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Abstract 

 

The goal of this Master Thesis is to study shared radio resources among users with 

different services requirements. The analyzed properties of the wireless connection are 

fairness, throughput and delay for users demanding different services and QoS requirements. 

Four scheduling algorithms are used for allocating system resources. Two of them, Max Rate 

and Round Robin, are used as references to analyze throughput and fairness respectively. The 

other two algorithms, Proportional Fair Scheduling and Rate Craving Greedy, exploit the idea 

of multiuser diversity improving the throughput without comprising fairness. Different fading 

radio channel models are investigated, but only urban environments and pedestrian users are 

simulated in this report. OFDM has been the technique used to transmit signals over the 

wireless channel. The performance of these algorithms is analyzed and compared through 

MATLAB computer simulations. 
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      “People Move, Networks don’t” 
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Chapter 1 

 

Introduction 

 

The ability to communicate with people on the move has evolved remarkably since 

Guglielmo Marconi first demonstrated radio’s ability to provide continuous contact with 

ships sailing the English Channel. That was in 1897, and since then new wireless 

communications methods and services has been enthusiastically adopted by people 

throughout the world. Particularly during the past ten years, the mobile wireless 

communications industry has grown by orders of magnitude, fueled by digital and RF circuit 

fabrication improvements, new large-scale circuit integration, and other miniaturization 

technologies which make portable radio equipment smaller, cheaper, and more reliable [1]. 

The most successful wireless networking technology this far has been 802.11. 

Orthogonal frequency division multiplexing (OFDM) has become a popular 

technique for transmission of signals over wireless channels. OFDM has been adopted in 

several wireless standards like 802.11. OFDM converts a frequency-selective channel into a 

parallel collection of frequency flat sub-channels. The sub-carriers have the minimum 

frequency separation required to maintain orthogonality of their corresponding time domain 

waveforms, yet the signal spectra corresponding to the different sub-carriers overlap in 

frequency. Hence, the available bandwidth is used very efficiently. If knowledge of the 

channel is available at the transmitter, then the OFDM transmitter can adapt its signalling 

strategy to match the channel. 

OFDM devices use one wide frequency channel by breaking it up into several 

components sub-carriers. Each sub-carrier is used to transmit data. All the “slow” sub-

carriers are then multiplexed into one “fast” combine channel. 

OFDM is not a new technique. Most of the fundamental work was done in the late 

1960s. Recent DSL work and wireless data applications have rekindled interest in OFDM, 

especially now that better signal-processing techniques make it more practical [2]. 
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1.1 Motivation 

Wireless networks offer several advantages over fixed (or “wired”) networks: 

Mobility 

Users move, but data is usually stored centrally. Enabling users to access 

data while they are in motion can lead to large productivity gains. 

 

Ease and speed of deployment 

Many areas are difficult to wire for traditional mired LANs. Older buildings 

are often a problem; running cable through the walls of an older stone 

building to which the blueprints have been lost can be a challenge. In many 

places, historic preservation laws make it difficult to carry out new LAN 

installation in older buildings. 

 

Flexibility 

No cables mean no recabling. Wireless networks allow users to quickly form 

amorphous, small group networks for meeting, and wireless networking 

makes moving between cubicles and office a snap. Expansion with wireless 

networks is easy because the network medium is already everywhere. There 

are no cables to pull, connect, or trip over.  

 

 Cost 

In some cases, costs can be reduced by using wireless technology. As an 

example, 802.11 equipment can be used to create a wireless bridge between 

two buildings. Setting up a wireless bridge requires some initial capital cost 

in terms of outdoor equipment, access points and wireless interfaces. After 

the initial capital expenditure, however, an 802.11-based, LOS network will 

have only a negligible recurring monthly operating cost. Over time, point-to-

point wireless links are far cheaper than leasing capacity from the telephone 

company. 

 

1.2 Radio Spectrum: The Key Resource 

Wireless devices are constrained to operate in a certain frequency band. Each band 

has an associated bandwidth, which is simply the amount of frequency space in the band. 

Bandwidth has acquired a connotation of being a measure of the data capacity of a link [22]. 

A great deal of mathematics, information theory and signal processing can be used to show 

that higher-bandwidth slices can be used to transmit more information. The use of a radio 

spectrum is rigorously controlled by regulatory authorities through licensing processes. Each 

frequency range has a band designator and each range of frequencies behaves differently and 

performs different functions. The frequency spectrum is shared by civil, government, and 

military users of all nations according to International Telecommunications Union (ITU) 

radio regulations. For communications purposes, the usable frequency spectrum now extends 

from about 3 Hz to about 300 GHz. There are also some experiments at about 100 THz where 

research on laser communications is taking place but we won't discuss this now. This range 
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from 3 Hz to 300 GHz has been split into regions. The good thing is that once this range has 

been split it remained that way and became standard. And it is up to you if you want to accept 

this standard or not. Frequency band standard is described in International 

Telecommunications Union radio regulations [3], see Table 1.I. 

 

 Designation Frequency Wavelength 

ELF Extremely Low Frequency 3Hz to 30Hz 100’000km to 10’000km 

SLF Super Low Frequency 30Hz to 300Hz 10’000km to 1’000km 

ULF Ultra Low Frequency 300Hz to 3000Hz 1’000km to 100km 

VLF Very Low Frequency 3KHz to 30KHz 100km to 10km 

LF Low Frequency 30KHz to 300KHz 10km to 1km 

MF Medium Frequency 300KHz to 3000KHz 1km to 100m 

HF High Frequency 3MHz to 30MHz 100m to 10m 

VHF Very High Frequency 30MHz to 300MHz 10m to 1m 

UHF Ultra High Frequency 300MHz to 3000MHz 1m to 10cm 

SHF Super High Frequency 3GHz to 30GHz 10cm to 1cm 

EHF Extremely High Frequency 30GHz to 300GHz 1cm to 1mm 

Table 1.I Frequency bands. 

 

1.3 The Limits of Wireless Networking 

Wireless networks do not replace fixed networks. The main advantage of mobility is 

that the network user is moving. Servers and another data center equipment must access data, 

but the physical location of the server is irrelevant. As long as the server does not move, they 

may as well be connected to wires that do not move [2]. 

The speed of wireless networks is constrained by the available bandwidth. Unless the 

regulatory authorities are willing to make the unlicensed spectrum bands bigger, there is an 

upper limit on the speed of wireless networks. 

Using radio waves as the network medium poses several challenges. Specifications 

for wired networks are designed so that a network will work as long as it respects the 

specifications. Radio waves can suffer from a number of propagation problems that may 

interrupt the radio link, such as multipath interference and shadows. 

Security on any network is a prime concern. On wireless networks, it is often a 

critical concern because the network transmissions are available to anyone within range of 

transmitter with the appropriate antenna. This issue is not the purpose of this Thesis, but we 

encourage you to see [4] and [5]. 
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1.4 Objectives 

The subject to deal with is simulating a wireless communication between a BS and 

multiple MSs where radio link is shared. The Thesis results in a MATLAB simulator for the 

radio channel in a system with a fixed BS and moving user terminals (MSs). The simulations 

are based on a simplistic geometrical model for the radio environment. 

In this project, the tool to be used for simulating is MATLAB 7.0.019920 (R14). 

With this tool we have to achieve the following two objectives the most important in the 

Master Thesis: 

� Simulating radio link between two terminals. 

� Evaluating different scheduling policies for allocating resources according to 

three properties, fairness, throughput and delay. 

Other “collateral” objectives are: 

o Getting knowledge about wireless communications. 

o Getting to understand mathematical artifacts commonly implemented for 

simulating radio channels. 

o Practising programming skills, which will be applied in MATLB scripts. 

o Promoting the student’s skills for making decisions and choosing creative 

solutions design which will be applied in the final solution and in the 

definition of a set of experiments to prove performance. 

 

1.5 Report structure 

The current paper is organized in eight chapters and seven appendices. 

In Chapter 2, a general idea of channel characterization and modeling are presented. 

And the main underlying theoretical concepts about channel modeling are given. 

In Chapter 3, a general idea of multiuser diversity is showed. In order to improve the 

throughput of multiple packet-data users sharing a wireless channel while preserving fairness, 

different scheduling algorithms in different scenarios are proposed. 

In Chapter 4, fairness which is one of the most important properties in a wireless 

environment where system resources are sharing is introduced and discussed. And the 

different behaviour from different scheduling policies on index fairness is showed.  

In Chapter 5, throughput which is one of the most important properties of an 

information system is introduced and discussed. In this chapter the different behaviour from 

different scheduling policies is evaluated in different scenarios. 
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In Chapter 6, delay which is one of the most important properties of current 

applications is introduced and discussed. In this chapter the delay of different applications 

(video, voice and data) is evaluated in different scenarios and with different scheme 

scheduling to achieve QoS. 

Chapter 7 from the main ideas presented throughout the text, the main conclusions 

are extracted. 

Chapter 8 points out possible future works to extend this Thesis. 

Appendices are devoted to show the MATLAB scripts which have been used for 

simulating the theoretical concepts.  

In Appendix A, the scripts to simulate the radio channel behaviour are showed 

according to two different approximations, filtered Gaussian noise process and Jakes model. 

In Appendix B, the algorithms which are used by the scheduler in the BS are showed, 

these are Max Rate, RR, PFS and RCG. 

In Appendix C, are showed the scripts which simulate the BS scheduler, the statistics 

resulted from the scheduler scheme and the script used to evaluate PFS behaviour with 

different ct  parameter values. 

In Appendix D, the scripts which compute the index fairness and system throughput 

are showed. 

In Appendix E, the script which computes the index fairness and system throughput 

versus users is showed. 

In Appendix F, the script which computes the probability that a user is transmitting 

less than the demanded rate is showed. 
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Chapter 2 

 

Channel Modeling 

 

Understanding the behavior of the wireless medium is essential for appreciating the 

reasoning behind specific designs for wireless communications protocols. In particular, 

physical-layer and medium-access protocol designs are influenced heavily by the behavior of 

the channel, which varies substantially in different locations. 

The effective design, assessment, and installation of a radio network require accurate 

characterization of the channel. The channel characteristics vary from one environment to 

another, and the particular characteristics determine the feasibility of using a proposed 

communication technique in a given operation environment. Having an accurate channel 

characterization for each frequency band and a detailed mathematical model of the channel, 

enables the designer or user of a wireless system to predict signal coverage, achievable data 

rate, and the specific performance attributes of alternative signaling and reception schemes. 

The wireless network that we consider in this Thesis operates at frequency of 2.4 

GHz according to IEEE 802.11- based WLANs. Frequencies in the region of few gigahertz 

have several attractive features for being used in wireless information networks. At these 

frequencies a transmitter with power of less than 1 W can provide coverage distances on the 

order of a few miles, as needed for cellular urban radio communications. Furthermore, at 

these frequencies the size of an efficient antenna can be on the order of an inch, and antenna 

separation as small as several inches can provide uncorrelated received signals suitable for 

achieving diversity in the received signal [6]. 

 

2.1 Fading and Multipath Channels 

Most cellular wireless systems operate in built-up areas where there is no direct LOS 

radio path between the terminals, the transmitter and the receiver and where, due to natural 

and man-made obstructions (hill, trees, buildings, towers…), multidiffraction, 

multireflection, and multiscattering effects occurs (see Fig2.1). These cause not only 

additional losses (with respect to those obtained in LOS above the terrain), but also multipath 

fading of the signal strength observed at the receiver [9]. 
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Figure 2.1 Schematic presentation of each component of the multipath signal with two 

possible paths. 

In real communications links, the field that forms the complicated interference 

picture of received radio waves arrives via several paths; thus, the various waves arrive with 

different time delays. Upon each reflection of a path from a surface, a certain fraction of the 

power is absorbed by the surface, and the remainder of the power in that path carries beyond 

the reflection. At the receiver, such waves combine vectorially at any given frequency to give 

an oscillating resultant signal, the character of variations of which depends on the distribution 

of phases among the incoming components waves. For a mobile user, the amplitude of the 

path changes slowly, but the phase changes rapidly at a rate of λπ /2 radians per meter [6]. 

This means that for a mobile with a carrier frequency of 1 GHz every 3/1=λ m we have a 

360º change in the phase. The signal amplitude random variations are known as the fading 

effect. Fading is basically a spatial phenomenon, but spatial signal variations are experienced 

as temporal variations by a receiver or transmitter moving through the multipath field or due 

to moving scatters, such as a truck passing through the area between two terminal antennas.  

The urban communications channel is approximately stationary in time [7], but the 

spatial variations of signal level have a triple nature. 

The first one is the path loss, see Fig2.2 (a), which is the simplest of all the 

propagation mechanisms to understand and reflects the fact that the signal drops as the 

distance from the transmitter increase. Theory shows that if the transmitter were in free 

space, then the signal would radiate in an expanding sphere from the point source of the 

transmitter. Since the surface area of the sphere is proportional to the radius square, the 

received signal power at a distance d from the transmitter is proportional to 1/d². Free-space 

loss cannot occur on the Earth since one half of the expanding sphere is under the ground 

which has a certain reflection and transmission coefficient depending on the material making 

up the surface of the Earth at that particular point. Of more relevance is the fact that there will 

be obstructions on the ground in the form of buildings, hills, and vegetation, for example. 

These absorb and reflect the signal, resulting in a received signal strength that is much lower 

than that predicted using free-space loss. Because of the complexity of modeling every 

building, general guidelines are adopted as to the loss likely to be experience. Measurements 
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have shown that in an urban area, the environment which we will simulate, if the path loss is 

modeled as being proportional to 1/d³, then the results achieved best reflect real life.  

There are a few isolated cases where path loss exponents lower than the exponents of 

2 predicted by free space are experienced. These typically occur in constrained spaces, often 

in corridors in a building. Here, the signal does not expand on the surface of a sphere because 

the walls of the corridor cause the signal travelling toward them to be reflected back into the 

corridor. Because the signal is now moving forward on a surface that is not expanding, theory 

would predict that no loss in signal strength will occur. In practice, some signal leaks through 

the corridor walls and exponents of around 1.6 to 1.8 can be realized [8]. 

The second one is shadowing or slow fading, see Fig2.2 (b), is the second type of 

fading and is caused by diffractions, scattering, and multiple reflections, which all show slow 

random variations in signal amplitude with the tendency to a Gaussian distribution. The 

spatial scale of the slow variations is up to several tens of meters, which is normal distributed 

[7].   

The third one is fast fading, random variations of the signal, see Fig2.2 (c), caused by 

the mutual interference of the wave components of the multiray field. The characteristic scale 

of such waves in the space domain is changed from a fraction of a wavelength to several 

wavelengths [7]. They are usually called small-scale or fast-fading signals in the literature. 
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Figure 2.2 Multipath phenomena, (a) path loss, (b) slow fading, (c) fast fading. 

 

2.2 Channel Characterization 

In this section the channel will be described mathematically and we will discuss 

when a channel is said slow fading or fast fading in terms of symbol duration and bandwidth. 

 

2.2.1 Statistical characterization of multipath channel 

The transmitted signal follows many different paths before arriving at the receiving 

antenna, and it is the aggregate of these paths that constitutes the multipath radio propagation 

channel. The resulting signal strength will undergo large fluctuations, which, when the signal 

is small, results in a “fade”. Multipath fading manifests itself in two effects [9]: 

1. Time spreading (in τ) of the symbol duration within the signal, which is equivalent to 

filter and band-limit. 

 

2. A time-variant behaviour (in t) of the channel due to motion of received or changing 

environment such as movement of foliage or movement of reflectors and scatters. 

The small-scale variations of a mobile radio signal can be directly related to the 

impulse response of the mobile radio channel. The impulse response (Fig2.3) is a wideband 

characterization and contains all information necessary to simulate or analyze any type of 

radio transmission through the channel. This comes from the fact that a mobile radio channel 
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may be modeled as a linear filter with a time varying impulse response, where the time 

variation is due to receiver motion in space. The filtering nature of the channel is caused by 

the summation of amplitudes and delays of the multiple arriving waves at any instant of time. 

The impulse response is a useful characterization of the channel, since it may be use to 

predict and compare the performance of many different mobile communication systems and 

transmission bandwidth for a particular mobile channel condition. Then, we can describe the 

multipath channel by a time-varying, complex, lowpass-equivalent impulse response 

∑ −=
n

nn tatc )(),(~),(~ ττδττ      (1) 

where ),(~ ta nτ  is the complex attenuation of the signal component at delay τ  and time instant 

t. 

 

Figure 2.3 Impulse response of the mobile radio channel. 

The random fluctuation in the received signal due to fading can be modeled by 

treating ),(~ tc τ as a random process in t. Since the components of the multipath signal arise 

from a large number of reflections and scattering from rough or granular surfaces, then by 

virtue of the central limit theorem [9], ),(~ tc τ can be modeled as a complex Gaussian process. 

At any time t, the PDFs of the real and imaginary parts are Gaussian. This model implies that 

for each τ the ray is composed of a large number of unresolvable components. Hence, the 

channel is complex Gaussian process in t and if ),(~ tc τ  has zero-mean, then the envelope 

| ),(~ tc τ | has a Rayleigh PDF, eq. (2). In next sections we will describe more accurately the 

channel models used in this Thesis.  
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2.2.2 The Power Delay Profile 

An example of the power delay profile (PDP) is showed in Fig2.5 (a). Here, the term 

delay, refers to excess delay. It represents the delay measured from the first perceptible signal 

that arrives at the receiver. The maximum excess delay, also termed maximum delay spread, 

mT  is the delay between the first and the last component of the signal during which the 

received power fall below some threshold level, e.g. 20 dB below the strongest component. 

The relationship between 
mT  and the symbol time symT  can be viewed in terms of two 

different degradation criteria [9]: 

1. A channel is said to exhibit frequency-selective fading if mT  > symT . In this condition, 

the multipath components extend beyond the symbol duration, which causes ISI 

distorsion in the signal. Since the multipath is resolvable in this case, the ISI 

distortion can be mitigated by rake reception or equalization. 

 

2. A channel is said to exhibit frequency-nonselective or flat fading if mT  < symT . In this 

case there is very little ISI, but we still have distortion in the system because the 

multipath signal can add destructively, reducing the SNR considerably. 

The dividing line between frequency-selective and flat fading is not perfectly sharp. 

In channels that we call flat, frequency selective still happens, but with smaller probability. 

