
June 2006
Per-Oddvar Osland, ITEM
Frode Flægstad, Telenor R&D

Master of Science in Communication Technology
Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Telematics

Context-Aware Services in Aquaculture
FiFaMoS - Fish Farm Monitoring System

Jon Arne Grødal
Frank Gjervik Paaske

Problem Description
A context-aware service makes decisions based on the situation (i.e. context) of the involved
entities. Context may in general be based on user input (e.g. status in an IM client), sensed (e.g.
temperature, location, heart rate), or derived (e.g. combination of location and time of day).

Telenor R&D in Trondheim is involved in several projects where context-aware services are
essential. One of these projects is in cooperation with SINTEF on a new system for surveillance
and management of fish farms. Development of a context aware service related to this project
would consist in the following:

-Gathering physical information (e.g. sea and air temperature, wind speed and direction),
-Persistent storing of this information,
-Distribution of information to e.g. surveillance personnel.

The assignment should contain
-Background study
-Specify, design and implement a context-aware application. Implementation should be based on
Java.
-Evaluate the solution

The task may be completed by one or more (up to three) students, and may be carried out as
individual assignments for the students involved, or as a joint effort.

Teacher: Per-Oddvar Osland, ITEM
Supervisor: Per-Oddvar Osland and Frode Flægstad, Telenor R&D
Location: The assignment will partially be carried out at the premises of Telenor R&D Trondheim.

Assignment given: 16. January 2006
Supervisor: Per-Oddvar Osland, ITEM

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 I

Preface

 This thesis report is submitted to the Norwegian University of Technology and Science

(NTNU), to fulfil the requirements for the Master of Science degree. The project was carried

out at Telenor R&D Tyholt in cooperation with Department of Telematics, NTNU.

The main goal of the project is to create a working prototype of a context based surveillance

system for the aquaculture industry. The project is very practical, and that is something we

value a lot. It has been a great challenge, but a lot of fun as well. To get the different hardware

components working together has not been easy, and some soldering and wiring had to be

done. To work with software developed by others have also been quite a challenge, but after a

lot of trail and error, and some help, we got the system up and running.

We would like to thank our supervisor Per-Oddvar Osland for tutoring us through this project,

and for helpful comments and suggestions. The cooperation has been highly appreciated. We

would also like to thank Frode Flægstad and Sune Jakobsson at Telenor R&D for various tips

and for supplying the necessary hardware and equipment.

Also Arne Munch-Ellingsen from the University of Tromsø must be mentioned in the list of

thanks. He has been responsible for the development of the APMS context manager, and has

given us a lot of help during the project. He has also modified and improved the context

manager after requests from us.

Trondheim, June 12th 2006

Frank Paaske Jon Arne Grødal

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 II

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 III

Contents

PREFACE... I

LIST OF FIGURES ...VII

LIST OF TABLES .. XI

LIST OF CODE SNIPPETS ...XIII

ABBREVIATIONS ..XV

DEFINITIONS ..XVII

ABSTRACT.. XIX

1 INTRODUCTION ... 2

1.1 MOTIVATION .. 2

1.2 SCENARIOS ... 3

1.2.1 Scenario 1-A: Today - A sea cage drifts away .. 5

1.2.2 Scenario 1-B: Tomorrow - A sea cage drifts away ... 5

1.2.3 Scenario 2-A: Today - Food level in feed tank.. 6

1.2.4 Scenario 2-B: Tomorrow - Food level in feed tank ... 6

1.3 PROBLEM STATEMENT .. 7

1.4 LIMITATIONS OF THE THESIS ... 8

1.5 RELATED WORK .. 8

1.6 REPORT ORGANIZATION.. 10

2 THEORY.. 12

2.1 CONTEXT .. 12

2.1.1 Defining context .. 12

2.1.2 Characteristics of sensed context .. 13

2.1.3 Context-aware services ... 15

2.2 ENABLING AND RELATED TECHNOLOGIES ... 17

2.2.1 APMS – The context management system ... 17

2.2.2 M2M - Sensor information acquisition.. 21

2.2.3 Java ... 24

2.2.4 eXtensible Markup Language (XML) .. 27

2.2.5 Web services: XML-RPC... 27

2.2.6 CORBA.. 28

2.2.7 Global Positioning System (GPS) ... 29

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 IV

2.2.8 GPRS/EDGE ... 32

3 REALIZATION OF FIFAMOS... 34

3.1 PRESTUDY... 35

3.1.1 Project goals ... 35

3.1.2 Critical success factors ... 37

3.1.3 Risk analysis.. 37

3.1.4 Standards and software used... 40

3.1.5 Project organization.. 41

3.2 REQUIREMENT SPECIFICATIONS .. 42

3.2.1 Functional requirements ... 42

3.2.2 Use case modelling.. 45

3.2.3 Implementation requirements.. 51

3.2.4 Data requirements... 52

3.2.5 Quality requirements... 53

3.2.6 Technical requirements ... 55

3.3 DESIGN ... 56

3.3.1 Architecture description .. 56

3.3.2 Component view .. 59

3.3.3 Database model... 60

3.3.4 Interfaces... 66

3.3.5 Activity diagrams... 70

3.4 IMPLEMENTATION... 79

3.4.1 APMS context manager components ... 79

3.4.2 FiFaMoS Context Consumer... 95

3.4.3 FiFaMoS Mobile Context Consumer... 99

3.4.4 FiFaMoS context source application .. 101

3.4.5 Testing ... 106

3.4.6 Deployment ... 112

3.4.7 Encountered problems... 114

4 DISCUSSION... 120

4.1 APMS AS A CONTEXT MANAGER .. 120

4.2 DATA TRANSMISSION.. 122

4.2.1 Binding types... 122

4.2.2 Data representation... 123

4.2.3 The off-shore Internet connection ... 127

4.3 DATA STORAGE... 127

4.4 SENSOR VALUE CHECKING .. 129

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 V

4.5 CONTEXT SOURCE HARDWARE OPTIONS ... 129

4.5.1 Aplicom L4002 M2M module .. 130

4.5.2 Teltonika T-Box/GPS M2M module .. 132

4.5.3 Other M2M solutions .. 134

4.5.4 Industrial computer with GPRS modem.. 134

4.5.5 Summary.. 135

4.6 OTHER ASPECTS OF THE SYSTEM... 136

4.7 RISK ANALYSIS EVALUATION.. 137

4.7.1 Comments.. 138

5 CONCLUSIONS.. 140

5.1 FUTURE WORK .. 142

REFERENCES.. 144

APPENDIX A DESCRIPTION OF THE USER INTERFACE.. 148

A.1 FIFAMOS CONTEXT CONSUMER .. 148

A.2 FIFAMOS MOBILE CONTEXT CONSUMER ... 152

A.3 FIFAMOS WEB INTERFACE ... 155

APPENDIX B CODE LISTING .. 156

B.1 INPUT COMPONENT META FILE .. 156

B.2 OUTPUT COMPONENT META FILE .. 159

B.3 DEPLOYMENT DESCRIPTOR ... 160

B.4 XML REPRESENTATIONS .. 161

B.5 CLASS FOR READING GPS DATA ... 163

B.6 CLASS FOR UPDATING THE DATABASE .. 165

B.7 THE SENSOR SIMULATOR .. 169

B.8 BUG FIX: APMS DERBY.JAVA FILE ... 172

B.9 BUG FIX: APMS METADATAPARSER.JAVA FILE... 175

APPENDIX C INSTALLATION AND SETUP PROCEDURE ... 178

C.1 INSTALLING THE APMS CONTEXT MANAGER .. 178

C.2 ADDING THE SERVICE TO THE APMS PLATFORM .. 179

C.3 LAUNCHING THE FIFAMOS CONTEXT SOURCE.. 180

C.4 INSTALLING AND CONFIGURING THE FIFAMOS CONTEXT CONSUMER ... 183

C.5 INSTALLING THE FIFAMOS MOBILE CONTEXT CONSUMER .. 184

C.6 TESTING FIFAMOS ... 184

APPENDIX D HARDWARE ... 186

D.1 THE DUMMY SENSORS... 186

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 VI

D.2 CAMERA CONNECTOR ... 187

D.3 GPS CONNECTOR .. 188

APPENDIX E SOFTWARE .. 190

E.1 APLICOM N12I CONFIGURATOR .. 190

E.2 APLICOM N12I IMP 1.0 CONCEPT SIMULATOR... 191

E.3 THE JMX MONITOR .. 191

APPENDIX F CLASS DIAGRAMS ... 194

F.1 CLASSES COMMON FOR ALL APPLICATIONS... 194

F.2 FIFAMOS APMS CONTEXT MANAGER SERVICE .. 195

F.3 THE FIFAMOS CONTEXT SOURCE APPLICATION... 198

F.4 FIFAMOS CONTEXT CONSUMER .. 201

F.5 FIFAMOS MOBILE CONTEXT CONSUMER ... 203

APPENDIX G DESCRIPTION OF THE RUP PROCESS ... 206

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 VII

List of figures

Figure 1: A fish frame with sea cages and sensors... 3

Figure 2: A sea cage in its right place, but with a blue arrow indicating a drift towards the

yellow zone. ... 5

Figure 3: The food level for a sea cage. The graph shows the level of food in a feeding tank

for a sea cage. ... 7

Figure 4: Context stack .. 14

Figure 5: Context management architecture [12]... 16

Figure 6: APMS container architecture.. 18

Figure 7: L45 temperature sensor integrated circuit .. 22

Figure 8: SmarTec SMT 160 temperature probe.. 23

Figure 9: Java Standard Edition block diagram ... 25

Figure 10: Java Micro Edition overview.. 26

Figure 11: CORBA block diagram... 29

Figure 12: The 24 GPS satellites [16]. ... 30

Figure 13: The UTM zones in Europe ... 32

Figure 14: GPRS architecture .. 33

Figure 15: The RUP design process ... 35

Figure 16: Risk analysis diagram ... 38

Figure 17: Identified use cases in the context consumer client.. 45

Figure 18: The system architecture .. 57

Figure 19: Block diagram of the system architecture .. 58

Figure 20: UML component diagram... 59

Figure 21: ER data model... 60

Figure 22: Initialize sequence diagram .. 66

Figure 23: Get sensor info sequence chart ... 67

Figure 24: Get historical sensor values sequence chart.. 67

Figure 25: Get configuration sequence chart ... 69

Figure 26: Activity diagram showing the input component’s main operational functionality 71

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 VIII

Figure 27: Activity diaram showing the input component’s administrative functionality 73

Figure 28: Acitvity diagram showing the output component’s main operational functionality.

.. 74

Figure 29: Output component’s main operational functionality continued 75

Figure 30: Acitvity diagram showing the context source functionality 76

Figure 31: Activity diagram showing the initialization of the context consumer 77

Figure 32: Activity diagram showing the operational functionality of the context consumer. 78

Figure 33: Illustration of how the XML parsing is implemented .. 83

Figure 34: FiFaMoS Context Consumer package overview .. 96

Figure 35: FiFaMoS Mobile Context Consumer package overview.. 99

Figure 36: FiFaMoS Context Source package diagram ... 101

Figure 37: Testing environment ... 106

Figure 38: Deployment view of the system ... 113

Figure 39: Camera commands.. 117

Figure 40: The GPS receiver we used: Magellan SporTrakColor ... 118

Figure 41: The Akogrimo context manager architecture ... 121

Figure 42: Aplicom L 4002 M2M module... 130

Figure 43: Aplicom L 4002 architecture .. 131

Figure 44: Teltonika T-box/GPS.. 132

Figure 45: T-box/GPS internal architecture ... 133

Figure 46: BlueTree 5400 GPRS M2M module .. 134

Figure 47: Advantech industrial computer [28] ... 135

Figure 48: Risk elements diagram.. 138

Figure 49: The graphical user interface of the FiFaMoS Context Consumer. 149

Figure 50: Map showing the sea cage location (the red star). .. 150

Figure 51: Screenshot of the settings dialog .. 151

Figure 52: The dialog for adding a new sensor .. 152

Figure 53: List over the fish frames from the FiFaMoS Mobile Context Consumer............. 152

Figure 54: List over the sea cages from the FiFaMoS Mobile Context Consumer................ 153

Figure 55: The list of the current sensor values of a sea cage from the FiFaMoS Mobile

Context Consumer.. 153

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 IX

Figure 56: The graph showing historical sensor values from the FiFaMoS Mobile Context

Consumer ... 154

Figure 57: The FiFaMoS web interface ... 155

Figure 58: APMS directory structure ... 178

Figure 59: The Aplicom N12i module with test board and GPS ... 183

Figure 60: Dummy sensors for the Aplicom N12i M2M module.. 186

Figure 61: The camera and camera connector.. 187

Figure 62: GPS to Aplicom gender changing adapter.. 188

Figure 63: The Aplicom N12i Configurator .. 190

Figure 64: The Aplicom N12i IMP 1.0 Concept Simulator ... 191

Figure 65: The JMX monitor ... 192

Figure 66: com.telenor.apms.fifamos.objects class diagram ... 194

Figure 67: com.telenor.apms.fifamos class diagram.. 195

Figure 68: com.telenor.apms.fifamos.utils class diagram.. 196

Figure 69: coms.tools.relational.Update class diagram.. 197

Figure 70: com.telenor.apms.fifamos.n12 class diagram... 198

Figure 71: com.telenor.apms.fifamos.n12.logger class diagram.. 199

Figure 72: com.telenor.apms.fifamos.n12.utils class diagram... 200

Figure 73: com.telenor.apms.fifamos.client.j2se.gui class diagram 201

Figure 74: com.telenor.apms.fifamos.client.j2se.utils class diagram..................................... 202

Figure 75: com.telenor.apms.fifamos.client.j2me.gui class diagram..................................... 203

Figure 76: com.telenor.apms.fifamos.client.j2me.control class diagram............................... 204

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 X

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 XI

List of tables

Table 1: Abbreviations ... XV

Table 2: Definitions..XVII

Table 3: Sensor types that can be useful in the aquaculture industry .. 4

Table 4: AKVAsmart sensor types [14] ... 23

Table 5: XML-RPC data types... 28

Table 6: NMEA 0183 position and time fields [21]... 31

Table 7: Functional requirements... 42

Table 8: Use-Case: Update and process context .. 46

Table 9: Use-Case: Display current sensor values ... 47

Table 10: Use-Case: Store in DB ... 48

Table 11: Request historical sensor values .. 48

Table 12: Use-Case: Get sensor values from DB... 49

Table 13: Use-Case: Send alarm .. 50

Table 14: Use-Case: Update fish farm configuration... 51

Table 15: Implementation requirements .. 51

Table 16: Quality requirements.. 55

Table 17: Technical requirements .. 55

Table 18: Frame table elements ... 61

Table 19: Sea Cage table elements... 62

Table 20: Sensor table elements... 63

Table 21: FishFarm table elements .. 64

Table 22: FishFarm table elements .. 64

Table 23: FishFarm table elements .. 65

Table 24: Different events generated during parsing of an XML document 83

Table 25: Test results ... 108

Table 26: End-to-end response time measurements in milliseconds. The number in () indicates

the processing time in the context manager ... 110

Table 27: System components.. 112

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 XII

Table 28: Aplicom L 4002 outputs and inputs... 131

Table 29: Teltonika T-Box/GPS outputs and inputs .. 133

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 XIII

List of code snippets

Code 1: Example of a rule defined in a DSL ... 21

Code 2: Snippet from the init method .. 82

Code 3: Example of XML parsing ... 82

Code 4: Example of a context consumer XML.. 84

Code 5: Example of a context source XML... 86

Code 6: Code showing how to select the sensor for the sensor value...................................... 87

Code 7: Code showing how to select the sensor type for the sensor 87

Code 8: Code showing how to convert from millivolt to real sensor value............................. 87

Code 9: Code showing how to check if the value is out of bounds or not 87

Code 10: Code showing how to insert a sensor value into the database 87

Code 11: Code showing how to add an alarm.. 88

Code 12: Example of XML response for the context source ... 88

Code 13: Code showing how to select historical values from a sensor 90

Code 14: Code extract of how to generate an XML representation of the fish farm 91

Code 15: Example of XML configuration of the M2M module .. 92

Code 16: Code showing how to convert from a value read by the context source to a real

value ... 94

Code 17: Code showing how to measure the distance between to latitude/longitude

coordinates ... 95

Code 18: Code for refreshing the sensor values... 96

Code 19: Finding the scaling factor ... 97

Code 20: Calculating new values ... 97

Code 21: Drawing the graph .. 98

Code 22: openSettings() method from the Settings dialog class.. 98

Code 23: Executing a remote procedure call.. 99

Code 24: Scheduling the getSensorData() method .. 100

Code 25: The RpcHandler constructor... 100

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 XIV

Code 26: Code showing how to retrieve the IMEI number, and to initialize the M2M module

.. 102

Code 27: Code showing how to read from input pins.. 102

Code 28: Code showing how to send context to the context manager................................... 102

Code 29: Code showing how to use the GPSControl class.. 103

Code 30: Code showing how to use the SMSControl class ... 104

Code 31: Code showing how to use the WatchdogTimer .. 105

Code 32: Code showing how to use the SerialPortLogger... 105

Code 33: Code showing a snippet of the implementation of the serial port logger 105

Code 34: Excerpt from the getFishFarmAsXML() response, showing two of three frames. 125

Code 35: Response from the getFrames() method ... 125

Code 36: Response from the getSeaCagesForFrame(frameID) method................................ 125

Code 37: The SeaCage object constructor that takes a CSV string as input. 126

Code 38: The input component meta file ... 158

Code 39: The output component meta file ... 159

Code 40: Deployment descriptor.. 160

Code 41: XML representation of a fish frame ... 161

Code 42: XML representation of a sea cage .. 161

Code 43: XML representation of a sensor ... 161

Code 44: XML representation of a sensor value.. 161

Code 45: XML representation of a command for adding a frame ... 162

Code 46: The GPSControl class, used as a wrapper for adding GPS data............................. 164

Code 47: The database update class ... 168

Code 48: The sensor simulator source code... 171

Code 49: Create table bug stacktrace ... 173

Code 50: getCreateTable method from the Derby.java file on the APMS context manager . 174

Code 51: MetaDataParser.java - The characters() method before the fix 176

Code 52: MetaDataParser.java - The characters() method after the fix................................. 176

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 XV

Abbreviations

Table 1: Abbreviations

Abbreviation Description

API Application Programming Interface

APMS (Not yet determined)

CM Context Manager

CLDC Connected Limited Device Configuration

CDC Connected Device Configuration

COA Connection Oriented Architecture

CoMS Context Manager System

CORBA The Common Object Request Broker Architecture

CSV Comma Separated Values

EDGE Enhanced Data rates for Global Evolution

EDI Electronic Data Interexchange

FTK First To Know

GPS Global Positioning System

GPRS General Packet Radio Service

GUI Graphical User Interface

J2ME Java 2 Micro Edition

J2SE Java 2 Standard Edition

J2EE Java 2 Enterprise Edition

JVM Java Virtual Machine

MBean Managed Bean

MDVO Mobile Dynamic Virtual Organization

ICT Information and Communication Technology

IDL Interface Definition Language

IIOP Internet Inter-Orb Protocol

IM Instant Messaging

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 XVI

Abbreviation Description

MTBF Mean Time Between Failure

MTTR Mean Time To Repair

MSC Message Sequence Chart

MIDP Mobile Information Device Profile

M2M Machine 2 Machine

NMEA National Marine Electronics Association

ORB Object Request Broker

PDA Personal Digital Assistant

RFID Radio Frequency Identification

RMI Remote Method Invocation

RPC Remote Procedure Call

RUP Rational Unified Process

SGML Standard Generalized Markup Language

SDK Software Development Kit

SIP Session Initiation Protocol

SMS Short Message Service

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

TCP Transport Control Protocol

SCG Sea Cage Gateway

XML eXtensible Markup Language

XML-RPC eXtensible Markup Language – Remote Procedure Call

UML Unified Modelling Language

UDP User Datagram Protocol

UTM Universal Transverse Mercator

VO Virtual Organization

WTK Wireless Toolkit

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 XVII

Definitions

Table 2: Definitions

Word or sentence Description

Sea cage This is a structure in which fish are held and grown

Net, or closing net What surrounds and contains the fish in the sea cage

Frame A collection of sea cages

Fish farm A collection of frames, operated by the same firm

Sensors The components that collect information about the environment

APMS Context Manager A system for collecting, processing, storing and distributing

context information Distributes the context from context

sources to the context consumers

Input Components Ensure communication between the context sources and the

APMS Context Manager

Output Components Provides communication between the context consumers and

the APMS Context Manager

Context database Contains all the information about the fish farm, including

current and historical sensor information

FiFaMoS Fish Farm Monitoring System. An acronym describing the

whole monitoring system, including context source, context

manager and context consumer.

FiFaMoS Context Source The module that collects sensor information from a sea cage,

and feeds it to the context manager.

FiFaMoS Context

Consumer

A client application that is used by the operators to monitor the

fish farm. The context consumer gets the sensor information

from the context manager and displays them in a graphical user

interface

FiFaMoS Mobile Context

Consumer

A version of the FiFaMoS Context Consumer that runs on a

mobile device

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 XVIII

Word or sentence Description

M2M module The module that collects sensor information from a sea cage,

and feeds it to the context manager Also referred to as the

FiFaMoS Context Source

Web service A Web Service is a software component that is described via

WSDL and is capable of being accessed via standard network

protocols such as but not limited to SOAP over HTTP

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 XIX

Abstract

This thesis focuses on context-aware services that make decisions based on the situation (i.e.

context) of the involved entities. Context may in general be based on user input, sensed or

derived (e.g. combination of multiple context entities). The type of such services is vast, but

in this thesis the system is aimed towards the aquaculture industry.

During the last years, aquaculture quality has become more and more important in the fish

farming industry. But this importance has not been reflected yet in using information and

communication technologies (ICT). The main problem in a fish farm is that most of them are

without supervision for a long time while they are exposed to changing weather conditions.

This problem gets even bigger when fish farms are established far from land, and often

becomes exposed to extreme weather conditions. As a consequence of this, sea cages may

work loose, drift away and break. In order to minimize the consequences caused by lack of

information on the fish farm (such as weather conditions and other variables) when there is no

workers around, ICT surveillance systems should be used. Context-aware services are

perfectly suited for this type of application, and the task of this thesis is to specify, design and

implement a context-aware application for the aquaculture industry. This includes a context

source application, a context consumer application and a service to be deployed on a context

management system.

Our solution is named FiFaMoS (Fish Farm Monitoring System) and is based on the APMS

context manager. This is a context management system that provides easy service deployment

due to built-in support of multiple binding types as well as persistent storing of context. As a

context source, an application for an M2M module is developed. There will be one module

situated at each sea cage, which collects information like feed level, temperature, pH, oxygen

level from the sensors. In addition, the module gets the positioning information for the sea

cage from a connected GPS receiver. This information is periodically sent to the context

manager that interprets the context and makes it available to users of the system (context

consumers). In addition alarms will be triggered if values are out of bounds. It has been

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 XX

developed two different context consumers; one for personal computers and one for mobile

phones. In these applications it is possible to view both current and historical sensor values,

and receive alarms. It is also possible to alter the fish farm configuration via the PC client.

Aspects that will be discussed are the use of different binding types, representation of data

when transmitting and storing, hardware choices and various implementation choices. The

implemented FiFaMoS system uses web services as binding to get a loosely coupled system,

and objects are represented in XML which makes the system easy to alter. Detailed testing

has been performed, and the system works as intended.

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 XXI

I really rather care for fish

In fact they are my favourite dish

I like to take small bits of dace

And put them right into my face

My midday snack's a stickleback

My evening meal's a conger eel

If I were given just one wish

I'd have the world knee deep in fish

An excerpt from “Number 101”

by Graham Chapman and John Cleese

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 1

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 2

1 Introduction

1.1 Motivation

The fish farming industry has grown to become an important Norwegian export industry, and

one of the major employment sectors along the Norwegian coast. A single fish farm may hold

values for tens of millions NOK, and incidents such as disease, accidents, improper breeding

conditions etc may lead to heavy expenses and environmental consequences. Occurrence of

such incidents may be reduced by using frequent surveillance, this is however labour

intensive and therefore costly. One solution could be to apply remote surveillance by making

use of sensors, positioning systems and cameras.

Several trends in the industry call for remote surveillance:

• Because of environmental issues, fish farms will have to be moved from in-fjord

locations to costal locations. This implies relocation from safe spots like inner fjords

and calm coast areas to areas that are more exposed to extreme weather. And because

workers only are on-site for 2-4 hours a day, an accident will not be discovered for up

to 20 hours. And in some instances it may take days between each inspection, which

makes the situation even worse.

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 3

• Small fish breeding actors are being merged with or bought by larger actors, resulting

in fewer and larger fish farm installations. More values are collocated, and the

expenses put in surveillance equipment will pay off more easily.

• High labour costs, long and dangerous travel distance to fish farms in costal/offshore

locations

A system where information is collected and distributed separately and selectively is the

optimal solution. This way the user (or whoever needs to see the information) can simply

select which information to see, not needing to search for it.

1.2 Scenarios

In these scenarios, possible cases that can happen in a fish farm will be analyzed. Two

scenarios will be described, each with two different outcomes. One based on today’s situation

(scenarios 1A and 2A) and one after a fish farm monitoring system is installed (scenarios 1B

and 2B). The scenarios are based on the fish farm in Figure 1, where the surveillance system

only will be available in the tomorrow section of the scenarios.

Figure 1: A fish frame with sea cages and sensors

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 4

Figure 1 shows a fish frame that contains nine sea cages. A fish farm can have several frames

that each has various numbers of sea cages. In this project, there will be one sensor controller

per sea cage. The controller will be an M2M GPRS module, with a GPS connected. Various

sensor types can be connected to this module that can pass the sensor information via the

Internet, and made accessible to clients. These clients can monitor the sensor values of the

fish farm.

Each sea cage has many attributes that need to be monitored. Table 3 shows some of the

sensor types that can be useful on a fish farm, and the subchapters describe scenarios

concerning position and food level.

Table 3: Sensor types that can be useful in the aquaculture industry

Sensor type Purpose

Position (GPS) Alarm the operators if a sea cage is loose and drifting away

Sea cage net sensor Find out if the sea cage net is dirty due to growth. This stops clean

water from flowing through the sea cage. The sensor detects if

cleaning is necessary.

Water current sensor Measures the tidal currents in the fish farm. This information can be

used to prevent feeding during excessive currents, thus preventing

feed waste.

Water quality sensors Measure various water quality parameters

Temperature sensor Measure the water and/or air temperature

Food level Measure the food level in the feeding tanks

Pellet sensor Finds the amount of food that is not eaten. Feeding routines can

then be adjusted.

Camera Video of the sea cage can be used to detect uneaten food, and to see

if the fish is behaving as usual.

Wave sensor Measure the height of the waves

Water level sensor Measure the depth of the water

Wind sensor Measure wind strength and/or direction

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 5

1.2.1 Scenario 1-A: Today - A sea cage drifts away

Alice, the environmentalist, has been active in the process of moving fish farms from calm

fjords to rougher sea. One stormy day in January, one of the sea cages in Bob’s fish farm

works loose, and starts drifting towards sea. The sea cage is a new high-tech steel cage

containing almost 200 tons of fish. The next day when Bob takes his visit to the fish farm, he

discovers that the sea cage is gone, and immediately starts a search with his boat. However,

the sea cage has drifted a long way, and Bob is unable to find it. Bob has lost almost 200 tons

of fish, and Alice is angry because the sea cage pollutes the environment.

1.2.2 Scenario 1-B: Tomorrow - A sea cage drifts away

The situation is the same as in scenario 1-A, but now, Bob has invested in a fish farm

monitoring system with a GPS sensors on each sea cage.

Figure 2: A sea cage in its right place, but with a blue arrow indicating a drift towards the yellow zone.

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 6

With a GPS sensor and a M2M GPRS module, the position of the sea cage will always be

well known. Immediately after the sea cage works loose, Bob gets an SMS alarm on his

mobile that says that the sea cage is out of position. After checking the positioning

information on the map, Bob hires a towing boat, and finds the sea cage. Luckily, the net is

intact, and the sea cage can be set in place again. 200 tons of fish is saved, and the

environment is preserved.

1.2.3 Scenario 2-A: Today - Food level in feed tank

Just after Bob’s daily visit to the fish farm, the feed tank on one of the sea cages bursts open,

and the feed sinks to the bottom of the sea. The fish have nothing to eat all day, and optimal

growth is prevented. Some of the fish even get sick, and die. The disaster is not revealed

before Bob’s next daily visit, so it has been 24 hours without feed. In addition Alice is not

happy, because the feed pollutes the environment around the fish farm.

1.2.4 Scenario 2-B: Tomorrow - Food level in feed tank

Bob has invested in a fish farm monitoring system with sensors measuring the food level in

the feed tanks. When the feed tank bursts open, the feed level sinks as shown in Figure 3.

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 7

Figure 3: The food level for a sea cage. The graph shows the level of food in a feeding tank for a sea cage.

