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Abstract 
This work studies constraint mechanisms in frame-based knowledge representation 
systems with the aim of improving the knowledge modelling abilities of the TrollCreek 
system. TrollCreek is an implementation of Creek, an architecture for case based 
reasoning (CBR) that uses an explicit frame-based knowledge model to guide the CBR 
process. The objective of this project is to develop a constraint mechanism for 
TrollCreek. In doing this the earlier Lisp implementation of Creek and four other frame-
based systems are examined with emphasize on their constraint mechanisms. Based 
on these systems a constraint mechanism for TrollCreek is discussed and specified. 
The part of the mechanism considered most central is implemented and evaluated.  
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Problem description 
Reasoning in the system Creek is a combination of case-based and modell based 
reasoning. The mechanisms in the model-based part are based on inheriting properties 
along certain relations (plausible inheritance). In an earlier version of the system, 
implemented in Lisp, there were some mechanisms for defining constraints on entities 
and values. The current implementation, TrollCreek, implemented in Java, has no 
general mechanisms for handling constraints. 
 
The task to be solved is to describe constraint mechanisms in frame-based systems, 
define a constraint mechanism in the Creek architecture generally and specify and 
implement the most essential constraints in TrollCreek. This should be done as a 
constraint language integrated in the existing representation of Creek. More concrete 
this project involves first, defining a coarse specification of a constraint language for 
Creek, and second define some important mechanisms more concrete. The second 
mechanisms should be implemented, tested and evaluated. 
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1 Introduction 

1.1  Background and motivation 
The project is done in the context of the Creek framework for case based reasoning [2]. 
Creek is an abbreviation for Case based Reasoning through Extensive Explicit 
Knowledge. Creek and its knowledge representation language CreekL were originally 
implemented in Lisp. This implementation will from now on be referred to as LispCreek. 
Later an experimental java version of Creek was developed [17]. The implementational 
parts of this project are done on the java version TrollCreek [24]. The extensive and 
explicit knowledge is represented in a frame-based knowledge representation system 
that is used both for representing the cases and for storing an underlying knowledge 
model used to support the inference process.  
 
Most frame-based systems have some kind of constraint mechanism. Constraints are 
useful in that they help the knowledge engineer to keep the model consistent. They 
also ad some semantics to a model when defining what values are legal for different 
slots. LispCreek has a constraint mechanism, but this is not yet implemented in the 
java version. 

1.2  Goal 
The goal of this project is to improve the knowledge modelling abilities in TrollCreek’s 
frame system by introducing the ability to define constraints on the knowledge model.  
 
To be more concrete this means: 

• Discuss how constraint can be included in the TrollCreek system. 

• Specify of a full constraint system for TrollCreek. 

• Implement a fully working version of the most important part of this system. 

• Evaluate the methods implemented. 

1.3  Methodology 
The project is based on analytical and experimental methods. First the concept of 
constraints in frame-based knowledge representations will be analysed through a study 
of similar systems in the literature. Based on what these systems can teach us, a 
constraint system for the Creek framework will be specified. The most important parts 
of the constraint system will then be designed and implemented into TrollCreek. Finally 
the system will be tested and evaluated. 
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1.4  Structure of the text 
The text starts by discussing frame-based systems in general and five concrete 
systems with emphasise on knowledge representation and constraint mechanisms. A 
general framework for describing constraints is defined and the constraint mechanisms 
of the five systems are described with respect to this. Chapter 3 gives a brief overview 
of the TrollCreek system, before we in chapter 4 discuss the functional specifications of 
the constraint mechanism to develop. Chapter 5 discuss how the constraints can be 
designed and implemented and chapter 6 describes the result as the user of the 
system will see it. Chapter 7 tests and evaluates the implemented system. Functionality 
not implemented is discussed and possible solutions are sketched. The final chapter 
summarises the work. 
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2 Related systems 

2.1  Introduction 

2.1.1 Frame-based knowledge representation systems 
Like many other knowledge representation systems and languages, frames are an 
attempt to resemble the way human beings are storing knowledge. It seems like we are 
storing our knowledge in rather large chunks and that the different chunks are highly 
interconnected [16].  
 
In frame-based knowledge representations knowledge describing a particular concept 
or object is organized as a frame [15]. Some systems have one kind of frame whereas 
other have two or more, such as class frames and instance frames. The frame usually 
contains a name and a set of slots. Examples of frames are shown in Table 2.1. 
 
The slots represent properties of the frames with attribute-value pairs <slotname 

value> or alternatively a triple containing framename, slotname and value in some 
order. Frame systems inspired from logics may view slots as binary predicates. In 
many frame systems the slots are complex structures that have facets describing the 
properties of the slot. The value of a slot may be a primitive such as a text string or an 
integer, or it may be another frame. Most systems allow multiple values for slots and 
some systems support procedural attachments. These attachments can be used to 
compute the slot value, or they can be triggers used to make consistency checking or 
updates of other slots. The triggers can be trigged by updates on slots.  
 
As mentioned a slot can be viewed as a binary predicate stating a relation between two 
concepts (frame and value). When discussing the concept of a slot we need a 
terminology to use when referring to the two arguments off the slot. As we will see 
later, the TrollCreek system views the slots as relations between frames. A relation 
goes from a frame to the value of the slot. We will therefore use from and to or from-
frame and to-frame to designate these two concepts (Figure 2.1). The to-frame will also 
be referred to as the value of the slot. 
 

 

Figure 2.1 - The arguments of a slot 

 
In most frame-based knowledge representations inheritance is the central inference 
mechanism [15]. The frames are arranged in a taxonomic hierarchy of generalization-
specialization relations1 where the most general frame is the top. Properties of a frame 
are propagated down the hierarchy to its specialization frames. Many systems support 
multiple-inheritance. This means that a frame can inherit from many other frames. In 
these systems the hierarchy can look more like a directed graph (with possible cycles) 
than a tree structure.  
 

                                                
1
 This relation is also commonly called parent-child, is-a, superclass-subclass, AKO (a kind of). 
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(<Frame#1> 
 (<Slot#1>   <slot value>) 
 (<Slot#2>  
  (<facet#1>   <facet value>) 
  (<facet#2>   <facet value>)) 
) 
 
(car 
 (subclass-of   
  (value   vehicle)) 
 (has-subclass   
  (value   sports-car)) 
 (has-number-of-wheels  
  (default            4) 
  (cardinality  0..1)) 
 (has-part    
  (value              bodywork) 
  (value   engine) 
  (value   wheel) 
  (cardinality  1..n))   
 (has-number-of-seats  
  (default   5) 
  (value-constraint  (and (> value 0) (< value 9)))) 
) 

Table 2.1 - Frame 

At the top we see a template frame. Slot#1 has only a value wile Slot#2 has two facets 
describing it. In some frame systems the value of a slot is stored as a facet. This is 
exemplified in the frame Car. This frame also demonstrates two constraint facets, 
cardinality and value-constraint, and the default facet.  

2.1.2 Constraints in frame-based systems 
Sometimes simple slot values do not offer the expressive power we want. Logic is 
maybe the most expressive knowledge representation used today, when it comes to 
syntactical constructs. It provides mechanisms for representing incomplete knowledge, 
disjunctions and conjunctions. Many frame-based languages have constraint- or 
restriction mechanisms that extend the frame system with some of the abilities from 
logic. These mechanisms can be used to constrain possible values and combinations 
of values, perform consistency checking and express incomplete knowledge. 

2.1.3 Types of constraints 
There are many ways to describe and categorize constraints and different authors use 
different names for them. To make it easier to compare different constraint 
mechanisms, we will define some names to use for the different constraint types. The 
names are the most common names used in the literature. We will also give a formal 
description of the constraint types based on first order predicate logic. In the 
description we use the following notation: 

• Dot-notation to access slot values. Ex John.Father means the slot Father on 
the frame John. 

• Predicates are capitalized. 

• Functions start with lower case letters.  

• Variables are written in lower case. 

• Constants/Frame instances are capitalized 
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Cardinality constraint constrains how many values are allowed for a slot on a frame. 
This may be a lower bound, an upper bound or an interval.  
 
Cardinality(frame, slot, min, max) → 

GreterThanOrEqual(numberOfValues(frame.slot), min) ∧ 
LessThanOrEqual(numberOfValues(frame.slot), max) 

 
Cardinality(frame, slot, min) →  
GreterThanOrEqual(numberOfValues(frame.slot), min)  

 
Cardinality(frame, slot, max) →  
LessThanOrEqual(numberOfValues(frame.slot), max) 

 
Ex:  
The frame person may have one or no value for the slot spouse – at least in our 
culture. 
Cardinality(Person, Spouse, 0, 1) →  

GreterThanOrEqual(numberOfValues (Person.Spouse), 0) ∧ 
LessThanOrEqual(numberOfValues (Person.Spouse), 1) 

 
Concrete value constraint constrain the value of a slot, either by defining a list of all 
the allowed values (implicitly disallowing all other values), or by listing all disallowed 
values (implicitly allowing all other values). 
 

ConcreteValueConstraint(frame, slot, {x0, x1… xn}) →  

frame.slot ∈ {x0, x1 ... xn} 

 
Ex:  
The value of the slot gender of the frame person must be in the list {male, female}. 
ConcreteValueConstraint(Person, Gender, {Male, Female}) →  

Person.Gender ∈ {Male, Female} 

 
Value range constraint constrains the allowed range of values for a numeric slot. This 
may be a lower bound, an upper bound or an interval.  
 
ValueRangeConstraint(frame, slot, min, max) → 

GreaterThanOrEqual(frame.slot, min) ∧ LessThanOrEqual(frame.slot, max) 
 

ValueRangeConstraint(frame, slot, min) →  
GreaterThanOrEqual(frame.slot, min) 
 

ValueRangeConstraint(frame, slot, max) →  
LessThanOrEqual(frame.slot, max) 
 

Ex:  
The slot salary of a frame person must have a value greater than 0. 
ValueRangeConstraint(person, salary, 0) →  
GreaterThanOrEqual(frame.slot, min)  
 
 

The age of a person must be between 0 and 130. 
ValueRangeConstraint(Person, Age, 0, 130) → 

GreaterThanOrEqual(Person.Age, 0) ∧ LessThanOrEqual(Person.Age, 130) 
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Value class constraint constrains the value of a slot in a wider way than the two 
above. This constraint states that the value of a slot must be a subclass or an instance 
of another frame.  
ValueClassConstraint(frame, slot, super) → Isa(frame.slot, super) 

 
Ex: the value of a slot father must be a male (which again must be a person). 
ValueClassConstraint(Person, Father, Male) → Isa(Peron.Father, Male) 

 
General constraint. The final constraint type mentioned here is perhaps more 
correctly described as a class of constraints. This label is used to describe the ability to 
define complex constraints that combines or exceeds the simplest constraints. 
 
The mechanisms described above allow us to constrain single values in the context of 
a frame and a slot. Sometimes it is useful to define constraints that include more than 
the to- and from-frames of a slot. In [9] an example knowledge base of famous persons 
and their doings is described. In this domain it can be reasonable to state that an event 
performed by a person must happen during the person’s lifetime. Such constraints 
need more flexible mechanisms than those described above. Many systems offer this 
functionality through a logic-like language where the knowledge engineer can write 
logical expressions, being able to express arbitrarily complex constraints. Having such 
a constraint mechanism allows you to express all the other constraints to, seemingly 
taking the jobs from them. The above mentioned constraints are however useful short 
forms or syntactic sugar for the most used constraints.  

Variations over the constraint types 

The four first mechanisms constraining an individual slot value have (at least) two 
different subclasses. They can either be defined on a slot given a from-frame or on the 
slot without relating it to a frame. In the example above the value class constraint on 
father makes sense independent on which frame the constraint is defined on. It may be 
in an elephant family or among human beings. In both cases the father must be a male. 
In the following example, however it is reasonable to define the constraint on the 
combination of frame and slot: 
Given the frame engine and the slot part it may be relevant to constrain the value to be 
an engine part. This constraint should be defined on the combination of slot and frame, 
because other things than engines can have parts too, and those parts are not 
necessarily engine parts. 
 
So far constraints on the to-frame or value of a slot have been discusses. It may 
however be useful to constrain the from-frame of a relation as well. In Cyc [12] for 
example, you can use the constraint makesSenseFor on a slot to define which frames 
the slot may be used on.  
 
Ex: the slot hasColour only makes sense for physical object-frames.  
 
As we will see shortly, most frame systems defines the inverse of the slots. If we 
constrain the value class of some slot and this constraint is attached to the slot 
independent on what frame it constrains, we implicitly constrain the from-frame of the 
inverse slot. These two constraint types are thus related.  

Summary 

What is described here is by no means a complete list of constraint mechanisms 
suitable for frame-based systems. It is certainly possible to define other constraints 
than those mentioned here. It is also possible to combine some of these to make a 
shorter list. What we have called concrete value constraint can for example be 
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expressed using the value class constraint. You just make an intermediary frame acting 
as a super class of all the allowed values and saying that the value of the slot must be 
a member of this frame. The types of constraints given here do however cover most of 
the constraint mechanisms described in the literature. Through the text we will use 
these notions when comparing and describing constraints in different frame-based 
knowledge representations. 
 
In the next sections we will describe five different frame-based systems with focus on 
their constraint mechanisms. The purpose of the discussion will be to see what we can 
learn from them in the process of developing constraint mechanisms in TrollCreek. 
When discussing the systems, the constraint mechanisms will be described with the 
names and terms used in the actual system. The discussion of each system is 
concluded with a summary section that relates the constraints in the mechanism to the 
framework described above. 

2.2  LispCreek 
As mentioned, Creek is a framework for case based reasoning. The architecture is an 
attempt to make a knowledge intensive CBR system, combining model based 
reasoning and case based reasoning. This section discusses the knowledge model and 
constraint aspects of LispCreek. 

2.2.1 The language 
As defined in the Creek framework [2] LispCreek [3] uses a frame-based approach for 
its knowledge model. A frame in Creek consists of a name and a set of zero or more 
slots. The slots consist of a name and a set of facets. The value of a slot is stored as a 
facet along with facets describing default values, constraints, inheritance type, value 
dimension etc. The value of a slot can be of four different types: concept (frame), 
number, string and lisp-expression.  
 