 

2.2.3 The Spaced-Frequency Correlation Function 

As we can see in Fig2.5 (b), a completely analogous characterization of signal 

dispersion can be done in the frequency domain. The function is defined as the Fourier 

transform of the PDP. Spaced-frequency correlation function represents the correlation 

between the channel response to two narrowband signals with the frequencies 1f  and 2f  as a 

function of the difference 
12 fff −=∆ . This function can be thought of as the transfer of the 

channel. Therefore, time spreading can be viewed as if it was the result of a filtering process. 

The coherence bandwidth
0f is defined as the frequency range where all frequency 

component amplitudes are correlated. That is, the spectral components in that range fade 

together. It can be shown that 0f  and mT  are reciprocally related. As a rule of thumb, it is 

usually assumed that 



CHAPTER 2: SIMULATING WIRELESS ENVIRONMENT                                                     

 13 

NTNU 

mT
f

1
0 ≈        (3) 

For the case of the mobile radio, an array of radially uniformly spaced scatters, all 

with equal-magnitude reflection coefficients, but independent, randomly occurring phase 

angles, is widely accepted. This model is referred as the dense scatter channel model, and is 

commonly known as the Jakes model which will be described in section 2.3.2. 

The two degradation criteria above for frequency-selective and flat fading can also be 

expressed in terms of the coherence and signal bandwidths: 

1. A channel is referred as frequency-selective if 0f < B, where B is the signal 

bandwidth. Since the channel coherence bandwidth is smaller than the signal 

bandwidth, the channel acts as a filter, hence frequency-selective fading occurs. 

 

2. Frequency-nonselective or flat fading degradation occurs whenever 
0f >> B. As 

noted before, flat fading does not introduce ISI, but performance degradation occurs 

due to low SNR whenever the signal is fading. It should be noted that frequency 

selectivity diminishes as 0f /B is increasingly larger than 1. 

Flat fading is not always desirable. For example, to achieve frequency diversity for 

two fading signals, it is necessary that the carrier spacing sf  between the two signals is 

larger than the coherence bandwidth, sf  > 0f , so that the two signals are uncorrelated [9]. 

 

2.2.4 The Time-Varying Channel 

In this and the next section will be described the properties of the channel as they 

relate to its time-varying nature. For mobile radio applications, the channel is time-varying 

because the motion between the transmitter and the receiver results in propagation path 

changes. It should be noted that since the channel characteristics are dependent on the relative 

position of the transmitter and receiver, time variance is equivalent to space variance. The 

time variation of the channel is characterized by the Doppler power spectrum S(υ), shown in 

Fig2.5 (c). 

2

max

max

1
( )

1
d

d

S

f
f

ν

ν
π

=

 
−  
 

  maxdf≤ν     (4) 

where as it will be seen in section 2.2.4.2, maxdf is the maximum Doppler frequency shift. 
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2.2.4.1 The Spaced-Time Correlation Function 

The spaced-time correlation function ρ(∆t), Fig2.5 (d) is the inverse Fourier 

transform of S(υ), and it specifies the correlation between the channel’s response to a 

narrowband signal sent at times 1t  and 2t , where 12 ttt −=∆ . The coherence time, 0T , is the 

expected time duration within the two signals remain correlated. If the channel is time-

invariant, 1)( =∆tρ . Coherence time can also be measured in distance traversed [9]. 

The time-variant behaviour is categorized into fast fading and slow fading: 

1. A channel is said to be fast fading if 0T < symT , where 0T  is the channel coherence 

time and symT  is the symbol time. During the fast fading the baseband symbol shapes 

can be severely distorted, which often results in an irreducible BER and 

synchronization problems. 

 

2. A channel is referred as slow fading if 0T > symT . The time duration that the channel 

remains correlated is long compared to the transmitted symbol. The primary in a 

slow fading channel is the loss of SNR. 

 

 

2.2.4.2 Doppler Power Spectrum 

The Doppler power spectrum has been shown to match experimental data gathered 

for outdoor mobile radio channels. For indoor mobile radio channels a flat spectrum is used 

[9]. 

Consider a mobile moving a constant velocity v, along a path segment having length 

d between points X and Y, while it receives signals from a remote source S, as illustrated in 

Fig2.4. The differences in path lengths travelled by the wave from source S to the mobile at 

points X and Y is ∆l = dcosθ = v∆tcosθ, where ∆t is the time required for the mobile to travel 

from X to Y, and θ is assumed to be the same at points X and Y since the source is assumed to 

be very far away. The phase change in the received signal due to the difference in path 

lengths is therefore  

θ
λ

πν

λ

π
ϕ cos

22 tl ∆
=

∆
=∆       (5) 

and hence the apparent change in frequency, or Doppler shift, is given by df , where 

cosc
d

f
f

c

ν
θ=       (6) 

the maximum Doppler frequency is  
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max
c

d

f
f

c

ν
=        (7) 

 

Figure 2.4 Mobile moving along a path segment, while it receives signal from S. 

The Doppler power spectrum of the channel yields knowledge about spectral 

broadening of a narrowband signal (impulse in frequency) in the Doppler frequency domain. 

It can be regarded as a dual of the PDP, since the later yields knowledge about the spreading 

of a pulse in the time domain. 

S(υ) enable us to estimate the broadening imposed on the signal as a result of the 

channel time variations. The width of the Doppler power spectrum, 
maxdf  is referred to as the 

spectral broadening or Doppler spread, and is also called the fading bandwidth of the 

channel. Because S(υ) and ρ(∆t) are related to the Fourier transform, the coherence time and 

the Doppler spread are inversely related as 

)2())(()( 0

1 tfJSFt d ∆==∆ − πνρ      (8) 

The degradation criteria for fast and slow fading in terms of the signal bandwidth B ≈ 

1/Tsym and the fading rate maxdf ≈ 1/T0 can be stated as follows: 

1. A channel is considered fast fading if B <
maxdf . In this case the signal is severely 

distorted. 

 

2. A channel is regarded as slow fading if B > maxdf . No signal distortion is present, but 

degradation of the SNR is possible. 
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(a)         (c) 

 

 

 

 

 

    
 

(b)              (d) 

Figure 2.5 Relationships among the channel correlation functions and PDFs, (a) multipath 

intensity profile, (b) coherence bandwidth, (c) Doppler power spectrum, (d) spaced-time 

correlation function. 

 

2.3 Channel Model 

In the previous sections we looked at the statistical characterization of multipath 

channels. The characterization does not in itself provide a constructive way of emulating the 

channel. For this purpose we need to synthesize a generative model.  
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Simulation of envelope fading is very important for design and performance 

evaluation of wireless modems because often we cannot find closed-form solutions to 

compare performance of various modulation and coding techniques over wireless channels. 

To simulate a narrowband channel, we need to generate a random process with a 

specific envelope fading density function and a specific Doppler spectrum. A wideband 

simulator is a group of narrowband simulators with different gains connected together 

through a tapped delay line. After generating a random variable with the distribution function 

of envelope fading, passing the random variable through a filter with a specific spectral 

shape, resembling the Doppler spectrum of the channel. One may instead, to generate a series 

of oscillators with different frequencies and add the outputs to form the specific spectrum. 

The first approach has been used extensively in simulations of a variety of fading channels. 

The second approach is often used in simulations of mobile radio channel, based on the 

Clarke assumption of isotropic scattering [10]. We have proposed these two approaches to 

simulate the envelope fading characteristics. The envelope fading considered is Rayleigh 

fading, so we will consider that there is no direct LOS between transmitter and receiver. 

 

2.3.1 Filtered Gaussian Noise 

A widely approach to simulation of fading radio channels is to constructs a fading 

signal from in-phase and quadrature Gaussian noise sources. Because the envelope of a 

complex Gaussian noise process has a Rayleigh PDF, the output of such simulator will 

simulate Rayleigh fading accurately. In this approach, applying the appropriate filtering to 

the Gaussian noise sources provides the Doppler spectrum of the channel of interest. Fig2.6 

shows a block diagram of the basic technique for simulating Rayleigh fading as an RF signal 

using a filtered Gaussian noise process, at each tap line. 

If a multipath channel is composed of a set of discrete resolvable components that 

originate as reflections or scattering from smaller structures, e.g., houses, small hills, etc., it is 

called a discrete multipath channel. The model in its most general form has, in addition to 

variable tap gains, variable delays and variable number of taps. 

The lowpass-equivalent impulse response of a discrete mulipath channel is given as 

∑
=

−=
)(

1

))(()),((~),(~
tK

k

kkk tttatc ττδττ      (11) 

For many channels it can be assumed as a reasonable approximation that the number 

of discrete components is constant and the delay values vary very slowly and can also be 

assumed constant. These assumptions are also made for “reference” channels that are for 

system studies [9]. The model then simplifies to 

∑
=

−=
K

k

kk tatc
1

)()(~),(~ ττδτ       (12) 
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where )(~ tak
 and 

kτ  are the complex tap attenuation and tap delay respectively, as it will be 

seen in section 2.4.3, different tap attenuations will be simulated according to different 

scenarios. 

The number of taps needed by the band-limited model is usually small. We will 

determine the number of taps estimating the band-limited PDP determining the maximum 

delay power spread mT  at which the magnitude of the delay spread is still relevant. In these 

simulations, the signal components which the receiver power fall below 20 dB of the 

strongest component will not be considered. 

As we can see in Fig2.6, the generation of the tap-gain process for the discrete 

multipath channel model is straightforward. It starts whit a set of K independent complex 

processes ( )(tWi , i=1,2,…,k), where the magnitude is a complex Gaussian variable with 

zero-mean and unit variance, and the phase is uniformed distributed between zero and 2π. 

This process is filtered to produce the appropriate Doppler spectrum ( )( fH ), then scale 

them to produce the desired amplitude of the discrete channel (
id , i=1,2,…,k). Finally all 

taps have to be added to model the multipath channel. 

This technique was recommended by the JTC standardization committee for the 

simulation of channel fading [30]. 

 

 

Figure 2.6 Tap delay line. 
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2.3.2 Jakes Model for Simulations of a Mobile Radio Channel 

As an alternative to RF modeling with filtered complex Gaussian noise, one may 

instead approximate the Rayleigh fading process by summing a set of complex sinusoids. The 

number of sinusoids in the set must be sufficiently large that the PDF of the resulting 

envelope provides an acceptably accurate approximation to the Rayleigh PDF. With this 

modeling method, the sinusoids are weighted so as to produce an accurate approximation of 

the desired channel Doppler spectrum. One technique of this type is proposed by Jakes [11]. 

Jakes shows that the theoretical Doppler spectrum for the isotropic scattering mobile 

radio channel, can be well approximated by a summation of a relatively small number of 

sinusoids, with the frequencies and relative phases of the sinusoids set according to a specific 

formulation. As we said in previous section, the maximum Doppler shift frequency 

is λ/mm vf = , where 
mv  is the velocity of the mobile and λ  is the wavelength of the carrier 

frequency. In the model described by Jakes, the ideal isotropic continuum of arriving scatter 

components is approximated by N plane waves arriving at uniformly azimuthal angles. The 

model restricts N/2 to be an odd integer and defines another integer )12/(2/10 −= NN . 

This leads to a simulation model having one complex frequency oscillator with frequency 

mm fπω 2=  plus a summation of 0N  complex lower-frequency oscillators with frequencies 

equal to the Doppler shifts nm θω cos , where nθ  is the arrival angle for the nth plane wave 

and where n=1,2,…, No. Each oscillator has an initial phase, and these phases are to be 

chosen as a part of initializing the simulation. We can express the complex envelope T(t) of 

the fading signal in the form 

)(
12

)(
0

0
sc jxx

N

E
tT +

+
=       (9) 

where 
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=
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tttx

ωφωφ

ωφωφ

    (10) 

and where )/2cos( Nnmn πωω = , n=1,2,…,No. In the equations above, 
Nφ is the initial 

phase of the maximum Doppler frequency sinusoid, and 
nφ  is the initial phase of the nth 

Doppler-shifted sinusoids. The quantities 
cx  and 

sx  are the in-phase and quadrature 

components respectively. 

In using this simulation method, one must choose the initial phases (
nφ and 

Nφ ) of 

the Doppler shift components in such a way that the phase of the resulting fading process 

exhibit a distribution as closed as possible to uniform, here we use Nφ =0 and 
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)1/( 0 += Nnn πφ , where n=1,2,…,No [3]. The number of Doppler-shifted sinusoids is 

chosen large enough that T(t) provides a good approximation to a complex Gaussian process, 

and therefore the envelope |T(t)| is approximately Rayleigh. Jakes suggest that 

80 =N provides an acceptably accurate approximation to the ideal case of Rayleigh fading 

[11].  

 

2.4 MATLAB Simulations 

According to theoretical models explained in previous sections, two scripts have 

been programmed in MATLAB in order to simulate fading radio channel behaviour. The first 

script, FGN_model.m showed in Appendix A.1, simulates fading radio channel according to 

section 2.3.1, and the second script, jakes_model.m showed in Appendix A.2, simulates 

fading radio channel according section 2.3.2. 

 

2.4.1 Filtered Gaussian Noise Model 

As we could see in section 2.3.1, fading radio channel can be constructed from in-

phase and quadrature Gaussian noise sources. In Fig2.7 (a) typical Rayleigh fading envelope 

of a radio channel has been plotted. As we can see, the signal has a lot of fades and peaks, 

each fade corresponds with a destructive interference between taps arriving from different 

paths and peaks correspond with constructive ones. In Fig2.7 (b) the Doppler power spectrum 

is plotted, 
maxdf  is about 180 Hz because of mobile speed, 80km/h. In Fig2.7 (c), an estimate 

PDP for a certain estimation window has been plotted, which simulates an urban environment 

( mT  is about 0.5µs), as we will see in section 2.4.3. And finally, in Fig2.7 (d) the frequency 

channel response has been plotted, with a bandwidth of 10 MHz, according to the delay 

spread. 
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Figure 2.7 Filtered Gaussian Noise model for simulations of a mobile radio channel, (a) 

fading envelope, (b) Doppler power spectrum, (c) estimate PDP, (d) frequency channel 

response.  

 

2.4.2 Jakes Model 

As we could see in section 2.3.2, fading radio channel can be constructed by 

summing a set of complex sinusoids. Two different scenarios have been simulated; when the 

user is walking (3km/h) and when the user is driving (80km/h), see Fig2.8 (a) and Fig2.9 (a) 

respectively. When the user is walking, the fading radio channel is showed as slow fading but 
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when the user is driving, the fading radio channel looks like fast fading. The Doppler 

spectrum is larger when the user is driving because of mobile speed, it can be compared in 

Fig2.8 (b) and Fig2.9 (b). The frequency channel response, Fig2.8 (c) and Fig2.9 (c), has 

fewer fluctuations when the user is walking because of speed differences. 
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Figure 2.8 The Jakes model for simulations of a mobile radio channel when the user is 

walking (3km/h), (a) fading envelope, (b) Doppler power spectrum, (c) estimate PDP, (d) 

frequency channel response.  
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Figure 2.9 The Jakes model for simulations of a mobile radio channel when the user is 

driving (80km/h), (a) fading envelope, (b) Doppler power spectrum, (c) estimate PDP, (d) 

frequency channel response.  

 

2.4.3 Different Power Tap Delays 

According to different environments exist different PDPs, so different Doppler 

spectra have been used for different delays. Urban area, hilly area and flat terrain have been 

considered as three sorts of possible environments.  
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2.4.3.1 Urban Area 

As is well know, urban areas, from the point of view of radio wave propagation, are 

complicated areas and the analytical description of this process cannot be presented without 

some simplifications for the real radio link situation [7]. For 2.4 GHz radio waves, most large 

city buildings are practically nontransparent with dimensions greater than the wavelength, λ. 

In such a situation, a wide spectrum of shadow zones is observed at the street level and it is 

very complicated to use well-know analytical models. In this Thesis, the urban environment 

has been simplified to an estimate PDP for a certain estimation window with a time spread 

mT  between 0.5 and 3µs and with exponential decay, see Fig2.10. 
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Figure 2.10 Urban Area where users are walking (3km/h) (a) estimate PDP, (b) frequency 

channel response.  

 

2.4.3.2 Hilly Area 

In a region with a hilly terrain the channel sounder is able to differ between the 

dominant peak and a few additional paths. The amplitude of these paths is few dBs below the 

main peak [12]. The estimate PDP for a certain estimation window has the shape in Fig2.11. 
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(a)      (b) 

Figure 2.11 Hilly Area where users are driving (80km/h) (a) estimate PDP, (b) frequency 

channel response.  

 

2.4.3.3 Flat Terrain 

The radio channel in flat terrain is characterized by the absence of detected multipath 

propagation, so the channel impulse response looks like one path and the frequency channel 

response is almost flat, see Fig2.12. 
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Figure 2.12 Almost one path (a) estimate PDP, (b) frequency channel response.  
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Chapter 3 

 

Scheduling Algorithms 

 

In this chapter, different scheduling algorithms have been proposed which are 

working in different scenarios. The goal is to improve the throughput of multiple packet-data 

users sharing a wireless downlink channel while preserving fairness. RR and Max Rate 

algorithms will take into account to improve fairness and throughput respectively and two 

proportional fair scheduling algorithms, PFS and RCG which maximize system throughput 

maintained fairness. Scheduling algorithms for wireless packet data networks exploit the fact 

that the propagation channels between the BS and the MSs it serves fade independently by 

scheduling transmission to MSs when their channels are good, giving rise to multiuser 

diversity [13]. 

The system under consideration is an OFDM system with frequency-division 

multiple access (FDMA) and time-division multiple access (TDMA).  Perfect channel state 

information is assumed at both the MS and the BS, i.e. the channel gain on each sub-carrier 

due to path loss, shadowing, and multipath fading is assumed to be known.  

Each sub-carrier can only be used by one user at any given time. Sub-carrier allocation is 

performed at the BS and the users are notified of the sub-carriers chosen for them. Consider a 

system with K users, N sub-carriers and the time divided in time slots. At each time slot, each 

scheduling user k will transmit on the allocated sub-carrier. Equal power allocation 

algorithms are taken in consideration, which simply distributes the transmission power 

equally among the sub-carriers. The objective is to find a sub-carrier allocation, which allows 

each user to satisfy its rate requirements, maximizing throughput without comprising 

fairness. The system is showed in Fig3.1. 
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Figure 3.1 Multi-carrier transmission system. 