At 16:00, the food level has exceeded the minimum value, and with the help of the fish farm

monitoring system, Bob will get an alarm. He takes a trip to the fish farm with his boat, and

reveals the damage. The old feed tank is immediately replaced with a new one, and the fish

are happy because they still have food.

If special feeding sensors and controllers are present, it is also possible to adjust feeding on

the base of estimation of fish feeding activity. Monitoring the food level in fish farms can

increase fish growth efficiency and enhance the ecology around the place of the fish farm. As

a result, it decreases food expenses and environmental pollution by giving the fish the amount

of feed needed for optimal feed assimilation.

1.3 Problem statement

A context-aware service makes decisions based on the situation (i.e. context) of the involved

entities. Context may in general be based on user input (e.g. status in an IM client), sensed

(e.g. temperature, location, heart rate), or derived (e.g. combination of location and time of

day).

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 8

Telenor Research and Development are currently working on a new system for surveillance

and management of fish farms [4] [5]. This project is aimed towards the Akogrimo mobile

grid project [1], and is being realised by two master students. A new context management

system called APMS [6] is implemented by a team at the University of Tromsø, and further

knowledge about this system is wanted. By utilizing this system, an alternative solution for

fish farm monitoring shall be introduced. The system will make the values from the sensors

described in section 1.2 available to various clients. These clients shall present the values in a

user friendly way. Sensor values shall be stored in a database, so that historical sensor values

can be presented.

A context-aware service for surveillance of fish farms shall be designed, implemented and

demonstrated. Implementation shall be based on Java, and the service shall utilize the APMS

middleware system.

1.4 Limitations of the thesis

Due to the limited time scope of the project, some limitations will have to be made. These are

described in this chapter.

The system implemented shall only be a prototype, and not be tested in a realistic off-shore

environment. The sensors values used when testing shall not be produced by real fish farm

sensors, but by sensor simulators or dummy sensors (for instance variable resistors). This is to

limit the scope of the thesis, and concentrate mostly on the communication part of the project.

Security issues are also given a low priority. The main goal of the thesis is to create a working

system that demonstrates context-aware services, and AAA functionality is not needed.

Even though financial aspects are an important matter in a real-life project, it has not been

given much attendance. These aspects are considered to be outside the scope of this project.

1.5 Related work

Within the scope of the EU project Akogrimo [1] [3], an ICT-system for remote monitoring

and controlling of fish farms is being developed. The project is called Sea Cage Gateway, and

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 9

is being realized by different diploma thesises given by Telenor Research and Development.

The goals are very similar to our project, but the solution is based on a different context

management system using mobile grid technology.

The work covers the following key elements:

• Identify actors and roles in the fish farming value network that would profit from

building a virtual organization (VO).

• Characterize relevant business activities within the mobile dynamic virtual

organization (MDVO) with a special focus on commercial exploitation of mobile grid

inventions, such as accounting capabilities or context management.

• Develop a demonstrator that visualizes sea cage gateway with its actors and business

flows.

Another aspect of the sea cage gateway project is the sensor networks. The project shall

analyze the needs for sensor data to be collected, checked, and passed on to a control station.

This is a node where the main data analysis and business logic is done.

Tendo Tech AS is a company developing surveillance systems for mobile devices. Their

system is very flexible, and is used in many scenarios, including fish surveillance. This

version of the system, FTK Marin, does many of the same things this project will do, but is

made for indoor fish farming. Therefore it is not possible to get positioning information for

sea cages, and the sensor network installation is not customized to handle harsh conditions

off-shore. Another important difference is that the FTK Marin system is based on an instant

messaging system called Jabber [31]. This makes the fish farm controllable from a special

instant messaging client on the mobile phone. A drawback with this solution is that it is not

possible to store sensor data persistent, so historical sensor values can not be viewed.

AKVAsmart ASA is a technology company with activities in the fish farming industry. It is

the world's leading supplier to the salmon farming industry within both of its areas: "Farm

Process Technology" and "IT & Consulting". In addition to feeding technology, the company

also delivers production management systems, and the latest addition is the FishTalk project.

The main purpose of FishTalk is to be an integrated solution where all information is stored at

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 10

site-level. This database information includes feeding and environmental sensors in addition

to other information that affect decisions in the fish farm. FishTalk functions include:

• High-level reporting and analysis

• Site Control

• Feeding Process Control

• Enterprise planning

• Maintenance

• Quality Assurance

• Tracing

• Budgeting and Cost Analysis

1.6 Report organization

This report is organized into five main parts: Introduction, theory, realization, discussion and

conclusion. The content of the different parts is as follows:

Section 1, Introduction, will introduce the fish farm industry, their needs and describe the

problem statement. Section 2, Theory, will give background information on context and

context-aware services, and in addition describe the most important technologies used during

the project. This includes the APMS context manager, M2M technology, programming

environments, communication protocols and positioning technology. Next, section 3,

Realization of FiFaMoS, describes the entire development process. This includes different

phases like: Prestudy, requirements specification, design, implementation and testing. During

the project, several decisions had to be made. That included both software and hardware

options in addition to the architectural and implementation choices. Section 4, Discussion,

will describe these choices. In the end, section 5 concludes the thesis report.

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 11

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 12

2 Theory

This chapter describes the background theory of the project. First various aspects of context

are described, then the related technologies of the project are examined. Related technologies

include the APMS context manager, Java, XML, web services, GPRS, the global positioning

system, and sensor technology.

2.1 Context

This section describes what context and context-aware services are. The main focus will be on

surveillance services and sensed context. Finally, a three-layer architecture for context-aware

services will be introduced and described.

2.1.1 Defining context

The Word Reference Dictionary defines context as:

“The set of facts or circumstances that surround a situation or event; the historical context”

[8].

However, context is a wide notion with different meaning in different fields. A definition that

is clearer in our field of interest is proposed by Dey:

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 13

“Context is any information that can be used to characterize the situation of an entity. An

entity is a person, or object that is considered relevant to the interaction between a user and

an application, including the user and application themselves.” [9].

This information, or as we now say, context can be of several types [10]:

• User context: role, identity, location, preferences, social situation, permission profile

• Computing context: network connectivity and nearby resources (printers, displays, and

workstations)

• Time context: time of a day, week, month, and seasons of the year

• Physical context: such as weather and temperature

• Context history: when the user, computing, and physical contexts are recorded across

a time span, we obtain a context history

In addition a derived context type can be added to the list. This is context information that can

be computed on the fly. Obvious examples might be alarm information or network activity.

One can say that context can be divided into two main types: User set context and externally

set context, where externally set context includes computing context, time context, physical

context other context information not set by the user. Typical surveillance systems like the

one discussed in this thesis mostly deal with externally set context from sensors (sensed

context).

2.1.2 Characteristics of sensed context

In [11], Henricksen et al. describe some general characteristics about context information in

pervasive environments. This section transfers some of these characteristics into the

surveillance category, and describes sensed context.

2.1.2.1 Sensed context information is imperfect

Surveillance environments are highly dynamic, which means that information describing them

can quickly become out of date. This is both because the context needs processing, and

because sources, repositories and consumers of context are distributed over networks. These

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 14

factors can lead to large delays between the production and use of context information, and

lead to that wrong context is used.

Another example that shows use of wrong context is when sensors or derivation algorithms

provide faulty information. Sensors cannot represent reality in a perfect way, and

derivations/conversions often expand the level of error. This is particularly a problem with

context information from crude sensor inputs; like two-level digital sensors and RFID

positioning information.

It is also a possibility that sensed context is wrong because of malfunctioning sensors or cut in

the path between the context source and the context consumer. This will make parts of the

context, or all of the context unknown.

2.1.2.2 Alternative representations

There is usually a significant gap between sensor output and the level of information that is

useful to applications, and this gap must be bridged by various kinds of processing of context

information. For example, the GPS sensor in scenario 1-B may supply raw longitude and

latitude coordinates, whereas an application might only be interested in if the sea cage is in

position or not. Using the UTM system for representing the position is also an alternative.

2.1.2.3 Context stack

Just as computer networks can be viewed as a seven-layer model according to the Open

System Interconnect (OSI), context can be represented in a four-layer model. This model is

proposed by Li [13], and promotes the understanding of context information acquisition.

Figure 4: Context stack

The four layers have the following tasks:

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 15

• Sensor layer: This is the physical layer where the sensors and the corresponding

drivers are located. The sensor layer offers access to raw context data (for instance the

temperature)

• Measurements layer: This layer has algorithms to take raw sensor data into more

useful data types (for instance a voltage level or digital frequency representing the

temperature).

• Conversion layer: This layer converts the raw data into data types more suited for the

domain of origin (for instance the number of degrees Celsius).

• Fusion layer: The most abstract layer in the model. The data is grouped into different

categories, and might be harvested from several different sensors (for instance the

number of degrees Celsius combined with the time the temperature was sampled).

2.1.3 Context-aware services

Context-awareness is a term that is used for devices or systems that have information about

their context, and can react accordingly. Context-aware devices may also try to make

assumptions about the user's current situation. An example is a context-aware mobile phone

that knows that it is located in a meeting room. The phone may conclude that the user is

currently in a meeting and reject any unimportant calls. This example goes under the

pervasive/ubiquitous computing category, but also other types of context-aware services exist.

An important variant of a context-aware service is surveillance systems like the one treated in

this thesis. In these systems, clients can access the sensed context, and be warned when

changes occur. This project is about making a surveillance system for the aquaculture

industry, and context-aware services are ideal for distributing sensor information to several

clients.

The context information in the system is mainly sensor information from the different sea

cages. This is externally set context that can be placed in the awareness module layer in the

three layer architecture in Figure 5.

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 16

2.1.3.1 Three Layer Architecture

Indulska et al. [12] suggest a three layer architecture that consists of a set of interacting

components (or modules) organised into three layers. This is shown in Figure 5. In the

proposed system, the different layers communicate via a message based notification service

called Elvin [15]. This is a client-server architecture that enables distribution transparency,

and lets the modules be placed on different locations. However this kind of three layer

architecture can be valid for many context-aware systems, including the one used in this

project, and the Elvin service is not necessary to use to get the distribution transparency.

Using for instance SIP or Web-service messages will accomplish the same.

Figure 5: Context management architecture [12]

The main purpose of the different layers is as follows:

Context-aware Application layer: In order to be aware of the current context, the adaptation

engine of the pervasive system and/or the context-aware application can subscribe to a set of

events of interest (e.g. context changes). These clients are then notified by the Context

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 17

Manager upon occurrence of the events of interest. In some context-aware systems, the clients

aren’t notified about new context information, but have to continually ask for the context

information wanted. This is a matter of technological choices.

Context Manager Layer: The Context Manager manages the persistent repository (database)

of context information, receives context updates from the Awareness Module layer, and

makes the context available to the context-aware applications.

Awareness Module layer: These modules process context information from sensors. They

monitor sensors and actuators. An awareness module is a specialised module that provides a

particular functionality. For example, it can serve a GPS sensor that provides location

coordinates or an actuator that locks a door. Awareness modules transform information from

sensors into a format that can be understood by the context manager. The communication

between Sensors/Actuators and the awareness modules are often proprietary (e.g. a specific

protocol that uses RS-232).

2.2 Enabling and related technologies

Here, the most important technologies used in the system will be described. This includes the

middleware system, the programming languages, data representation, positioning and network

technologies.

2.2.1 APMS – The context management system

Without a well defined programming model for context-aware service development, it is a

tedious task to create even the simplest context-aware application. Tasks such as binding to

context sensors, storage of ingested sensor data, context information inference etc. should be

supported by the underlying infrastructure. Context management middleware makes it easier

to include context-awareness in applications since support for bindings, persistence and

inference is part of the container support ordered to container components.

The context manager that will be used in our system is called APMS. According to [6], it is a

container based middleware system, similar to JBoss. It is used to support the basic needs of a

context enabled system. Examples of such needs are:

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 18

• Collection and distribution of context (see 2.2.1.1)

• Persistence of context information (see 2.2.1.2)

• Integrated generation of dynamic content (see 2.2.1.3)

• Automatic trigging of actions (see 2.2.1.4)

• Rapid deployment and easy configuration

APMS is based on managed beans, or MBeans, which acts as wrappers for applications,

components or resources in a distributed network. Therefore APMS also supports the usage of

Java Management Extensions (JMX) [7]. This allows a centralized management of the

MBeans. This functionality is provided by an MBean server, which serves as a registry for all

MBeans, exposing interfaces for manipulating them. In addition, JMX contains a service that

allows dynamic loading of MBeans over the network. In the JMX architectural model, the

MBean server becomes the spine where all the server components plug in and discover other

MBeans.

Figure 6: APMS container architecture

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 19

2.2.1.1 Components

In this section we will show what the different components are used for. Most components are

self-explanatory, but it’s still necessary to clarify the usage to make sure that no mistakes are

made. A component is made up by an interface named *MBean.java, a meta-file (XML)

named *Meta.xml and an implementation of the MBean-interface named *.java. The asterisk

(*) represents the name of the component. The name is often used to indicate what kind of

component it is. An example could be InputMBean.java, InputMeta.xml and Input.java.

2.2.1.1.1 Input component

The input component is used for external entities to provide data to the service. Typical usage

would be as an interface for sensors to send their values to the database. This component may

use one of the following methods to make it connectable:

• Web Services (XML-RPC)

• Sockets (UDP/TCP)

• Remote Method Invocation (RMI)

The chosen method is specified in the component’s meta-file by the programmer, and must be

used accordingly.

2.2.1.1.2 Process component

The process component is used to refine and increase value of input data. This could be

converting values from mV to wind speed (m/s), degrees centigrade (°C) or acidity (pH). The

process component defines a set of rules that will trigger a predefined action if the rule checks

out (see 2.2.1.4 for more information on the rules engine).

2.2.1.1.3 Output component

The output component is used for external entities to retrieve data from the service. Typical

usage would be as an interface for applications to get stored sensor values from the database.

To make the it connectable, the output component may use the same methods as the input

component.

2.2.1.1.4 Configuration component

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 20

The configuration component is used for configuring external entities. Typical usage would

include setting refresh value, host, port and timeout for a connection. By using a configuration

component the configuration can be done via the web interface (see appendix C.2).

2.2.1.2 Apache Derby database

Apache Derby [30] is a database completely implemented in Java. It is based on the

SQL/JDBC standards and support most database features including tables, indexes, views,

triggers, sub-queries, procedures, functions, transactions, isolation levels, encryption, etc. The

database is used in the APMS context manager to store context information. In the APMS

system it is possible to describe the tables and relations with XML in the meta-files of the

components.

2.2.1.3 Jetty web server

Jetty [29] is a java-based stand-alone HTTP server and servlet container. This means that you

do not need to configure and run a separate web server in order to use java, servlets and JSPs

to generate dynamic content. Jetty is embedded in applications and products without adopting

the WWW centric application architecture. This also involves the APMS middleware system

that uses Jetty as the receiver and sender of web service requests and responses. In addition it

is used to host web sites and web interfaces associated with the service. Other applications

servers that utilize Jetty are Geronimo, JBoss and JOnAS.

The web server and web application run in the same process, without interconnection

overheads and complications. Furthermore, as a pure java component (configured in a jar file

under 350KB), Jetty can be simply included in the application for demonstration, distribution

or deployment.

2.2.1.4 Drools

The usage of a rules engine is a very efficient way to collect decision-making logic and work

with large data sets. A rules engine can make decisions based on thousands of facts much

more quickly and reliably than humans, and is therefore the preferred choice for decision

making.

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 21

Drools [32] is a rules engine implementation based on Charles Forgy's Rete algorithm adapted

to Java. Adapting Rete to an object-oriented interface allows for more natural expression of

business rules with regards to business objects. Drools is written in Java, but able to run on

both Java and .Net.

Drools is flexible enough to match the semantics of a problem domain with Domain Specific

Languages (DSL) via XML using a defined Schema. A DSL consists of XML elements and

attributes that represent the problem domain, as shown in Code 1.

<rule name="Generate alarm">

 <parameter identifier="sensorValue">

 <class>SensorValue</class>

 </parameter>

 <parameter identifier="sensor">

 <class>Sensor</class>

 </parameter>

 <java:condition>

 sensorValue.getValue() > sensor.getMaxValue()

 </java:condition>

 <java:consequence>

 sensor.generateAlarm(sensorValue);

 </java:consequence>

</rule>

Code 1: Example of a rule defined in a DSL

2.2.2 M2M - Sensor information acquisition

To acquire context/sensor information, various solutions could be used. Among them are

custom built equipment, industrial computers and M2M technology. Since the latter

technology offers high flexibility at a low price and size, M2M modules are well suited for

surveillance tasks.

A M2M module is basically a mobile phone with no display or keyboard, but a number of

digital and analogue inputs and outputs. These inputs and outputs together with the GPRS

Internet connection make it suitable for transferring context information over the air from

almost any location.

A number of different M2M modules are on the market. Most of them have got serial

connection ports, and can be connected to a GPS for positioning purposes. However it is more

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 22

convenient to have the M2M module bundled with the GPS in one single package. The serial

port can also be used to connect any other serial based peripheral equipment, including

cameras, weather stations and household power controllers. When it comes to attaching

sensor, the number of inputs is an important parameter. Most of today’s modules have only a

handful of analogue inputs, this can often be a bottleneck. However, if a relay module is used,

several sensors could be connected to one input. The relay could then be controlled by the

digital outputs on the module. This way the module can choose which sensor it wants to read.

Connecting several sensors to a hardware module that converts the sensor information to a

proprietary RS-232 format before sending it to the M2M module via the serial port is also a

possibility.

2.2.2.1 Sensors for M2M modules

Most M2M modules have a couple of analogue inputs and digital inputs. The analogue inputs

are set by a voltage in the area 0-2800mV. Not many sensors output this kind of voltage, and

we often have to use special circuits that can transform the sensor output to the voltage level

wanted by the M2M module.

The National Semiconductor L45 is an example of an integrated circuit that outputs a voltage

linearly proportionally to the temperature.

Figure 7: L45 temperature sensor integrated circuit

When feeding a +5V voltage to the VS pin, the V0 will give a voltage between 0V and 3V,

depending on the temperature (that can be from -20 °C to +100 °C). This will work well for

measuring in-house temperatures, but rough surroundings as the ocean would require a more

designated sensor.

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 23

The SmarTec SMT160-temperature probe is more roughly packaged, and can stand to be

stored under water. However this probe does not give an output voltage proportional to the

temperature, but a digital frequency that varies.

Figure 8: SmarTec SMT 160 temperature probe

This way of outputting a digital pulse with frequency that varies according to the sensed value

is very normal in industrial solutions, and M2M solutions would often require hardware

between the sensor and the module that either interprets the digital pulse to an analogue

voltage, or to serial data that the module can read.

AKVAsmart (mentioned in section 1.5) also make sensors for the aquaculture industry. These

sensors could probably be used in an M2M system, with the help of some hardware

integration.

Table 4: AKVAsmart sensor types [14]

Figure Sensor description

The oxygen sensor measure the level of oxygen

contained in the water. This parameter is one of the most

important when it comes to fish welfare.

The water current sensor can measure the current

strength and direction. This information can be used to

stop the feeding when the current it strong, thus

preventing feed waste.

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 24

Figure Sensor description

The feed waste sensor measures the amount of feed not

eaten, and the feeding can be adjusted to save feed and

to save the environment.

By using a underwater camera, the condition of the fish

and feeding response can be monitored.

2.2.3 Java

This project will be implemented using Java Technology. Applications for computers will

utilize Java Standard Edition (Java SE, formerly known as J2SE), applications for mobile

devices will use Java Micro Edition (Java ME, formerly known as J2ME)

2.2.3.1 Java Standard Edition

Java Standard Edition offers a complete environment for application development and

deployment on desktops and servers. Java SE is also used in today's embedded and real-time

environments. The Java programming language is syntactically similar to C++ but differs

fundamentally. While C++ uses unsafe pointers and programmers are responsible for

allocating and freeing memory, the Java programming language uses type safe object

references, and unused memory is reclaimed automatically. Furthermore, the Java

programming language avoids multiple inheritance to get cleaner interfaces.

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 25

Figure 9: Java Standard Edition block diagram

Figure 9 illustrates all the component technologies in Java SE platform and how they fit

together.

2.2.3.2 Java Micro Edition

Java Micro Edition provides a robust, flexible environment for applications running on

consumer devices, such as mobile phones, PDAs, TV set-top boxes, printers, M2M modules

and a broad range of other embedded devices. Like its counterparts for the enterprise (Java

EE) and desktop (Java SE), Java ME includes Java virtual machines and a set of standard Java

APIs.

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 26

Figure 10: Java Micro Edition overview

As shown in Figure 10, Java ME has two base configurations. The first is the Connected,

Limited Device Configuration (CLDC). This configuration is for small wireless devices with

intermittent network connections, like mobile phones, and personal digital assistants (PDAs).

The Mobile Information Device Profile (MIDP), which is based on CLDC, was the first

finished profile and thus the first finished Java ME application environment. MIDP-compliant

devices are widely available worldwide.

The other base configuration is the Connected Device Configuration (CDC). This

configuration is for larger devices (in terms of memory and processing power) with robust

network connections. Set-top boxes, Internet appliances, and embedded servers are good

examples of CDC devices, although high-end mobile devices also fit this configuration well.

The Foundation Profile extends CDC and serves as the basis for several other profiles. It

provides core APIs shared with Java SE, including classes and interfaces from java.lang,

java.io, java.security, java.util, and more.

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 27

2.2.4 eXtensible Markup Language (XML)

From the specification [42], XML can be defined as the following:

“The Extensible Markup Language (XML) is a subset of SGML (Standard Generalized

Markup Language (SGML) that is completely described in this document. Its goal is to enable

generic SGML to be served, received, and processed on the Web in the way that is now

possible with HTML. XML has been designed for ease of implementation and for

interoperability with both SGML and HTML.”

More generally, XML can be said to be a way of describing data and an XML file can contain

the data too, as in a database. Its primary purpose is to facilitate the sharing of data across

different systems, particularly systems connected via the Internet.

2.2.5 Web services: XML-RPC

According to the World Wide Web consortium, web services are defined as the following:

“A web service is a software application identified by a URI, whose interface and bindings

are capable of being identified, described and discovered by XML artefacts and supports

direct interactions with other software application using XML based messages via Internet-

based protocols”

In other words, it is a language and platform independent method to implement Service

Oriented Architecture (SOA) using standard Internet technologies. Web services are used for

application-to-application communication, and several technologies exist. The one used in

this project is XML-RPC.

XML-RPC is short for XML Remote Procedure Call, and is a protocol for performing remote

procedure calls over HTTP. XML-RPC makes it possible for applications to communicate and

share data over the Internet, no matter what platform, hardware or programming language

used. The protocol can use HTTP port 80, so it can traverse most firewalls in the Internet. The

protocol has three basic message types: The request type, the response type and the error type.

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 28

It is a simple protocol, and supports only a number of data types. The available types are

described in Table 5.

Table 5: XML-RPC data types

Data

type

Tag Description/example

Integer <int>6</int> or <i4>6</i4> Whole number

Double <double>2.3</double> Floating number

String <string>Text</string> Text string

Boolean <Boolean>0</Boolean> Logical value, 0 or 1.

Date/time <dateTime.iso8601>2004-05-
24T09:30:59</dateTime.iso8601>

Date and time value

Base64 <base64>eW91IHJlYWQgdGhpcyE=</base64> Base 64 encoded data

Array <array>
 <data> <- mandatory child of array element
 <int>123</int>
 <double>-12.345</double>
 <array>
 <data>

<dateTime.iso8601>20040524T09:30:59<dateTime.iso8
601>
 <string>hello soap</string>
 </data>
 </array>
 </data>
</array>

Array of values,
storing no keys

Struct <struct>
 <member>
 <name>paper code</name>
 <value>0657312B</value>
 </member>
 <member>
 <name>paper title</name>
 <value>Something or Other</value>
 </member>
</struct>

Array of values,
storing keys

Null <nil/> Discriminating null
value

2.2.6 CORBA

The Common Object Request Broker Architecture (CORBA) [48] is a distributed object

computing infrastructure being standardized by the Object Management Group (OMG).

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 29

CORBA automates common network programming tasks such as object registration, location,

and activation; request demultiplexing; framing and error-handling; parameter marshalling

and demarshalling; and operation dispatching. Using the standard Internet Inter-Orb Protocol

(IIOP), a CORBA-based program from any vendor, on almost any computer, operating

system, programming language, and network, can interoperate with a CORBA-based program

from the same or another vendor, on almost any other computer, operating system,

programming language, and network.

Figure 11: CORBA block diagram

CORBA uses an interface definition language (IDL) to specify the interfaces that objects will

present to the world. CORBA then specifies a “mapping” from IDL to a specific

implementation language like C++ or Java. This mapping precisely describes how the

CORBA data types are to be used in both client and server implementations.

2.2.7 Global Positioning System (GPS)

In our project, positioning data from the sea cages is one of the essential context sources. For

this a GPS receiver is used. GPS [16] is a space-based radio-navigation system, consisting of

24 satellites and ground support. The system is operated by the United States military, and

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 30

provides civilian users with accurate information about their location and velocity anywhere

in the world.

Figure 12: The 24 GPS satellites [16].

The satellites transmit signals to equipment on the ground. GPS receivers passively receive

satellite signals; they do not transmit. GPS receivers require an unobstructed view of the sky,

so they are used only outdoors and they often do not perform well within forested areas or

near tall buildings. GPS operations depend on a very accurate time reference, which is

provided by atomic clocks on board.

A GPS receiver "knows" the location of the satellites, because that information is included in

satellite transmissions. By estimating how far away a satellite is, the receiver also "knows" it

is located somewhere on the surface of an imaginary sphere centred at the satellite. It then

determines the sizes of several spheres, one for each satellite. The receiver is located where

these spheres intersect.

2.2.7.1 NMEA 0183 specification

NMEA stands for The National Marine Electronics Association and is a group dedicated to

the education and advancement of the marine electronics industry and the market which it

serves. The NMEA 0183 is a combined electrical and data specification for communication

between GPS receivers. It uses a simple serial protocol transmitting a "sentence" from one

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 31

"talker" to one or more "listeners". This NMEA format is transmitted periodically from the

GPS serial output in ASCII text.

An example of a NMEA sentence (position and time) [22]:

$GPRMC,235947.000,V,0000.0000,N,00000.0000,E,,,041299,,*1D

The different fields in the example are described in Table 6.

Table 6: NMEA 0183 position and time fields [21]

Field Example Comments

Sentence ID $GPRMC

UTC Time 092204.999 hhmmss.sss

Status A A = Valid, V = Invalid

Latitude 4250.5589 ddmm.mmmm

N/S Indicator S N = North, S = South

Longitude 14718.5084 Dddmm.mmmm

E/W Indicator E E = East, W = West

Speed over ground 0.00 Knots

Course over ground 0.00 Degrees

UTC Date 211200 DDMMYY

Magnetic variation Degrees

Magnetic variation E = East, W = West

Checksum *25

Terminator CR/LF

2.2.7.2 The UTM system

The Universal Transverse Mercator (UTM) [23] projection system is a grid-based method of

specifying locations on the surface of the Earth. It has the same goal as the traditional latitude

and longitude representation, but differs in several respects. The UTM system is not a map

projection, but rather employs a series of zones based on specifically defined transverse

mercator projections. The system uses two kinds of zones: latitude zones and longitude zones.

There exist 20 latitude zones and 60 longitude zones, where the latitude is given by letters and

longitude by numbers.

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 32

Figure 13: The UTM zones in Europe

To give a location in the UTM system, first the latitude zone is given, then the longitude zone,

and in addition numbers of meters east and north of the reference point (bottom right of the

zone). By using the UTM system, GPS positions can easily be handled, since the location is

given in metres.

2.2.8 GPRS/EDGE

The sensor information from the sea cages is transferred over the air via GPRS [17] (General

Packet Radio Services). GPRS is a packet-switched technology that enables Internet Protocol

data communications over mobile networks. GPRS offers a tenfold increase in data speed

over previous (circuit-switched) technologies, up to 115 kbit/s (in theory). Typical real-world

speeds are around 30-40 kbit/s. Like GSM in general, GPRS is an open standards driven

system and the standardisation body is the 3GPP (Third Generation Partnership Project) [18].

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 33

Figure 14: GPRS architecture

The GGSN (Gateway GPRS Support Node) is the node which carries out the role in GPRS

equivalent to the Home Agent in Mobile IP. It is a router which de-tunnels user data from

GPRS Tunnelling Protocol and sends out normal user data IP packets. The SGSN (Serving

GPRS Support Node) is the node which in some sense carries out the same function as the

Foreign Agent in Mobile IP.

The Packet Control Unit (PCU) is a late addition to the GSM standard. It performs some of

the processing tasks of the BSC, but for packet data. The allocation of channels between voice

and data is controlled by the base station, but once a channel is allocated to the PCU, the PCU

takes full control over that channel. The PCU can be built into the base station, built into the

BSC or even, in some proposed architectures, it can be at the SGSN site

The M2M modules on the sea cages also support EDGE (Enhanced Data for Global

Evolution). This is an upgrade for GSM/GPRS networks that triples data rates (speed) over

standard GPRS. EDGE is used automatically when both the phone and network support it.

