
June 2006
Agnar Aamodt, IDI

Master of Science in Informatics
Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Representing and reasoning with
constraints in Creek

Martin Stige

 I

Abstract
This work studies constraint mechanisms in frame-based knowledge representation
systems with the aim of improving the knowledge modelling abilities of the TrollCreek
system. TrollCreek is an implementation of Creek, an architecture for case based
reasoning (CBR) that uses an explicit frame-based knowledge model to guide the CBR
process. The objective of this project is to develop a constraint mechanism for
TrollCreek. In doing this the earlier Lisp implementation of Creek and four other frame-
based systems are examined with emphasize on their constraint mechanisms. Based
on these systems a constraint mechanism for TrollCreek is discussed and specified.
The part of the mechanism considered most central is implemented and evaluated.

II

 III

Problem description
Reasoning in the system Creek is a combination of case-based and modell based
reasoning. The mechanisms in the model-based part are based on inheriting properties
along certain relations (plausible inheritance). In an earlier version of the system,
implemented in Lisp, there were some mechanisms for defining constraints on entities
and values. The current implementation, TrollCreek, implemented in Java, has no
general mechanisms for handling constraints.

The task to be solved is to describe constraint mechanisms in frame-based systems,
define a constraint mechanism in the Creek architecture generally and specify and
implement the most essential constraints in TrollCreek. This should be done as a
constraint language integrated in the existing representation of Creek. More concrete
this project involves first, defining a coarse specification of a constraint language for
Creek, and second define some important mechanisms more concrete. The second
mechanisms should be implemented, tested and evaluated.

IV

 V

Acknowledgements
I would like to thank Professor Agnar Aamodt for supervising me in this project and for
valuable input when writing this thesis.
I also would like to thank Frode Sørmo for helping me to understand the
implementation of TrollCreek.

VI

Table of contents

1 INTRODUCTION ...1

1.1 BACKGROUND AND MOTIVATION...1
1.2 GOAL ...1
1.3 METHODOLOGY ...1
1.4 STRUCTURE OF THE TEXT...2

2 RELATED SYSTEMS ..3

2.1 INTRODUCTION ..3
2.1.1 Frame-based knowledge representation systems..3
2.1.2 Constraints in frame-based systems ...4
2.1.3 Types of constraints ..4

2.2 LISPCREEK ..7
2.2.1 The language ..7
2.2.2 Constraints ...8
2.2.3 Summary ...9

2.3 THE KNOWLEDGE MACHINE..9
2.3.1 The language ..9
2.3.2 Constraints ...10
2.3.3 Summary ...12

2.4 CYC ..13
2.4.1 The language ..13
2.4.2 Constraints ...15
2.4.3 Summary ...16

2.5 KL-ONE..17
2.5.1 The language ..17
2.5.2 Constraints ...18
2.5.3 Summary ...21

2.6 PROTÉGÉ..22
2.6.1 The language ..22
2.6.2 Constraints ...23
2.6.3 Summary ...24

3 TROLLCREEK ...27

3.1 THE CONCEPTUAL MODEL..27
3.2 THE IMPLEMENTATION OF TROLLCREEK ...29

3.2.1 KnowledgeModel ..29
3.2.2 Entity ..30
3.2.3 Relation...31

4 FUNCTIONAL REQUIREMENTS...33

4.1 CONSTRAINT TYPES ...33
4.1.1 Cardinality constraint...33
4.1.2 Concrete value constraints ...33
4.1.3 Value range constraint ...34
4.1.4 Value class constraints ...34
4.1.5 General constraints ..34

4.2 INHERITANCE...34
4.3 CONSTRAINTS ON RELATIONS OR FRAMES ...35

 VII

5 DESIGN AND IMPLEMENTATION ...37

5.1 REPRESENTATION ..37
5.1.1 Model level ...37
5.1.2 Implementational level ...39
5.1.3 General constraints ..44
5.1.4 Inheritance..45

5.2 CONSTRAINT CHECKING ..46
5.2.1 Time of constraint checking..46
5.2.2 Summary ...47

6 USER INTERFACE ..49

6.1 USER INTERFACE ...49

7 EVALUATION AND DISCUSSION ...55

7.1 PROOF OF CONCEPT ...55
7.1.1 Cardinality constraint...57
7.1.2 Concrete value constraint...58
7.1.3 Value range constraint ...58
7.1.4 Value class constraint...59
7.1.5 General constraint..60

7.2 WEAKNESSES WITH THE SOLUTION ..61
7.2.1 General constraints ..61

7.3 MISSING FUNCTIONALITY ..62
7.3.1 Constraints on relation type ...62
7.3.2 Constraints as part of the ontology...68
7.3.3 Different approaches to constraint checking..69

8 SUMMARY AND FURTHER WORK..71

8.1 SUMMARY ...71
8.2 FURTHER WORK ...72
8.3 END NOTE ..72

REFERENCES ...73

Appendix

A ONTOLOGIES ..75

CREEK ISOPOD MODEL ...75

B CLASS DIAGRAMS ...76

CONSTRAINT AND ITS SUBCLASSES ...76
CONSTRAINTOBJECTS...77

VIII

Figures

Figure 2.1 - The arguments of a slot ...3
Figure 2.2 - A simple KL-ONE network of generic concepts.. 17
Figure 2.3 - KL-ONE representation of a message ... 18
Figure 2.4 - Cardinality constraint in KL-ONE ... 19
Figure 2.5 - Value class constraint in KL-ONE .. 19
Figure 2.6 - Role value map in KL-ONE.. 20
Figure 2.7 - Structural description in KL-ONE ... 21
Figure 2.8 Protégé class hierarchy and class editor .. 22
Figure 2.9 - Protégé’s facet-dialog .. 23
Figure 3.1 - Creek semantic net and frame... 27
Figure 3.2 - Relation frame ... 28
Figure 3.3 - Example of plausible inheritance.. 29
Figure 3.4 - Top level classes of the knowledge model ... 30
Figure 3.5 - The main classes in the representation of Entity 31
Figure 3.6 - The main classes in the representations of Relation 32
Figure 4.1 - Cardinality in TrollCreek... 33
Figure 4.2 - Inherited constraints... 35
Figure 5.1 - Meta-classes in Protégé .. 37
Figure 5.2 - Top ontology of TrollCreek... 38
Figure 5.3 - Sketch of a constraint representation in TrollCreek.................................. 40
Figure 5.4 - Constraint objects .. 41
Figure 5.5 - Hierarchy of entity types .. 42
Figure 5.6 - Class diagram of constraint types .. 43
Figure 6.1 - TrollCreek knowledge editor .. 49
Figure 6.2 - Frame view with constranints... 50
Figure 6.3 - Result of constraint check.. 51
Figure 6.4 - Cardinality constraint form ... 51
Figure 6.5 - Value range constraint form... 51
Figure 6.6 - Value class constraint form.. 52
Figure 6.7 - Concrete value constraint form .. 52
Figure 6.8 - General constraint form ... 52
Figure 6.9 - General constraint form (advanced)... 53
Figure 7.1 - Test ontology, Espen Askeladd.. 56
Figure 7.2 - Constraint: no multipple inheritance... 65
Figure 7.3 - GUI for relation constraints .. 66
Figure 7.4 - Constraint structure ... 67
Figure 7.5 - Top ontology.. 69
Figure 8.1 - Creek IsoPod model .. 75

 IX

Tables

Table 2.1 - Frame ...4
Table 2.2 - Example of frame in LispCreek ...8
Table 2.3 - Examples of meta frames in LispCreek...8
Table 2.4 - Class frame in KM... 10
Table 2.5 - Instance frame in KM .. 10
Table 2.6 - Assertions by constraints in KM .. 10
Table 2.7 - Value constraints in KM .. 11
Table 2.8 - Value constraint in KM .. 11
Table 2.9 - Value constraint in KM .. 11
Table 2.10 - Set constraints in KM .. 11
Table 2.11 - Set constraint in KM.. 12
Table 2.12 - Frame in Cyc .. 15
Table 2.13 - Constraints in Cyc... 15
Table 2.14 - PAL constraint... 24
Table 2.15 - Data types in Protégé.. 24
Table 5.1 - General constraints in Java... 45
Table 7.1 - General constraint... 60
Table 7.2 - General age constraint.. 61
Table 7.3 - Exception thandling in general constraints .. 62
Table 7.4 - Example of relation constraint ... 68

 1

1 Introduction

1.1 Background and motivation
The project is done in the context of the Creek framework for case based reasoning [2].
Creek is an abbreviation for Case based Reasoning through Extensive Explicit
Knowledge. Creek and its knowledge representation language CreekL were originally
implemented in Lisp. This implementation will from now on be referred to as LispCreek.
Later an experimental java version of Creek was developed [17]. The implementational
parts of this project are done on the java version TrollCreek [24]. The extensive and
explicit knowledge is represented in a frame-based knowledge representation system
that is used both for representing the cases and for storing an underlying knowledge
model used to support the inference process.

Most frame-based systems have some kind of constraint mechanism. Constraints are
useful in that they help the knowledge engineer to keep the model consistent. They
also ad some semantics to a model when defining what values are legal for different
slots. LispCreek has a constraint mechanism, but this is not yet implemented in the
java version.

1.2 Goal
The goal of this project is to improve the knowledge modelling abilities in TrollCreek’s
frame system by introducing the ability to define constraints on the knowledge model.

To be more concrete this means:

• Discuss how constraint can be included in the TrollCreek system.

• Specify of a full constraint system for TrollCreek.

• Implement a fully working version of the most important part of this system.

• Evaluate the methods implemented.

1.3 Methodology
The project is based on analytical and experimental methods. First the concept of
constraints in frame-based knowledge representations will be analysed through a study
of similar systems in the literature. Based on what these systems can teach us, a
constraint system for the Creek framework will be specified. The most important parts
of the constraint system will then be designed and implemented into TrollCreek. Finally
the system will be tested and evaluated.

2

1.4 Structure of the text
The text starts by discussing frame-based systems in general and five concrete
systems with emphasise on knowledge representation and constraint mechanisms. A
general framework for describing constraints is defined and the constraint mechanisms
of the five systems are described with respect to this. Chapter 3 gives a brief overview
of the TrollCreek system, before we in chapter 4 discuss the functional specifications of
the constraint mechanism to develop. Chapter 5 discuss how the constraints can be
designed and implemented and chapter 6 describes the result as the user of the
system will see it. Chapter 7 tests and evaluates the implemented system. Functionality
not implemented is discussed and possible solutions are sketched. The final chapter
summarises the work.

 3

2 Related systems

2.1 Introduction

2.1.1 Frame-based knowledge representation systems
Like many other knowledge representation systems and languages, frames are an
attempt to resemble the way human beings are storing knowledge. It seems like we are
storing our knowledge in rather large chunks and that the different chunks are highly
interconnected [16].

In frame-based knowledge representations knowledge describing a particular concept
or object is organized as a frame [15]. Some systems have one kind of frame whereas
other have two or more, such as class frames and instance frames. The frame usually
contains a name and a set of slots. Examples of frames are shown in Table 2.1.

The slots represent properties of the frames with attribute-value pairs <slotname

value> or alternatively a triple containing framename, slotname and value in some
order. Frame systems inspired from logics may view slots as binary predicates. In
many frame systems the slots are complex structures that have facets describing the
properties of the slot. The value of a slot may be a primitive such as a text string or an
integer, or it may be another frame. Most systems allow multiple values for slots and
some systems support procedural attachments. These attachments can be used to
compute the slot value, or they can be triggers used to make consistency checking or
updates of other slots. The triggers can be trigged by updates on slots.

As mentioned a slot can be viewed as a binary predicate stating a relation between two
concepts (frame and value). When discussing the concept of a slot we need a
terminology to use when referring to the two arguments off the slot. As we will see
later, the TrollCreek system views the slots as relations between frames. A relation
goes from a frame to the value of the slot. We will therefore use from and to or from-
frame and to-frame to designate these two concepts (Figure 2.1). The to-frame will also
be referred to as the value of the slot.

Figure 2.1 - The arguments of a slot

In most frame-based knowledge representations inheritance is the central inference
mechanism [15]. The frames are arranged in a taxonomic hierarchy of generalization-
specialization relations1 where the most general frame is the top. Properties of a frame
are propagated down the hierarchy to its specialization frames. Many systems support
multiple-inheritance. This means that a frame can inherit from many other frames. In
these systems the hierarchy can look more like a directed graph (with possible cycles)
than a tree structure.

1
 This relation is also commonly called parent-child, is-a, superclass-subclass, AKO (a kind of).

4

(<Frame#1>
 (<Slot#1> <slot value>)
 (<Slot#2>
 (<facet#1> <facet value>)
 (<facet#2> <facet value>))
)

(car
 (subclass-of
 (value vehicle))
 (has-subclass
 (value sports-car))
 (has-number-of-wheels
 (default 4)
 (cardinality 0..1))
 (has-part
 (value bodywork)
 (value engine)
 (value wheel)
 (cardinality 1..n))
 (has-number-of-seats
 (default 5)
 (value-constraint (and (> value 0) (< value 9))))
)

Table 2.1 - Frame

At the top we see a template frame. Slot#1 has only a value wile Slot#2 has two facets
describing it. In some frame systems the value of a slot is stored as a facet. This is
exemplified in the frame Car. This frame also demonstrates two constraint facets,
cardinality and value-constraint, and the default facet.

2.1.2 Constraints in frame-based systems
Sometimes simple slot values do not offer the expressive power we want. Logic is
maybe the most expressive knowledge representation used today, when it comes to
syntactical constructs. It provides mechanisms for representing incomplete knowledge,
disjunctions and conjunctions. Many frame-based languages have constraint- or
restriction mechanisms that extend the frame system with some of the abilities from
logic. These mechanisms can be used to constrain possible values and combinations
of values, perform consistency checking and express incomplete knowledge.

2.1.3 Types of constraints
There are many ways to describe and categorize constraints and different authors use
different names for them. To make it easier to compare different constraint
mechanisms, we will define some names to use for the different constraint types. The
names are the most common names used in the literature. We will also give a formal
description of the constraint types based on first order predicate logic. In the
description we use the following notation:

• Dot-notation to access slot values. Ex John.Father means the slot Father on
the frame John.

• Predicates are capitalized.

• Functions start with lower case letters.

• Variables are written in lower case.

• Constants/Frame instances are capitalized

 5

Cardinality constraint constrains how many values are allowed for a slot on a frame.
This may be a lower bound, an upper bound or an interval.

Cardinality(frame, slot, min, max) →

GreterThanOrEqual(numberOfValues(frame.slot), min) ∧
LessThanOrEqual(numberOfValues(frame.slot), max)

Cardinality(frame, slot, min) →
GreterThanOrEqual(numberOfValues(frame.slot), min)

Cardinality(frame, slot, max) →
LessThanOrEqual(numberOfValues(frame.slot), max)

Ex:
The frame person may have one or no value for the slot spouse – at least in our
culture.
Cardinality(Person, Spouse, 0, 1) →

GreterThanOrEqual(numberOfValues (Person.Spouse), 0) ∧
LessThanOrEqual(numberOfValues (Person.Spouse), 1)

Concrete value constraint constrain the value of a slot, either by defining a list of all
the allowed values (implicitly disallowing all other values), or by listing all disallowed
values (implicitly allowing all other values).