Table 2.2 below shows a frame representing the concept car. The table gives 
examples of how inheritance, default values and constraints are represented in 
LispCreek. 
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car 
 subclass-of   value  vehicle  
 has-subclass  value  sports-car 
 has-number-of-wheels default 4 
 has-part   value  bodywork  
 has-function  value  transportation-of-people 
 
 has-number-of-seats value-constraint  (and  
                  (> value 0)  
                  (< value 9)) 
 has-owner   value-class       person 
 has-age   if-needed (-  
       *current-year* 
       self.has-production-year) 

Table 2.2 - Example of frame in LispCreek 

The frame represents the general concept car. The first two slots subclass-of and has-
subclass tells that car is subclass vehicle and superclass of  sports-car. The next slot 
defines that cars on default have four wheels. This means that if an instance or subclass 
of car does not override this value, they have four wheels. Next we have two slots telling 
that cars has the part bodywork and has the function of transporting people. The next two 
slots are constraints. First has-number-of-seats has a value constraint. This is a lisp 
function defining that the value must be greater that 0 and less than 9. The has-owner 
slot has a value class constraint saying that the value of the slot must be a person. The 
last slot has-age has the facet if-needed. If for some instance of car there is no local, 
inherited or default value for has-age the lisp expression is evaluated and the result 
returned. 

In Creek the whole representational structure is represented in the frame structure. 
Frames, slots, facets are defined as concepts/frames. This meta frame structure 
provides valuable semantics to the models and are essential in the frame matching 
mechanisms. Table 2.3 shows the meta frames for the relation instance-of and the 
concept slot. 
 
instance-of 
 used-to-describe  value  caused-by causes default (...) 
 instance-of       value  transitive-relation  
 has-inverse       value  has-instance 
 
slot 
 part-of         value  frame  
 subclass-of     value  iso-thing  
 has-part        value  facet  
 has-subclass    value  transitive-relation 

Table 2.3 - Examples of meta frames in LispCreek 

2.2.2 Constraints 
As mentioned, the slots have facets for describing constraints. There are two constraint 
facets: value-constraint and value-class. The value-constraint facet can contain a 
general lisp function describing an arbitrary constraint on the value. The other can hold 
a list of other frames that the value must be a specialization of. In 2.1.3 we saw that the 
constraint like LispCreek’s value-constraint is flexible enough to offer all other 
constraint types. Consequently the value-class constraint does not introduce any new 
functionality. It can however be useful to offer a short form of the constraint syntax.  
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2.2.3 Summary 

Types of constraints 

Cardinality constraint 
LispCreek do not have an explicit cardinality constraint. Cardinality constraints can 
however be expressed using the value-constraint mechanism. 

Concrete value constraint 
LispCreek do not have an explicit concrete value constraint. The constraint can 
however be expressed using the value-constraint mechanism. 

Value range constraint 
LispCreek do not have an explicit value range constraint. Value range constraints can 
however be expressed using the value-constraint mechanism. 

Value class constraint 
As described, slots in LispCreek have a facet called value-class. This mechanism 
corresponds to the value class constraint described in 2.1.3. 

General constraint 
The facet value-constraint allows the user to express arbitrary constraints. This 
equates the general constraint mechanism. 

What can we learn from LispCreek? 

TrollCreek do not have facets, but as in the lisp version slots and slot types are 
represented as frames in the knowledge base. This allows us to describe the slots with 
slots. It may be possible to use this to introduce facet-like behaviour to TrollCreek. 
Doing this we can introduce the constraint facets used in the previous Creek version. 
Using this approach the constraint mechanism will be tightly coupled to the rest of the 
knowledge representation. 

2.3  The Knowledge Machine 
The Knowledge Machine (KM) [7] is a knowledge representation language and 
reasoning engine. The knowledge is represented as frames, but KM is also influenced 
by logic. This combination makes KM very expressive and provides it with a clear, 
formal semantics. KM is an interpreter sitting on top of Lisp, and the user interface is 
through a read-eval-print cycle where the user can write assertions or queries. KM is a 
relatively mature language that has evolved over a long period of time. It is well 
documented.  

2.3.1 The language 
As in the object-oriented world, the frame concept contains both classes and instances. 
Frames contain slots that hold values. Because KM is closely connected to logic, the 
slots are binary relations that hold between an instance of a class and other instances. 
Slots are instances of the build in class Slot either directly or through one or more 
intermediate slots. Because the slots are frames themselves they can exist without 
being attached to a frame. The build in Slot class has a set of slots, for example 
domain, range and cardinality. The slot’s slots are comparable to slot-facets in Creek 
[3] and Protégé [14]. The value of a slot may perfectly well be another frame as well as 
an atom or rules that are evaluated at query time. This allows the making of 
relationships between frames. The frames can form a taxonomy with single and 
multiple inheritance. Both classes and instances can have slots. The slots of a class 
can hold information about its sub- and super-classes and it can hold default values 
that are inherited to all descendants.  
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KM uses the simple data types number, integer, string and boolean, and the complex 
set (unordered, no duplicates), sequence (ordered, duplicates allowed) and bag 
(unordered, duplicates allowed). The system also offers the data type pair, but that is 
only a sequence of length two. KM offers a variety of set operations, both arithmetic 
and set expressions. 
 
Table 2.4 and Table 2.5 show an example of a frame in KM. In the first table the class 
car is described and the second table shows an instance of car. 
 
(Car has (superclasses (Vehicle))) 
(every Car has 
     (wheel-count (4)) 
     (uses-fuel-type (*Gas)) 
     (parts ((a Engine) (a Chassis)))) 

Table 2.4 - Class frame in KM 

This frame represents the concept of a car. Car has vehicle as superclass. In KM names 
prefixed by an asterix (*) represents instances and names beginning with an upper case 
letter represents classes. The frame says that every car has four wheels, uses gas (an 
instance) as fuel and have the parts engine and chassis (classes).  

(*myCar has 
     (instance-of (Car)) 
     (parts (*myEngine *myChassis))) 

Table 2.5 - Instance frame in KM 

The table shows an instance of the class frame from Table 2.4. We see that the parts slot 
now has instances for engine and chassis as values.  

KM supports multiple inheritance. When computing the values of an instance’s slots, 
information from all super classes are merged. This differs from the object-oriented 
programming languages where one will take precedence over the others. The merging 
is in the KM nomenclature referred to as unification.  

2.3.2 Constraints 
KM offers two kinds of constraints: Value constraints and set constraints. The first type 
applies to the individual values of the slots. The second applies to slots with sets, 
sequences and bags as their value. Constraints are checked during inference. This 
means that if frame a is constrained by constraint c, c is not evaluated before some 

query accesses values from a.  
 
Constraints play three roles in KM: 

1) Debugging tool for knowledge engineer 
2) Controlling unification (the merging mechanism described above) 
3) In three special cases, KM will make assertions based on constraints. The three 

cases are listed in Table 2.6. 
 
Constraint Assertion 
(must-be-a class) If the value instance is not in class, it is “forced” to be one 
(exactly 1 class) 
(at-most 1 class) 

If there are multiple instances of class they are unified 

Table 2.6 - Assertions by constraints in KM 
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Value constraints 

KM has six value constraints that apply to individual values of slots. Table 2.7 lists and 
gives a brief description of the constraints. Two example constraints are given in Table 
2.8. 
 
(must-be-a class [with slotsvals]) The value must be a subclass of 

class 
(mustnt-be-a class [with slotsvals]) The value must not be a subclass of 

class 
(possible-values val1...valN) List of possible values 
(excluded-values val1...valN) List of excluded values 
(<> expr) The value must not equal the the 

evaluation of expr 
(constraint expr)  expr must evaluate to true 

Table 2.7 - Value constraints in KM 

 
(every Person has 
     (friend ((must-be-a Person)))) 
 
(*Fred has  
     (favorite-colors ((possible-values *Red *Blue *Green)))) 

Table 2.8 - Value constraint in KM 

Example of value constraint. First we se a must-be-a constraint, saying that 
the friend of a person must be a person. The second example shows a possible-values 
constraint that states red, blue and green as possible favourite colours of Fred. 

The first five constraints are in fact just short hands for the last one. Table 2.9 shows a 
rewriting of the second constraint in Table 2.8. 
 
(every Person has 
      (friend (constraint (TheValue &? (a Person)))) 

Table 2.9 - Value constraint in KM 

Example of the most general value constraint in KM. This constraint consist of an 

arbitrary expression. In this example we reproduce the must-be-a constraint from 
Table 2.8. 

Set constraints 

Set constraints in KM apply to the set of values of a slot. There are four such constraint 
types 
 
(at-least n class) At least n instances in the set must be in class 
(at-most n class) At most n instances in the set must be in class 
(exactly n class) Exactly n instances in the set must be in class 
(set-constraint expr) Arbitrary constraint. expr must evaluate to true 

Table 2.10 - Set constraints in KM 

If upper bound is 1 KM will unify together values if there is more than one. If the upper 
bound is higher than one, KM will instead make an error notification to inform the user 
instead of making hazardous unifications. 
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Only upper bound constraints are checked. Therefore KM treats (at-least …) as a 
dummy constraint. However, if lower bound is violated, KM can be set to create 
“missing” instances, but on default it will do nothing. Table 2.11 shows an example of a 
set constraint. 
 
 (every Airplane has 
     (parts ((a Fuselage) 
          (a Wing with (side (*Left))) 
          (a Wing with (side (*Right))) 
          (a Engine) 
          (at-least 1 Engine) 
          (exactly 2 Wing)))) 

Table 2.11 - Set constraint in KM 

Constraint checking is time consuming as it can involve traversing large parts of the 
knowledge model. In KM a constraint can be tagged as sanity-checks. These 
constraints can be turned on and off depending on the phase of knowledge modelling.  

Constraints through slot slots 

In addition to what is called constraints in KM, there are three slots on the slots (the 
same as facets) that offer constraint functionality. First, domain defines the most 
general class or classes allowed for the first argument of the slot. That is the from-
frame of the slot. Second, range defines the most general class(es) for the slots 

second argument – the value of the slot. Finally, cardinality constrains how many 
classes or instances can fill the two arguments of a slot. Allowed cardinality values are 
1-to-1, 1-to-N, N-to-1 and N-to-N. 

2.3.3 Summary 

Types of constraints 

Cardinality constraint 
As just mentioned cardinality constraints in KM are supported through a facet-like 
mechanism on the slots. This mechanism allows us to set the cardinality of either side 
of the slot to 1 or N.  

Concrete value constraint 

KM has the constraints possible-values and excluded-values, for defining allowed 

and disallowed values of a slot. The constraint (<> expr) is a special case of the 
excluded-values constraint.  

Value range constraint 
KM does not have an explicit value range constraint. Such constraints can however be 
defined through the general constraint (constraint expression) where expression 
is an arbitrary piece of KM code that must evaluate to true.  

Value class constraint 

The value class of a slot can be constrained using the must-be-a and mustnt-
be-a constraints. Using these you can define a class that the slot value must be or 
must not be an instance or subclass of. Another way to define such constraints is 

through the range slot of the slot mentioned recently. Here you define the most 
general class that the slot value can be a member of. 

General constraint 
As mentioned several places already, arbitrary constraints can be defined using the 

(constraint expression) and (set-constraint expression) 
mechanism. These mechanisms take an arbitrary expression in the KM language that 
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must return a boolean value when evaluated. 

Other constraint mechanisms 
In 2.1.3 we mentioned that sometimes it makes sense to define constraints on a slot 
independent on what frame it is attached to. The constraints defined using the three 
constraint slots are of this category.  
The set-constraints in KM do not fit into the framework defined in 2.1.3. Because 
TrollCreek does not have sets or list of values, we will not discuss such constraint 
further. 

What can we learn from KM? 

All the constraints that can be defined using the constraint mechanism in KM can be 
defined using the two constraints (set-constraint expr) and (constraint expr). 
The other constraint keywords are only syntactic sugar for these two. This sugar may 
however be very useful because they save the knowledge engineer from a lot of typing. 
The readability of the constraints is also improved. If it later is decided to implement 
TrollCreek’s constraints as a typed language, such syntactic sugar will be considered.  

2.4  CYC  
Existing expert systems may perform well in their narrow domains, but when asked a 
question at the edge of their knowledge, they can make big mistakes. A famous 
example in the AI world is Mycin diagnosing a male as pregnant. The idea of the Cyc 
project was to overcome this brittleness in AI- and knowledge systems by building a 
huge knowledge base of common sense [11]. Early in the project they estimated the 
size of this KB to five million frames, each containing several slots. 
 
The project started out in 1984 and during the next ten years the Cyc project spent a 
person-century of effort in building the knowledge base [13]. In 1994 Cycorp, Inc was 
founded to continue the development of the Cyc knowledge base. The knowledge base 
is at the moment (May 2006) available in two versions. OpenCyc [20] is a free open 
source version of the Cyc knowledge base that in the current release contains 47000 
concepts and 306000 facts. ResearchCyc [19] is designed for use by researchers and 
comes with a larger knowledge base. This version is proprietary but licences are 
granted to researchers free of charge.  

2.4.1 The language 
The representational language CycL (Cyc Language) started out as a frame system but 
has over the years evolved toward first order predicate logic [13]. Because the purpose 
of this review is to learn about constraints in frame systems, we will only focus on the 
early frame-days of CycL. 
 
To represent this extremely large knowledge base, the developers decided to make 
their own knowledge representation language. The wish-list of the language was 
something like this: 

• Clear and simple semantics 

• Effective inferential capabilities 

• Representing default knowledge 

• Include all the expressiveness of first order predicate calculus (FOPC) 

• A means of handling propositional attitudes (beliefs, goals, dreads) 

• Facilities for operations such as reification, reflection, etc.  
 
One of the intentions of the Cyc developers was that their system should be built upon 
and used by other researchers. This requires the system to have a clear and stable 
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semantics. To get the expressiveness of FOPC and at the same time have effective 
inference mechanisms may however force the developers to make special-purpose 
representations and inference routines. This disturbs the clear semantics. To solve this 
problem the Cyc KB was developed at two levels, the epistemological level and the 
heuristic level. Communication with users and external programs is supposed to be at 
the epistemological level. The language used at this level is the Cyc Constraint 
Language (Cyc CL). 
 