 

3.1 Multiuser Diversity 

Traditionally, diversity can be achieved over fading channels either over space 

(multiple antenna in reception and/or transmission), over time (interleaving) or in frequency 

(use of RAKE receiver in spread spectrum systems). In a multiple access wireless network, 

another source of diversity, called multiuser diversity [15], can be obtained exploiting the 

time-varying characteristic of the users’ channels. To maximize the total information-

theoretic capacity, they showed that the optimal strategy is to schedule at any one time only 

the user with the best channel to transmit to the BS. Diversity gain arises from the fact that in 

a system with many users, whose channels vary independently, there is likely to be a user 

whose channel is near its peak at any one time. Overall system throughput is maximized by 

allocating at any time the common channel resource to the user that can best exploit it. It can 

also be thought of as a form of selection diversity. 

The fading rate and the dynamic range of the channel fluctuations are essential 

parameters for the exploitation of multiuser diversity. In fact, the larger the fluctuation, the 

larger the diversity gain. For example, if the channel varies too slowly compared to the delay 

constraint of the application, the scheduler might not be able to wait long enough for the 

channel to reach its peak [14]. However, as motion increases, the diversity gain will be 

reduced by the errors in the channel estimations provided to the scheduler through the 

feedback channel, thus leading to a multiuser diversity gain-mobility trade-off. 

To exploit multiuser diversity in a real communication system, one must take into 

account two main issues: fairness and delay. In general, the statistics of the users’ channels 

are different, and a scheduling policy of always giving the channel to the best user can lead to 

unfairness. In fact, usually the users in a cell are placed at different distances from the BS, 

and the shadowing characteristics change from location to location so that it is more likely 

that the BS will be transmitting always to the nearest user in the cell. Delay is not a tight 

bound as it is for voice applications but nevertheless we have to insure a QoS to the users, for 

example, in the form of a maximum average delay of the packets. 



CHAPTER 3: SCHEDULING ALGORITHMS                                                                         

29 

NTNU 

3.1.1 Multiuser Diversity and Mobility 

It is clear that for pedestrian speeds diversity gain is the main phenomenon involved. 

However, as velocity of the users increases, the loss in performance is dramatic. As the 

Doppler spread, λ/vf d =  increases, the coherence time of the channel becomes shorter, 

and the rate request is less reliable. Fast fading may affect not only multiple-slot packets, but 

also single-slot ones. In fact, it can happen that the rate requested based on the pilot channel 

measurement made in the previous slot is not supported by the channel in the actual slot, and 

thus the packet can be lost. 

As the speed of the users increases, this measured SNR is a less reliable prediction of 

the current state of the channel. Suppose we split the slot into two semi-slots, each with a 

pilot channel (of half length). This would double the feedback channel rate, but not result in a 

dramatic increase in the amount of data (with 4 bits we can address the 11 rates that the 

mobiles can request on the feedback channel). Naturally, the number of slots per packet is 

doubled, but the packets have the same duration in time. Hence we can now better exploit the 

multiuser diversity effect and, at the same time, reduce the impact of the coherency of the 

channel for high speeds. In fact, the pilot measurement is a more accurate prediction of the 

channel state because it is carried out twice as often. Also, if the packet duration is more than 

one slot, one can better adapt the transmission to the fading characteristics of the channel. 

Suppose we are transmitting the ith slot of an n-slots packet at a rate 
kR , and that for the 

current slot the rate request of the user is 
iR <

kR . One can avoid transmitting the n-i slots 

remaining, because they would probably be lost. Instead, we stop the transmission to the user 

(completing only the current slot), and restart the proportional fair algorithm for the 

assignment of the downlink. To ensure fairness, the fairness index is not computed on the 

whole packet, but only on the basis of the actual data transmitted to the MS (i slots in this 

case). The improvement is large, and the cost is only a small amount of additional 

information to feedback to the BS.  

 

3.2 Round Robin algorithm 

Round Robin (RR) is one of the simplest scheduling algorithms, which assigns time 

slices to each MS in equal portions and in order, handling all MSs as having the same 

priority. RR scheduling is both simple and easy to implement, and starvation-free.  

In wireless networks, where many stations share one channel, this algorithm provides 

every MS to transmit or receive on the shared channel at a regular interval. This may make 

RR to appear a fair algorithm. However, because it is much less efficient than other 

algorithms such as PFS or RCG (as we will see in sections 3.4 and 3.4 respectively), hardly 

will provide very good service to the MS. The BS will also suffer reduced capacity of the 

network. The main reason for this is that this algorithm does not take into account the 

changing reception conditions at the different receivers or as we said before, RR algorithm 

does not take into account multiuser diversity and thus it will schedule transmissions to/from 

subscribers half of the time when their reception conditions are worse than average [17]. 
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3.3 Max Rate algorithm 

Max Rate scheduler transmits always to the user having the largest SNR, so users that 

are at a fading peak are likely to be scheduled all the time, while others that experience deep 

fades are not scheduled at all. Max Rate scheduler yields higher throughput than any other 

possible scheduling policy, but it totally ignores fairness. In wireless environments strength 

users’ channel can be very different, due to perhaps different distances from the BS, although 

both channel fluctuate due to multipath fading. So, always picking the strongest user would 

be highly unfair. 

 

3.4 Proportional Fair Scheduling algorithm 

To implement the idea of multiuser diversity in a real system, one is immediately 

confronted with two issues: fairness and delay. In the ideal situation when users’ fading 

statistics are the same, the strategy above maximizes not only the total capacity of the system 

but also the throughput of individual users. In reality, the statistics are not symmetrical; there 

are users who are closer to the BS with a better average SNR; there are users who are 

stationary and some that are moving; there are users which are in a rich scattering 

environment and some with no scatters around them. Moreover, the strategy is only 

concerned with maximizing long-term average throughputs; in practice, there are latency 

requirements, in which case the average throughputs over the delay time scale is the 

performance metric of interest. The challenge is to address these issues while at the same 

time exploiting the multiuser diversity gain inherent in a system with users having 

independent fluctuating channel conditions. 

 

3.4.1 Definition 

A simple scheduling algorithm has been designed to meet this challenge, 

Proportional Fair Scheduling (PFS) algorithm in an OFDM system. In this system, the 

feedback of the channel quality of user k in time slot t to the BS is in terms of a requested 

data rate )(, tR nk
, this is the data rate that the kth user’s n sub-carrier can currently support. 

The scheduling algorithm works as follows. It keeps track of the average throughput )(, tT nk
 

of each user on every sub-carrier in a past window of length ct . In time slot t, the scheduling 

algorithm simply transmits at each sub-carrier to the user *
k  with the largest 

)(

)(

,

,

tT

tR

nk

nk
       (1) 

among all active users in the system. The average throughputs )(, tT nk
 can be updated using 

an exponentially weighted low-pass filter 
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In this report, the PFS algorithm in an OFDM system is used taken sub-carriers 

independently each other. So, we have to compute what user has the largest value given by 

equation (1) at each sub-carrier and time slot in order to allocate this sub-carrier to that user. 

Also, we have to update the users’ average throughput by equation (2) at each sub-carrier and 

time slot. So, the PFS algorithm treats sub-carriers independently each other and we have to 

update the system every time slot. This algorithm does not take into account users’ rate 

requirements and conventional power allocation is not considered because it has some weak 

points that degrade the system performance when employed in heterogeneous user channel 

environment [31]. Equal power allocation algorithm is taken in consideration, which simply 

distributes the transmission power equally among the sub-carriers. To exploit the flexibility 

of transmission power allocation which is inherent in multiuser OFDM systems we 

encourage reader to see [31].   

One can get an intuitive feel of how this algorithm works by inspecting Fig3.2. We 

plot the frequency channel response of two users as a function in two different scenarios, 

equal and unequal fading statistics. In Fig3.2 (a), the two users have identical fading 

statistics. If the scheduling time scale ct is much larger than the correlation time scale of the 

fading dynamics, then by symmetry the throughput of each user converges to the same 

quantity. The scheduling algorithm reduces to always picking the user with the highest 

requested rate. Thus, each user is scheduled when its channel is good and at the same time the 

scheduling algorithm is perfectly fair on the long term. In Fig3.2 (b), due to perhaps different 

distances from the BS, one user’s channel is much stronger than the other user’s on the 

average, although both channels fluctuate due to multipath fading. Always picking the user 

with the highest requested rate means giving all the system resources to the statistically 

stronger user and would be highly unfair. In contrast, under the proposed scheduling 

algorithm, users compete for resources not directly based on their requested rates but only 

after normalization by their respective average throughputs. The user with the statistically 

stronger channel will have a higher average throughput. Thus, the algorithm schedules a user 

when its instantaneous channel quality is high relative to its own average channel condition 

over the time scale ct . In short, data is transmitted to a user when its channel is near its own 

peaks. Multiuser diversity benefit can still be extracted because channels of different users 

fluctuate independently so that if there is a sufficient number of users in the system, there will 

likely be a user near its peak at any one time. 
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(a)      (b) 

Figure 3.2 Frequency channel response (a) equal users, (b) unequal users.  

 

3.4.2 The Parameter ct  

The parameter ct is tied to the latency time scale of the application. Peaks are defined 

with respect to this time scale. If the latency time scale is large, then the throughput is 

averaged over a longer time scale and the scheduler can afford to wait longer before 

scheduling a user when its channel hits a really high peak [18]. 

The larger value of ct parameter is ct =∞, in this situation the allocation resources 

according to PFS algorithm is decided solely by instantaneous SNR, leading to maximum 

system throughput and poor fairness characteristics. On the other hand, the lower value of 
ct  

parameter is 
ct =1 in this situation scheduling becomes fair. Therefore, 

ct  means the trade-

off between fairness and throughput. Table 3.I shows simulation parameters. The 

performance of this algorithm is analyzed and compared through MATLAB computer 

simulations with throughput_fairness_Vs_PFS.m file, see Appendix C.3. 

 

Time slots 100 

Sub-carriers 16 

ct  From 1 to 1000 

Users 4 

Mobile Speed (km/h) 3 

Table 3.I Simulation parameters 
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In Fig3.3 (a), the system fairness is showed, F, versus 
ct  parameter according to 

three different algorithms, PFS, RR and Max Rate. As we will see in chapter 4, if F=1 all 

users share exactly the same amount of resources, and F=0 occurs when only one user 

consumes all amount of resources. Max Rate and RR algorithms are independently of 

ct parameter, so fairness according to these algorithms remains constant and represents 

fairness’ boundaries. Max Rate algorithm represents the smallest fairness and RR algorithm 

represents the largest fairness. As we can see in Fig3.3 (a) if ct  tends to 1, there is an 

increase in fairness and PFS behaviour tends to RR behavior, but if ct tends to infinity, there 

is a reduction in fairness and PFS behavior tends to Max Rate behaviour. 

On the other hand, in Fig3.3 (b) throughput versus 
ct  parameter is showed. As we 

have said before, Max Rate and RR algorithms are independently of 
ct  parameter and 

represent behaviour’s boundaries. Max Rate algorithm represents the largest throughput and 

RR algorithm represents the smallest throughput. As we can see in Fig3.3 (b) if 
ct  tends to 

infinity, there is an increase in throughput and PFS behaviour tends to Max Rate behavior, 

but if ct  tends to 1, there is a reduction in throughput and PFS behavior tends to RR 

behaviour. 
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Figure 3.3 PFS (dotted line), RR (dotted continuous line) and Max Rate (continuous line) 

behaviour versus ct  parameter (a) fairness, (b) throughput.  
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3.5 Rate-Craving Greedy algorithm 

This algorithm divides the problem of joint allocation into two steps. In the first step, 

the number of sub-carriers that each user will get is determined based on the users’ rate 

requirements and average SNR. The algorithm is shown to find the distribution of sub-

carriers that minimizes the total power required when every user experiences a flat-fading 

channel. In the second stage of the algorithm, it finds the best assignment of sub-carriers to 

users based on the estimated rate of transmission.  

Consider a system with K users and N sub-carriers. Each user k must transmit at least 
k

Rmin
 bits per unit time to satisfy rate requirements. A user can transmit at most 

maxR  bits per 

unit time and sub-carrier, so 
maxR  is the maximum value that the user’s subchannel response 

reaches. Let )(, tH nk
 be the channel gain and )(, tr nk

 the transmission rate for user k on sub-

carrier n at t time slot. 

The objective is to find a sub-carrier allocation, which allows each user to satisfy its 

rate requirements. 

As we said before, the problem is solved by two algorithms, which use information 

about users’ channel and rate requirements to find a close approximation to the solution. 

1. Resource Allocation: Decide the number of sub-carriers each user gets - its 

bandwidth - based on rate requirements and the users’ average channel gain, Band 

Assignment Based on SNR (BABS) algorithm. 

 

2. Sub-carrier Allocation: Use the result of the resource allocation stage and channel 

information to allocate the sub-carriers to the users, Rate Craving Greedy (RCG) 

algorithm. 

By solving these sub-problems separately, a good, but not necessarily optimal, 

solution is found which guarantees a certain level of service for each user. 

 

3.5.1 BABS 

This section describes the bandwidth assignment based on SNR, BABS algorithm 

which uses the rate requirements and the average SNR for each user to decide the number of 

sub-carriers that user will be assigned. 

Assume that each user k experiences a channel gain of ( )∑
−

=
=

1

0

2

,, /)()(
N

n nknk NtHtH  

on every sub-carrier. Let user k be allocated km sub-carriers. When the gain on every sub-

carrier is the same, the optimal rate-power allocation is to transmit 
k

k
mR /min

bits on each sub-

carrier. 
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To find the optimal distribution of sub-carriers among users given the flat channel 

assumption, a greedy descent algorithm is proposed. 

 

3.5.1.1 BABS ALGORITHM 

The implemented BABS algorithm works as follow: At first each user gets km sub-

carriers according to their rate requirements, if the sum of the whole sub-carriers allocated 

does not fit with the available bandwidth, we have to 

1. remove sub-carriers from users who are demanding less sub-carriers. 

2. add sub-carriers to users according to the SNR. 

In [16], this algorithm is shown to converge to the distribution of sub-carriers 

among users and the function f(r) is explained more accurately. In order to make 

relevant comparisons with the other algorithms, fix power at the BS is used. So, the 

BS simply distributes the transmission power equally among the sub-carriers without 

taking advantage on power control. 
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3.5.2 RCG 

Once the number of sub-carriers is determined, the next step is to assign specific sub-

carriers to users. The problem is still difficult to solve since different users see different 

channels. The RCG algorithm begins with an estimate of the users’ transmission rate on each 

sub-carrier and aims to maximize the total transmission rate. For the model used in 

simulations )1(log/)( 2, SNRNBtr nk += is used, according to Shannon capacity theorem. 

 

3.5.2.1 RCG ALGORITHM 

The algorithm works as follow:  

1. Allocate each sub-carrier n at each time slot to the user with maximum transmission 

rate )(, tr nk
. 

 

2. While there exists some user k such that the number of sub-carriers allocated 

according to maximum transmission rate are more than km , the sub-carriers 

allocated according to BABS algorithm, remove a sub-carrier from user k and 

add a sub-carrier to user l such that the number of sub-carriers allocated 

according to maximum transmission rate are less than km , using a sequence 

of reallocations. 
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3.5.3 Example Run of the Algorithm 

In this section an example run of the algorithm is demonstrated for N=8 sub-carriers 

and K=4 users which require 64, 45, 35 and 16 Kb per time slot, see Table 3.II (a). 

At first the algorithm decides the number of sub-carriers each user gets base on rate 

requirements and the users’ average channel gain. As we can see in Table 3.II (b), the number 

of sub-carriers demanded does not fit with the available bandwidth, so the sub-carriers are 

removed from the users who are demanded less transmission rate until the number of sub-

carriers allocated to users would be 8, Table 3.II (c).  

 

 Demanded 

transmission rate 

Demanded sub-

carriers 

Allocated sub-

carriers 

#1 64 3 3 

#2 45 3 2 

#3 16 2 1 

#4 35 3 2 

(a)   (b)   (c) 

Table 3.II (a) Transmission rate demanded by users, (b) sub-carriers demanded by users, (c) 

sub-carriers allocated by the algorithm. 

Once the number of sub-carriers is determined, this information and channel state are 

used to allocate the sub-carriers to the users. 

 

 #1 #2 #3 #4 

#1 4 1 2 3 

#2 7 6 3 5 

#3 6 2 4 1 

#4 5 8 1 8 

#5 3 4 6 2 

#6 8 7 8 6 

#7 2 3 5 4 

#8 1 5 7 7 

 

   (a)      (b) 

Table 3.III Sub-carrier allocation by RCG algorithm at the end of stage 1 (a) and (b) the 

algorithm. The number in column k row n is the estimated rate of transmission of user k on 

sub-carrier n, if it is allocated that sub-carrier. The blond rate has been chosen. 

 #1 #2 #3 #4 

#1 4 1 2 3 

#2 7 6 3 5 

#3 6 2 4 1 

#4 5 8 1 8 

#5 3 4 6 2 

#6 8 7 8 6 

#7 2 3 5 4 

#8 1 5 7 7 
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In Table 3.III, columns represent different users, rows are different sub-carriers. The 

number in row n column k represents an estimate of the rate at which user k would transmit 

on n if it were allocated that sub-carrier. The blond numbers show to whom each sub-carrier 

is allocated. 

1. Allocate each sub-carrier n to the user with the maximum transmission rate. 

User #1 → 4 sub-carriers 

User #2 → 1 sub-carriers 

User #3 → 3 sub-carriers 

User #4 → 0 sub-carriers 

 

2. Because of there exits some users such that the number of sub-carriers 

allocated according to Max Rate is more than the number of sub-carriers 

allocated according to BABS algorithm, sub-carriers are removed from these 

users and add to others according to Table 3.II (c). 

 

Remove one sub-carrier from user #1 to user #4 

Remove two sub-carriers from user #3, one to user #2 and one to user #4 

In Appendix G, we can see an example run of this algorithm in 10 different time slots 

with equal and unequal users. 

 

3.6 MATLAB Simulations  

In this section two different scheduling policies have been compared for system 

resources allocating, PFS and RCG. Also, RR and Max Rate algorithms have been used for 

reinforcing the conclusions about system fairness and throughput. 

The algorithms will be compared based on three criteria, fairness, throughput and 

delay but these results will be show in chapters 4, 5 and 6 respectively. In this chapter the 

policies used for allocating resources will be showed. The performance of these algorithms is 

analyzed and compared through MATLAB computer simulations with scheduler.m and 

statistic.m files, see Appendix C.1 and C.2 respectively. 

 

3.6.1 Model Description 

In this report, the downlink transmission of a multiuser OFDM system is considered. 

We assume that the overall bandwidth B is divided into N orthogonal narrow-band sub-

carriers. Each MS measures the channel gain of each sub-carrier and feeds back the channel 

state information to the BS via a separate feedback channel. We assume that channel 

estimation can be done perfectly and feedback channel is errorless. The data stream of each 
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selected user is then modulated by a proper modulation scheme that is supportable in the 

given channel state and the allocated transmission power of the sub-carrier.  

