
1

AmbulantPlayer - Design Documentation

Version 1.1, 10-Oct-04

This document contains various bits and pieces of ambulant design documentation: a breakdown of the
important objects, UML diagrams explaining how they relate to each other, a walkthrough explaining how

Ambulant Player plays a SMIL document, an explanation of the source code organization and a list of source
code conventions used.

A companion document API documentation explains low-level details of the various objects and other API
issues.

Contents

1 Ambulant design, overall 2
1.1 Design process . 2
1.2 Global structure . 2
1.3 Replaceable components . 2
1.4 run-time system . 2
1.5 main loop . 3
1.6 Factory pattern . 3
1.7 Machine-dependent code . 3
1.8 integrating third-party tools . 3
1.9 Other languages . 4

2 How does the AmbulantPlayer play a SMIL document? 4
2.1 Introduction . 4
2.2 Opening a document . 4
2.3 Creating the player . 4
2.4 Starting playback . 5

3 Ambulant design, main objects 5
3.1 Introduction . 5
3.2 AmbulantPlayer interfaces . 6
3.3 AmbulantPlayer Objects . 6
3.4 Refcounting protocol . 6
3.5 Player Interface . 6
3.6 Player implementations . 6
3.7 Parser interface . 6
3.8 Parser implementations . 7
3.9 Datasource interface . 7
3.10 Playable interface . 7
3.11 Playable implementations . 7
3.12 Layout interface . 7
3.13 Layout implementation . 8
3.14 GUI window interface . 8
3.15 Animation interface . 8
3.16 Clocks . 8
3.17 Event processor . 8
3.18 Document . 8
3.19 Node . 9
3.20 Transitions . 9

4 Ambulant source code organisation 9
4.1 directory organisation . 9
4.2 Source code conventions . 9

5 Diagrams 11
5.1 overall structure diagram . 11
5.2 dataflow diagram . 12
5.3 UML diagram for player . 13
5.4 UML diagram for parser . 14
5.5 UML diagram for datasource . 16
5.6 UML state diagram for datasource . 17
5.7 UML diagram for playable . 18
5.8 UML state diagram for playable . 19
5.9 UML diagram for renderer playable . 20
5.10 UML diagram for layout . 21
5.11 UML diagram for region . 22
5.12 UML diagram for window . 23
5.13 UML diagram for animation . 24
5.14 UML diagram for clocks . 25
5.15 UML diagram for event processor . 26

1

5.16 UML diagram for document . 27
5.17 UML diagram for node . 28
5.18 UML diagram for transitions . 29

1 Ambulant design, overall

Last updated for Ambulant version 1.1.

1.1 Design process

The design consists of a mixed bag of technologies:

• Text files such as this one for informal descriptions. They are marked up as reStructuredText, a format
easily converted to HTML but also readable in source form.

• C++ header files for class definitions and such.

• Image files for UML pictures.

If possible all design documents will carry a notice stating for which version of Ambulant they were last
updated, so it is relatively easy to spot outdated (or potentially outdated) documents.

1.2 Global structure

To be able to use the code to create, say, a plugin SMIL renderer for use in a browser we need a global “playback
engine” object that has all the others hanging off it (plus factory methods to create them, etc). To support this
we have a global object player that is the controller of all aspects of playback of a single SMIL document.

In addition we use factories for creating things like renderers, file readers, parsers and windows. These
factories are populated by the main program and then used during document playback.

With a structure like this the application itself becomes basically a skeleton embedder: it is responsible for
the GUI, handling open/open URL/quit/etc, it creates playback engine objects when needed and has a small
number of callbacks for “create window” and such.

In addition, because the main program is responsible for creating all the factories it should be possible to
create a different main program that does not actually render anything, but only prints on stdout what should
happen at what time, or any other form of symbolic execution.

1.3 Replaceable components

AmbulantPlayer is intended to be a research system, and therefore all components should be easy to replace
with interfering with the rest of the system. This allows a researcher to concentrate on one issue, such as
network protocols or scheduling algorithms, while the rest of the system is usable as-is.

This replacability is incorporated in the design through two means:

• Clear well-defined APIs between the various parts of the system;

• Factory functions to create most objects.

In the current implementation there are two main objects for which this has not been implemented (the
DOM tree and the low-level event scheduler), this will be done at a later stage. All other functionality (media
playback, data retrieval, parsing, layout, scheduling) does follow this pattern.

1.4 run-time system

Because we have a C++ implementation we cannot rely on refcounting or garbage collection in the underlying
runtime. lib/refcount.h has a simple refcounting implementation that is used for garbage collection.

Ref-counting should be used when it is absolutely needed, it adds an overhead and some complexity since it
can not happen automatically. On the other hand there are some cases where it simplifies the code a lot. If I
judge from my code and the code of others I have seen, only very few objects need ref counting. First, objects
owned by a class, and quite all are, never need to be ref counted. You just delete them. Ref-counting is needed
when objects containing references are shared by completely independent components.

