A Short Introduction to the Basic
Principles of the Open Scene Graph

Leandro Motta Barros

Start: August 17t0 02005

Contents

1 The Basics
1.1 The question is: “what is a scene graph?”
1.2 The question is: “who cares?”
1.3 Something OSG-related, at last
1.4 Smart pointers and OSG

2 Two 3D Viewers
2.1 A very simple viewero
2.2 A simple (and somewhat buggy) 3D viewer

3 Enter the StateSets
3.1 OpenGL as a state machine
3.2 OSG and the OpenGL state
3.3 A simple (and bugless) 3D viewer L.
34 Beyond.

A Rough equivalences between OpenGL and OSG

15
15
17

21
21
22
23
25

27

CONTENTS

Chapter 1

The Basics

1
Before talking about the Open Scene Graph (OSG), it is interesting to

spend a little time giving some clues about a slightly more fundamental
question.

1.1 The question is: “what is a scene graph?”

As the name suggests, a scene graph is data structure used to organize a
scene in a Computer Graphics application. The idea is that a scene is usually
decomposed in several different parts, and somehow these parts have to be
tied together. So, a scene graph is a graph where every node represents one of
the parts in which a scene can be divided. Being a little more strict, a scene
graph is a directed acyclic graph, so it establishes a hierarchical relationship
among the nodes.

Suppose you want to render a scene consisting of a road and a truck. A
scene graph representing this scene is depicted in Figure 1.1.

It turns out that there is a great chance that if you render this scene just
like it is, the truck will not appear on the place you want. Most likely, you’ll
have to translate it to its right position. Fortunately, scene graph nodes don’t

'TODO: Something to think about: I’'m always using the notation
namespace: :class. Perhaps, omitting the namespace can improve readability.
Perhaps the namespace should be included just on the first time a class name
is mentioned?

TODO

6 CHAPTER 1. THE BASICS

/World\k

Truck Road

Figure 1.1: A scene graph, consisting of a road and a truck.

always represent geometry.? In this case, you can add a node representing a
translation, yielding the scene graph shown on Figure 1.2.

World
Translation Road

A4

Truck

Figure 1.2: A scene graph, consisting of a road and a translated truck.

Perhaps you are now wondering why is a scene graph called a graph if
they all look like trees? Well, the examples so far were trees, but that is
not always the case. Let’s add two boxes to the scene, one on the truck, the
other one on the road. Both boxes will have translation nodes above them,
so that they can be placed at their proper locations. Furthermore, the box
on the truck will also be translated by the truck translation, so that if we
move the truck, the box will move, too. The news is that, since both boxes
look exactly the same, you don’t have to create a node for each one of them.
One node “referenced” twice does the trick, as Figure 1.3 illustrates. During
rendering, the “Box” node will be visited (and rendered) twice, but some
memory is spared because the model is loaded just once.

Of course, scene graphs can get more complicated than this. Hopefully,
though, the simple notion just presented is enough for now. So, it’s time to
say a couple more words concerning a second fundamental question.

?Indeed, the node labeled “World” in Figure 1.1 doesn’t represent geometry, it repre-
sents a group of some nodes (namely, “Truck” and “Road”).

1.2. THE QUESTION IS: “WHO CARES?”

World
Translation Road Translation
Truck Translation

Figure 1.3: A scene graph, consisting of a road, a truck and a pair of boxes.

\

Box

1.2 The question is: “who cares?”

Anyone needing a neat data structure to organize a Computer Graphics scene

and wanting to render the scene efficiently cares.

3

1.3 Something OSG-related, at last

Up to this point, the discussion was around “generic” scene graphs. From
now on, all examples will use exclusively OSG scene graphs, that is, instead
of using a generic “Translation” node, we’ll be using an instance of a real

class defined in the OSG hierarchy.

A node in OSG is represented by the osg: :Node class. Although tech-
nically possible, there is not much use in instantiating osg: :Nodes. Things
start to get interesting when we look at some of osg::Node’s subclasses.
In this chapter, three of these subclasses will be introduced: osg: :Geode,

osg: :Group and osg: :PositionAttitudeTransform.

