for other consumer items, for

instance food (where domestic input factors are significant), import-based

firms can negotiate a wage share being paid in EC’s and the rest in euros,

hence allowing also such firms to accept a share of EC’s in the items they

sell.

An important aside to this is that the existence of circulating EC’s will

enhance domestic output. To some degree this will lead to import substi-

tution, cet. par. improving the balance of trade which is a good thing

concerning the ability to service euro debt.

Regardless of possible government declarations, however, about how the

parallel currency ought to be valued, one should expect the EC to lose value

from parity with the euro. And floating the EC versus the euro must be

accepted, there is no point in trying to uphold an artificially favourable

exchange rate by this creating a black market. But the EC will be anchored

not too far below the euro because one is allowed to pay a share of taxes with

EC’s, and one EC then counts as one euro. Also, as long as the economy

is far away from full employment and firms have significant idle capacity,

inflation pressures are not strong.

Euro debt and euro capital flight

One may at this stage correctly protest that introducing an EC does not

in itself solve the euro debt problem. It also does not solve the problem of

richer citizens moving their euros out of the country to avoid taxes or in fear

of losses due to collapse of domestic banks.

To the first objection, one may reply that without a parallel medium

of exchange an economy is wholly dependent on euros to uphold domestic

activity. This puts the country in a very weak position when negotiating

debt writedowns and/or lower interest rates and longer repayment times on

existing debt.

Furthermore, by enabling the economy to run much closer to full capac-

ity and employing a larger share of the population, the ability to export

increases. The government receives more tax income, and can reduce its ex-

penses for unemployed benefits and other social costs. The ability to service

euro debt improves.

The problem of euro capital flight is not solved by introducing EC’s,

except that increased domestic economic confidence may after a while moti-

vate many agents to repatriate their euros. But this will probably not make
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a significant difference. Anyway, the issue of capital flight is there regardless

of whether the EC proposal is implemented or not, and must be addressed

somehow. And it has more serious effects without a parallel EC system in

operation.

7.4.4 Summing up: far better than the bleak alternatives

A parallel electronic emergency currency will — with immediate effects —

ameliorate the strongly and persistently lowered living standards for most

people in crisis countries, which is the bleak and only future (lasting many

years) that the EU and crisis country governments have been able to come up

with. By the proposed scheme it should be possible to activate the immense

underused potential that the hard-hit eurozone countries have, unemployed

or underemployed people, to give many a better life and the country a return

to social stability. It will primarily stimulate domestic production. It will

also give euro-indebted countries a much better position in their bargaining

for partial debt relief or less heavy euro debt service burdens.

Finally, it enables a gradual and controlled transition (back) to a national

currency, if that is what is wanted. This proposal gives the national assembly

in a crisis country the freedom to deliberate and make such a grave decision

at any chosen time, and base it on experience with how the parallel currency

and the economy have fared.

7.5 Conclusion on electronic money — and the rest

There are great possibilities for better control of macroeconomies with elec-

tronic money. The problem is not whether these would work — they obvi-

ously would. The problem is to get academic and public discussion, and

— most important — implementations. There are working electronic money

systems with an excellent track record on offer, see for instance (Economist;

2018),(Pandey; 2018). Doing this — for instance in Greece — is neither very

expensive nor risky.

The challenge for the economics community — and the politicians that

look to them for advice — is to leave behind the widespread unwillingness to

think outside the box. Here J M Keynes (1936), ch. 12, hits the nail on the

head:

"Worldly wisdom teaches that it is better for reputation to

fail conventionally than to succeed unconventionally."

I consider this an appropriate way to round off this thesis.
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Appendix A

Block diagram representation

This appendix explains block diagram symbolism. We will use the simple

"households and firms" model in section 2.7 for explanatory examples. Some

diagrams from there will be repeated below for convenience.

The rules for interpreting a block diagram are as follows:

1. The variable exiting a rectangular block is the product (also in a wider

interpretation of the term, see point 4. below) of the variable enter-

ing the block and the coefficient or expression within the block. In

figure A.1 we thus have  = 1


 . Several blocks along an arrow

may be reduced to one equivalent block containing the product of the

expression in each of the original blocks. More in point 4. below.

2. A circle at an intersection of lines signifies a summation point. The

variable associated with an arrow leaving a circle is the sum of variables

associated with arrows entering the circle. An arrow with a minus sign

near it, means that the corresponding variable is to be subtracted in

the summation.Thus we have ̇ = − .

3. A small dot upon a line signifies a branching point. This means that a

variable is used as an input to more than one other part of the system.

Example: we have the variable  being used both in ̇ =  − 

and ̇ =  − .