The architecture is fairly tightly coupled. The original idea of allowing the high-level scheduler to live on
a different machine, precomputing schedules and ending these to a low level scheduler, isn’t going to work for
SMIL without putting almost all SMIL complexity in the low-level scheduler.

2

http://docutils.sourceforge.net/rst.html

1.5 main loop

The basic architecture is event-driven, with a small number of worker threads picking up events from the event
queue. The alternative is to use multiple threads all over, but it seems event-driven is the better choice. An
object that wants to use multiple threads can do so more easily on an event infrastructure than the other way
around, but these threads are “somebody else’s problem”, as they are hidden from the rest of the architecture.

At first glance that it appears some objects, such as a renderer, would benefit from a threaded architecture
it turns out this isn’t really so. The naive threaded implementation:

while data = read data():
render data(data)

will not work, because many other things can also happen, such as a user-initiated event, or the timeline for
the renderer being torn down. So, the naive loop sketched here will become hairy anyway, and look like:

while event = wait for some interesting event():
switch event:

case DATA: render data(data)
case STOP: close resources and exit()
...

so we might as will split this out in the architecture.
The event handler architecture needs an elaborate priority scheme, that is expressive enough that the best

execution order of things that happen “at the same time” is automatic.

1.6 Factory pattern

There are various factories that follow a common pattern. There is a client interface, called something like
playable factory, that can be used to create playable objects. If the factory cannot create the object it
returns NULL.

This interface is implemented by all the providers of objects that have the playable interface. For exam-
ple, the implementation of a video renderer for Cocoa on MacOSX will consist of a cocoa video playable
implementation and a cocoa video playable factory implementation.

The core also has a provider interface, usually called global playable factory. This interface has a method
add playable factory that the playable provider uses to register its playable factory. Then, when a client
uses the global playable factory to create a playable it will iterate over all playable factories until one is
found that can create the object.

These global playable factory objects should be singletons, but in the current implementation this isn’t
always true. Also, the global naming convention isn’t strictly followed for all factories.

1.7 Machine-dependent code

The general way to handle machine-dependency is to create a machine-independent abstract base class, plus
machine-dependent subclasses. Then there is a factory function that creates a machine-dependent instance and
returns it casted to its machine-independent base class.

With this scheme we can handle machine-dependent extensions to the base class easily: modules using these
extensions declare objects of the subclass and call the initializer directly in stead of through the factory function.

The scheme does not work for all objects, however: it breaks if we want to create static copies of the objects.
For classes for which this is the case, such as the critical region object, we declare an abstract object
abstract critical section in lib/abstract mtsync.h, subclass that as PLATFORM::critical section in
lib/PLATFORM/PLATFORM mtsync.h, conditionally include that in lib/mtsync.h and create an empty subclass
critical section of it.

1.8 integrating third-party tools

We need to be able to use existing toolkits that take work out of our hands. Think of QuickTime and DirectX,
where you basically pass a URL and say “play” and have nothing to worry about anymore. Also, existing URL
access libraries (such as the caching infrastructure on windows) and a third party RTSP library need to be used.
This also means we don’t have to handle firewalls and what more.

An informal dataflow diagram is available showing the various ways in which media bits can go from their
source (far away on the net) to the screen.

We would like to be able to re-use existing (Explorer, Netscape) plugins when applicable, but no work on
this has been done yet.

3

1.9 Other languages

It is our intention to eventually allow bridging of Ambulant Player to other languages such as Python or Java.
An effort has been made to keep the APIs clean enough to allow this, but no actual work has been done on it
yet.

2 How does the AmbulantPlayer play a SMIL document?

Last updated for Ambulant version 1.1.

2.1 Introduction

This section attempts to explain the basic structure of the Ambulant Player by loosely explaining what happens
when you run it and play a document.

There is an informal overall structure diagram that tries to put the whole design in one pretty picture and
may be worthwhile to keep handy while reading this document.

The main program is platform dependent and GUI-toolkit dependent. The details of this main program are
skipped here (and they can actually vary quite a bit for the platforms we support), but at some point after the
program has started the GUI is put on the screen, with the usual set of menus for Open, Play, etc.

2.2 Opening a document

When the user selects Open (or Open URL, or double-clicks or drags a document) we need to get the data,
parse the document into a DOM tree and create a player to play that DOM tree. In addition, we need to tell
the player how it can obtain media data, create windows, and more.

Most player implementations (the Windows player is an exception) have a class with a name like mainloop
to handle this. Such a mainloop is created per SMIL document. This mainloop object will first create the
various factories and populate them:

• A window factory is usually implemented by the main program itself. The player will call this when it
needs a window. Usually the first request to create a window will actually return the document window
(after resizing to the appropriate size).

• A global playable factory is created. This is the object the player will use to create renderers for the
various media types. The global factory is filled with the various renderers this ambulant player supports.
In effect, this is the step where you get to decide how various media are rendered.