ConcreteValueConstraint(frame, slot, {x0, x1… xn}) →

frame.slot ∈ {x0, x1 ... xn}

Ex:
The value of the slot gender of the frame person must be in the list {male, female}.
ConcreteValueConstraint(Person, Gender, {Male, Female}) →

Person.Gender ∈ {Male, Female}

Value range constraint constrains the allowed range of values for a numeric slot. This
may be a lower bound, an upper bound or an interval.

ValueRangeConstraint(frame, slot, min, max) →

GreaterThanOrEqual(frame.slot, min) ∧ LessThanOrEqual(frame.slot, max)

ValueRangeConstraint(frame, slot, min) →
GreaterThanOrEqual(frame.slot, min)

ValueRangeConstraint(frame, slot, max) →
LessThanOrEqual(frame.slot, max)

Ex:
The slot salary of a frame person must have a value greater than 0.
ValueRangeConstraint(person, salary, 0) →
GreaterThanOrEqual(frame.slot, min)

The age of a person must be between 0 and 130.
ValueRangeConstraint(Person, Age, 0, 130) →

GreaterThanOrEqual(Person.Age, 0) ∧ LessThanOrEqual(Person.Age, 130)

6

Value class constraint constrains the value of a slot in a wider way than the two
above. This constraint states that the value of a slot must be a subclass or an instance
of another frame.
ValueClassConstraint(frame, slot, super) → Isa(frame.slot, super)

Ex: the value of a slot father must be a male (which again must be a person).
ValueClassConstraint(Person, Father, Male) → Isa(Peron.Father, Male)

General constraint. The final constraint type mentioned here is perhaps more
correctly described as a class of constraints. This label is used to describe the ability to
define complex constraints that combines or exceeds the simplest constraints.

The mechanisms described above allow us to constrain single values in the context of
a frame and a slot. Sometimes it is useful to define constraints that include more than
the to- and from-frames of a slot. In [9] an example knowledge base of famous persons
and their doings is described. In this domain it can be reasonable to state that an event
performed by a person must happen during the person’s lifetime. Such constraints
need more flexible mechanisms than those described above. Many systems offer this
functionality through a logic-like language where the knowledge engineer can write
logical expressions, being able to express arbitrarily complex constraints. Having such
a constraint mechanism allows you to express all the other constraints to, seemingly
taking the jobs from them. The above mentioned constraints are however useful short
forms or syntactic sugar for the most used constraints.

Variations over the constraint types

The four first mechanisms constraining an individual slot value have (at least) two
different subclasses. They can either be defined on a slot given a from-frame or on the
slot without relating it to a frame. In the example above the value class constraint on
father makes sense independent on which frame the constraint is defined on. It may be
in an elephant family or among human beings. In both cases the father must be a male.
In the following example, however it is reasonable to define the constraint on the
combination of frame and slot:
Given the frame engine and the slot part it may be relevant to constrain the value to be
an engine part. This constraint should be defined on the combination of slot and frame,
because other things than engines can have parts too, and those parts are not
necessarily engine parts.

So far constraints on the to-frame or value of a slot have been discusses. It may
however be useful to constrain the from-frame of a relation as well. In Cyc [12] for
example, you can use the constraint makesSenseFor on a slot to define which frames
the slot may be used on.

Ex: the slot hasColour only makes sense for physical object-frames.

As we will see shortly, most frame systems defines the inverse of the slots. If we
constrain the value class of some slot and this constraint is attached to the slot
independent on what frame it constrains, we implicitly constrain the from-frame of the
inverse slot. These two constraint types are thus related.

Summary

What is described here is by no means a complete list of constraint mechanisms
suitable for frame-based systems. It is certainly possible to define other constraints
than those mentioned here. It is also possible to combine some of these to make a
shorter list. What we have called concrete value constraint can for example be

 7

expressed using the value class constraint. You just make an intermediary frame acting
as a super class of all the allowed values and saying that the value of the slot must be
a member of this frame. The types of constraints given here do however cover most of
the constraint mechanisms described in the literature. Through the text we will use
these notions when comparing and describing constraints in different frame-based
knowledge representations.

In the next sections we will describe five different frame-based systems with focus on
their constraint mechanisms. The purpose of the discussion will be to see what we can
learn from them in the process of developing constraint mechanisms in TrollCreek.
When discussing the systems, the constraint mechanisms will be described with the
names and terms used in the actual system. The discussion of each system is
concluded with a summary section that relates the constraints in the mechanism to the
framework described above.

2.2 LispCreek
As mentioned, Creek is a framework for case based reasoning. The architecture is an
attempt to make a knowledge intensive CBR system, combining model based
reasoning and case based reasoning. This section discusses the knowledge model and
constraint aspects of LispCreek.

2.2.1 The language
As defined in the Creek framework [2] LispCreek [3] uses a frame-based approach for
its knowledge model. A frame in Creek consists of a name and a set of zero or more
slots. The slots consist of a name and a set of facets. The value of a slot is stored as a
facet along with facets describing default values, constraints, inheritance type, value
dimension etc. The value of a slot can be of four different types: concept (frame),
number, string and lisp-expression.

Table 2.2 below shows a frame representing the concept car. The table gives
examples of how inheritance, default values and constraints are represented in
LispCreek.

8

car
 subclass-of value vehicle
 has-subclass value sports-car
 has-number-of-wheels default 4
 has-part value bodywork
 has-function value transportation-of-people

 has-number-of-seats value-constraint (and
 (> value 0)
 (< value 9))
 has-owner value-class person
 has-age if-needed (-
 current-year
 self.has-production-year)

Table 2.2 - Example of frame in LispCreek

The frame represents the general concept car. The first two slots subclass-of and has-
subclass tells that car is subclass vehicle and superclass of sports-car. The next slot
defines that cars on default have four wheels. This means that if an instance or subclass
of car does not override this value, they have four wheels. Next we have two slots telling
that cars has the part bodywork and has the function of transporting people. The next two
slots are constraints. First has-number-of-seats has a value constraint. This is a lisp
function defining that the value must be greater that 0 and less than 9. The has-owner
slot has a value class constraint saying that the value of the slot must be a person. The
last slot has-age has the facet if-needed. If for some instance of car there is no local,
inherited or default value for has-age the lisp expression is evaluated and the result
returned.

In Creek the whole representational structure is represented in the frame structure.
Frames, slots, facets are defined as concepts/frames. This meta frame structure
provides valuable semantics to the models and are essential in the frame matching
mechanisms. Table 2.3 shows the meta frames for the relation instance-of and the
concept slot.

instance-of
 used-to-describe value caused-by causes default (...)
 instance-of value transitive-relation
 has-inverse value has-instance

slot
 part-of value frame
 subclass-of value iso-thing
 has-part value facet
 has-subclass value transitive-relation

Table 2.3 - Examples of meta frames in LispCreek

2.2.2 Constraints
As mentioned, the slots have facets for describing constraints. There are two constraint
facets: value-constraint and value-class. The value-constraint facet can contain a
general lisp function describing an arbitrary constraint on the value. The other can hold
a list of other frames that the value must be a specialization of. In 2.1.3 we saw that the
constraint like LispCreek’s value-constraint is flexible enough to offer all other
constraint types. Consequently the value-class constraint does not introduce any new
functionality. It can however be useful to offer a short form of the constraint syntax.

 9

2.2.3 Summary

Types of constraints

Cardinality constraint
LispCreek do not have an explicit cardinality constraint. Cardinality constraints can
however be expressed using the value-constraint mechanism.

Concrete value constraint
LispCreek do not have an explicit concrete value constraint. The constraint can
however be expressed using the value-constraint mechanism.

Value range constraint
LispCreek do not have an explicit value range constraint. Value range constraints can
however be expressed using the value-constraint mechanism.

Value class constraint
As described, slots in LispCreek have a facet called value-class. This mechanism
corresponds to the value class constraint described in 2.1.3.

General constraint
The facet value-constraint allows the user to express arbitrary constraints. This
equates the general constraint mechanism.

What can we learn from LispCreek?

TrollCreek do not have facets, but as in the lisp version slots and slot types are
represented as frames in the knowledge base. This allows us to describe the slots with
slots. It may be possible to use this to introduce facet-like behaviour to TrollCreek.
Doing this we can introduce the constraint facets used in the previous Creek version.
Using this approach the constraint mechanism will be tightly coupled to the rest of the
knowledge representation.

2.3 The Knowledge Machine
The Knowledge Machine (KM) [7] is a knowledge representation language and
reasoning engine. The knowledge is represented as frames, but KM is also influenced
by logic. This combination makes KM very expressive and provides it with a clear,
formal semantics. KM is an interpreter sitting on top of Lisp, and the user interface is
through a read-eval-print cycle where the user can write assertions or queries. KM is a
relatively mature language that has evolved over a long period of time. It is well
documented.

2.3.1 The language
As in the object-oriented world, the frame concept contains both classes and instances.
Frames contain slots that hold values. Because KM is closely connected to logic, the
slots are binary relations that hold between an instance of a class and other instances.
Slots are instances of the build in class Slot either directly or through one or more
intermediate slots. Because the slots are frames themselves they can exist without
being attached to a frame. The build in Slot class has a set of slots, for example
domain, range and cardinality. The slot’s slots are comparable to slot-facets in Creek
[3] and Protégé [14]. The value of a slot may perfectly well be another frame as well as
an atom or rules that are evaluated at query time. This allows the making of
relationships between frames. The frames can form a taxonomy with single and
multiple inheritance. Both classes and instances can have slots. The slots of a class
can hold information about its sub- and super-classes and it can hold default values
that are inherited to all descendants.

10

KM uses the simple data types number, integer, string and boolean, and the complex
set (unordered, no duplicates), sequence (ordered, duplicates allowed) and bag
(unordered, duplicates allowed). The system also offers the data type pair, but that is
only a sequence of length two. KM offers a variety of set operations, both arithmetic
and set expressions.

Table 2.4 and Table 2.5 show an example of a frame in KM. In the first table the class
car is described and the second table shows an instance of car.

(Car has (superclasses (Vehicle)))
(every Car has
 (wheel-count (4))
 (uses-fuel-type (*Gas))
 (parts ((a Engine) (a Chassis))))

Table 2.4 - Class frame in KM

This frame represents the concept of a car. Car has vehicle as superclass. In KM names
prefixed by an asterix (*) represents instances and names beginning with an upper case
letter represents classes. The frame says that every car has four wheels, uses gas (an
instance) as fuel and have the parts engine and chassis (classes).

(*myCar has
 (instance-of (Car))
 (parts (*myEngine *myChassis)))

Table 2.5 - Instance frame in KM

The table shows an instance of the class frame from Table 2.4. We see that the parts slot
now has instances for engine and chassis as values.

KM supports multiple inheritance. When computing the values of an instance’s slots,
information from all super classes are merged. This differs from the object-oriented
programming languages where one will take precedence over the others. The merging
is in the KM nomenclature referred to as unification.

2.3.2 Constraints
KM offers two kinds of constraints: Value constraints and set constraints. The first type
applies to the individual values of the slots. The second applies to slots with sets,
sequences and bags as their value. Constraints are checked during inference. This
means that if frame a is constrained by constraint c, c is not evaluated before some

query accesses values from a.

Constraints play three roles in KM:

1) Debugging tool for knowledge engineer
2) Controlling unification (the merging mechanism described above)
3) In three special cases, KM will make assertions based on constraints. The three

cases are listed in Table 2.6.

Constraint Assertion
(must-be-a class) If the value instance is not in class, it is “forced” to be one
(exactly 1 class)
(at-most 1 class)

If there are multiple instances of class they are unified

Table 2.6 - Assertions by constraints in KM

 11

Value constraints

KM has six value constraints that apply to individual values of slots. Table 2.7 lists and
gives a brief description of the constraints. Two example constraints are given in Table
2.8.

(must-be-a class [with slotsvals]) The value must be a subclass of

class
(mustnt-be-a class [with slotsvals]) The value must not be a subclass of

class
(possible-values val1...valN) List of possible values
(excluded-values val1...valN) List of excluded values
(<> expr) The value must not equal the the

evaluation of expr
(constraint expr) expr must evaluate to true

Table 2.7 - Value constraints in KM

(every Person has
 (friend ((must-be-a Person))))

(*Fred has
 (favorite-colors ((possible-values *Red *Blue *Green))))

Table 2.8 - Value constraint in KM

Example of value constraint. First we se a must-be-a constraint, saying that
the friend of a person must be a person. The second example shows a possible-values
constraint that states red, blue and green as possible favourite colours of Fred.

The first five constraints are in fact just short hands for the last one. Table 2.9 shows a
rewriting of the second constraint in Table 2.8.

(every Person has
 (friend (constraint (TheValue &? (a Person))))

Table 2.9 - Value constraint in KM

Example of the most general value constraint in KM. This constraint consist of an

arbitrary expression. In this example we reproduce the must-be-a constraint from
Table 2.8.

Set constraints

Set constraints in KM apply to the set of values of a slot. There are four such constraint
types

(at-least n class) At least n instances in the set must be in class
(at-most n class) At most n instances in the set must be in class
(exactly n class) Exactly n instances in the set must be in class
(set-constraint expr) Arbitrary constraint. expr must evaluate to true

Table 2.10 - Set constraints in KM

If upper bound is 1 KM will unify together values if there is more than one. If the upper
bound is higher than one, KM will instead make an error notification to inform the user
instead of making hazardous unifications.

12

Only upper bound constraints are checked. Therefore KM treats (at-least …) as a
dummy constraint. However, if lower bound is violated, KM can be set to create
“missing” instances, but on default it will do nothing. Table 2.11 shows an example of a
set constraint.

 (every Airplane has
 (parts ((a Fuselage)
 (a Wing with (side (*Left)))
 (a Wing with (side (*Right)))
 (a Engine)
 (at-least 1 Engine)
 (exactly 2 Wing))))

Table 2.11 - Set constraint in KM

Constraint checking is time consuming as it can involve traversing large parts of the
knowledge model. In KM a constraint can be tagged as sanity-checks. These
constraints can be turned on and off depending on the phase of knowledge modelling.

Constraints through slot slots

In addition to what is called constraints in KM, there are three slots on the slots (the
same as facets) that offer constraint functionality. First, domain defines the most
general class or classes allowed for the first argument of the slot. That is the from-
frame of the slot. Second, range defines the most general class(es) for the slots

second argument – the value of the slot. Finally, cardinality constrains how many
classes or instances can fill the two arguments of a slot. Allowed cardinality values are
1-to-1, 1-to-N, N-to-1 and N-to-N.

2.3.3 Summary

Types of constraints

Cardinality constraint
As just mentioned cardinality constraints in KM are supported through a facet-like
mechanism on the slots. This mechanism allows us to set the cardinality of either side
of the slot to 1 or N.