Renderable things in OSG are represented by instances of the osg::
Drawable class. But osg::Drawables are not nodes, so we cannot attach
them directly to a scene graph. It is necessary to use a “geometry node”,

osg: :Geode, instead.

Not every node in an OSG scene graph can have other nodes attached
to them as children. In fact, we can only add children to nodes that are

3TODO: This is the place to say what is a scene graph good for.

TODO

8 CHAPTER 1. THE BASICS

instances of osg: :Group or one of its subclasses.

Using osg: : Geodes and an osg: : Group, it is possible to recreate the scene
graph from Figure 1.1 using real classes from OSG. The result is shown in
Figure 1.4.

[osg: :Geodej [osg: :Geodej

0sg::Drawable| |osg::Drawable
(Truck) (Road)

Figure 1.4: An OSG scene graph, consisting of a road and a truck. Instances
of OSG classes derived from osg: :Node are drawn in rounded boxes with the
class name inside it. osg: :Drawables are represented as rectangles.

That’s not the only way to translate the scene graph from Figure 1.1 to
a real OSG scene graph. More than one osg: :Drawable can be attached to
a single osg: :Geode, so that the scene graph depicted in Figure 1.5 is also
an OSG version of Figure 1.1.

osg::Drawable| |osg::Drawable
(Truck) (Road)

Figure 1.5: An alternative OSG scene graph representing the same scene as
the one in Figure 1.4.

The scene graphs of Figures 1.4 and 1.5 has the same problem as the one in
the Figure 1.1: the truck will probably be at the wrong position. And the so-
lution is the same as before: translating the truck. In OSG, probably the sim-
plest way to translate a node is by adding an osg: :PositionAttitudeTransform
node above it. An osg: :PositionAttitudeTransform has associate to it not
only a translation, but also an attitude and a scale. Although not exactly
the same thing, this can be though as the OSG equivalent to the OpenGL
calls glTranslate(), glRotate () and glScale(). Figure 1.6 is the OSGfied
version of Figure 1.2.

1.4. SMART POINTERS AND OSG 9

0sg: :PAT 0sg: :Geode

Y Y

0sg: :Geode 0sg: :Drawable
J (Road)

0sg: :Drawable
(Truck)

Figure 1.6: An OSG scene graph, consisting of a road and a translated truck.
For compactness reasons, osg: :PositionAttitudeTransform is written as
osg: :PAT.

For completeness, Figure 1.7 the OSG way to represent the “generic”
scene graph from Figure 1.3.

1.4 Smart pointers and OSG

Save the whales. Feed the hungry. Free the mallocs.
— fortune(6)

Sadly, it looks like quite a few C++ users are unfortunate enough to not be
proficient with smart pointers. Since OSG uses smart pointers extensively?,
it seems worthwhile to spend some time explaining them. Don’t dare to skip
this section if “smart pointers” sounds like Greek for you (and you are not
Greek, that’s it).

Let’s start with a definition: a resource is something must be allocated
before being used and deallocated when no longer needed. Perhaps the most
common resource we use when programming is heap memory, but many other
examples exist. Two common cases are files (which must be closed after being
opened) and database transactions (which have to be committed or rolled
back after being “beginned”). Also in OpenGL there are some examples of
resources (one example are texture names generated by glGenTextures()
which must be freed by glDeleteTextures()).

4Indeed, every program should.

TODO

10 CHAPTER 1. THE BASICS

0sg: :Group

[0sg: :PAT] [osg::Geode] [0sg: :PAT]

0sg::Drawable
(Road)

[osg::Geodej [0sg: :PAT j

0sg: :Drawable [§E§EE§§§§§]

(Truck)

0sg: :Drawable
(Box)

Figure 1.7: An OSG scene graph, consisting of a road, a truck and a pair of
boxes.

The most fascinating thing related to resources is the fact that there exist
so many programmers who believe that they can handwrite code capable of
freeing them in every case and will never forget to write such code. This
thinking only leads to resource leaks. The good news is that, with some
discipline, this freeing task can be passed to the C++ compiler, which is
much more reliable than us for tasks like this.