EDGE phones will automatically revert to the slower GPRS standard when EDGE service is

not available.

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 34

3 Realization of FiFaMoS

This chapter will describe the entire development process of the fish farm monitoring system,

or FiFaMoS, as it is called. The work has been done according to a model called the "Rational

Unified Process", or RUP. Using the RUP, software product lifecycles are broken into

individual development cycles, or iterations. These iterations are further broken into several

phases. In RUP, these phases are as follows:

• Inception Phase

• Elaboration Phase

• Construction Phase

• Transition Phase

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 35

Figure 15: The RUP design process

As seen from the figure, RUP is two-dimensional; the horizontal axis represents time and

shows the dynamic aspects of the process model. The vertical axis represents the different

aspects of the process in form of different activities.

Due to the limited time of the project, only two iterations were completed, but the software

engineering have still benefited from using the RUP model. All the different phases will be

documented in this chapter, and detailed description of the work process can be found in

Appendix G.

3.1 Prestudy

The prestudy part of the project involves calculating the goals and discovering external

conditions, success factors and risks. We have also listed the standards and software used, and

the project organization.

3.1.1 Project goals

The project goals are basis for:

• agreeing with the employer on the project result

• project planning and management

• getting a common understanding of the tasks within the project group

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 36

Goals are separated into two different groups: The result goals and the effect goals.

3.1.1.1 Result goals

The result goals describe the definitive results of the project. Result goals of this project

include the following tasks:

• Specify, design and implement a context-aware service on the APMS context

management system.

• The service will be realized by a collaboration of components contained in and

interworking with the context manager.

• Specify, design and implement a context source application on a M2M GPRS module

• Specify, design and implement a context consumer client for PCs

• Specify, design and implement a context consumer client for mobile phones

• The project will span over 21 weeks

• The system shall be finished by June 12th

3.1.1.2 Effect goals

The effect goals describe what the employer will achieve by the project. Effect goals of our

project include:

• Increased development and knowledge of context-aware applications

• Increased development and knowledge about M2M equipment and applications

• Increased GPRS traffic that leads to increased revenue

In addition, the fish farm industry will have the following effect goals:

• Increased control of the fish farms

• Optimizee the fish production process

• Reduced travelling for the fish farm operators due to increased surveillance, and more

efficient work flow

• Reduced fish loss and environmental damage if a sea cage is drifting away

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 37

3.1.2 Critical success factors

Many factors will affect the success of the project. The system will include many different

hardware types that will need to cooperate, and some of the existing software modules will

have to work as we anticipate. The most important critical success factors are identified in the

following list:

• The sensor gathering module will have to be able to communicate with the context

manager

• The GPS must be able to communicate with the sensor gathering module

• Sensors used must be compatible with the inputs of the sensor gathering module

• The context manager must have enough storage capacity to store at least a month of

sensor information

• The context manager must have high performance to handle all requests from context

sources and context consumers

• All nodes in the system will have to be stable and operate error free. This escpecially

applies to the application that acquires sensor information, because debugging and

error recovery is difficult off-shore.

• If an error occurs on an off-shore node, it should be fixed by an automatic reboot.

• The clients must be easy to operate and have a user-friendly graphical interface.

3.1.3 Risk analysis

The risk analysis documents conditions that can prevent the project from succeeding. First

some main elements of risks in this project are mentioned, and then they are plotted in a

diagram showing the degree of consequence and probability. Elements of risk top right will

have to be carefully investigated before the project can continue. An investigation of the

elements follows after the diagram.

1. The M2M technology used is new and not that much tried and tested.

2. The APMS context manager is under development, and bugs can prevent our system

from working properly

3. Needed expertise and resources can be difficult to obtain

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 38

4. The system implementation can be so unstable that the uptime for the system will not

be good enough

5. Low system security will prevent the system from being useful

6. The M2M module does not have enough functionality to manage all the tasks

mentioned in the requirements

Figure 16: Risk analysis diagram

3.1.3.1 Comments

The first element of risk is that the M2M technology is new and not that much tried and

tested. This element has low probability and medium consequence. Even though M2M

technology is not that much used in public, it has been around for several years, and a lot of

research has been done in the field. It should be possible to find an M2M product that is of

high enough quality to serve as a sensor controller on a sea cage. If not, an industrial

computer with GPRS interface would be a good replacement, but that would cost more, and

add a lot of complexity to the system.

The second element of risk claims that the APMS middleware is under development, and bugs

can prevent the system from working properly. This is the element with the highest

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 39

probability, and it has got a medium consequence level. The middleware is not yet 100%

finished, but shall have enough functionality for the project to be useful. If critical bugs stop

the system from functioning, it is a serious matter, but since contact with the development

team is established, bugs can be fixed during the project. If very serious bugs occur, it is

possible to use other context management systems, like Akogrimo [1] for instance.

The third element of risk says that it can be difficult to obtain the needed expertise and

resources. This element has low probability and high consequences. Since the project work

will be located at Telenor Research and Development, highly skilled personnel, and a high

amount of technical equipment will be accessible. If further expertise or equipment is needed,

it could probably be found on the Internet.

The fourth element of risk mentions that a bad system implementation could make the system

uptime too low. This element has low probability and medium consequences. After several

years with programming experience, the development team should be capable of delivering a

system that is stable enough to operate over a long time. If stability problems should occur, it

is not the biggest problem. The main goal of the thesis is to make a functioning prototype, not

an implementation that works error-free for years.

The fifth element of risk claims that low system security will prevent the system from being

useful. This element has medium probability and low consequences. High security is

important in a finished product ready for the market, but in this prototype, it will not be of

high interest.

The last element of risk is that the M2M module does not have enough functionality to

manage all the tasks mentioned in the requirements. This element has medium probability and

medium consequences. If this happens, other hardware modules will have to be added, or the

M2M module will have to be replaced by an industrial computer. If this is not possible, the

requirements list will have to be re-evaluated.

Seen as a whole, the project seems to have a tolerable amount of risk, and can be continued.

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 40

3.1.4 Standards and software used

In this project, the implementation is done in Java, both Java Standard Edition and Java Micro

Edition. To ease the implementation, software development tools are used. Eclipse was

chosen due to earlier positive experiences with this software. When implementing the

FiFaMoS Mobile Context Consumer and the FiFaMoS Context Source application, the

EclipseME plug-in was used. This plug-in makes development of J2ME MIDlets easier.

EclipseME does the demanding work of connecting wireless toolkits to the Eclipse

development environment, and allows the user to focus on the development process.

The wireless toolkit used is Sun Java Wireless Toolkit 2.1. This is a toolbox for developing

wireless applications that are based on J2ME's Connected Limited Device Configuration

(CLDC) and Mobile Information Device Profile (MIDP), and designed to run on cell phones,

and other small devices. The toolkit includes emulation environments, performance

optimization and tuning features that improve the development process.

To configure the sensor value gathering M2M module, Aplicom N12i configurator is used

(see appendix E.1). With this software, GPRS settings, GSM settings, serial port settings, and

other parameters can be altered. It is also the software that is used to upload and start

applications on the M2M module.

To test M2M applications without uploading them to the module, the Aplicom N12i concept

simulator is used (see appendix E.2). This simulator has the same functionality as the module,

and also logs debug information.

The context manager runs on a computer situated at the PATS-lab at Telenor Tyholt. To avoid

visiting this computer every time new configuration is needed, a desktop sharing system is

used. The software used is Real VNC Viewer 4. To upload files to the context manager, SSH

Secure Shell File Transfer is used.

When creating the service on the APMS context manager, a tool called JMX monitor was

used (see appendix E.3). This makes it easy to invoke methods and test the service. In

addition it provides good debug information that makes error searching easier.

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 41

All reporting is done in Microsoft Office Word 2003, and figures are either created in

Microsoft Visio or edited in Jasc Paint Shop Pro 9.

3.1.5 Project organization

The project is being worked out by Frank Paaske and Jon Arne Grødal. We have been doing

this project together, but our focus has been on different parts of the system, Frank is

responsible for the sensor value gathering system, and the context management, and Jon Arne

is responsible for the user side of the system. Also several others are taking part in the project,

including Per-Oddvar Osland and Frode Flægstad at Telenor Research and Development

which are supervisors. The APMS context manager used has been developed by Arne Munch-

Ellingsen, and he is helping us with the development of the components needed in our system.

He has also been updating the context manager after requests from us.

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 42

3.2 Requirement specifications

In this chapter, the functions of the system will be described. Requirements for

implementaion, data and system quality will also be discussed.

In a fish farm there are several needs for surveillance. Each sea cage will have several

sensors, and a GPS for positioning info. The status of the sensors is sent periodically to the

context manager which distributes this information to the receivers. There exist many types of

sensors that can be used in a fish farm. Examples are:

• Positioning (GPS)

• Sea cage net sensor

• Wave sensor

• Water level sensor

• Water quality sensor

• Temperature sensor

• Wind sensor

• Food level sensor

• Current sensor

• pH sensor

• Oxygen content

Since this is only a prototype, not all sensor types will be implemented in the system, but the

system shall provide an easy way of adding new sensor types. We are not going to test the

system on a real sea cage, and have therefore only implemented support for some sensors.

During testing, dummy sensors will fill the role of producing sensor values, but the

positioning information will come from a real GPS receiver.

3.2.1 Functional requirements

Table 7 lists the tasks that the system is required to perform. The phase column states if the

task is going to be implemented in iteration one or iteration two.

Table 7: Functional requirements

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 43

Requirement Description Phase

FR1 Read sea cage sensor values 1

FR1.1 Read sea cage position (GPS) 2

FR1.2 Read sea cage net sensor 1

FR1.3 Read wave sensor 1

FR1.4 Read water level sensor 1

FR1.5 Read temperature sensor 1

FR1.6 Read water quality sensor 1

FR1.7 Read food level sensor 1

FR1.8 Read wind sensor 1

FR1.9 Read current sensor 1

FR1.10 Read pH sensor 1

FR1.11 Read oxygen content 1

FR2 Get historical sensor values (all sampled values) 1

FR2.1 Get history for last 60 minutes 1

FR2.2 Get history for last 24 hours 1

FR2.3 Get history for last week 1

FR2.4 Get history for last month 1

FR3 Send alarm 2

FR3.1 Send alarm when sensor values are out of range 2

FR3.2 Send alarm when a sea cage is out of position 2

FR3.3 Send alarm via SMS/MMS 2

FR4 Display alarm in application/web interface 2

FR5 Start surveillance camera session 2

FR6 Store logging data to file 2

FR7 Alter fish farm configuration from the PC client 2

FR7.1 Alter frame configuration 2

FR7.1.1 Add new frame 2

FR7.1.2 Update existing frame 2

FR7.1.3 Delete existing frame 2

FR7.2 Alter sea cage configuration 2

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 44

Requirement Description Phase

FR7.2.1 Add new sea cage 2

FR7.2.2 Update existing sea cage 2

FR7.2.3 Delete existing sea cage 2

FR7.3 Alter sensor configuration 2

FR7.3.1 Add new sensor 2

FR7.3.2 Update existing sensor 2

FR7.3.3 Delete existing sensor 2

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 45

3.2.2 Use case modelling

Use case modelling captures the potential requirements of the system. Each use case provides

one or more scenarios that convey how the system should interact with the end user or another

system to achieve a specific business goal. The following section describes the most

important use cases for the system. The graphical use case diagram shows the functions, and

textual descriptions come afterwards.

Figure 17: Identified use cases in the context consumer client

In the FiFaMoS system, three main actors are identified: The end user, and the Aplicom M2M

module, and a timer. The system functionality could also be described by defining other

actors (like for instance the sensors), or with one diagram per application (client, context

manager and M2M module application), but it is found that this description represents the

functionality in the best way. It is also the timer, user and the M2M module application that

triggers most of the functionality of the system.

The diagram introduces two kinds of relations: the << extends >> relation, and the << uses >>

relation. This first indicates that the behaviour of the extension use case may be inserted in the

extended use case under some conditions, and the latter that the use case often depends on the

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 46

outcome of the included use case. The << uses >> relation is also referred to as the <<

includes >> relation in some documents. Lines from the actors to the use cases indicate that

the use case is triggered by the actor.

3.2.2.1 Use-Case Specification: <Use-Case: Update and process context>

Table 8: Use-Case: Update and process context

Actors: Aplicom M2M module application

Description:

This use case makes the M2M application able to update context

information in the context manager. The context information is

received and processed. The processing involves interpreting

mV sensor values to real values like degrees (temperature) or

percentage value (oxygen level).

Preconditions:
Aplicom M2M module application running, context manager

running.

Postconditions:
Processed context are stored in the database and required alarms

are sent

Normal Flow:

1. Aplicom M2M module application sends new context

information

2. Context is received

3. Context is interpreted

4. Sensor data is compared to the preset limits

5. The value is allowed

Alternative Flows:

1. Aplicom M2M module application sends new context

information

2. Context is received

3. Context is interpreted

4. Sensor data is compared to the preset limits

5. The value is not allowed.

6. The alarm use case is triggered

Uses:

Priority: High

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 47

Frequency of Use: Every time new context is received from context sources

Business Rules:

Special Requirements:

Assumptions:

Notes and Issues:

3.2.2.2 Use-Case Specification: <Use-Case: Display current sensor values>

Table 9: Use-Case: Display current sensor values

Actors: Timer

Description:

This use case makes the user able to view the current sensor

values. The sensor values will be displayed in the graphical user

interface of the client.

Preconditions:

Context manager running, client (FiFaMoS Context Consumer

or FiFaMoS Mobile Context Consumer) running. Database has

sensor values stored.

Postconditions: Client GUI is updated with the current sensor information

Normal Flow:

1. A timer triggers the display current sensor values use

case

2. The last sensor values stored in the database is requested

and sent back to the client

3. Sensor values are displayed in the client GUIs.

Alternative Flows:

Uses: Get sensor values from DB

Priority: High

Frequency of Use: Every time new context is received from context sources

Business Rules:

Special Requirements:

Assumptions:

Notes and Issues:

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 48

3.2.2.3 Use-Case Specification: <Use-Case: Store in DB>

Table 10: Use-Case: Store in DB

Actors: Aplicom M2M module application or user

Description:

This use case stores the context (sensor values) to a database, so

that it can be fetched later by the clients. This makes it possible

to view historical sensor data.

Preconditions:
Context manager running, Aplicom M2M module application or

PC client running.

Postconditions: Sensor values or new configurations are stored in the database

Normal Flow:

1. New interpreted context from the update and process

context use case is received

2. Sensor values are stored in the database

Alternative Flows:
1. New configuration is received from the user

2. Configuration is stored in the database

Uses:

Priority: High

Frequency of Use:
Every time new context is received from context sources , or

new configuration is received from the context consumers.

Business Rules:

Special Requirements:

Assumptions:

Notes and Issues:

3.2.2.4 Use-Case Specification: <Use-Case: Request historical sensor

values>

Table 11: Request historical sensor values

Actors: User

Description:
This use case makes the user able to view the historical sensor

values. The historical sensor values will be displayed in a graph.

Preconditions: Context manager running, client (FiFaMoS Context Consumer

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 49

or FiFaMoS Mobile Context Consumer) running.

Postconditions: Sensor values are displayed in a graph in the client

Normal Flow:

1. The user chooses to view historical sensor values (which

sensor and the period)

2. The context manager gets the values from the DB, and

displays them in the UI.

Alternative Flows:

Uses: Get sensor values from DB

Priority: High

Frequency of Use: Every time the user chooses to view historical sensor values.

Business Rules:

Special Requirements:

Assumptions:

Notes and Issues:

3.2.2.5 Use-Case Specification: <Use-Case: Get sensor values from DB>

Table 12: Use-Case: Get sensor values from DB

Actors: User or timer

Description:
This use case makes is possible to get stored sensor values from

the database in the context manager.

Preconditions:
Context manager running, client (FiFaMoS Context Consumer

or FiFaMoS Mobile Context Consumer) running.

Postconditions:

Normal Flow:

1. The user chooses to view historical sensor values (which

sensors and the period)

2. The context manager gets the values from the DB, and

displays them in the UI.

Alternative Flows:
1. The timer task requests the current sensor values

2. The context manager gets the values from the DB, and

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 50

displays them in the UI.

Uses:

Priority: High

Frequency of Use:
Every time the user chooses to view historical sensor values, or

the timer task requests the current values.

Business Rules:

Special Requirements:

Assumptions:

Notes and Issues:

3.2.2.6 Use-Case Specification: <Use-Case: Send alarm>

Table 13: Use-Case: Send alarm

Actors: Aplicom M2M module application

Description:
This use case sends an alarm to the user if a sensor value is out

of bounds

Preconditions:
Context manager running, PC client running or operator mobile

phone reachable

Postconditions:

Normal Flow:
1. A sensor value is out of bounds

2. An alarm message is sent to UI

Alternative Flows:

1. A sensor value is out of bounds

2. An alarm message is sent to the operators mobile phone

via SMS

Uses:

Priority: High

Frequency of Use: Every time a sensor value is out of bounds

Special Requirements:

Assumptions:

Notes and Issues:

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 51

3.2.2.7 Use-Case Specification: <Use-Case: Update fish farm configuration>

Table 14: Use-Case: Update fish farm configuration

Actors: User

Description:
This use case lets the user alter the fish farm configuration. It is

possible to add/remove/modify frames/sea cages/sensors.

Preconditions: Context manager running, PC client running

Postconditions:
New configuration is stored in the database, and the involved

M2M modules are automatically updated

Normal Flow:

1. A user alters the configuration with the PC client

2. The configuration is sent to the context manager

3. The context manager alters the database according to the

new configuration.

Alternative Flows:

Uses:

Priority: Medium

Frequency of Use: Every time a user wants to alter the fish farm configuration

Business Rules:

Special Requirements:

Assumptions:

Notes and Issues:

3.2.3 Implementation requirements

This section describes various implementation requirements. That includes language and

technological choices as well as requirements to different implementation solutions.

Table 15: Implementation requirements

Requirement Description Priority

IR1 The system shall use the APMS context management system High

IR2 Output/input/processing/configuration plug-ins shall be

implemented in java/xml

High

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 52

Requirement Description Priority

IR3 The mobile client shall be implemented in J2ME High

IR4 The PC client shall be implemented in J2SE High

IR5 The M2M module application shall be implemented in J2ME High

IR6 XML-RPC web services shall be used for communication

between the mobile client and the context manager

High

IR7 XML-RPC web services shall be used for communication

between the PC client and the context manager

High

IR8 XML-RPC web services shall be used for communication

between the M2M module and the context manager

High

IR9 Objects shall be represented in XML when transferred via

XML-RPC

High

IR10 The M2M module configuration is set by a XML document

sent in the web service response.

Medium

IR11 Alarms shall be triggered by the context manager High

IR12 Alarms shall be sent via XML-RPC to the PC client, and via

SMS to the operators mobile phone

Medium

IR13 The M2M module shall send the SMS alarm Medium

IR14 Camera sessions media is transferred via the context manager Medium

IR15 The communication link between the M2M module and the

context manager shall be GPRS/EDGE

Medium

3.2.4 Data requirements

To allow the user to view historical sensor data, sensor context has to be stored in persistent

memory. For this, a database in shall be used. Over time, a lot of data will be generated, and

the database will have to be able to handle these amounts of data. Below, a scenario where a

fish farm containing 50 sea cages, each with five sensors, are inspected. The sea cages are set

up to poll their sensor information once a minute.

According to the normal nature of typical sensor information, each value (including

timestamp and various other information) will need approximately 100 bytes of information

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 53

stored in the database. For the history function to be useful, at least one month of data should

be stored. This generates the following amount of data:

Number of sensors per sea cage * number of sea cages per frame * number of frames *

amount of data per sensor value * number of minutes in a month = 5 sensors * 10 sea cages *

5 frames * 100 bytes * (60 * 24 * 30) minutes = 1080000000 bytes/month = 1080000

KB/month = 1080 MB/month = 1GB/month.

This shows that to get one month of sensor history in a fish farm with 50 sea cages, the data

base will have to be able to cope with approximately 1GB of data. Most of today’s computers

have this much storage capacity, and most of today’s databases will have no problems

handling this much information.

To make the configuration of the the mobile client application stay intact between sessions

and during power loss or reboot, it has to be stored permanently. It is assumed that the

configuration will need about 200 bytes of storage place, and that can be placed in the

module’s or phone’s internal record store (persistent memory).

The PC client will also have to store its settings permanently. The size of the configuration is

about the same as the mobile client, and the settings can be stored in a properties file on the

hard disk.

Not all data transmission in the system uses the Internet. The GPS and the camera are

connected to the M2M module via serial interfaces. These interfaces are going to be

configured to use a baud rate at 115200 bps. The GPS sends the positioning data as pure

ASCII text according to the NMEA 0183 standard (see section 2.2.7.1), while the camera

sends and receives hexadecimal commands and data.

3.2.5 Quality requirements

The system is supposed to offer near real-time responses. However, low bandwidth links like

GPRS, and multi hop links like the Internet will add a considerable amount of delay. This

delay should not be more than a second, but for responses with high amount of data (like the

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 54

get historical sensor values functionality) the response time for the mobile client could be as

high as a couple of seconds. This should not be a problem on the PC client (assuming the PC

has got a broadband connection).

It is important that the sensor values presented in the clients are up to date. If sensor data shall

be pushed periodically to the context manager, and the clients shall pull the sensor data

periodically, the values could be aged. In a worst case scenario the sensor value displayed in

the client is not the current value, but a value with the age: sensor gathering interval + client

refresh interval + transmission and processing delay. If both these interval values are set to

one minute, the sensor values displayed in the client could be up to 2 minutes old. However,

they will most often not be that old, and our assumption is that about 1 minute will be a

normal age for the displayed sensor value. This is considered to be sufficient for this kind of

surveillance. If not, the refresh intervals will have to be set lower. However, this increases the

demands for data storage, and the GPRS expenses.

Since the M2M module(s) will be placed off-shore, error recovery and service will not be an

easy task. Therefore it is important that the application is fail-safe. However, this is not

always easy to accomplish, so error recovery routines must be implemented. It is wanted that

the M2M modules shall reboot themselves if an error occurs. The FiFaMoS system shall not

fail more often than once in a 150 days period, and error recovery shall not take more than

two hours.

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 55

To sum up the chapter, the following quantifiable quality requirements were settled:

Table 16: Quality requirements

Requirement Description

QR1 MTBF: The system shall have a mean time between failures of at least 150

days.

QR2 MTTR: The system shall have a mean time to repair of less than two hours.

QR3 Response times for getting current sensor data for a sea cage shall not be over

one second

QR4 Displayed sensor value age shall not be over two minutes

Assuming these requirements, the system will have an availability A like this:

A = MUT/MTBF = 1 – U = 1 – MTTR/MTBF = 1 – (2/150*24) = 0,9994444444 = 99,9444%

3.2.6 Technical requirements

Technical requirements specify the high-level requirements to the hardware and software of

the system. The technical requirements are stated in Table 17.

Table 17: Technical requirements

Requirement Type Description

TR1 Software The system shall not be dependent of program modules not

supplied

TR2 Software The clients shall be able to run on multiple operating systems,

including Windows and Unix/Linux

TR3 Hardware The system shall be accessible from any normal PC/PDA/other

terminal

TR4 Hardware The system has to be run hardware that satisfies the requirement

to response time

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 56

3.3 Design

In the design phase of the project, various system models are made. These models are

represented graphically in diagrams. Most of the diagrams used in this project are UML

diagrams, but also SDL is used. The system model contains of three main parts:

• The functional model that shows the functionality from the user's point of view. This

includes Use Case Diagrams (introduced in the requirement specification).

• The object model, that shows the structure of the system using objects, attributes,

operations, and associations. This includes class diagrams (see Appendix F).

• And at last the dynamic model that shows the internal behaviour of the system. That

includes Sequence Diagrams and Activity Diagrams.

In addition to the UML and SDL modelling, the architecture and context data model are also

defined. First the architecture of the system is described.

3.3.1 Architecture description

This section describes the system architecture. In the architecture design, the main approach

was to keep the number of nodes as low as possible. This was done to reduce complexity and

the number of failure sources.

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 57

Figure 18: The system architecture

The whole system consists of three main parts as suggested by Indulska in Figure 5: The

context source part (FiFaMoS Context Source), the context manager (APMS middleware) and

the context consumers (FiFaMoS Context Consumer and FiFaMoS Mobile Context

Consumer). The interaction between the nodes is suggested using web services. This is done

to make the system as loosely coupled as possible, and to get a Service Oriented Architecture

(SOA). Because the only web server in the system is the one in the APMS middleware, the

APMS cannot be the one taking initiative to communication. This way web service calls are

made from the context source to push sensor data to the context manager, and equivalent from

the context consumer to pull information from the context manager.

The internal architecture of the APMS context manager consists of components. In this

system, the only components needed are an input component and an output component. The

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 58

input component is responsible for receiving data (for instance sensor values) and storing it to

persistent memory, while the output component is responsible for sending out requested data.

To get further overview of the system architecture, Figure 19 introduces a block diagram of

the system modules and interfaces.

Figure 19: Block diagram of the system architecture

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 59

3.3.2 Component view

Figure 20 shows a component diagram of the whole system. This diagram's purpose is to

show the structural relationships between the components of the system.

Figure 20: UML component diagram

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 60

3.3.3 Database model

The context information in the system is stored permanently to a database. The modelling of

the context data was done using an ER-diagram (Figure 21). The different tables are described

in detail under:

Figure 21: ER data model

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 61

3.3.3.1 Frame table

A number of sea cages are tied together in a frame (shown in Figure 1). One frame normally

contains 2x5 sea cages, and it is found reasonable to represent these frames in the database to

ease navigation between the sea cages.

Table 18: Frame table elements

Name Description Source Attribute

type

Attribute

domain

Key

FrameID Unique table
identifier

Automatically
generated

Integer Starts with 1,
increments by
1

Primary

Location Textual
description of
the fish farm
location

Set by user String Up to 200
characters

None

Description Frame
information

Set by user String Up to 200
characters

None

Mobile Mobile number
of the
responsible
operator

Set by user String

Up to 200
characters

None

E-mail E-mail address
to the
responsible
operator

Set by user String Up to 200
characters

None

Updated Indicates if the
frame or any of
it’s sea cages
has been
updated

Automatically
set when
something is
updated

Integer 0 or 1
representing
true or false

None

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 62

3.3.3.2 Sea Cage table

The sea cage is the structure where the fish lives and grows (shown in Figure 1). It is

composed by a floating elements (often round) and the net that prevents the fish from

escaping. Each sea cage has a set of sensors, and its own M2M module that collects sensor

information. The module is identified by the IMEI-field in the table.

Table 19: Sea Cage table elements

Name Description Source Attribute

type

Attribute

domain

Key

SeaCageID Unique table
identifier

Automatically
generated

Integer Starts with 1,
increments by
1

Primary

InitialLatitude Where the Sea
Cage is located
when
initialized

GPS data
from Aplicom
L4002

String Up to 200
characters

None

InitialLongitude Where the Sea
Cage is located
when
initialized

GPS data
from Aplicom
L4002

String Up to 200
characters

None

Latitude Where the Sea
Cage currently
is located

GPS data
from Aplicom
L4002

String Up to 200
characters

None

Longitude Where the Sea
Cage currently
is located

GPS data
from Aplicom
L4002

String Up to 200
characters

None

Description Sea cage
information

Set by user String Up to 200
characters

None

IMEI IMEI number
of the M2M
module on the
sea cage

Set by user String Up to 200
characters

None

FrameID Id of the frame
where the sea
cage is located

Set by user Integer

Any of the
previously set
FrameIDs in
the Frame
table

Foreign Key

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 63

3.3.3.3 Sensor table

The sensor table stores the static information about the sensors. This includes identification,

type, maximum allowed value and minimum allowed value.

Table 20: Sensor table elements

Name Description Source Attribute

type

Attribute

domain

Key

SensorID Unique table
identifier

Automatically
generated

Integer Starts with 1,
increments by
1

Primary

SensorTypeID Indicates the
type of sensor
from the
SensorType
table

Set by user String Any of the
previously set
SensorTypeIDs
in the
SensorType
table

Foreign Key

MaxValue Indicates the
upper limit of
allowed values

Set by user Integer Any integer
between the
range of the
sensor type

None

MinValue Indicates the
lower limit of
allowed values

Set by user Integer Any integer
between the
range of the
sensor type

None

SeaCageID Id of the sea
cage where the
sensor is
located

Set by user Integer

Any of the
previously set
SeaCageIDs in
the SeaCage
table

Foreign Key

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 64

3.3.3.4 Sensor value table

To allow historical sensor values, each sensor value will have to be stored. This is done in the

sensor value table. Each sensor value is stored with a timestamp (received), ID and which

sensor the value came from.