Concrete value constraint

KM has the constraints possible-values and excluded-values, for defining allowed

and disallowed values of a slot. The constraint (<> expr) is a special case of the
excluded-values constraint.

Value range constraint
KM does not have an explicit value range constraint. Such constraints can however be
defined through the general constraint (constraint expression) where expression
is an arbitrary piece of KM code that must evaluate to true.

Value class constraint

The value class of a slot can be constrained using the must-be-a and mustnt-
be-a constraints. Using these you can define a class that the slot value must be or
must not be an instance or subclass of. Another way to define such constraints is

through the range slot of the slot mentioned recently. Here you define the most
general class that the slot value can be a member of.

General constraint
As mentioned several places already, arbitrary constraints can be defined using the

(constraint expression) and (set-constraint expression)
mechanism. These mechanisms take an arbitrary expression in the KM language that

 13

must return a boolean value when evaluated.

Other constraint mechanisms
In 2.1.3 we mentioned that sometimes it makes sense to define constraints on a slot
independent on what frame it is attached to. The constraints defined using the three
constraint slots are of this category.
The set-constraints in KM do not fit into the framework defined in 2.1.3. Because
TrollCreek does not have sets or list of values, we will not discuss such constraint
further.

What can we learn from KM?

All the constraints that can be defined using the constraint mechanism in KM can be
defined using the two constraints (set-constraint expr) and (constraint expr).
The other constraint keywords are only syntactic sugar for these two. This sugar may
however be very useful because they save the knowledge engineer from a lot of typing.
The readability of the constraints is also improved. If it later is decided to implement
TrollCreek’s constraints as a typed language, such syntactic sugar will be considered.

2.4 CYC
Existing expert systems may perform well in their narrow domains, but when asked a
question at the edge of their knowledge, they can make big mistakes. A famous
example in the AI world is Mycin diagnosing a male as pregnant. The idea of the Cyc
project was to overcome this brittleness in AI- and knowledge systems by building a
huge knowledge base of common sense [11]. Early in the project they estimated the
size of this KB to five million frames, each containing several slots.

The project started out in 1984 and during the next ten years the Cyc project spent a
person-century of effort in building the knowledge base [13]. In 1994 Cycorp, Inc was
founded to continue the development of the Cyc knowledge base. The knowledge base
is at the moment (May 2006) available in two versions. OpenCyc [20] is a free open
source version of the Cyc knowledge base that in the current release contains 47000
concepts and 306000 facts. ResearchCyc [19] is designed for use by researchers and
comes with a larger knowledge base. This version is proprietary but licences are
granted to researchers free of charge.

2.4.1 The language
The representational language CycL (Cyc Language) started out as a frame system but
has over the years evolved toward first order predicate logic [13]. Because the purpose
of this review is to learn about constraints in frame systems, we will only focus on the
early frame-days of CycL.

To represent this extremely large knowledge base, the developers decided to make
their own knowledge representation language. The wish-list of the language was
something like this:

• Clear and simple semantics

• Effective inferential capabilities

• Representing default knowledge

• Include all the expressiveness of first order predicate calculus (FOPC)

• A means of handling propositional attitudes (beliefs, goals, dreads)

• Facilities for operations such as reification, reflection, etc.

One of the intentions of the Cyc developers was that their system should be built upon
and used by other researchers. This requires the system to have a clear and stable

14

semantics. To get the expressiveness of FOPC and at the same time have effective
inference mechanisms may however force the developers to make special-purpose
representations and inference routines. This disturbs the clear semantics. To solve this
problem the Cyc KB was developed at two levels, the epistemological level and the
heuristic level. Communication with users and external programs is supposed to be at
the epistemological level. The language used at this level is the Cyc Constraint
Language (Cyc CL).

The CycL was developed incrementally during the development of the Cyc knowledge
base for natural knowledge understanding and common sense reasoning [11]. When
the developers encountered something they wanted to express that was difficult to
express in CycL, they augmented the language to handle it.

“it is a frame-based language embedded in a more expressive predicate
calculus framework along with features for representing defaults, for reification
(allowing one to talk about propositions in the KB) and for reflection (allowing
one to talk about the act of working on some problem.)” [11]

CycL is frame-based with frame-slot relationships defined as a triple <attribute/slot>
<frame><value>. The value of a slot in CycL is always a list representing the possibly
empty set of values for the slot. Triples describing the same concept are stored
together to form a frame. Cyc has four basic kinds of frames: “normal frames”,
SlotUnits, SeeUnits and SlotEntryDetails [12].

Normal frames are the most common type. They represent most real world concepts
such as the concept Person, the name Martin and the process of writing a master
thesis.

Like in many other frame systems the slots are themselves frames. In Cyc slot types
are represented by SlotUnits. These slot-frames can have slots constraining the from-
frame of the slot, the value of the slot, describe what slots have related meaning, etc.

SeeUnits contain metalevel information about a specific slot for a specific frame. It can
for example be used to express incomplete knowledge. If we have a frame describing
the country Norway with the slot Residents we maybe lack some information to give a
complete list of residents. Instead we can say that the number of residents are about
4,5 million, that the number is quite stable and that the residents must be members of
the class Person.

SeeUnits describe a whole slot on a frame. SlotEntryDetails are very similar but differs
in that it describes a single entry for a slot on a frame. For example the author of this
text is an inhabitant in Norway. This fact became true in 1981 when he was born and
were temporary false in the period 1984 to 1988 when his family lived abroad. Such
information can be represented by SlotEntryDetails.

Table 2.12 shows how one of the authors of [12] describes himself in the Cyc
language.

 15

#%Guha
 #%instanceOf (#%MechanicalEngineer #%LispHacker
 #%HumanCyclist #%GraduateStudent)
 #%computersFamiliaryWith (#%SymbolicsMachine)
 #%age (23)
 #%languageSpoken (#%EnlishLanguage #%TamilLanguage
 #%HindiLanguage #%GermanLanguage)
 #%programsIn (#&Lisp)
 #%screenForUnitEditor (:monochrome)

Table 2.12 - Frame in Cyc

2.4.2 Constraints

Cyc Constraint Language

CycL Constraint Language sits on top of the frame system and is essentially predicate
calculus. The syntax of Cyc CL is similar to prefix predicate calculus and every slot in
the frame-based representation may be used as predicates. Actually, binary predicates
are represented as slots. Predicates with more than two arguments can be defined
using Lisp expressions. In addition you can define functions that return other values
than true/false. This makes the constraint language very expressive.

The constraint language enables:

• Disjunctions

• Quantifications (some, every)

• Negations

• Relationships (every person is younger than his mother)
In Cyc CL both relationships and quantifications are represented as predicates. This is
illustrated in Table 2.13.

(#%ForAll X (#%InstanceOf X #%HumanBeing) (#%Mortal X)

(#%ThereExists X Y (#%GreaterThan X Y))

Table 2.13 - Constraints in Cyc

The first constraint states that all human beings are mortal. The second statement is not
a traditional constraint, but rather an expression saying that some concept can be greater
that another concept. Notice how quantifications (ForAll, ThereExists) and relations
(GreaterThan) are represented as predicates.

The Cyc CL can naturally be used to state constraints on the knowledge in the
knowledge base. Using the language we can state constraints on slot values and
define which units can legally possess a certain type of slots. In Cyc, constraints are
checked when knowledge are put into the system. This prevents the user from entering
incorrect knowledge.

As shown in Table 2.13 the constraint language can also be used to express other
properties of the model. It can for instance be used to state the definition of a collection
or stating the premises and conclusions of different kinds for rules. The frame-based
CycL and the logic based Cyc CL are used together to get the expressive benefit of
logics and the frame’s suppleness and effectiveness of inference.

16

Constraints defined by slots on slots

Slots in Cyc are represented as frames that themselves can have slots. This
functionality is similar to facets in LispCreek. One slot used to describe other slots is
entryFormat which can take the values SingleEntry, SetTheFormat and SubAbs. Single
means that the slot can have only one value, while the two other are used for
cardinality greater than one. SubAbs have the additional function of stating that the
values must all be specializations of the same concept.

There are also a great number of other slots that can be used to describe slots. In the
summary subsection the following are mentioned: slotCardinality,
noOfEntitiesLessThan, entryIsLessThan, entryIsGreaterThan, entryIsA and
makesSenseFor.

2.4.3 Summary

Types of constraints

Cardinality constraint
CycL offers several ways to define cardinality constraints. The slot entryFormat
described above defines whether a slot can have one or many values. This is a simple
version of cardinality constraint. Two other slots can also be used. slotCardinality
defines the exact number of entries that a slot shall have, and noOfEntitiesLessThan
defines an upper bound of the cardinality. More complex cardinality constraints defining
different numbers for the cardinality than one and many can be expressed by Cyc CL.

Concrete value constraint
Concrete value constraint can be defined using Cyc CL.

Value range constraint
The two slots entryIsLessThan and entryIsGreaterThan are used to define the range of
allowed values for a slot.

Value class constraint
The above mentioned entryFormat slot can act partly as a value class constraint in
addition to cardinality. If entryFormat has the value SubAbs this means all the values of
the slot must be of the same class. This is however not the whole functionality we
expect from a value class constraint. The slot entryIsA fulfils the value class constraint
as defined in 2.1.3. This slot defines a super slot that all values must inherit from.

General constraint
As mentioned above, CycL Constraint Language is heavily based on predicate
calculus. Together with the ability to define new predicates and functions using Lisp,
this makes it possible to express arbitrary constraints.

What can we learn from Cyc?

The CycL and its constraint language are built for representing common sense about
nearly all possible concepts in the world. This is quite different from TrollCreek that is
mainly used for making expert systems in closed domains. The constraint language
from Cyc is thus maybe too comprehensive to be copied to TrollCreek. The possibility
to express arbitrary constraints on the content of the knowledge base is however a
useful function that will be considered in the further work. Cyc’s use of the constraint
language to express incomplete knowledge is also worth a study.

 17

2.5 KL-ONE

2.5.1 The language
KL-ONE is a well known knowledge representation system in the tradition of semantic
networks and frames. The system is an attempt to overcome semantic indistinctness in
semantic network representations and builds upon the idea of Structured inheritance
networks [6].

Frames in KL-ONE are called concepts. These form hierarchies using subsume-
relations; in the KL-ONE terminology a super class is said to subsume its subclasses.
Multiple inheritance is allowed. Actually a concept is said to be well-formed only if it
inherits from more than one other concept. All concepts, except the top concept Thing,
must have at least one super class. Figure 2.2 shows a sample ontology in KL-ONE.

Figure 2.2 - A simple KL-ONE network of generic concepts

Concepts are represented as ellipses and the double arrows are subsume relations. This
figure and all the following KL-ONE figures are taken from [6].

18

Figure 2.3 - KL-ONE representation of a message

“A Message is something having exactly one SendDate and one ReceivedDate that are
of type Date, one or more Sender and one or more Recipient both being Persons and
exactly one Body of type Text.”

The encircled squares represent RoleSets. The numbers below the name of the RoleSets
are cardinality constraints.

In KL-ONE descriptions is separated into two basic classes of concepts: primitive and
defined. Primitives are domain concepts that are not fully defined. This means that
given all the properties of a concept, this is not sufficient to classify it. They may also
be viewed as incomplete definitions. Using the same view, defined concepts are
complete definitions. Given the properties of a concept, these are necessary and
sufficient conditions to classify the concept.

The slot-concept is called roles and the values of the roles are role-fillers. There are
several different types of roles to be used in different situations. The most common and
important role type is the generic RoleSet that captions the fact that the role may be
filled with more than one filler.

2.5.2 Constraints

RoleSet restrictions

The constraints in KL-ONE are integrated parts of the language, not a plug-in-like
constraint-engine. RoleSet restrictions are restrictions on the fillers of the RoleSets.
There are two kinds of restrictions, number restrictions and value restrictions.

Number restrictions restrict the number of fillers allowed for a RoleSet. This restriction
is used when you want to locally restrict the cardinality of a role inherited from another
concept. Figure 2.4 shows an example of a private-message that inherits from the
message in Figure 2.3. Message can have one or more recipients. Private-message
uses a role set restriction to override this cardinality.

 19

Figure 2.4 - Cardinality constraint in KL-ONE

“A private-message is a message with exactly one recipient.”

Restrictions are denoted similar to RoleSets. The link pointing from private-message to
the circle representing the RoleSet Recipient has the cardinality (1,1) saying that the
allowed number is exactly one.

ValueRestrictions restricts which fillers can fill a role by defining the most general class
allowed. In Figure 2.5 we see an example of a specialization of message that have
restrictions on who can be the sender.

Figure 2.5 - Value class constraint in KL-ONE

“A starfleet-message is a message where only starfleet-commanders are among the
senders.”

The restriction link pointing from starfleet-message to the RoleSet Sender has an arrow
pointing at the starfleet-commander concept saying that the filler of the role Sender on
the concept starfleet-message must be a of this type.

Structural Descriptions

The RoleSet restrictions can constraint the number and class of fillers to fill a RoleSet.
Sometimes it is however useful to define constraints that includes relationships among
more than one of a Concepts roles. KL-ONE offers this through Structural Descriptions
(SD).

20

There are two kinds of SD, the simplest is Role Value Maps (RVM). RVM is designed
to let the knowledge engineer express equality between two sets of role fillers – for
example that the grandmother of a person is the same person as the mother of one of
the parents of the person. An example is shown in Figure 2.6.

Figure 2.6 - Role value map in KL-ONE

 “An important-message is a private-message with an employee as Recipient and whose
sender is the same as the ImmediateSupervisor of its Recipient.”

The constraint is represented with a ternary relation pointing at the two roles that must
have equal fillers. At the bottom of the figure we see a link going from important-message
to a rhomb containing an equality sign. From this rhomb two dotted arrows are pointing to
the two RoleSets that must have the same fillers.

The more general form of SD has not got a name. It describes how Roles of a Concept
relate to each other in terms of other concepts. To illustrate the mechanism we extend
the message example with two new message types: Reply-requested-message and
Urgent-message. The first type is a message with a reply deadline. The second is a
specialisation of the former with short deadline.

 21

Figure 2.7 - Structural description in KL-ONE

“A reply-requested-message is a message with a ReplyByDate which is a date”

“An urgent-message is a reply-requested-message whose ReceivedDate and
ReplyByDate satisfy a less-than whose Lesser is the ReceivedDate, whose Greater is
the ReplyByDate, and whose Greater is the ReplyByDate, and whose Difference is 1-
hour.”

2.5.3 Summary

Types of constraints

Cardinality constraint
Cardinality constraints are supported through the cardinality property of the RoleSets.
With this property we can set both upper and lower bound of the cardinality. Number
restrictions can be used when a subclass inheriting a slot shall have another cardinality
than the original slot, like in Figure 2.4.

Concrete value constraint
[6] does not explicitly mention any concrete value constraint. Some of the functionality
of this constraint can however be achieved by the value restriction.

Value range constraint
The range of values can be constrained with structural descriptions like in Figure 2.7.
Using this mechanism the value can be constrained to be less than some value and
greater than some other value.

Value class constraint
Figure 2.5 illustrates a value restriction that restrict who can be the sender of a special
kind of message. This corresponds to what we call value class constraint.