• A datasource factory is created and filled with the factory functions that will create datasources for au-
dio, video or other, raw, data such as text. The factory functions that are added to the datasource factory
partially determine how data is retrieved over the net, which protocols and formats are supported and
such. Partially, because some media items (audio and video, notably) may be rendered by simply passing
the URL to some underlying media infrastructure such as DirectX or QuickTime.

Next the factories are put together in a factories struct, and if the architecture supports dynamically
loadable plugins we get the plugin engine singleton object and ask it to load the plugins. This will search the
plugin directories for dynamic objects with the correct naming convention, load them, and call their initialize
routine. The factories object is passed to the initialize routine, so the plugin itself can register any factories
it wants.

The next step is to create the DOM tree. One way to do this is to use read data from url to read the
data from the document, and then pass this data to document::create from string. This will return a
document object. This object contains the DOM tree itself (implemented by the node object) and some context
information (XML namespace information, original URL for resolving relative URLs used in the document, a
mapping from XML IDs to node objects).

The final step is to create a player object. This is done through create smil2 player, passing the
document, the factories and one final object, embedder. This object is again implemented by the main
program, and implements a small number of auxiliary functions, such as opening an external webbrowser or
opening a new SMIL document.

2.3 Creating the player

When the smil player object is created it gets the document, factories and embedder arguments. It now
needs to create its internal data structures to facilitate playback later on:

4

• A timer and event processor are created. The timer is the master clock for the presentation, and
the event processor is a runqueue object that is used for low-level scheduling. Whenever the high-level
scheduler wants some code to be executed it will add an event to the event processor, possibly with
a timeout and a priority. The event processor runs in a separate thread, waits for events in it runqueue
to become elegible and then runs them. This mechanism is the underlying engine that makes the whole
player work, anything that needs to wait doesn’t do so inline but uses the event processor to get a callback
at a later stage: the scheduler, renderers needing input data, etc.

• A layout manager is created, which will be used to find where media items should be displayed. The
smil layout manager reads the <layout> section of the DOM tree and builds a parallel layout tree
(which also contains information on some of the body media nodes, the ones that have layout infor-
mation themselves) of region node objects. Then this tree of region node objects is converted into
a tree of surface template objects. To create toplevel windows the new topsurface method of the
window factory is used, and subregions are created using the new subsurface method of their parent
surface template. The layout manager also contains mappings to be able to get from a node to the
corresponding region node to the surface template, and this will be used during playback to play media
items in the correct location.

• A timegraph is created. This is the internal representation of the <body> part of the DOM tree that
will be used to play back the document. In addition a scheduler is created, which will interpret the data
in the timegraph.

2.4 Starting playback

When the user selects Play we call the start method of the player object. This will invoke start on the
scheduler. This will start playing the root node of the tree. The scheduler will now do all the SMIL 2 magic,
whereby events such as the root node being played causes other nodes to become playable, etc.

At some point a media item needs to be rendered. The scheduler calls the new playable method from the
global playable factory. This will pass the DOM node to the various factories until one signals it can create
a playable for the object. In addition, if the playable has a renderer (which is true for most media objects, but
not for things like SMIL animations) we also obtain the surface on which the media item should be renderered,
through the layout manager. We then tell the renderer which surface to use.

Soon afterwards the start method of the playable is called to start playback. An average renderer will
need to obtain data from some URL. It will do this by creating a datasource for the document through
the datasource factory object. Every time the renderer wants more data it calls the start method of the
datasource passing a callback routine. Whever data is available the datasource will schedule a call to the
callback routine, through the event processor. When the renderer has enough information to start drawing it
will not actually draw immedeately, but it will send a need redraw call to its surface. This will percolate up the
surface hierarchy, to the GUI code, and eventually come back down as a redraw call all the way to the renderer
(assuming it is not obscured by other media items, etc). At this point the bits finally get drawn on the screen.

Whenever anything “interesting” happens in the renderer (the media item stopped playing, the user clicked
the mouse, etc) it invokes a corresponding method on its playable notification. This interface is implemented
by the scheduler, and these notifications are how the scheduler gets informed that it can start scheduling new
things, etc.

3 Ambulant design, main objects

Last updated for Ambulant version 1.1.

3.1 Introduction

This document describes the function of various of the more important objects and interfaces in the Ambulant
Player. If you haven’t already done so it is probably a good idea to first read the Overall design and walkthrough
documents. The first one explains the design principles and some of the choices made, the second one is a brief
walkthrough of how the player loads, parses and plays a SMIL document.

The nitty-gritty details of these objects, on a level interesting to developers, are available too, in the API
documentation. This document may need to be regenerated, see the README file in the documentation
directory if it doesn’t seem to exist.

5

file:../..
file:../..

3.2 AmbulantPlayer interfaces

• Refcounting protocol. A lowlevel interface shared by many objects.

• Player Interface. This is the toplevel object.

• Parser Interface. Describes the interfaces to the XML parser.