In the frequency selective fading channel, in general, different sub-carriers 

experience different channel gains even for the same user. We assume that each sub-carrier is 

narrow enough to undergo flat fading. We also assume that the channel gain is constant in 

each time slot but varies from slot to slot. Under the assumptions above, the received SNR of 

the nth sub-carrier signal of the kth user at the tth slot can be expressed by 

NBN

tHtS
tSNR

nknk

nk
/

)()(
)(

0

,,

, =     (3) 

where )(),( ,, tHtS nknk
 are the allocated transmission power and channel gain on nht sub-

carrier at tth time slot respectively, 
0N  is the power spectral density of AWGN, B is the 

bandwidth and N is the number of sub-carriers. 

In multiuser OFDM systems, a resource allocation algorithm decides which user to 

serve with what power for each sub-carrier. Here, is assumed that the total transmission 

power is constrained to S . Once the resources are allocated to users, the instant data rate of 

each user is determined and the BS serves each user at this rate. According to information 

theory and as we can see in Chapter 5, the instant service rate on the nth sub-carrier at tth 

time slot is got by 

)1(log/)( 2, SNRNBtR nk +=     (4) 

where )(, tR nk
 is the kth user transmission rate at tth time slot, B is the total bandwidth and N 

is the number of sub-carriers.  

Three classes of services are considered: data, voice, and video. It is assumed that 

10% of the users will be transmitting video, 40% will be transmitting voice, and the 

remaining 50% of the users will be transmitting data. Video and voice traffic are given a 

constant transmission rate of 64 and 16 Kb per time slot, respectively, whereas data traffic is 

assumed to be exponentially distributed, with a mean of 30 Kb per time slot. 

 

3.6.2 Simulation Results 

In simulations there are 16 sub-carriers for the OFDM system and the carrier 

frequency is 2.4 GHz. In order to show how work the different scheduling algorithms we 

only simulate four different users, A (red), B (blue), C (green) and D (yellow), with their 

different channel responses. We assume that user A is transmitting video (64 Kb per time 

slot), user B is transmitting voice (16 Kb per time slot), users C and D are transmitting data, 

30 and 40 Kb per time slot respectively. Each sub-carrier is allocated to each user in two 
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different scenarios according to four different algorithms, RR, Max Rate, PFS and RCG. 

Table 3.IV shows simulation parameters.  

 

Time slots 16 

Sub-carriers 16 

fc (GHz) 2.4 

ct  20 and 100’000 

Users 4 

Rates (Kb per time slot) 16, 30, 40 and 64  

Mobile Speed (km/h) 3 

Table 3.IV Simulation parameters. 
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(a)      (b) 

 

Figure 3.4 Frequency channel response at any instant time it , (a) equal users, (b) unequal users. 

 

3.6.2.1 Scenario A: Equal Users 

As we can see in Fig3.4 (a), all the users simulated have the same channel response 

average. In Fig3.5, the scheduler scheme is showed according to four different scheduling 

policies.  

As we can see in Fig3.5 (a), RR algorithm allocates all sub-carriers to one user at 

each time slot, so this policy is totally fair. In this scenario we cannot notice the differences 

between Max Rate (see Fig3.5 (b)) and PFS (see Fig3.5 (c)) policies on allocating resources 
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because all users have the same channel response average. But we can notice that RCG 

allocates more sub-carriers to user A than other scheduling algorithms, the reason is because 

only this algorithm takes into account rate requirements by users and user A is transmitting 

video and this services needs more amount of data than other services, so user A needs more 

sub-carriers than other users. 
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    (c)         (d) 

 

Figure 3.5 Scheme where users have equal channel responses average and have been  

simulated according to filtered Gaussian noise method, (a) RR algorithm, (b) Max Rate 

algorithm, (c) PFS algorithm, with 
ct =20, (d) RCG algorithm.  
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3.6.2.2 Scenario B: Unequal Users 

As we can see in Fig3.4 (b), the user A (red) is nearer to the BS than the other users 

because the channel A is stronger than others. In this scenario RR algorithm (see Fig3.6 (a)) 

takes the same scheduler scheme that the previous scenario, it allocates system resources to 

one user at each time slot. 

When users have not the same channel response average, we can notice the 

differences between Max Rate and PFS on scheduling resources and the different PFS 

scheduler scheme when ct  parameter changes. As we can see in Fig3.6 (b), almost all sub-

carrier are allocated to user A because of channel strength and the same results are achieved 

with PFS policy when ct parameter is high (see Fig3.6 (c)) but, as we saw in section 3.4.2 the 

results change when we take a low ct parameter (see Fig3.6 (d)). The larger ct parameter, the 

unfairer PFS is. 

RCG policy maintenances the index fairness because RCG allocates sub-carriers 

based on rate requirements and the users’ average SNR. 
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(e) 

Figure 3.6 Scheme scheduled where users have unequal channel responses average and have 

been  simulated according to filtered Gaussian noise method, (a) RR algorithm, (b) Max Rate 

algorithm, (c) PFS algorithm, with ct =20, (d) PFS algorithm, with ct =100’000, (e) RCG 

algorithm 
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Chapter 4 

 

Fairness 

 

In this chapter, one of the most important properties in a wireless environment where 

system resources are being shared by users is discussed. In order to evaluate and find the 

scheduling disciplines with the best performance, appropriate performance measures are 

required. For best effort users the major concern for the scheduling discipline should be to 

maximize the total throughput for all users at the same time as each user is served a fair 

amount of throughput. 

 

4.1 Definition 

Fairness is a desirable property of the wireless network as it offers protection 

between users. This means than the traffic flow of an ill-behaving user cannot affect the 

traffic flow of another user. 

The fairness of a system, the users in a system, or of a scheduling algorithm is not 

usually expressed in terms of a quantitative value. Rather, fairness is usually expressed in 

broader terms. Generally, a system is deemed to be fair or unfair based on whether or not the 

system meets certain criteria. Such criteria are usually in terms of throughput or delay. For 

example, a scheduling algorithm may be deemed to be unfair if any user receives a 

throughput of less than X bits/sec. Another example might be that a system is deemed fair if 

the probability of any user experiencing a delay greater than τ is less than p; if the probability 

is greater than p the system is unfair. The rationale behind the proposed definitions is to see if 

a value for the “fairness” of a system or scheduling algorithm can be defined in a similar 

manner to how Shannon defined a value for the “information” of a source. The fairness value 

should also make sense from both a mathematical and a semantic sense. Shannon’s definition 

was based on probabilities of events. In comparison, the proposed fairness measures are 

based on proportions of allocated resources [20]. In order to evaluate fairness, we propose 

two set of users, equal and unequal weighted users. 
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4.2 Equal weighted users 

The “resources” in question depend on the circumstances under which the definition 

is applied. Possible examples include the number of bits or packets sent to users, or the 

amount of bandwidth, time, or slots each user is allocated. The proportion for each user 

would then be the number or amount of packets, bandwidth, slots, etc. allocated to that user, 

relative to the total allocated to all the users in the system.  

For a random variable or process X, the self-information of the event X= ix  is: 

)(log
)(

1
log)( i

i

i xP
xP

xI −==     (1) 

where P( ix ) is the probability of the event X= ix . 

A measure for fairness can be defined in a similar manner, but using proportions 

instead of probabilities. In the case when all N users of a system are considered equal, the 

definition for the “self-fairness” of a given user is: 

N

p
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p
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−
=      (2) 

where ip , is the proportion of resources allocated to user i, and the logN term is a 

normalization factor. The “self-unfireness” of a user can also be defined simply as the 

reciprocal of the self-fairness:  
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U
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==      (3) 

 

4.2.1 Average fairness and average unfariness 

Given the self-information of the N possible events of the process X as given by, the 

average self-information in the process X can be found by: 

∑ ∑
= =

−==
N
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Similarly, the proposed definition for the “average fairness” of a system of N users 

is: 
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And the “average unfairness” is given by: 
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4.2.2 Remarks 

The above definitions yield some interesting properties: 

1. When a user consumes exactly its fair share of resources (i.e. a proportion of 1/N), 

the value of self-fairness and self-unfairness for that user will be unity.  

 

2. As the amount of resources a user consumes increases, it takes an increasing amount 

away from the other users in the system. Thus, that user becomes less fair (or more 

unfair), and consequently, the values of self-fairness and self-unfairness for that user 

decrease and increase respectively. 

 

3. Conversely, as a user consumes fewer resources, it is giving up resources in favor of 

the other users in the system. Hence, that user becomes much fair (or less unfair), and 

correspondingly, the values of self-fairness and self-unfairness for that user increase 

and decrease respectively. 

 

4. In the limit as one user consumes all the available resources, all the other users in the 

system will be the greedy user to be less fair (or more unfair). Thus, logically, the 

value for the self-unfairness for that user should be the highest possible value, 

infinity, which indeed proves to be the case in the proposed definition. The self-

fairness for the user in question becomes zero, the lowest value the self-fairness can 

become.  

 

5. Similarly, in the limit when a user consumes no resources, that user gives up all its 

deserved resources in favor of other users. Thus, there is no possible way for that 

user to be much fair (or less unfair). This is reflected in the resulting values of 

infinity and zero for the self-fairness and self-unfairness, respectively. 

 

6. The value for the average fairness of the system of N users ranges from 0 to 1 

inclusive. Furthermore, the maximum value of unity is only achieved when all users 

in the system consume exactly their fair share of the resources 

(i.e. Nppp N /1...21 ==== ). The minimum of zero occurs in the limit when one 

user consumes all the allocated resources while the other N-1 users are starved. 
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7. Similarly, the average unfairness ranges between 1 and infinity, with the lower and 

upper extreme values occurring under the same conditions as the maximum and 

minimum values respectively for the average fairness. That is, a value of unity will 

result only if all users consume their fair share of resources, and infinity will result if 

a single user consumes all the allocated resources. 

 

4.3 Unequal weighted users 

The above definitions are now extended to the more general case when individual 

users can have different weightings (for example, to achieve different levels of QoS). In [21], 

the authors state that for a system of N users with a set of backlogged flows B(t) during the 

time interval [
21 , tt ] a queuing system is fair if: 

0
),(),(
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21 =−∈∀
j

j

i

i

r

ttW
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ttW
ttBji     (7) 

where Wj, is the capacity granted to flow j (i.e. the resources allocated to flow j), and 
jr  is the 

weighting of user j. From this, it can be shown that the proportion of the resources allocated 

to user j that is deemed to be fair (in other words, the proportion of the resources that user j 

should receive in order for the system to be fair) is given by: 

T

j

jfair
r

r
P =,       (8) 

where 
Tr  is the weighting sum of all users. From the above proportion, it can be deduced that 

the formula for the weighted self-fairness of a user should become: 
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The weighted self-unfairness of a user is the reciprocal of the above equation: 
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4.3.1 Weighted Average fairness and unfariness 

It would be desirable to define the weighted average fairness as∑ =

N

k kk Fp
1

, as in the 

case of equal weighted users. However, it is impossible to make this definition and still 

maintain the properties discussed before. Instead, the weighted average fairness of a system 

can be defined as: 

∑
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the values 
kC  are normalization constants.  
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Their purpose is to ensure that the maximum value of the weighted average fairness is unity 

(as in the case of equally weighted users), and that the maximum occurs when user consume 

exactly its fair share of the resources (for more details see [20]). 

 

4.3.2 Remarks 

The above definitions yield some interesting properties: 

1. The weighted definitions share all the same properties as the equal weighted 

definitions. The only difference is that the value of 1 occurs for weighted self-

fairness, self-unfairness, average fairness, and average unfairness when
Tkk rrp /= , 

k=1,2, ...,N, instead of Npk /1=  as before. 

 

2. Note that there is an implicit time scale in the proportions. That is, the proportions of 

resource allocation would be measured over a certain period of time. Since the period 

used can be arbitrary, the proposed measures can be used to examine both the short-

term fairness and the long-term fairness of systems [19]. 
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4.4 MATLAB Simulations 

In this section the algorithms will be compared based on fairness criteria. We use RR 

algorithm as reference because this policy achieves the best results on index fairness. 

The performance of these algorithms is analyzed and compared through MATLAB 

computer simulations with fairness.m and throughput_fairness_Vs_users.m files, see 

Appendix D.1 and Appendix E.1 respectively. 

 

4.4.1 Model Description 

The same system model described in chapter 3 is used. For evaluating the index 

fairness, users with different channel response averages in three different scenarios are 

considered: 

 

A. All users are transmitting voice, constant rate, 16 Kb per time slot. 

 

B. All users are transmitting video, constant rate, 64 Kb per time slot. 

 

C. Mix scenario where 10% of users are transmitting video, constant rate, 64 

Kb per time slot, 40% of users are transmitting voice, constant rate, 16 Kb 

per time slot and 50% of users are transmitting data, exponentially 

distributed rate, with a mean of 30 Kb per time slot. 

Table 4.I shows simulation parameters.  

 

Time slots 100 

Sub-carriers 16 

ct  20 

Users From 5 to 25 

Rates (Kb per time slot) 16, 64 and exprnd(30)  

Mobile Speed (km/h) 3 

 

Table 4.I Simulation parameters 

 

4.4.2 Simulation Results 

MATLAB appears to be a simple and straightforward tool to demonstrate the concept 

of fairness. The simulations results are showed in Fig4.1. As we said in section 4.3.2 the 

period of time over we can measure the index fairness can be arbitrary, but as the simulation 
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is so short, the whole set of 100 time slots are used to evaluate the index fairness. So, in this 

case the proposed measures are used to examine the short-term fairness which can be 

interested for applications with strength delay restrictions. 
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Figure 4.1 System fairness versus users with different channel response average in three 

different scenarios, (a) scenario A, (b) scenario B, (c) scenario C. 
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Max Rate policy is the unfairnest algorithm because it allocates the system resource 

to users who have the strongest channel, so the results achieved by this algorithm are 

independent from the scenario simulated. As we can see in Fig4.1, the larger the users who 

are demanding service in the system, the lower the index fairness, because Max Rate 

scheduler always serves to the same stronger users.    

As Max Rate scheduler, PFS scheduler is independent from rate requirements, so the 

results achieved in these three different scenarios are more or less the same. As we can see in 

Fig4.1, PFS algorithm has a good behaviour because as we saw in chapter 3, with a low ct  

parameter this algorithm maintenance index fairness without involving system throughput.  

As we said in chapter 3, RCG algorithm allocates sub-carriers to users according to 

users’ channel response and rate requirements. In Fig4.1, we can see that the larger the users 

in the system, the lower the index fairness, but there are differences among them. In the 

scenario A, Fig4.1 (a), RCG maintenances total fairness until the number of users in the 

system is more than 10 so long as in B scenario, Fig4.1 (b), RCG maintenances total fairness 

until 5 users. The reason of this behaviour is because when there are sub-carriers enough to 

satisfy rate requirements RCG allocates the share amount of resources among users, but when 

there are not sub-carriers enough, RCG algorithm allocates sub-carriers to stronger users until 

satisfying their rate requirements, after that RCG allocates the sub-carriers remained. Users 

who are demanding video service need more sub-carrier than users who are demanding voice 

service, so when there are not sub-carriers enough, users who are transmitting voice have to 

wait. In the scenario C, Fig4.1 (c), an intermediate situation in a mix scenario is plotted. 

 

 



CHAPTER 5: THROUGHPUT                                                                                                 

 53 

NTNU 

 

 

 

 

 

Chapter 5 

 

Throughput 

 

There is a considerable interest within the industry in specifying the performance of 

wireless data. In this chapter, we will discuss about one of the most important properties of 

information system, throughput. The throughput is commonly considered within a framework 

that optimizes the system performance [22] and is a measure of how much information can be 

transmitted and received per unit time with a negligible probability of error. We will evaluate 

and find the scheduling disciplines with the best performance.  

 

5.1 Motivation 

To design and deploy a WLAN, an accurate deployment procedure is required to 

ensure sufficient coverage and network functionality (capacity, interference, etc.). While 

wireless networking gear is often classified according to its standards-based signaling rate, 

the actual data throughput, or data being transmitted, is often just a fraction of the signaling 

rate’s theoretical maximum. Research conducted in [23] showed that the user throughput 

performance changes radically when access points or clients are located near an interfering 

transmitter or when frequency planning is not carefully conducted. Data throughput can also 

be limited due to a number of important environmental and product-specific factors, 

including: Distance between WLAN devices, access points and network interface cards; 

Transmission power levels; Effect of waveguide, e.g. in hallways; Building and home 

materials; Radio frequency interference; Signal propagation; and Antenna type and location. 

So, even though the 802.11 wireless networking products available are capable of a C bps 

signaling rate, the practical, or “actual,” data throughput rate is more likely to be much less.  

 

5.2 Channel Capacity  

At the input of a communication system, discrete source symbols are mapped into a 

sequence of channel symbols. The channel symbols are then transmitted through a wireless 

channel that by nature is random. In addition, random noise is added to the channel symbols. 
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In general, it is possible that two different input sequences may give rise to the same output 

sequence, causing different input sequences to be confusable at the output. To avoid this 

situation, a non-confusable subset of input sequences must be chosen so that with a high 

probability, there is only one input sequence causing a particular output. It is then possible to 

reconstruct all the input sequences at the output with negligible probability of error [24].  

A measure of how much information that can be transmitted and received with a 

negligible probability of error is called the channel capacity. But by simplification, to 

determine this measure of channel potential, we assume that the channel can support at most 

C bits per time slot, where C is the channel capacity according to Shannon-Hartley Theorem. 

 

5.2.1 Shannon-Hartley Theorem 

In information theory, the Shannon–Hartley theorem is an application of the noisy 

channel coding theorem to the archetypal case of a continuous-time analog communications 

channel subject to Gaussian noise. The result establishes the maximum amount of error-free 

digital data (that is, information) that can be transmitted over such a communication link with 

a specified bandwidth in the presence of the noise interference [25]. The Shannon limit or 

Shannon capacity of a communications channel is the theoretical maximum information 

transfer rate of the channel. 

The Shannon–Hartley theorem establishes what that channel capacity is, for a finite 

bandwidth continuous-time channel subject to Gaussian noise. 

If we had such a thing as an infinite-bandwidth, noise-free analog channel we could 

transmit unlimited amounts of error-free data over it per unit of time. However, real life 

signals have both bandwidth and noise-interference limitations. 