The CycL was developed incrementally during the development of the Cyc knowledge 
base for natural knowledge understanding and common sense reasoning [11]. When 
the developers encountered something they wanted to express that was difficult to 
express in CycL, they augmented the language to handle it.  
 

“it is a frame-based language embedded in a more expressive predicate 
calculus framework along with features for representing defaults, for reification 
(allowing one to talk about propositions in the KB) and for reflection (allowing 
one to talk about the act of working on some problem.)” [11] 

 
CycL is frame-based with frame-slot relationships defined as a triple <attribute/slot> 
<frame><value>. The value of a slot in CycL is always a list representing the possibly 
empty set of values for the slot. Triples describing the same concept are stored 
together to form a frame. Cyc has four basic kinds of frames: “normal frames”, 
SlotUnits, SeeUnits and SlotEntryDetails [12]. 
 
Normal frames are the most common type. They represent most real world concepts 
such as the concept Person, the name Martin and the process of writing a master 
thesis.  
 
Like in many other frame systems the slots are themselves frames. In Cyc slot types 
are represented by SlotUnits. These slot-frames can have slots constraining the from-
frame of the slot, the value of the slot, describe what slots have related meaning, etc.  
 
SeeUnits contain metalevel information about a specific slot for a specific frame. It can 
for example be used to express incomplete knowledge. If we have a frame describing 
the country Norway with the slot Residents we maybe lack some information to give a 
complete list of residents. Instead we can say that the number of residents are about 
4,5 million, that the number is quite stable and that the residents must be members of 
the class Person. 
 
SeeUnits describe a whole slot on a frame. SlotEntryDetails are very similar but differs 
in that it describes a single entry for a slot on a frame. For example the author of this 
text is an inhabitant in Norway. This fact became true in 1981 when he was born and 
were temporary false in the period 1984 to 1988 when his family lived abroad. Such 
information can be represented by SlotEntryDetails. 
 
Table 2.12 shows how one of the authors of [12] describes himself in the Cyc 
language. 
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#%Guha  
  #%instanceOf   (#%MechanicalEngineer #%LispHacker  
      #%HumanCyclist #%GraduateStudent) 
  #%computersFamiliaryWith  (#%SymbolicsMachine) 
  #%age    (23) 
  #%languageSpoken        (#%EnlishLanguage #%TamilLanguage              
                               #%HindiLanguage #%GermanLanguage) 
  #%programsIn   (#&Lisp) 
  #%screenForUnitEditor  (:monochrome) 

Table 2.12 - Frame in Cyc 

2.4.2 Constraints 

Cyc Constraint Language 

CycL Constraint Language sits on top of the frame system and is essentially predicate 
calculus. The syntax of Cyc CL is similar to prefix predicate calculus and every slot in 
the frame-based representation may be used as predicates. Actually, binary predicates 
are represented as slots. Predicates with more than two arguments can be defined 
using Lisp expressions. In addition you can define functions that return other values 
than true/false. This makes the constraint language very expressive.  
 
The constraint language enables: 

• Disjunctions 

• Quantifications (some, every) 

• Negations 

• Relationships (every person is younger than his mother) 
In Cyc CL both relationships and quantifications are represented as predicates. This is 
illustrated in Table 2.13. 
 
(#%ForAll X (#%InstanceOf X #%HumanBeing) (#%Mortal X) 
 
(#%ThereExists X Y (#%GreaterThan X Y)) 

Table 2.13 - Constraints in Cyc 

The first constraint states that all human beings are mortal. The second statement is not 
a traditional constraint, but rather an expression saying that some concept can be greater 
that another concept. Notice how quantifications (ForAll, ThereExists) and relations 
(GreaterThan) are represented as predicates. 

The Cyc CL can naturally be used to state constraints on the knowledge in the 
knowledge base. Using the language we can state constraints on slot values and 
define which units can legally possess a certain type of slots. In Cyc, constraints are 
checked when knowledge are put into the system. This prevents the user from entering 
incorrect knowledge. 
 
As shown in Table 2.13 the constraint language can also be used to express other 
properties of the model. It can for instance be used to state the definition of a collection 
or stating the premises and conclusions of different kinds for rules. The frame-based 
CycL and the logic based Cyc CL are used together to get the expressive benefit of 
logics and the frame’s suppleness and effectiveness of inference. 
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Constraints defined by slots on slots 

Slots in Cyc are represented as frames that themselves can have slots. This 
functionality is similar to facets in LispCreek. One slot used to describe other slots is 
entryFormat which can take the values SingleEntry, SetTheFormat and SubAbs. Single 
means that the slot can have only one value, while the two other are used for 
cardinality greater than one. SubAbs have the additional function of stating that the 
values must all be specializations of the same concept. 
 
There are also a great number of other slots that can be used to describe slots.  In the 
summary subsection the following are mentioned: slotCardinality, 
noOfEntitiesLessThan,  entryIsLessThan, entryIsGreaterThan, entryIsA and 
makesSenseFor. 

2.4.3 Summary 

Types of constraints 

Cardinality constraint 
CycL offers several ways to define cardinality constraints. The slot entryFormat 
described above defines whether a slot can have one or many values. This is a simple 
version of cardinality constraint. Two other slots can also be used. slotCardinality 
defines the exact number of entries that a slot shall have, and noOfEntitiesLessThan 
defines an upper bound of the cardinality. More complex cardinality constraints defining 
different numbers for the cardinality than one and many can be expressed by Cyc CL. 

Concrete value constraint 
Concrete value constraint can be defined using Cyc CL. 

Value range constraint 
The two slots entryIsLessThan and entryIsGreaterThan are used to define the range of 
allowed values for a slot.  

Value class constraint 
The above mentioned entryFormat slot can act partly as a value class constraint in 
addition to cardinality. If entryFormat has the value SubAbs this means all the values of 
the slot must be of the same class. This is however not the whole functionality we 
expect from a value class constraint. The slot entryIsA fulfils the value class constraint 
as defined in 2.1.3. This slot defines a super slot that all values must inherit from. 

General constraint 
As mentioned above, CycL Constraint Language is heavily based on predicate 
calculus. Together with the ability to define new predicates and functions using Lisp, 
this makes it possible to express arbitrary constraints. 

What can we learn from Cyc? 

The CycL and its constraint language are built for representing common sense about 
nearly all possible concepts in the world. This is quite different from TrollCreek that is 
mainly used for making expert systems in closed domains. The constraint language 
from Cyc is thus maybe too comprehensive to be copied to TrollCreek. The possibility 
to express arbitrary constraints on the content of the knowledge base is however a 
useful function that will be considered in the further work. Cyc’s use of the constraint 
language to express incomplete knowledge is also worth a study. 
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2.5  KL-ONE 

2.5.1 The language 
KL-ONE is a well known knowledge representation system in the tradition of semantic 
networks and frames. The system is an attempt to overcome semantic indistinctness in 
semantic network representations and builds upon the idea of Structured inheritance 
networks [6]. 
 
Frames in KL-ONE are called concepts. These form hierarchies using subsume-
relations; in the KL-ONE terminology a super class is said to subsume its subclasses.  
Multiple inheritance is allowed. Actually a concept is said to be well-formed only if it 
inherits from more than one other concept. All concepts, except the top concept Thing, 
must have at least one super class. Figure 2.2 shows a sample ontology in KL-ONE. 
 

 

Figure 2.2 - A simple KL-ONE network of generic concepts 

Concepts are represented as ellipses and the double arrows are subsume relations. This 
figure and all the following KL-ONE figures are taken from [6]. 
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Figure 2.3 - KL-ONE representation of a message 

“A Message is something having exactly one SendDate and one ReceivedDate that are 
of type Date, one or more Sender and one or more Recipient both being Persons and 
exactly one Body of type Text.” 
 
The encircled squares represent RoleSets. The numbers below the name of the RoleSets 
are cardinality constraints. 

In KL-ONE descriptions is separated into two basic classes of concepts: primitive and 
defined. Primitives are domain concepts that are not fully defined. This means that 
given all the properties of a concept, this is not sufficient to classify it. They may also 
be viewed as incomplete definitions. Using the same view, defined concepts are 
complete definitions. Given the properties of a concept, these are necessary and 
sufficient conditions to classify the concept. 
 
The slot-concept is called roles and the values of the roles are role-fillers. There are 
several different types of roles to be used in different situations. The most common and 
important role type is the generic RoleSet that captions the fact that the role may be 
filled with more than one filler. 

2.5.2 Constraints 

RoleSet restrictions 

The constraints in KL-ONE are integrated parts of the language, not a plug-in-like 
constraint-engine. RoleSet restrictions are restrictions on the fillers of the RoleSets. 
There are two kinds of restrictions, number restrictions and value restrictions.  
 
Number restrictions restrict the number of fillers allowed for a RoleSet. This restriction 
is used when you want to locally restrict the cardinality of a role inherited from another 
concept. Figure 2.4 shows an example of a private-message that inherits from the 
message in Figure 2.3. Message can have one or more recipients. Private-message 
uses a role set restriction to override this cardinality.  
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Figure 2.4 - Cardinality constraint in KL-ONE 

“A private-message is a message with exactly one recipient.” 
 
Restrictions are denoted similar to RoleSets. The link pointing from private-message to 
the circle representing the RoleSet Recipient has the cardinality (1,1) saying that the 
allowed number is exactly one. 

ValueRestrictions restricts which fillers can fill a role by defining the most general class 
allowed. In Figure 2.5 we see an example of a specialization of message that have 
restrictions on who can be the sender. 

 

Figure 2.5 - Value class constraint in KL-ONE 

“A starfleet-message is a message where only starfleet-commanders are among the 
senders.” 
 
The restriction link pointing from starfleet-message to the RoleSet Sender has an arrow 
pointing at the starfleet-commander concept saying that the filler of the role Sender on 
the concept starfleet-message must be a of this type. 

Structural Descriptions 

The RoleSet restrictions can constraint the number and class of fillers to fill a RoleSet. 
Sometimes it is however useful to define constraints that includes relationships among 
more than one of a Concepts roles. KL-ONE offers this through Structural Descriptions 
(SD). 
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There are two kinds of SD, the simplest is Role Value Maps (RVM). RVM is designed 
to let the knowledge engineer express equality between two sets of role fillers – for 
example that the grandmother of a person is the same person as the mother of one of 
the parents of the person. An example is shown in Figure 2.6. 
 
 

 

Figure 2.6 - Role value map in KL-ONE 

 “An important-message is a private-message with an employee as Recipient and whose 
sender is the same as the ImmediateSupervisor of its Recipient.” 
 
The constraint is represented with a ternary relation pointing at the two roles that must 
have equal fillers. At the bottom of the figure we see a link going from important-message 
to a rhomb containing an equality sign. From this rhomb two dotted arrows are pointing to 
the two RoleSets that must have the same fillers. 

The more general form of SD has not got a name. It describes how Roles of a Concept 
relate to each other in terms of other concepts. To illustrate the mechanism we extend 
the message example with two new message types: Reply-requested-message and 
Urgent-message. The first type is a message with a reply deadline. The second is a 
specialisation of the former with short deadline. 
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Figure 2.7 - Structural description in KL-ONE 

“A reply-requested-message is a message with a ReplyByDate which is a date” 
 
“An urgent-message is a reply-requested-message whose ReceivedDate and 
ReplyByDate satisfy a less-than whose Lesser  is the ReceivedDate, whose Greater is 
the ReplyByDate, and whose Greater is the ReplyByDate, and whose Difference is 1-
hour.” 

2.5.3 Summary 

Types of constraints 

Cardinality constraint 
Cardinality constraints are supported through the cardinality property of the RoleSets. 
With this property we can set both upper and lower bound of the cardinality. Number 
restrictions can be used when a subclass inheriting a slot shall have another cardinality 
than the original slot, like in Figure 2.4.  

Concrete value constraint 
[6] does not explicitly mention any concrete value constraint. Some of the functionality 
of this constraint can however be achieved by the value restriction.  

Value range constraint 
The range of values can be constrained with structural descriptions like in Figure 2.7. 
Using this mechanism the value can be constrained to be less than some value and 
greater than some other value. 

Value class constraint 
Figure 2.5 illustrates a value restriction that restrict who can be the sender of a special 
kind of message. This corresponds to what we call value class constraint.  

General constraint 
Structural descriptions provide a means of defining some dependencies between 
values that are more complex than the four simplest constraint types. In the examples 
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above we saw how the structural descriptions could define how the filler of two different 
roles must be related to each other. This mechanism does however not offer the 
expressive power we want from the general constraint mechanism. 

What can we learn from KL-ONE? 

KL-ONE does not introduce any new constraint types or mechanisms to our review. 
The interesting part is the graphical representation used in [6]. As we will see, in 
TrollCreek the knowledge engineering can be done through the graphical user 
interface, drawing nodes and relations. Graphical representation of constraints should 
therefore be considered in the process of designing a constraint mechanism for 
TrollCreek. 

2.6  Protégé 
The first version of Protégé was made in 1988 and was a child of Mycin and ONCOCIN 
[8]. It was originally designed to ease the process of knowledge acquisition by allowing 
the domain expert to write the domain knowledge more or less without the help of a 
knowledge engineer. Protégé 2000 is the fourth version.  
 
Protégé 2000 is a frame-based knowledge representation language, modelling tool and 
knowledge acquisition tool. It is developed under the Mozilla Public License [21] and is 
therefore free to download, redistribute and reengineer.  

2.6.1 The language 
The ontology in Protégé’s knowledge model is built up by classes, slots, facets and 
axioms [14]. The classes are concepts in the domain of discourse. The properties of 
the classes are described by slots, and the properties of the slots are described by 
facets. Axioms are used to represent constraints additional to the constraints that can 
be described using facets. The axioms are written in the Protégé Axiom Language 
(PAL). 
 

 

Figure 2.8 Protégé class hierarchy and class editor 

In the left column we see the class tree. To the right we see the slots of the frame Person 
and some of the slots facets. 