General constraint
Structural descriptions provide a means of defining some dependencies between
values that are more complex than the four simplest constraint types. In the examples

22

above we saw how the structural descriptions could define how the filler of two different
roles must be related to each other. This mechanism does however not offer the
expressive power we want from the general constraint mechanism.

What can we learn from KL-ONE?

KL-ONE does not introduce any new constraint types or mechanisms to our review.
The interesting part is the graphical representation used in [6]. As we will see, in
TrollCreek the knowledge engineering can be done through the graphical user
interface, drawing nodes and relations. Graphical representation of constraints should
therefore be considered in the process of designing a constraint mechanism for
TrollCreek.

2.6 Protégé
The first version of Protégé was made in 1988 and was a child of Mycin and ONCOCIN
[8]. It was originally designed to ease the process of knowledge acquisition by allowing
the domain expert to write the domain knowledge more or less without the help of a
knowledge engineer. Protégé 2000 is the fourth version.

Protégé 2000 is a frame-based knowledge representation language, modelling tool and
knowledge acquisition tool. It is developed under the Mozilla Public License [21] and is
therefore free to download, redistribute and reengineer.

2.6.1 The language
The ontology in Protégé’s knowledge model is built up by classes, slots, facets and
axioms [14]. The classes are concepts in the domain of discourse. The properties of
the classes are described by slots, and the properties of the slots are described by
facets. Axioms are used to represent constraints additional to the constraints that can
be described using facets. The axioms are written in the Protégé Axiom Language
(PAL).

Figure 2.8 Protégé class hierarchy and class editor

In the left column we see the class tree. To the right we see the slots of the frame Person
and some of the slots facets.

A knowledge base in Protégé consists of the ontology and a set of instances of the
classes in the ontology. The core of the knowledge model is a hierarchy of classes. A
class must have at least one super class and zero or many subclasses. Figure 2.8

 23

shows how the class hierarchy is presented to the user. The meta class :Thing is the
top of the hierarchy, so every class is a subclass of it. Classes can have instances and
both individuals and classes can be instances.

The slots describe the properties of classes. Slots are classes too and are defined
independently of the classes they describe. One single slot can be attached to many
different classes. When a slot is attached to a frame it can have a value that is either a
class or an individual.

Figure 2.9 - Protégé’s facet-dialog

The facet dialog is used to show and edit facets on slots.

Facets describe the properties of slots. Default values, allowed values, max/min
values, cardinality and data type. This is in fact a constraint mechanism, but it offers
only local constraints - constraints local to that particular slot. You cannot define
dependencies between different slots of the same frame (eg. date of death can not be
more than 120 years after date of birth). Figure 2.9 shows the facet dialog in Protégé.

2.6.2 Constraints
As mentioned above, facets allow only local constraints. This is the background of the
Protégé Axiom Language (PAL). PAL allows arbitrary constraints that include other
classes, dependencies among different slots and so on [9].

PAL is a complement to Protégé 2000 that enables logical constraints and query
processing. It consists of a language (PAL) and a constraint-checking engine. PAL
constraints are stored as instances of the :PAL-CONSTRAINT meta class – a normal
frame so the knowledge base doesn’t have to know that it is a constraint. The language
is a variant of the Knowledge Interchange format (KIF), made to be easily parsed by
computers, but its syntax is not easy read by human beings [9]. To assist the
knowledge engineer in writing the constraints, Protégé offers a structured editor with
guiding mechanisms. The language is independent of the constraint-checking engine,
except for the syntax. Table 2.14 shows an example PAL constraint.

24

(defrange ?editor :FRAME Editor)
(defrange ?employee :FRAME Employee responsible_for)

(forall ?editor (forall ?employee
 (=> (and
 (responsible_for ?editor ?employee)
 (own-slot-not-null salary ?editor)
 (own-slot-not-null salary ?employee))
 (> (salary ?editor) (salary ?employee)))))

Table 2.14 - PAL constraint

“The salary of an editor should be greater than the salary of any employee which the
editor is responsible for.”

The expression has two parts. First the range two variables ?editor and ?employe is

defined. Then the constraint body is defined.

The Constraint checking engine is a plug-in and can be easily changed. The default
engine is based on Model checking – to detect incomplete or inconsistent entries.
When an inconsistency is detected in the knowledge base, the user is informed, but the
engine does not change anything in the KB. The engine is invoked by the user.

2.6.3 Summary

Types of constraints

Cardinality constraint
Cardinality is supported through the facet mechanism. You can define two values, at
least and at most. Alternatively you can say that the slot is required or multiple.

Concrete value constraint
It is possible to define a list of allowed values for a slot. To define disallowed values
you have to write a PAL constraint.

Value range constraint
Protégé slots have two facets named minimum and maximum that provides the ability
to define the range of numerical values.

Value class constraint
Every slot has a mandatory facet called value type that defines the data type of the slot
[22]. The available data types are listed in Table 2.15.

Type Description Example
Any Any of the types below
Boolean Logical value True, False
Class Class in the kb Person, Car
Float Decimal number 1.0, 3.4e10
Instance Instance of a class in the kb Instance_001
Integer Integer number 1, 2, 12354987
String String of alphanumeric characters including

spaces
“Hello world, calling 1 2 3”

Symbol List of values, which may not include spaces Re, blue and green

Table 2.15 - Data types in Protégé

For the types class and instance you can define which class or classes the value has to
be a subclass/instance of. This corresponds to the value class constraint.

General constraint
Constraints not expressible through the facet mechanism can be expressed by the

 25

Protégé axiom language. PAL constraints have almost the expressibility of first order
predicate calculus. This provides the ability to state arbitrary and complex constraints.

What can we learn from Protégé?

In Protégé there are mainly two ways of defining constraints: through facets and
through PAL. The facet constraints are those constraints easily defined through a
graphical user interface. The more complex constraints are offered through the
constraint language. This two fold way of defining constraints allows novice users to
define the simplest constraint types, lowering the threshold to use the system. The idea
of using facets is also interesting in the TrollCreek setting.

26

 27

3 TrollCreek
Before we start discussing how to design and implement constraints in TrollCreek it
can be helpful to give a brief overview of the system, both at a conceptual and an
implementational level. The overview only describes the aspects necessary to
understand the remaining chapter of this thesis. For a comprehensive description of the
system we refer to [17] and [5].

3.1 The conceptual model
As mentioned, Creek is an abbreviation for “Case-based Reasoning through Extensive
Explicit Knowledge” [1]. The scope of this project is the “extensive explicit knowledge”
part of the system that is realised through a frame-based knowledge representation.
Consequently the case-based issues will not be discussed here.

The frame-based knowledge model in TrollCreek is represented by a semantic net
structure. A node in the semantic net does together with its relations form a frame. In
Figure 3.1 we see how these two representations works together.

Figure 3.1 - Creek semantic net and frame

The frame view shows the grows on frame that we also find as a node in the semantic
net. The slots of the frame are the relations of the semantic node.
The content of the figure is taken from a test knowledge model contained in TrollCreek.

As with the Lisp version of Creek the relations are also frames. More precisely, the
relation types of TrollCreek are represented as frames in the knowledge model. This
added semantic is useful as a clarification of what the different relations means, making
it easier to make good models of complex domains. The taxonomy of relations can also
be used in the inference process. Figure 3.2 shows an example top ontology.

28

Figure 3.2 - Relation frame

The figure shows a subset of the semantic net representation of the top ontology in
TrollCreek. The frame at the bottom shows the frame of the frame of the has subclass
relation. It inherits over instance of and subclass of. Its inverse relation is subclass of.
NumberEntity#12 represent the default explanation strength of has subclass. Every
relation in Creek has an explanation strength used to compute the total strength of a path
between two frames.
The taxonomy is taken from an earlier version of TrollCreek. The current version is more
comprehensive.

Two of the slots in Figure 3.1 are shown with grey font in the frame view. These slots
are inherited. Inheritance is central in semantic nets and frame-based knowledge
representations. The most common mechanism is that properties are inherited through
relations corresponding to the Creek relations has subclass and has instance. In
TrollCreek inheritance is augmented through a mechanism called plausible inheritance
that allows properties to be transferred over other relation types as well. What relations
that transfer other relations are easily defined by making a transfers relation between
the entities representing the two relation types.

Figure 3.3 gives an example where the relation requires is transferred by has part.

 29

From the fact that car has the part engine, which has the part piston that requires oil,
we can infer that engine requires oil. Further we can infer that car requires oil. The
plausible inheritance mechanism in TrollCreek is thoroughly described in [17].

Figure 3.3 - Example of plausible inheritance.

The figure is adapted from [17].

Relations in TrollCreek are unidirectional. However, every relation type has an inverse
relation. For instance has part has the inverse part of. When a relation is defined
between two entities, the inverse relation is automatically entered by the system.

3.2 The implementation of TrollCreek
At the conceptual level the model of TrollCreek is built of entities and relations forming
a semantic network. An entity and its relations can be seen as a frame where the entity
is the frame and the relations with values are the slots.

3.2.1 KnowledgeModel
In the implementation the knowledge model is represented by an object of the class
KnowledgeModel that contains information about the model and collections of entities,
relations and other objects in the model. It also has methods for managing the model,
such as creating entities and relations, mapping entity and relation names to the
objects representing them, merging models etc.

Entities and relations are represented by the classes Entity and Relation that act
as a programmatic interface to the corresponding concepts. This means that these
classes have methods to access and manipulate the Entity and Relation objects
structures. They do however not directly contain any of the data associated with
entities and relations. To allow different physical storage methods for the model (SQL
database, XML, binary file, etc), all data that are supposed to be persistent are put into
objects of the classes EntityData and RelationData. These are defined as

interfaces2. The same is true for KnowledgeModel mentioned above. Figure 3.4

illustrates the relationship between KnowledgeModel, Entity and Relation from the

perspective of KnowledgeModel.

2
 Java interfaces are classes containing no variables and just the declarations of the methods. It is not possible to
instantiate these classes, but they can be implemented by other classes. When a class implements an interface it
commits to a contract that it must implement the methods in the interface.

30

Figure 3.4 - Top level classes of the knowledge model

In the current TrollCreek release these interfaces are implemented in
LocalEntityData, LocalRelationData and LocalKnowledgeModel. As the names
indicate, they are designed for storing the knowledge model in a local file, but this is
hidden from the Entity and Relation objects. They only know that they have a
variable pointing to some object implementing the general interfaces. In the remaining
of this section only the “local” version is considered. When written that a variable or
piece of data is contained in an interface this means that the interface declares a
method for accessing the data.

3.2.2 Entity

As described the Entity object has its data stored in an EntityData object. The data
stored are among other the name and description of the entity, an identification number
and a list of relations. There is also an attribute called entityObject that can store
any java object, used to store type specific data. Numbers are in TrollCreek
represented through a specialisation of the Entity-object named NumberEntity. This

object uses the entityObject to store the number and has methods for setting and
accessing the number. Number enities and other special entity types subclasses the

abstract class EntityType. The class structure representing an entity is illustrated in
Figure 3.5.

 31

Figure 3.5 - The main classes in the representation of Entity

3.2.3 Relation
The object structure representing a relation is illustrated in Figure 3.6. The internal data
of Relation are stored in the RelationData object. A relation connects two entities,

represented by the from and value variables in LocalRelationData. From a

RelationData object, and so also a Relation object, we can then access both
entities involved in the relation. In the discussion on how to implement constraints, this
may be an interesting fact.

A relation also has a type, for example subclass of. This is represented by a variable
type of the class RelationType that is a specialisation of Entity. Recall from Figure
3.2 that Relation together with Entity are direct subclasses of the most general concept
Thing. This relation frame is actually not a relation, but a relation type, and the frames
inheriting from it are different kinds of relation types. For details see the lower right
corner of Figure 3.6. As mentioned, relations in Creek always have an inverse relation.
The inverse variable in LocalRelationData points to the Relation object of this
inverse.

32

Figure 3.6 - The main classes in the representations of Relation

 33

4 Functional requirements
In section 2.2 through 2.6 we discussed different frame-based knowledge
representation systems with emphasis on their constraint mechanisms. We also gave
an enumeration of constraint types found in these systems. Here we describe what we
want from a constraint mechanism in TrollCreek.

4.1 Constraint types

4.1.1 Cardinality constraint
In LispCreek a slot can have a single value or a list of values [3]. If you want to have
multiple values for a single slot in TrollCreek you have to add a new instance of the slot
for every value. This means that one frame can have many slots of the same type.
Representing a person Kari with three children will then be as in Figure 4.1.

Figure 4.1 - Cardinality in TrollCreek

This is the natural way to do it when using a semantic net to represent the frames.
Accordingly the cardinality constraint in TrollCreek will not be a constraint on how many
values a slot can have, but rather how many slots of a given type an entity can have. In
TrollCreek it is not possible to define that a frame shall have a given slot without giving
it a value. The presence of a slot therefore implies that there is a value. Constraining
the number of slots is thus semantically equivalent to constraining the number of
values.

The cardinality constraint is a very common constraint type in frame-based knowledge
modelling systems. Besides, it is also essential in database modelling. Cardinality
constraints should therefore be included in the design of a constraint system in
TrollCreek. The constraint should be as flexible as possible, allowing to define an upper
bound (at most X), a lower bound (at least Y) and a range of allowed cardinalities (from
Y to X).

4.1.2 Concrete value constraints
In addition to defining how many values there can be of a kind, it is useful to constrain
what values a slot can have. One way to do this is through concrete value constraints.
This should be done by defining the closed set of allowed values for a slot. In some
cases it can also be useful to define some values as not allowed, indirectly allowing all
others.

34

4.1.3 Value range constraint
Numerical values are common in most domains. For instance to avoid people getting
unreasonable old in our knowledge bases it can be helpful to add range constraints to
numerical values. Age may for example be constrained to be in the range 0 to 130. The
range should be defined as an interval or by only stating a maximum or minimum
value. This constraint type should be included in TrollCreek’s constraint mechanism.
In the above definition of value range constraints only one interval of allowed values
can be stated. In some cases it may be interesting to define more than one interval, or
maybe define an interval as disallowed. This should also be implemented.

4.1.4 Value class constraints
In the concrete value constraint we define a list of allowed values for a slot. Sometimes
the set of allowed values has a size that makes it bothersome to enumerate. If then the
allowed values are all subclasses of some common super class, we can use a value
class constraint. Constraining the class of allowed values for a slot is maybe the most
common constraint type in frame-based knowledge representations.

4.1.5 General constraints
As mentioned in section 2.1 there are many interesting constraints that we cannot
express using the simple constraint mechanisms above. This is constraints dealing with
relationships between more than two frames. The most obvious way to express such
constraints is through a written language, either the native language of the
representation system (as Lisp in LispCreek) or a special constraint language (like PAL
in Protégé).

It should be possible to write expressions describing complex relationships between
frames in the knowledge base. Every frame and slot should be accessible from the
expressions. These constraints can either be attached to the frames they describe
or they can have a global belonging.