4. The symbol "" in the block diagram may be interpreted in two ways:

as the free variable in the Laplace transformation (then all variables

in the diagram are Laplace transforms, () ()() ()),

or in the time domain as a differentiation operator (then we have
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() ()() ()). We will elaborate on the second inter-

pretation. The product-like construct "" is to be interpreted as


. Then "1


" corresponds to

R
(). Expressions containing the

 operator may be manipulated as if  was a regular multiplicative

factor, along with constants. This means that  = 1


R
̇() =

1


̇ = ( 1


).

5. If the block contains 1

and a "time lag" like  and  in figure

A.2 below, the expression in the block signifies a first-order linear

differential equation. Consider the left part of figure A.1 We have

̇ =  −  and  = ̇ . This may be combined to  =

−, equivalent to the differential equation  

=−. We may

now treat  as if it was a multiplicative constant, and solve  =

 −  for , giving () = 1
1+

 (). Here  () is an input and

() is the output. The expression () = 1
1+

 () corresponds

exactly to 


= ()−().

1
1+

= 

() is called the transfer function from  () to ()”.

6. There are some useful (and easily derivable) rules for manipulating

and/or simplifying block diagrams. Blocks along an arrow may be

multiplied together to one equivalent block as mentioned above. Blocks

on parallel arows may be summed to one equivalent block on one arrow,

and there is a rule for simplifying a feedback structure into a block

without feedback, explained in figure A.3 below.

The block diagram of the "households and firms" model is shown in

figure A.1.

Figure A.1: Elementary block diagram of firms/households system

(Such a block diagram is called "elementary" when the blocks contain

only constants or integrators.) If we reduce (simplify) the two inner loop
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Figure A.2: Equivalent block diagram of firms/households system

Figure A.3: Simplifying a feedback loop

subdiagrams, using the feedback rule explained in figure A.3, we get figure

A.2.

Note that we reached the same result for the households subsystem by

the derivation in point 5. above.

A similar block diagram symbolism applies to the time-discrete case. We

refer to chapter 3. We use a time shift operator ’’ for discrete time. For a

time-discrete variable [] we define

[ + 1] , [] , and then [ − 1] = −1[] (A.1)

This corresponds to a block diagram component as shown in figure A.4.

Figure A.4: discrete building block
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The −1 block plays a similar role in discrete-time systems as the in-
tegrator block 1 in continuous systems. Transfer functions between any

defined input and output become rational functions in  (or −1, the choice
doesn’t matter), just as continuous-time transfer fuctions are rational func-

tions in . Block diagrams for discrete time with the  operator can be

manipulated and simplified with the same rules we use for block diagrams

for continuous time. A discrete-time block diagram corresponds to a (set of)

difference equation(s), while a continuous-time block diagram corresponds

to a (set of) differential equation(s).
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Biblical quotes against interest

"When your brother Israelite is reduced to poverty and can-

not support himself in the community, you shall assist him as

you would an alien and a stranger, and he shall live with you.

You shall not charge him interest on a loan, either by deducting

it in advance from the capital sum, or by adding it on repayment"

— Leviticus 25:35-36

"If you advance money to any poor man amongst my people,

you shall not act like a money-lender: you must not exact inter-

est in advance from him" — Exodus 22:25

"You shall not charge interest on anything you lend to a

fellow- countryman, money or food or anything else on which

interest can be charged. You may charge interest on a loan to for-

eigner but not on a loan to a fellow countryman..." — Deuteron-

omy 23:19-20

"O lord, who may lodge in thy tabernacle? ...... The man ....

who does not put his money out to usury ....." — Psalms 15

"He never lends either at discount or at interest. He shuns

injustice and deals fairly between man and man" — Ezekiel 18:8-9

"..on the Day of Atonement, You shall send the ram’s horn

round. You shall send it through all the land to sound a blast,

and so you shall hallow the fiftieth year and proclaim liberation
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in the land for all its inhabitants. You shall make this your year

of jubilee. Every man of you shall return to his patrimony, every

man to his family......In this year of the jubilee you shall return,

every one of you, to his patrimony... if the man cannot afford

to buy back the property, it shall remain in the hands of the

purchaser till the year of the jubilee. It shall then revert to the

original owner, and he shall return to his patrimony.... When

your brother is reduced to poverty and sells himself to you, you

shall not use him to work for you as a slave. His status shall

be that of a hired man and a stranger lodging with you; he shall

work for you until the year of the jubilee. He shall then leave

your service, with his children, and go back to his family and to

his ancestral property..." — Leviticus 25, excerpts