A knowledge base in Protégé consists of the ontology and a set of instances of the 
classes in the ontology. The core of the knowledge model is a hierarchy of classes. A 
class must have at least one super class and zero or many subclasses. Figure 2.8 
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shows how the class hierarchy is presented to the user. The meta class :Thing is the 
top of the hierarchy, so every class is a subclass of it. Classes can have instances and 
both individuals and classes can be instances. 
 
The slots describe the properties of classes. Slots are classes too and are defined 
independently of the classes they describe. One single slot can be attached to many 
different classes. When a slot is attached to a frame it can have a value that is either a 
class or an individual.  
 

 

Figure 2.9 - Protégé’s facet-dialog 

The facet dialog is used to show and edit facets on slots.  

Facets describe the properties of slots. Default values, allowed values, max/min 
values, cardinality and data type. This is in fact a constraint mechanism, but it offers 
only local constraints - constraints local to that particular slot. You cannot define 
dependencies between different slots of the same frame (eg. date of death can not be 
more than 120 years after date of birth). Figure 2.9 shows the facet dialog in Protégé.  

2.6.2 Constraints 
As mentioned above, facets allow only local constraints. This is the background of the 
Protégé Axiom Language (PAL). PAL allows arbitrary constraints that include other 
classes, dependencies among different slots and so on [9]. 
  
PAL is a complement to Protégé 2000 that enables logical constraints and query 
processing. It consists of a language (PAL) and a constraint-checking engine. PAL 
constraints are stored as instances of the :PAL-CONSTRAINT meta class – a normal 
frame so the knowledge base doesn’t have to know that it is a constraint. The language 
is a variant of the Knowledge Interchange format (KIF), made to be easily parsed by 
computers, but its syntax is not easy read by human beings [9]. To assist the 
knowledge engineer in writing the constraints, Protégé offers a structured editor with 
guiding mechanisms. The language is independent of the constraint-checking engine, 
except for the syntax. Table 2.14 shows an example PAL constraint. 
 



24 

(defrange ?editor :FRAME Editor) 
(defrange ?employee :FRAME Employee responsible_for) 
 
(forall ?editor (forall ?employee 
                  (=> (and  
                         (responsible_for ?editor ?employee) 
                         (own-slot-not-null salary ?editor)  
                         (own-slot-not-null salary ?employee))  
                      (> (salary ?editor) (salary ?employee))))) 

Table 2.14 - PAL constraint 

“The salary of an editor should be greater than the salary of any employee which the 
editor is responsible for.” 

The expression has two parts. First the range two variables ?editor and ?employe is 

defined. Then the constraint body is defined. 

The Constraint checking engine is a plug-in and can be easily changed. The default 
engine is based on Model checking – to detect incomplete or inconsistent entries. 
When an inconsistency is detected in the knowledge base, the user is informed, but the 
engine does not change anything in the KB. The engine is invoked by the user. 

2.6.3 Summary 

Types of constraints  

Cardinality constraint 
Cardinality is supported through the facet mechanism. You can define two values, at 
least and at most. Alternatively you can say that the slot is required or multiple.  

Concrete value constraint 
It is possible to define a list of allowed values for a slot. To define disallowed values 
you have to write a PAL constraint. 

Value range constraint 
Protégé slots have two facets named minimum and maximum that provides the ability 
to define the range of numerical values. 

Value class constraint 
Every slot has a mandatory facet called value type that defines the data type of the slot 
[22]. The available data types are listed in Table 2.15. 
 
Type Description Example 
Any  Any of the types below  
Boolean Logical value True, False 
Class Class  in the kb Person, Car 
Float Decimal number 1.0, 3.4e10 
Instance Instance of a class in the kb Instance_001 
Integer Integer number 1, 2, 12354987 
String String of alphanumeric characters including 

spaces 
“Hello world, calling 1 2 3” 

Symbol List of values, which may not include spaces Re, blue and green 

Table 2.15 - Data types in Protégé 

For the types class and instance you can define which class or classes the value has to 
be a subclass/instance of. This corresponds to the value class constraint. 

General constraint 
Constraints not expressible through the facet mechanism can be expressed by the 
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Protégé axiom language. PAL constraints have almost the expressibility of first order 
predicate calculus. This provides the ability to state arbitrary and complex constraints. 

What can we learn from Protégé? 

In Protégé there are mainly two ways of defining constraints: through facets and 
through PAL. The facet constraints are those constraints easily defined through a 
graphical user interface. The more complex constraints are offered through the 
constraint language. This two fold way of defining constraints allows novice users to 
define the simplest constraint types, lowering the threshold to use the system. The idea 
of using facets is also interesting in the TrollCreek setting.  
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3 TrollCreek 
Before we start discussing how to design and implement constraints in TrollCreek it 
can be helpful to give a brief overview of the system, both at a conceptual and an 
implementational level. The overview only describes the aspects necessary to 
understand the remaining chapter of this thesis. For a comprehensive description of the 
system we refer to [17] and [5]. 

3.1  The conceptual model 
As mentioned, Creek is an abbreviation for “Case-based Reasoning through Extensive 
Explicit Knowledge” [1]. The scope of this project is the “extensive explicit knowledge” 
part of the system that is realised through a frame-based knowledge representation. 
Consequently the case-based issues will not be discussed here. 
 
The frame-based knowledge model in TrollCreek is represented by a semantic net 
structure. A node in the semantic net does together with its relations form a frame. In 
Figure 3.1 we see how these two representations works together.  

 

Figure 3.1 - Creek semantic net and frame  

The frame view shows the grows on frame that we also find as a node in the semantic 
net. The slots of the frame are the relations of the semantic node.  
The content of the figure is taken from a test knowledge model contained in TrollCreek. 

As with the Lisp version of Creek the relations are also frames. More precisely, the 
relation types of TrollCreek are represented as frames in the knowledge model. This 
added semantic is useful as a clarification of what the different relations means, making 
it easier to make good models of complex domains. The taxonomy of relations can also 
be used in the inference process. Figure 3.2 shows an example top ontology.  
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Figure 3.2 - Relation frame 

The figure shows a subset of the semantic net representation of the top ontology in 
TrollCreek. The frame at the bottom shows the frame of the frame of the has subclass 
relation. It inherits over instance of and subclass of. Its inverse relation is subclass of. 
NumberEntity#12 represent the default explanation strength of has subclass. Every 
relation in Creek has an explanation strength used to compute the total strength of a path 
between two frames. 
The taxonomy is taken from an earlier version of TrollCreek. The current version is more 
comprehensive. 

Two of the slots in Figure 3.1 are shown with grey font in the frame view. These slots 
are inherited. Inheritance is central in semantic nets and frame-based knowledge 
representations. The most common mechanism is that properties are inherited through 
relations corresponding to the Creek relations has subclass and has instance. In 
TrollCreek inheritance is augmented through a mechanism called plausible inheritance 
that allows properties to be transferred over other relation types as well. What relations 
that transfer other relations are easily defined by making a transfers relation between 
the entities representing the two relation types. 
 
Figure 3.3 gives an example where the relation requires is transferred by has part. 
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From the fact that car has the part engine, which has the part piston that requires oil, 
we can infer that engine requires oil. Further we can infer that car requires oil. The 
plausible inheritance mechanism in TrollCreek is thoroughly described in [17]. 

 

Figure 3.3 - Example of plausible inheritance. 

The figure is adapted from [17]. 

Relations in TrollCreek are unidirectional. However, every relation type has an inverse 
relation. For instance has part has the inverse part of. When a relation is defined 
between two entities, the inverse relation is automatically entered by the system. 

3.2  The implementation of TrollCreek 
At the conceptual level the model of TrollCreek is built of entities and relations forming 
a semantic network. An entity and its relations can be seen as a frame where the entity 
is the frame and the relations with values are the slots.  

3.2.1 KnowledgeModel 
In the implementation the knowledge model is represented by an object of the class 
KnowledgeModel that contains information about the model and collections of entities, 
relations and other objects in the model. It also has methods for managing the model, 
such as creating entities and relations, mapping entity and relation names to the 
objects representing them, merging models etc. 
 
Entities and relations are represented by the classes Entity and Relation that act 
as a programmatic interface to the corresponding concepts. This means that these 
classes have methods to access and manipulate the Entity and Relation objects 
structures. They do however not directly contain any of the data associated with 
entities and relations. To allow different physical storage methods for the model (SQL 
database, XML, binary file, etc), all data that are supposed to be persistent are put into 
objects of the classes EntityData and RelationData. These are defined as 

interfaces2. The same is true for KnowledgeModel mentioned above. Figure 3.4 

illustrates the relationship between KnowledgeModel, Entity and Relation from the 

perspective of KnowledgeModel. 
 

                                                
2
 Java interfaces are classes containing no variables and just the declarations of the methods. It is not possible to 
instantiate these classes, but they can be implemented by other classes. When a class implements an interface it 
commits to a contract that it must implement the methods in the interface. 



30 

 

Figure 3.4 - Top level classes of the knowledge model 

 
In the current TrollCreek release these interfaces are implemented in 
LocalEntityData, LocalRelationData and LocalKnowledgeModel. As the names 
indicate, they are designed for storing the knowledge model in a local file, but this is 
hidden from the Entity and Relation objects. They only know that they have a 
variable pointing to some object implementing the general interfaces. In the remaining 
of this section only the “local” version is considered. When written that a variable or 
piece of data is contained in an interface this means that the interface declares a 
method for accessing the data.  

3.2.2 Entity 

As described the Entity object has its data stored in an EntityData object. The data 
stored are among other the name and description of the entity, an identification number 
and a list of relations. There is also an attribute called entityObject that can store 
any java object, used to store type specific data. Numbers are in TrollCreek 
represented through a specialisation of the Entity-object named NumberEntity. This 

object uses the entityObject to store the number and has methods for setting and 
accessing the number. Number enities and other special entity types subclasses the 

abstract class EntityType. The class structure representing an entity is illustrated in 
Figure 3.5. 
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Figure 3.5 - The main classes in the representation of Entity 

3.2.3 Relation 
The object structure representing a relation is illustrated in Figure 3.6. The internal data 
of Relation are stored in the RelationData object. A relation connects two entities, 

represented by the from and value variables in LocalRelationData. From a 

RelationData object, and so also a Relation object, we can then access both 
entities involved in the relation. In the discussion on how to implement constraints, this 
may be an interesting fact.  
 
A relation also has a type, for example subclass of. This is represented by a variable 
type of the class RelationType that is a specialisation of Entity. Recall from Figure 
3.2 that Relation together with Entity are direct subclasses of the most general concept 
Thing. This relation frame is actually not a relation, but a relation type, and the frames 
inheriting from it are different kinds of relation types. For details see the lower right 
corner of Figure 3.6. As mentioned, relations in Creek always have an inverse relation. 
The inverse variable in LocalRelationData points to the Relation object of this 
inverse. 



32 

 
 

 

Figure 3.6 - The main classes in the representations of Relation 
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4 Functional requirements 
In section 2.2  through 2.6  we discussed different frame-based knowledge 
representation systems with emphasis on their constraint mechanisms. We also gave 
an enumeration of constraint types found in these systems. Here we describe what we 
want from a constraint mechanism in TrollCreek. 

4.1  Constraint types 

4.1.1 Cardinality constraint 
In LispCreek a slot can have a single value or a list of values [3]. If you want to have 
multiple values for a single slot in TrollCreek you have to add a new instance of the slot 
for every value. This means that one frame can have many slots of the same type. 
Representing a person Kari with three children will then be as in Figure 4.1. 

 

Figure 4.1 - Cardinality in TrollCreek 

This is the natural way to do it when using a semantic net to represent the frames. 
Accordingly the cardinality constraint in TrollCreek will not be a constraint on how many 
values a slot can have, but rather how many slots of a given type an entity can have. In 
TrollCreek it is not possible to define that a frame shall have a given slot without giving 
it a value. The presence of a slot therefore implies that there is a value. Constraining 
the number of slots is thus semantically equivalent to constraining the number of 
values.  
 
The cardinality constraint is a very common constraint type in frame-based knowledge 
modelling systems. Besides, it is also essential in database modelling. Cardinality 
constraints should therefore be included in the design of a constraint system in 
TrollCreek. The constraint should be as flexible as possible, allowing to define an upper 
bound (at most X), a lower bound (at least Y) and a range of allowed cardinalities (from 
Y to X).  

4.1.2 Concrete value constraints  
In addition to defining how many values there can be of a kind, it is useful to constrain 
what values a slot can have. One way to do this is through concrete value constraints. 
This should be done by defining the closed set of allowed values for a slot.  In some 
cases it can also be useful to define some values as not allowed, indirectly allowing all 
others.  
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4.1.3 Value range constraint  
Numerical values are common in most domains. For instance to avoid people getting 
unreasonable old in our knowledge bases it can be helpful to add range constraints to 
numerical values. Age may for example be constrained to be in the range 0 to 130. The 
range should be defined as an interval or by only stating a maximum or minimum 
value. This constraint type should be included in TrollCreek’s constraint mechanism.  
In the above definition of value range constraints only one interval of allowed values 
can be stated. In some cases it may be interesting to define more than one interval, or 
maybe define an interval as disallowed. This should also be implemented. 

4.1.4 Value class constraints 
In the concrete value constraint we define a list of allowed values for a slot. Sometimes 
the set of allowed values has a size that makes it bothersome to enumerate. If then the 
allowed values are all subclasses of some common super class, we can use a value 
class constraint. Constraining the class of allowed values for a slot is maybe the most 
common constraint type in frame-based knowledge representations.  

4.1.5 General constraints 
As mentioned in section 2.1  there are many interesting constraints that we cannot 
express using the simple constraint mechanisms above. This is constraints dealing with 
relationships between more than two frames. The most obvious way to express such 
constraints is through a written language, either the native language of the 
representation system (as Lisp in LispCreek) or a special constraint language (like PAL 
in Protégé).  
 
It should be possible to write expressions describing complex relationships between 
frames in the knowledge base. Every frame and slot should be accessible from the 
expressions. These constraints can either be attached to the frames they describe  
or they can have a global belonging.   