4.2 Inheritance
In semantic nets and frame-based knowledge representations inheritance is central.
Properties of a super class are inherited to its sub classes. The most common
mechanism is that properties are inherited through sub-super class relations and
instance relations. In TrollCreek inheritance is augmented through a mechanism called
plausible inheritance that is described in section 3.1 .

Inheritance is also interesting when talking about constraints. Constraints defined in the
top of a hierarchy are likely to be inherited to sub classes. In Figure 4.2 we see an
example of a small knowledge model where the Norwegian folktale character Espen
Askeladd is defined as instance of Boy that is a subclass of Child, subclass of Person.
There are two value range constraints - One saying that the age of a person must be
between 0 and 130, the other saying that the age of a child must be between 0 and 18.
Without inheritance these constraints must have been defined on all instances of man,
woman, boy and girl. With inheritance, the constraint defined on Person is inherited to
all its subclasses and the Child-constraint is inherited to Girl, Boy and Espen Askeladd.

 35

Figure 4.2 - Inherited constraints

In the fairy tale example the constraints is inherited all the way down the hierarchy.
Person could have any number of subclasses in an unrestricted number of levels. All
would have inherited the constraint on the age. In this case the unlimited inheritance is
no problem. If some entity is as subclass of Person, it will probably be relevant to
inherit the constraint.

The constraint mechanism in TrollCreek should allow constraints to be inherited
through has subclass and has instance of relations. This solution is inherited from
LispCreek. Transferring constraints over other relations do not necessarily make
sense. We therefore omit the plausible inheritance mechanism on constraints in this
project.

4.3 Constraints on relations or frames
In 2.1 it was mentioned that there are two ways to define constraints on simple <entity
slot value> relationships. First, we can define the constraint on the pair of entity and
slot. This is most easily conceptualised as constraints defined on the entity. Second,
the constraint can be defined on the relation, independent on what entity the relation
goes from. In TrollCreek the notion of a slot corresponds to the two concepts relation
type and relation. A relation type is represented by an entity that inherits from the entity
Relation. A relation from an entity to another can be seen as an instance of the relation
type. The first constraint type above corresponds to putting a constraint on the relation
instance or the entity and the second to constrain the relation type.

Protégé does not have relation types unless you make new meta classes for slots. By
default all slots are instances of :STANDARD-SLOT. A slot is an independent object.
This means that a slot once made can be attached to any number of frames. Facets
and simple constraints are defined on the slots. This makes both facets and the simple
constraints independent on what frames the slots goes from.

36

Slots in KM are as in TrollCreek defined as frames in the knowledge base. The slot
frames have six build in slots. Three of them can be seen as constraints. Domain is a
make-sense-for constraint – ergo a constraint on the from-frame of the relation. Range
corresponds to the value class constraint. Finally the slots have a Cardinality slot that
can take the values 1-to-1, 1-to-N, N-to-1 and N-to-N. These slot constraints are
accordingly defined on the relation independent on the frame. In addition KM does
have a constraint mechanism where the constraints are defined on the frames.

In KL-ONE constraints seem to be defined on the constraint instances. CreekL stores
constraints as facets on the slots. Slots are independent frames that live perfectly well
without being attached to any frame.

We see that different systems use different approaches in this question. Protégé uses
one approach, KL-ONE another, and KM uses both of these. How shall we handle this
in TrollCreek? In the Protégé method, adding a constraint to a slot affects all frames
that have this slot. Given the example from Figure 4.2 it would have been impossible to
define two different value range constraints on the has age relation from person and
child. To do this you would have to define two different has age slots. Choosing
between these two methods, binding the constraints to both the frame and the relation
is most flexible. Some constraints are however practical to define on the relation type. If
the constraint by nature should have validity on all relations of a given type, it is time-
saving to be able to define it once on the relation type and not on all entities having this
relation. An obvious example is the makes-sense-for constraint that does not make
sense if it is defined on an entity.

In the implementation it will be prioritized to realize the constraint bound to an entity as
these seem to give most utility. Constraints on relation types are however too important
to be left out of the further discussion. They will therefore be discussed in section 7.3 .

 37

5 Design and implementation

5.1 Representation
After listing the different constraints mechanisms we want to implement in TrollCreek, it
is now time to discuss how they can be implemented. In this section we discuss how
the constraints can be represented in the TrollCreek architecture, first at the model
level and then at the implementational level. Topics concerning how constraints are
evaluated are discussed in 5.2 .

5.1.1 Model level
In this section we will discuss how constraints can be included into the model level or
conceptual level of the TrollCreek system. We will also examine whether it is possible
to represent the constraints solely on this level using existing implementation level
structures. If this is possible we will save the time and effort required to implement a
low level representational structure for the constraints. We then only have to make
some high level adaptations to allow editing and browsing constraints. Evidently we
also must develop a constraint checking mechanism. This approach is used in Protégé
(described in section 2.6).

In Protégé both classes, slots and constraints have system- or meta-classes describing
them. All normal classes are instances of :STANDARD-CLASS or some user-defined
meta-class. From Figure 5.1 we can see that slots, facets and constraints are
represented correspondingly. This is meant as a way of creating templates for different
kinds of classes, slots and facets. As described above, Protégé represents the simplest
constraints as facets, and the more complex as PAL-constraints. Both are represented
in the model as instances of some meta-class. This means that the constraints are
stored as an integrated part of the knowledge model. The knowledge representation
system does not have to know that these concepts are constraints – they are just some
kind of class [23].

Figure 5.1 - Meta-classes in Protégé

To the left we see the tree of system- and meta-classes in Protégé. The system class
representing PAL-constraints is selected and its facets are shown in the class editor to
the right.

38

When creating a new knowledge model in TrollCreek we do not get an empty model. At
a minimum a basic epistemological model is included. This model contains some
entities and relations playing a role related to Protégé’s meta-classes. The most
general concept Thing, the concepts Relation and Entity and among other the basic
relations has subclass, has instance and has inverse are part of this ontology. For case
based reasoning either Simple CBR model or the more extensive Creek IsoPod model
(see appendix A) are used. These models contain entities and relations used to model
and represent cases and relations among cases. By connecting our Creek knowledge
models a top ontology, we add semantics to our model. Creek’s reasoning
mechanisms distinguishes relations and entities, knowing their different roles in a
model. Recall from 3.1 that the special relation Transfers are used to tell the reasoning
mechanism that one relation transfers another.

Following this design we can add the concept of constraints to the top ontology. Figure
5.2 suggests making Constraint a subclass of Descriptive Thing. With this, the
constraints will be integrated into the ontology of the knowledge model, also making a
contribution to the overall semantics of the model.

Figure 5.2 - Top ontology of TrollCreek

As described recently Protégé represents constraints as instances of different
constraint meta-classes. In TrollCreek this corresponds to representing the constraints
as frames inheriting from the constraint frame shown in Figure 5.2.
Copying the Protégé solution is however not straight forward. The representation in
Protégé is at a higher abstraction level than in Creek. For example the slots in Protégé
can have values of different datatypes (Table 2.15). PAL constraint frames have the
four slots :PAL-NAME, :PAL-DESCRIPTION, :PAL-RANGE and :PAL-STATEMENT, all
with data type string. All but the first of these typically contain multiple lines of text. In
TrollCreek the slots can only have entities as their value. By default entities only have a
name describing them while the properties are expressed through the relations.
Representing constraints using the name field of entities will result in a messy and
unreadable model. TrollCreek do however have a possibility to associate more
information to an entity. Every entity has an (possibly empty) attribute called
entityObject that can hold any java object as its value. The current user interface

 39

enables inserting strings, URLs and numbers into this place. Using this attribute,
constraints can be represented as a single entity/frame with a describing name in the
entities name field, a description in the entities description field and a constraint object
in the entityObject field. The constraint object can be a string with a constraint
expressed in some constraint language or it can be a special constraint object.

As described above this approach has the advantage of not requiring any changes to
the knowledge representation system in TrollCreek. We use the already existing
structure to represent our new constraints. The user interface however, must be
augmented to allow the definition of constraints. We also have to define how the
constraints are to be represented inside the entityObject.

At the conceptual level this may seem as a good solution. The constraints are
represented in the model as a special kind of frame tidy placed in the ontology
alongside entities and relations. The solution may be good at the conceptual level, but
using the entities entity object to store the constraint is not preferable. As is mentioned
in section 3.2.2 this attribute are primarily used for storing type specific information of
an entity. We are then using the underlying entity-structure to store something that is
not entities. In TrollCreek’s implementation there is a Relation class to represent

relations and an Entity class to represent entities. To be consistent with the existing
implementation we therefore have to introduce some class structure at the
implementational level to represent the constraints. The solution sketched above can
however be used at the model level. Entities and relations are represented both at the
implementational level and at the model level. Constraints can be treated the same
way adding some semantic to the model.

5.1.2 Implementational level
In section 3.2 we described the structure of TrollCreek’s implementation. Here we will
discuss possible ways to implement constraint representation into the existing class
structure. The internal representation of the constraints should be tidy and ideally not
involve changes in too many classes.

Above we suggested representing constraints as a special kind of entity with some
constraint object in the entityObject attribute. This was rejected because the entity
structure should not be used to represent something not being an entity. Another
possibility is to store the constraints of an entity as a list in the entity’s entityObject.
This allows us to store the constraints without changing anything of the internal
knowledge structure of TrollCreek. We just have to make a constraint structure to put
as an object in the entityObject variable. The only part of the system that has to
know this is the constraint checking engine, and of course the user interface
component that allows the user to write the constraint. The thought may seem
tempting, however, doing this we occupy the entityObject, blocking other data to be
stored there. The entityObject can only store one object. As mentioned in 3.2.2,
storing type-specific data is the intended purpose of the object. Using the
entityObject is then no good solution either.

From the above we can conclude that some more extensive additions have to be made
to the representation. This can be done by borrowing some design decisions from the
way relations are implemented. In EntityData there is a list of relations that “goes

from” the entity. We introduce a corresponding list of constraints in EntityData. The

entries in the list point to Constraint objects that represent the constraints, possibly

containing ConstraintData objects if necessary. The solution is sketched in Figure
5.3.

40

Figure 5.3 - Sketch of a constraint representation in TrollCreek

As described in 3.2.1 one important idea behind the design of TrollCreek is to allow the
knowledge model to be implemented and stored different ways. This is the reason why
the KnowledgeModel, EntityData and RelationData are represented as interfaces.
When making extensions to TrollCreek it will be favourable to design the new
components in the same “spirit” as the existing system. Constraints are therefore
represented by a Constraint class being the programmatic interface to the constraint
class structure. The internal data – or instance variables, to follow the object oriented
jargon - of the constraint is stored in some implementation of the ConstraintData
interface. To make a solution to use with the current version of TrollCreek this interface
is implemented by a class called LocalConstraintData. To allow the constraint types
to be represented in the semantic network, the ConstraintData class points to a class
representing its type. This class inherits from EntityType just like RelationType
does.

Constraint objects

In Figure 5.3 we saw a sketch of how constraints could be implemented into and
attached to the existing java classes of TrollCreek. This sketch is however somewhat
superficial to be used as a guide in the programming process.

So far we have used a top-down approach in discussing how to include constraints into
TrollCreek. Now we will go bottom up to se how we can make the design more
concrete. Figure 5.3 says that a constraint should be implemented using a constraint
object and a constraint data object, just like the way entities and relations are
implemented. Constraints are however more complex structures than entities and
relations because they have a partly procedural nature.

 41

For a moment we move away from the constraint design discussed so far. Assume we
shall make a simpler constraint mechanism than the one discussed. The constraints
are not integrated into the knowledge model. Instead we have an external mechanism
with constraint objects that state restrictions on the knowledge model. There are one
constraint class for each type of constraint. In these classes the constraints are
expressed through a check-method that both define and checks the constraint.

The constraints are customized by attaching them to different entities and relations. In
this simple mechanism constraints are stated by creating constraint objects with
different entities and relations as arguments. Constraint checking is encapsulated into
the objects and is as easy as evoking the check-method on all constraint objects.
Figure 5.4 illustrates this using a class-diagram. Here all constraint classes implement
an interface called Constraint that contains a single method check. This means that
the constraint checking loop can treat all constraints equally despite their different
types. The only thing it has to know is that a constraint has a method called check that
returns something saying whether the constraint is met or not. In Figure 5.4 the method
returns a boolean value – true if everything is ok and false if the constraint is violated.
In a real system it should probably return some more information on how or why the
constraint is violated.

Figure 5.4 - Constraint objects

The general constraint can also get its own constraint object. This object may instead
of taking entities and relations as arguments, take a string defining the arbitrarily
complex constraint. Such an object must have methods for parsing the string and
interpreting the constraint. This could however be hidden inside the object making it
look like any of the other constraints. The implementation of the general constraint is
discussed later.

The approach described here is certainly too simple to meet the needs for a constraint
mechanism in TrollCreek. However, it may be used as an inspiration or a starting point.
Especially the simplicity of constraint checking is tempting to exploit. Encapsulating
complex details inside objects is one of the central things in object oriented
programming. It is also quite easy to express the constraints as java code in a check
method. The representation package in the TrollCreek implementation has a rich
API that enables us to easily get information from the knowledge model. There is for
instance no need to write intricate algorithms for traversing the graph representing the
semantic network.

42

Connecting constraint objects to the model

We will now seek to find a way to sew together this simple mechanism with the overall
design from Figure 5.3. Above we decided to follow the design principles from Entity
and Relation having a Constraint class which wraps a ConstraintData class
containing all the data of the constraint. The constraint classes from Figure 5.4
represent the core of the constraint. In addition we may need some way to store a
description of the constraint. These data fits naturally into the ConstraintData object.
Next we have to figure out whether the different constraint objects shall be attributes in
the ConstraintData objects or if they themselves should play the role as

ConstraintData objects. This question leads us to another important decision: At
which “level” in the code do we distinguish between the different constraint types?
Should we replace the one top level Constraint with four or more specified constraint

objects, or should there probably be one Constraint class that can hold different

types of ConstraintData objects? Again we borrow design decisions from the rest of
the TrollCreek system. An analogous phenomenon to the different types of constraints
is the different types of entities. In the current implementation we can mention Case

and NumberEntity as special forms of the entity object. These two classes extend3 the

Entity class through the EntityType class (Figure 5.5).

Figure 5.5 - Hierarchy of entity types

What distinguishes NumberEntity from Entity is the ability to store a number in the
entityObject attribute. This involves a new constructor method taking a number as
argument, and some methods to access and manipulate the number. By using the

specialized entity class that knows how to handle numbers, the standard EntityData
class can be used. EntityData does not know, and do not have to know, what kind of
data it stores in its entityObject attribute. Similarly, by having different constraint
objects at the top level that handles the differences, we can make a general
ConstraintData class that handles different types of constraint data.

In Figure 5.6 we suggest a class design for the constraint mechanism. At the top of the
diagram we find the Entity class. Because all constraints listed in the requirement
section are centred around an entity, it is practical to tie the constraint structure to the
entities. As we saw above the Entity object itself do not hold any data. All its data are
hold by an entity data object. At the top of the constraint structure we have the abstract
class 4 Constraint that act as a super class for the classes representing the different

3
 In the Java terminology the word extend is used to say that a class inherits from another class. It is also used as a key
word in the programming language
4
 A class that is declared abstract cannot be instantiated, but must be subclassed by a child class. It can, in contrast

to an interface, contain instance variables and complete methods.