Surprisingly, bandwidth limitations alone do not impose a cap on maximum 

information transfer. This is because it is still possible (at least in a thought-experiment 

model) for the signal to take on an infinite number of different voltage levels on each cycle, 

with each slightly different level being assigned a different meaning or bit sequence [25]. If 

we combine both noise and bandwidth limitations, however, we do find there is a limit to the 

amount of information that can be transferred, even when clever multi-level encoding 

techniques are used. Considering all possible multi-level and multi-phase encoding 

techniques, the theorem gives that the theoretical maximum rate of clean (or arbitrarily low 

bit error rate) data C with a given average signal power that can be sent through an analog 

communication channel subject to AWGN interference is: 

)1(log2 SNRBC +=       (1) 

where C is the channel capacity in bits per second, net of error correction; B is the bandwidth 

of the channel in hertz and SNR is the signal-to-noise ratio of the communication signal to the 

Gaussian noise interference expressed as a straight power ratio (not as decibels).  



CHAPTER 5: THROUGHPUT                                                                                                 

 55 

NTNU 

The maximum information rate that can be used causing negligible probability of 

errors at the output is called the capacity of the channel. In simulations, C is taken as the 

information rate of the channel. 

 

5.2.2 Outage Capacity 

Another measure of channel capacity that is frequently used is outage capacity [24]. 

With outage capacity, the channel capacity is associated to an outage probability. Capacity is 

treated as a random variable which depends on the channel instantaneous response and 

remains constant during the transmission of a finite-length coded block of information. If the 

channel capacity falls below the outage capacity, there is no possibility that the transmitted 

block of information can be decoded with no errors, whichever coding scheme is employed. 

The probability that the capacity is less than the outage capacity denoted by outageC  is q. This 

can be expressed in mathematical terms by  

{ } qCCP outage =≤      (2) 

in this case, (2) represents an upper bound due to fact that there is a finite probability q that 

the channel capacity is less than the outage capacity. It can also be written as a lower bound, 

representing the case where there is a finite probability (1-q) that the channel capacity is 

higher than outageC , i.e.,  

{ } )1( qCCP outage −=>     (3) 

 

5.3 MATLAB Simulations 

In this section the algorithms will be compared based on throughput criteria. Max 

Rate algorithm is used as reference because this policy achieves the best results on system 

capacity. 

The most interested concept is that in order to attain capacity, only one user should 

transmit at any given time over the allocated sub-carrier. This user has the strongest signal at 

that particular time instant, relative to the average received powers of all the users [26].  

The performance of these algorithms is analyzed and compared through MATLAB 

computer simulations with throughput.m and throughput_fairness_Vs_users.m files, see 

Appendix D.2 and Appendix E.1 respectively. 
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5.3.1 Model Description 

The same system model described in chapter 3 is used. To evaluate the system 

throughput, and as we did in chapter 4, three different scenarios are considered: 

 

A. All users are transmitting voice, constant rate, 16Kb per time slot. 

 

B. All users are transmitting video, constant rate, 64Kb per time slot. 

 

C. Mix scenario where 10% of users are transmitting video, constant rate, 64Kb 

per time slot, 40% of users are transmitting voice, constant rate, 16Kb per 

time slot and 50% of users are transmitting data, exponentially distributed 

rate, with a mean of 30Kb per time slot. 

Table 5.I shows simulation parameters.  

 

Time slots 100 

Sub-carriers 16 

ct  20 

Users From 5 to 25 

Rates (Kb per time slot) 16, 64 and exprnd(30)  

Mobile Speed (km/h) 3 

 

Table 5.I Simulation parameters.  

To compute system throughput, at first the scheduler scheme is taken to know the 

sub-carriers over which the user is transmitting, because each channel is divided in 16 sub-

carriers and there are so channels as users in the system. After that, the channel capacity is 

computed at each sub-carrier according to Shannon-Hartley Theorem. Finally, the mean 

value for all time slots simulated is computed. 

 

5.3.2 Simulation Results 

With the parameters showed in Table 5.I and the system model explained in chapter 

3, different set of users are simulated in MATLAB, the results are showed in Fig5.1. 
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(c) 

Figure 5.1 System Capacity versus users in three different scenarios, (a) scenario A, (b) 

scenario B, (c) scenario C. 

 

The system capacity achieved by RR policy reaches the lowest value because this 

algorithm does not take into account multiuser diversity and allocates all sub-carriers to one 

user at each time slot independently of users’ channel response and rate requirements. The 

value reached remains constant with different set of users because the MSs are simulated 

with the same channel response average. 

Max Rate algorithm, according to system throughput, reaches the best result because 

this algorithm allocates system resources to users with the strongest channel and it maximizes 

the system throughput. The larger the number of users in the system, the larger the system 
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throughput because finding a channel stronger is much more probable when there are much 

more users. 

These two algorithms represent the system throughput’s boundaries. 

PFS algorithm exploits the fact that the propagation channel between the BS and 

MSs is independently each other, giving rise to multiuser diversity. As we can see in Fig5.1, 

this algorithm has a good behaviour because it reaches a good level of system throughput 

without comprising fairness. In this case, users compete for resources not directly based on 

their SNRs but only after normalization by their respective average throughputs. As we said, 

before, the larger the users in the system the larger the system throughput. Because getting a 

user stronger is much more probable. But the value reaches with this policy is lower than the 

value got by Max Rate policy because of maintenance fairness. 

Until now, the different scheduler policies are independently of which scenario is 

treating because algorithms allocate resources without taking into account users’ rate 

requirements.  

As we can see in Fig5.1, when the number of users in the system increases, the 

system throughput of RGS algorithm is not so good as the system throughput achieves with 

previous algorithms.  

When the scheduler scheme is computed by RCG algorithm, the system throughput 

remains constant or decreases when users increase. The reason of this behaviour is because of 

RCG policy. At first RGC algorithm computes the number of sub-carriers each user gets 

based on rate requirements, after that RCG algorithm allocates sub-carriers to users based on 

channel state information. So this policy only takes into account multiuser diversity after 

allocating the number of sub-carriers each user gets based on rate requirements. 
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Chapter 6 

 

Delay 

 

In a real-time wireless environment, every packet generated by applications has a 

deadline associated with it. If the system cannot allocate enough resources to serve the packet 

before the deadline, the packet would be dropped. Different applications have different delay 

requirements that should be guaranteed by the system so as to maintain some given packet 

dropped probabilities. Compared to the wired network, it is more challenging to provide QoS 

guarantees in the wireless network because of resource limitation, error characteristic and 

mobility.  

Scheduling the available bandwidth to different services is a non-trivial task. Some 

applications, e.g. video, require a huge amount of bandwidth and are very delay sensitive, 

whereas some others, e.g. voice, require a relatively small amount of bandwidth with less 

strict delay requirements [18]. These applications should all be satisfied if the system has 

enough resources to support and maintain QoS of each individual application. 

 

6.1 Previous work 

In a wireless environment, any packet can be dropped mainly because of the 

following reasons: not enough resources for sending a critical packet; wireless channel 

quality; or collision of the packets from different applications. We want to evaluate the 

probability that a user is transmitting less than Rmin using different scheduling algorithms, 

which is related to the packet dropping rate. 

In order to ensure the availability of time slots, there is a BS which allocates the 

system resources. There is a queue in the MS for holding ready-to-send packets. If the BS 

informs a MS that the number of time slots available, the MS would select some packets from 

the queue for transmission. The BS would schedule the available bandwidth to different MS, 

as we could see in chapter 3, according to four different algorithms, RCG, Max Rate, PFS 

and RR. 
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6.2 MATLAB Simulations 

In this section the probability that a user is transmitting less than Rmin is evaluated, 

where Rmin is the demanded rate for a user according to the service on demand. The 

performance is analyzed and compared through MATLAB computer simulations with 

probability_delay.m file, see Appendix F.1. 

 

6.2.1 Model Description 

The model used is the same model explained in chapter 3, but in this case, three 

different scenarios to improve performance are considered. 

A. All users are transmitting voice, constant rate, 16Kb per time slot. 

 

B. All users are transmitting video, constant rate, 64Kb per time slot. 

 

C. 10% of users are transmitting video, constant rate, 64Kb per time slot, 40% 

of users are transmitting voice, constant rate, 16Kb per time slot and 50% of 

users are transmitting data, exponentially distributed rate, with a mean of 

30Kb per time slot. 

Table 6.I shows simulation parameters.  

 

Time slots 100 

Sub-carriers 16 

ct  20 

Users From 5 to 25 

Rates (Kb per time slot) 16, 64 and exprnd(30)  

Mobile Speed (km/h) 3 

Voice deadline (time slots) 1 

Video deadline (time slots) 2 

Data deadline (time slots) 4 

 

Table 6.I Simulation parameters 

 

6.2.2 Simulation Results 

The simulation results are showed in Figs6.1-6.7. In these examples, the channel is 

split in 16 sub-carriers, so each sub-carrier can reach about 25Kb per time slot according to 

filtered Gaussian noise model to simulate MS. Suppose that users are transmitting video, 
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64Kb per time slot, and the deadline of these packets is one time slot, so one user needs at 

least 3 sub-carriers at each time slot to satisfy QoS requirements. In this situation, the system 

could give service to 5 users with zero probability. These simulations give us a measure of 

the number of users this system can serve with zero probability or in other words, the users’ 

happiness level.  

On the other hand, we suppose that all users are transmitting data, and that to achieve 

QoS, one user cannot be more than 4 time slots without transmitting, so the probability that 

one user is transmitting less than Rmin shows us the probability that users achieve QoS. 

In Fig6.1-6.6, we can see different results according to different scheduling policies. 

If we allocate the system resources using RR algorithm, the packet deadline should be so 

time slots as users in the system in order to be able to give service to all users at least one 

time and to be able to avoid packet drop. RR algorithm allocates all sub-carriers to one user 

at each time slot and this amount of data is enough to satisfy the data requirements, so the 

delay in time slots, according to this algorithm, is equal to the number of users in the system. 

The larger the number of users in the system, the larger the delay, so if we want to reach 

QoS, our system will only accept so users as the delay restriction. In results showed, RR 

algorithm has a linear behaviour. It means that at each time slot, each user gets data enough 

to satisfy demanded data service. 

If we allocate the system resources using RCG algorithm, we can see that when there 

are sub-carrier enough to satisfy demanded services by users, the algorithm reaches zero 

delay, so we can say that RCG algorithm carry out QoS. For example when there are 5 users 

transmitting voice (see Fig1 (a)) there are sub-carriers enough to serve users without waiting. 

But the larger the number of users in the system, satisfying data requirements for all users is 

more difficult, because RCG algorithm allocates more sub-carriers to users who are 

demanding more data, so the larger the users, the larger the probability that one user does not 

get sub-carriers enough because the system resources are limited. As we can see in Fig6.3 

and Fig6.6, RCG algorithm does not reach zero probability because at least there is one user 

who does not get sub-carriers enough. This scenario takes place when the services demanded 

by users are very different, in mix scenarios. For example, in Fig6.3, there is one user 

demanding 100kbps and other demanding 2kbps, according to RCG algorithm, the scheduler 

allocates sub-carriers enough to satisfy the user who are demanding more resources, because 

of limited resources in the system, the user who is demanding 2kbps never get one sub-

carrier. This scenario shows us that RCG algorithm is not fairness enough. 

As we can see in Fig6.1-6.6, according to delay requirements, PFS algorithm has the 

best behaviour. It reaches zero probability faster than the other algorithms because there are 

no users without getting service in all time slots simulated and the sub-carriers allocated to 

users are enough in order to satisfy data requirements. The larger the number of users in the 

system, the larger the delay, so if we want to carry out QoS, we have to limit the number of 

users. In Fig6.1 and Fig6.4, we can see that the users are transmitting voice and the delay 

restriction for this service is two time slots, so if we want to reach QoS, we have to restrict 

the number of users to 5 at least.   

Max Rate algorithm allocates sub-carriers to users who reach the strongest SNR at 

each time slot, so when all users have the same channel response average, is probably that 
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one user gets resources enough to satisfy data requirements in few time slots. For example 

when users are transmitting voice, in Fig6.1, we can see that the delay is no much more than 

the delay according to PFS algorithm, so we can say that Max Rate algorithm  achieves good 

results comparing with PFS algorithm in scenarios where all users have the same channel 

response average. But when there are users with channel responses stronger than others, 

Fig6.4-6.6, for example when these users are nearer to BS than others, the whole system 

resources are allocated to theses users, so there are users who never get sub-carriers to 

transmit. In this case, the probability that one user is transmitting less than Rmin increase 

when users increase and remain constant in time because users with weak channel will never 

get sub-carriers. 

As we can see in Fig6.1 and Fig6.2, algorithms reach zero probability when users are 

transmitting video later than when users are transmitting voice. This occurs because of video 

service demand more resources than voice services, so the amount of data demanded by users 

who are transmitting video is larger than the amount of data demanded by users who are 

transmitting voice. 
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     (e)       

Figure 6.1 Probability that a user is transmitting less than Rmin in scenario A with equal 

channel response average. (a) 5 users, (b) 10 users, (c) 15 users, (d) 20 users, (e) 25 users. 
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     (e)       

Figure 6.2 Probability that a user is transmitting less than Rmin in scenario B with equal 

channel response average. (a) 5 users, (b) 10 users, (c) 15 users, (d) 20 users, (e) 25 users. 
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     (e)       

Figure 6.3 Probability that a user is transmitting less than Rmin in scenario C with equal 

channel response average. (a) 5 users, (b) 10 users, (c) 15 users, (d) 20 users, (e) 25 users. 
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     (e)       

Figure 6.4 Probability that a user is transmitting less than Rmin in scenario A with unequal 

channel response average. (a) 5 users, (b) 10 users, (c) 15 users, (d) 20 users, (e) 25 users. 
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Figure 6.5 Probability that a user is transmitting less than Rmin in scenario B with unequal 

channel response average. (a) 5 users, (b) 10 users, (c) 15 users, (d) 20 users, (e) 25 users. 
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     (e)       

Figure 6.6 Probability that a user is transmitting less than Rmin in scenario C with unequal 

channel response average. (a) 5 users, (b) 10 users, (c) 15 users, (d) 20 users, (e) 25 users. 
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Finally in Fig6.7, we show that the larger the number of users in the system, the 

larger the probability that one user is transmitting less than Rmin and the larger the packets 

dropped. 

As we can see in Fig6.7 (a)-(c), Max Rate algorithm has the same behaviour that PFS 

algorithm, as we said before it takes place when users have the same channel response 

average. But when the channel response average is different, see Fig6.7 (d)-(f), Max Rate 

algorithm has the worst behaviour because of resource allocation policy.  

In Fig6.7 we can notice the behaviour of RCG algorithm in different scenarios. For 

example, in Fig6.7 (a) and (b), we can see that RCG algorithm has the best outage probability 

until the number of sub-carriers demanded by users are more than the system resources, in 

this case the outage probability increase rapidly. The worst behaviour of this algorithm takes 

place in mix scenarios where there are users who are demanding very different services. In 

this case, at first, the system serves to users who are demanding more data and after 

satisfying these users, the remaining sub-carriers are shared out amongst the others. 

RR algorithm outage probability increases linearly with users because of resources 

allocated to users at each time slot are enough for satisfying data requirements. 
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Figure 6.7 Probability that a user is transmitting less than Rmin, with equal channel response 

average, (a) scenario A, (b) scenario B, (c) scenario C, with unequal channel response 

average (d) scenario A, (e) scenario B, (f) scenario C. 
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Chapter 7 

 

Conclusions 

 

In this report have been discussed important properties which take place in a wireless 

environment where the system resources are shared among users and where channel user 

responses change randomly and independently each other. OFDM has been proposed as a 

technique to transmit signals over wireless channels because of efficient bandwidth use. The 

target of this Thesis has been to exploit the idea of multiuser diversity, which can be obtained 

exploiting the time-varying users’ channel characteristics.  

In order to develop this issue, a set of wireless channel simplifications have been 

required because of time and tool limitations. To analyze different scheduling policies, the 

simulated wireless environments have been urban area and pedestrian speed because finding 

this scenario in real life is more probable. 

In this report, the most important section has been the performance analysis done 

over the suggested scheduling policies, according to three different QoS criteria, fairness, 

throughput and delay. Max Rate and RR algorithms have been suggested as a reference 

because the first, achieves the maximum system throughput, but is totally unfair and the 

second is totally fair, but it does not take into account the idea of multiuser diversity, so it 

does not get a good system throughput. 

RCG and PFS algorithms exploit the idea of multiuser diversity, but they work 

differently. RCG policy computes the number of sub-carriers each user need according to rate 

requirements and it adapts them to achieve the same number of sub-carriers that the system 

can offer, removing sub-carriers from the user who is transmitting less data. After that sub-

carriers are allocated according to channel response getting rise to multiuser diversity. This 

means that when there are users demanding services with very different data rates, users who 

are transmitting less data never get sub-carriers enough and these users will not be served. So, 

RCG algorithm works well in environments where users are demanding seemed services and 

when there are resources enough.   

PFS algorithm does not take into account rate requirements, it works keeping track of 

the average throughput of each user in a past window of length ct and allocating sub-carriers 

to the user with the largest )(/)( ,, tTtR nknk
. This algorithm treats sub-carries independently 

each other and has been demonstrated that PFS policy with a low ct  parameter, reaches 
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better results about fairness, throughput and delay than RCG policy in mix scenarios and 

when there are not sub-carrier enough to satisfy all users. 

The performance reaches from the suggested algorithms has been analyzed and 

compared through MATLAB computer simulations, a good theoretical tool to take a first 

approximation, but not necessary the best in this field. 
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Chapter 8 

 

Future Work 

 

A lot of work remains to be done and can be continued in a future Master Thesis. 

Some of them would be the solution to some “fallacies and pitfalls” that appeared throughout 

the Thesis and also, the design suggests several extensions which are showed in the next 

points:  

• The simulation results showed in this paper have been done taken into 

account at most 100 time slots because of simulation length. So, in order to 

reinforce conclusions it would be more interesting to extend the number of 

time slots simulated, especially for the PFS algorithm which takes time to 

converge properly for large 
ct  values. Increasing simulation length, 

improving scripts or using other technique to reduce simulation time. 

 

• Playing with different parameters to simulate different scenarios and 

different channel responses. It would be able to widen conclusions and 

analyze more accurately the algorithm’s behaviour. 

 

• Reducing simplifications in order to get results closer to real life.  

 

• Implementing an algorithm taken into account the PFS showed in this report. 