• Datasource interface. The interface used to get external data into the program.

• Playable interface. This interface makes media items appear on the screen.

• Layout interface. This interface is used to determine where those media items show up.

• GUI window interface. This interface is used to create new windows.

• Animation interface. The interface used for SMIL animation.

3.3 AmbulantPlayer Objects

• Clocks. These advance a virtual time.

• Event processor. This is the mainloop plus the event/callback mechanism.

• Document. The representation of a SMIL document.

• Node. The representation of the DOM tree.

• Transitions. Classes to do visual transitions.

• Timeline. This is a description of another scheduler: the MMS scheduler. This scheduler has a much
simpler structure than the SMIL 2.0 scheduler.

You may notice that the core of the player, the SMIL 2.0 scheduler, is not mentioned here. Unfortunately
it is not documented yet.

There are also additional low-level objects like thread and critical section that are not described here.
See the API documentation for details.

3.4 Refcounting protocol

The refcounting protocol is contained in the file lib/refcount.h. It needs to be implemented only by objects
that are truly shared, i.e. any object whose lifetime is not predetermined by some other object. New instances
of refcounted objects are created using the operator new. Any object that needs to share a particular instance
calls add ref() against this instance. The creator of the refcounted object and any sharer are responsible to
call the release() method of the object when they don’t need the object any more.

3.5 Player Interface

The player is the top-level object. When it is created you pass a DOM tree, a factories structure containing
references to the playable factory, datasource factory and window factory and an embedder object used
for callbacks to the GUI (on state changes, opening of external documents, etc).

There is a UML diagram for player showing how the player relates to various other objects.

3.6 Player implementations

There are currently two implementations of the player interface: smil player and mms player. The first one
is the all-singing-all-dancing SMIL 2.0 player, the second one can play MMS documents, which use a very
restricted subset of SMIL 1.0.

A concise walkthrough of how the smil player operates is given in the walkthrough document.

3.7 Parser interface

The XML parser roughly follows a SAX interface. To use it you provide it with objects having the sax content handler
and sax error handler interfaces. You then feed your document to the parser and it will call back through
those interfaces.

There is a UML diagram for parser showing how these classes relates to each other.

6

file:timeline.html

3.8 Parser implementations

There are currently two parser implementations, expat parser uses James Clark’s expat parser, which is a fast
and lean no-frills parser. xerces parser uses the Apache Xerces library, which is at the other extreme of the
spectrum: it can do document validation with both DTDs and Schemas and lots of other wonderful things. But
this comes at the price of a rather hefty memory footprint.

3.9 Datasource interface

There are actually a couple of these interfaces, but they are similar. Their function is to implement URL
retrieval schemes or file I/O and get external data to media handlers and other modules requiring data access.

The general interface is that a datasource is acquired through a datasource factory interface, which passes
the URL to the various implementations until one is found that can handle it and returns a datasource object.
The client then calls the start method on this object, passing a callback routine, and the datasource will
arrange for the callback to be called as soon as data is available. No new callbacks will be done until a new call
to start() is made, and the datasource has a buffer that can be limited, so this design allows for flow control
over the net, if required.

There are specialised datasource interfaces for audio and video, that can handle extra things like converting
audio from mp3 format to linear samples, or demultiplexing an audio/video stream.

There is a UML diagram for datasource showing how these classes relates to each other.
There is also a UML state diagram for datasource showing the state machine that a datasource should

adhere to.

3.10 Playable interface

The playable interface is implemented by what are usually called a media handlers or media renderers: it is
this interface the scheduler uses to make things appear on the screen (or sound out of the speakers, or otherwise
do their thing).

Playables are created through global playable factory, which has references to all playable implementa-
tions and asks them in order whether they can handle playback of this specific DOM node, until one matches.

When the playable is started it is provided with a playable notification object (implemented by the
scheduler), which is where it can send its status messages (such as stopped() when the media is finished, or
clicked() when the user clicks the mouse over the media item).

Most playables have an accompanying interface, renderer, which controls where the media item is rendered
(non-rendering items such as SMIL animations are the exception to this rule).

There is a UML diagram for playable showing how these classes relates to each other.
There is also a UML state diagram for playable showing the state machine that a playable should adhere to.

3.11 Playable implementations

While some media handlers implement the playable from scratch (an example is the aforementioned SMIL
animation handler) there are a number of convenience classes that implement functionality shared by many
media handlers. These are:

• playable imp which handles some bookkeeping having to do with the playable notification and
event processor.

• renderer playable which augments that with a renderer interface and the bookkeeping required for
that.

• renderer playable ds which adds datasource creation and bookkeeping to that.

• renderer playable dsall which builds on that again and collects all data before requiring further action.

There is a UML diagram for renderer playable showing how these classes relates to each other.

3.12 Layout interface

The layout manager determines where media items appear, and also governs things like z-ordering, background
colors for regions and such.