Table 21: FishFarm table elements

Name Description Source Attribute

type

Attribute

domain

Key

SensorValueID Unique table
identifier

Automatically
generated

Integer Starts with 1,
increments by
1

Primary

Value Processed
value from the
sensor

Physical
sensor data
from Aplicom
12

Integer Any value
within the
range of the
sensor type

None

Received When the
sensor value is
received

Automatically
set

Timestamp yyyy-mm-dd
hh[:mm[
:ss[.nnnnnn]]]

None

SensorID Id of the
sensor where
the sensor
value belongs
to

Set by user Integer

Any of the
previously set
SensorIDs in
the Sensor
table

Foreign Key

3.3.3.5 Sensor type table

There exist a number of sensor types. These can be temperature, net growth, oxygen level and

many others. The sensor types with accompanying parameters are stored in this table.

Table 22: FishFarm table elements

Name Description Source Attribute

type

Attribute

domain

Key

SensorTypeID Unique table
identifier

Automatically
generated

Integer Starts with 1,
increments by
1

Primary

Type Name of the
sensor type

Set by user String Up to 200
characters

None

Description Textual
description of
the sensor type

Set by user String Up to 200
characters

None

MaxRange The maximum Set by user Integer +/- None

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 65

Name Description Source Attribute

type

Attribute

domain

Key

sensor value
outputted from
the sensor

2.147.483.648

MinRange The maximum
sensor value
outputted from
the sensor

Set by user Integer +/-
2.147.483.648

None

3.3.3.6 Alarm table

When a sensor value is out of bounds an alarm is triggered. Every alarm gets stored in the

database in the alarm table.

Table 23: FishFarm table elements

Name Description Source Attribute

type

Attribute

domain

Key

AlarmID Unique table
identifier

Automatically
generated

Integer Starts with 1,
increments by
1

Primary

Message String
representing
the error
message

Set by the
context
manager

String Up to 200
characters

None

SeaCageID Tells which sea
cage triggered
the alarm.

Set by the
context
manager

Integer One of the
previously set
SeaCageIDs

Foreign key

SensorID ID of the
sensor that
triggered the
alarm

Set by the
context
manager

String Up to 200
characters

Foreign key

Confirmed Indicates if and
when the alarm
is confirmed

Set by client
when user
confirms

Timestamp yyyy-mm-dd
hh[:mm[
:ss[.nnnnnn]]]

None

isSent Indicates if the
alarm is sent or
not

Set by the
context
manager

Integer 0 or 1
representing
true or false

None

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 66

3.3.4 Interfaces

This section describes the interfaces between the components introduced in Figure 20. The

most important message flows in the system are shown, and they are presented as UML

sequence diagrams.

3.3.4.1 FiFaMoS Context Consumer – APMS context manager (E-OC-

XMLRPC2.1)

When the client starts, it needs info about the frames and sea cages in the fish farm. The client

contacts the context manager, which returns this information as XML. The XML is

interpreted, and the FiFaMoS Context Consumer GUI is updated with this information.

Figure 22: Initialize sequence diagram

When a user selects the sea cage that he/she wants to view information on, a new timer task is

created. This timer task gets the current sensor information periodically for the chosen sea

cage.

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 67

Figure 23: Get sensor info sequence chart

If a user chooses to view historical sensor values for a given period, the getHistoryForSensor

method is invoked, and the context manager returns the sensor values with timestamps. The

client will then draw a graph based on these values.

Figure 24: Get historical sensor values sequence chart

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 68

3.3.4.2 FiFaMoS context source – APMS context manager (E-IC-

XMLRPC1.1)

Figure 25 shows the sequence of message passed during normal operation from the context

source to the context manager. When the context source (M2M module) is started, it will

contact the context manager and ask for its configuration. This will be returned as an XML

string that is parsed in the module. When the module is correctly configured, it will

periodically invoke the postSourceXML (String xml) method on the context manager. The

XML elements can contain new sensor values, GPS position or other commands that the

context manager can execute. If the elements contain new sensor values, the context manager

will store these in persistent memory, check if the values are within allowed limits, and send

an XML response to the M2M module. If some of the sensor values are out of bounds, an

alarm message will be added to the XML response. The module will parse this, and send an

alarm as SMS to the given fish farm operator (stated in the configuration). Also, if a new

configuration is available, this will be noticed in the XML response as well.

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 69

Figure 25: Get configuration sequence chart

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 70

3.3.5 Activity diagrams

Activity diagrams represent the business and operational workflows of a system. An activity

diagram shows the overall flow of control, including messages sent and received and

processes that is run. There are many ways to represent the workflow with activity diagrams,

and we have chosen to use the SDL notation.

3.3.5.1 Input component: main operational functionality

The main operational functionality of the context manager’s input component is to receive

XML from the context source, parse this and execute the commands provided in the XML.

These are commands add (for sensor values) and update (for GPS position). When the sensor

value is added and the position is updated, the input component also checks if the new value

and position is within predefined limits. If this is not the case, an alarm is created and stored

in the persitant memory. Finally an XML response is generated, and if there is any alarms that

has not been sent, or if there’s been a change in the configuration of the sea cage, it will be

added to the XML response.

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 71

Figure 26: Activity diagram showing the input component’s main operational functionality

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 72

3.3.5.2 Input component: main administrative functionality

The main administrative functionality of the input component is to let the context consumer

add, update and remove the different parts of the fish farm. This could be to add a frame,

update a sea cage and remove a sensor. When the XML with the commands to be performed

is received, it is parsed and the commands are executed.

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 73

Figure 27: Activity diaram showing the input component’s administrative functionality

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 74

3.3.5.3 Output component: Main operational functionality

The main operational functionality of the context manager’s output component is the make

the stored context (information about the fish farm) available to context consumers. The

component waits for a request from the context consumer, and according to the request, the

appropriate information is collected from the database and returned. The format of the

returned result is XML for methods ending with AsXML, and CSV for the others.

Figure 28: Acitvity diagram showing the output component’s main operational functionality.

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 75

Figure 29: Output component’s main operational functionality continued

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 76

3.3.5.4 Context source functionality

The context source starts with getting its own IMEI number for identification. Then it gets its

configuration as XML (which is generated based on the IMEI number) from the context

manager. When the configuration is parsed and stored, the context source starts to read sensor

values and GPS position, wraps it in XML (with commands) and sends it to the context

manager. As mentioned earlier, the context manager executes the commands and generates

the respons XML. When the response XML is received in the context source, it is parsed and

if there are any alarms, they are sent as SMS to the receiver stated in the configuraten. If

there’s a new configuration available, the context source asks for it.

Figure 30: Acitvity diagram showing the context source functionality

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 77

3.3.5.5 FiFaMoS Context Consumer

3.3.5.5.1 Initialize context consumer

First, the client will contact the context manager to retrieve information about the fish farm.

This information is about the frames and sea cages of the farm. Then the fish farms and sea

cages will be placed in the navigation part of the GUI, and sensor values and graph for the

first unit in the tree will be displayed. At last, the timer (see Figure 32) that makes the sensor

information update itself must be started. The context consumer will then be in the initialized

state.

Figure 31: Activity diagram showing the initialization of the context consumer

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 78

3.3.5.5.2 Context consumer operational functionality

The operational functionality is functions that can be triggered from the main view in the

program. The most important functions are to get current sensor information from a sea cage

and to view graphs for a sensor. In addition, settings can be altered, or the program can be

exited.

Figure 32: Activity diagram showing the operational functionality of the context consumer

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 79

3.4 Implementation

In this chapter, various implementation choices will be mentioned. The different modules and

applications of the system will be discussed one by one, and at the end some encountered

problems and problem solutions will be described.

3.4.1 APMS context manager components

In the following section a description of classes and their most important methods used in the

context manager will be presented.

3.4.1.1 Input component

In this section the input component and its functions are at focus. As mentioned before, the

input component is responsible for receiving data and storing it to persistent memory. In

addition tasks like context processing and alarm triggering can be done in the input

component.

3.4.1.1.1 Methods available via XML-RPC

The input component is described in Input component meta file (see appendix B.1), and the

following methods are defined in the InputMBean-interface, and are made available to the

web service:

• postConsumerXML(String)

o This method is used for administrative operations from the FiFaMoS Context

Consumer. See Code 4: Example of a context consumer XML.

• postSourceXML(String)

o This method is used by the context source to post new context information,

sensor values and GPS information. See Code 5: Example of a context source

XML.

• confirmAlarms()

o This method is used by the context consumer to confirm all alarms that has

been generated

• fillDB(int, int)

o This method is for testing purposes only. The first int is the number of frames

and the second int is the number of sea cages per frame. The method creates 6

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 80

sensor types (oxygen, sourness, water throughput, light, temperature and food

level), and a number of frames with a number of sea cages each. And finally

adds one of each sensor to all the sea cages.

• cleanDB()

o This method cleans the database. It deletes all entries in all tables.

3.4.1.1.2 Other methods in the input component

The following methods are included in the input component, but not available through web

services (XML-RPC). These methods are for internal use only.

• init()

o If anything is needed to be initialized before the component can be used, this is

where to do it. The method is invoked by the context manager on start-up.

• addFrame(Frame)

o This is a method for adding a frame to the system. The parameter is a Frame

object based on the received XML.

• updateFrame(Frame)

o This is a method for updating a frame. The parameter is a Frame object

containing the new info

• removeFrame(int)

o This method is for removing a frame. The parameter is an int, representing the

id of the frame to be removed

• addSeaCage(SeaCage)

o This method is for adding a sea cage to the system. The parameter is a

SeaCage object based on the received XML

• updateSeaCage(SeaCage)

o This is a method for updating a sea cage. The parameter is a SeaCage object

containing the new info

• updateGpsForSeaCage(GPS)

o This method is for updating the sea cage position. This method also checks if

the sea cage is out of bounds (to far away from the initial position)

o This method also sets the initial position of the sea cage if no position has been

set yet

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 81

• removeSeaCage(int)

o This is a method for removing a sea cage. The parameter is an int, representing

the id of the sea cage to be removed

• addSensor(Sensor)

o This is a method for adding a sensor to the system. The parameter is a Sensor

object based on the received XML

• updateSensor(Sensor)

o This method is for updating a sensor. The parameter is a Sensor object

containing the new info

• removeSensor(int)

o This is a method for removing a sensor. The parameter is an int, representing

the id of the sensor to be removed

• addSensorValue(SensorValue)

o This method is for adding a sensor value. The parameter is a SensorValue

object based on the received XML. This method also converts the raw millivolt

value to a real value, based on the sensor type. In addition it checks if the senor

value is out of bounds (higher or lower than the predefined limits)

• addSensorType(SensorType)

o This method is for adding a sensor type to the system. The parameter is a

SensorType object based on the received XML.

• generateXML()

o This method is used for generating XML for the return statement of

postSourceXML (). It checks for alarms and updates and creates an XML

response with the necessary information.

3.4.1.1.3 Detailed description of important methods

The most important methods are described in more detail here.

3.4.1.1.3.1 init()

This method initializes the XML parser with the following code lines:

private XMLReader parser;

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 82

...

parser = XMLReaderFactory.createXMLReader();

parser.setContentHandler(new XMLEventHandler(this));

Code 2: Snippet from the init method

As shown in the code snippet, three different classes are used; XMLReaderFactory,

XMLReader and XMLEventHandler. The XMLReaderFactory is used only to create an

instance of the XMLReader. They are both a part of the org.xml.sax package [50]. The parser

needs a content handler to do something with the parsed XML. The method

setContentHandler takes care of this. The XMLEventHandler is the implementation of the

org.xml.sax.DefaultHandler class which is the class that does XML processing when different

parts of the XML document are reached. The XMLEventHandler takes the

XMLEventListener interface as a parameter in the constructor, and this is used to pass the

processed result back to the input component.

...

parser.parse(

 new InputSource(

 new ByteArrayInputStream(

 xml.getBytes()))

);

...

Code 3: Example of XML parsing

As shown in Code 3, the parse method takes an InputSource as an argument. The InputSource

is a wrapper class for any source the XML document comes from, in this case a

ByteArrayInputStream. The ByteArrayInputStream takes an array of bytes as an argument, so

the getBytes() method is used on the XML string, xml.

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 83

Figure 33: Illustration of how the XML parsing is implemented

When parsing, the Input class runs the XML through the XMLReader (which is the XML

parser) using the parser.parse() method. All events that occur during the parsing are handled

by the XMLEventHandler. This is events like startDocument, startElement, characters,

endElement and endDocument (see Table 24). When an event is finished, the result is passed

on back to the Input class via the XMLEventListener interface’s method passResult(Object).

Table 24: Different events generated during parsing of an XML document

Event Description

startDocument Occurs when start of document is reached

(e.g. the document starts with <xml> but the

startDocument is triggered before the <xml>

tag is reached).

startElement Occurs when start of an element is reached

(e.g. <command>). This is a good place to

initialize all that is needed during parsing of

the element.

characters Occurs when characters are reached (e.g.

<description>Some

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 84

Event Description

description</description>). However, this

event may occur several times on the same

text. In this case one may have one event

giving you the characters ‘some des’ and

another giving ‘cription’.

endElement Occurs when the end of an element is

reached (e.g. </command >). This is a good

place to complete unfinished business

regarding the element, and do whatever is

needed (e.g. pass the result to the Input

class),

endDocument Occurs when the end of the document is

reached (e.g. the document ends with </xml>

but the endDocument is triggered after the

</xml> tag is reached).

3.4.1.1.3.2 postConsumerXML()

The postConsumerXML method is used by context consumers for managing the system. That

means add, remove and update different parts of the system, like frames, sea cages, sensor

types and sensors.

<xml>

<command type=”add”>

<frame>

<id>0</id>

<location>Trondheimsfjorden</location >

<description>Testframe</description>

<mobile>99989796</mobile>

<email>operator@fifamos.net</email>

</frame>

</command>

</xml>

Code 4: Example of a context consumer XML

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 85

The root element is <xml>. It is necessary to have this root element, because the XML parser

will set the first element as document start, and the document end will be after the end tag of

that element. After document end is reached, no more parsing will be done.

The next element is <command> with the parameter type. This indicates that a command is to

be executed. The parameter defines what type of command this is. In this case the type of

command is 'add'. There are currently three different commands; add, update and remove. The

add, update, and remove commands applies to frame, sea cage, sensor type and sensor.

The third element is <frame>. This is an XML representation of a frame. It contains the child

elements <id>, <location>, <description>, <mobile> and <email>, which all add up to the

properties of the frame. The <frame> element could just as well have been <seacage>,

<sensor>, <sensortype> or <sensorvalue> (not used by context consumer), and the child

elements would then have been changed according to the selected element.

When parsing the XML, some objects are created. First, a Command object is created. The

command has two important fields; String commandType and Object obj. The commandType

is one of the three mentioned above (add, update or remove) while the obj is an object

representing the third element (here <frame>).

When the parsing is done, the Command object is sent back to the Input class via the

XMLEventListener interface and executed there, according to the commandType and obj

attributes.

3.4.1.1.3.3 postSourceXML()

The postSourceXML is used by the context source to post information on new sensor values

and GPS position. The method also returns an XML document containing information about

alarms and changes in the configuration of the system using the generateXML() method (see

3.4.1.1.3.5).

<xml>

<command type=”add”>

<sensorvalue>

<sensorid>1</sensorid>

<value>1375</value>

</sensorvalue>

</command>

<command type=”add”>

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 86

<sensorvalue>

<sensorid>2</sensorid>

<value>1187</value>

</sensorvalue>

</command>

<command type=”add”>

<sensorvalue>

<sensorid>3</sensorid>

<value>253</value>

</sensorvalue>

</command>

<command type=”update”>

<gps>

<seacageid>1</seacageid>

<latlng lat=”63 29 2” lng=”10 23 22” />

</gps>

</command>

</xml>

Code 5: Example of a context source XML

The example of source XML from Code 5 is very similar to the consumer XML in Code 4.

The main difference is that only the add and update commands are used, and only sensor

values are added and only GPS positions are updated.

In this example the object to add is <sensorvalue>, which is an XML representation of a

sensor value. It contains the child elements <sensorid> and <value>, which makes up the

sensor value. Further down a new command (update) with a <gps> element is reached. This is

used for updating the position of the sea cage. The <gps> contains the elements <seacageid>

and <latlng>. The latter is used for latitude and longitude coordinates.

Also when parsing this XML document, the Command objects and their appropriate objects

are created. When the parsing is done, the Command object is sent back to the Input class via

the XMLEventListener interface and executed according to commandType and obj.

3.4.1.1.3.4 addSensorValue()

This method performs one of the most essential tasks in the system, that is updating the

system with a new sensor value. When a sensor value arrives as XML it is parsed and passed

to this method. The SensorValue object here is sv. First of all the sensor for the sensor value is

selected.

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 87

Select sel = new Select(”sensor”, getMetaData().getDbType());

sel.and(”id”, Select.EQUAL, sv.getSensorID());

List<Map<String, Object>> list = sel.execute();

Sensor sensor = new Sensor((HashMap) list.iterator().next());

Code 6: Code showing how to select the sensor for the sensor value

Then the sensor type for the sensor is selected. This is done for the conversion of millivolt to

real values.

Select sel = new Select(”sensortype”, getMetaData().getDbType());

sel.and(”id”, Select.EQUAL, sensor.getSensorTypeId());

List<Map<String, Object>> list = sel.execute();

SensorType sensorType = new SensorType((HashMap) list.iterator().next());

Code 7: Code showing how to select the sensor type for the sensor

Now the actual conversion can be done.

int realSensorValue = Convert.convert(

sv.getValue(),

sensorType.getMaxRange(),

sensorType.getMinRange());

Code 8: Code showing how to convert from millivolt to real sensor value

When the conversion is done, it is checked whether the sensor value is out of bounds or not.

outofbounds = false;

if (realSensorValue > sensor.getMaxValue()||

realSensorValue < sensor.getMinValue())

outofbounds = true;

Code 9: Code showing how to check if the value is out of bounds or not

Finally the sensor value is added to the database.

Timestamp now = new Timestamp(new Date().getTime());

Insert in = new Insert(”sensorvalue”, getMetaData().getDbType());

in.column(”value”, realSensorValue);

in.column(”sensorid”, sv.getSensorID());

in.column(”received”, now);

in.execute();

Code 10: Code showing how to insert a sensor value into the database

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 88

If the sensor value was out of bounds, an alarm is created.

Insert in = new Insert(”alarm”, getMetaData().getDbType());

in.column(”seacageid”, s.getSensorID());

in.column(”sensorid”, sv.getSensorID());

in.column(”message”, message);

in.column(”issent”, 0);

in.column(”confirmed”, new Timestamp(0));

Code 11: Code showing how to add an alarm

3.4.1.1.3.5 generateXML()

Because all communication between the context source and the context manager has to be

initiated from the context source, this method is used for generating an XML document as a

reply to the web services call. The XML document generated may contain information about

which alarms to send, and if a new configuration is available. The method may generate an

XML document like this:

<xml>

<alarm id=”7”>

<seacageid>2</seacageid>

<sensorid>4</sensorid>

<message>The sea cage with ID 2 is 59m out of position!</message>

</alarm>

<updated frameid=”1” />

<xml>

Code 12: Example of XML response for the context source

Code 12 shows an alarm that has to be sent and a notice that tells the context source to update

its configuration if it belongs to the frame with ID 1. All the necessary information about the

alarm is included in the XML document, so if the context source had the sensor with the

supplied ID (here: 4) all it has to do is to format and send the alarm as SMS to the number

stored in the configuration.

There is no mail API in the context source used here (Aplicom N12i) so even though the e-

mail address is supplied, the functionality to send alarms as e-mail is not implemented yet.

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 89

3.4.1.2 Output component

In this chapter the output component and its functions are at focus. As mentioned before, the

main task of the output component is to send out requested data or context.

3.4.1.2.1 Methods available via XML-RPC

The output component is described in its meta file (see appendix B.2), and the following

methods are made available in the web service interface:

• getFrames(String, String, String, String)

o This is a method for getting all frames that matches a given search criteria. The

parameters are location, description, mobile and e-mail.

• getSeaCagesForFrame(String)

o This method returns all the sea cages for a given frame. The parameter is the

ID of the frame in question.

• getSensorsForSeaCage(String)

o This method returns all the sensors for a given sea cage. The parameter is the

ID of the sea cage in question.

• getHistoryForSensor(String, String)

o This is a method for getting historical values of a sensor. The parameter is the

ID of the sensor in question, and the period in milliseconds.

• getConfigAsXML(String)

o This method is used by the M2M module to get its configuration based on the

current settings in the fish farm. The parameter is the M2M module’s IMEI

number.

• getFishFarmAsXML()

o This method returns the entire fish farm configuration (set up) as an XML

document.

• getGpsData(String)

o This method is used to get the position of a sea cage. The parameter is the ID

of the sea cage in question.

• getAlarms()

o This is a method for getting all alarms that has not been confirmed.

• getSensorTypes()

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 90

o This method is used to get the available sensor types. It is used for

administrative purposes. Adding a new sensor type gives the possibility to

extend the functionality of the entire system.

3.4.1.2.2 Detailed description of important methods

The most important methods are described in more detail here.

3.4.1.2.2.1 getHistoryForSensor(String, String)

This method is used to get historical sensor values. The parameters are the ID of the sensor in

question and the period of time one wish to study in seconds. Due to some problems with

J2ME not handling long values, seconds had to be used instead of milliseconds (see section

3.4.7.5).

long now = new Date().getTime();

Timestamp t = new Timestamp(now - (Long.parseLong(period) * 1000));

Select sel = new Select(”sensorvalue”, getMetaData().getDbType());

sel.and(”sensorid”, Select.EQUAL, Integer.parseInt(sensorid));

sel.and(”received”, Select.GREATER, t);

sel.orderBy(”received”, Select.ASCENDING);

Code 13: Code showing how to select historical values from a sensor

Code 13 shows how to select historical values from a given sensor. By selecting all sensor

values newer than the current time minus the period supplied, a range of sensor values are

made available.

3.4.1.2.2.2 getFishFarmAsXML()

This method generates an XML document that represents the configuration of the fish farm,

and is used by the context consumer. It is very convenient to use for speed and flexibility. The

following code shows how to generate an XML document representing the structure of the

fish farm:

StringBuffer xml = new StringBuffer();

xml.append("<xml>");

Select selFrame = new Select("frame", getMetaData().getDbType());

List<Map<String, Object>> listFrame = selFrame.execute();

Iterator itFrame = listFrame.iterator();

while (itFrame.hasNext()) {

 HashMap frame = (HashMap) itFrame.next();

 xml.append("\n\t<frame>\n");

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 91

 ...

 Select selSeaCage = new Select("seacage", getMetaData().getDbType());

 selSeaCage.and("frameid", Select.EQUAL, (Integer) frame.get("id"));

 List<Map<String, Object>> listSeaCage = selSeaCage.execute();

 if(listSeaCage.size()<=0)

 xml.append("\t\t<seacage />\n");

 Iterator itSeaCage = listSeaCage.iterator();

 while (itSeaCage.hasNext()) {

 HashMap seacage = (HashMap) itSeaCage.next();

 xml.append("\t\t<seacage>\n");

 ...

 Select selSensor = new Select("sensor", getMetaData().getDbType());

 selSensor.and("seacageid", Select.EQUAL, (Integer)seacage.get("id"));

 List<Map<String, Object>> listSensor = selSensor.execute();

 if(listSensor.size()<=0)

 xml.append("\t\t\t<sensor />\n");

 Iterator itSensor = listSensor.iterator();

 while(itSensor.hasNext()) {

 HashMap sensor = (HashMap)itSensor.next();

 Select selSensorType =

 new Select("sensortype", getMetaData().getDbType());

 selSensorType.and("id", Select.EQUAL,

 (Integer) sensor.get("sensortypeid"));

 List<Map<String, Object>> listSensorTypes = selSensorType.execute();

 Iterator itSensorTypes = listSensorTypes.iterator();

 String sensorType = "";

 if(itSensorTypes.hasNext()) {

 HashMap map = (HashMap) itSensorTypes.next();

 sensorType = (String) map.get("type");

 }

 xml.append("\t\t\t<sensor>\n");

 ...

 xml.append("\t\t\t</sensor>\n");

 }

 xml.append("\t\t</seacage>\n");

 }

 xml.append("\t</frame>\n");

}

xml.append("</xml>");

Code 14: Code extract of how to generate an XML representation of the fish farm

3.4.1.2.2.3 getConfigAsXML()

This method generates an XML document with the correct M2M module configuration, based

on the current set up of the fish farm. The configuration may look like this;

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 92

<xml>

 <frame value= ”1” />

 <seacage value=”1” />

 <sensorid value=”1” />

 <sensorid value=”2” />

 <sensorid value=”3” />

 <interval value=”30” />

 <mobile value=”47744774” />

 <email value=”operator@fifamos.net” />

</xml>

Code 15: Example of XML configuration of the M2M module

This configuration tells the M2M module the following:

• that it belongs to the frame with ID 1 and the sea cage with ID 1

• that it has three sensors with ID 1, 2 and 3

• that it shall send the sensor values at a rate of once per 30 seconds

• that the cell phone number to send the alarms to is 47744774

• that the email to send the alarms to is operator@fifamos.net (not implemented yet)

If any changes are done to the configuration of the fish farm, a notice will be sent to the M2M

module, and the M2M module will automatically update its configuration (see 3.4.1.1.3.5).

3.4.1.3 Other classes

In this part the different classes used in the context manager are described.

3.4.1.3.1 com.telenor.apms.fifamos.objects

Several classes are common for more than one component of the system. Both the context

manager and the context consumer use the same objects when working with the representation

of the fish farm. In this section these objects are described.

• Frame

o This class is the representation of a frame. It has the information on who is the

responsible for this frame (both cell phone number and e-mail), which is used

by the system to send alarms. It is also the “parent node” of sea cage.

• SeaCage

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 93

o This class represents the sea cage. It holds information about which M2M

module that belongs to it, which frame it belongs to, and the current position

given by a GPS coordinate (longitude and latitude).

• SensorType

o This is the representation of a sensor type. It contains information on which

sensor type this is, which unit is uses, and its maximum and its minimum

range.

• Sensor

o This class represents the realization of a sensor type. It has a maximum and a

minimum value, and it knows which sensor type it is and which sea cage it

belongs to.

• SensorValue

o Each sensor produces sensor values, and it’s represented by this class. It knows

which sensor it belongs to and the sensor value.

• Command

o This class represents a command that is passed between the nodes in the

system. A command holds the type of command (add, update, remove etc) and

the object to perform the command on (frame, sea cage, sensor etc). The

command can be generated anywhere, but it is executed on the context

manager.

• GPS

o This is a representation of the GPS information that is gathered at the context

source. It contains information on number of satellites, altitude, latitude and

longitude.

3.4.1.3.2 coms.tools.relational

This package contains components for the abstraction of SQL sentences. Only Insert, Select

and Delete was already implemented.

• Update

o Because the context manager didn’t include an abstraction of the update

functionality for the database, a component for updating an entry in the

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 94

database was made (see appendix B.6). It is based on the Insert class in the

same package, but generates an update SQL statement instead of insert.

3.4.1.3.3 com.telenor.apms.fifamos.utils

Different utilities that were used in the context manager were gathered in this package. Below

is a brief description of the different classes.

• XMLEventHandler

o When a SAX parser is created, a separate class is used for handling events that

occur during parsing. This is events like the start or end of a document or an

element (see Table 24). In this case XMLEventHandler is used. To use the

parsed result somewhere else, an interface is needed.

• XMLEventListener

o This is an interface for communication between the XMLEventHandler and

whatever class that needs the parsed result. In this case it is used to pass the

parsed result to the Input class.

• Convert

o Described in 3.4.1.3.3.1 below.

3.4.1.3.3.1 Convert

This class used by the context manager for converting millivolt values sent from the context

source to real/correct values based on a value range. In this case the range is defined in the

SensorType class.

public static double convert(int mV, int maxrange, int minrange) {

// factor

 double A = (maxrange - minrange)/MILLIVOLT_MAX; //MILLIVOLT_MAX = 2800

// adjustment

 double B = minrange;

 return A*mV+B;

}

Code 16: Code showing how to convert from a value read by the context source to a real value

As shown in Code 16, the correct value is converted based on the maximum range and the

minimum range of the sensor type, together with the maximum input value from the Aplicom

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 95

N12i module. This means if the context source read 1400mV on a pH sensor, the method

would be called by convert(1400, 0, 14). The math would then be

((14-0) / 2800 * 1400) + 0 = 7

3.4.1.3.4 uk.me.jstott.jcoord

In need of a way to handle GPS coordinates and to have a quick and easy way of converting

between different kinds of GPS coordinates, an implementation by Jonathan Stott [51] is used.

The class LatLng is the most interesting one.

3.4.1.3.4.1 LatLng

This class holds the information on the latitude and longitude, and provides functionality for

converting between different coordinates and for measuring distance between two points (two

[latitude, longitude] coordinates). The result of the measurement is in kilometres, so one must

remember to adjust the result to what ever is wanted.