The main ideas behind resource management in C++ are worth of men-
tioning here, but complete discussion about this is beyond the scope of this
text.> Speaking of “scope”, the scope of “automatic” variables (that is, vari-
ables allocated on the stack) plays a central role in resource management in
C++: the language rules guarantee that the destructor of an object allocated
on the stack will be called when it gets out of scope. How does this help to
avoid resource leaks? Take a look at the following class:

class ThingWrapper
{
public:
ThingWrapper () { handle_ = AllocateThing(); }

5TODO: Indicate a good reference about this.

1.4. SMART POINTERS AND OSG 11

“ThingWrapper() { DeallocateThing (handle_); }
ThingHandle& get() { return handle_; }
private:
ThingHandle handle_;
s

It allocates a Thing in the constructor and frees it in the destructor. So,
whenever we need a Thing we can do something like this:

ThingWrapper thing;
UseThing (thing.get());

Instantiating a ThingWrapper allocates a Thing (in ThingWrapper’s con-
structor). But the nice part is that the Thing will be automatically freed
when thing gets out of scope, since its destructor is guaranteed to execute
when this happens. Voila. Automatic resource management.

The class ThingWrapper is an example of a C++ programming technique
usually called “resource acquisition is initialization” (RAII). A smart pointer
is simply a class® that uses the RAII technique to automatically manage
heap memory. Quite like ThingWrapper, but instead of calling hypothetical
AllocateThing() and DeallocateThing() functions, a smart pointer typ-
ically receives a pointer to newly allocated memory in its constructor and
uses the C++ operator delete to free that memory in the destructor.

In the ThingWrapper example, thing is said to be owner of the Thing
allocated with AllocateThing(), and therefore is responsible for deallocat-
ing it. In OSG, there is an extra detail to complicate the things a little bit:
sometimes an object has more than one owner.” For example, in the scene
graph shown in Figure 1.7, the osg: :Geode with the box attached to it has
two parents. Which one should be responsible for deallocating it?

In these cases, the resource shall not be deallocated while there is at
least one reference pointing to it. So, most objects in OSG have an internal
counter on the number of references pointing to it.® The resource (that is, the
object) will only be destroyed when its internal reference count goes down to
Zero.

60r, more commonly, a class template.

"This additional complication is not an OSG exclusivity. “Shared ownership”, as it is
also called, is a common situation in practice.

8To be more exact, the objects with an embedded reference count are all those that
are instances of classes derived from osg: :Referenced.

TODO

1

2

3

4

5

6

7

8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

12 CHAPTER 1. THE BASICS

Fortunately, we programmers are not expected to manage these refer-
ence counts manually: that’s why smart pointers exist for. So, in OSG,
smart pointers are implemented as a class template named osg: :ref_ptr<>.
Whenever? an OSG object receives a pointer to another OSG object, it is
immediately stored in an osg::ref_ptr<>. This way, the reference count
of the underlying object is automatically managed, and the object will be
automatically deallocated when it is no longer being referenced by anyone.

The example below shows OSG’s smart pointers in action. The example
is followed by some notes about it.

SmartPointers.cpp

#include <cstdlib>

#include <iostream>
#include <osg/Geode>
#include <osg/Group>

void MayThrow()
{
if (rand() % 2)
throw "Aaaargh!";

}

int main()
{
try
{
srand (time(0)) ;
osg: :ref_ptr<osg: :Group> group (new osg::Group());

// This is 0K, albeit a little verbose.

osg: :ref_ptr<osg::Geode> aGeode (new osg::Geode());
MayThrow() ;

group->addChild (aGeode.get());

// This is quite safe, too.
group—>addChild (new osg::Geode());

// This is dangerous! Don’t do this!

osg: :Geode* anotherGeode = new osg::Geode();
MayThrow() ;

group->addChild (anotherGeode) ;

// Say goodbye

std::cout << "Oh, fortunate one. No exceptions, no leaks.\n";
}
catch (...)
{

9TODO: “Whenever”? This really “whenever”? No exceptions? I think I
read somewhere that this is at least how things should be (it’s a bug otherwise).
Anyway, I’d like to check before telling this to everybody.