The central interface is the surface, which is the object passed to a renderer. Whenever a renderer
has something new to show it calls need redraw() on this interface. Whenever it is time to actually redraw
something the surface calls redraw() on the renderer.

7

The layout manager interface maps DOM nodes to the surface objects on which they should play back.
There are two more auxiliary interfaces that are not strictly necessary but used by the layout implementation

for historical reasons: surface template and surface factory. These interfaces are used to create subregions
and toplevel windows, respectively.

There is a UML diagram for layout showing how these classes relates to each other.

3.13 Layout implementation

The SMIL 2.0 implementation of surface, surface template and surface factory are the classes passive region
and passive root layout.

There is a UML diagram for region showing how these classes relates to each other.

3.14 GUI window interface

This is the abstract interface used to create new windows and tie them to the layout implementation. The
implementation is machine-dependent, obviously, and usually supplied by the hosting application.

In addition there is the gui events interface which goes the other way: it is exposed by the layout im-
plementation, and used by the machine dependent window implementation to communicate things like redraw
requests.

There is a UML diagram for window showing how these classes relates to each other.

3.15 Animation interface

The animation interfaces are animation destination and animation notification. The SMIL 2.0 playable
uses these interfaces to change parameters and send notification of those changes, respectively.

There is a UML diagram for animation showing how these classes relates to each other.

3.16 Clocks

All clocks adhere to the abstract timer interface. This interface allows you to get the current time and set
the speed of the clock.

There is a companion interface abstract timer client (which is actually a base class of abstract timer)
that allows objects to get notification of changes in timer speed.

Currently there are two implementations of the abstract timer interface: the operating-system specific
realtime clock (of which you cannot set the speed) and timer, which implements a new zero-based clock based
on another abstract timer. Its speed is settable with set speed, but it is tightly synchronized with its parent
clock.

Eventually there may be other implementations of timer, such as clocks that are allowed to slip synchro-
nization and other such semantics as required by SMIL.

There is a UML diagram for clocks showing how these classes relates to each other.

3.17 Event processor

The event processor is the low-level scheduler of the system. It is a priority runqueue with methods to add
callbacks, with an optional delay until the callback becomes elegible.

There is a UML diagram for event processor showing how these classes relates to each other.

3.18 Document

The document class contains the DOM tree and some auxiliary data:

• the node context which can be used to lookup nodes by XML ID and to resolve relative URLs, and

• the nscontext which stores information on the use of XML namespaces.

There is a UML diagram for document showing how the document class relates to various other objects.

8

3.19 Node

The node class represents a node in the DOM tree. Actually, our tree isn’t 100% compatible with DOM, but
close enough. The node objects store the tag, attributes and data pertaining to the XML node. There are basic
methods to access the parent, next sibling and first child, to insert or remove nodes into a tree and more.

There are two auxiliary classes that augment the node functionality using only these interfaces:

• node navigator uses the basic up()/down()/next() methods of node to build more complex navigation.

• node iterator is an iterator that allows you to iterate over a subtree.

There is a UML diagram for node showing how these classes relates to each other.

3.20 Transitions

The implementation of SMIL transitions is fairly complex, because there are very many transition types and
they also need to be implemented efficiently on multiple platforms. The current implementation is fully based
on inheritance, a model with delegation would probably result in a cleaner design.

The central object is the transition engine, which also supplies to interface used by clients. It has begin(),
end(), step() and next step delay() methods, which the client (usually a media renderer) uses to control
the transition. next step delay() needs an explanation: it returns the delay until the engine would like to get
the next call to step() from the renderer.

On top of this central object there is a multiple inheritance graph where one leg is machine dependent, and
does the actual bitblit operation to combine two images. The other leg is machine independent, but dependent
on the actual transition type, and computes the parameters for the bitblit. These two then come together in a
stub class that has all the functionality for a specific transition type on a specific platform.

There is a UML diagram for transitions showing how these classes relates to each other.

4 Ambulant source code organisation

Last updated for Ambulant version 1.1.

4.1 directory organisation

Everything is kept under CVS, on sourceforge. On Unix we use the standard automake, autoconf, configure and
gcc (version 3.2 or later) toolset to build things. On Windows we use Visual Studio 7. For cross-compilation
for Windows CE we use Embedded Visual C++ 3.0. For cross-compilation for the Zaurus Linux handheld we
use the Sharp toolset, based on gcc 2.95.

At the toplevel we have a number of subdirectories:

• Documentation will eventually contain all documentation, currently Design, which is what you are reading
now, and API, which is low-level documentation of classes, methods, etc.

• include has all the C++ header files.

• src has all the sources, with the engine built as a library from the libambulant subdirectory, and driver
programs in player macos, player mfc, etc.

• third party packages holds the source to third party packages we use, such as James Clark’s expat
XML parser, the IJG libjpeg library and more.

• Extras has the two included presentations: Welcome and the DemoPresentation on New York.

• po has the files used to create localisations. This uses the GNU gettext library.