In this paper we have been working with a PFS algorithm which takes each 

sub-carrier independently each other, so an interested work could be to 

consider a PF scheduling that handles transmission with multiple carriers but 

without treating independently each other, see [27]. 

 

• To improve the algorithm’s performance could be interesting to predict time-

varying channels. There are some papers [28] and [29], which propose 

adaptive channel predictors for OFDM communications over time-varying 

channels, and which also consider the use of adaptive channel predictors for 

delay-free equalization, thereby avoiding the need for regular transmission of 

pilot symbols. 
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• All the work developed in this Thesis has been theoretical, getting results 

from MATLAB simulations, so undergoing these theoretical ideas in a real 

environment could be an interesting future work. 
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Appendix A 

 

A.1 FGN_model.m 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%Name: FGN_model 

%Author: Alfonso Bahillo 

%Date: February 2006 

%Last modification: March 2006 

%Support: MATLAB 7.0.019920 (R14) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%Description: this function creates a fading signal from in-phase and 

%   quadrature Gaussian noise sources. Applying the appropriate filtering 

%   provides the Doppler spectrum. A tap line is simulated and the channel 

%   response is divided in different subchannels. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%input arguments: 

%v, mobile speed in km/h (between 3 and 80 km/h). 

%C, number of sub-carriers per channel (power by 2). 

%T, number of time slots 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%output arguments: 

%fo, coherence frequency. 

%CH, matrix which stores the users’ channel response. 

%Noise, storing noise level. 

%I, fft points (sample rate) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

function [fo CH Noise I]=FGN_model(v,C,T) 

 

%Parameters 

fc=2.4*10.^9;                   %carrier frequency   

v=v*1000/3600;                  %mobile speed (m/s) 

c=3*10.^8;                      %light speed (m/s) 

fd=fc*v/c;                      %max Doppler frequency 

wd=2*pi*fd;                      

Q=100;                          %taps resolution 

I=2048;                         %fft resolution in tau direction 

N=500;                          %vector length t and f 

t=0.001:10/N:10;                %vector t 

f=-2*fd:4*fd/N:2*fd-4*fd/N;     %vector f 

tau=0.0001:4/Q:4;               %tap delay until 4us, typical urban area 

 

%matrix initialization 

real=zeros(Q,N); 

imag=zeros(Q,N); 

expo=zeros(Q,N); 

envcomplex=zeros(Q,N); 
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expo=zeros(Q,N); 

complex=zeros(Q,N); 

auxTm=zeros(1,Q); 

yt=zeros(Q,I); 

Yf=zeros(Q,N); 

ppf=zeros(I,I); 

CH=zeros(C,(I/C)*T);     %Channel filtered to generate subchannels 

 

%complex white Gaussian process, unit variance, zero mean 

real=randn(Q,N);             

imag=randn(Q,N); 

envcomplex=(real+j*imag)/sqrt(2);    

expo=exp(j*(2*pi*rand(Q,N)));       %phase uniformly distributed [0 2pi]  

complex=envcomplex.*expo;           %wi(t) 

complexf=fft(complex);              %Wi(f)  

 

figure(1) 

semilogy(t,abs(complex(1,:))/max(abs(complex(1,:)))); 

title('Typical Rayleigh fading envelope, normalized'); 

xlabel('Time (s)'); 

ylabel('Signal level dB, normalized'); 

 

%one tap loss model 

loss=2-exp(t/15); 

complexloss=complex(1,:).*loss; 

 

figure(2) 

semilogy(t,abs(complexloss(1,:))); 

title('Pat loss envelope'); 

xlabel('Time (s)'); 

ylabel('Signal level dB'); 

 

%Power Spectral Density by Jake's model 

for i=1:N 

    if f(i)>-fd && f(i)<fd 

        S(i)=1/(pi*fd*(sqrt(1-(f(i).^2)/fd.^2))); 

    else 

        S(i)=0; 

    end 

end 

 

figure(3) 

plot(f,abs(S));  

title('Power Spectrum'); 

xlabel('Frequency (Hz)'); 

ylabel('Magnitude'); 

 

%filtering Gaussian process 

for q=1:Q 

    Yf(q,:)=sqrt(S).*complexf(q,:);   

end 

 

%one tap in frequency domain (t direction) 

figure(4) 

plot(f,abs(Yf(1,:)));           

title('Tap Frequency Response'); 

xlabel('Frequency (Hz)'); 

ylabel('Magnitude'); 

 

%Matrix in time domain 

for q=1:Q 

    yt(q,:)=ifft(Yf(q,:),I);         

end 
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%PDP at any given time without scaling  

figure(5) 

plot(tau,abs(yt(:,10)));        

title('Power Delay Profile (without being scaled)'); 

xlabel('Delay (us)'); 

ylabel('Magnitude'); 

 

%Exponential decaying according to different environments 

%Urban Area 

for q=1:Q 

    e(q)=exp(-q/10);            

    yt(q,:)=e(q).*yt(q,:); 

end 

 

%almost one tap (one way) 

%for q=1:Q 

%    e(q)=exp(-q);             

%    yt(q,:)=e(q).*yt(q,:); 

%end 

 

%Hilly Area 

%for q=1:Q 

%    if q<40 

%        e(q)=exp(-q/10);        

%    else 

%        e(q)=exp(-q/10)+0.5*exp(-(q-40)/10); 

%    end 

%    yt(q,:)=e(q).*yt(q,:); 

%end 

 

%computing Tm 

threshold=0.2;                        %threshold level 20% 

for tslot=1:T 

    auxTm(tslot)=threshold.*max(abs(yt(:,tslot)));     

end 

for tslot=1:T 

    aux2Tm(tslot)=0;                  %aux to compute position 

    for q=1:Q 

        if abs(yt(q,tslot))>auxTm(tslot) 

            aux2Tm(tslot)=aux2Tm(tslot)+1; 

        end 

    end 

    Tm(tslot)=tau(aux2Tm(tslot));             %delay spread 

    fo(tslot)=1/(Tm(tslot)*10.^(-6));         %coherence bandwidth in Hz 

end 

 

%for plotting one example 

tauf=2400*1e6-2*fo(10):4*fo(10)/I:2400*1e6+2*fo(10)-(4*fo(10)/I);    

auxTm(1,:)=auxTm(10);                       %to plote threshold level 

 

%PDP at any given time 

figure(6) 

hold on 

plot(tau,abs(yt(:,10)));            

plot(tau,auxTm,’r’); 

title('Power Delay Profile'); 

xlabel('Delay (us)'); 

ylabel('Magnitude'); 

hold off 

 

%Spaced-frequency correlation function 

for tslot=1:T 

    ppf(:,tslot)=fftshift(fft(yt(:,tslot),I));          

end 
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figure(7) 

semilogy(tauf,abs(ppf(:,10))); 

title('Frequency channel response'); 

xlabel('Frequency (Hz)'); 

ylabel('Magnitude'); 

 

figure(8) 

hold on 

semilogy(tauf,abs(ppf(:,10)),'b'); 

for c=1:C 

    semilogy([tauf(I/C*c) tauf(I/C*c)],[abs(ppf(I/C*c,10)) 0],'r'); 

end 

title('Frequency channel response'); 

xlabel('Frequency (Hz)'); 

ylabel('Magnitude'); 

hold off 

 

%channel response now is a row 

ppf=ppf'; 

for tslot=1:T 

    Noise(tslot)=mean(abs(ppf(tslot,:)))/4; 

end 

 

%CH, matrix which stores subchannel responses at each row of length I/C 

aux2=floor(I/C);  

aux1=aux2-1;   

 

for tslot=1:T 

    for c=1:C 

        CH(c,1+(I/C)*(tslot-1):(I/C)*tslot)=ppf(tslot,1+aux1*(c-1):aux2+aux1*(c-

1)); 

    end 

end 
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A.2 Jakes_model.m 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%Name: jakes_model 

%Author: Alfonso Bahillo 

%Date: February 2006 

%Last modification: February 2006 

%Support: MATLAB 7.0.019920 (R14) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%Description: this function simulates mobile channel behaviour according 

% to Jakes’ model by summing a set of complex sinusoids. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%input arguments: 

%v, mobile speed in km/h (between 3 and 100 km/h). 

%C, number of sub-carrier per channel. 

%T, number of time slots simulated. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%output arguments: 

%fo, coherence frequency (to compute Capacity, Shannon Theorem). 

%CH, matrix which stores the users’ channel responses. 

%Noise, store noise level. 

%I, fft points (sample rate). 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

function [fo CH Noise I]=jakes_model(v,C,T) 

 

%Parameters 

fc=2.4*10.^9;                %carrier frequency  

v=v*1000/3600;               %mobile speed 

c=3*10.^8;                   %light speed 

fd=fc*v/c;                   %max Doppler frequency 

wd=2*pi*fd;                  %2*pi*f 

N=5120;                      %vector length t and f 

No=20;                       %number of complex lower-frequency oscillators                 

Eo=1;                            

fiN=0;                       %initial phase 

Q=100;                       %taps resolution 

I=2048;                      %fft points in tau direction 

tt=2.001:8/N:10;             %t direction 

ttaux=0.001:10/N:10;         %Plot from 0 to 10 sec 

taut=0.0001:6/Q:6;           %tau direction 

f=-2*fd:4*fd/I:2*fd-4*fd/I;  %f direction 

 

%Matrix initalitation 

xc=zeros(Q,N); 

xs=zeros(Q,N); 

Tt=zeros(Q,N); 

Ttf=zeros(Q,I); 

Ttauf=zeros(I,I); 

real=zeros(Q,N); 

imag=zeros(Q,N); 

expo=zeros(Q,N); 

auxTm=zeros(1,Q); 

H=zeros(C,I);               %Each row is a filter to select subchannels 

CH=zeros(C,I/C);            %Channel filtered to generate the subchannels 

 

%xc(t), in-phase component 

for q=1:Q 

    for t=1:N 

        for n=1:No 
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xc(q,t)=xc(q,t)+2*cos((pi*n)/(No+1))*cos(tt(t)*wd*cos(2*pi*n/(4*No+2))); 

        end 

        xc(q,t)=xc(q,t)+sqrt(2)*cos(fiN)*cos(wd*tt(t)); 

    end 

end 

 

%xs(t), quadrature component 

for q=1:Q 

    for t=1:N 

        for n=1:No  

            

xs(q,t)=xs(q,t)+2*sin((pi*n)/(No+1))*cos(tt(t)*wd*cos(2*pi*n/(4*No+2))); 

        end 

        xs(q,t)=xs(q,t)+sqrt(2)*sin(fiN)*cos(wd*tt(t)); 

    end 

end 

 

%complex envelope 

Tt=(Eo/sqrt(2*No+1))*(xc+j*xs); 

 

%plot one example, row 1 

figure(1) 

semilogy(ttaux,abs(Tt(1,:))); 

title('Typical Rayleigh fading envelope'); 

xlabel('Time (s)'); 

ylabel('Signal level dB'); 

 

%path loss model 

loss=2-exp(tt/15); 

Tloss=Tt(1,:).*loss; 

 

figure(2) 

semilogy(ttaux,abs(Tloss(1,:))); 

title('Path loss envelope'); 

xlabel('Time (s)'); 

ylabel('Signal level dB'); 

 

%Fourier Transform in t domain 

for q=1:Q 

    Ttf(q,:)=fftshift(fft(Tt(q,:),I)); 

end 

 

%power spectral density 

figure(3) 

plot(f,abs(Ttf(1,:)).^2)        

title('Tap Frequency Response'); 

xlabel('Frequency (Hz)'); 

ylabel('Magnitude'); 

 

%Tap delay line generation 

real=randn(Q,N);                    %Unit variance, zero mean  

imag=randn(Q,N); 

envcomplex=(real+j*imag)/sqrt(2);   %matrix with Wi(t)'s envelope 

expo=exp(j*(2*pi*rand(Q,N)));       %phase uniformly distributed [0 2pi]  

complex=envcomplex.*expo;            

 

%random amplitude 

Tt=Tt.*complex; 

 

%Exponential decaying 

for q=1:Q 

    e(q)=exp(-q/20);            %decaying factor 

    Tt(q,:)=e(q).*Tt(q,:); 



APPENDIX A                                                                                                                           

 81 

NTNU 

end 

 

%Tm compute  

threshold=0.2;                   %threshold level 20%                           

for tslot=1:T 

    auxTm(tslot)=threshold.*max(abs(Tt(:,tslot))); 

end 

 

for tslot=1:T 

    aux2Tm(tslot)=0;                  %aux to compute vector T position 

    for q=1:Q 

        if abs(Tt(q,tslot))>auxTm(tslot) 

            aux2Tm(tslot)=aux2Tm(tslot)+1; 

        end 

    end 

    Tm(tslot)=taut(aux2Tm(tslot));          %delay spread 

    fo(tslot)=1/(Tm(tslot)*10.^(-6));       %coherence bandwidth in Hz 

end 

 

%to plot one example 

tauf=2400*1e6-5*fo(1):10*fo(1)/I:2400*1e6+5*fo(1)-(10*fo(1)/I);    

auxTm(1,:)=auxTm(1);                        %plot threshold level 

 

figure(4) 

hold on 

plot(taut,abs(Tt(:,1))); 

plot(taut,auxTm,'r'); 

title('Power Delay Profile'); 

xlabel('Delay (us)'); 

ylabel('Magnitude'); 

hold off 

 

%Spaced-frequency correlation function 

for t=1:I 

    Ttauf(:,t)=fftshift(fft(Tt(:,t),I)); 

end 

 

figure(5) 

hold on 

semilogy(tauf,abs(Ttauf(:,1))) 

for c=1:C 

    semilogy([tauf(I/C*c) tauf(I/C*c)],[abs(Ttauf(I/C*c)) 0],'r'); 

end 

title('Frequency channel response'); 

xlabel('Frequency (Hz)'); 

ylabel('Magnitude (dB)'); 

hold off 

 

%Ttauf is now a row 

Ttauf=Ttauf'; 

for tslot=1:T 

    Noise(tslot)=mean(abs(Ttauf(tslot,:)))/4; 

end 

 

%CH, matrix which stores subchannel responses at each row of length I/C 

aux2=floor(I/C);  

aux1=aux2-1;   

 

for tslot=1:T 

    for c=1:C 

        CH(c,1+(I/C)*(tslot-1):(I/C)*tslot)=Ttauf(tslot,1+aux1*(c-

1):aux2+aux1*(c-1)); 

    end 

end 
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Appendix B 

 

B.1 algorithms.m 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%Name: algorithms 

%Author: Alfonso Bahillo 

%Date: February 2006 

%Last modification: April 2006 

%Support: MATLAB 7.0.019920 (R14) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%Description: this function computes TxU different channel responses, one 

%   per user and time slot. After that, the scheduler scheme is computed   

%   according to four different algorithms, PFS, Max Rate, Round Robin and 

%   RCG.  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%input arguments: 

%users, number of different users. 

%C, number of sub-carriers per channel. 

%T, number of time slots. 

%tc, effective memory of the average throughput. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%output arguments: 

%XPFS, XMaxRate, Xroundrobin and XRCG matrix that store the user scheduled 

%   per sub-carrier at each time slot, according to PFS, Max Rate, Round 

%   Robin and RCG algorithms respectively. 

%auxPFS, auxMaxSNR, auxroundrobin and auxRCG matrix that store the rate 

%   which each user transmits per sub-carrier at each time slot. 

%Rmin, deman rate vector. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

function 

[XPFS,XMaxRate,Xroundrobin,XRCG,auxPFS,auxMaxRate,auxroundrobin,auxRCG,Rmin]=algo

rithms(users,C,T,tc) 

 

%matriz initialization 

%auxiliar matrix to store rates 

auxPFS=zeros(C,T);           

auxroundrobin=zeros(C,T); 

auxMaxRate=zeros(C,T); 

auxRCG=zeros(C,T); 

%matrix to store user ID 

XPFS=zeros(C,T); 

Xroundrobin=zeros(C,T); 

XMaxRate=zeros(C,T); 

XRCG=zeros(C,T); 

 

%avoiding zero division 
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epsilon=0.0001;              

 

%Storing in a matrix, R (Cx(T*users)), the different values of rate, for each 

%user, sub-carrier and time slot. 