1.4. SMART POINTERS AND OSG 13

37 std::cerr << "’anotherGeode’ possibly leaked!\n";
38 }
39 }

Concerning the example above, the first thing to notice is that it gives a
first and rough idea on how to create “compose” scene graphs like the ones
shown in the figures on Section 1.3. (For now, this is just for curiosity sake.
The next chapter will address this properly). The real intent of this example
is showing two safe ways of using OSG’s smart pointers and one dangerous
way to not use them:

e Lines 20 to 22, show one safe way to use the smart pointers: an osg: :
ref_ptr<> (called aGeode) is explicitly created and initialized with a
newly allocated osg::Geode (the resource) in line 20. At this point,
the reference count of the geode allocated on the heap equals to one
(since there is just one osg: :ref_ptr<>, namely aGeode, pointing to
it.)

A little bit latter, on line 22, the geode is added as a child of a group.
As soon as this happens, the group increments the geode’s reference to
two.

Now, what happens if something bad happens? What happens if the
call to MayThrow() at line 21 actually throws? Well, aGeode will get
out of scope and will be destroyed. Its destructor will decrement the
geode’s reference count. And, since it was decremented to zero, it will
also properly dispose the geode. There is no memory leak.

e Line 25 does more or less the same thing as the previous case. The
difference is that the geode is allocated with new and added as group’s
child in a single line of code. This is quite safe, too, because there are
not many bad things that can happen in between (after all, there is no
in between.)

e The bad, wrong, dangerous and condemned way to manage memory is
shown from line 28 to line 30. It looks like the first case, but geode is
allocated with new but stored in a “dumb” pointer. If the MayThrow ()
at line 29 throws, nobody will call delete on the geode and it will leak.

There is another thing that can be said here: osg: :Referenced’s de-
structor isn’t even public, so you are not able to say delete anotherGeode.

14 CHAPTER 1. THE BASICS

Instances of classes derived from osg: :Referenced (like osg: :Geode)
are simply meant to be managed automatically by using osg::ref_
ptr<>s.

So, do the right thing and never write code like in this third case.

TODO .10

10TODO: I wonder if I should say en passant that one can ref () and unref ()
osg::ref_ptr<>s manually if strictly necessary. This is most likely a bad idea,
but. ..

1
2
3
4
5
6

© w0

10
11
12
13
14
15
16
17
18
19
20
21
22

Chapter 2

Two 3D Viewers

In this chapter we’ll finally have OSG programs that actually show something
on the screen. Both are viewers of 3D models, and illustrate many concepts.

2.1 A very simple viewer

The first viewer is a very simple one. Basically, all it does is loading the file
passed as a command-line parameter and displaying it on the screen. So,
without further delays, here is its source code.

VerySimpleViewer.cpp

#include <iostream>
#include <osgDB/ReadFile>
#include <osgProducer/Viewer>

int main (int argc, char* argv[])

{
// Check command-line parameters
if (argc != 2)
{
std::cerr << "Usage: " << argv[0] << " <model file>\n";
exit (1);
}

// Create a Producer-based viewer
osgProducer: :Viewer viewer;
viewer.setUpViewer (osgProducer::Viewer::STANDARD_SETTINGS) ;

// Load the model
osg: :ref_ptr<osg::Node> loadedModel = osgDB::readNodeFile(argv[1]);

if (!loadedModel)
{

15

TODO

TODO

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

16 CHAPTER 2. TWO 3D VIEWERS

std::cerr << "Problem opening ’" << argv[1] << "’\n";
exit (1);

}

viewer.setSceneData (loadedModel.get());

// Enter rendering loop
viewer.realize();

while (!viewer.done())

{
// Wait for all cull and draw threads to complete.
viewer.sync();
// Update the scene by traversing it with the the update visitor which
// will call all node update callbacks and animations.
viewer.update() ;
// Fire off the cull and draw traversals of the scene.
viewer.frame();
}

// Wait for all cull and draw threads to complete before exit.
viewer.sync();

This example is pretty simple, but there are quite a few things that can
be said about it. First, notice that OSG, just like OpenGL, is independent
of windowing system. Thus, the task of creating a window with a proper
OpenGL context to draw in is not handled by OSG. In this first example
(and in most other examples to come!) this job will be handled by a library
called Open Producer (or simply Producer). Producer is designed to be
efficient, portable, scalable and it can be easily used with OSG.