 43

constraint types. Methods and instance variables that are common for the different
constraint types are placed in this class. As with Relation and Entity the

Constraint class just act as a wrapper or programmatic interface for the data objects.

Its only instance variables are pointers to the KnowledgeModel and the

ConstraintData. Detailed class diagrams showing all attributes and methods are
found in appendix B .

Figure 5.6 - Class diagram of constraint types

The figure shows the structure of the classes. Extensive diagrams with attributes and
methods are listed in Appendix B

The interface ConstraintData defines all the public methods that the constraint data
classes shall have. In this project this interface is implemented by
LocalConstraintData that are written to work together with LocalEntityData and

LocalRelationData. The LocalConstraintData contains the constraints ID, its
description and a constraint-object that is an adaptation of the constraint classes from
Figure 5.4.

44

ConstraintObject is an abstract class that is sub-classed by classes for the different
constraint types. These classes are responsible for handling the behaviour of the
constraints. Appendix B shows the details of ConstraintObject and its subclasses.
The core of these classes is the check method that encapsulates the mechanisms for
evaluating the constraint. The constraint is defined in this method that returns an object
of type ConstraintCheckResult that encapsulates the answer from the check.
Checking the constraint is done by evoking this method and the result from the check
can be requested from the result object. This object contains a boolean value that says
whether the constraint is violated or not, and a string with an explanation. If we in the
future want to give the results another form, it is easy to put more data into this object.
As an example we can imagine a scenario where we want to give a graphical view of a
constraint violation. Then we probably will return the entities and relations involved in
the violation.

5.1.3 General constraints
We have now made some decisions about how to implement the four simpler
constraint types. The implementation of the general constraint mechanism is however
not discussed yet. With the constraint design we have build so far, it is straight forward
to add a new subclass of Constraint and ConstraintObject.
We now have to decide how the general constraint shall be expressed. As written
earlier the most obvious way to express such constraints is through a written language,
either the native language of the representation system or a special constraint
language. The first approach is used in the Lisp version of Creek were all slot and facet
values can be lisp expressions. In Protégé the most complex constraints are expressed
through the Protégé axiom language.

Constraint language

A possible way to solve this in TrollCreek is to define a constraint language (possibly
stolen from KM or Protégé) and make an interpreter for it. The interpreter translates the
statements into some underlying constraints that must be defined in the system or
directly to the native language of TrollCreek. The advantage of this approach is that
you can accommodate the language to perfectly fit the conceptual model of the
TrollCreek knowledge representation and such making it easier to use. To write an
interpreter for such a language that translates to Java, the native language of
TrollCreek, is however a quite demanding task involving problems attached to parsing
etc. Making a new language also forces the user to learn a new language.

Write constraints in java

A possibly better and certainly easier solution is to allow the user to write the complex
constraints in Java. Loading and unloading classes in Java is not straight forward,
however there are code libraries available that emulates a Java virtual machine and
can interpret Java source code dynamically. In this project DynamicJava [10] is used to
prove the concept. This package contains a method that can be called with a piece of
Java source code as argument and returns a Java object. The source code can be a
complete class or just some lines of code.

 45

private boolean constraint(Entity e){
 /* write your constraint here. return false if the
 * constraint is violated, else true
 */
}

private boolean constraint(Entity e){
 /* Cardinality constraint for the relation has owner.
 get all relations of type "has owner" */

 Relation[] rels = e.getRelations("has owner");

 /* If there are more than 1 owner, return false */
 if(rels.length > 1)
 return new ConstraintCheckResult(
 false,
 “more than one owner”);
 else
 return new ConstraintCheckResult(true, “No problem”);
}

Table 5.1 - General constraints in Java

In Table 5.1 it is shown how this can be done. The user gets an empty method with
complete declaration where she can write her constraint. It is also shown how a simple
cardinality constraint can be expressed, by counting the length of an array containing
the relations of a specific type.

The disadvantage of this solution is that the user must have thorough knowledge about
the internal representation of TrollCreek. This is not necessarily designed to fit the
surface representation or be easily understood. However, the gap between the
representation and the user interface in TrollCreek is not very large.

A way to make it easier to write such constraints is to make a set of wrapper-methods
that supports the user with information relevant to constraint writing. This can simply be
to supply already defined methods with new constraint-like names, or it can be a
wrapping of more complex operations into one method. Such methods will not do
anything with the functionality of the mechanism, but rather act as syntactic sugar,
easing the job of the user.

5.1.4 Inheritance
In section 4.2 we stated that constraints in TrollCreek should be inherited over
subclass and instance relations. The design currently defined do not support
inheritance. In Figure 5.4 the constraint objects contains instance variables
representing the from-entity and the relation that is involved in the constraint. The two
instance variables were intended to be set during the initiation of the objects of this
class. Consequently the constraint is bound to a given entity.

To allow constraints to be inherited it is not practical to store the from-entity in the
constraint checking object, as was done in Figure 5.4. We must be able to check all
constraints with many different entities. In addition to checking them with the entity that
owns them, they must be checkable with the entities that inherit from the owner. One
way to enable this is to send the entity to be checked as an argument to the constraint
checking method.

When checking an entity’s constraints we can iteratively check the constraints first with
the entity itself and then with all its subclasses. Alternatively, when requesting all
constraints from an entity, the entity can return its own constraints and all the

46

constraints of its super classes. Then we can check all these constraints with the entity.
The latter is chosen in the implementation. Both approaches give the same result.

5.2 Constraint checking
Having established a representation of the constraint mechanism, it is time to decide
how the constraints should be checked. It is already settled that the individual
constraints are checked by calling the constraint object’s check method. There is
however many questions still to be answered.

5.2.1 Time of constraint checking
First we discuss when the constraints shall be checked. Cyc checks constraints when a
new piece of information is introduced to the knowledge model. Doing this they assure
they never get erroneous knowledge in the model. The same approach is followed by
the lisp version of Creek. In LispCreek the user gets a message that the value entered
is illegal and has been rejected. KM has a lazy approach compared to these two. In KM
the constraints are checked during inference. When information from a frame is
requested the frames constraints are checked and the user notified if the result is
negative. In Protégé no constraints are checked unless the user asks for it. PAL
constraints are run on demand. Violations are presented to the user, but the system
does nothing to force a correction. The simpler constraints defined in the facet
however, are not really checked at all. They are enforced by the graphical user
interface that does not allow the user to insert erroneous knowledge.

In the frame systems examined above we see that there are mainly three different
approaches to the question of when the constraints shall be checked.

1) During insertion of knowledge (as in Cyc and CreekL)
2) During inference (as in KM)
3) On demand (as in Protégé)

Checking constraints during insertion of knowledge ensures that all knowledge in the
model is consistent. Erroneous knowledge is not allowed to be inserted. This is of
course favourable, but the solution is not problem-free. In the process of building or
editing a knowledge model there may be times when the model is temporary
inconsistent. The most obvious example is perhaps cardinality. If we have a cardinality
constraint stating a minimum number of values for a slot, it will consequently not be
met when the first value or values are entered. The other constraints are probably
possible to obey during the building of a model, but creation of entities and relating
them must be done in the right order to avoid violations. This problem can be solved by
allowing the constraint checking to be temporarily turned of or relaxed. However, if we
want a 100% consistent model, it must be possible to check the whole model after
activating the constraints again.

KM’s solution with constraint checking during inference is not subject to the problems
just mentioned. Because TrollCreek is both a frame-based system and a CBR system
TrollCreek have no exact parallel to KM’s inference. In CBR systems the reasoning
process has four main steps: retrieve, reuse, revise and retain [4]. When comparing to
KM we should however focus on the frame part of the system. Every time a node in the
TrollCreek semantic network is viewed in the frame view, all its relations (slots) are
shown – both local and inherited. The underlying task done by the system to do this
must be seen as the inference process of the frame-based representation. If we should
adopt KM’s check method, this would be the place to do it. In TrollCreek the
construction of a model involves using the frame view. If the constraints should be
checked during inference, this will trigger constraint checks. This is however not a

 47

problem because the frame view can be set to only show local relations. Constraint
checking in a system based on inheritance can be computationally expensive if the
knowledge model is large. This is also true for the inference process. To check
constraints every time a frame is viewed can then make the knowledge system
needlessly slow.

Finally we have the method used in Protégé Axiom Language where the constraints
are evaluated on demand. The user can choose from a list which constraints to check
and then run an evaluation on the selected ones. This solution avoids the problems
stated above. During the creation of the model we are neither obstructed nor disturbed
by the constraint mechanism. When we want it we can run an evaluation to get the
constraint mechanism’s opinion of our work.

The constraint mechanism designed above is flexible enough to deal with different
checking procedures. TrollCreek fires a model change event every time a change is
made to the knowledge model. This makes it easy to implement a mechanism that
checks whether the constraints hold after every change to the model. The other
checking mechanisms are also easily implemented. The most flexible solution is to let
the user decide how and when the evaluation of the constraints shall be done. During
different phases in the development of a knowledge model, or perhaps due to different
styles of working, we can use different checking methods. We can then exploit the
strengths of different methods. In the implementation of this project we will for simplicity
chose one of the methods. Because the Protégé approach is most flexible we will
chose something close to that. We will give the user the ability to either check all
constraints in the knowledge model or check constraints, local and inherited, on a
specific entity. The constraint mechanism will only be a guide to the user. It will not do
anything to reject erroneous values.

5.2.2 Summary
In this section we have discussed how the constraint mechanism can be implemented
into the TrollCreek system. The focus has been on the discussion and not on
describing the final result. Javadoc and source code for the implementation can be
found in the file archive attached to this thesis.

48

 49

6 User interface
After discussing how to implement constraints in TrollCreek, it is time to study the
result. This section describes the user interface created to manipulate the constraint
mechanism. An illustrative demonstration of the functionality of the constraint system is
given in section 7.1

6.1 User interface
In TrollCreek knowledge editor there are two main components in the UI. Map view
shows the semantic network and frame view shows the frame of the node selected in
the map view. The UI is shown in Figure 6.1.

Figure 6.1 - TrollCreek knowledge editor

Editing the knowledge model is mainly done in the frame view part of the window. As
described in 3.1 the frame view contains name, description and slots of the frame. To
allow viewing and editing constraints a pane for handling constraints is added to the
bottom of the frame view. To put it in the frame view was a natural choice as long as
the constraints implemented are bound to the frames. The frame view with constraint
pane added is shown in Figure 6.2.

50

Figure 6.2 - Frame view with constranints

A constraint pane (in the red rectangle) is added in the bottom of the existing frame view
pane.

The constraint pane contains two lists of constraints, one for local constraints and one
for inherited constraints. The local constraint list has a button for deleting constrains
next to it. Below the lists of constrains there is a panel for creating and editing
constraints. After selecting a constraint type from the dropdown list more UI-
components appears. The different versions of the Add/edit constriaint panel are
shown in Figure 6.4 through Figure 6.8.

Creating a new constraint is done by defining the constraints properties in the form and
then hitting the Add button. The constraint will then appear in the list of local
constraints, and correspondingly in the inherited constrains list of the frames
subclasses.

The existing frame
view

Constraint pane

Local constraints

Inherited constraints

Editing constraints

Trigger checking
of constraints

 51

To edit a constraint, select the constraint from the local constraint list. The constraint
will then appear in the Add/Edit constraint panel. Hitting the Update button after
changing the constraints properties, will update the constraint. The New button does no
more magic than clearing the Add/Edit panel.

Constraints are evaluated by pressing one of the two buttons in the bottom of the frame
view. There are one button for checking all constraints for the given entity, and one for
checking the whole model. From a human-computer interaction (HCI) point of view, the
Check all button is misplaced. It should be placed somewhere naturally mapped to the
whole model, and not in a window showing one single constraint. This project is
however not about HCI, and placing the button there was time-saving.

When checking the constraints the constraint check result window (Figure 6.3) shows a
list of the violated constraints with some information on how/why the constraint is not
met. The checking mechanism does not do anything to enforce the constraint. The
decisions on how to solve the problems is left to the user.

Figure 6.3 - Result of constraint check

Figure 6.4 - Cardinality constraint form

A cardinality constraint is defined by the relation type it constraints and the minimum and
maximum number of allowed values.

Figure 6.5 - Value range constraint form

A value range constraint is defined by the relation type it constraints and a minimum and
maximum number making a range of values. The range can be allowed or disallowed as
values of the relation. This is toggled by the radio buttons.

52

Figure 6.6 - Value class constraint form

A value class constraint defined by the relation type it constraints and the allowed super
frame.

Figure 6.7 - Concrete value constraint form

A concrete value constraint is defined by the relation type it defines and a list of
values/entities. Values are picked from the dropdown-list below the list of values, and
added to the list by hitting the Add button. The list of values can either be allowed or
disallowed as values for the relation. This is toggled by the radio buttons.

Figure 6.8 - General constraint form

A general constraint is defined by a script written in Java. The script must contain a
method called check, but can be more extensive. By hitting the button labelled Large
window a larger editor window pops up.

 53

Figure 6.9 - General constraint form (advanced)

This window offers a bigger editor window, making it easier to write complex constraints.
Hitting the Check syntax button runs the constraint. If there are syntax errors a
descriptive message is given in the grey bottom panel.

54

 55

7 Evaluation and discussion

7.1 Proof of concept
This project does not contain any mathematical description of the constraints
mechanism. We can then not give any proofs that the mechanism works. In this section
we will test out the constraints and se whether they give reasonable results.

As a test model we use an ontology from the Norwegian folk tale character Espen
Askeladd and his family and friends. Espen has a mother and a father, although they
are not mentioned in the tales. He also has the older brothers Per and Pål. In most of
the stories Espen Askeladd attends to some kind competition where he, by impressing
the King, wins the Princess and half of the kingdom. The ontology is shown in Figure
7.1.

Using this knowledge model, we will test the system by creating constraints and trying
to violate them. The cardinality and value range constraints are defined by a maximum
and a minimum value. Constraints are accepted by the system even if one of the
values is undefined. This makes sense, because sometimes we want to constrain only
the upper or lower bound of an interval. In the representation of the constraints below
the undefined values are denoted by –inf for lower bound and +inf for upper bound.

56

Figure 7.1 - Test ontology, Espen Askeladd

 57

7.1.1 Cardinality constraint
To evaluate how the cardinality constraint mechanism works, we define some
cardinality constraints on the above model.

1) A person can have only one age.
Person cardinality(has age, 0, 1)

2) An adult person can be married to one or zero persons.
Adult cardinality(married to, 0, 1)

3) A child can not be married.
Child cardinality(married to, 0, 0)

Then we introduce some relations violating the constraints.