• m4 has extra macros for automake.

4.2 Source code conventions

Here’s a somewhat random list of source code conventions that we have decided to use:

• Indent 4 spaces, with the following exceptions:

– namespace doesn’t indent at all

– public:, private: and such indent two spaces

9

• Whether opening braces are at end-of-line or beginning of the next line depends on the circumstances and
personal taste. Closing braces, when on a line by themselves, must however align with the construct that
opened them.

• no camelCase, CamelCase or Capitalization in class or variable names

• Underscores to delimit words

• attribute names start with “m ”

• static attributes start with “s ”

• we have a toplevel namespace ambulant, with a second level of namespaces under that

• semi-private classes go into into a namespace named “detail”.

• Template type parameters start with an upper case letter (as in: template <class A> {})

• Header files need to include any header files on which they depend, and they guard against multiple
inclusion with a preprocessor construct.

• Header files are all in an “ambulant” directory, and are included by full path, as in:

#include "ambulant/net/url.h"

• Everything goes into namespace “ambulant”, with sub-namespaces “lib”, “net”, etc. Machine-dependent
code goes into it’s own “unix”, “win32”, etc subnamespace of those.

• Source files have using namespace ambulant; at the top. In addition, there’s a using namespace for your
own namespace, i.e. using namespace common; for source files in common. Normally, there are no other
global using namespace declarations, i.e. everything outside of your own namespace is used qualified.

• Header files that declare abstract interfaces try to include as few other header files as possible. In other
words, if you need a lib::node * in an abstract header file it is better not to include ambulant/lib/node.h,
but instead to add a construct:

namespace ambulant {
namespace lib {
class node;
}
}

• We need to define which preprocessor defines we are going to switch on for platform-dependent code, so
we don’t get #ifdef WIN32 in one place and something completely different in another place. Suggestion:

– #ifdef WIN32 to test for Windows
– something to test for Linux?
– #ifdef APPLE to test for MacOSX
– something to test for 386 or other architectures?
– something to test for Visual Studio versus gcc?

• APIs that could be considered external must be documented inline, in a form compatible with Doxygen.
The easiest way to do this is with a triple-slashed comment block. The first line should end in a period
and is the short description. Anything after that is the long description:

/// Hold user preference information.
/// This class holds all settings the user can change. It is normally subclassed
/// in machine-dependent code to override the load() and save() methods.
class preferences {

/// Load preferences from disk.
void load();

/// Save preferences to disk.
void save();

}

10

5 Diagrams

This section has UML diagrams (and some non-UML diagrams) that explain the interaction between various
parts of Ambulant Player.

5.1 overall structure diagram

Playable
Datasource Playable Renderer

Parser DOM tree

Scheduler

Playable Renderer Surface

Layout
Manager

GUI window

Datasource

S
in

gl
e

in
st

an
ce

s
M

ul
tip

le
 in

st
an

ce
s

M
ac

hi
ne

de
pe

nd
en

t
M

ac
hi

ne
in

de
pe

nd
en

t

11

5.2 dataflow diagram

Data Flow

1. With third-party rendering toolkit that does I/O independently

reference, control flow

data flow
Legend:

renderer_playable

independent toolkit
renderer surfacemedia

data

2. With gui toolkit API that understands data format natively

ds_renderer_playable

surfacemedia
data

raw_datasource
(or video_datasource)

3. With decoder data source
(actually only used for audio, currently)

ds_renderer_playable

surface
media
data

raw_datasource

raw_datasource

This document last updated
for Ambulant version 1.1

12

5.3 UML diagram for player

player

event_processor

<<interface>>
common::player

timer *get_timer()
event_processor *get_evp()

start()
stop()
pause()
resume()

is_playing()
is_pausing()
is_done()

get_cursor()
set_cursor()

document

window_factory

renderer_factory

This document last updated
for Ambulant version 1.1

smil_player

time_node_context

timer

layout_manager

playable_events

mms_player

13

5.4 UML diagram for parser

lib::xml_parser
<<interface>>

XML Parser

lib::expat_parser

lib::sax_content_handler

lib::sax_error_handler

error(e: sax_error)

lib::sax_error

what()
get_line()
get_column()

start_document()
end_document()
start_element()
end_element()
start_prefix_mapping()
end_prefix_mapping()
characters()

parse()
set_content_handler()
set_error_handler()

event

event

14

15

5.5 UML diagram for datasource

lib::event_processor

<<interface>>
net::datasource

start(event_processor, callback)
stop()
readdone(size)

bool end_of_file()
char *get_read_ptr()
size()

Data sources

<<interface>>
net::audio_datasource

get_audio_format()

Last updated for
Ambulant version 1.0.1

refcounted

<<interface>>
net::video_datasource

bool has_audio()
get_audio_datasource()

width()
height()

start_frame(event_processor,
 callback, timestamp)

end_of_file()
get_frame(...)
frame_done(timestamp, keep)