So, our first example uses a Producer-based viewer instantiated on line 15.
Line 16 sets the viewer up with its standard settings, which include quite a
lot of useful features.?

OSG knows how to read (and write) several formats of 3D models and
images, and all the functions and classes related to this are declared in the
namespace osgDB. Line 19 uses of these functions, osgDB: :readNodeFile (),
which takes as parameter the name of a file containing a 3D model and re-
turns a pointer to an osg: :Node. The returned node contains all information

!TODO: Perhaps all of them?

2TODO: Yes, it has quite a lot of useful features, but I’'m not feeling like
describing them right now. Try pressing keys and moving the mouse around
while running the example to discover some of these features.

2.2. A SIMPLE (AND SOMEWHAT BUGGY) 3D VIEWER 17

necessary to render the 3D properly, including, for example, vertices, poly-
gons, normals and texture maps.

The node returned by osgDB: :readNodeFile() is ready to be added to
a scene graph. In fact, in this simple example, it is the whole scene graph:
notice that at line 27 we tell the viewer what it is expected to view, and it
is exactly the node we got by calling this function.

The call at line 30 “realizes” the viewer’s window, that is, it creates
the window with a proper OpenGL context. And that’s pretty much all
the program does. From this point on, we just make some additional calls
to ensure that our program keeps running forever.®> The loop from line 32
to line 43 is the typical main loop of an application based on OSG and
Producer.* And the final call at line 46 simply waits for any remaining Topo
threads to complete before going on.

2.2 A simple (and somewhat buggy) 3D viewer

LD TODO

TODO

30r until the user presses ESC, whatever comes first.

4TODO: And should be better explained here. It is important to make a few
notes about the multithreaded nature of Producer and a very brief explanation
about the cull/draw/update phases (and this last point should be explained
in more depth somewhere else).

TODO: The next example loads n models passed as command-line parame-
ters. They are attached to an osg: :Switch, and things are made such that just
of them is active at a time. The example also has an event handler that allows
the user to select which one of them is the active. Also, every model has an
osg: :PositionAttitudeTransform above it, and the user can change their scale.
The model will get darker or lighter as the scale changes (because normals
are not normalized, this is the “buggy” part). This is the hook for the next
chapter, in which the problem will be fixed by using a StateSet.

5TODO: Figure 2.1 shows the scene graph for the “simple and buggy viewer”.
Notice the “?7?”: there may be things below the node returned by osgDB::
readNodeFile() (at least, there is an osg: :Drawable. A geode is also mandatory,
but perhaps the node returned is this geode. Anyway, the point is that it
doesn’t matter.) Also, notice the ellipsis, indicating that all models passed as
command-line parameters are added to the scene graph.

18 CHAPTER 2. TWO 3D VIEWERS

0sg: :PAT 0sg::PAT

0sg: :Node 0sg: :Node

?7?? 27?7

Figure 2.1: The OSG scene graph used in the “simple and buggy viewer”.
For compactness reasons, osg: :PositionAttitudeTransform is written as
osg: :PAT.

W N U W N

e e e e =
DU R W NN = O ©

17

W W W W W N NNNDNDNDLNDNDNNE —
W N R O O 0O Ok W N R O © ®

2.2. A SIMPLE (AND SOMEWHAT BUGGY) 3D VIEWER 19

20 CHAPTER 2. TWO 3D VIEWERS

TODO

"TODO: Say relevant things using this example as base.

Chapter 3

Enter the StateSets

There is a very important class in OSG that was not mentioned so far:
osg: :StateSet. It is so important that this whole chapter is dedicated to it.
But, in order to understand the importance of osg: :StateSets, one must
have some basic understanding on how does OpenGL work. This OpenGL
background is briefly discussed in the net section. If you are already tired
of reading things entitled “OpenGL as a state machine” feel free to skip to
Section 3.2. Otherwise, keep reading.