Mrs Askeladd -> married to -> The King
Espen Askeladd -> married to -> The Princess
Per -> has age -> 15 (years)

First, Mrs Askeladd is already married to Mr Askeladd. Marrying the King she violates
constraint 2. Second, both Espen Askeladd and The Princess are children. According
to constraint 3 they can not get married. Finally, Per already has 16 (years) as his age.
Another age violates constraint 1.
When running the check we get the following result:

4 constraints violated

1 ---
Cardinality(married to, 0, 0)
Cardinality for Espen Askeladd -> married to should be 0 - 0
Espen Askeladd -> married to -> The Princess

2 ---
Cardinality(married to, 0, 1)
Cardinality for Mrs Askeladd -> married to should be 0 - 1
Mrs Askeladd -> married to -> The King
Mrs Askeladd -> married to -> Mr Askeladd

3 ---
Cardinality(has age, 0, 1)
Cardinality for Per -> has age should be 0 - 1
Per -> has age -> 16 (years)
Per -> has age -> 15 (years)
4 ---
Cardinality(married to, 0, 0)
Cardinality for The Princess -> married to should be 0 - 0
The Princess -> married to -> Espen Askeladd

Violation 1 and 4 in the result detects the fact that Espen Askeladd and the Princess
can not get married. The second violation shows that the polygamy of Mrs Askeladd is
detected. Per’s confusion according to age is showed in the third violation.

The experiment shows that the cardinality constraint mechanism works for this test
model. We see that the constraints are correctly inherited down has subclass and has
instance relations.

58

7.1.2 Concrete value constraint
We define some concrete value constraints.

1) A person’s sex must be male or female
Person Concrete value(sex, allowed, {Male, Female})

2) A man’s sex must be male
Man Concrete value(sex, allowed, {Male})

3) A woman’s sex must be female
Woman Concrete value(sex, allowed, {Female})

Then we add some knowledge to the model that will violate the constraints.

The King -> sex -> Female
Espen Askeladd -> sex -> Man

The King is already defined as an instance of Man. His sex is then constrained to be
Male. Espen Askeladd is instance of Child that is a subclass of Person. His sex should
then be Male or Female. These two errors should be detected by the mechanism.

2 constraints violated

1 ---
Concrete value(sex, allowed, {Male, Female, })
Concrete values allowed: Male, Female,
Espen Askeladd -> sex -> Man

2 ---
Concrete value(sex, allowed, {Male, })
Concrete values allowed: Male,
The King -> sex -> Female

We see that the mechanism detects both the predicted violations.

7.1.3 Value range constraint
To evaluate the value rage constraint, we define three constraints in the knowledge
model.

1) A person’s age must be between 0 and 150
Person Value Range(has age, 0, 150, allowed)

2) An adult’s age must be 16 or higher
Adult Value Range(has age, 16, +inf, allowed)

3) A child’s age must be no more than 16
Child Value Range(has age, -inf, 16, allowed)

We add the relations
The King -> has age -> -3
Pål -> has age -> 19

Recall that the king is an instance of Man that is a subclass of Adult that subclasses
Person. Pål is defined as a child. The age of the king is outside the allowed range for
Person (0-150) and the allowed range of Adult (16- inf). Pål should as a child not be

 59

more than 16 years old.

3 constraints violated

1 ---
Value range(has age, -inf, 16.0, allowed)
Pål -> has age -> 19.0 | Allowed (n < 16.0)

2 ---
Value range(has age, 16.0, +inf, allowed)
The King -> has age -> -3.0 | Allowed (16.0 < n)

3 ---
Value range(has age, 0.0, 150.0, allowed)
The King -> has age -> -3.0 | Allowed (0.0 - 150.0)

The constraint mechanism finds all these violations.

7.1.4 Value class constraint
We evaluate the value class constraint by defining two constraints.

1) A child of a person must be a person
Person Value class(has child, person)

2) An adult must be married to an adult(if he/she is married at all)
Person Value class(married to, adult)

Mr Askeladd -> married to -> Number
Mr Askeladd -> has child -> Number
Number -> child of -> Per

We then add three relations that violate the constraints. Mr Askeladd is married to
something that is not n adult person, and he has a child that is not a person. To
demonstrate how the inverse relations affect constraints, we add a relation saying that
Number is child of Per. There are no constraint defined on Number’s child of relation.
However, defining this relation the inverse Per –> has child -> Number is automatically
added.

3 constraints violated

1 ---
Value class(married to, Adult)
Value class allowed Adult
Mr Askeladd -> married to -> Number

2 ---
Value class(has child, Person)
Value class allowed Person
Mr Askeladd -> has child -> Number

3 ---
Value class(has child, Person)
Value class allowed Person
Per -> has child -> Number

60

We see that the two relationships between Mr Askeladd and Number is detected as
violations. The third violation comes from the inverse relation of Number -> child of ->
Per.

7.1.5 General constraint
To demonstrate the general constraint mechanism we write a constraint that is
supposed to validate that the value of an has age relation is a number. In TrollCreek a
number is represented by an entity holding a number as its entity object. The constraint
then says that the value of an has age relation must be an entity with a number

(subclass of java.lang.Number) in the entityObject attribute. The constraint is
defined on the Person frame. Java code for the constraint is presented in Table 7.1.

Table 7.1 - General constraint

We add the relation
The Princess -> has age -> Child

ConstraintCheckResult check(Entity entity){
 Entity age;
 boolean violated = false;

 try{
 age = entity.getRelation("has age").getValue();
 }catch(NoSuchRelationException e){
 /* If the person does not have an age,
 the constraint is not violated */
 return new ConstraintCheckResult(true, "No age");

 }

 /* If the value of "has age" is an entity with no entity object,
the constraint is violated */

 if(age.getEntityObject() == null){
 violated = true;
 }else{
 /* If the entity object is not a number,
 the constraint is violated */
 if(!(age.getEntityObject() instanceof Number))
 violated = true;
 }

 /* Return the result of the constraint check */
 if(violated){
 String res = entity.getName() + " -> has age -> " +
age.getName() + "\n" + age.getName() + " is not a number";

 return new ConstraintCheckResult(false, res);
 }else{
 return new ConstraintCheckResult(true, "ok");
 }
}

 61

When evaluating the constraint we get the following result:

1 constraints violated

1 ---
The Princess -> has age -> Child
Child is not a number

7.2 Weaknesses with the solution

7.2.1 General constraints
Writing constraints in java using the inner representation of TrollCreek directly is not
trivial. Java is a general programming language, not a constraint language. As an
example we will try to write a constraint saying that a person’s child must be at least 12
years younger than the person.

1 public ConstraintCheckResult check(Entity from) {
2 Number parentAge = (Number) (from.getRelation(“has

age”).getValue().getEntityObject());
3 Relation[] children = from.getRelations(“has child”);

4 //For all children of the person
5 for(int i = 0; i < children.length; i++){
6 // Get the age of the child
7 Number childAge = (Number)

(children[i].getValue().getRelation(“has
age”).getValue().getEntityObject());

8
9 // If the age difference between parent and child
10 // is less than 12 years the constrait is violated
11 if((parentAge.floatValue() - childAge.floatValue()) < 12){
12 String res = children[i].getValue().getName() + “ is

to old to be child of “ + from.getName();
13 return new ConstraintCheckResult(false, res);
14 }
15 }
16
17 return new ConstraintCheckResult(true, “All is ok”);
18 }

Table 7.2 - General age constraint

Intuitively we would write the constraint like in Table 7.2. First we get the persons age
by getting the has age relation of the person entity, and requesting the entity object of
the entity representing the age. Second we get the array of has child relations of the
person. Iteratively we get the age of each child and comparing it with the age of the
parent. If the child is to old, we return a negative answer. If no violation is detected, we
return a message that all is ok.
This solution will work in some cases, but not all. If for example one of the children has
no age slot, a jcreek.representation.NoSuchRelationException is thrown.
Consequently we will have to either catch the exception or make sure the failure does
not happen. An experienced java programmer will have no problems handling
exceptions. We do however assume that the systems will be used by persons not

62

familiar with java. The constraint above will have to be rewritten to work generally.
Lines 2 and 3 must be replaced by the code in Table 7.3 With these changes the
constraint works and is stable.

Relation[] children = null;
Number parentAge = null;

try{
 children = from.getRelations(“has child”);
 parentAge = (Number) (from.getRelation(“has
 age”).getValue().getEntityObject());

}catch(NoSuchRelationException e){
 return new ConstraintCheckResult(
 true,
 “Parent got no children or no age”);
}

Table 7.3 - Exception thandling in general constraints

Writing general constraints in java is not as flexible as it should be. As we have seen,
the user must know the implementational details of the knowledge representation
including error handling and exceptions. Another weak point is that the constraints are
defined as methods or functions. In the early years of work on knowledge
representations there was a debate regarding procedural versus declarative
representation of knowledge; knowing how versus knowing that [16]. In the
implemented solution the user has to define how the constraint is to be checked
instead of stating how the ideal model should be. Most frame-based knowledge
representation systems use a logic-like constraint language that allows the constraints
to be defined declaratively.

7.3 Missing functionality
During this text a lot of useful functionality is suggested for the TrollCreek system.
Because of time restrictions not all is implemented. In this section we will discuss this
functionality and sketch how such mechanisms can be implemented.

7.3.1 Constraints on relation type
In 4.3 it was discussed whether the constraints should be stored on the entity or on the
relation type. In the implementation the first of the two was chosen. However, defining
constraints on the relation type can also be useful.

Because relation types are represented as entities in the knowledge model there is
already a possibility to place constraints on them. We can constrain the ontology of
relation types. This can be constraints like:

• Relation types inheriting from Temporal Relation must have default explanation
strength lower than 0.5 (value range).

 Isa(x, Relation Type) ∧ Isa(x, Temporal Relation) →

 DefaultExplanationStrength(x, y) ∧ LessThan(y, 0.5)

• A relation type can have only one has inverse relation (cardinality).
 Isa(x, Relation Type) → Equals(NumberOfValues(Has Inverse), 1)

 63

• The value of has inverse must be a relation type (value class).
 HasInverse(x, y) → Isa(y, Relation Type)

This is however not what we seek when talking about constraints on relations. The
constraints on the relation types are not transferred to the relations of the type. What
we seek is constraints on the relation types that constrain how the relations of that type
can be used.

Because relation types in TrollCreek are represented as entities it should be possible to
reuse some of the constraint mechanism from the constraints on the entities. A sketch
of how this constraint can be included in the system must describe the mechanism both
at a conceptual level, and at the implementational level.

Conceptual level

As described above, there already are constraints on the relation type frames. To make
the constraints we want, we have to introduce another set of constraints on these
frames. Frames inheriting from Relation will then have two sets of constraints.

1) Constraints on the relation frame, the concept of the relation
2) Constraints on instances of the relation

As discussed these two sets are different in nature and should therefore be kept
separate.

As mentioned several times, inheritance is central in frame-based systems. The
relation types are represented as frames to allow reasoning about relation types, and to
better define the meaning of a relation. Relation types can then inherit properties from
other relation types. Like constraint on entities, constraint on relation types should then
be inheritable over has subclass and has instance relations.

Constrainting from-frame and to-frame
A relation is a concept that holds pointers to two frames telling that they are related
some way. When designing a constraint mechanism to put on relations it is natural to
consider if both to- and from-frames should be constrainable. The constraints
implemented so far constrains the to-frame of the relations on a given frame. As
discussed in 4.3 being able to constrain the to-frame of a relation is desirable. In 2.1.3
it was also shown that at least one constraint type, value class, makes sense when
constraining the from-frame of a relation. Cyc has a constraint called makesSenseFor
that restricts what values that can fill the from role of a constraint [11]. This is a useful
constraint that should be available in TrollCreek as well. The concept of
makesSenseFor is in fact already introduced in Creek as a relation in the extensive top
ontology mentioned in 5.1.1. When used, relations of this type tell the reader of the
model that the use of the given relation is restricted. It is however left to the modeller to
make sure that the restriction is satisfied. No evaluation mechanism does this.

Constraint types
What constraints should be included in this mechanism? In the implemented constraint
system we have five constraint types: Cardinality, concrete value, value class, value
range and general. Do all these make sense in this setting? At the first glance the
answer is no.

Using cardinality to constraint the from-frame of a relation will for instance have the
following meaning: How many times the relation can be used in the entire model.
Constraining the cardinality of the to-frame of a relation is also troublesome in the
Creek framework. The meaning of the constraint will be how many frames in the entire
model can be pointed to by the relation. This is presumably not what users of the
system want to model. This is however a rather strict interpretation of the constraint. A

64

more pragmatic solution will be to give the cardinality constraint the following
meanings:

• On to-frame: For any from-frame there can be x to y instances of the relation
pointing away from it.

• On from-frame: For any to-frame there can be x to y instances of the relation
pointing to it.

Interpreted this way the cardinality constraint makes good sense defined on a relation
type.

Above we mentioned the makesSenseFor constraint from Cyc. This is in fact a value
class constraint for the from-frame of a relation. In TrollCreek a relation has a from and
a value attribute. The latter is the same as what is called to-frame earlier in this text. As
long as the to-frame of the relation is called its value, it is confusing to talk about value
class constraints on the from-frame of a relation. However, the mechanism of this
constraint is useful. It is easy to see that value class constraints on the to-frame or
value of a relation is possible and valuable.

Concrete value constraints are very similar to value class constraints. They both
constrain what frame that can fill a role. From what is said about value class constraints
in the previous paragraph we can conclude that concrete value constraints should also
be available on relations – on both sides.

Value range constraints are also related to the two just mentioned in that they all
constrain what frames can fill a role. A range constraint on the to-frame of a constraint
is clearly sensible. For example it is reasonable to constrain the value of the relation
age to be greater than zero. But is it reasonable to use this constraint on the from-
frame? This will be to constrain what numbers can be the from-frame of a relation. In
fact, this will make sense. For instance if we are modelling a mathematical domain and
want to show what numbers are dividend and divisor in an equation. To avoid dividing
by zero we can constrain the from-frame of the relation divisor of to be greater than
zero.

Finally we have the general constraint mechanism. This constraint shall be the means
to realize all types of constraints that can not be expressed using the four just
mentioned. Allowing to define such constraints on relation types do not introduce any
new functionality to the system. Because the existing general constraints on entities
gives an access point to the knowledge model and allows us to write anything, general
constraints on relation types can already be written. The already existing mechanism is
attached to entities. Although it is possible, it is no good solution to write relation
constraints on an entity. To make the concept more understandable there should be a
general constraint mechanism tied to relation types. Here the access point to the
knowledge model can be the relation.

As mentioned a few times earlier in this text, all relations in Creek have an inverse
relation. A constraint defined on the to-frame of a relation will then implicitly be defined
on the from-frame of the inverse relation. By using a constraint saying that multiple
inheritance is not allowed Figure 7.2 illustrates how constraints on relations also pass
for the inverse relation.

 65

Figure 7.2 - Constraint: no multipple inheritance

Reviewing the five constraint types from entity constraints we have seen that all of
them are sensible and useful when considering constraint on relations.

User interface
Although it is an implementational thing, we will now see how we can extend the user
interface of the existing constraint mechanism to include constraints on relations.
Because the user interface hides the internal implementation from the user, it may be
said to be a part of the conceptual leve.