4.2  Inheritance 
In semantic nets and frame-based knowledge representations inheritance is central. 
Properties of a super class are inherited to its sub classes. The most common 
mechanism is that properties are inherited through sub-super class relations and 
instance relations. In TrollCreek inheritance is augmented through a mechanism called 
plausible inheritance that is described in section 3.1 . 
 
Inheritance is also interesting when talking about constraints. Constraints defined in the 
top of a hierarchy are likely to be inherited to sub classes. In Figure 4.2 we see an 
example of a small knowledge model where the Norwegian folktale character Espen 
Askeladd is defined as instance of Boy that is a subclass of Child, subclass of Person. 
There are two value range constraints - One saying that the age of a person must be 
between 0 and 130, the other saying that the age of a child must be between 0 and 18. 
Without inheritance these constraints must have been defined on all instances of man, 
woman, boy and girl. With inheritance, the constraint defined on Person is inherited to 
all its subclasses and the Child-constraint is inherited to Girl, Boy and Espen Askeladd. 
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Figure 4.2 - Inherited constraints 

In the fairy tale example the constraints is inherited all the way down the hierarchy. 
Person could have any number of subclasses in an unrestricted number of levels. All 
would have inherited the constraint on the age. In this case the unlimited inheritance is 
no problem. If some entity is as subclass of Person, it will probably be relevant to 
inherit the constraint.  
 
The constraint mechanism in TrollCreek should allow constraints to be inherited 
through has subclass and has instance of relations. This solution is inherited from 
LispCreek. Transferring constraints over other relations do not necessarily make 
sense. We therefore omit the plausible inheritance mechanism on constraints in this 
project. 

4.3  Constraints on relations or frames 
In 2.1  it was mentioned that there are two ways to define constraints on simple <entity 
slot value> relationships. First, we can define the constraint on the pair of entity and 
slot. This is most easily conceptualised as constraints defined on the entity. Second, 
the constraint can be defined on the relation, independent on what entity the relation 
goes from. In TrollCreek the notion of a slot corresponds to the two concepts relation 
type and relation. A relation type is represented by an entity that inherits from the entity 
Relation. A relation from an entity to another can be seen as an instance of the relation 
type. The first constraint type above corresponds to putting a constraint on the relation 
instance or the entity and the second to constrain the relation type.  
 
Protégé does not have relation types unless you make new meta classes for slots. By 
default all slots are instances of :STANDARD-SLOT. A slot is an independent object. 
This means that a slot once made can be attached to any number of frames. Facets 
and simple constraints are defined on the slots. This makes both facets and the simple 
constraints independent on what frames the slots goes from.  
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Slots in KM are as in TrollCreek defined as frames in the knowledge base. The slot 
frames have six build in slots. Three of them can be seen as constraints. Domain is a 
make-sense-for constraint – ergo a constraint on the from-frame of the relation. Range 
corresponds to the value class constraint. Finally the slots have a Cardinality slot that 
can take the values 1-to-1, 1-to-N, N-to-1 and N-to-N. These slot constraints are 
accordingly defined on the relation independent on the frame. In addition KM does 
have a constraint mechanism where the constraints are defined on the frames. 
 
In KL-ONE constraints seem to be defined on the constraint instances. CreekL stores 
constraints as facets on the slots. Slots are independent frames that live perfectly well 
without being attached to any frame.  
 
We see that different systems use different approaches in this question. Protégé uses 
one approach, KL-ONE another, and KM uses both of these. How shall we handle this 
in TrollCreek? In the Protégé method, adding a constraint to a slot affects all frames 
that have this slot. Given the example from Figure 4.2 it would have been impossible to 
define two different value range constraints on the has age relation from person and 
child. To do this you would have to define two different has age slots. Choosing 
between these two methods, binding the constraints to both the frame and the relation 
is most flexible. Some constraints are however practical to define on the relation type. If 
the constraint by nature should have validity on all relations of a given type, it is time-
saving to be able to define it once on the relation type and not on all entities having this 
relation. An obvious example is the makes-sense-for constraint that does not make 
sense if it is defined on an entity.  
 
In the implementation it will be prioritized to realize the constraint bound to an entity as 
these seem to give most utility. Constraints on relation types are however too important 
to be left out of the further discussion. They will therefore be discussed in section 7.3 . 
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5 Design and implementation 

5.1  Representation 
After listing the different constraints mechanisms we want to implement in TrollCreek, it 
is now time to discuss how they can be implemented. In this section we discuss how 
the constraints can be represented in the TrollCreek architecture, first at the model 
level and then at the implementational level. Topics concerning how constraints are 
evaluated are discussed in 5.2 . 

5.1.1 Model level 
In this section we will discuss how constraints can be included into the model level or 
conceptual level of the TrollCreek system. We will also examine whether it is possible 
to represent the constraints solely on this level using existing implementation level 
structures. If this is possible we will save the time and effort required to implement a 
low level representational structure for the constraints. We then only have to make 
some high level adaptations to allow editing and browsing constraints. Evidently we 
also must develop a constraint checking mechanism. This approach is used in Protégé 
(described in section 2.6 ). 
 
In Protégé both classes, slots and constraints have system- or meta-classes describing 
them. All normal classes are instances of :STANDARD-CLASS or some user-defined 
meta-class. From Figure 5.1 we can see that slots, facets and constraints are 
represented correspondingly. This is meant as a way of creating templates for different 
kinds of classes, slots and facets. As described above, Protégé represents the simplest 
constraints as facets, and the more complex as PAL-constraints. Both are represented 
in the model as instances of some meta-class. This means that the constraints are 
stored as an integrated part of the knowledge model. The knowledge representation 
system does not have to know that these concepts are constraints – they are just some 
kind of class [23]. 
 

 

Figure 5.1 - Meta-classes in Protégé 

To the left we see the tree of system- and meta-classes in Protégé. The system class 
representing PAL-constraints is selected and its facets are shown in the class editor to 
the right. 
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When creating a new knowledge model in TrollCreek we do not get an empty model. At 
a minimum a basic epistemological model is included. This model contains some 
entities and relations playing a role related to Protégé’s meta-classes. The most 
general concept Thing, the concepts Relation and Entity and among other the basic 
relations has subclass, has instance and has inverse are part of this ontology. For case 
based reasoning either Simple CBR model or the more extensive Creek IsoPod model 
(see appendix A ) are used. These models contain entities and relations used to model 
and represent cases and relations among cases. By connecting our Creek knowledge 
models a top ontology, we add semantics to our model. Creek’s reasoning 
mechanisms distinguishes relations and entities, knowing their different roles in a 
model. Recall from 3.1  that the special relation Transfers are used to tell the reasoning 
mechanism that one relation transfers another.  
 
Following this design we can add the concept of constraints to the top ontology. Figure 
5.2 suggests making Constraint a subclass of Descriptive Thing. With this, the 
constraints will be integrated into the ontology of the knowledge model, also making a 
contribution to the overall semantics of the model.  

 

Figure 5.2 - Top ontology of TrollCreek 

 
As described recently Protégé represents constraints as instances of different 
constraint meta-classes. In TrollCreek this corresponds to representing the constraints 
as frames inheriting from the constraint frame shown in Figure 5.2. 
Copying the Protégé solution is however not straight forward. The representation in 
Protégé is at a higher abstraction level than in Creek. For example the slots in Protégé 
can have values of different datatypes (Table 2.15). PAL constraint frames have the 
four slots :PAL-NAME, :PAL-DESCRIPTION, :PAL-RANGE and :PAL-STATEMENT, all 
with data type string. All but the first of these typically contain multiple lines of text. In 
TrollCreek the slots can only have entities as their value. By default entities only have a 
name describing them while the properties are expressed through the relations. 
Representing constraints using the name field of entities will result in a messy and 
unreadable model. TrollCreek do however have a possibility to associate more 
information to an entity. Every entity has an (possibly empty) attribute called 
entityObject that can hold any java object as its value. The current user interface 
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enables inserting strings, URLs and numbers into this place. Using this attribute, 
constraints can be represented as a single entity/frame with a describing name in the 
entities name field, a description in the entities description field and a constraint object 
in the entityObject field. The constraint object can be a string with a constraint 
expressed in some constraint language or it can be a special constraint object.  
 

As described above this approach has the advantage of not requiring any changes to 
the knowledge representation system in TrollCreek. We use the already existing 
structure to represent our new constraints. The user interface however, must be 
augmented to allow the definition of constraints. We also have to define how the 
constraints are to be represented inside the entityObject.  
 
At the conceptual level this may seem as a good solution. The constraints are 
represented in the model as a special kind of frame tidy placed in the ontology 
alongside entities and relations. The solution may be good at the conceptual level, but 
using the entities entity object to store the constraint is not preferable. As is mentioned 
in section 3.2.2 this attribute are primarily used for storing type specific information of 
an entity. We are then using the underlying entity-structure to store something that is 
not entities.  In TrollCreek’s implementation there is a Relation class to represent 

relations and an Entity class to represent entities. To be consistent with the existing 
implementation we therefore have to introduce some class structure at the 
implementational level to represent the constraints. The solution sketched above can 
however be used at the model level. Entities and relations are represented both at the 
implementational level and at the model level. Constraints can be treated the same 
way adding some semantic to the model. 

5.1.2 Implementational level 
In section 3.2  we described the structure of TrollCreek’s implementation. Here we will 
discuss possible ways to implement constraint representation into the existing class 
structure. The internal representation of the constraints should be tidy and ideally not 
involve changes in too many classes. 
 
Above we suggested representing constraints as a special kind of entity with some 
constraint object in the entityObject attribute. This was rejected because the entity 
structure should not be used to represent something not being an entity. Another 
possibility is to store the constraints of an entity as a list in the entity’s entityObject. 
This allows us to store the constraints without changing anything of the internal 
knowledge structure of TrollCreek. We just have to make a constraint structure to put 
as an object in the entityObject variable. The only part of the system that has to 
know this is the constraint checking engine, and of course the user interface 
component that allows the user to write the constraint. The thought may seem 
tempting, however, doing this we occupy the entityObject, blocking other data to be 
stored there. The entityObject can only store one object. As mentioned in 3.2.2, 
storing type-specific data is the intended purpose of the object. Using the 
entityObject is then no good solution either. 
 
From the above we can conclude that some more extensive additions have to be made 
to the representation. This can be done by borrowing some design decisions from the 
way relations are implemented. In EntityData there is a list of relations that “goes 

from” the entity. We introduce a corresponding list of constraints in EntityData. The 

entries in the list point to Constraint objects that represent the constraints, possibly 

containing ConstraintData objects if necessary. The solution is sketched in Figure 
5.3. 
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Figure 5.3 - Sketch of a constraint representation in TrollCreek 

 
As described in 3.2.1 one important idea behind the design of TrollCreek is to allow the 
knowledge model to be implemented and stored different ways. This is the reason why 
the KnowledgeModel, EntityData and RelationData are represented as interfaces. 
When making extensions to TrollCreek it will be favourable to design the new 
components in the same “spirit” as the existing system. Constraints are therefore 
represented by a Constraint class being the programmatic interface to the constraint 
class structure. The internal data – or instance variables, to follow the object oriented 
jargon - of the constraint is stored in some implementation of the ConstraintData 
interface. To make a solution to use with the current version of TrollCreek this interface 
is implemented by a class called LocalConstraintData. To allow the constraint types 
to be represented in the semantic network, the ConstraintData class points to a class 
representing its type. This class inherits from EntityType just like RelationType 
does. 

Constraint objects 

In Figure 5.3 we saw a sketch of how constraints could be implemented into and 
attached to the existing java classes of TrollCreek. This sketch is however somewhat 
superficial to be used as a guide in the programming process.  
 
So far we have used a top-down approach in discussing how to include constraints into 
TrollCreek. Now we will go bottom up to se how we can make the design more 
concrete. Figure 5.3 says that a constraint should be implemented using a constraint 
object and a constraint data object, just like the way entities and relations are 
implemented. Constraints are however more complex structures than entities and 
relations because they have a partly procedural nature. 
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For a moment we move away from the constraint design discussed so far. Assume we 
shall make a simpler constraint mechanism than the one discussed. The constraints 
are not integrated into the knowledge model. Instead we have an external mechanism 
with constraint objects that state restrictions on the knowledge model. There are one 
constraint class for each type of constraint. In these classes the constraints are 
expressed through a check-method that both define and checks the constraint.  
 
The constraints are customized by attaching them to different entities and relations. In 
this simple mechanism constraints are stated by creating constraint objects with 
different entities and relations as arguments. Constraint checking is encapsulated into 
the objects and is as easy as evoking the check-method on all constraint objects. 
Figure 5.4 illustrates this using a class-diagram. Here all constraint classes implement 
an interface called Constraint that contains a single method check. This means that 
the constraint checking loop can treat all constraints equally despite their different 
types. The only thing it has to know is that a constraint has a method called check that 
returns something saying whether the constraint is met or not. In Figure 5.4 the method 
returns a boolean value – true if everything is ok and false if the constraint is violated. 
In a real system it should probably return some more information on how or why the 
constraint is violated.  
 

 

Figure 5.4 - Constraint objects 

The general constraint can also get its own constraint object. This object may instead 
of taking entities and relations as arguments, take a string defining the arbitrarily 
complex constraint. Such an object must have methods for parsing the string and 
interpreting the constraint. This could however be hidden inside the object making it 
look like any of the other constraints. The implementation of the general constraint is 
discussed later. 
 
The approach described here is certainly too simple to meet the needs for a constraint 
mechanism in TrollCreek. However, it may be used as an inspiration or a starting point. 
Especially the simplicity of constraint checking is tempting to exploit. Encapsulating 
complex details inside objects is one of the central things in object oriented 
programming. It is also quite easy to express the constraints as java code in a check 
method. The representation package in the TrollCreek implementation has a rich 
API that enables us to easily get information from the knowledge model. There is for 
instance no need to write intricate algorithms for traversing the graph representing the 
semantic network.  
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Connecting constraint objects to the model 

We will now seek to find a way to sew together this simple mechanism with the overall 
design from Figure 5.3. Above we decided to follow the design principles from Entity 
and Relation having a Constraint class which wraps a ConstraintData class 
containing all the data of the constraint. The constraint classes from Figure 5.4 
represent the core of the constraint. In addition we may need some way to store a 
description of the constraint. These data fits naturally into the ConstraintData object. 
Next we have to figure out whether the different constraint objects shall be attributes in 
the ConstraintData objects or if they themselves should play the role as 

ConstraintData objects. This question leads us to another important decision: At 
which “level” in the code do we distinguish between the different constraint types? 
Should we replace the one top level Constraint with four or more specified constraint 

objects, or should there probably be one Constraint class that can hold different 

types of ConstraintData objects? Again we borrow design decisions from the rest of 
the TrollCreek system. An analogous phenomenon to the different types of constraints 
is the different types of entities. In the current implementation we can mention Case 

and NumberEntity as special forms of the entity object. These two classes extend3 the 

Entity class through the EntityType class (Figure 5.5). 
  