3.1 OpenGL as a state machine

OpenGL can be roughly seen as something that transforms vertices into
pixels. Essentially, the programmer says: “Hey, OpenGL, please process this
list of points in 3D space for me.” And, shortly after, OpenGL answers:
“Done! The results are on your 2D screen.” This is not a 100% accurate or
complete description of OpenGL, but for the purposes of this chapter it is
good enough.

So, OpenGL takes vertices and makes pixels. Suppose we pass four ver-
tices to OpenGL. Let’s call them vy, v9, v3 and vy. Which pixels should
they originate? Or, rephrasing the question: how should they be rendered?
To begin with, what do these vertices represent? Four “isolated” points?
A quadrilateral? Two line segments (v;—ve and vs—v,)? Perhaps three line
segments (v1—vq, vo—v3 and v3—v,)? And why not something else?

Going in other direction, what color should the pixels be? Are the ren-
dered things affected by any light source? If they are, how many light sources

21

TODO

22 CHAPTER 3. ENTER THE STATESETS

are there, where they are and what are their characteristics? And are they
texture mapped?

We could keep asking questions like these for ages (or pages, at least), but
let’s stop here. The important thing to notice is that, although OpenGL is
essentially transforming vertices into pixels, there are lots of different ways to
perform this transformation. And, somehow, we must be able to “configure”
OpenGL so that it does what we want. But how to configure this plethora
of settings?

Divide and conquer. There are tons of settings, but they are orthogo-
nal. This means that we can change, for example, lighting settings without
touching the texture mapping settings. Of course there is interaction among
the settings, in the sense that the final color of a pixel depends on both the
lighting and texture mapping settings (and others). The important idea is
that they can be set independently.

From now on, let’s call these OpenGL settings by their more proper
names: attributes and modes (the difference between an attribute and a
mode is not important right now). So, OpenGL has a set of attributes and
modes, and this set of attributes and modes define precisely how OpenGL
behaves. But people soon noticed that writing a long expression like “set
of attributes and modes” is very tiresome, and hence they gave it a shorter
name: “state”.

And this explains the title of this section. OpenGL can be seen as a
state machine. All the important details that define exactly how vertices are
transformed into pixels are part of the OpenGL state. If we were drawing
green things and now want to draw blue things, we have to change the
OpenGL state. If we were drawing things with lighting enabled and now
want to draw things with lighting disabled, we have to change the OpenGL
state. The same goes for texture mapping and everything else.

The obvious question is “how do we change the OpenGL state when using
OSG?” This is answered in the rest of this chapter.

3.2 OSG and the OpenGL state

1

ITODO: Write an introduction about StateSets. Tell the difference between
“mode” and “attribute”. Give some high level examples. Link to the next
section.

3.3. A SIMPLE (AND BUGLESS) 3D VIEWER 23

3.3 A simple (and bugless) 3D viewer

L2 TODO

0 N O U W N =

I e e e e e e
O © 00 N DU WD E O ©

21

R R R W W W W W W W W W WNNNNNNNN
W N H O © WO OhR WN O O© WO O WN

'S
~

2TODO: The idea here is to fix the bug in the previous example by calling
ss->setMode (GL_NORMALIZE, osg: : StateAttribute: :0N). Perhaps this is too little
change to justify a new example. If it is, we could also use a more complex
osg::StateAttribute.

24 CHAPTER 3. ENTER THE STATESETS

3.4. BEYOND 25

3 TODO

3.4 Beyond

LA TODO

3TODO: The only difference from the previous example are lines 103 and
104.

4TODO: Perhaps this is the time to talk about those ON, OFF, OVERRIDE,
PROTECTED and INHERIT parameters to osg: :StateSet: :setAttribute(). But... if
I want to talk about them I must first understand all of them!

26

CHAPTER 3. ENTER THE STATESETS

Appendix A

Rough equivalences between

OpenGL and OSG

‘1
OpenGL OSG Pages
glTranslate() osg: :PositionAttitudeTransform Not yet
glRotate () osg::PositionAttitudeTransform Not yet
glColor() osg::Material Not yet

!1TODO: I think it is a good idea to have something like this. As can be
easily seen, there is no real content in this table yet, just some examples (and

they lack the page numbers).

27

TODO