Measuring the distance is implemented like this;

public double distance(LatLng ll) {

 double er = 6366.707;

 double latFrom = Math.toRadians(getLat());

 double latTo = Math.toRadians(ll.getLat());

 double lngFrom = Math.toRadians(getLng());

 double lngTo = Math.toRadians(ll.getLng());

 double d =

 Math.acos(Math.sin(latFrom) * Math.sin(latTo) + Math.cos(latFrom)

 * Math.cos(latTo) * Math.cos(lngTo - lngFrom))

 * er;

 return d;

}

Code 17: Code showing how to measure the distance between to latitude/longitude coordinates

Conversion from [latitude, longitude] to UTM was intentionally meant for easier

measurement of the distance between two points, but with this functionality already

implemented in the LatLng class, it isn’t necessary.

3.4.2 FiFaMoS Context Consumer

The client for personal computers is implemented in Java SE 5.0. It is divided into three

packages: com.telenor.apms.fifamos.client.j2se.gui, com.telenor.apms.fifamo.client.j2se.utils

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 96

and com.telenor.apms.fifamos.objects. The client also uses the two Apache packets:

commons-codec-1.3.jar and xmlrpc-2.0.1.jar. Class diagrams are shown in Appendix F.

Figure 34: FiFaMoS Context Consumer package overview

com.telenor.apms.fifamos.client.j2se.gui contains the main class (FiFaMoS.java), the settings

dialog, and some input-boxes. These classes are implemented using the Java Standard Widget

Toolkit, SWT. This will make the program have the same look and feel as other programs

using the operating system’s interface. The window is divided into four main parts: A list of

fish frames and sea cages, a list of sensors and sensor values for the sea cage, a status text box

and a graph showing historical sensor values. The list of fish frames and sea cages is

implemented using a tree widget, where each tree item has its own fish frame or sea cage

object. This makes navigation between the different fish farms and sea cages easy.

Once a sea cage is chosen in the tree, sensor information is displayed in the top right area of

the window. Each sensor is displayed with the sensor type, current sensor value, and a button

for showing historical sensor values in the graph. This list of sensor values is refreshed

periodically using a TimerTask:

 //schedule RPC-call for updating sensorinfo

 si = new SensorInfo(String.valueOf(currentSeaCage.getId()), this);

 timer = new Timer();

 timer.scheduleAtFixedRate(new TimerTask() {

 public void run() {

 display.asyncExec(si);

 }

 }, 50, Constants.REFRESH_INTERVAL);

Code 18: Code for refreshing the sensor values

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 97

Here, a SensorInfo thread is created periodically, according to the

Constants.REFRESH_INTERVAL variable. This thread is executed by display.asyncExec(),

and gets the latest sensor values from the context manager, and sends them back to the main

class as a Vector in the passResult() method. The passResult method then updates the GUI

with the new sensor information. The reason for using display.asyncExec() is a feature in

SWT that prevents other threads than the UI thread (i.e. the thread that creates the new

Display()) from accessing the GUI. Using new Thread().start() would make the Thread-object

the parent of the thread (not the UI thread), but using display.asyncExec() the UI thread

becomes the parent and may interact with the GUI.

A drawback with SWT is that it does not contain a widget for drawing graphs, so this had to

be implemented manually. This was done using a canvas widget. A canvas is a blank area that

can be drawn to using for example the drawLine() or drawString() methods, with X and Y

coordinates as references. Before the graph could be drawn, the dataset had to be normalized.

The normalize method takes a two dimensional integer table, with the sensor values and

timestamps, as input, and returns a new two dimensional table with values in the graph size

domain. First a scaling factor was found for the X and Y values:

//Find Y-value factor

factorY = (height-20)/(double)maxY;

//Find X-value factor

double factorX = (width-20)/(maxX-minX);

Code 19: Finding the scaling factor

New values were calculated and stored in the return table:

//Store new Y- and X-values in result table

for (int i = 0; i < values.length; i++) {

 values[i][1] = (values[i][1] - (long)minX);

 res[i][0] = (int)(values[i][0]*factorY);

 res[i][1] = (int)(values[i][1]*factorX+20);

}

Code 20: Calculating new values

When the dataset was normalized, a for-loop drew the graph line point by point, using the

drawLine(x1, y1, x2, y2) method:

for(int i =0;i<(toBeDrawn.length-1);i++) {

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 98

 g.drawLine(toBeDrawn[i][1], turn(toBeDrawn[i][0]), toBeDrawn[i+1][1],

turn(toBeDrawn[i+1][0]));

}

Code 21: Drawing the graph

Sea cage positioning information is also available in this section. The position of the sea cage

is represented in latitude and longitude degrees. In addition, it is possible to view the location

in a map by pressing a button. The map dialog takes latitude and longitude as parameters, and

contacts a web-site that render an image where the position is marked. This image is received

in the MapDialog class, and displayed in the GUI.

The bottom right area of the graphical user interface contains a status text box. Here user

actions, critical sensor values and error messages are logged.

The settings dialog lets the user adjust parameters like server IP-address and sensor value

refresh interval. It is also possible to view and alter the different fish frames, sea cages and

sensors. These can be deleted, updated or created. To make the main window update itself

when the settings dialog is closed, a return statement is added:

 public boolean openSettings() {

 shell.pack();

 shell.open();

 shell.setActive();

 while (!shell.isDisposed())

 if (!shell.getDisplay().readAndDispatch()) shell.getDisplay().sleep();

 return true; //return true when finished

 }

Code 22: openSettings() method from the Settings dialog class

com.telenor.apms.fifamos.client.j2se.utils contains functionality for input and output, both

network communication and disk access. All communication from the java client to the

context manager is via XML-RPC. Several implementations for J2SE exist, but we have

chosen the package from Apache. The package file is named xmlrpc-2.0.1.jar, and makes the

user able to create a XML-RPC client object. By running the execute(method name,

parameters) method, the client contacts the XML-RPC server and the response is returned.

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 99

XmlRpcClient client = new XmlRpcClient (Constants.SERVER_URL);

String response = (String)client.execute ("Output.getSeaCagesForFrame",

params);

Code 23: Executing a remote procedure call

As mentioned the com.telenor.apms.client.j2se.utils package also takes care of the disk

access. This is used when writing log files and settings to disk. The log files are automatically

stored to the /Logs directory, and the settings are stored as a property-file in the main program

directory.

com.telenor.apms.fifamos.objects is the package containing the objects describing the

semantics of the fish farm. Objects described includes: frame, sea cage, sensor and alarm

among others (see appendix F.1).

3.4.3 FiFaMoS Mobile Context Consumer

The client for mobile phones and smart phones (FiFaMoS Mobile Context Consumer) is

implemented in Java J2ME, MIDP 2.0, and consists of tree packages:

com.telenor.apms.fifamos.client.j2me.utils, com.telenor.apms.fifamos.client.j2me.gui and

com.telenor.apms.objects. It also uses some tools from the Comtor J2ME package, and the

XML-RPC client in kxml-RPC.

Figure 35: FiFaMoS Mobile Context Consumer package overview

The com.telenor.apms.fifamos.client.j2me.control includes the main FiFaMoSMob class as

well as a RPC-handler class taking care of the communication. The application is based on

several lists that the user can navigate through, and the purpose of the FiFaMoSMob class is

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 100

to be a listener for these lists, and decide what is going to happen on user actions. After a user

action, a new list will be displayed, and the RPC-handler class will be contacted to get data

for the list. One special list is the list of sensors with current sensor values. This list is going

to be updated regularly according to a user set interval. This refresh interval is set in the

settings dialog, and stored in the phone’s record store. To make the list update itself, a timer

task is created in the list class:

 timer = new Timer();

 timer.scheduleAtFixedRate(new TimerTask() {

 public void run() {

 getSensorData();

 }

 }, 500, interval);

Code 24: Scheduling the getSensorData() method

The getSensorData() method contacts the RPC-handler, and updates the list with new data.

The RPC-handler is generic, and used by all lists (fish frame list, sea cage list, sensor list). To

get data from the web service, you can just create an RpcHandler object, with method name

and method parameters. The result will be passed back to the class via the passResult method.

public RpcHandler(String request, Vector params, RpcHandlerResult listener)

Code 25: The RpcHandler constructor

An XML-parser is not included in the application, so XML encoding of the data is currently

not used. Instead, the values sent as a plain string where sensor values and other attributes are

separated using either “:” or “;”. To create the fish frame, sea cage or sensor objects, the

resulting string is sent to the object’s constructor, where a StringVector separated the

attributes and creates the object. The StringVector class is from the Comtor J2ME utils

package. This package also includes tools for formatting timestamps, which is used when

drawing graphs.

Only one window in the FiFaMoS Mobile Context Consumer does not use lists, and that is the

graph showing historical sensor values. This is implemented using the canvas from the low-

level GUI API. Just like the java client, graphs are drawn using the drawLine() method with X

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 101

and Y coordinates. The graph will adapt to the screen size, so that it will be easy to read on

different phones.

The FiFaMoS Mobile application also has a settings window. This window can be accessed

from the start menu, from the “settings” item in the list. The settings functionality on the

FiFaMoS Mobile Context Consumer can not be used to setup the fish farm, but it is used to

assign the correct server address, and to set the refresh interval of the sensor values. The latter

parameter is important in the FiFaMoS Mobile Context Consumer, as this will affect the

amount of GPRS traffic generated.

3.4.4 FiFaMoS context source application

The context source application is an IMlet for the M2M module is written in Java 2 Micro

Edition (J2ME). IMlet [44] is a J2ME application that runs on the Information Module Profile

(IMP) environment. IMP is a strict subset of the Mobile Information Device Profile (MIDP)

commonly used in mobile phones with the distinction that it does not have a user interface

(UI). This part of the system is used to supply the context manager with context information

like sensor values. The package organization is shown in Figure 36, and the functionality is

further described afterwards.

Figure 36: FiFaMoS Context Source package diagram

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 102

3.4.4.1 Initialization

On start up, the application reads the IMEI number from the M2M module. This is used to

identify the module, and to determine which sea cage the M2M module is situated on. The

application calls the method getConfigAsXML from the context manager, with the IMEI as

parameter, then parses and stores the received configuration.

// Resolve the Embedded Terminal object

String etUrl = ”corbaloc::127.0.0.1:19740/ORB/OA/IDL:ET:1.0”;

org.omg.CORBA.Object etRef = orb.string_to_object(etUrl);

ET et = ETHelper.narrow(etRef);

imei = et.IMEI();

Vector params = new Vector();

params.addElement(imei);

String xmlconfig =

(String) xmlrpc.execute(”Output.getConfigAsXML”, params);

Config.saveConfig(xmlconfig);

Code 26: Code showing how to retrieve the IMEI number, and to initialize the M2M module

3.4.4.2 Reading and sending the sensor values

When the context source is in normal operation, it periodically reads the sensor values as

millivolt values from its analogue inputs or as high and low from its digital inputs as shown in

Code 27.

IOControl ioc = IOControl.getInstance();

...

int aValue = ioc.getAnalogInputPin(ANALOG_INPUT_PIN);

boolean dValue = ioc.getDigitalInputPin(DIGITAL_INPUT_PIN);

Code 27: Code showing how to read from input pins

These values are wrapped in XML (see Code 5) and sent to the context manager via XML-

RPC over the GPRS/EDGE network”.

Vector params = new Vector();

StringBuffer xml = new StringBuffer();

xml.append(“<xml>”);

//XML for sensor values and GPS data

...

xml.append(“</xml>”);

params.addElement(xml.toString());

String result = (String) xmlrpc.execute(”Input.postSourceXml”, params);

Code 28: Code showing how to send context to the context manager

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 103

The response from a sensor value post (a context message sent) is a new XML document

describing the next actions for the context source (see Code 12). If an alarm is to be sent, or

new configuration is available, this will be notified here.

As mentioned, the context source is using kXML-RPC [20] for communication with the

context manager. The commands are sent as shown in Code 23. This is done to achieve a

connectionless service oriented architecture (SOA) [49] and to reduce traffic cost.

When the sensor values are received in the context manager, they are marked with a

timestamp. This is done to keep track of when the value where received, for historical

purposes.

3.4.4.3 GPS functionality

To keep track of where the sea cage is at all times, a GPS receiver is connected to it and the

position is read periodically. For easier use of the GPS functionality the Aplicom N12i

provides, a wrapper class was created. The class GPSControl (in the package

com.telenor.apms.fifamos.n12.utils) is the wrapper for Aplicom N12i’s GpsModule class,

used to read NMEA (see 2.2.7.1) from a GPS receiver connected to a serial port. The main

purpose of the GPSControl is to read the NMEA data, extract the relevant information and

make it available to others. This is done in a separate class (see appendix B.5) for less

complexity in the program, and is very useful for later reuse of the code.

Hashtable props = new Hashtable();

props.put("com.nokia.m2m.orb.UseM2MGateway", "no");

org.omg.CORBA.ORB orb = ORB.init(null, props);

...

GPSControl gps = new GPSControl(orb);

gps.read();

String latitudeDegrees = gps.getLatdeg();

... = gps.getLatmin();

... = gps.getLatsec();

// and gps.getLngdeg() etc for longitude

Code 29: Code showing how to use the GPSControl class

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 104

As shown in Code 29, the usage of the GPSControl is quite simple. Just notice that gps.read()

has to be called before any of the get-methods.

3.4.4.4 SMS functionality

To make sure alarms arrive in time for actions to be taken, they are sent by SMS to the person

responsible for the sea cage in question. As with the GPS wrapper, an SMS wrapper also was

made to make it easier to use the SMS functionality in the Aplicom N12i module. The class

SMSControl is the wrapper class for the SMS functionality.

Hashtable props = new Hashtable();

props.put("com.nokia.m2m.orb.UseM2MGateway", "no");

org.omg.CORBA.ORB orb = ORB.init(null, props);

...

SMSControl sms = new SMSControl(orb);

sms.sendTextSMS(phoneNumber, message);

Code 30: Code showing how to use the SMSControl class

The Aplicom N12i module is used as an SMS gateway, so any alarms that are to be sent must

be piggybacked from the context manager as a response to a postSourceXML() call (see Code

12 for an example).

3.4.4.5 Watchdog functionality

To ensure maximum up-time on the module, the watchdog functionality is used. This is a

function that makes the module reset itself if a preset timer reaches zero. The timer is

supposed to be reset to the initial value in given intervals. This is done in important loops in

the application. If this loop stops (the module crashes), the watchdog timer will reach zero,

and the module will be reset automatically. If the error is not a serious hardware fault, the

application will work as normal after the reset. In this case the watchdog is reset before the

sensor reading. This will ensure that the timer is reset at regular intervals, and that if the

module stops sending sensor values (which is its main purpose), it will be reset automatically.

//initiate the watchdog

WatchdogTimer wdt = new WatchdogTimer();

wdt.setTimeout(5*60);

...

while(running) {

 //reset the timer at regular intervals, shorter than the timeout.

 wdt.resetTimer();

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 105

 ...

 /** read and send sensor values */

 Thread.sleep(interval);

}

Code 31: Code showing how to use the WatchdogTimer

3.4.4.6 Debug information over serial interface

When developing applications for the M2M module, a need for debugging appeared. For this

a serial port logger implementation based on the SerialPortLogger from the IMlet

programming guide [44] was used. This is a wrapper class for the serial port interface. It

provides simplified methods for sending debugging information over the serial port interface.

SerialPortLogger.getInstance().write(message);

Code 32: Code showing how to use the SerialPortLogger

As shown in Code 32, its usage is very simple, but the functionality behind is a little more

complex. This is shown in Code 33.

...

sc = (StreamConnection)

 Connector.open("comm:3;baudrate=115200", Connector.READ_WRITE);

// Open outputStstream

outStream = sc.openOutputStream();

...

if (outStream != null && msg != null) {

// prepare timestamp

Calendar cal = Calendar.getInstance();

// Print timestamp and message

msg = "<[" + cal + "] " + msg + ">\n";

outStream.write(msg.getBytes());

Code 33: Code showing a snippet of the implementation of the serial port logger

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 106

3.4.5 Testing

To verify that the sensor values were properly stored, and that the client was able to present

the data, various tests where performed on the system. Since we were following the RUP

model using two iterations, we had two major test periods in the process. The tests are

described later in this chapter.

Figure 37: Testing environment

The testing environment were mostly as Figure 37 describes, but to save GPRS expenses and

to ease operation, the Aplicom N12i M2M module was sometimes replaced with a java

application simulating the module. This simulator (see appendix B.7) takes a table of sensor

IDs and their respective minimum and maximum value, and fills the database with random

values within the min-max-range. The simulator creates an xml document with one value for

each sensor and uses XML-RPC to send it to the context manager. The context manager

parses it and stores the values in the database.

There was also other times when we decided to use software solutions simulating the real-

world hardware that was supposed to be used. That includes using the J2ME Mobile simulator

from Wireless Toolkit 2.1. During implementation, eclipse was set up to run the application in

this emulator. This way we did not have to pack the application and transfer it to the mobile

phone. GPRS expenses were also saved.

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 107

The same method was used during the development of the software on the Aplicom N12i

module. Using the Aplicom N12i concept simulator, IMlets could be tested without being

transferred to the module.

3.4.5.1 Testing details

To verify that requirements FR1.* were fulfilled, dummy sensors (see appendix D.1) were

connected to the M2M module. When adjusting the dummy sensors, the values could be seen

both in the FiFaMoS Context Consumer and the FiFaMoS Mobile Context Consumer. After

iteration one, all these requirements were fulfilled except FR1.1 which was planned

implemented later in the project. Requirement FR2 was also working, which indicated that

sensor values were stored in the database correctly.

The main tasks of iteration two was to add GPS functionality and to send alarms if sensor

values were out of bounds. To test these requirements, the fish farm was configured with

sensor value limits, and the dummy sensors were adjusted to trigger alarms. By the end of

iteration two, this functionality worked. Alarms were displayed in the FiFaMoS Context

Consumer, and sent to the mobile via SMS.

FR3.1 was on of the most important requirements to fulfil. This functionality was not easy to

verify, as the GPS was connected to the M2M module via cable inside a house, where the

GPS satellites were unavailable. To get this tested, we played a formerly recorded trace on the

GPS receiver. The trace simulated movement in a triangle located in the Trondheim fjord.

When the M2M module booted, it stored its initial position in the context manager, and

continually sent its new position. If the difference between the two positions was higher than

allowed, an alarm was triggered. By the end of iteration two, it worked, and the requirement

was fulfilled.

Requirement FR5 describes the video surveillance functionality, and should after the plan be

working after iteration two. This was not as easy as first anticipated, and the M2M module

was unable to get image data from the camera. The test failed, and requirement FR5 was

added to future work (see section 5.1 Future work).

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 108

All the other requirements passed the testing procedures.

Table 25: Test results

Requirement Description Test passed Phase

FR1 Read sea cage sensor values V 1

FR1.1 Read sea cage position (GPS) V 2

FR1.2 Read sea cage net sensor V 1

FR1.3 Read wave sensor V 1

FR1.4 Read water level sensor V 1

FR1.5 Read temperature sensor V 1

FR1.6 Read water quality sensor V 1

FR1.7 Read food level sensor V 1

FR1.8 Read wind sensor V 1

FR1.9 Read current sensor V 1

FR1.10 Read pH sensor V 1

FR1.11 Read oxygen content V 1

FR2 Get historical sensor values V 1

FR3 Send alarm V 2

FR3.1 Send alarm when sensor values are out of range V 2

FR3.2 Send alarm when a sea cage is out of position V 2

FR3.3 Send alarm via SMS V 2

FR4 Display alarm in application V 2

FR5 Start surveillance camera session X 2

FR6 Store logging data to file V 2

FR7 Alter fish farm configuration from the PC client V 2

FR7.1 Alter frame configuration V 2

FR7.1.1 Add new frame V 2

FR7.1.2 Update existing frame V 2

FR7.1.3 Delete existing frame V 2

FR7.2 Alter sea cage configuration V 2

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 109

Requirement Description Test passed Phase

FR7.2.1 Add new sea cage V 2

FR7.2.2 Update existing sea cage V 2

FR7.2.3 Delete existing sea cage V 2

FR7.3 Alter sensor configuration V 2

FR7.3.1 Add new sensor V 2

FR7.3.2 Update existing sensor V 2

FR7.3.3 Delete existing sensor V 2

3.4.5.2 Measurements

To verify the requirements stated in chapter 3.2, some measurements were done. First we

measured the storage needs, then the response times of the system. To be able to get a

veritable result, the sensor simulator (see appendix B.7) was used to fill the database with the

wanted data (frames, sea cages, sensors and sensor values).

3.4.5.2.1 Storage needs

According to the estimate in section 3.2.4, a fish farm consisting of 50 sea cages with 5

sensors each will produce 1 GB data during a month. To get a more representative number,

this scenario was simulated and measured. The sensor simulator was configured with the right

amount of sea cages and sensors, and set up to send data equivalent to one month of runtime.

Results were as follows:

Size of database before simulation:

640KB

Size of database after simulation:

760,398MB

Amount of data produced:

759MB

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 110

The result shows that the estimate in 3.2.4 Data requirements was not that bad, and gave us a

good number for the system requirements.

3.4.5.2.2 Response times

According to the quality requirements of the system, the response time shall not be over one

second. To measure this, a timestamp was set before and after launching the command, and

the difference were calculated. Because this value is difficult to display in the FiFaMoS

Mobile Context Consumer, the System.out.println() method was used in the FiFaMoS Context

Consumer. Response times for the FiFaMoS Mobile Context Consumer would probably be a

bit higher than the ones stated in Table 26 because of the narrowband connection used.

Various scenarios were tested, and the results are presented in the table. The tests assume that

the sea cages send their sensor data to the context manager once a minute.

Table 26: End-to-end response time measurements in milliseconds. The number in () indicates the

processing time in the context manager

Test number Number of sea

cages (each with

5 sensors)

Time for getting

current sensor

values for a sea

cage

Time for

getting the

sensor value

history for the

last 24 hours

Time for

getting the

sensor value

history for the

last week

T1.1 5 240 (150) 190 (40) 512 (160)

T1.2 5 213 (115) 203 (29) 477 (212)

T1.3 5 253 (142) 186 (64) 540 (204)

T1.4 5 249 (143) 211 (51) 451 (254)

T1 average

time

 239 (138) ms 198 (46) ms 495 (208) ms

T2.1 25 480 (420) 180 (80) 460 (145)

T2.2 25 512 (449) 196 (91) 521 (163)

T2.3 25 529 (461) 201 (76) 488 (170)

T2.4 25 502 (444) 178 (97) 495 (144)

T2 average

time

 505 (105) ms 189 (86) ms 491 (156) ms

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 111

Test number Number of sea

cages (each with

5 sensors)

Time for getting

current sensor

values for a sea

cage

Time for

getting the

sensor value

history for the

last 24 hours

Time for

getting the

sensor value

history for the

last week

T3.1 50 640 (552) 214 (109) 482 (182)

T3.2 50 701 (586) 205 (142) 563 (172)

T3.3 50 637 (549) 209 (120) 502 (170)

T3.4 50 608 (522) 195 (113) 498 (148)

T3 average

time

 647 (552) ms 206 (121) ms 512 (168) ms

To find out if the performance was dependent on the number of sea cages, three tests were

carried out: One with 5 sea cages, one with 25 sea cages and one with 50 sea cages. From the

test results it can be seen that the number of sea cages has got most impact on the context

manager site when asking for the current sensor values. This is because this request triggers

many database requests, and more instances in the database makes the responses slower. The

transmission time (total time – context manager processing time) seems to be almost constant.

This is because the amount of data transferred does not get affected by the total number of sea

cages in the system.

Also when asking for historical sensor values, the total number of sea cages does not affect

the performance considerably. Only data from one sensor is transferred, and the parameter

that affects the performance the most is the chosen period. It can be seen that the last week

request takes about three times as long as the last day request, and this is because seven times

as many sensor values have to be transferred. As the numbers in the table show, the

transmission time (total time – context manager processing time) is the most dominant part of

the total time. The reason why the week request does not take seven times as long as the last

day request, is that XML-RPC uses the GZIP algorithm to compress the response [52]. This

way bandwidth usage is saved, and response times gets lower.

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 112

All of the response time measurements are under 1 second, and the quality requirements are

fulfilled. However, with even more sensor value in the database, the getHistoryForSensor()

method would probably generate a response requiring more than one second to transfer. This

especially comes into effect on the mobile context consumer, which in most cases would use a

GPRS narrowband connection.

3.4.6 Deployment

For the system to work, some of the elements in Table 27 must be present. The required

column indicates if it is optional or not. Note that neither of the context consumers are

required, but for the system to be useful, one of them must be used.

Table 27: System components

Component Component

type

Component description Required

C1.1 Hardware Computer for the context manager V

C1.2 Software APMS middleware context manager V

C1.3 Software FiFaMoS service V

C2.1 Hardware M2M GSM module with built-in or external GPS V

C2.2 Software FiFaMoS Context Source IMlet V

C2.3 Hardware GPS and various sensors or dummy sensors that

are compatible with the inputs of the M2M

module

V

C3.1 Hardware Mobile phone/PDA with Internet connection

supporting Java

X

C3.2 Software FiFaMoS Mobile Context Consumer MIDlet X

C4.1 Hardware Computer running the FiFaMoS Context

Consumer

X

C4.2 Software FiFaMoS Context Consumer J2SE application X

The deployment of the system is also modelled as an UML deployment diagram in Figure 38.

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 113

Figure 38: Deployment view of the system

Since the whole system is implemented in Java, the computers running the different

applications can use any operating system that supports Java technology. However, a runtime

environment must be present.

3.4.6.1 Context manager

The APMS context (C1.2) manager needs a computer with a static IP address and port

accessible from the Internet. The placement of this computer is irrelevant. All context inputs,

outputs and processing are done on this computer by the APMS container and custom made

services (C1.3). The database in the context manager stores wanted sensor values for

historical purposes. The APMS context manager is not very greedy on resources. A relatively

basic computer equipped with a gigahertz processor and 256MB RAM will have no problem

running the context manager. The computer does not need an external database and web-

server, since the APMS has got these integrated in the application.

3.4.6.2 Context source

To collect the different sensor data, and pass it on to the context manager, one or more M2M

modules are needed (C2.1). There will be one module per sea cage. These modules have got

several digital as well as analogue inputs and outputs that can be read and configured via Java.

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 114

The module communicates with the context manager (C1.2) via its GPRS or EDGE interface.

For a fish farm surveillance system, various sensors (C2.3) are also needed. Since this is only

a prototype, only dummy sensors will be used to input sensor data. If the system is to be used

in a real fish farm, it is important that the sensors and modules have high industrial quality,

and are able to cope with extreme humid conditions, and repetitive movements.

To get positioning information of the sea cages, a GPS receiver is needed. Some M2M

modules have got a built-in GPS receiver, others can be connected to a standard GPS receiver

via the serial interface on the module.

3.4.6.3 Context consumer

On the user side of the system (context-aware application in Figure 5), several options are

possible. The system can be accessed via a J2ME mobile client (FiFaMoS Mobile Context

Consumer, C3.2), or a computer running the PC client (FiFaMoS Context Consumer, C4.2).

Most of today’s computers will be able run the application; however the mobile client

requires a mobile phone supporting MIDP 2.0. Both the PC client and the mobile client

require some kind of Internet connection.

3.4.7 Encountered problems

Not everything has gone as smoothly as hoped during the project, and here some of the

problems encountered will be described and discussed.

3.4.7.1 The APMS context manager

The APMS context manager was checked out from a CVS repository located in Tromsø.

When building the context manager, errors occurred, and nothing worked. It was revealed that

the jar-files were destroyed when checking out, and they had to be replaced by new ones.

When deleting packages in the APMS web interface, the context manager crashed. This was

found to be a bug in the APMS system, and was fixed by the team that implemented it at the

University of Tromsø.

When deploying the JAR-file as a service on the context manager, the context manager

unpacks the JAR-file and loads the components. But it also generates new meta files, based on

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 115

the ones in the JAR-file. This generation, however, has some flaws. At some occurrences,

seemingly random, the generation of new meta files are erroneous. After some error searching

it was revealed that there was an error in the MetaDataParser.java file in the APMS context

manager. This error is described in detail in appendix B.9.

The Database abstraction in the APMS context manager do not support relations, so in the

first place we used only one database table that described all attributes of the sensor. This

solution was easy to implement, but it is not flexible, and it doesn’t describe the semantics of

the system well. Instead we decided to use the database model shown in Figure 21, and handle

all relations manually. We used regular fields as foreign keys, and manually added the parent

table’s primary key to them. This causes some extra database load, but mostly only when

adding table entries.

APMS comes with classes to insert, select and delete entries from the database, however, a

class for updating tables was also needed. This was implemented and added as a part of our

service package (See appendix B.6).

During the project, the APMS context manager has been updated many times. After installing

a new version of the APMS context manager, the system did not work. When the database

tables should be created, a number of exceptions were thrown. The error was that the primary

key was set twice. This bug is described in more deeply in appendix B.8.