 

Figure 5.5 - Hierarchy of entity types 

 
What distinguishes NumberEntity from Entity is the ability to store a number in the 
entityObject attribute. This involves a new constructor method taking a number as 
argument, and some methods to access and manipulate the number. By using the 

specialized entity class that knows how to handle numbers, the standard EntityData 
class can be used. EntityData does not know, and do not have to know, what kind of 
data it stores in its entityObject attribute. Similarly, by having different constraint 
objects at the top level that handles the differences, we can make a general 
ConstraintData class that handles different types of constraint data.  
 
In Figure 5.6 we suggest a class design for the constraint mechanism. At the top of the 
diagram we find the Entity class. Because all constraints listed in the requirement 
section are centred around an entity, it is practical to tie the constraint structure to the 
entities. As we saw above the Entity object itself do not hold any data. All its data are 
hold by an entity data object. At the top of the constraint structure we have the abstract 
class 4 Constraint that act as a super class for the classes representing the different 

                                                
3
 In the Java terminology the word extend is used to say that a class inherits from another class. It is also used as a key 
word in the programming language 
4
 A class that is declared abstract cannot be instantiated, but must be subclassed by a child class. It can, in contrast 

to an interface, contain instance variables and complete methods. 
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constraint types. Methods and instance variables that are common for the different 
constraint types are placed in this class. As with Relation and Entity the 

Constraint class just act as a wrapper or programmatic interface for the data objects. 

Its only instance variables are pointers to the KnowledgeModel and the 

ConstraintData. Detailed class diagrams showing all attributes and methods are 
found in appendix B . 
 

 

Figure 5.6 - Class diagram of constraint types 

The figure shows the structure of the classes. Extensive diagrams with attributes and 
methods are listed in Appendix B  

The interface ConstraintData defines all the public methods that the constraint data 
classes shall have. In this project this interface is implemented by 
LocalConstraintData that are written to work together with LocalEntityData and 

LocalRelationData. The LocalConstraintData contains the constraints ID, its 
description and a constraint-object that is an adaptation of the constraint classes from 
Figure 5.4.  
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ConstraintObject is an abstract class that is sub-classed by classes for the different 
constraint types. These classes are responsible for handling the behaviour of the 
constraints. Appendix B shows the details of ConstraintObject and its subclasses. 
The core of these classes is the check method that encapsulates the mechanisms for 
evaluating the constraint. The constraint is defined in this method that returns an object 
of type ConstraintCheckResult that encapsulates the answer from the check. 
Checking the constraint is done by evoking this method and the result from the check 
can be requested from the result object. This object contains a boolean value that says 
whether the constraint is violated or not, and a string with an explanation. If we in the 
future want to give the results another form, it is easy to put more data into this object. 
As an example we can imagine a scenario where we want to give a graphical view of a 
constraint violation. Then we probably will return the entities and relations involved in 
the violation. 

5.1.3 General constraints 
We have now made some decisions about how to implement the four simpler 
constraint types. The implementation of the general constraint mechanism is however 
not discussed yet. With the constraint design we have build so far, it is straight forward 
to add a new subclass of Constraint and ConstraintObject.  
We now have to decide how the general constraint shall be expressed. As written 
earlier the most obvious way to express such constraints is through a written language, 
either the native language of the representation system or a special constraint 
language. The first approach is used in the Lisp version of Creek were all slot and facet 
values can be lisp expressions. In Protégé the most complex constraints are expressed 
through the Protégé axiom language.  

Constraint language 

A possible way to solve this in TrollCreek is to define a constraint language (possibly 
stolen from KM or Protégé) and make an interpreter for it. The interpreter translates the 
statements into some underlying constraints that must be defined in the system or 
directly to the native language of TrollCreek. The advantage of this approach is that 
you can accommodate the language to perfectly fit the conceptual model of the 
TrollCreek knowledge representation and such making it easier to use. To write an 
interpreter for such a language that translates to Java, the native language of 
TrollCreek, is however a quite demanding task involving problems attached to parsing 
etc. Making a new language also forces the user to learn a new language.  

Write constraints in java 

A possibly better and certainly easier solution is to allow the user to write the complex 
constraints in Java. Loading and unloading classes in Java is not straight forward, 
however there are code libraries available that emulates a Java virtual machine and 
can interpret Java source code dynamically. In this project DynamicJava [10] is used to 
prove the concept. This package contains a method that can be called with a piece of 
Java source code as argument and returns a Java object. The source code can be a 
complete class or just some lines of code.  
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private boolean constraint(Entity e){ 
 /* write your constraint here. return false if the  
  * constraint is violated, else true 
  */ 
} 
 
private boolean constraint(Entity e){ 
      /* Cardinality constraint for the relation has owner. 
   get all relations of type "has owner" */ 
       
   Relation[] rels = e.getRelations("has owner"); 
         
      /* If there are more than 1 owner, return false */ 
      if(rels.length > 1) 
            return new ConstraintCheckResult( 
                            false,  
                            “more than one owner”); 
 else 
  return new ConstraintCheckResult(true, “No problem”); 
} 

Table 5.1 - General constraints in Java 

In Table 5.1 it is shown how this can be done. The user gets an empty method with 
complete declaration where she can write her constraint. It is also shown how a simple 
cardinality constraint can be expressed, by counting the length of an array containing 
the relations of a specific type.  
  
The disadvantage of this solution is that the user must have thorough knowledge about 
the internal representation of TrollCreek. This is not necessarily designed to fit the 
surface representation or be easily understood. However, the gap between the 
representation and the user interface in TrollCreek is not very large.  
 
A way to make it easier to write such constraints is to make a set of wrapper-methods 
that supports the user with information relevant to constraint writing. This can simply be 
to supply already defined methods with new constraint-like names, or it can be a 
wrapping of more complex operations into one method. Such methods will not do 
anything with the functionality of the mechanism, but rather act as syntactic sugar, 
easing the job of the user. 

5.1.4 Inheritance 
In section 4.2  we stated that constraints in TrollCreek should be inherited over 
subclass and instance relations. The design currently defined do not support 
inheritance. In Figure 5.4 the constraint objects contains instance variables 
representing the from-entity and the relation that is involved in the constraint. The two 
instance variables were intended to be set during the initiation of the objects of this 
class. Consequently the constraint is bound to a given entity.  
 
To allow constraints to be inherited it is not practical to store the from-entity in the 
constraint checking object, as was done in Figure 5.4. We must be able to check all 
constraints with many different entities. In addition to checking them with the entity that 
owns them, they must be checkable with the entities that inherit from the owner. One 
way to enable this is to send the entity to be checked as an argument to the constraint 
checking method.  
 
When checking an entity’s constraints we can iteratively check the constraints first with 
the entity itself and then with all its subclasses. Alternatively, when requesting all 
constraints from an entity, the entity can return its own constraints and all the 



46 

constraints of its super classes. Then we can check all these constraints with the entity. 
The latter is chosen in the implementation. Both approaches give the same result. 

5.2  Constraint checking 
Having established a representation of the constraint mechanism, it is time to decide 
how the constraints should be checked. It is already settled that the individual 
constraints are checked by calling the constraint object’s check method. There is 
however many questions still to be answered. 

5.2.1 Time of constraint checking 
First we discuss when the constraints shall be checked. Cyc checks constraints when a 
new piece of information is introduced to the knowledge model. Doing this they assure 
they never get erroneous knowledge in the model. The same approach is followed by 
the lisp version of Creek. In LispCreek the user gets a message that the value entered 
is illegal and has been rejected. KM has a lazy approach compared to these two. In KM 
the constraints are checked during inference. When information from a frame is 
requested the frames constraints are checked and the user notified if the result is 
negative. In Protégé no constraints are checked unless the user asks for it. PAL 
constraints are run on demand. Violations are presented to the user, but the system 
does nothing to force a correction. The simpler constraints defined in the facet 
however, are not really checked at all. They are enforced by the graphical user 
interface that does not allow the user to insert erroneous knowledge. 
 
In the frame systems examined above we see that there are mainly three different 
approaches to the question of when the constraints shall be checked. 

1) During insertion of knowledge (as in Cyc and CreekL) 
2) During inference (as in KM) 
3) On demand (as in Protégé) 

 
Checking constraints during insertion of knowledge ensures that all knowledge in the 
model is consistent. Erroneous knowledge is not allowed to be inserted. This is of 
course favourable, but the solution is not problem-free. In the process of building or 
editing a knowledge model there may be times when the model is temporary 
inconsistent. The most obvious example is perhaps cardinality. If we have a cardinality 
constraint stating a minimum number of values for a slot, it will consequently not be 
met when the first value or values are entered. The other constraints are probably 
possible to obey during the building of a model, but creation of entities and relating 
them must be done in the right order to avoid violations. This problem can be solved by 
allowing the constraint checking to be temporarily turned of or relaxed. However, if we 
want a 100% consistent model, it must be possible to check the whole model after 
activating the constraints again. 
 
KM’s solution with constraint checking during inference is not subject to the problems 
just mentioned. Because TrollCreek is both a frame-based system and a CBR system 
TrollCreek have no exact parallel to KM’s inference. In CBR systems the reasoning 
process has four main steps: retrieve, reuse, revise and retain [4]. When comparing to 
KM we should however focus on the frame part of the system. Every time a node in the 
TrollCreek semantic network is viewed in the frame view, all its relations (slots) are 
shown – both local and inherited. The underlying task done by the system to do this 
must be seen as the inference process of the frame-based representation. If we should 
adopt KM’s check method, this would be the place to do it. In TrollCreek the 
construction of a model involves using the frame view. If the constraints should be 
checked during inference, this will trigger constraint checks. This is however not a 
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problem because the frame view can be set to only show local relations. Constraint 
checking in a system based on inheritance can be computationally expensive if the 
knowledge model is large. This is also true for the inference process. To check 
constraints every time a frame is viewed can then make the knowledge system 
needlessly slow.  
 
Finally we have the method used in Protégé Axiom Language where the constraints 
are evaluated on demand. The user can choose from a list which constraints to check 
and then run an evaluation on the selected ones. This solution avoids the problems 
stated above. During the creation of the model we are neither obstructed nor disturbed 
by the constraint mechanism. When we want it we can run an evaluation to get the 
constraint mechanism’s opinion of our work.  
 
The constraint mechanism designed above is flexible enough to deal with different 
checking procedures. TrollCreek fires a model change event every time a change is 
made to the knowledge model. This makes it easy to implement a mechanism that 
checks whether the constraints hold after every change to the model. The other 
checking mechanisms are also easily implemented.  The most flexible solution is to let 
the user decide how and when the evaluation of the constraints shall be done. During 
different phases in the development of a knowledge model, or perhaps due to different 
styles of working, we can use different checking methods. We can then exploit the 
strengths of different methods. In the implementation of this project we will for simplicity 
chose one of the methods. Because the Protégé approach is most flexible we will 
chose something close to that. We will give the user the ability to either check all 
constraints in the knowledge model or check constraints, local and inherited, on a 
specific entity. The constraint mechanism will only be a guide to the user. It will not do 
anything to reject erroneous values.  

5.2.2 Summary 
In this section we have discussed how the constraint mechanism can be implemented 
into the TrollCreek system. The focus has been on the discussion and not on 
describing the final result. Javadoc and source code for the implementation can be 
found in the file archive attached to this thesis. 
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6 User interface 
After discussing how to implement constraints in TrollCreek, it is time to study the 
result. This section describes the user interface created to manipulate the constraint 
mechanism. An illustrative demonstration of the functionality of the constraint system is 
given in section 7.1  

6.1  User interface 
In TrollCreek knowledge editor there are two main components in the UI. Map view 
shows the semantic network and frame view shows the frame of the node selected in 
the map view. The UI is shown in Figure 6.1. 
 

 

Figure 6.1 - TrollCreek knowledge editor 

 
Editing the knowledge model is mainly done in the frame view part of the window. As 
described in 3.1  the frame view contains name, description and slots of the frame. To 
allow viewing and editing constraints a pane for handling constraints is added to the 
bottom of the frame view. To put it in the frame view was a natural choice as long as 
the constraints implemented are bound to the frames. The frame view with constraint 
pane added is shown in Figure 6.2. 
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Figure 6.2 - Frame view with constranints 

A constraint pane (in the red rectangle) is added in the bottom of the existing frame view 
pane. 

The constraint pane contains two lists of constraints, one for local constraints and one 
for inherited constraints. The local constraint list has a button for deleting constrains 
next to it. Below the lists of constrains there is a panel for creating and editing 
constraints. After selecting a constraint type from the dropdown list more UI-
components appears. The different versions of the Add/edit constriaint panel are 
shown in Figure 6.4 through Figure 6.8. 
 
Creating a new constraint is done by defining the constraints properties in the form and 
then hitting the Add button. The constraint will then appear in the list of local 
constraints, and correspondingly in the inherited constrains list of the frames 
subclasses.  
 

The existing frame 
view 
 
 
 
 
 
 
 
 
 
 
 
 
 
Constraint pane 
 
 
Local constraints 
 
 
 
 
Inherited constraints 
 
 
 
 
Editing constraints 
 
 
 
 
Trigger checking  
of constraints 
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To edit a constraint, select the constraint from the local constraint list. The constraint 
will then appear in the Add/Edit constraint panel. Hitting the Update button after 
changing the constraints properties, will update the constraint. The New button does no 
more magic than clearing the Add/Edit panel. 
 