<<interface>>
net::raw_datasource_factory

new_raw_datasource(url)

<<interface>>
net::audio_datasource_factory

datasource *open(url, format_choices)

<<interface>>
net::video_datasource_factory

new_video_datasource(url)

net::audio_format
int samplerate
int channels
...

refcounted

net::audio_format_choices

add_samplerate(samplerate)
add_channels(channels)
...
audio_format best()
bool contains(audio_format)

16

5.6 UML state diagram for datasource

Reading

/ startRead

BlockedFull

dataAvail ReadingWaiting

start() /
callback()

readdone() /
startRead

readdone()

Data Source state diagram
startRead and dataAvail are call and return for this data source requesting more input

from its source.
start() and callback() are call and return for the client requesting more data.

readdone() is the client call to signal it has consumed data.

[buffer_empty()]

start()

[not buffer_empty()]
/ callback()

dataAvail /
callback()

[buffer_full()]

[not buffer_full()]

Draining
[end_of_file()]

start() /
callback()

[buffer_empty()]

[not end_of_file()] /
startRead

readdone()

[not buffer_empty()]

17

5.7 UML diagram for playable

playable and renderer

<<interface>>
common::playable

static create(playable_notification, cookie_type)
start(time)
stop()

pause()
resume()

seek(time)
wantclicks(bool)
preroll(time, time, duration)

pair<bool, duration> get_dur()
cookie_type get_cookie()

renderer *get_renderer()

<<interface>>
common::playable_notification

started(cookie_type, time)
stopped(cookie_type, time)
clicked(cookie_type, time)
pointed(cookie_type, time)
stalled(cookie_type, time)
unstalled(cookie_type, time)
transitioned(cookie_type, time)

cookie_type

Used only to
communicate identities
from playable client to

playable_events instance

This document last updated
for Ambulant version 1.1

<<interface>>
common::playable_factory

new_playable(playable_notification,
 cookie_type, node, event_processor)

refcounted

<<interface>>
common::renderer

set_surface(surface)
set_alignment(alignment)

set_intransition(transition_class tr)
start_outtransition(transition_class tr)

gui_events

surface

transition_info

alignment

18

5.8 UML state diagram for playable

ps_not_playing

ps_playing

ps_frozen

seek()

stop()
/stopped()

stop()

freeze()
/stopped()

end of media
/stopped()

freeze()

start()
/started()

playable state diagram

/clicked()

Notes:
1. freeze() is not implemented, maybe it is not needed?
2. pause() and resume() behavior is not modeled here

This document last updated
for Ambulant version 1.1

19

5.9 UML diagram for renderer playable

Renderer_playable

renderer_playable_ds
m_src1 1datasource

event_processor

renderer_playable_dsall
m_data
m_data_size

convenience
class that waits
for all data to be

received

cocoa_renderer_factory

cocoa_image_renderer

cocoa_text_renderer

Cocoa used as
example here of

a GUI toolkit

1 *

renderer_playable
m_dest

playable

renderer

node 1 0..1

surface 1 *

cocoa_audio_renderer

This document last updated
for Ambulant version 1.1

playable_factory

playable_imp
m_context
m_cookie
m_node
m_event_processor

cocoa_renderer
m_intransition
m_outtransition
m_transition_engine

20

5.10 UML diagram for layout

Layout Manager

<<interface>>
common::surface

show(gui_events)
renderer_done(gui_events)

need_redraw(rect)
need_redraw()
need_events(bool)
transition_done()

get_rect()
get_global_topleft()
get_fit_rect(...)
region_info *get_info()

get_gui_window()

<<interface>>
common::layout_manager

get_surface(node)

get_alignment(node)
get_animation_destination(node_or_rgn)
get_animation_notif(node_or_rgn)

This document last updated
for Ambulant version 1.1

animation_notification

<<interface>>
common::alignment

get_image_fixpoint(image_size)
get_surace_fixpoint(surface_size)

animation_destination

gui_events gui_window

<<interface>>
surface_template

new_subsurface(region_info, bgrenderer)
surface activate()

<<interface>>
common::region_info

get_rect()
get_fit()
get_bgcolor()
...

bgrenderer

<<interface>>
surface_factory

new_topsurface(name, size, gui_events)

21

5.11 UML diagram for region

Region

passive_region
m_parent
m_active_children
m_subregions

passive_root_layout
m_gui_window

surface_templatesurface

This document last updated
for Ambulant version 1.1

gui_events

region_info

1

1

m_info

bg_renderer
1 1

m_bg_renderer

gui_events

1

*
m_renderers

gui_window
1 1
m_gui_window

22

5.12 UML diagram for window

Windows

common::gui_window

need_redraw(screen_rect r)
need_events(bool want)

cocoa_window
m_view

cocoa_window_factory
m_view

Cocoa used as
an example of a

GUI toolkit

This document last updated
for Ambulant version 1.1

<<interface>>
common::gui_events

redraw(rect, gui_window)
user_event(point,user_event_type)
transition_freeze_end(screen_rect area)