3.4.7.2 The Aplicom N12i Internet connection

During the first days of the project, there were some problems getting the Aplicom N12i on

the Internet. It was revealed that the GPRS settings was not correctly set. The settings can be

altered using the Aplicom N12i configurator (see appendix E.1), and the settings that worked

in the FiFaMoS project are listed in Launching the FiFaMoS context source.

3.4.7.3 Communicating with the camera

To view video or pictures from the fish farm, a camera was needed. Most web-cameras have

an USB interface, but since the FiFaMoS project uses only M2M modules, a camera with a

serial interface was needed. TraceMe has an M2M based solution for transport firms with

included camera. This camera was connected to the FiFaMoS M2M module, and we tried to

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 116

get photos from it. First of all, the physical connection was not easy to accomplish. The

camera had a 4-pin plug that is commonly found on old soundcards. To make this fit to the 9-

pin D-Sub on the M2M module, an adapter had to be made (see appendix D.2). Also we had

to search the Internet for the pin configuration of the camera.

When the camera was connected, we tried to read serial data from it, but it turned out to be

dead. After reading documentation found on the internet [43], we understood that several

hexadecimal commands had to be sent to the camera to get it working. Some of the

commands were SYNC, ACK, set package size, get picture, etc. First of all, the SYNC

command should be sent several times, until an ACK command was returned by the camera

(as shown in Figure 39).

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 117

Figure 39: Camera commands

We tried several parameter and pin configurations, but we could not get the ACK command

from the camera. We also tried to send the SYNC command to the serial port using different

formats, but none worked. After many attempts, we decided to use our time on more

important functions in the system, and put the camera away.

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 118

3.4.7.4 Communication with the GPS

An M2M module with integrated GPS functionality was not available, so an external GPS

receiver had to be connected via the serial interface on the M2M module. The GPS receiver

used was a Magellan SporTrakColor that was able to output the GPS data on the serial port

periodically using the NMEA 0183 format.

Figure 40: The GPS receiver we used: Magellan SporTrakColor

Connecting the GPS to the module was not as easy as expected. Both the GPS and the M2M

module had a female serial port connector, so an adapter had to be made. The adapter

consisted of two male 9-pin D-SUB serial port connector connected with crossed wires (see

appendix D.3). When the adapter was in place, and the communication worked, we tried to

use the NMEA 0183 parser integrated in the M2M module’s API. This did not work at first,

so we considered making our own parser. But after trying different NMEA configurations on

the GPS receiver, we made it work. The NMEA setting on the GPS receiver was set to

‘NMEA V2.1 GSA’.

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 119

3.4.7.5 Timestamp problems

The sensor value timestamps (generated at the context manager) gets too big for the FiFaMoS

Mobile Context Consumer. This is stored as the primitive data type long indicating number of

milliseconds since January 1st 1970, and was fine on the context manager side of the system.

However, when the time stamp arrived at the FiFaMoS Mobile Context Consumer, it was

incorrect, and the new date we created did not match the original one. We have been

searching the web for solutions, but with no luck. The way we made it work was to divide

every timestamp by 1000, and multiply it by 1000 before restoring the date from the

timestamp.

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 120

4 Discussion

During the project, several decisions had to be made. That included both software and

hardware options in addition to the architectural and implementation choices. Section 4.1 will

look at how well the APMS context manager is suited for the FiFaMoS project, section 4.2

will discuss the data transmission options, section 4.3 will discuss the storage of data, and at

last the hardware options are discussed. In addition the risk analysis from the prestudy section

will be evaluated.

4.1 APMS as a context manager

To make the sensor information (context) available to the clients, a context manager is

needed. The main task of the context manager is to get sensor information from the fish farm,

store it in persistent memory, and send it out to the clients that need it. Originally, it was

intended to use the context management system from the Akogrimo [2] project. But after

some research, it was revealed that other context management solutions that suited the

FiFaMoS project better existed. One of these is the APMS context manager.

The main reason why Akogrimo is not suited for the FiFaMoS project, is its complexity. With

its various interfaces for context and presence information its primary target tasks are

advanced scenarios like e-health and e-learning. The simple objectives of gathering and

distributing sensor information of fish farms do not need such advanced functionality.

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 121

Figure 41: The Akogrimo context manager architecture

As seen in Figure 41, the context source interact with the context manager via either SIP

SIMPLE, Service Location Protocol (SLP) or via a proprietary RFID protocol. These

interfaces are not well suited for transferring sensor values from M2M modules, so an extra

gateway would have to be created in the context manager.

The system is also based on subscribe/notify mechanisms, that require the context consumer

to have a web service interface. This is difficult to accomplish on a mobile context consumer,

and would require an extra node between the context manager and the context consumer.

According to one of the design approaches of the FiFaMoS system, the architecture shall be

as simple as possible. Adding extra nodes would violate with this approach.

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 122

However, the Akogrimo would offer advantages as well. The complexity makes it possible to

add further functionality, like RFID-support, SIP sessions, and authentication mechanisms. In

addition, the subscribe/notify messages enable the context manager to take initiative to

communication towards the clients. Because the clients do not need to continually get the

sensor values from the context manager, they can be notified only when a sensor value has

changed. This saves bandwidth usage.

Another advantage with the Akogrimo system, is that SOAP web services are used. This

makes it possible to transfer objects in their original shapes, not needing to convert them into

XML or other string representations.

As mentioned, the context manager used in the FiFaMoS system, is the APMS context

manager. This is a component based middleware system with built-in support for various

binding types and persistent storing. By implementing some input- and output components, a

service can be established, and accessed by context sources and consumers. The ease of

implementation, and simplicity of use made this the chosen context manager in the FiFaMoS

system. The binding- and storage management makes it well suited for sensor based

surveillance tasks like this project, and it does not have much functionality that is not needed.

4.2 Data transmission

Several aspects have to be discussed when it comes to data transmission. How should data be

represented? How should it be transferred, and which physical connection should be used?

These topics are discussed in this chapter.

4.2.1 Binding types

To allow communication between the nodes in the system, a binding must be established.

This can be done in several ways using various technologies like TCP socket, UDP socket,

RMI, CORBA and web services.

The APMS context manager has built-in support for multiple binding types, including web

services (XML-RPC), TCP socket, UDP socket and Java RMI. Using sockets or RMI makes a

Connection Oriented Architecture, where few connections are made. This leads to a low

amount of overhead and great performance. The web service option creates a new connection

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 123

every time data is needed, which leads to a higher amount of overhead [24]. Still, it is a

benefit that the connection is not established when no data is needed.

The main reason for using web services is to get a Service Oriented Architecture (SOA)

where everything is very loosely coupled. This makes it easy to include various clients in the

system, and firewalls in the Internet will be traversed if a well-known port as 80 is used. The

drawback is that the context manager needs a web server to receive commands, but that is not

a case in this project since the APMS already include the Jetty web server. Another drawback

is performance. Web services are many times slower than a socket, RMI or CORBA

connection since the web server adds another “link”, and overhead to the messages. However,

if the messages are small in size, the performance problem will not be that significant.

The web service that is supported in the APMS system is XML-RPC. This is SOAP’s

predecessor, and is more lightweight and easy to use. One could argue that the technology is

outdated, and is on it’s way to the grave, but it still does a great job if the data types are of the

primitive kind (see section 2.2.5). The lightness of the server and client also makes it easy to

implement in mobile devices based on J2ME.

In the FiFaMoS system, most responses are vectors containing objects. If the APMS

supported SOAP, these objects could be transferred like they were, but since XML RPC only

support more primitive data types, the responses have to be transferred as a string. This

problem is described in the next section.

4.2.2 Data representation

When transferring data (fish farm information and sensor values), data has to be coded into a

string for transmission via XML-RPC. Two ways of doing this are XML coding and

comma/colon separated values (CSV). XML coding makes the information easy to understand

for humans, and the system gets flexible and easy to alter. The drawback is that the XML tags

add a lot of overhead. Using comma separated values minimizes overhead, but the system

becomes very static, and difficult to modify. The format of the comma separated values has to

be agreed on by both sides of the system.

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 124

In FiFaMoS, it is used CSV to code RPC-responses containing sensor values, while responses

containing fish farm information (getFishFarmAsXML) are coded as XML. Using XML for

this makes it possible to receive the whole fish farm setup with the use of only one RPC-

request. To illustrate the different data sizes and needs for requests, an example is introduced.

This example has three frames, each with three sea cages:

The GUI tree for navigation between frames and sea cages is to be filled. This can be done

either with the getFishFarmAsXML(), or by first getting the frames as CSV and then the sea

cages as CSV. Using the XML method, a response like this is generated:

 <xml>

 <frame>

 <id>9</id>

 <location>Frame #0</location>

 <description>Telenor test cage</description>

 <mobile>91808620</mobile>

 <email>jagrodal@broadpark.no</email>

 <seacage>

 <id>35</id>

 <latitude>63.49638888888889</latitude>

 <longitude>10.399166666666666</longitude>

 <description>Sea cage #0-0 (Aplicom 12)</description>

 <imei>352540000046895</imei>

 <frameid>9</frameid>

 </seacage>

 <seacage>

 <id>36</id>

 <latitude>No GPS</latitude>

 <longitude>No GPS</longitude>

 <description>Sea cage #0-1</description>

 <imei>0</imei>

 <frameid>9</frameid>

 </seacage>

 </frame>

 <frame>

 <id>10</id>

 <location>Frame #1</location>

 <description>Telenor test cage</description>

 <mobile>91808620</mobile>

 <email>jagrodal@broadpark.no</email>

 <seacage>

 <id>38</id>

 <latitude>No GPS</latitude>

 <longitude>No GPS</longitude>

 <description>Sea cage #1-0</description>

 <imei>2</imei>

 <frameid>10</frameid>

 </seacage>

 <seacage>

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 125

 <id>39</id>

 <latitude>No GPS</latitude>

 <longitude>No GPS</longitude>

 <description>Sea cage #1-1</description>

 <imei>3</imei>

 <frameid>10</frameid>

 </seacage>

 </frame>

</xml>

Code 34: Excerpt from the getFishFarmAsXML() response, showing two of three frames.

The response represented as a string has a total amount of 2316 bytes. Since the XML-RPC

response is compressed using HTTP compression (GZIP), the amount of transferred bytes is

lower. This was measured to 521 bytes.

Using CSV will first require one RPC-call to get all frames, and then one call per frame to get

the sea cages. The getFrames() response is as follows:

9:Frame #0:Telenor test cage:91808620:jagrodal@broadpark.no;10:Frame

#1:Telenor test cage:91808620:jagrodal@broadpark.no;11:Frame #2:Telenor

test cage:91808620:jagrodal@broadpark.no

Code 35: Response from the getFrames() method

An the three getSeaCagesForFrame(frameID) requests produce these responses:

35:63.49638888888889:10.399166666666666:Sea cage #0-0 (Aplicom

12):352540000046895:30:9;36:No GPS:No GPS:Sea cage #0-1:0:30:9;37:No GPS:No

GPS:Sea cage #0-2:1:30:9

38:No GPS:No GPS:Sea cage #1-0:2:30:10;39:No GPS:No GPS:Sea cage #1-

1:3:30:10;40:No GPS:No GPS:Sea cage #1-2:4:30:10

41:No GPS:No GPS:Sea cage #2-0:5:30:11;42:No GPS:No GPS:Sea cage #2-

1:6:30:11;43:No GPS:No GPS:Sea cage #2-2:7:30:11

Code 36: Response from the getSeaCagesForFrame(frameID) method

The total amount of bytes for these responses are 590, and they were compressed to a total

amount of 355 bytes. This means that CSV representation in this example reduces the amount

of transferred data to 68%. However, the need for invoking the methods multiple times, leads

to a response time higher than with XML representation. Adding more frames or sea cages

would increase the number of requests, and the respones time further.

In addition, all commands sent from the context source, and the add/remove/update

commands from the context consumer are coded as XML. This is done by generating an

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 126

XML-document containing a method-tag, and fields for various attributes. This makes it

possible to run multiple internal methods via only one invoked RPC-method, and the interface

won’t have to be changed when adding new functionality.

The reason why XML representations are not used when getting the latest sensor values,

alarms, is that the time span of this project did not allow the implementation. CSV is easy to

implement, and by adding an object constructor that takes the comma/colon separated string

as input (see Code 37), objects can easily be created from the string.

 public SeaCage(String input) {

 StringVector sv = new StringVector(input, ':');

 id = Integer.parseInt(sv.stringElementAt(0));

 latitude = sv.stringElementAt(1);

 longitude = sv.stringElementAt(2);

 description = sv.stringElementAt(3);

 imei = sv.stringElementAt(4);

 refresh = Integer.parseInt(sv.stringElementAt(5));

 frameid = Integer.parseInt(sv.stringElementAt(6));

 }

Code 37: The SeaCage object constructor that takes a CSV string as input.

The only method that should use CSV in its response is the getHistoryForSensor(sensorID).

The number of sensor values transferred could be very high, and adding XML tags for the

value and timestamp would dramatically increase the amount of data transferred. This would

also make the response times higher. If XML should be used, it would be essential to use a

format as short as possible. This could be done by using empty tags and short names (e.g. <sv

sid=5 v=345 t=544322 /> where sv means sensor value, sid equals sensorID, v value and t is

the timestamp.

 The sensor values itself can be represented in many ways as well. When reading an input on

the M2M module, the mV value is returned. This value is interpreted, based on the sensor

type, in the input component, and then stored in the database. It would also be possible to

interpret the value on the M2M module, or in the clients, but it was found more convenient to

do it in the input component. Thus placing most of the logic centralized in the system.

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 127

To represent the position revealed by the GPS, several formats can be used. The most known

way is the usage of latitude and longitude parameters. This works well in most cases, but in

this thesis, it is wanted to compare different positions. Using latitude and longitude introduces

the problem that the physical length of a latitude degree is not constant, but is relative to the

length away from the Equator. These parameters is therefore not suited when distance

between locations shall be reckoned. Another way of representing positions that is more

suited for these tasks, is the UTM system (see 2.2.7.2). This introduces positioning

information in metres, and makes calculation of distance an easy task. In the FiFaMoS

system, GPS information from the M2M module is stored in the database as latitude and

longitude, and before verifying the current position of the sea cage, the positioning data is

converted into the UTM system. The distance between the initial position and the current

position is then calculated, and an alarm is triggered if the sea cage is out of position.

4.2.3 The off-shore Internet connection

To transfer the sensor data from off-shore to on-shore, a connection is needed. Since the

FiFaMoS system is Internet based, an Internet connection is to be preferred for collection

sensor data. The solitary location of the sea cages make this a challenge, and since the sea

cages aren’t connected to on-shore by wireline, only wireless alternatives are usable.

The M2M modules used in the project only support GPRS and EDGE as data transmission

link. However, if the fish farm is not too far away from the mainland, other hardware and

technologies could be used. WiMax is an option that offers high data rates, and it is also

cheaper to use than GPRS. According to [41], AT&T trials were able to get WiMax based

communication ranges up to 5 miles. This will probably be good enough to reach many fish

farms. With bandwidths up to several Mbps, this connection is an optimal solution if real-time

video surveillance is needed. The drawback is that M2M modules supporting WiMax

technology is currently not available, so an industrial computer would have to be situated at

the frames of the fish farms.

4.3 Data storage

When sensor data shall be stored to enable presentation of historical values, several aspects

will have to be discussed. One important case is how much data is supposed to be stored.

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 128

If for instance 100 sea cages, each with 10 sensors, update their sensor data every ten seconds,

there will quickly be generated a huge amount of data. After some time the context manager

database will fill up, and either make the system unstable or crash the whole system. To avoid

this, without increasing the refresh interval, an algorithm for deleting redundant sensor values

must be implemented. This could be a program module that continually checks the values

related to each other, and deletes values that are very close to its predecessor. It is also

possible to utilize existing algorithms like the Kalman filter. This is an efficient recursive

filter which estimates the state of a dynamic system from a series of incomplete and noisy

measurements. This can be utilized to replace a whole lot of sensor values with the only

values needed for representing the curve.

Storing all sensor values in the database also affects bandwidth usage and client response

times. When a client asks for historical sensor values in a given period, all sensor values in the

period are returned, and this could be a relatively high amount of data. This could be a

problem especially for the FiFaMoS Mobile Context Consumer that most often will use the

GPRS network. If a sea cage updates its sensor data once a minute, the following amount of

data will be generated per sensor during a week:

Amount of data per sensor = amount of data per sensorvalue * number of minutes in a week

= 100 bytes * (60 * 24 * 7) minutes = 1080000 bytes/month = 1054,69 KB/week = 1MB/week

If a client asks for the sensor history from the last week, all this data will have to be

transferred. Due to the integrated GZIP compression algorithm used in XML-RPC, the total

amount of data will shrink with a factor of about 0,4 [52]:

Amount of data transferred = total amount of data * compression factor = 1054KB * 0,4 =

412 KB

and that could take a while if the client uses a GPRS Internet connection (the following

example assumes that the GPRS connection is capable of transferring 5KB/sec):

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 129

Transfer time = Amount of data to be transferred / line capacity = 412 KB / 5KB/sec = 82

seconds = 1 minutes and 22 seconds

A response time over one minute when asking for the last week’s sensor values is not

acceptable. To get this better, two things can be done: Reducing the amount of data stored, as

mentioned over, or only reducing the amount of data transferred by using an algorithm similar

to the one that should be used for minimizing the storage of data. The implementation of an

algorithm like this is found to be outside the scope of this thesis, and is therefore placed in the

further work section.

4.4 Sensor value checking

Sensor values from the fish farm have to be checked whether they are within the allowed

scope of the sensor. This could be done in several ways, including on-the-fly checking,

explicit checking by a processing component, or checking by the use of the Drools engine in

the APMS middleware.

First a processing component was made that fetched sensor values from the database in given

intervals and checked if they were OK. This causes too much database load, and the solution

was turned down. Then the Drools engine included in the APMS engine were tried out. It was

revealed that this feature was not yet finished in the APMS system, so it was not possible to

use it. The solution that was used in the end was on-the-fly checking by the input component.

This way the sensor value is checked when arriving, and the database load is minimized. In

the future it could be useful to utilize the Drools engine. This makes it possible to alter the

rules via the APMS web interface (see appendix C.2).

4.5 Context source hardware options

There exist many solutions for gathering off-shore sensor information and passing them to the

context manager via the Internet. Based on power needs and size, M2M solutions are a good

choice. However M2M will bring some limitations, both in number of sensors and sensor

connectivity interfaces. Here we will discuss some sensor data acquisition solutions.

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 130

4.5.1 Aplicom L4002 M2M module

The Aplicom L4002 is designed for wireless telemetry and vehicle tracking systems, and has

a built-in GPS. With the help of a waterproof case, this module will suit the FiFaMoS system

well.

Figure 42: Aplicom L 4002 M2M module

The Aplicom L 4002 module is programmable in java (J2ME MIDP 1.0, IMP), and it has

GSM and GPRS/EDGE mobile interfaces. It also has serial ports that can be used to upload

applications to the module, or to connect peripheral equipment. This unit consists of the

Aplicom N12 M2M module, bundled with a GPS receiver, so it is basically the same setup as

the one used when developing FiFaMoS. The main difference is that it has got a suited steel

case. Figure 43 shows the module’s interna architecture.

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 131

Figure 43: Aplicom L 4002 architecture

The inputs and outputs are described further in Table 28.

Table 28: Aplicom L 4002 outputs and inputs

Input/output Description

COM 1 Serial port used for uploading applications to the module

COM 2 Serial port reachable from the java runtime. This could be used to transport

sensor information or control information

4 x INPUT Four inputs. Three of these can be configured as analogue inputs.

2 x OUTPUT Two open collector analogue outputs.

Power input 10 – 32 V DC

Reset Reset switch

SIM SIM card slot

Mode switch The module can be operated in two different modes: system mode 1 and

system mode 2. We will be using system mode 1, because the AT commands

enabled in system mode 2 is not needed in our system.

Status LED LED that indicates the status of the module.

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 132

4.5.2 Teltonika T-Box/GPS M2M module

Teltonika T-Box/GPS is also an M2M module that has got a built-in GPS. The module has

got 4 digital inputs, 4 digital outputs and 3 analogue inputs. Since the module is based on the

same chip as the Aplicom L4002, the same Java IMlets can be used. However this module has

some extra features, including RFID reader and built-in temperature sensor.

Figure 44: Teltonika T-box/GPS

T-Box/GPS has integrated rechargeable Li-Ion battery and special controller for power

management. This feature enables operation without using external power supply (up to 5

hours).

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 133

Figure 45: T-box/GPS internal architecture

The inputs and outputs are described in .

Table 29: Teltonika T-Box/GPS outputs and inputs

Input/output Description

PORT 2 Serial port used for uploading applications to the module.

PORT 3 Serial port reachable from the java runtime. This could be used to transport

sensor information or control information

IN7-10 Four inputs. Three of these can be configured as analogue inputs.

2 x OUTPUT Two open collector analogue outputs.

DC Power

supply

Input for supplying power to the GPS receiver and M2M module.

RFID Antenna for the integrated RFID reader.

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 134

Input/output Description

antenna

GSM antenna Antenna for the GSM and GPRS connunication

Mode switch The module can be operated in two different modes: system mode 1 and

system mode 2. We will be using system mode 1, because the AT commands

enabled in system mode 2 is not needed in our system.

GPS antenna Antenna connector for the internal GPS receiver

4.5.3 Other M2M solutions

Other M2M hardware like the BlueTree 5400 GPRS and the TraceMe solution from KCS

have similar functionality and connectivity but these do not allow you to use your own

applications. The functionality and actions are user set via special software, and the units

communicate via special servers to the client software. This makes the modules incapable of

communicating via our context management system, and the modules will not be possible to

use in our project.

Figure 46: BlueTree 5400 GPRS M2M module

4.5.4 Industrial computer with GPRS modem

An alternative to M2M modules are industrial PCs. These have a compact cast aluminium

chassis that provides great protection from shock, vibration, dust, cold and heat while acting

as a functional heat sink to ensure lower temperature operation. An industrial PC can do the

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 135

same as normal personal computers, but they often have more inputs and outputs. This opens

for connecting more external peripherals as sensors and sensor controllers. Keyboard and a

monitor will have to be connected as well.

Figure 47: Advantech industrial computer [28]

The draw backs are that they cost a lot more than an M2M module, and size and power needs

make this a demanding solution. Also an industrial PC is a lot more complex than an M2M

module, and more things can go wrong.

Still, having the opportunity to connect almost anything (including cameras, weather stations

and other USB-based equipment) is a great advantage. A solution where each sea cage have

an M2M module, and in addition the fish frame have an industrial PC would be near optimal.

The industrial PC could then have the responsibility for gathering data common for all the sea

cages in the frame. This could be video surveillance and weather station data. Of course the

computer needs an internet connection. This could me achieved by a GPRS modem, or maybe

WiMax connection if present off-shore.

4.5.5 Summary

M2M modules like the BlueTree 5400 GPRS and the TraceMe solution are pre-programmed,

and only need proper configuration to work as surveillance or tracking systems. However,

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 136

making them work with existing middleware solutions like the APMS system is impossible

since new applications cannot be uploaded to the modules.

The Aplicom M2M L4002 or the Teltonika T-box/GPS are better choices since they are

programmable in Java, and can be customized to interact with almost any kind of middleware

system. The drawback is that the number of sensor interfaces are limited, and peripheral

equipment using for instance USB cannot be connected.

If a lot of advanced peripheral equipment needs to be connected to the context source, an

industrial computer is a good choice. Since these have a lot of interfaces and interface types,

almost anything can be connected. The drawback is that an industrial computer is more

complex and the probability of failing is higher.

Because only a small amount of sensors had to be connected/simulated in this proto type, an

M2M module was the best choice. Connecting a GPS to the serial port, and for instance three

sensors to the analogue inputs will make it possible to monitor the most important parameters

in a sea cage.

4.6 Other aspects of the system

To get this system up and running off-shore, some other aspects will have to be figured out,

and some hardware will have to be realized. This is especially adapters for sensors that can

transform the sensor output to a voltage level that the M2M module can interpret. However,

the M2M modules and sensors need power to work, and this could be a problem on smaller

off-shore installations without power supply.

A solution could be to equip each M2M module with solar cells and a battery pack, or

possibly have a solar cell and battery pack for the whole fish frame. Also cabling between the

power source, M2M modules and sensors is a matter that will have to be done professionally.

The extreme weather conditions off-shore set high demands for cabling and sensor equipment.

These are all tasks that do not fit this thesis, and will have to be figured out by specialists

later. That if the system is supposed to be realized. Another obstacle is today’s pricing models

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 137

on mobile phone subscriptions. Each M2M-module (each sea cage) needs a SIM-card to be

able to transfer the sensor data to the context manager. With high monthly fees, a solution

with many M2M modules would become very expensive in use. Using twin SIM-cards helps

a bit, but the expenses are still very high. Hopefully the future will bring cheaper mobile

phone subscriptions customized for M2M applications. This will probably boost the use of

these kind of services, hopefully including the FiFaMoS.

4.7 Risk analysis evaluation

To evaluate the risk analysis performed in the prestudy, the elements of risk are repeated.

Based on the outcome of the project, each element of risk is given comments.

1. The M2M technology used is new and not that much tried and tested

2. The APMS context manager is under development, and bugs can prevent our system

from working properly

3. Needed expertise and resources can be difficult to obtain

4. The system implementation can be so unstable that the uptime for the system will not

be good enough

5. Low system security will prevent the system from being useful

6. The M2M module does not have enough functionality to manage all the tasks

mentioned in the requirements

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 138

Figure 48: Risk elements diagram

4.7.1 Comments

The first element of risk is that the M2M technology is new and not that much tried and

tested. This element had low probability and medium consequence. During the project it has

not been much problems with the M2M technology itself. Much coding tips has been found

on the Internet, and most problems got a solution in the end. The low probability of this risk

element was right.

The second element of risk claimed that the APMS middleware is under development, and

bugs could prevent our system from working properly. This was the element with the highest

probability, and that was correct. Several bugs was found, and both we and the development

had to make improvements. Luckily no serious bug occurred, and the APMS context manager

could be used in the system.

The third element of risk said that it could be difficult to obtain the needed expertise and

resources. This element had low probability and high consequences. When problems occurred

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 139

during the development process, there was always someone to ask, either at Telenor R&D, or

at the APMS development team via mail. The low probability of this risk element was right.

The fourth element of risk mentioned that a bad system implementation could make the

system uptime too low. This element has low probability and medium consequences. Due to

the limited time span of this project, long term testing has not been possible to perform, but

we got the system running for several days without errors.

The fifth element of risk claimed that low system security would prevent the system from

being useful. This element has medium probability and low consequences. AAA mechanisms

have not been implemented, so the security of the system is not optimal. Since this only is a

prototype, the security is not very important, and the low consequences prevents the system

from being a failure.

The last element of risk was that the M2M module does not have enough functionality to

manage all the tasks mentioned in the requirements. This element has medium probability and

medium consequences, and has slightly been carried into effect. We was not able to make the

M2M module read the data from the camera, so the requirement specification had to be re-

evaluated.

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 140

5 Conclusions

A context-aware service (FiFaMoS) for the aquaculture industry makes it possible to

continually monitor what is happening at fish farm, and to act on basis of the context

information. The project has not been focusing on sensor integration, but with the help of

some hardware, it is possible to connect most sensors to the system This way the whole fish

production process can be monitored, and actions can be taken when abnormal conditions

occur. Using a monitoring system also minimize the need for visiting the fish farm, which is a

great advantage since fish farms tend to be situated far from land these days. Because the

increased monitoring and control of various parameters enables the fish farmers to keep the

fish healthy, the general quality of the fish is greatly increased. In addition the environmental

damages will be lowered due to tracking of lost sea cages, and optimal feeding routines.

The tracking is realized by the use of GPS receivers on each sea cage. The GPS functionality

provides a great insurance for the fish farmers as they will receive an alarm if a sea cage

works loose and drifts away. By using the FiFaMoS Context Consumer, the position of the

sea cage will be shown in a map, and the sea cage can be retrieved. All other sensor

information have alarm functionality as well. If a sensor value is higher or lower than the

preset limits, an alarm will be generated. The alarm contains all the necessary information

needed to locate the problem. This includes which sea cage it is, which sensor it is, the

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 141

sensors limits and the sensed value, and finally a timestamp telling when the alarm was

generated.

The FiFaMoS system utilizes a context manager called APMS described in section 2.2.1.

During this thesis, the APMS has been thoroughly investigated, and found to be perfectly

suited for this type of context-aware application. By implementing various components, a

service can be deployed on the context manager. Context sources (In this thesis the FiFaMoS

Context Source) can feed the service with sensor data, and context consumers (in this thesis

the FiFaMoS Context Consumer) can monitor the acquired data, both current and historical.

The service components consist of an interface and an implementation of the interface.

Methods in the interface are made available via different types of bindings such as RMI, web

services and sockets. Web services are used in this system to get a flexible and loosely

coupled architecture. The combination of the functionality of the different components make

up the service. By using APMS, a centralized and flexible architecture is achieved. This,

together with web services, makes deployment of new functionality and development of new

clients very fast and easy.