Constraints are evaluated by pressing one of the two buttons in the bottom of the frame 
view. There are one button for checking all constraints for the given entity, and one for 
checking the whole model. From a human-computer interaction (HCI) point of view, the 
Check all button is misplaced. It should be placed somewhere naturally mapped to the 
whole model, and not in a window showing one single constraint. This project is 
however not about HCI, and placing the button there was time-saving. 
 
When checking the constraints the constraint check result window (Figure 6.3) shows a 
list of the violated constraints with some information on how/why the constraint is not 
met. The checking mechanism does not do anything to enforce the constraint. The 
decisions on how to solve the problems is left to the user. 
 

 

Figure 6.3 - Result of constraint check 

 

 

Figure 6.4 - Cardinality constraint form 

A cardinality constraint is defined by the relation type it constraints and the minimum and 
maximum number of allowed values.  

 

Figure 6.5 - Value range constraint form 

A value range constraint is defined by the relation type it constraints and a minimum and 
maximum number making a range of values. The range can be allowed or disallowed as 
values of the relation. This is toggled by the radio buttons. 
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Figure 6.6 - Value class constraint form 

A value class constraint defined by the relation type it constraints and the allowed super 
frame. 

 

Figure 6.7 - Concrete value constraint form 

A concrete value constraint is defined by the relation type it defines and a list of 
values/entities.  Values are picked from the dropdown-list below the list of values, and 
added to the list by hitting the Add button. The list of values can either be allowed or 
disallowed as values for the relation. This is toggled by the radio buttons. 

 

 

Figure 6.8 - General constraint form 

A general constraint is defined by a script written in Java. The script must contain a 
method called check, but can be more extensive. By hitting the button labelled Large 
window a larger editor window pops up. 
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Figure 6.9 - General constraint form (advanced) 

This window offers a bigger editor window, making it easier to write complex constraints. 
Hitting the Check syntax button runs the constraint. If there are syntax errors a 
descriptive message is given in the grey bottom panel.  
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7 Evaluation and discussion 

7.1  Proof of concept 
This project does not contain any mathematical description of the constraints 
mechanism. We can then not give any proofs that the mechanism works. In this section 
we will test out the constraints and se whether they give reasonable results. 
  
As a test model we use an ontology from the Norwegian folk tale character Espen 
Askeladd and his family and friends. Espen has a mother and a father, although they 
are not mentioned in the tales. He also has the older brothers Per and Pål. In most of 
the stories Espen Askeladd attends to some kind competition where he, by impressing 
the King, wins the Princess and half of the kingdom. The ontology is shown in Figure 
7.1. 
 
Using this knowledge model, we will test the system by creating constraints and trying 
to violate them. The cardinality and value range constraints are defined by a maximum 
and a minimum value. Constraints are accepted by the system even if one of the 
values is undefined. This makes sense, because sometimes we want to constrain only 
the upper or lower bound of an interval. In the representation of the constraints below 
the undefined values are denoted by –inf for lower bound and +inf for upper bound. 
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Figure 7.1 - Test ontology, Espen Askeladd 
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7.1.1 Cardinality constraint 
To evaluate how the cardinality constraint mechanism works, we define some 
cardinality constraints on the above model.  
 
1) A person can have only one age.  
Person cardinality(has age, 0, 1) 

 
2) An adult person can be married to one or zero persons. 
Adult  cardinality(married to, 0, 1) 

 
3) A child can not be married. 
Child  cardinality(married to, 0, 0) 

 
Then we introduce some relations violating the constraints.  
 
Mrs Askeladd -> married to -> The King 
Espen Askeladd -> married to -> The Princess 
Per -> has age -> 15 (years) 

 
First, Mrs Askeladd is already married to Mr Askeladd. Marrying the King she violates 
constraint 2. Second, both Espen Askeladd and The Princess are children. According 
to constraint 3 they can not get married. Finally, Per already has 16 (years) as his age. 
Another age violates constraint 1. 
When running the check we get the following result: 
 

4 constraints violated  
 
1 --- 
Cardinality(married to, 0, 0) 
Cardinality for Espen Askeladd -> married to should be 0 - 0 
Espen Askeladd -> married to -> The Princess 
 
2 --- 
Cardinality(married to, 0, 1) 
Cardinality for Mrs Askeladd -> married to should be 0 - 1 
Mrs Askeladd -> married to -> The King 
Mrs Askeladd -> married to -> Mr Askeladd 
 
3 --- 
Cardinality(has age, 0, 1) 
Cardinality for Per -> has age should be 0 - 1 
Per -> has age -> 16 (years) 
Per -> has age -> 15 (years) 
4 --- 
Cardinality(married to, 0, 0) 
Cardinality for The Princess -> married to should be 0 - 0 
The Princess -> married to -> Espen Askeladd 

 
Violation 1 and 4 in the result detects the fact that Espen Askeladd and the Princess 
can not get married. The second violation shows that the polygamy of Mrs Askeladd is 
detected. Per’s confusion according to age is showed in the third violation.  
 
The experiment shows that the cardinality constraint mechanism works for this test 
model. We see that the constraints are correctly inherited down has subclass and has 
instance relations.  
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7.1.2 Concrete value constraint  
We define some concrete value constraints. 
 
1) A person’s sex must be male or female 
Person Concrete value(sex, allowed, {Male, Female}) 

 
2) A man’s sex must be male 
Man Concrete value(sex, allowed, {Male}) 

 
3) A woman’s sex must be female 
Woman Concrete value(sex, allowed, {Female}) 

 
Then we add some knowledge to the model that will violate the constraints. 
 
The King -> sex -> Female 
Espen Askeladd -> sex -> Man 

 
The King is already defined as an instance of Man. His sex is then constrained to be 
Male. Espen Askeladd is instance of Child that is a subclass of Person. His sex should 
then be Male or Female. These two errors should be detected by the mechanism. 
 

2 constraints violated  
 
1 --- 
Concrete value(sex, allowed, {Male, Female, }) 
Concrete values allowed: Male, Female,  
Espen Askeladd -> sex -> Man 
 
2 --- 
Concrete value(sex, allowed, {Male, }) 
Concrete values allowed: Male,  
The King -> sex -> Female 

 
We see that the mechanism detects both the predicted violations.  

7.1.3 Value range constraint 
To evaluate the value rage constraint, we define three constraints in the knowledge 
model. 
 
1) A person’s age must be between 0 and 150 
Person  Value Range(has age, 0, 150, allowed) 

 
2) An adult’s age must be 16 or higher 
Adult  Value Range(has age, 16, +inf, allowed) 

 
3) A child’s age must be no more than 16 
Child  Value Range(has age, -inf, 16, allowed) 

 
We add the relations 
The King -> has age -> -3 
Pål -> has age -> 19 
 

Recall that the king is an instance of Man that is a subclass of Adult that subclasses 
Person. Pål is defined as a child. The age of the king is outside the allowed range for 
Person (0-150) and the allowed range of Adult (16- inf). Pål should as a child not be 
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more than 16 years old. 
 

3 constraints violated  
 
1 --- 
Value range(has age, -inf, 16.0, allowed) 
Pål -> has age -> 19.0  |  Allowed (n < 16.0)  
 
2 --- 
Value range(has age, 16.0, +inf, allowed) 
The King -> has age -> -3.0  |  Allowed (16.0 < n)  
 
3 --- 
Value range(has age, 0.0, 150.0, allowed) 
The King -> has age -> -3.0  |  Allowed (0.0 - 150.0)  

 
The constraint mechanism finds all these violations. 

7.1.4 Value class constraint 
We evaluate the value class constraint by defining two constraints. 
 
1) A child of a person must be a person 
Person  Value class(has child, person) 

 
2) An adult must be married to an adult(if he/she is married at all) 
Person  Value class(married to, adult) 
 
Mr Askeladd -> married to -> Number 
Mr Askeladd -> has child -> Number 
Number -> child of -> Per 
 

We then add three relations that violate the constraints. Mr Askeladd is married to 
something that is not n adult person, and he has a child that is not a person. To 
demonstrate how the inverse relations affect constraints, we add a relation saying that 
Number is child of Per. There are no constraint defined on Number’s child of relation. 
However, defining this relation the inverse Per –> has child -> Number is automatically 
added. 
 

3 constraints violated 
 
1 --- 
Value class(married to, Adult) 
Value class allowed Adult 
Mr Askeladd -> married to -> Number 
 
2 --- 
Value class(has child, Person) 
Value class allowed Person 
Mr Askeladd -> has child -> Number 
 
3 --- 
Value class(has child, Person) 
Value class allowed Person 
Per -> has child -> Number 
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We see that the two relationships between Mr Askeladd and Number is detected as 
violations. The third violation comes from the inverse relation of Number -> child of -> 
Per. 

7.1.5 General constraint 
To demonstrate the general constraint mechanism we write a constraint that is 
supposed to validate that the value of an has age relation is a number. In TrollCreek a 
number is represented by an entity holding a number as its entity object. The constraint 
then says that the value of an has age relation must be an entity with a number 

(subclass of java.lang.Number) in the entityObject attribute. The constraint is 
defined on the Person frame. Java code for the constraint is presented in Table 7.1. 
 

Table 7.1 - General constraint 

 
We add the relation 
The Princess -> has age -> Child 

 

ConstraintCheckResult check(Entity entity){  
 Entity age; 
  boolean violated = false; 
 
 try{ 
  age = entity.getRelation("has age").getValue(); 
 }catch(NoSuchRelationException e){ 
  /* If the person does not have an age,  
   the constraint is not violated */ 
  return new ConstraintCheckResult(true, "No age"); 
   
 } 
  
 /* If the value of "has age" is an entity with no entity object, 
the constraint is violated */ 
 
 if(age.getEntityObject() == null){ 
  violated = true; 
 }else{ 
  /* If the entity object is not a number,  
   the constraint is violated */ 
  if(!(age.getEntityObject() instanceof Number)) 
   violated = true;   
 } 
  
 /* Return the result of the constraint check */ 
 if(violated){ 
  String res = entity.getName() + " -> has age -> " + 
age.getName() + "\n" + age.getName() + " is not a number"; 
 
            return new ConstraintCheckResult(false, res);  
 }else{ 
  return new ConstraintCheckResult(true, "ok");  
 } 
} 
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When evaluating the constraint we get the following result:  
 

1 constraints violated 
 
1 --- 
The Princess -> has age -> Child 
Child is not a number 

 
 

7.2  Weaknesses with the solution 

7.2.1 General constraints 
Writing constraints in java using the inner representation of TrollCreek directly is not 
trivial. Java is a general programming language, not a constraint language. As an 
example we will try to write a constraint saying that a person’s child must be at least 12 
years younger than the person. 
 
1 public ConstraintCheckResult check(Entity from) { 
2     Number parentAge = (Number) (from.getRelation(“has 

age”).getValue().getEntityObject()); 
3     Relation[] children = from.getRelations(“has child”); 

  
4     //For all children of the person 
5     for(int i = 0; i < children.length; i++){ 
6         // Get the age of the child 
7         Number childAge = (Number) 

(children[i].getValue().getRelation(“has 
age”).getValue().getEntityObject()); 

8  
9         // If the age difference between parent and child 
10         // is less than 12 years the constrait is violated 
11         if((parentAge.floatValue() - childAge.floatValue()) < 12){ 
12             String res = children[i].getValue().getName() + “ is 

to old to be child of “ + from.getName(); 
13             return new ConstraintCheckResult(false, res); 
14         } 
15     } 
16  
17     return new ConstraintCheckResult(true, “All is ok”); 
18 } 

Table 7.2 - General age constraint 

 
Intuitively we would write the constraint like in Table 7.2. First we get the persons age 
by getting the has age relation of the person entity, and requesting the entity object of 
the entity representing the age. Second we get the array of has child relations of the 
person. Iteratively we get the age of each child and comparing it with the age of the 
parent. If the child is to old, we return a negative answer. If no violation is detected, we 
return a message that all is ok.  
This solution will work in some cases, but not all. If for example one of the children has 
no age slot, a jcreek.representation.NoSuchRelationException is  thrown. 
Consequently we will have to either catch the exception or make sure the failure does 
not happen. An experienced java programmer will have no problems handling 
exceptions. We do however assume that the systems will be used by persons not 
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familiar with java. The constraint above will have to be rewritten to work generally. 
Lines 2 and 3 must be replaced by the code in Table 7.3 With these changes the 
constraint works and is stable.  
 
Relation[] children = null; 
Number parentAge = null; 
 
try{  
 children = from.getRelations(“has child”); 
     parentAge = (Number) (from.getRelation(“has 
 age”).getValue().getEntityObject()); 
 
}catch(NoSuchRelationException e){ 
 return new ConstraintCheckResult( 
               true,  
               “Parent got no children or no age”); 
} 

Table 7.3 - Exception thandling in general constraints 

 
Writing general constraints in java is not as flexible as it should be. As we have seen, 
the user must know the implementational details of the knowledge representation 
including error handling and exceptions. Another weak point is that the constraints are 
defined as methods or functions. In the early years of work on knowledge 
representations there was a debate regarding procedural versus declarative 
representation of knowledge; knowing how versus knowing that [16]. In the 
implemented solution the user has to define how the constraint is to be checked 
instead of stating how the ideal model should be. Most frame-based knowledge 
representation systems use a logic-like constraint language that allows the constraints 
to be defined declaratively.  

7.3  Missing functionality 
During this text a lot of useful functionality is suggested for the TrollCreek system. 
Because of time restrictions not all is implemented. In this section we will discuss this 
functionality and sketch how such mechanisms can be implemented.  

7.3.1 Constraints on relation type 
In 4.3  it was discussed whether the constraints should be stored on the entity or on the 
relation type. In the implementation the first of the two was chosen. However, defining 
constraints on the relation type can also be useful.  
 
Because relation types are represented as entities in the knowledge model there is 
already a possibility to place constraints on them. We can constrain the ontology of 
relation types. This can be constraints like: 
 

• Relation types inheriting from Temporal Relation must have default explanation 
strength lower than 0.5 (value range). 