R=zeros(C,T*users);      

 

%matrix in use for RCG algorithm                             

Haux=zeros(C,T*users);  

H=zeros(users,T); 

Rmin=zeros(1,users); 

aux1Rmin=zeros(1,users); 

aux2Rmin=zeros(1,users); 

Rmax=zeros(users,T); 

subcuser=zeros(C,users);    %storing the estimated transmission rate of  

                            %different users in the same time slot 

m=zeros(users,T);           %sub-carriers demanded according to services 

q=zeros(users,T);           %sort m, to compute 

mm=zeros(users,T);          %sub-carriers allocated according to channel 

                            %conditions 

G=zeros(users,T);           %matrix to compute second stage of RCG  

aux1RCG=zeros(C,T*users); 

 

%matrix in use for PFS algorithm 

aux1PFS=zeros(1,users); 

aux1MaxRate=zeros(1,users); 

Th=zeros(C,T*users); 

 

%generating TxU different channel responses 

for u=1:users 

    [fo CHH Noise I]=FGN_model(3,C,T); %v=3km/h user walking     

    for tslot=1:T 

        for c=1:C 

            R(c,tslot+T*(u-

1))=(fo(tslot)/C)*log2(1+mean(abs(CHH(c,1+(I/C)*(tslot-

1):(I/C)*tslot)))/Noise(tslot)); 

            Haux(c,tslot)=abs(mean(CHH(c,1+(I/C)*(tslot-1):(I/C)*tslot))).^2; 

        end 

        H(u,tslot)=1/C*sum(Haux(:,tslot)); 

    end 

end 

 

%if you want to take channel B (user B) stronger than other channels 

R(:,T+1:2*T)=2*R(:,T+1:2*T); 

 

%PFS ALGORITHM 

 

%At first time slot, the same average throughput, for all users 

for u=1:users 

    Th(:,1+T*(u-1))=epsilon;       %Initial average throughput 

end 

 

%XPFS and auxPFS matrix generation 

u=1:users; 

for s=1:T 

    for c=1:C 

        aux1PFS=R(c,s:T:T*users)./Th(c,s:T:T*users); 

        aux1MaxRate=R(c,s:T:T*users); 

        for t=s:T:T*users 

            if (R(c,t)./Th(c,t))==max(aux1PFS) 

                XPFS(c,s)=ceil(t/T);   

                auxPFS(c,s)=R(c,t); 

                Th(c,t+1)=(1-1/tc)*Th(c,t)+1/tc*R(c,t); 

            else 

                Th(c,t+1)=(1-1/tc)*Th(c,t); 
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            end 

            %XMaxRate and auxMaxRate matrix generation 

            if R(c,t)==max(aux1MaxRate) 

                XMaxRate(c,s)=ceil(t/T);  

                auxMaxRate(c,s)=R(c,t); 

            end 

        end 

    end 

    %Xroundrobin and auxroundrobin matrix generation 

    for p=1:T 

        if s<=p*users 

            Xroundrobin(:,s)=u(s-(p-1)*users); 

            break; 

        end 

    end 

    if s+(s-1)*T<=users*T 

        auxroundrobin(:,s)=R(:,s+(s-1)*T); 

    end 

end 

 

%BABS and RCG ALGORITHM 

 

%it is assumed that 10% of the users will be transmitting video (constant 

%rate 64kbps), 40% will be transmitting voice (constant rate 16Kbps) and 

%the remaining 50% will be transmitting data (exponentially distributed 

%rate with a mean of 30Kbps) 

UVd=floor(users*0.1); 

UVz=floor(users*0.4); 

UDt=users-(UVd+UVz); 

 

RminVd=zeros(1,UVd); 

RminVz=zeros(1,UVz); 

RminDt=zeros(1,UDt); 

 

RminVd(1,:)=64e3; 

RminVz(1,:)=16e3; 

for dt=1:UDt 

    RminDt(1,dt)=exprnd(30e3); 

end 

Rmin(1,:)=[RminVd,RminVz,RminDt]; 

 

%Reordering Rmin, because different user are demanded different services 

aux1Rmin=Rmin; 

aux2Rmin=randperm(length(Rmin)); 

for f=1:length(Rmin) 

    Rmin(f)=aux1Rmin(aux2Rmin(f)); 

end 

 

for u=1:users 

    for t=1:T 

        Rmax(u,t)=max(R(:,(u-1)*T+t)); 

    end 

end 

 

%BABS algorithm 

%use the average SNR for each user to decide the number of sub-carriers 

%that user will be assigned 

for t=1:T 

    %at first we allocate sub-carriers according to floor(Rmin/Rmax) 

    for u=1:users 

        m(u,t)=floor(Rmin(1,u)/Rmax(u,t))+1; 

    end 

    %while sum(m)>C, we allocate 0 sub-carriers to user with less 

    %sub-carriers 
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    q(:,t)=sort(m(:,t)); 

    for s=1:length(m(:,t)) 

        if sum(q([s:length(m(:,t))],t))<=C 

            break; 

        end 

    end 

    for p=1:s-1 

        for r=1:length(m(:,t)) 

            if q(p,t)==m(r,t) 

                m(r,t)=0; 

                break; 

            end 

        end 

    end 

    %while sum(m)<C, we add one sub-carrier to user who minimize G function 

    while sum(m(:,t))<C, 

        for u=1:users 

            if m(u,t)==0 

                G(u,t)=((m(u,t)+1)/H(u,t))*(0.6*(Rmin(u)/(m(u,t)+1)).^3)-

(epsilon/H(u,t))*(0.6*(Rmin(u)/epsilon).^3); 

            else 

                G(u,t)=((m(u,t)+1)/H(u,t))*(0.6*(Rmin(u)/(m(u,t)+1)).^3)-

(m(u,t)/H(u,t))*(0.6*(Rmin(u)/m(u,t)).^3); 

            end 

        end 

        for u=1:users 

            if G(u,t)==min(G(:,t)) 

                m(u,t)=m(u,t)+1; 

                break; 

            end 

        end 

    end 

end 

 

%XRCG and auxRCG initialization 

XRCG=XMaxRate; 

auxRCG=auxMaxRate; 

 

%RCG algorithm 

%Allocating each sub-carrier to the user with the maximum transmission rate 

for t=1:T 

    for u=1:users 

        for c=1:C 

            if u==XMaxRate(c,t) 

                mm(u,t)=mm(u,t)+1; 

            end 

        end 

    end 

end 

%While there exists some user such that mm(u,t)>m(u,t), remove a sub-carrier 

%from this user and add a sub-carrier to a user such that mm(u,t)<m(u,t) 

for t=1:T 

    for u=1:users 

        subcuser(:,u)=R(:,t+(u-1)*T); 

    end 

    for u=1:users 

        aux2RCG=zeros(C,users); 

        if mm(u,t)>m(u,t) 

            for p=1:users 

                if mm(p,t)<m(p,t) 

                    for c=1:C 

                        if subcuser(c,u)==max(subcuser(c,:)) 

                            aux2RCG(c,p)=subcuser(c,u)-subcuser(c,p); 

                        end 



APPENDIX  B                                                                                                                         

 86 

NTNU 

                    end 

                end 

            end 

            while mm(u,t)>m(u,t), 

                for c=1:C 

                    if sum(aux2RCG(c,:))~=0 

                        for k=1:users 

                            if sum(aux2RCG(:,k))==0 

                                %avoiding zero conflict for finding minimum 

                                aux2RCG(c,k)=NaN;       

                            end 

                        end 

                        change=min(aux2RCG(c,:)); 

                        for r=1:users 

                            if aux2RCG(c,r)==change 

                                %XRCG, auxRCG and mm update 

                                XRCG(c,t)=r;                             

                                auxRCG(c,t)=auxRCG(c,t)-change;      

                                mm(u,t)=mm(u,t)-1;                       

                                mm(r,t)=mm(r,t)+1;                       

                                aux2RCG(c,:)=0; 

                                if mm(r,t)>=m(r,t)                       

                                    aux2RCG(:,r)=0; 

                                end 

                                break; 

                            end 

                        end 

                        break; 

                    end 

                end  

            end 

        end 

    end 

end 
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Appendix C 

 

C.1 scheduler.m 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%Name: scheduler 

%Author: Alfonso Bahillo 

%Date: March 2006 

%Last modification: April 2006 

%Support: MATLAB 7.0.019920 (R14) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%Description: this function plots the scheduler scheme according to four 

%   different algorithms, PFS, Max Rate, Round Robin and RCG. The scheme 

%   is represented as a matrix with C rows (subchannels) and T columns (time  

%   slots). The user scheduled is showed with a representative color.  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%input arguments: 

%users, number of different users. 

%C, number of sub-carriers per channel. 

%T, number of time slots to compute. 

%tc, effective memory of the average throughput. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%no output arguments 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

function scheduler(users,C,T,tc) 

 

[XPFS,XMaxRate,Xroundrobin,XRCG,auxPFS,auxMaxRate,auxroundrobin,auxRCG,Rmin]=algo

rithms(users,C,T,tc); 

 

%Each user is represented by one color, 7 different colors  

color=['r' 'b' 'g' 'y' 'k' 'c' 'm']; 

 

%Plotting scheduler scheme, according to Round Robin algorithm 

figure(1) 

axis ij 

hold on 

grid on 

for c=1:C 

    for t=1:T 

       plot([t t+1],[c c+1],color(Xroundrobin(c,t))); 

    end 

end 

title('Subchannel allocation according to Round Robin'); 

xlabel('Time slots'); 

ylabel('Sub-carriers'); 

hold off 
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%Plotting scheduler scheme, according to PFS algorithm 

figure(2) 

axis ij 

hold on 

grid on 

for c=1:C 

    for t=1:T 

        for u=1:users 

            if XPFS(c,t)==u 

                plot([t t+1],[c c+1],color(u)); 

                break; 

            end 

        end 

    end 

end 

title('Subchannel allocation according to PFS'); 

xlabel('Time slots'); 

ylabel('Sub-carriers'); 

hold off 

 

%Plotting scheduler scheme, according to Max Rate algorithm 

figure(3) 

axis ij 

hold on 

grid on 

for c=1:C 

    for t=1:T 

       for u=1:users 

            if XMaxRate(c,t)==u 

                plot([t t+1],[c c+1],color(u)); 

                break; 

            end 

        end 

    end 

end 

title('Subchannel allocation according to Max Rate'); 

xlabel('Time slots'); 

ylabel('Sub-carriers'); 

hold off 

 

%Plotting scheduler scheme, according to RCG algorithm 

figure(4) 

axis ij 

hold on 

grid on 

for c=1:C 

    for t=1:T 

       plot([t t+1],[c c+1],color(XRCG(c,t))); 

    end 

end 

title('Subchannel allocation according to RCG'); 

xlabel('Time slots'); 

ylabel('Sub-carriers'); 

hold off 

 

%finally statistics are generated in a .xls file 

statistic(users,C,T,XPFS,XMaxRate,Xroundrobin,XRCG,Rmin); 
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C.2 statistic.m 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%Name: statistic 

%Author: Alfonso Bahillo 

%Date: March 2006 

%Last modification: April 2006 

%Support: MATLAB 7.0.019920 (R14) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%Description: this function generates a file 'statistic.xls' which stores 

%   the scheduler scheme statistics.   

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%input arguments: 

%users, number of different users. 

%C, number of subchannels per channel. 

%T, number of time slots to compute. 

%XPFS, XMaxRate and XRCG matrix which the scheduler scheme is stored  

%   according to PFS, Max Rate and RCG algorithms respectively. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%output arguments: 

%file .xls where the statistics are stored. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

function statistic(users,C,T,XPFS,XMaxRate,Xroundrobin,XRCG,Rmin) 

 

%matrix initialitation 

user_T=zeros(3,T*users); 

user_C=zeros(3,C*users); 

 

%how many sub-carriers are allocated to user u at time slot t according to  

%PFS algorithm, user_T(1,t), according to MaxRate algorithm, user_T(2,t) 

%and according to RCG algorithm user_T(3,t) 

for t=1:T 

    for c=1:C 

         for u=1:users 

            if XPFS(c,t)==u 

                user_T(1,t+T*(u-1))=user_T(1,t+T*(u-1))+1; 

                break; 

            end 

         end 

         for u=1:users 

            if XMaxRate(c,t)==u 

                user_T(2,t+T*(u-1))=user_T(2,t+T*(u-1))+1; 

                break; 

            end 

        end 

        for u=1:users 

            if XRCG(c,t)==u 

                user_T(3,t+T*(u-1))=user_T(3,t+T*(u-1))+1; 

                break; 

            end 

         end 

    end 

end 

 

%how many time slots are allocated to user u per sub-carrier c according to  

%PFS algorithm, user_C(1,c), according to MaxRate algorithm, user_C(2,c) 

%and according to RCG algorithm, user_C(3,c) 

for c=1:C 

    for t=1:T 
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         for u=1:users 

            if XPFS(c,t)==u 

                user_C(1,c+C*(u-1))=user_C(1,c+C*(u-1))+1; 

                break; 

            end 

         end 

         for u=1:users 

            if XMaxRate(c,t)==u 

                user_C(2,c+C*(u-1))=user_C(2,c+C*(u-1))+1; 

                break; 

            end 

        end 

        for u=1:users 

            if XRCG(c,t)==u 

                user_C(3,c+C*(u-1))=user_C(3,c+C*(u-1))+1; 

                break; 

            end 

         end 

    end 

end 

 

[FPFS,FRR,FMaxRate,FRCG]=fairness(users,C,T,XPFS,Xroundrobin,XMaxRate,XRCG,Rmin); 

 

%creating .xls file, fi is the identifier, text is error control 

[fi,text]=fopen('statistic.xls','a'); 

 

fprintf(fi,'\tACCORDING TO PFS ALGORITM\n\n'); 

fprintf(fi,'\tFAIRNESS: %f\n\n',FPFS); 

fprintf(fi,'USER\t TIME SLOT\t N.SUBCARRIERS\t USE PERCENTAGE\n'); 

 

for u=1:users 

    for t=1:T 

        s=user_T(1,t+(u-1)*T); 

        p=(s/C)*100; 

        fprintf(fi,'%d\t %d\t %d\t %d\n',u,t,s,p); 

    end 

end 

 

fprintf(fi,'\nUSER\t SUBCARRIER\t N.TIME SLOTS\t USE PERCENTAGE\n'); 

 

for u=1:users 

    for c=1:C 

        s=user_C(1,c+(u-1)*C); 

        p=(s/T)*100; 

        fprintf(fi,'%d\t %d\t %d\t %d\n',u,c,s,p); 

    end 

end 

 

fprintf(fi,'\n\tACCORDING TO MaxSNR ALGORITHM\n\n'); 

fprintf(fi,'\tFAIRNESS: %f\n\n',FMaxRate); 

fprintf(fi,'USER\t TIME SLOT\t N.SUBCARRIERS\t USE PERCENTAGE\n'); 

 

for u=1:users 

    for t=1:T 

        s=user_T(2,t+(u-1)*T); 

        p=(s/C)*100; 

        fprintf(fi,'%d\t %d\t %d\t %d\n',u,t,s,p); 

    end 

end 

 

fprintf(fi,'\nUSER\t SUBCARRIER\t N.TIME SLOTS\t USE PERCENTAGE\n'); 

 

for u=1:users 

    for c=1:C 
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        s=user_C(2,c+(u-1)*C); 

        p=(s/T)*100; 

        fprintf(fi,'%d\t %d\t %d\t %d\n',u,c,s,p); 

    end 

end 

 

fprintf(fi,'\tACCORDING TO RCG ALGORITM\n\n'); 

fprintf(fi,'\tFAIRNESS: %f\n\n',FRCG); 

fprintf(fi,'USER\t TIME SLOT\t N.SUBCARRIERS\t USE PERCENTAGE\n'); 

 

for u=1:users 

    for t=1:T 

        s=user_T(3,t+(u-1)*T); 

        p=(s/C)*100; 

        fprintf(fi,'%d\t %d\t %d\t %d\n',u,t,s,p); 

    end 

end 

 

fprintf(fi,'\nUSER\t SUBCARRIER\t N.TIME SLOTS\t USE PERCENTAGE\n'); 

 

for u=1:users 

    for c=1:C 

        s=user_C(3,c+(u-1)*C); 

        p=(s/T)*100; 

        fprintf(fi,'%d\t %d\t %d\t %d\n',u,c,s,p); 

    end 

end 

 

%close .xls file 

st=fclose(fi); 
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C.3 throughput_fairness_Vs_PFS.m 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%Name: throughput_fairness_Vs_tc_PFS 

%Author: Alfonso Bahillo 

%Date: March 2006 

%Last modification: March 2006 

%Support: MATLAB 7.0.019920 (R14) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%Description: this function computes the system fairness and system 

%   capacity versus tc parameter according to three different algorithms, 

%   PFS, MaxRate and Round Robin. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%input arguments: 

%users, number of different users. 

%C, number of subchannels per channel. 

%T, number of time slots to compute. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%no output arguments 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

function throughput_fairness_Vs_tc_PFS(users,C,T) 

 

%possible set of tc parameter values  

tc=[1.2:20:100 150:50:500 600:100:1000]; 

 

%matrix initialitation 

%auxiliar matrix to store rates 

auxPFS=zeros(C,T);      

auxMaxRate=zeros(C,T); 

auxroundrobin=zeros(C,T); 

auxRCG=ones(C,T); 

%matrix to store user ID 

XPFS=zeros(C,T);       

XMaxRate=zeros(C,T); 

Xroundrobin=zeros(C,T); 

XRCG=ones(C,T);                 %avoiding zero division 

 

%Store in a matrix, R (Cx(T*users)), the different values of rate, for each 

%user, subcarrier and time slot. 

R=zeros(C,T*users);      

Th=zeros(C,T*users); 

Rmin=ones(1,users);             %avoiding zero division 

aux3=zeros(1,users); 

epsilon=0.001;                  %average throughput initialization 

 

%Store in a matrix R (Cx(T*users)), the different values of rate, for each 

%user, subcarrier and time slot 

for u=1:users 

    [fo CHH Noise I]=FGN_model(3,C,T); %v=3km/h, user walking 

    for tslot=1:T 

        for c=1:C 

            R(c,tslot+T*(u-

1))=(fo(tslot)/C)*log2(1+mean(abs(CHH(c,1+(I/C)*(tslot-

1):(I/C)*tslot)))/Noise(tslot)); 

        end 

    end 

end 

 

%At first time slot, average throughput = epsilon for all users 
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for u=1:users 

    Th(:,1+T*(u-1))=epsilon;       %Initial average throughput 

end 

 

%if you want to take channel B (user B) stronger than other channels 

R(:,T+1:2*T)=1.4*R(:,T+1:2*T); 

 

u=1:users; 

%MaxRate algorithm: 

%XMaxRate, matrix which stores who is scheduled according to MaxRate 

for s=1:T 

    for c=1:C 

        aux3=R(c,s:T:T*users); 

        for t=s:T:T*users 

            if R(c,t)==max(aux3) 

                XMaxRate(c,s)=ceil(t/T);  

                auxMaxRate(c,s)=R(c,t); 

            end 

        end 

    end 

    %Round Robin algorithm: 

    %Xroundrobin, matrix which stores who is scheduled according to RR 

    for p=1:T 

        if s<=p*users 

            Xroundrobin(:,s)=u(s-(p-1)*users); 

            break; 

        end 

    end 

    if s+(s-1)*T<=users*T 

        auxroundrobin(:,s)=R(:,s+(s-1)*T); 

    end 

end 

 

%PFS algorithm: 

%XPFS, matrix which stores who is scheduled according to PFS 

for p=1:length(tc) 

    for s=1:T 

        for c=1:C 

            aux3=R(c,s:T:T*users)./Th(c,s:T:T*users); 

            for t=s:T:T*users 

                if (R(c,t)./Th(c,t))==max(aux3) 

                    XPFS(c,s)=ceil(t/T);   

                    auxPFS(c,s)=R(c,t); 

                    Th(c,t+1)=(1-1/tc(p))*Th(c,t)+1/tc(p)*R(c,t); 

                else 

                    Th(c,t+1)=(1-1/tc(p))*Th(c,t); 

                end 

            end 

        end 

    end 

 

%fairness and throughput functions compute index system fairness and 

%system throughput respectively 

    

[FPFS(p),FRR(p),FMaxRate(p),FRCG]=fairness(users,C,T,XPFS,Xroundrobin,XMaxRate,XR

CG,Rmin);  

    

[throughput_PFS(p),throughput_MaxRate(p),throughput_RR(p),throughput_RCG]=through

put(auxPFS,auxMaxRate,auxroundrobin,auxRCG,users,T); 

end 

 

%system fairness Vs tc 

figure(1) 

hold on 
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axis([0 1000 0 1.1]); 

plot(tc,FPFS,':'); 

plot(tc,FMaxRate,'-'); 

plot(tc,FRR,'-.'); 

title('System Fairness'); 

xlabel('tc'); 

ylabel('Fairness'); 

hold off 

 

%system throughput VS tc 

figure(2) 

hold on 

plot(tc,throughput_PFS,':');          

plot(tc,throughput_MaxRate,'-'); 

plot(tc,throughput_RR,'-.'); 

title('System Capacity'); 

xlabel('tc'); 

ylabel('Throughput (bps)'); 

hold off
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Appendix D 

 

D.1 fairness.m 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%Name: fairness               

%Author: Alfonso Bahillo 

%Date: March 2006 

%Last modification: April 2006 

%Support: MATLAB 7.0.019920 (R14) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Description: this function computes fairness of different scheduling 

%   algorithms, with equal and unequal weighted users. 0<F<1, 

%   if F=1, then all users in the system consume exactly their fair share  

%   of resources. 