The data representation has been tested with both comma separated values (CSV) and XML

(section 4.2.2). It’s obvious that CSV produces less overhead when transferring, while XML

is much more flexible and user friendly. Using XML also makes the development of new

clients easier, as the format does not need to be predetermined. However, when getting

historical values for a sensor, XML is not very suited. This is because the large number of

data entities that will be transferred will require a huge amount of overhead as each sensor

value needs a separate XML-element or attribute.

The amount of storage space that is needed depends on three factors; how many sea cages

with how many sensor are in the system, how often shall sensors be sampled, and for how far

back in time should historical values be stored. In section 3.4.5.2.1 it’s measured that with 50

sea cages with 5 sensors each and sensor values are stored once a minute, it will be produced

760MB of data during a month.

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 142

The response times measured in section 3.4.5.2.2 has shown that the system is very fast, and

that it scales well. This is very important in connection with expansion of the fish farm, as it’s

preferred that adding a frame should not increase the response times of the system. However,

requesting historical sensor values for a long period of time generates a lot of data, and this

would make the response times rather high, especially on the FiFaMoS Mobile Context

Consumer. Therefore it is desired to have a data reduction algorithm that can remove

redundant sensor values in the database (see section 4.3).

5.1 Future work

This section describes what can be done to make the system even better. That includes both

modifications and supplements to the implementation and hardware.

The system has not yet been tested in an off-shore environment. As described in 2.2.2.1, the

sensors that already are situated at the sea cages are not compatible with the inputs of M2M

modules, so to enable interworking, hardware will have to be developed and used. This is not

a very demanding task, and could easily be accomplished by a firm with the needed

knowledge and equipment. It is also possible that some of the larger sea cages already have

got sensors connected to an industrial computer. By multiplexing all the sensor information

by using a proprietary RS-232 interface, and seding it to the M2M module, the FiFaMoS

system could enable real-time wireless monitoring and provide for accurate positioning

information from the sea cage.

When viewing historical values over a long period, a lot of data will have to be transferred,

and a huge amount of sensor values will be displayed in a relatively small area in the graph

diagram. This results in high response times, and a rather broad graph line where the value is

difficult to interpret. By using a Kalman-filter or an equivalent algorithm on the context

manager side, the sensor values can be limited to a smaller set of values that represent the

curve in a better way. This also reduces the number of values that have to be transferred, so

bandwidth usage will be saved and response times will be lower. By using the algorithm

directly on the database, it could be used for deleting redundant values, and storage needs

could also be saved.

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 143

Video surveillance is a very useful function in a fish farm, both under and over water. Since

the camera that was used in the FiFaMoS system was not able to communicate with the M2M

module, another camera should be tried out. There exist many cameras that are built for

monitoring of fish farms, but these are mostly analogue, and can not be easily included in the

FiFaMoS system. However, if a capturing unit is connected between the camera and the M2M

module, it should be possible to digitalize the image and send it over the Internet to the APMS

context manager. How and if this can be done can be a subject of further investigation.

Bandwidth requirements will also have to be investigated in case of real-time video

surveillance.

The system would probably benefit from a user authentication and authorisation system,

where a logon routine would have to be done before using the system. This would allow users

with administrative rights to alter the fish farm configuration, when operators only could see

the sensor information. It would also prevent unwanted users from accessing the information

in the system. An authentication/authorisation system would require an update of the

database, where users and user rights are represented. In addition the clients must be updated

with user and password prompting, and algorithms for verifying the logon routine. Another

security issue is the transmission of information. As it is today, the XML-RPC calls

containing the sensor information is unencrypted. The information is coded in XML, and is

easy to interpret by humans. To prevent this from happening, the XML documents sent should

be encrypted before transferred via XML-RPC. This could easily be done using existing

encryption packages for Java, and few extra lines of code would have to be added.

To make the fish farm sensor information available on all computers on the Internet, a web

interface could be useful. This could be implemented in HTML/JSP or AJAX using the

already implemented RPC-handler class from the FiFaMoS Context Consumer.

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 144

References

[1] The Akogrimo project partners: Akogrimo:: Access to Knowledge Through the

Grid in a Mobile World, (Akogrimo), http://www.mobilegrids.org/ (last visited:

31.05.2006)

[2] Osland, P. O.,: Final Integration Services Design and Implementation Report -

Mobile Network Middleware Architecture, Design & Implementation (Akogrimo),

(2005)

[3] Osland, P. O., Viken, B., Solsvik, F., Nygreen, G., Wedvik, J., Myklebust, S. E.,

Enabling context-aware applications, (Telenor R&D/Gintel AS, Trondheim),

(2005).

[4] Diaz Sendra, S: Sea Cage Gateway – Fish Farm Control Station, master thesis,

(Telenor R&D/NTNU), (2006)

[5] Sospedra Cardona, R: Sea Cage Gateway - Management System, master thesis,

Telenor R&D/NTNU (2006)

[6] Munch-Ellingsen, A: A Container Based Middleware Approach Supporting

Context-aware Service Development. (University of Tromsø), (2005)

[7] Fleury, M., Lindfors, J.: Enabling Component Architectures with JMX,

http://www.onjava.com/pub/a/onjava/2001/02/01/jmx.html (last visited:

10.06.2006)

[8] Word Reference dictionary: Definition of context,

http://www.wordreference.com/definition/context, (last visited: 20.04.2006)

[9] Dey, A., Salber, D., Abowd, G.: A context-based infrastructure for smart

environments. In: 1st International Workshop on Managing Interactions in Smart

Environments (MANSE’99), (1999)

[10] Kouadri Mostéfaoui, S., Kouadri Mostéfaoui, G.: Towards a contextualisation of

service discovery and composition for pervasive environments. Department of

Computer Science, (University of Fribourg, Switzerland), (2003)

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 145

[11] Karen Henricksen, Jadwiga Indulska, and Andry Rakotonirainy: Modelling Context

Information in Pervasive Computing Systems. School of Information Technology

and Electrical Engineering (The University of Queensland), (2002)

[12] Jadwiga Indulska, Ricky Robinson, Andry Rakotonirainy, and Karen Henricksen:

Experiences in Using CC/PP in Context-Aware Systems. School of Information

Technology and Electrical Engineering (The University of Queensland), (2002)

[13] Li, Wei, A Service Oriented SIP infrastructure for Adaptive and Context-Aware

Wireless Services, Department of Computer and Systems Sciences (Royal Institute

of Technology), (2003)

[14] AKVAsmart ASA: AKVAsmart – We make your fish talk, (AKVAsmart),

http://www.akvasmart.no (last visited: 28.05.2006)

[15] DSTC: Elvin notification messages, http://elvin.dstc.com/intro/what.html (last

visited: 14.03.2006)

[16] Garmin Ltd: What is GPS?, (Garmin) http://www.garmin.com/aboutGPS/ (last

visited: 31.05.2006)

[17] GSM Association 2006: GPRS platform, (GSM World),

http://www.gsmworld.com/technology/gprs/index.shtml (last visited: 31.05.2006)

[18] The 3rd Generation Partnership Project: About 3GPP, (3GPP),

http://www.3gpp.org/About/about.htm (last visited: 20.04.2006)

[19] Apache Software Foundation: Apache XML-RPC, http://ws.apache.org/xmlrpc/

(last visited: 06.06.2006)

[20] ObjectWeb/Enhydra: The home of kXML-RPC: http://kxmlrpc.objectweb.org/ (last

visited: 31.05.2006)

[21] Torres Serrano, J. U.: Comtor J2ME, http://comtorj2me.sourceforge.net/ (last

visited: 31.05.2006)

[22] CommLinx Solutions: NMEA examples,

http://www.commlinx.com.au/NMEA_sentences.htm (last visited: 04.06.2006)

[23] USGS Eastern Region Geography: Universal Transverse Mercator (UTM) Grid,

Fact Sheet, http://erg.usgs.gov/isb/pubs/factsheets/fs07701.html (last visited:

04.06.2006)

[24] KCS BV: TraceME track & trace modules, http://www.traceme.tv/ (last visited:

31.05.2006)

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 146

[25] BlueTree Wireless data Inc.: BlueTree Wireless Modems,

http://www.bluetreewireless.com/products/wireless/details.asp?id=39 (last visited:

31.05.2006)

[26] Aplicom: Aplicom L-series - wireless GPRS/GSM device (M2M),

http://www.aplicom.com/lseries_m2m.html (last visited: 31.05.2006)

[27] Teltonika: T-Box/GPS-307, http://www.teltonika.lt/en/pages/view/?id=6 (last

visited: 31.05.2006)

[28] Advantech Co. Ltd.: Advantech - Trusted ePlatform Services - ARK-3381 - Seven

Serial Port Fanless Embedded Box Computer,

http://www.advantech.com/products/Model_Detail.asp?model_id=1-

1TGX8Y&BU=ACG&PD=# (last visited: 31.05.2006)

[29] Mort Bay Consulting: Jetty Java HTTP Servlet Server,

http://jetty.mortbay.org/jetty/index.html (last visited: 20.04.2006)

[30] Apache Software Foundation: Apache Derby, http://db.apache.org/derby/ (last

visited: 05.04.2006)

[31] The Jabber Software Foundation: Jabber: Open Instant Messaging and a Whole Lot

More, http://www.jabber.org/ (last visited: 04.06.2006)

[32] The Codehaus: Drools home, http://www.drools.org/ (last visited: 01.06.2006)

[33] Fowler, M., Scott, K.: UML Distilled Second Edition – A brief guide to the

standard object modelling language. (2000).

[34] Martin, Robert C.: UML for Java Programmers. (Object Mentor Inc.), (2003).

[35] McLaughlin B.: Java and XML. (O’Reilly), (2000).

[36] St.Laurent, S., Johnston, J., Dumbill, E.: Programming Web Services with XML-

RPC. (O’Reilly), (2001).

[37] Harold, Eliotte R., Scott Means, W.: XML in a Nutshell – A Desktop Quick

Reference. (O’Reilly), (2002).

[38] Harold, Eliotte R.: Processing XML with Java – A Guide to SAX, DOM, JDOM,

JAXP, and TrAX. (Addison-Wesley), (2003).

[39] Valacich Joseph S., George, Joey F., Hoffer, Jeffrey A.: Essentials of Systems

Analysis and Design. (Prentice Hall), (2001).

[40] Winder, R., Roberts, G.: Developing Java Software. (Wiley), (2001).

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 147

[41] Orlowski, A.: AT&T WiMax trials,

http://www.theregister.co.uk/2005/10/27/wimax_world_att_trial/ (last visited:

06.06.2006)

[42] W3C: Extensible Markup Language (XML) 1.0 W3C recommendation,

http://www.w3.org/TR/REC-xml/ (last visited: 31.05.2005)

[43] Round Solutions: CAM-VGA100 User Manual,

http://www.roundsolutions.com/cmos-camera/CAM-VGA100-User-Manual%20V2-

0.pdf (last visited: 15.03.2006)

[44] Aplicom: A12 Imlet programming guide,

http://www.aplicom.com/documents/K502850_a12_imlet_programming_guide.pdf

(last visited: 20.04.2006)

[45] Aplicom: A12 Properties reference guide,

http://www.aplicom.com/documents/K502875_a12_properties_reference_guide.pdf

(last visited: 20.04.2006)

[46] Aplicom: A12 Software developers guide,

http://www.aplicom.com/documents/K502860_a12_sw_developers_guide.pdf (last

visited: 20.04.2006)

[47] Aplicom: A12 test board specification,

http://www.aplicom.com/documents/S100701_a12_test_board_spec.pdf (last

visited: 20.04.2006)

[48] Object Management Group, Inc: CORBA Frequently Asked Questions and

resources, http://www.omg.org/gettingstarted/corbafaq.htm (last visited:

14.04.2006)

[49] Hao He: What Is Service-Oriented Architecture,

http://webservices.xml.com/pub/a/ws/2003/09/30/soa.html (last visited:

31.05.2006)

[50] David Megginson: SAX, http://www.saxproject.org (last visited: 31.05.2006)

[51] Jonathan Stott: GPS format conversion http://www.jstott.me.uk/jcoord/ (last visited:

20.04.2006)

[52] Website optimization: HTTP compression,

http://www.websiteoptimization.com/speed/tweak/compress/ (last visited:

31.05.2006)

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 148

Appendix A Description of

the user interface

When implementing FiFaMoS, the goal were to make a system as near a finished product as

possible. This led to that a lot of time was used to optimize the user experience, including

graphical design, and GUI window and dialog design. Input verification and error handling

have also been a subject of matter to make the demonstration as good as possible. In the end,

the system works as intended, and not much implementation work remains before the product

is good enough for the market. The main task of this appendix is to give an overview of the

FiFaMoS system, and to present the final result.

The system includes multiple clients:

• A Java ME mobile client for mobile phones and other handheld devices: FiFaMoS

Mobile Context Consumer

• A Java SE application client for laptop/desktop system: FiFaMoS Context Consumer.

The user interfaces will be described in this appendix.

A.1 FiFaMoS Context Consumer

This client was implemented using Standard Widget Toolkit (SWT). This is an open-source

framework for developing graphical user interfaces in Java. The main advantage of SWT is

that the GUI will look and act the same as the operating system’s native GUI.

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 149

Figure 49: The graphical user interface of the FiFaMoS Context Consumer.

The main window is divided into four main parts: The list of frames and sea cages, the list of

sensor values, a log section and a last part where graphs for historical sensor values can be

shown.

The first part where sea cages can be chosen, is based on a two-level SWT tree widget. Fish

frames are displayed in the first level and sea cages in the second. When a sea cage is chosen,

the sensor information and GPS data from the sea cage is displayed in section top right. This

information is continually updated, and buttons for displaying graphs and maps are in this

section as well. Pressing the map button opens a new dialog showing the location of the sea

cage in a map.

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 150

Figure 50: Map showing the sea cage location (the red star).

To display historical sensor values, a graph is used. This graph can display sensor values from

preset periods. The period is chosen by radio buttons under the graph, and the graph itself will

be displayed bottom right. The graph is drawn in X and Y coordinates in a canvas, and it

adapts itself to the window size. Every command that is made to the system is logged with a

timestamp in the logging section. Alarms and abnormal sensor values will be displayed here

as well. The user can either save the log to a file on the hard drive, or choose to blank the

logging section. The widget used is StyledText which makes is possible to use various font

types and colours. Alarms will be displayed in bold red text for the operator’s attention.

The settings dialog

When pressing the settings button in the main window, a new dialog appears. Here it is

possible to alter various parameters of the system. These parameters include the context

manager server address, how often sensor values should be refreshed, and the opportunity to

configure the fish farm.

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 151

Figure 51: Screenshot of the settings dialog

The fish farm configuration option makes it possible to add, remove or edit frames, sea cages

and sensors. The frames, sea cages and sensors are displayed in tables, where each table has

buttons for adding, removing or editing the frame, sea cage or sensor. Pressing the add or edit

button triggers a new dialog where the parameters can be set or edited.

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 152

Figure 52: The dialog for adding a new sensor

A.2 FiFaMoS Mobile Context Consumer

To navigate between frames, sea cages and sensors in the FiFaMoS Mobile Context

Consumer, lists are used. The first list displayed is the frame list. When a frame is chosen, a

list over its sea cages is displayed. The same way, the sensor values of a sea cage are

displayed when a sea cage is chosen.

Figure 53: List over the fish frames from the FiFaMoS Mobile Context Consumer

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 153

Figure 54: List over the sea cages from the FiFaMoS Mobile Context Consumer

Figure 55: The list of the current sensor values of a sea cage from the FiFaMoS Mobile Context

Consumer.

By choosing one of the sensors in the sensor list, historical values can be shown. Before the

values are shown, the time span have to be chosen. This is done in a list, where “last hour”,

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 154

“last 24 hours”, “last week” and “last month” are options. When the time span is chosen, the

historical sensor values are presented in a graph like shown in Figure 56.

Figure 56: The graph showing historical sensor values from the FiFaMoS Mobile Context Consumer

In addition the application has a start menu the settings windows can be accessed from, other

choices in the start menu includes starting the surveillance, or exit the program.

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 155

A.3 FiFaMoS web interface

During the last hours of the project, a web interface was developed. This is based on AJAX

(Asynchronous Javascript and XML) technology, which enables dynamic updating of the web

site. In addition JSP (Java Server Pages) is used for generating the XML of the data from the

context manager.The web interface is located at at: http://’context manager

ip’:’port’/services/Fifamos/ The interface displays both sensor information and alarms, and

looks like this:

Figure 57: The FiFaMoS web interface

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 156

Appendix B Code listing

B.1 Input component meta file

The input component meta file defines the component type, binding type used, and the

persistence model. This is described in an XML-file.

<?xml version = "1.0" encoding="UTF-8" standalone = "no"?>

<!DOCTYPE METAINFORMATION SYSTEM "./config/InputMeta_DTD.dtd">

<METAINFORMATION>

 <component>

 <version>0.5</version>

 <type>input</type>

 <description>Input component for Fifamos</description>

 <bindingtype>xmlrpc</bindingtype>

 <!-- All tables have the primary key field 'id' automatically set -->

 <pmodel>

 <table>

 <tablename>frame</tablename>

 <field>

 <fieldname>location</fieldname>

 <fieldtype>string</fieldtype>

 </field>

 <field>

 <fieldname>description</fieldname>

 <fieldtype>string</fieldtype>

 </field>

 <field>

 <fieldname>mobile</fieldname>

 <fieldtype>string</fieldtype>

 </field>

 <field>

 <fieldname>email</fieldname>

 <fieldtype>string</fieldtype>

 </field>

 <field>

 <fieldname>updated</fieldname>

 <fieldtype>int</fieldtype>

 </field>

 </table>

 <table>

 <tablename>seacage</tablename>

 <field>

 <fieldname>latitude</fieldname>

 <fieldtype>string</fieldtype>

 </field>

 <field>

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 157

 <fieldname>longitude</fieldname>

 <fieldtype>string</fieldtype>

 </field>

 <field>

 <fieldname>initialLatitude</fieldname>

 <fieldtype>string</fieldtype>

 </field>

 <field>

 <fieldname>initialLongitude</fieldname>

 <fieldtype>string</fieldtype>

 </field>

 <field>

 <fieldname>description</fieldname>

 <fieldtype>string</fieldtype>

 </field>

 <field>

 <fieldname>imei</fieldname>

 <fieldtype>string</fieldtype>

 </field>

 <field>

 <fieldname>interval</fieldname>

 <fieldtype>int</fieldtype>

 </field>

 <field>

 <fieldname>frameid</fieldname>

 <fieldtype>int</fieldtype>

 </field>

 </table>

 <table>

 <tablename>sensor</tablename>

 <field>

 <fieldname>sensortypeid</fieldname>

 <fieldtype>int</fieldtype>

 </field>

 <field>

 <fieldname>maxvalue</fieldname>

 <fieldtype>double</fieldtype>

 </field>

 <field>

 <fieldname>minvalue</fieldname>

 <fieldtype>double</fieldtype>

 </field>

 <field>

 <fieldname>seacageid</fieldname>

 <fieldtype>int</fieldtype>

 </field>

 </table>

 <table>

 <tablename>sensorvalue</tablename>

 <field>

 <fieldname>value</fieldname>

 <fieldtype>double</fieldtype>

 </field>

 <field>

 <fieldname>received</fieldname>

 <fieldtype>timestamp</fieldtype>

 </field>

 <field>

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 158

 <fieldname>sensorid</fieldname>

 <fieldtype>int</fieldtype>

 </field>

 </table>

 <table>

 <tablename>alarm</tablename>

 <field>

 <fieldname>seacageid</fieldname>

 <fieldtype>int</fieldtype>

 </field>

 <field>

 <fieldname>sensorid</fieldname>

 <fieldtype>string</fieldtype>

 </field>

 <field>

 <fieldname>message</fieldname>

 <fieldtype>string</fieldtype>

 </field>

 <field>

 <fieldname>issent</fieldname>

 <fieldtype>int </fieldtype>

 </field>

 <field>

 <fieldname>confirmed</fieldname>

 <fieldtype>timestamp</fieldtype>

 </field>

 </table>

 <table>

 <tablename>sensortype</tablename>

 <field>

 <fieldname>type</fieldname>

 <fieldtype>string</fieldtype>

 </field>

 <field>

 <fieldname>description</fieldname>

 <fieldtype>string</fieldtype>

 </field>

 <field>

 <fieldname>unit</fieldname>

 <fieldtype>string</fieldtype>

 </field>

 <field>

 <fieldname>maxrange</fieldname>

 <fieldtype>double</fieldtype>

 </field>

 <field>

 <fieldname>minrange</fieldname>

 <fieldtype>double</fieldtype>

 </field>

 </table>

 </pmodel>

 </component>

</METAINFORMATION>

Code 38: The input component meta file

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 159

B.2 Output component meta file

The output component meta file describes the component type.

<?xml version = "1.0" encoding="UTF-8" standalone = "no"?>

<!DOCTYPE METAINFORMATION SYSTEM "./config/OutputMeta_DTD.dtd">

<METAINFORMATION>

 <component>

 <version>0.5</version>

 <type>output</type>

 <description>Output component for Fifamos</description>

 </component>

</METAINFORMATION>

Code 39: The output component meta file

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 160

B.3 Deployment descriptor

The deployment descriptor is used to define the service and its components.

<?xml version = "1.0" encoding="UTF-8" standalone = "no"?>

<!DOCTYPE METAINFORMATION SYSTEM "./config/DeploymentDescriptor_DTD.dtd">

<METAINFORMATION>

 <service>

 <name>Fifamos</name>

 <version>0.5</version>

 <description>Beskrivelse av Fifamos</description>

 <dbType>Derby</dbType>

 </service>

 <deploy>

 <component>

 <name>Input</name>

 <class>com.telenor.apms.fifamos.Input</class>

 <metafile>InputMeta.xml</metafile>

 </component>

 <component>

 <name>Output</name>

 <class>com.telenor.apms.fifamos.Output</class>

 <metafile>OutputMeta.xml</metafile>

 </component>

 </deploy>

</METAINFORMATION>

Code 40: Deployment descriptor

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 161

B.4 XML representations

Most of the objects that are transferred between the nodes in the system are represented as an

XML string. This appendix describes the configuration of these XML representations.

<XML>

 <frame>

 <id> 1 </id>

 <location> location </location>

 <description> description </description>

 <mobile> 99989796 </mobile>

 <email> operator@fifamos.com </email>

 </frame>

</XML>

Code 41: XML representation of a fish frame

<XML>

 <seacage>

 <id> 2 </id>

 <latitude> 63.23112 </latitude>

 <longitude> 10.34267 </longitude>

 <description> description </description>

 <imei> 352540000046895 </imei>

 <interval> 10 </interval>

 <frameid> 1 </frameid>

 </seacage>

</XML>

Code 42: XML representation of a sea cage

<XML>

 <sensor>

 <id> 1 </id>

 <sensortypeid> 1 </sensortypeid>

 <maxrange> 120 </maxrange>

 <minrange> -40 </minrange>

 <maxvalue> 25 </maxvalue>

 <minvalue> 4 </minvalue>

 <seacageid> 2 </seacageid>

 </sensor>

</XML>

Code 43: XML representation of a sensor

<xml>

 <sensorvalue>

 <sensorid>3</sensorid>

 <value>253</value>

 </sensorvalue>

</xml>

 Code 44: XML representation of a sensor value

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 162

<xml>

 <command type=”add”>

 <frame>

 <id>0</id>

 <location>Trondheimsfjorden</location >

 <description>Testframe</description>

 <mobile>99989796</mobile>

 <email>operator@fifamos.net</email>

 </frame>

 </command>

</xml>

Code 45: XML representation of a command for adding a frame

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 163

B.5 Class for reading GPS data

The GPSControl is used as a wrapper for the GpsModule class available in the Aplicom N12i.

It is located in the package com.telenor.apms.fifamos.n12.utils.

package com.telenor.apms.fifamos.n12.utils;

import com.nokia.m2m.orb.idl.gps.GpsData;

import com.nokia.m2m.orb.idl.gps.GpsModule;

import com.nokia.m2m.orb.idl.gps.GpsModuleHelper;

import com.nokia.m2m.orb.idl.gps.NoGpsDataAvailableException;

public class GPSControl {

 private GpsModule gpsModule;

 private GpsData data;

 private long latdeg;

 private long latmin;

 private long latsec;

 private long latmil;

 private long lngdeg;

 private long lngmin;

 private long lngsec;

 private long lngmil;

 public GPSControl(org.omg.CORBA.ORB orb) {

// Get refrence to the GPS module.

 String url =

 "corbaloc::127.0.0.1:19740/ORB/OA/IDL:gps/GpsModule:1.0";

 org.omg.CORBA.Object ref = orb.string_to_object(url);

// get the GPS object

 gpsModule = GpsModuleHelper.narrow(ref);

 }

 /** Method for reading the GPS position.

 * This method must be called at least once before calling

 * the different get-methods.

 *

 * @throws NoGpsDataAvailableException

 */

 public void read() throws NoGpsDataAvailableException {

 data = gpsModule.getGpsData();

 latdeg = data.position.lat.degrees;

 latmin = data.position.lat.minutes;

 latsec = data.position.lat.seconds;

 latmil = data.position.lat.milliseconds;

 lngdeg = data.position.lon.degrees;

 lngmin = data.position.lon.minutes;

 lngsec = data.position.lon.seconds;

 lngmil = data.position.lon.milliseconds;

 }

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 164

 /**

 * @return the latitude degrees

 */

 public long getLatdeg() {

 return latdeg;

 }

 /**

 * @return the latitude minutes

 */

 public long getLatmin() {

 return latmin;

 }

 /**

 * @return the latitude seconds

 */

 public long getLatsec() {

 return latsec;

 }

 /**

 * @return the latitude milliseconds

 */

 public long getLatmil() {

 return latmil;

 }

 /**

 * @return the longitude degrees

 */

 public long getLngdeg() {

 return lngdeg;

 }

 /**

 * @return the longitude minutes

 */

 public long getLngmin() {

 return lngmin;

 }

 /**

 * @return the longitude seconds

 */

 public long getLngsec() {

 return lngsec;

 }

 /**

 * @return the longitude milliseconds

 */

 public long getLngmil() {

 return lngmil;

 }

}

Code 46: The GPSControl class, used as a wrapper for adding GPS data

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 165

B.6 Class for updating the database

Since the database abstraction on the APMS context manager did not support the update-

operation, an extra class had to be implemented. This class was put on the context manager

along with the insert, select and delete classes.

package coms.tools.relational;

import java.sql.SQLException;

import java.util.ArrayList;

import java.util.HashMap;

import java.util.Iterator;

import java.util.Map;

import java.util.Set;

import javax.management.MBeanServer;

import javax.management.ObjectName;

import coms.CoMS;

import coms.database.ConnectionException;

import coms.database.DatabaseConnection;

/**

 * Insert is used to update data in a table in a relational database.

 * Based on coms.tools.relational.Insert.java

 *

 */

public class Update {

 private String prevCol = null;

 private Object prevVal = null;

 private HashMap<String, Object> data = new HashMap<String, Object>();

 private String tbl;

 private String dbType;

 private String conditionCol;

 private Object conditionVal;

 public Update(String tableName, String DBType) {

 this.tbl = tableName;

 this.dbType = DBType;

 }

 /**

 * Inserts the value into the column

 *

 * @param col

 * column where the value is to be placed

 * @param value

 * to be put into the database

 */

 public void column(String col, Object value) {

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 166

 prevCol = col;

 prevVal = data.get(col);

 data.put(col, value);

 }

 public void condition(String col, Object value) {

 conditionCol = col;

 conditionVal = value;

 }

 /**

 * Removes the last value to be put into the database

 */

 public void undo() {

 if (prevVal == null)

 data.remove(prevCol);

 else

 data.put(prevCol, prevVal);

 }

 /**

 * Will put the previously specified data into the database.