Recall the constraint panel in the frame view shown in Figure 6.2. In Figure 7.3 we
suggest extending this panel with a tabbed pane with two tabs. The existing panel for
constraints on entities is put as one tab and a new panel for constraints on relations is
put on the other tab. When a frame not representing a relation type is selected the
relation tab will be invisible or disabled. The new panel is similar to the entity constraint
panel by having two lists of constraints and a section for editing and adding constraints.
There are mainly two differences. First, we do not need the drop down list for choosing
the relation to be constrained. Second, two radio buttons are added that allows the
user to state whether the constraint shall constrain the from- or to-frame of the relation.

66

Figure 7.3 - GUI for relation constraints

Relation constraints should probably be visible in the frame view of the entities they are
affecting. For instance, if there is a cardinality constraint on the relation has parent, all
entities having this slot is affected by the constraint. When browsing an entity such
constraints should be visible.

Implementational level

There are mainly two problems that have to be solved to implement these constrains
into the system. First we have to find some way to represent and store the constraint
attached to the relation type objects. Next the constraint checking mechanism must be
updated to check constraints on relations. To make the constraint mechanism a whole,
we will try to reuse the design of the entity constraint mechanism as long as possible.

Representation
We start with the representation. In the already implemented constraint mechanism we
used a class structure similar to what is used for entities and relations to represent the
constraints. Constraint objects for the different constraint types have methods for
accessing the data and functionality of the constraints. They are interfaces to the
constraint structure. The data and properties for the actual constraints are found in
constraint data objects. The most central of constraint data’s attributes are the
constraint objects, objects inheriting from ConstraintObject. Recall from chapter 5
that these objects have a check method for evaluating the constraints. Figure 7.4 that
are adapted from chapter 5 shows the structure of the constraint mechanism. As we
see, the structure is identical to the one in Figure 5.6.

 67

Figure 7.4 - Constraint structure

Make a new version with names distinguishing it from the one in chapter 5.

Relation constraints are however slightly different than entity constraints. We must
therefore make new Constraint and ConstraintData classes for the new
constraints. In entity constraints the constraint objects holds a reference to the relation
they are constraining, and data about the particular constraint. As an example
CardinalityConstraintObject have the following instance variables:

String rel; // The name of the relation
int numberMin; // Minimum bound
int numberMax; // Maximum bound

When evaluating the constraint the entity to be checked is passed as an argument to
the check method. Passing the entity as argument to the constraint makes it possible to
check it with different entities. This is used to check the constraint with entities that
inherits the constraint.

When making relation constraints the constraint is bound to the relation type and the
constraint should be inheritable to other relation types. Consequently it should be
possible to check the constraint with different relation types. We can then not have the
relation type permanently stored in the constraint object. The relation type must be
passed as argument to the check method. The instance variables of the constraint
objects will then be the same as in the constraint objects of the entity constraint
mechanism except for the relation reference that is removed.
In the entity constraints the check method has access to the knowledge model through
the entity object. From the entity object the method could get relation objects and the
to-frames of the relations. In the relation constraint mechanism the access to the
knowledge model is through the relation type object. The algorithms of the check
method will then be different than in the entity constraints. Table 7.4 shows how the

68

check method of a simplified value range constraint can be implemented.

int min; // Minimum value
int max; // Maximum value

public ConstraintCheckResult check(RelationType rel){
 boolean ok = true;

 //Get all instances of the relation type
 Relation[] relations = rel.getInstances();

 //For all relations
 for(int i = 0; i < relations.length; i++){
 Entity to = relations[i].getValue();
 int value = ((Number)(to.getEntityObject())).intValue();

 //Check if the value is ok
 if(value < min || value > max)
 ok = false;
 }

 if(ok)
 return new ConstraintCheckResult(true, "");
 else
 return new ConstraintCheckResult(false, "Value not ok");
}

Table 7.4 - Example of relation constraint

Having established the class hierarchy to represent the constraints we need to decide
how these classes can be attached to the rest of the knowledge model. From 3.2.3 we
remember that relation types are represented by objects of the class RelationType

that inherits from Entity through EntityType. Objects inheriting from Entity have
their properties and data stored in an EntityData object. The constraints on entities

are stored in a list named constraints in this object. To be consistent with the existing
implementation the relation constraints must be placed in the entity data object. The
most obvious solution is to make a new list for the relation constraints. These
constraints are in many ways different from the entity constraints: They have a slightly
different function, they are checked slightly differently and handled by other GUI
components. Putting the two constraint types in the same list will then be untidy.

When the constraint is represented in a similar fashion as the constraint on entities, the
constraint checking mechanism can be similar too. The existing checking module has
two check routines, one for checking a whole knowledge model, and one checking the
constraints of a single entity. The first takes a knowledge model object as argument
and the second takes an entity. Checking relation constraints should certainly be
included in the two checking routines. In addition, primarily for testing purposes, it may
be useful to be able to check all relation constraints for a given relation type.

7.3.2 Constraints as part of the ontology
In 5.1.1 we suggested that the constraints or at least the constraint types should be
included in the top ontology of TrollCreek. This has not been implemented into the
finished system. First, the time did not allow the development of a complete constraint
system for TrollCreek. When deciding what to include in the implementation, making a
runable version of parts of the system was prioritised. Second, it was not clear how this
part should be integrated into the system. Making an ontology with a Constraint node,
and nodes for the constraint types is trivial. Such an ontology is shown in Figure 7.5.

 69

The difficult part is to tie the ontology together with the constraint mechanism, and
making it mean something.

Figure 7.5 - Top ontology

7.3.3 Different approaches to constraint checking
In 5.2.1 we discussed at what time the constraint should be checked. In the
implementation lazy evaluation is used. The constraints is checked when the user asks
for it. This was seen as the most flexible solution, especially during the building phase
of the knowledge model. It was however established that at being able to chose
different checking approaches could be useful. Then the user can chose an on demand
approach during the building of the model. After finishing the model a continuous
checking can assure a consistent model during updates and further development. Such
an option can easily be implemented due to a build in mechanism in TrollCreek that
enables listening for model change events. A simple listener can then check the
constraints of the entities involved in updates in the model.

70

 71

8 Summary and further work

8.1 Summary
The goal of this work was to improve the knowledge modelling abilities of TrollCreek by
offering the ability to state constraints on the knowledge model. In doing this we first
discussed frame-based systems and constraint mechanisms in general and developed
a simple framework for classifying constraints. The framework consists of cardinality
constraint, concrete value constraint, value class constraint, value range constraint and
general constraint. The four first constraint types cover most of the useful constraint
mechanisms used in general purposed frame-based knowledge representations. These
constraints restrict single values in the context of a frame and a slot. The last constraint
type covers the need to define more complex constraints where the allowance of a
value is dependent on the values of other slots.

With this framework in mind, the five frame systems, LispCreek, KM, Cyc, KL-ONE and
Protégé was reviewed and discussed. Based on the learning from these systems we
specified a constraint mechanism for TrollCreek. The specification is tightly tied to the
five constraint types defined in the framework, but some details needed adaptations to
work with the semantic net representation of the knowledge in TrollCreek.

A discussion on whether the constraints should be defined on the frames or on the
slots concluded that the first of these was most flexible. The second is also useful, and
the constraint mechanism in TrollCreek should have both options.

Because inheritance is central in frame systems, it was decided that constraints should
be inheritable. This is also the norm in frame systems. TrollCreek have an augmented
inheritance mechanism allowing properties to be inherited over all kinds of relations. It
was however decided that constraints only should be inherited down has subclass and
has instance relations.

Based on the specification, a constraint mechanism for TrollCreek was designed and
implemented. The implementation was designed to fit in with the existing components
of the system. One of the important aspects was the way TrollCreek allows its
knowledge model to be stored different ways using an adapter design pattern.

The implemented constraint mechanism offers the knowledge modeller the ability to
define cardinality constraints, concrete value constraints, value class constraints, value
range constraints and general constraints on the knowledge model. General
constraints are written in java as a check method that the system can evaluate to true
or false. The constraints are defined on the entities, making it possible to state different
constraint sets for the same slot type on different entities. The possibility do define
constraints on the relations was not implemented due to time restrictions, but a sketch
for how this could be solved was given. A simple user interface for defining and editing
constraints was implemented.

Finally the constraint mechanism was evaluated. Using a small and uncomplicated test
model the different constraint types was shown to give the expected result. Although
this is no solid proof for the reliability of the mechanism, it demonstrates its
functionality.

72

8.2 Further work
In section 7.3 we discussed parts of the constraint mechanism that is not realised in
this project. The ability to define constraints on relation types constraining all
constraints of the type is very useful when modelling large domains. This functionality
can save the modeller from defining the same constraint on the same relation type for
different entities.

Another important weakness of the implementation discussed in 7.3.2 7.3 is the failure
to integrate the constraint mechanism in the frame ontology. For the current
mechanism this is not a serious problem – the constraints works well. However,
including the constraints or constraint types in the ontology can help the modeller to
understand the meaning of each constraint type.

Partly related to this is the possibility to use the constraint mechanism in the inference
process. Constraints can be used for example to represent incomplete knowledge.
When used this way, constraints are not only constraints but also domain knowledge.

The KL-ONE system described in 2.5 has a graphical notation for constraints. As
mentioned (3.1) the TrollCreek system has a graphical map view and a form based
frame view as two different views of the knowledge model. The map view gives a good
overview of the model while the form view shows the details of each frame. The user
interface components developed for the constraints in this project is solely tied to the
frame view. Making a graphical representation of the constraints in the map view
should be considered as this will make it easier to “read” the model.

Although it is outside the scope of this project we will suggest using ideas from the
general constraint mechanism to introduce procedural attachment functionality in
TrollCreek. The underlying mechanisms can be used as they are, but a user interface
that is not constraint-like must be developed. There are several situations where such a
mechanism can be useful:

• Procedure as a value for slots

• Batch jobs

• Trigger routines

These aspects should be considered in the further development of the TrollCreek
system.

8.3 End note
A digital version of this thesis and the attached file archive is accessible through the
DAIM5 system at http://daim.idi.ntnu.no. The file archive contains a standard TrollCreek
distribution with source code, runnable jar-files and documentation in the Javadoc
format. The documentation is customized with a description of what parts of the code
that is developed in this project. See the readme.htm file for details.

The TrollCreek system without the additions from this project can be downloaded from
the Creek home page at http://creek.idi.ntnu.no. The page also contains documentation
on the system.

5
 System for digital archiving of Master’s theses at Department of Computer and Information
Science, Norwegian University of Science and Technology.

 73

References

[1] Agnar Aamodt: Knowledge-intensive Case-Based Reasoning and Sustained
Learning. ECAI-90, Proceedings of the 9th European Conference on Artificial
Intelligence, edited by Luigia Aiello, Stockholm, August, 6-10,1990.

[2] Agnar Aamodt: A Knowledge-Intensive, Integrated Approach to Problem Solving
and Sustained Learning. Doctoral dissertation, University of Trondheim & Norwegian
Institute of Technology (NTH), Division of Computer Science and Telematics, 1991.

[3] Agnar Aamodt: A Summary of the CreekL Knowledge Representation Language.
Internal report, Norwegian University of Science and Technology, Department of
Computer and Information Science. 1991.

[4] Agnar Aamodt, Enric Plaza: Case-based reasoning; Foundational issues,
methodological variations, and system approaches. AI Communications, Vol.7,
No.1, March 1994, pp. 39-59

[5] Agnar Aamodt: Knowledge-intensive case-based reasoning in Creek. Peter Funk,
Pedro A. Gonzalez Calero (eds.), Advances in case-based reasoning, 7th European
Conference, ECCBR 2004, Proceedings. Madrid, Spain, August/September 2004.

[6] R. Brachman, J. Schmolze. An overview of the KL-ONE Knowledge
Representation System. Cognitive science 9, pp. 171-216, 1985

[7] Peter Clark & Bruce Porter: KM - The Knowledge Machine 2.0: Users Manual,
http://www.cs.utexas.edu/users/mfkb/RKF/km.html. Last visited 1. June 2006.

[8] W. E. Grosso, H. Eriksson, R. W. Fergerson, J. H. Gennari, S. W. Tu, & M. A.
Musen. Knowledge Modeling at the Millennium (The Design and Evolution of
Protege-2000). In Proceedings ofthe Twelfth Workshop on Knowledge Acquisition,
Modeling and Management (KAW99), Banff, Alberta, Canada, October 16-21, 1999.

[9] Bill Grosso: The Protégé Axiom Language: Overall Design Considerations,
http://protege.stanford.edu/plugins/paltabs/OverallDesignConsiderations.zip
link avaliable at:
http://protege.stanford.edu/plugins/paltabs/pal-documentation/index.htm.
Last visited 1. June 2006.

[10] Stéphane Hillion: DynamicJava - a Java source interpreter.
http://koala.ilog.fr/djava/index.html. Last visited 1. June 2006.

[11] Doug Lenat, R. Guha, K. Pittman, D. Pratt, M Shepherd. CYC: Towards programs
with common sense. Communications of the ACM, vol. 33, no. 8, 1990.

[12] Doug Lenat, R. Guha, Building large knowledge-based systems: representation
and Inference in the Cyc Project, Addison-Wesley, 1990.

[13] Doug Lenat, CYC: A Large-Scale Investment in Knowledge Infrastructure.
Communications of the ACM, vol. 38, no. 11, 1995.

74

[14] N. F. Noy, R. W. Fergerson, & M. A. Musen. The knowledge model of Protege-
2000: Combining interoperability and flexibility. 2th International Conference on
Knowledge Engineering and Knowledge Management (EKAW'2000), Juan-les-Pins,
France. 2000.

[15] Peter D. Karp: The Design Space of Frame Knowledge Representation Systems,
SRI AI Center Technical Note #520, 1993.

[16] Han Reichgelt: Knowledge Representation: An AI Perspective, Ablex Publishing
Corporation, 1991.

[17] Frode Sørmo: Plausible Inheritance - Semantic Network Inference for
Case-Based Reasoning. Master thesis at Norwegian University of Science and
Technology, Department of Computer and Information Science, 2000.

[18] Cycorp, Inc. home page
http://www.cyc.com. Last visited 1. June 2006.

[19] ResearchCyc home page
http://research.cyc.com. Last visited 1. June 2006.

[20] OpenCyc home page
http://www.opencyc.org. Last visited 1. June 2006.

[21] The Mozilla Public License http://www.mozilla.org/MPL/.
Last visited 1. June 2006.

[22] Protégé-2000 users guide
http://protege.stanford.edu/publications/UserGuideA4.pdf.
Last visited 1. June 2006.

[23] PAL Documentation
http://protege.stanford.edu/plugins/paltabs/pal-documentation/index.htm
Last visited 1. June 2006.

[24] Creek home page
http://creek.idi.ntnu.no. Last visited 1. June 2006.

 75

A Ontologies

Creek IsoPod model

Figure 8.1 - Creek IsoPod model

The three highest levels of the IsoPod onltology

76

B Class diagrams

Constraint and its subclasses

 77

ConstraintObjects