%   if F=0, then one user consumes all resources allocated. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%input arguments: 

%users, number of different channel responses. 

%C, number of subchannels per channel. 

%T, number of time slots. 

%XPFS, Xroundrobin, XRCG and XMaxRate, matrix that stores the user scheduled 

%   according to PFS, Round Robin, RCG and MaxRate algorithms respectively. 

%Rmin, demand vector rate. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%output arguments: 

%FPFS, FRR, FRCG and FMaxRate fairness index according to PFS, Round Robin 

%   RCG and Max Rate algorithms respectively. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

function 

[FPFS,FRR,FMaxRate,FRCG]=fairness(users,C,T,XPFS,Xroundrobin,XMaxRate,XRCG,Rmin) 

 

%matrix initialization 

%vector that store the number of time that one user is scheduled  

PRCG=zeros(1,users);    

PMaxRate=zeros(1,users); 

PPFS=zeros(1,users);    

PRR=zeros(1,users); 

 

%PFS algorithm 

for c=1:C 

    for t=1:T 

        for u=1:users 

            if XPFS(c,t)==u 

                PPFS(u)=PPFS(u)+1; 

                break; 

            end 

        end 

    end 

end 
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%computing index fairness according to equal weighted users 

for u=1:users 

    if PPFS(u)==0 

        aux1PFS(u)=0; 

    else 

        aux1PFS(u)=-(PPFS(u)/(C*T))*(log(PPFS(u)/(C*T)))/(log(users)); 

    end 

end 

 

FPFS=sum(aux1PFS);        %0<F<1 

 

%Round Robin algorithm 

for c=1:C 

    for t=1:T 

        for u=1:users 

            if Xroundrobin(c,t)==u 

                PRR(u)=PRR(u)+1; 

                break; 

            end 

        end 

    end 

end 

%computing index fairness according to equal weighted users 

for u=1:users 

    if PRR(u)==0 

        aux1rr(u)=0; 

    else 

        aux1rr(u)=-(PRR(u)/(C*T))*(log(PRR(u)/(C*T)))/(log(users)); 

    end 

end 

 

FRR=sum(aux1rr);        %0<F<1 

 

%RCG algorithm 

%PRCG matrix generation that stores how many times a user is scheduled 

%according to RCG algorithm 

for c=1:C 

    for t=1:T 

        for u=1:users 

            if XRCG(c,t)==u 

                PRCG(u)=PRCG(u)+1; 

                break; 

            end 

        end 

    end 

end 

%computing index fairness according to unequal weighted users 

for u=1:users 

    

auxRCGden(u)=((1+1/(log(Rmin(1)/sum(Rmin))))/(1+1/(log(Rmin(u)/sum(Rmin)))))*Rmin(u); 

    if PRCG(u)==0 

        auxRCGnum(u)=0; 

    else 

        

auxRCGnum(u)=((1+1/(log(Rmin(1)/sum(Rmin))))/(1+1/(log(Rmin(u)/sum(Rmin)))))*(PRCG(u)/

(C*T))*((log(PRCG(u)/(C*T)))/(log(Rmin(u)/sum(Rmin)))); 

    end 

end 

 

FRCG=sum(Rmin)*(sum(auxRCGnum)/sum(auxRCGden));        %0<F<1 

 

%Max Rate algorithm 

for c=1:C 

    for t=1:T 

        for u=1:users 

            if XMaxRate(c,t)==u 

                PMaxRate(u)=PMaxRate(u)+1; 
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                break; 

            end 

        end 

    end 

end 

%computing index fairness according to equal weighted users 

for u=1:users 

    if PMaxRate(u)==0 

        aux1MaxRate(u)=0; 

    else 

        aux1MaxRate(u)=-(PMaxRate(u)/(C*T))*(log(PMaxRate(u)/(C*T)))/(log(users));  

    end 

end 

 

FMaxRate=sum(aux1MaxRate);       %0<F<1 
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D.2 throughput.m 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%Name: throughput 

%Author: Alfonso Bahillo 

%Date: March 2006 

%Last modification: April 2006 

%Support: MATLAB 7.0.019920 (R14) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%Description: this function computes the system throughput according to 

%   four different algorithms (for allocating resources) PFS, Max Rate,  

%   Round Robin and RCG. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%input arguments: 

%auxPFS, auxMaxSNR, auxroundrobin and auxRCG matrix that store the rate 

%   which each user transmits per sub-carrier at each time slot. 

%users, number of different channel responses. 

%T, number of time slots. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%output arguments: 

%throughput_PFS, throughput_MaxRate, throughput_RR matrix and  

%   throughput_RCG which store mean value of throughput according to PFS, 

%   MaxRate, Round Robin and RCG algorithms respectively. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

function 

[throughput_PFS,throughput_MaxRate,throughput_RR,throughput_RCG]=throughput(auxPFS,aux

MaxRate,auxroundrobin,auxRCG,users,T) 

 

%matrix initialization 

%auxiliary matrix 

auxthroughput_PFS=zeros(1,T); 

auxthroughput_MaxRate=zeros(1,T); 

auxthroughput_RR=zeros(1,T); 

auxthroughput_RCG=zeros(1,T); 

 

for t=1:T                                    

    auxthroughput_PFS(t)=sum(auxPFS(:,t));          %PFS algorithm 

    auxthroughput_MaxRate(t)=sum(auxMaxRate(:,t));  %Max Rate algorithm 

    auxthroughput_RR(t)=sum(auxroundrobin(:,t));    %RR algorithm    

    auxthroughput_RCG(t)=sum(auxRCG(:,t));          %RCG algorithm 

end 

 

throughput_PFS=mean(auxthroughput_PFS);                 %PFS algorithm 

throughput_MaxRate=mean(auxthroughput_MaxRate);         %Max Rate algorithm  

throughput_RR=sum(auxthroughput_RR([1:users]))/users;   %RR algorithm 

throughput_RCG=mean(auxthroughput_RCG);                 %RCG algorithm        
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Appendix E 

 

E.1 throughput_fairness_Vs_users.m 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%Name: throughput_fairness_Vs_users 

%Author: Alfonso Bahillo 

%Date: March 2006 

%Last modification: April 2006 

%Support: MATLAB 7.0.019920 (R14) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%Description: this function computes the system throughput and fairness  

%   with different set of users and plot the results comparing four  

%   different algorithms PFS, Round Robin, RCG and MaxRate. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%input arguments: 

%us, system throughput is computed us by us users. 

%maxusers, the system throughput is computed over 'maxuser' users. 

%C, number of subchannels per channel. 

%T, number of time slots. 

%tc, effective memory of the average throughput. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%no output arguments 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

function throughput_fairness_Vs_users(us,maxusers,C,T,tc) 

 

%matrix initialization 

u=[us:us:maxusers]; 

%throughput values 

throughput_RCG=zeros(1,length(u)); 

throughput_PFS=zeros(1,length(u)); 

throughput_MaxRate=zeros(1,length(u)); 

throughput_RR=zeros(1,length(u)); 

%fairness values 

FRCG=zeros(1,length(u)); 

FPFS=zeros(1,length(u)); 

FMaxRate=zeros(1,length(u)); 

FRR=zeros(1,length(u)); 

 

%computing throughput and fairness for us by us users     

for uu=us:us:maxusers 

    

[XPFS,XMaxRate,Xroundrobin,XRCG,auxPFS,auxMaxRate,auxroundrobin,auxRCG,Rmin]=al

gorithms(uu,C,T,tc); 

    

[FPFS(uu/us),FRR(uu/us),FMaxRate(uu/us),FRCG(uu/us)]=fairness(uu,C,T,XPFS,Xroun

drobin,XMaxRate,XRCG,Rmin); 

    

[throughput_PFS(uu/us),throughput_MaxRate(uu/us),throughput_RR(uu/us),throughpu

t_RCG(uu/us)]=throughput(auxPFS,auxMaxRate,auxroundrobin,auxRCG,uu,T); 
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end 

 

%System capacity Vs users 

figure(1) 

hold on 

plot(u,throughput_RCG,':');          

plot(u,throughput_MaxRate,'-'); 

plot(u,throughput_PFS,'-.'); 

plot(u,throughput_RR,'--'); 

legend('RCG','Max Rate','PFS','RR'); 

title('System Capacity'); 

xlabel('Users'); 

ylabel('Throughput (bps)'); 

hold off 

 

%System Fairness Vs users 

figure(2) 

hold on 

plot(u,FRCG,':'); 

plot(u,FMaxRate,'-'); 

plot(u,FPFS,'-.'); 

plot(u,FRR,'--'); 

legend('RCG','Max Rate','PFS','RR'); 

title('System Fairness'); 

xlabel('Users'); 

ylabel('Fairness'); 

hold off 
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Appendix F 

 

F.1 Probability_delay.m 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%Name: probability_delay 

%Author: Alfonso Bahillo 

%Date: April 2006 

%Support: MATLAB 7.0.019920 (R14) 

%Last modification: May 2006 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%Description: this function computes the probability that a user u is  

%   transmitting less than Rmin(u) bits per unit time. Plotting this  

%   probability versus time slots and different set of users. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%input arguments: 

%us, the probability is computed us by us users. 

%maxusers, the probability is computed over 'maxuser' users. 

%C, number of subchannels per channel. 

%T, number of time slots. 

%tc, effective memory of the average throughput. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%no output arguments 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

function probability_delay(T,C,tc,us,maxusers) 

 

%Matrix initialization 

aux_users=zeros(4,maxusers/us); 

 

for uu=us:us:maxusers 

     

    %storing total rate per user and time slot 

    auxRCGprob1=zeros(uu,T);     

    auxMaxRateprob1=zeros(uu,T);  

    auxPFSprob1=zeros(uu,T); 

    auxRRprob1=zeros(uu,T); 

    %storing total data transmitted at each time slot 

    aux_time_RCG=zeros(uu,T); 

    aux_time_MaxRate=zeros(uu,T); 

    aux_time_PFS=zeros(uu,T); 

    aux_time_RR=zeros(uu,T); 

    %mean values at each time slot 

    aux_time=zeros(4,T); 

        

        

[XPFS,XMaxRate,Xroundrobin,XRCG,auxPFS,auxMaxRate,auxroundrobin,auxRCG,Rmin]=algorithm

s(uu,C,T,tc); 

     

    for t=1:T 

        for c=1:C 
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            %computing auxiliary variable for RCG probability 

            for u=1:uu 

                if XRCG(c,t)==u 

                    auxRCGprob1(u,t)=auxRCGprob1(u,t)+auxRCG(c,t); 

                    break; 

                end 

            end 

            %computing auxiliary variable for MaxRate probability 

            for u=1:uu 

                if XMaxRate(c,t)==u 

                    auxMaxRateprob1(u,t)=auxMaxRateprob1(u,t)+auxMaxRate(c,t); 

                    break; 

                end 

            end 

            %computing auxiliary variable for PFS probability 

            for u=1:uu 

                if XPFS(c,t)==u 

                    auxPFSprob1(u,t)=auxPFSprob1(u,t)+auxPFS(c,t); 

                    break; 

                end 

            end 

            %computing auxiliary variable for RR probability 

            for u=1:uu 

                if Xroundrobin(c,t)==u 

                    auxRRprob1(u,t)=sum(auxroundrobin(:,u)); 

                    break; 

                end 

            end 

        end 

    end 

        

    for d=1:T 

        for u=1:uu 

            aux_time_RCG(u,d)=1-sum(auxRCGprob1(u,[1:d]))/Rmin(u); 

            aux_time_MaxRate(u,d)=1-sum(auxMaxRateprob1(u,[1:d]))/Rmin(u); 

            aux_time_PFS(u,d)=1-sum(auxPFSprob1(u,[1:d]))/Rmin(u); 

            aux_time_RR(u,d)=1-sum(auxRRprob1(u,[1:d]))/Rmin(u); 

            if aux_time_RCG(u,d)<=0 

                aux_time_RCG(u,d)=0; 

            end 

            if aux_time_MaxRate(u,d)<=0 

                aux_time_MaxRate(u,d)=0; 

            end 

            if aux_time_PFS(u,d)<=0 

                aux_time_PFS(u,d)=0; 

            end 

            if aux_time_RR(u,d)<=0 

                aux_time_RR(u,d)=0; 

            end 

        end 

    end 

    %computing mean value for all users 

    aux_time(1,:)=mean(aux_time_RCG); 

    aux_time(2,:)=mean(aux_time_MaxRate); 

    aux_time(3,:)=mean(aux_time_PFS); 

    aux_time(4,:)=mean(aux_time_RR); 

     

    %plotting results 

    for d=uu:T 

        if aux_time(1,d)==0 

            break; 

        end 

    end 

         

    %Plotting outage probability versus time slots 

    t=1:T; 

    figure(uu) 
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    hold on 

    axis([1 d+1 -0.1 1.1]); 

    plot(t,aux_time(1,:),':'); 

    plot(t,aux_time(2,:),'-'); 

    plot(t,aux_time(3,:),'-.'); 

    plot(t,aux_time(4,:),'--'); 

    legend('RCG','Max Rate','PFS','RR'); 

    title('Probability that a user u is transmitting less than Rmin'); 

    xlabel('delay'); 

    ylabel('Outage probability'); 

    hold off 

   %computing mean value for all time slots  

   aux_user(1,uu/us)=mean(aux_time(1,:)); 

   aux_user(2,uu/us)=mean(aux_time(2,:)); 

   aux_user(3,uu/us)=mean(aux_time(3,:)); 

   aux_user(4,uu/us)=mean(aux_time(4,:)); 

end 

 

%Plotting outage probability versus users 

u=[us:us:maxusers]; 

figure(40) 

hold on 

axis([us maxusers -0.1 1.1]); 

plot(u,aux_users(1,:),':'); 

plot(u,aux_users(2,:),'-'); 

plot(u,aux_users(3,:),'-.'); 

plot(u,aux_users(4,:),'--'); 

legend('RCG','Max Rate','PFS','RR'); 

title('Probability that a user k is transmitting less than Rmin'); 

xlabel('Users'); 

ylabel('Outage probability'); 

hold off 
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Appendix G 

 

In this appendix an example run of the RCG algorithm in 10 time slots is showed within 

two different scenarios, equal and unequal users. We have 4 users who are demanded different 

services, see Table G.I. 

 Demanded 

transmission rate 

#1 64 

#2 45 

#3 16 

#4 35 

      

Table G.I Transmission rate demanded by users. 

 

G.1 Equal Users 

In this scenario, four users with the same channel response average are simulated in 10 time 

slots. The system has 8 sub-carriers and the sub-carriers allocated by this algorithm at first 10 time 

slots are showed in Table G.II. 

 

 #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 

#1 3 3 3 3 3 4 3 3 3 3 

#2 2 2 2 2 2 2 2 2 2 2 

#3 1 1 1 1 1 1 1 1 1 1 

#4 2 2 2 2 2 1 2 2 2 2 

Table G.II Sub-carriers allocated to users at 10 first time slots. Rows represent different users, 

columns are different sub-carriers. 

On the other hand, the scheduler scheme according to RCG algorithm is plotted, see Table 

G.III. 
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 #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 

#1 1 1 1 1 2 1 4 1 4 1 

#2 1 1 1 4 2 1 4 4 1 1 

#3 3 4 1 1 1 2 2 1 3 1 

#4 1 4 2 1 4 1 3 3 4 4 

#5 4 1 4 4 4 3 2 2 2 4 

#6 2 2 2 2 1 1 1 1 2 2 

#7 2 2 4 2 1 4 1 2 1 2 

#8 4 3 3 3 3 2 1 4 1 3 

Table G.III Scheme scheduled according to RCG algorithm with equal users. Rows represent 

different sub-carriers, columns are different time slots. 

 

G.2 Unequal Users 

In this scenario, four users with different channel response average are simulated in 10 time 

slots. The user number #2 is stronger than others. The system has 8 sub-carriers and the sub-carriers 

allocated by this algorithm at first 10 time slots are showed in Table G.IV. 

 

 #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 

#1 3 4 3 2 4 3 3 3 3 3 

#2 2 2 2 2 2 2 2 2 2 2 

#3 1 1 1 1 1 1 1 1 1 1 

#4 2 1 2 3 1 2 2 2 2 2 

Table G.IV Sub-carriers allocated to users at 10 first time slots. Rows represent different users, 

columns are different sub-carriers. 

On the other hand, the scheduler scheme according to RCG algorithm is plotted, see Table 

G.V, and compare this with the scheduler scheme according to Max Rate algorithm, see Table 

G.VI. 
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 #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 

#1 4 4 3 1 4 3 1 1 4 3 

#2 3 3 4 1 1 1 1 1 4 4 

#3 4 1 4 4 1 4 4 4 1 4 

#4 1 1 1 4 1 4 1 4 2 1 

#5 1 1 1 4 2 1 4 3 1 1 

#6 1 1 1 2 2 1 3 2 1 1 

#7 2 2 2 3 1 2 2 2 3 2 

#8 2 2 2 2 3 2 2 1 2 2 

Table G.V Scheme scheduled according to RCG algorithm with unequal users. Rows represent 

different sub-carriers, columns are different time slots. 

 

 #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 

#1 2 2 2 2 2 2 3 1 2 2 

#2 2 2 2 2 3 2 3 2 3 2 

#3 2 2 2 2 2 2 2 2 2 2 

#4 2 2 2 3 2 2 2 2 2 2 

#5 2 2 2 2 2 2 4 3 3 2 

#6 2 2 2 2 2 2 3 2 3 2 

#7 2 2 2 3 3 2 2 2 3 2 

#8 2 2 2 2 3 2 2 1 2 2 

Table G.VI Scheme scheduled according to Max Rate algorithm with unequal users. Rows 

represent different sub-carriers, columns are different time slots. 
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