<<interface>>
common::bgrenderer

set_surface(surface)

<<interface>>
common::window_factory

new_window(name, size, gui_events)
new_background_renderer(region_info)
window_done(name)

region_info

1 1
m_handler

23

5.13 UML diagram for animation

Animations

<<interface>>
animation_destination

get_region_dim(which, fromdom)
get_region_color(which, fromdom)
get_region_zindex(fromdom)

set_region_dim(which, region_dim)
set_region_color(which, color)
set_region_zindex(zindex)

region_info

<<interface>>
common::animation_notification

animated()

smil2::animate_node

playable

11

1

1

This document last updated
for Ambulant version 1.1

24

5.14 UML diagram for clocks

Clocks

abstract_timer_client
m_dependents
speed_changed()
add_dependent()
remove_dependent()

abstract_timer

elapsed()
set_speed()
get_realtime_speed()

timer
m_parent
m_parent_epoch
m_local_epoch
elapsed()
set_speed()
get_realtime_speed()

unix_timer

elapsed()
set_speed()
get_realtime_speed()

unix used as an
example

This document last updated
for Ambulant version 0.1

25

5.15 UML diagram for event processor

lib::event_processor

add_event()

Event processor

serve_events()

lib::event
<<interface>>

fire()

fire()

lib::delta_timer

lib::critical_section
<<mt sync object>>

insert()
execute()
execute(q: std::queue)
write_trace()

Synchronizes
add_event()

lib::timer

elapsed(): time_t

lib::abstract_event_processor

os::event_processor
<<thread>>

start()
stop()
terminate()
is_running()

26

5.16 UML diagram for document

lib::node_context
<<interface>>

get_namespace_prefix()

Document

resolve_url()

lib::document lib::node
1

root
get_root()
locate_node()
get_src_url()

get_name()
get_attribute()
get_data()
get_url()
locate_node()

lib::nscontext

set_prefix_mapping()
get_namespace()
get_namespace_prefix()
is_known_namespace()
is_known_prefix()

1
namespace
registry

27

5.17 UML diagram for node

lib::node_context
<<interface>>

get_namespace_prefix()

Node

resolve_url()

lib::node

child

get_name()
get_attribute()
get_data()
get_url()

<<search>>
locate_node(): *node
get_first_child(): *node
get_last_child(): *node
get_root(): *node

lib::tree_iterator lib::node

operator++()
operator++(int)
operator*()

<<navigation>>
down(): *node
next(): *node
up(): *node

<<queries>>

<<iterators>>
begin(): iterator
end(): iterator

<<build>>
append_child()
set_attribute()
set_namespace()
append_data()
clone()

parent

next

context

lib::node_navigator lib::node<<implementation>>

lib::inode
<<interface>>

down(): *inode
up(): *inode
next(): *inode

lib::tree_iterator
and lib::node_navigator
require a template
argument with this
interface

28

5.18 UML diagram for transitions

Transitions

smil2::transition_engine
m_progress
...
init(surface, bool is_out, transition_info)

begin(time_type now)
end()
is_done()

step(time_type now)
time_type next_step_delay()

lib::transition_info
m_type
m_subtype
m_dur
...

transition_blitclass_r1r2
m_oldrect
m_newrect

about 6 more classes,
differing in bitblit

parameters

transition_engine_barwipe

compute()

about 35 more,
depending on transition

type.

implement algorithms.

cocoa_transition_blitclass_r1r2

update()

cocoa_transition_engine_barwipe

implements gui-
dependent bitblit

empty

This document last updated
for Ambulant version 1.1

29

	Ambulant design, overall
	Design process
	Global structure
	Replaceable components
	run-time system
	main loop
	Factory pattern
	Machine-dependent code
	integrating third-party tools
	Other languages

	How does the AmbulantPlayer play a SMIL document?
	Introduction
	Opening a document
	Creating the player
	Starting playback

	Ambulant design, main objects
	Introduction
	AmbulantPlayer interfaces
	AmbulantPlayer Objects
	Refcounting protocol
	Player Interface
	Player implementations
	Parser interface
	Parser implementations
	Datasource interface
	Playable interface
	Playable implementations
	Layout interface
	Layout implementation
	GUI window interface
	Animation interface
	Clocks
	Event processor
	Document
	Node
	Transitions

	Ambulant source code organisation
	directory organisation
	Source code conventions

	Diagrams
	overall structure diagram
	dataflow diagram
	UML diagram for player
	UML diagram for parser
	UML diagram for datasource
	UML state diagram for datasource
	UML diagram for playable
	UML state diagram for playable
	UML diagram for renderer_playable
	UML diagram for layout
	UML diagram for region
	UML diagram for window
	UML diagram for animation
	UML diagram for clocks
	UML diagram for event processor
	UML diagram for document
	UML diagram for node
	UML diagram for transitions