 *

 * @param tbl

 * The table the data will be inserted into

 * @param dbType

 * The type of the database, can be found in

 * "getMetaData().getDbType()

 * @throws SQLException

 * if there is something wrong in the generated SQL string

 * @throws ConnectionException

 * if a connection cannot be aquired

 */

 public void execute() throws SQLException, ConnectionException {

 Iterator it = data.keySet().iterator();

 String sqlStr = "UPDATE " + tbl + " SET ";

 // Iterates over the data picking out the fields in each row

 while (it.hasNext()) {

 // Drops the commas the last time

 sqlStr += it.next() + " = ?" + (it.hasNext() ? "," : "");

 }

 sqlStr += " WHERE " + conditionCol + " = " + conditionVal;

 System.out.println("Update SQL string: " + sqlStr);

 try {

 DatabaseConnection con = getDatabaseConnection(dbType);

 con.executeSQL(sqlStr, data.values().toArray(), false);

 con.release();

 } catch (Exception e) {

 e.printStackTrace();

 }

 // Sends an event that there has been done changes to table

 notifyEvent(tbl);

 }

 /**

 * Puts a table containing values into a database

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 167

 *

 * @param tbl

 * The table to be put into the database

 * @param dbType

 * The type of the database, can be found in

 * "getMetaData().getDbType()

 * @param data

 * Component that called this method

 * @throws SQLException

 * if there is something wrong in the generated SQL string

 * @throws ConnectionException

 * if a connection cannot be aquired

 */

 public static void execute(String tbl, String dbType,

 Set<Map<String, Object>> data, String condCol, String condVal)

 throws SQLException, ConnectionException {

 ArrayList<Object> val = new ArrayList<Object>();

 Map row;

 String fieldName;

 String sqlStr = "UPDATE " + tbl + " SET ";

 Iterator field;

 Iterator it = data.iterator();

 // Iterates over the data picking out the fields in each row

 while (it.hasNext()) {

 row = (Map) it.next();

 field = row.keySet().iterator();

 while (field.hasNext()) {

 // Drops the commas the first time

 fieldName = (String) field.next();

 sqlStr += fieldName + " = ?" + (it.hasNext() ? "," : "");

 val.add(row.get(fieldName));

 }

 }

 sqlStr += " WHERE " + condCol + " = " + condVal + ")";

 try {

 DatabaseConnection con = getDatabaseConnection(dbType);

 con.executeSQL(sqlStr, val.toArray(), false);

 con.release();

 } catch (Exception e) {

 e.printStackTrace();

 }

 // Sends an event that there has been done changes to table

 notifyEvent(tbl);

 }

 private static DatabaseConnection getDatabaseConnection(String type)

 throws Exception {

 MBeanServer server = CoMS.getServerHandle();

 ObjectName db = new ObjectName(server.getDefaultDomain() + ":Name="

 + type + ", Type=Core");

 return (DatabaseConnection) server.getAttribute(db, "Connection");

 }

 /**

 * Notifies all components of a table change using the EventHandler.

 *

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 168

 * @param String

 * table

 */

 private static void notifyEvent(String table) throws ConnectionException {

 MBeanServer server = CoMS.getServerHandle();

 try {

 // If a server is found, choose which type of database we want to

 // contact

 if (server != null) {

 ObjectName componentAgent = new ObjectName(server

 .getDefaultDomain()

 + ":Name=EventHandler, Type=Core");

 server.invoke(componentAgent, "notifyEvent",

 new Object[] { table }, new String[] { String.class

 .getName() });

 } else

 throw new ConnectionException("Could not find mbeanserver");

 } catch (Exception e) {

 // This should not occur

 e.printStackTrace();

 }

 }

}

Code 47: The database update class

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 169

B.7 The sensor simulator

package com.telenor.apms.fifamos.utils;

import java.io.ByteArrayInputStream;

import java.net.URL;

import java.util.Vector;

import org.apache.xmlrpc.XmlRpcClient;

import org.xml.sax.Attributes;

import org.xml.sax.InputSource;

import org.xml.sax.SAXException;

import org.xml.sax.XMLReader;

import org.xml.sax.helpers.DefaultHandler;

import org.xml.sax.helpers.XMLReaderFactory;

public class SensorSimClass extends DefaultHandler {

// private static final String _URL = "http://129.241.219.164:8081/RPC2";

 private static final String _URL = "http://localhost:8080/RPC2";

// private static final String _URL = "http://81.191.34.98:80/RPC2";

 private String imei;

 private int frameid;

 private int seacageid;

 private int index;

 private int[] sensorid;

 private StringBuffer xml = new StringBuffer();

 private XmlRpcClient xmlrpc;

 private Vector<String> params;

 public SensorSimClass(int imei, int sensors) {

 try {

 this.imei = String.valueOf(imei);

 sensorid = new int[sensors];

 URL url = new URL(_URL);

 xmlrpc = new XmlRpcClient(url);

 params = new Vector<String>();

 params.addElement(this.imei);

 String xmlconfig = (String) xmlrpc.execute("Output.getConfigAsXml",

params);

 XMLReader parser = XMLReaderFactory.createXMLReader();

 parser.setContentHandler(this);

 parser.parse(new InputSource(new

ByteArrayInputStream(xmlconfig.getBytes())));

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

 public void pulse() {

 try {

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 170

 params.removeAllElements();

 xml.delete(0, xml.length());

 xml.append("<xml>");

// xml.append("<seacageid>"+Config.seacageid+"</seacageid>");

 for(int i=0; i<sensorid.length;i++) {

 // creating xml elements

 if(sensorid[i]!=-1) {

 xml.append("<command type=\"add\">\n");

 xml.append("<sensorvalue>\n");

 xml.append("<sensorid>"+sensorid[i]+"</sensorid>\n");

// xml.append("<value>"+(int)(Math.random()*2800)+"</value>\n");

 xml.append("<value>"+ ((Math.random()*1000) + 600) +"</value>\n");

 xml.append("</sensorvalue>\n");

 xml.append("</command>\n");

 }

 }

 xml.append("<command type=\"update\">\n");

 xml.append(

 "<gps>" +

 "<seacageid>" + seacageid + "</seacageid>" +

 "<latlng " +

 "lat=\""+ 63 + " " + 29 + " " + 47 + "\" " +

 "lng=\""+ 10 + " " + 23 + " " + 57 + "\" " +

 "/>" +

 "</gps>");

 xml.append("</command>\n");

 xml.append("</xml>");

 params.add(xml.toString());

 xmlrpc.execute("Input.postSourceXml", params);

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

 @Override

 public void startDocument() throws SAXException {

 }

 @Override

 public void startElement(String uri, String localName, String qName,

Attributes attributes) throws SAXException {

 if(qName.equals("frame"))

 frameid = Integer.parseInt(attributes.getValue("value"));

 else if(qName.equals("seacage"))

 seacageid = Integer.parseInt(attributes.getValue("value"));

 else if(qName.equals("sensorid"))

 sensorid[index++] = Integer.parseInt(attributes.getValue("value"));

 }

 @Override

 public void characters(char[] chars, int start, int length) throws

SAXException {

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 171

 }

 @Override

 public void endElement(String uri, String localName, String qName) throws

SAXException {

 }

 @Override

 public void endDocument() throws SAXException {

 }

}

Code 48: The sensor simulator source code

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 172

B.8 Bug fix: APMS Derby.java file

After installing a new version of the APMS context manager, the system did not work. It was

impossible to create tables. The following stack trace was shown in the console:

javax.management.MBeanException: Exception thrown in operation createTable

 at

com.sun.jmx.mbeanserver.StandardMetaDataImpl.invoke(StandardMetaDataI

mpl.java:435)

 at

com.sun.jmx.mbeanserver.MetaDataImpl.invoke(MetaDataImpl.java:220)

 at

com.sun.jmx.interceptor.DefaultMBeanServerInterceptor.invoke(DefaultM

BeanServerInterceptor.java:815)

 at

com.sun.jmx.mbeanserver.JmxMBeanServer.invoke(JmxMBeanServer.java:784)

 at coms.mbeans.Deployer.createTable(Deployer.java:755)

 at coms.mbeans.Deployer.createTables(Deployer.java:827)

 at coms.mbeans.Deployer.deploy(Deployer.java:856)

 at coms.mbeans.Deployer.deployComponents(Deployer.java:455)

 at coms.mbeans.Deployer.deployLoadedJars(Deployer.java:369)

 at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)

 at

sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.

java:39)

 at

sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAcces

sorImpl.java:25)

 at java.lang.reflect.Method.invoke(Method.java:585)

 at

com.sun.jmx.mbeanserver.StandardMetaDataImpl.invoke(StandardMetaDataI

mpl.java:414)

 at

com.sun.jmx.mbeanserver.MetaDataImpl.invoke(MetaDataImpl.java:220)

 at

com.sun.jmx.interceptor.DefaultMBeanServerInterceptor.invoke(DefaultM

BeanServerInterceptor.java:815)

 at

com.sun.jmx.mbeanserver.JmxMBeanServer.invoke(JmxMBeanServer.java:784)

 at

coms.mbeans.ComponentLoader.deployLoadedJars(ComponentLoader.java:127)

 at

coms.mbeans.ComponentLoader.deployJarFile(ComponentLoader.java:71)

 at coms.mbeans.ComponentLoader.checkFile(ComponentLoader.java:57)

 at

coms.mbeans.ComponentLoader.checkDeployFolder(ComponentLoader.java:15 8)

 at

coms.mbeans.ComponentLoader.loadComponents(ComponentLoader.java:138)

 at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)

 at

sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.

java:39)

 at

sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAcces

sorImpl.java:25)

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 173

 at java.lang.reflect.Method.invoke(Method.java:585)

 at

com.sun.jmx.mbeanserver.StandardMetaDataImpl.invoke(StandardMetaDataI

mpl.java:414)

 at

com.sun.jmx.mbeanserver.MetaDataImpl.invoke(MetaDataImpl.java:220)

 at

com.sun.jmx.interceptor.DefaultMBeanServerInterceptor.invoke(DefaultM

BeanServerInterceptor.java:815)

 at

com.sun.jmx.mbeanserver.JmxMBeanServer.invoke(JmxMBeanServer.java:784)

 at coms.CoMS.loadComponents(CoMS.java:85)

 at coms.CoMS.<init>(CoMS.java:355)

 at coms.CoMS.main(CoMS.java:40)

Caused by: SQL Exception: Syntax error: Encountered "," at line 1, column

111.

 at org.apache.derby.impl.jdbc.Util.generateCsSQLException(Unknown

Source)

 at

org.apache.derby.impl.jdbc.TransactionResourceImpl.wrapInSQLException

(Unknown Source)

 at

org.apache.derby.impl.jdbc.TransactionResourceImpl.handleException(Un known

Source)

 at

org.apache.derby.impl.jdbc.EmbedConnection.handleException(Unknown So urce)

 at

org.apache.derby.impl.jdbc.ConnectionChild.handleException(Unknown So urce)

 at org.apache.derby.impl.jdbc.EmbedPreparedStatement.<init>(Unknown

Sour ce)

 at

org.apache.derby.impl.jdbc.EmbedPreparedStatement20.<init>(Unknown So urce)

 at

org.apache.derby.impl.jdbc.EmbedPreparedStatement30.<init>(Unknown So urce)

 at org.apache.derby.jdbc.Driver30.newEmbedPreparedStatement(Unknown

Sour ce)

 at

org.apache.derby.impl.jdbc.EmbedConnection.prepareStatement(Unknown S

ource)

 at

org.apache.derby.impl.jdbc.EmbedConnection.prepareStatement(Unknown S

ource)

 at

coms.database.DatabaseConnection.executeSQL(DatabaseConnection.java:1 19)

 at

coms.database.DatabaseConnection.executeSQL(DatabaseConnection.java:9 8)

 at coms.database.Database.createTable(Database.java:200)

 at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)

 at

sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.

java:39) at

sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAcces

sorImpl.java:25)

 at java.lang.reflect.Method.invoke(Method.java:585)

 at

com.sun.jmx.mbeanserver.StandardMetaDataImpl.invoke(StandardMetaDataI

mpl.java:414)

 ... 32 more

Code 49: Create table bug stacktrace

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 174

After some error searching, it was revealed that the getCreateTableSql(Table tbl) in

Derby.java had a bug. The primary key was set twice.

 /**

 * Adds a table to the database

 *

 * @param tbl

 * The table to be added to the database

 * @return wheater the table was added successfully

 */

 protected String getCreateTableSql(Table tbl) throws SQLException,

ConnectionException {

 String def;

 TableField primary = null;

 primary = tbl.getPrimaryKey();

 String sqlStr = "CREATE TABLE " + tbl.getName() + "(";

 // Add primary key

 sqlStr += primary.getName() + " " + toSqlType(primary.getType());

// sqlStr += " NOT NULL GENERATED ALWAYS AS IDENTITY (START WITH 1,

INCREMENT BY 1), PRIMARY KEY, ";

// don't need to set primary key twice (see line 131)

 sqlStr += " NOT NULL GENERATED ALWAYS AS IDENTITY (START WITH 1,

INCREMENT BY 1), ";

 // Iterates over the fields in the table

 Iterator it = tbl.getFieldIterator();

 while (it.hasNext()) {

 TableField field = (TableField) it.next();

 // Adds all the non primary fields to the sql string

 if (!field.isPrimaryKey()) {

 sqlStr += field.getName() + " " + toSqlType(field.getType());

 // If there is a default value

 def = field.getDefault();

 if (def != null && !def.equals(""))

 sqlStr += " DEFAULT " + def;

 sqlStr += ", ";

 }

 }

 sqlStr += " PRIMARY KEY(" + primary.getName() + ")";

 sqlStr += ")";

 return sqlStr;

 }

Code 50: getCreateTable method from the Derby.java file on the APMS context manager

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 175

B.9 Bug fix: APMS MetaDataParser.java file

When deploying the JAR-file as a service on the context manager, the context manager

unpacks the JAR-file and loads the components. But it also generates new meta files, based on

the ones in the JAR-file. This generation, however, had some flaws. At some occurrences,

seemingly random, the generation of new meta files were erroneous. After some error

searching it was revealed that there was an error in the MetaDataParser.java file in the

APMS context manager.

When parsing the meta files (SAX parsing), and the characters event is called, there's no

guarantee that all the characters in the text element is available at the same time. For instance,

when parsing the text element

<fieldtype>TIMESTAMP</fieldtype>

it's just as likely to get one characters-event with TIM and one with ESTAMP as to get just

one event with TIMESTAMP. Therefore it makes sense to use the characters in a text element

when the endElement-event is reached, since then all the characters have been read.

However, the MetaDataParser.java assumed that all the characters were available every time,

and when it was not, erroneous meta files was created. To fix this, the functionality in the

characters()-method was moved to the endElement()-method, and a StringBuffer was

introduced in the characters()-method. This way it’s guaranteed that all the characters has

been received when performing operations.

public void characters(char[] text, int start, int length)

 throws SAXException {

 String value = new String(text, start, length);

 value = value.trim();

 if (starttag.equals("version"))

 data.setVersion(value);

 else if (starttag.equals("type"))

 data.setType(value);

 else if (starttag.equals("description"))

 data.setDescription(value);

 else if (starttag.equals("fieldname"))

 field.setName(value);

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 176

 else if (starttag.equals("fieldtype"))

 field.setType(value);

 else if (starttag.equals("default"))

 field.setDefault(value);

 else if (starttag.equals("dname"))

 data.addDependency(value);

 else if (starttag.equals("tablename"))

 table.setName(value);

 else if (starttag.equals("primarykey"))

 primaryKey = value;

 else if (starttag.equals("bindingtype"))

 data.setBindingType(value);

 else if (state.equals("config")) {

 if (value.length() > 0) {

 if (starttag.equals("optionname"))

 mapkey = value;

 if (starttag.equals("optionvalue"))

 mapval = value;

 }

 }

 else if (state.equals("subscribe")) {

 if (value.length() > 0)

 if (starttag.equals("to_table"))

 data.addSubscription(value);

 }

}

Code 51: MetaDataParser.java - The characters() method before the fix

StringBuffer tempValue = new StringBuffer();

public void characters(char[] text, int start, int length)

 throws SAXException {

 tempValue.append(new String(text, start, length));

 }

Code 52: MetaDataParser.java - The characters() method after the fix

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 177

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 178

Appendix C Installation

and setup procedure

This appendix describes how to setup and launch the different system units.

C.1 Installing the APMS Context Manager

To install the APMS, simply extract the APMS directory from the supplied zip-file onto a

hard drive. Verify that the directory structure is as follows:

Figure 58: APMS directory structure

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 179

Default port is currently set to 8080, but can be changed in the configuration file;

APMS/dist/jetty/deploy_jetty.xml. The context manager can be started with this line from

APMS/dist:

start java -Xmx1024m -Xms128m -cp lib\ant.jar;lib\antlr.jar;lib\commons-codec-

1.3.jar;lib\commons-el.jar;lib\commons-

logging.jar;lib\derby.jar;lib\derbyclient.jar;lib\derbytools.jar;lib\drools.jar;lib\fileupload.jar

;lib\hsqldb.jar;lib\janino.jar;lib\jasper-compiler.jar;lib\jasper-

runtime.jar;lib\javax.servlet.jar;lib\list.txt;lib\mx4j-remote.jar;lib\mx4j-

tools.jar;lib\mx4j.jar;lib\OracleDriver.jar;lib\org.mortbay.jetty.jar;lib\org.mortbay.jmx.jar;li

b\Serialio.jar;lib\tools.jar;lib\xercesImpl.jar;lib\xmlrpc.jar; CoMS.jar coms.CoMS

Alternativly, it can be started by launching the run.bat in the bin/APMS directory.

C.2 Adding the service to the APMS platform

If the precompiled version from the ZIP-file is used, the service will automatically be

deployed in the APMS system. If not, this is how to deploy a service:

Open a browser and enter the server address (http://ip:port/RPC2) in the address bar. A web

interface for the APMS context manager will now appear in the browser. Click on the

Browse… button to find the jar-file containing the service. Select the jar-file and press Open

and then Submit to upload it to the context manager. A message will appear saying; All

components were deployed successfully.

To verify that the service is running, select Manage Components in the menu at the left. The

new page will show a list of installed components and their state (Running or Stopped).

To remove the service, select Manage Packages from the menu at the left. A list of deployed

packages will appear on the new page. To remove a service click on Delete next to the

package name.

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 180

C.3 Launching the FiFaMoS context source

To add sensor values to the APMS context management system, a context source must be

present. This can either be the FiFaMoS Context Consumer IMlet running on the M2M

module or the Aplicom 12 IMP concept simulator, or the sensor simulator. If the M2M

module shall be used, various parameters need to be set correctly. These parameters can be

altered with the Aplicom N12i configurator, and is as follows:

m2msystem:N1=255,

N3=10,

T3=10,

BaudRate=4,

supplementaryservice:AutoAnswer=0,

CallWaiting=0,

CallingLineIdentificationRestriction=0,

sms:RemoveOldestMessage=1,

ServiceCentreAddress=+4790002100,

MessageDeliveryReports=0,

MessageReplyPath=0,

MessageValidityPeriod=5,

wapcommon:CSDNNumberAuthentication=0,

IncomingCHAPAuthentication=0,

IncomingCHAPUsername=dj,

IncomingCHAPPassword=dj,

DefaultConnectionIndex=0,

GprsAlwaysOnline=1,

HLAPort=0,

HLAName=,

UseM2MGateway=0,

wapconnection0:WTPPortNumber=0,

WAPBearer=1,

DestinationAddress=,

GatewayIPAddress=0.0.0.0,

WAPGWPortNumber=1,

CHAPUserName=,

CHAPPassword=,

GatewayAddress=internet,

DataCallBitrate=0,

ConnectionTimeout=0,

wapconnection1:WTPPortNumber=65535,

WAPBearer=5,

GatewayAddress=,

DestinationAddress=,

GatewayIPAddress=0.0.0.0,

WAPGWPortNumber=65535,

CHAPUserName=,

CHAPPassword=,

DataCallBitrate=0,

ConnectionTimeout=0,

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 181

wapconnection2:WTPPortNumber=65535,

WAPBearer=5,

GatewayAddress=,

DestinationAddress=,

GatewayIPAddress=0.0.0.0,

WAPGWPortNumber=65535,

CHAPUserName=,

CHAPPassword=,

DataCallBitrate=0,

ConnectionTimeout=0,

wapconnection3:WTPPortNumber=65535,

WAPBearer=5,

GatewayAddress=,

DestinationAddress=,

GatewayIPAddress=0.0.0.0,

WAPGWPortNumber=65535,

CHAPUserName=,

CHAPPassword=,

DataCallBitrate=0,

ConnectionTimeout=0,

wapconnection4:WTPPortNumber=65535,

WAPBearer=5,

GatewayAddress=,

DestinationAddress=,

GatewayIPAddress=0.0.0.0,

WAPGWPortNumber=65535,

CHAPUserName=,

CHAPPassword=,

DataCallBitrate=0,

ConnectionTimeout=0,

serverioinput:AlarmMode=1,

serveriooutput:Output1=1,

Output2=0,

Output3=0,

Output4=0,

Output5=0,

Output6=0,

Output7=0,

Output8=0,

Output9=0,

serverioport:Port1=4,

Port3=1,

BaudRate=8,

GLL=1,

GGA=1,

RMC=1,

VTG=1,

serveriohttp:Data=1,

LoginType=0,

Username=,

Password=,

DialupNumber=,

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 182

ProxyName=,

DataCallType=-1,

DataCallSpeed=0,

SessionSecurity=1,

AccessPointName=internet,

audio:AudioMode=0,

EchoMode=0,

userio:Identifier=~MasterNumber=~Password=[[b5f1]]~Aliases=~DisableAck=0~

operatingmode:

imletdownloading:IPAddress=0.0.0.0,

Check that all switches are as indicated Figure 59 and that the N12i is properly connected.

Connect the GPS to the test board at port 3 using the crossed gender changer, connect the

GSM antenna to the N12i and finally connect a serial cable between a computer and the N12i

test board port 2. Port 1 may be used for logging, if so, connect a serial cable between a

computer and port 1 on the test board. To get debug information, a program for reading from

the computers serial port has to be used. This is called LoggingServer and is located in the

attached ZIP-file.

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 183

Figure 59: The Aplicom N12i module with test board and GPS

Install and start the Aplicom Configurator and power on the test board. Select IMlet Loading -

> Cable from the menu. Browse and select the jar-file, and press [->] to upload it. Select the

program from the list at far right and press Start to start the program.

If the sensor simulator shall be used instead of the M2M IMlet, launch the run.bat file in the

FiFaMoS Context Source Simulator folder.

C.4 Installing and configuring the FiFaMoS Context Consumer

To launch the FiFaMoS Context Consumer, launch the run.bat file in the /bin/FiFaMoS

Consumer Consumer/ folder of the ZIP-file can be run. If an error message occurs in the

status text box, check that the correct server address is set in the settings dialog. If the

program works, but no fish frames or sea cages occur in the navigation tree, they have to be

added manually in the settings dialog.

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 184

C.5 Installing the FiFaMoS Mobile Context Consumer

Transfer the FiFaMoS_Mobile.jar from the /bin/ FiFaMoS Mobile Context Consumer folder

to a mobile phone via IR or Bluetooth, and install the MIDlet on the phone. When the MIDlet

is launched, press start. If the correct server address is given in the settings, a list of the frames

will be displayed, and it will be possible to navigate to the sea cages and sensors. The .jar file

can also be launced in the Wireless Toolkit mobile simulator.

C.6 Testing FiFaMoS

To get the system working, the fish farm must be created in the FiFaMoS Context Consumer.

This is done in a settings dialog (see the settings dialog section under Appendix A). Here it is

possible to create frames, sea cages and sensors. It is important that the IMEI-number of the

M2M module is set correctly when creating the sea cage. This is the number that is used to

identify the sea cage and can be found underneath the physical M2M module. For

demonstrative purposes, the button bottom left can be used to create a number of frames, sea

cages and sensors. The IMEI number of the M2M module used when testing will

automatically be assigned to the first sea cage.

When the M2M application is loaded into the module, and the sensors are correctly

connected, the module will automatically connect to the context manager (assuming that the

correct server-address is set in the application, to change this, one would have to recompile

the source code). The context manager will check the IMEI number of the sea cage, and

generate an XML-file that describes the semantics of the sea cage, including information of

the sensors and other parameters. This information will be used to configure the M2M

module. When the module is configured, it will automatically start to send its sensor values to

the context manager in given intervals. The context manager stores this information in the

database, and makes it available to the clients. The values are also checked to see if they are

within given bounds. If not, alarm information is stored in the response XML sent back to the

module. This alarm information is used to generate an SMS message that is sent from the

module to the operator of the frame. Alarms are also stored in the database, so that they can

be displayed in the clients.

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 185

To view the sensor data, either the FiFaMoS Context Consumer or the FiFaMoS Mobile

Context Consumer can be used. These are described in Appendix A, and operation is self-

explanatory.

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 186

Appendix D Hardware

D.1 The dummy sensors

Since we were not able to get real sensors from the aquaculture industry, we decided to use

some adjustable resistors instead. By connecting these to a battery, and attaching them to the

Aplicom N12i test board, sensor values could be adjusted by trimming the resistors.

Figure 60: Dummy sensors for the Aplicom N12i M2M module

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 187

D.2 Camera connector

Since the M2M module only had serial ports for connecting a camera, we needed a camera

using this kind of interface. There are not many of these, but we found one in a fleet

management system called TraceMe. This camera had a 4-pin port that seldom is used for

serial purposes, so we had to make an adapter. Using a sound cable from an old computer, and

a 9-pin male serial-port, the adapter was realized and put into action.

Figure 61: The camera and camera connector

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 188

D.3 GPS connector

Since the serial port on the Aplicom N12i has the opposite gender as the ones on PCs, we

could not connect the GPS. Therefore we had to make an adapter. This adapter also had to

cross the RX and TX pins, so that data sent from the GPS could be read on the Aplicom N12i.

Figure 62: GPS to Aplicom gender changing adapter

The adapter was made from some serial ports from an old computer. The printed circuit board

were removed, and replaced with short cables connecting the two serial ports. When attaching

this adapter to the Aplicom N12i serial port, the gender was changed from female to male,

and the GPS could be connected.

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 189

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 190

Appendix E Software

This appendix show the software related to the Aplicom N12i M2M GPRS module. In

addition the JMX monitor for testing and debugging services on the APMS platform is

presented.

E.1 Aplicom N12i configurator

The Aplicom N12i configurator is used for setting various parameters on the module, and

uploading and starting applications. Parameters that can be set and read includes among

others: GPRS settings and serial port settings.

Figure 63: The Aplicom N12i Configurator

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 191

E.2 Aplicom N12i IMP 1.0 Concept Simulator

The Aplicom N12i IMP 1.0 Concept Simulator is an application that emulates the Aplicom

N12i functionality. MIDlets programmed for the module can be tested here directly from

Eclipse, and the various inputs and outputs are available in the GUI in addition to logging

information. It is also possible to simulate the SMS functionality.

Figure 64: The Aplicom N12i IMP 1.0 Concept Simulator

E.3 The JMX monitor

In this project, a JMX monitor is used to test the service on the APMS context manager. This

particular monitor is created by Dan Peder Eriksen, at The University of Tromsø.

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 192

Figure 65: The JMX monitor

The monitor is quite easy in use; Connect to a managed server (in this case FiFaMoS), select

a managed bean (here; Input) and take use of the available methods and variables. Methods

can be invoked, but only String is supported as argument(s) in this version.

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 193

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 194

Appendix F Class diagrams

F.1 Classes common for all applications

com.telenor.apms.fifamos.objects

Figure 66: com.telenor.apms.fifamos.objects class diagram

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 195

F.2 FiFaMoS APMS Context Manager service

Figure 67: com.telenor.apms.fifamos class diagram

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 196

Figure 68: com.telenor.apms.fifamos.utils class diagram

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 197

Figure 69: coms.tools.relational.Update class diagram

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 198

F.3 The FiFaMoS Context Source application

Figure 70: com.telenor.apms.fifamos.n12 class diagram

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 199

Figure 71: com.telenor.apms.fifamos.n12.logger class diagram

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 200

Figure 72: com.telenor.apms.fifamos.n12.utils class diagram

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 201

F.4 FiFaMoS Context Consumer

Figure 73: com.telenor.apms.fifamos.client.j2se.gui class diagram

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 202

Figure 74: com.telenor.apms.fifamos.client.j2se.utils class diagram

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 203

F.5 FiFaMoS Mobile Context Consumer

Figure 75: com.telenor.apms.fifamos.client.j2me.gui class diagram

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 204

Figure 76: com.telenor.apms.fifamos.client.j2me.control class diagram

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 205

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 206

Appendix G Description of

the RUP process

The inception phase - In this phase the business case which includes business context,

success factors (expected revenue, market recognition, etc), and financial forecast is

established. To complement the business case, a basic use case model, project plan, initial risk

assessment and project description (the core project requirements, constraints and key

features) are generated.

This phase is documented in the prestudy chapter, in addition to the use cases stated in 3.2

Requirement specifications. No financial analysis of the business case is performed, due to the

limitations of the thesis.

The elaboration phase - The elaboration phase is where the project starts to take shape. In

this phase the problem domain analysis is made and the architecture of the project gets its

basic form.

This phase was carried out as described, and is documented in 3.2 Requirement specifications

and 3.3 Design.

The construction phase - In this phase the main focus goes to the development of

components and other features of the system being designed. This is the phase when the bulk

of the coding takes place.

This phase was completed as described, and is documented in chapter 3.4

The transition phase - In the transition phase, the product has moved from the development

organization to the end user. The activities of this phase include training of the end users and

 Context-Aware Services in Aquaculture

 Frank Paaske and Jon Arne Grødal

 207

maintainers and beta testing of the system to validate it against the end users' expectations.

The product is also checked against the quality level set in the Inception phase. If it does not

meet this level, or the standards of the end users, the entire cycle in this phase begins again.

The FiFaMoS system has not been tested by end users, but extensive testing has been

completed of the developers, and the results are stated in 3.4.5 Testing.