 Isa(x, Relation Type) ∧ Isa(x, Temporal Relation) →  

 DefaultExplanationStrength(x, y) ∧ LessThan(y, 0.5) 

 

• A relation type can have only one has inverse relation (cardinality). 
 Isa(x, Relation Type) → Equals(NumberOfValues(Has Inverse), 1) 
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• The value of has inverse must be a relation type (value class). 
 HasInverse(x, y) → Isa(y, Relation Type) 
 

This is however not what we seek when talking about constraints on relations. The 
constraints on the relation types are not transferred to the relations of the type. What 
we seek is constraints on the relation types that constrain how the relations of that type 
can be used.  
 
Because relation types in TrollCreek are represented as entities it should be possible to 
reuse some of the constraint mechanism from the constraints on the entities. A sketch 
of how this constraint can be included in the system must describe the mechanism both 
at a conceptual level, and at the implementational level. 

Conceptual level 

As described above, there already are constraints on the relation type frames. To make 
the constraints we want, we have to introduce another set of constraints on these 
frames. Frames inheriting from Relation will then have two sets of constraints.  

1) Constraints on the relation frame, the concept of the relation  
2) Constraints on instances of the relation 

As discussed these two sets are different in nature and should therefore be kept 
separate.  
 
As mentioned several times, inheritance is central in frame-based systems. The 
relation types are represented as frames to allow reasoning about relation types, and to 
better define the meaning of a relation. Relation types can then inherit properties from 
other relation types. Like constraint on entities, constraint on relation types should then 
be inheritable over has subclass and has instance relations. 

Constrainting from-frame and to-frame 
A relation is a concept that holds pointers to two frames telling that they are related 
some way. When designing a constraint mechanism to put on relations it is natural to 
consider if both to- and from-frames should be constrainable. The constraints 
implemented so far constrains the to-frame of the relations on a given frame. As 
discussed in 4.3  being able to constrain the to-frame of a relation is desirable. In 2.1.3 
it was also shown that at least one constraint type, value class, makes sense when 
constraining the from-frame of a relation. Cyc has a constraint called makesSenseFor 
that restricts what values that can fill the from role of a constraint [11]. This is a useful 
constraint that should be available in TrollCreek as well. The concept of 
makesSenseFor is in fact already introduced in Creek as a relation in the extensive top 
ontology mentioned in 5.1.1. When used, relations of this type tell the reader of the 
model that the use of the given relation is restricted. It is however left to the modeller to 
make sure that the restriction is satisfied. No evaluation mechanism does this. 
 

Constraint types 
What constraints should be included in this mechanism? In the implemented constraint 
system we have five constraint types: Cardinality, concrete value, value class, value 
range and general. Do all these make sense in this setting? At the first glance the 
answer is no. 
 
Using cardinality to constraint the from-frame of a relation will for instance have the 
following meaning: How many times the relation can be used in the entire model. 
Constraining the cardinality of the to-frame of a relation is also troublesome in the 
Creek framework. The meaning of the constraint will be how many frames in the entire 
model can be pointed to by the relation. This is presumably not what users of the 
system want to model. This is however a rather strict interpretation of the constraint. A 
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more pragmatic solution will be to give the cardinality constraint the following 
meanings: 

• On to-frame: For any from-frame there can be x to y instances of the relation 
pointing away from it. 

• On from-frame: For any to-frame there can be x to y instances of the relation 
pointing to it. 

Interpreted this way the cardinality constraint makes good sense defined on a relation 
type. 
 
Above we mentioned the makesSenseFor constraint from Cyc. This is in fact a value 
class constraint for the from-frame of a relation. In TrollCreek a relation has a from and 
a value attribute. The latter is the same as what is called to-frame earlier in this text. As 
long as the to-frame of the relation is called its value, it is confusing to talk about value 
class constraints on the from-frame of a relation. However, the mechanism of this 
constraint is useful. It is easy to see that value class constraints on the to-frame or 
value of a relation is possible and valuable.  
 
Concrete value constraints are very similar to value class constraints. They both 
constrain what frame that can fill a role. From what is said about value class constraints 
in the previous paragraph we can conclude that concrete value constraints should also 
be available on relations – on both sides. 
 
Value range constraints are also related to the two just mentioned in that they all 
constrain what frames can fill a role. A range constraint on the to-frame of a constraint 
is clearly sensible. For example it is reasonable to constrain the value of the relation 
age to be greater than zero. But is it reasonable to use this constraint on the from-
frame? This will be to constrain what numbers can be the from-frame of a relation. In 
fact, this will make sense. For instance if we are modelling a mathematical domain and 
want to show what numbers are dividend and divisor in an equation. To avoid dividing 
by zero we can constrain the from-frame of the relation divisor of to be greater than 
zero.  
 
Finally we have the general constraint mechanism. This constraint shall be the means 
to realize all types of constraints that can not be expressed using the four just 
mentioned. Allowing to define such constraints on relation types do not introduce any 
new functionality to the system. Because the existing general constraints on entities 
gives an access point to the knowledge model and allows us to write anything, general 
constraints on relation types can already be written. The already existing mechanism is 
attached to entities. Although it is possible, it is no good solution to write relation 
constraints on an entity. To make the concept more understandable there should be a 
general constraint mechanism tied to relation types. Here the access point to the 
knowledge model can be the relation. 
 
As mentioned a few times earlier in this text, all relations in Creek have an inverse 
relation. A constraint defined on the to-frame of a relation will then implicitly be defined 
on the from-frame of the inverse relation. By using a constraint saying that multiple 
inheritance is not allowed Figure 7.2 illustrates how constraints on relations also pass 
for the inverse relation. 
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Figure 7.2 - Constraint: no multipple inheritance 

 
Reviewing the five constraint types from entity constraints we have seen that all of 
them are sensible and useful when considering constraint on relations.  
 

User interface  
Although it is an implementational thing, we will now see how we can extend the user 
interface of the existing constraint mechanism to include constraints on relations. 
Because the user interface hides the internal implementation from the user, it may be 
said to be a part of the conceptual leve. 
 
Recall the constraint panel in the frame view shown in Figure 6.2. In Figure 7.3 we 
suggest extending this panel with a tabbed pane with two tabs. The existing panel for 
constraints on entities is put as one tab and a new panel for constraints on relations is 
put on the other tab. When a frame not representing a relation type is selected the 
relation tab will be invisible or disabled. The new panel is similar to the entity constraint 
panel by having two lists of constraints and a section for editing and adding constraints. 
There are mainly two differences. First, we do not need the drop down list for choosing 
the relation to be constrained. Second, two radio buttons are added that allows the 
user to state whether the constraint shall constrain the from- or to-frame of the relation.  
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Figure 7.3 - GUI for relation constraints 

Relation constraints should probably be visible in the frame view of the entities they are 
affecting. For instance, if there is a cardinality constraint on the relation has parent, all 
entities having this slot is affected by the constraint. When browsing an entity such 
constraints should be visible.  

Implementational level 

There are mainly two problems that have to be solved to implement these constrains 
into the system. First we have to find some way to represent and store the constraint 
attached to the relation type objects. Next the constraint checking mechanism must be 
updated to check constraints on relations. To make the constraint mechanism a whole, 
we will try to reuse the design of the entity constraint mechanism as long as possible.  

Representation 
We start with the representation. In the already implemented constraint mechanism we 
used a class structure similar to what is used for entities and relations to represent the 
constraints. Constraint objects for the different constraint types have methods for 
accessing the data and functionality of the constraints. They are interfaces to the 
constraint structure. The data and properties for the actual constraints are found in 
constraint data objects. The most central of constraint data’s attributes are the 
constraint objects, objects inheriting from ConstraintObject. Recall from chapter 5 
that these objects have a check method for evaluating the constraints.  Figure 7.4 that 
are adapted from chapter 5 shows the structure of the constraint mechanism.  As we 
see, the structure is identical to the one in Figure 5.6.  
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Figure 7.4 - Constraint structure 

Make a new version with names distinguishing it from the one in chapter 5. 

Relation constraints are however slightly different than entity constraints. We must 
therefore make new Constraint and ConstraintData classes for the new 
constraints. In entity constraints the constraint objects holds a reference to the relation 
they are constraining, and data about the particular constraint.  As an example 
CardinalityConstraintObject have the following instance variables: 
 
String rel;  // The name of the relation 
int numberMin; // Minimum bound 
int numberMax; // Maximum bound 

 
When evaluating the constraint the entity to be checked is passed as an argument to 
the check method. Passing the entity as argument to the constraint makes it possible to 
check it with different entities. This is used to check the constraint with entities that 
inherits the constraint.  
 
When making relation constraints the constraint is bound to the relation type and the 
constraint should be inheritable to other relation types. Consequently it should be 
possible to check the constraint with different relation types. We can then not have the 
relation type permanently stored in the constraint object. The relation type must be 
passed as argument to the check method. The instance variables of the constraint 
objects will then be the same as in the constraint objects of the entity constraint 
mechanism except for the relation reference that is removed.  
In the entity constraints the check method has access to the knowledge model through 
the entity object. From the entity object the method could get relation objects and the 
to-frames of the relations. In the relation constraint mechanism the access to the 
knowledge model is through the relation type object. The algorithms of the check 
method will then be different than in the entity constraints. Table 7.4 shows how the 
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check method of a simplified value range constraint can be implemented. 
 
int min; // Minimum value 
int max; // Maximum value 
 
public ConstraintCheckResult check(RelationType rel){ 
    boolean ok = true; 
 
    //Get all instances of the relation type 
    Relation[] relations = rel.getInstances(); 
 
    //For all relations 
    for(int i = 0; i < relations.length; i++){ 
        Entity to = relations[i].getValue(); 
        int value = ((Number)(to.getEntityObject())).intValue(); 
 
        //Check if the value is ok 
        if(value < min || value > max) 
            ok = false; 
    } 
 
    if(ok) 
        return new ConstraintCheckResult(true, ""); 
    else 
        return new ConstraintCheckResult(false, "Value not ok"); 
} 

Table 7.4 - Example of relation constraint 

 
Having established the class hierarchy to represent the constraints we need to decide 
how these classes can be attached to the rest of the knowledge model. From 3.2.3 we 
remember that relation types are represented by objects of the class RelationType 

that inherits from Entity through EntityType. Objects inheriting from Entity have 
their properties and data stored in an EntityData object. The constraints on entities 

are stored in a list named constraints in this object. To be consistent with the existing 
implementation the relation constraints must be placed in the entity data object. The 
most obvious solution is to make a new list for the relation constraints. These 
constraints are in many ways different from the entity constraints: They have a slightly 
different function, they are checked slightly differently and handled by other GUI 
components. Putting the two constraint types in the same list will then be untidy.  
 
When the constraint is represented in a similar fashion as the constraint on entities, the 
constraint checking mechanism can be similar too. The existing checking module has 
two check routines, one for checking a whole knowledge model, and one checking the 
constraints of a single entity. The first takes a knowledge model object as argument 
and the second takes an entity. Checking relation constraints should certainly be 
included in the two checking routines. In addition, primarily for testing purposes, it may 
be useful to be able to check all relation constraints for a given relation type.  

7.3.2 Constraints as part of the ontology 
In 5.1.1 we suggested that the constraints or at least the constraint types should be 
included in the top ontology of TrollCreek. This has not been implemented into the 
finished system. First, the time did not allow the development of a complete constraint 
system for TrollCreek. When deciding what to include in the implementation, making a 
runable version of parts of the system was prioritised. Second, it was not clear how this 
part should be integrated into the system. Making an ontology with a Constraint node, 
and nodes for the constraint types is trivial. Such an ontology is shown in Figure 7.5. 
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The difficult part is to tie the ontology together with the constraint mechanism, and 
making it mean something.  
 

 

Figure 7.5 - Top ontology 

7.3.3 Different approaches to constraint checking 
In 5.2.1 we discussed at what time the constraint should be checked. In the 
implementation lazy evaluation is used. The constraints is checked when the user asks 
for it. This was seen as the most flexible solution, especially during the building phase 
of the knowledge model. It was however established that at being able to chose 
different checking approaches could be useful. Then the user can chose an on demand 
approach during the building of the model. After finishing the model a continuous 
checking can assure a consistent model during updates and further development. Such 
an option can easily be implemented due to a build in mechanism in TrollCreek that 
enables listening for model change events. A simple listener can then check the 
constraints of the entities involved in updates in the model.  
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8 Summary and further work 

8.1  Summary 
The goal of this work was to improve the knowledge modelling abilities of TrollCreek by 
offering the ability to state constraints on the knowledge model. In doing this we first 
discussed frame-based systems and constraint mechanisms in general and developed 
a simple framework for classifying constraints. The framework consists of cardinality 
constraint, concrete value constraint, value class constraint, value range constraint and 
general constraint. The four first constraint types cover most of the useful constraint 
mechanisms used in general purposed frame-based knowledge representations. These 
constraints restrict single values in the context of a frame and a slot. The last constraint 
type covers the need to define more complex constraints where the allowance of a 
value is dependent on the values of other slots. 
 
With this framework in mind, the five frame systems, LispCreek, KM, Cyc, KL-ONE and 
Protégé was reviewed and discussed. Based on the learning from these systems we 
specified a constraint mechanism for TrollCreek. The specification is tightly tied to the 
five constraint types defined in the framework, but some details needed adaptations to 
work with the semantic net representation of the knowledge in TrollCreek.  
 
A discussion on whether the constraints should be defined on the frames or on the 
slots concluded that the first of these was most flexible. The second is also useful, and 
the constraint mechanism in TrollCreek should have both options.  
 
Because inheritance is central in frame systems, it was decided that constraints should 
be inheritable. This is also the norm in frame systems. TrollCreek have an augmented 
inheritance mechanism allowing properties to be inherited over all kinds of relations. It 
was however decided that constraints only should be inherited down has subclass and 
has instance relations. 
 
Based on the specification, a constraint mechanism for TrollCreek was designed and 
implemented. The implementation was designed to fit in with the existing components 
of the system. One of the important aspects was the way TrollCreek allows its 
knowledge model to be stored different ways using an adapter design pattern.  
 
The implemented constraint mechanism offers the knowledge modeller the ability to 
define cardinality constraints, concrete value constraints, value class constraints, value 
range constraints and general constraints on the knowledge model. General 
constraints are written in java as a check method that the system can evaluate to true 
or false. The constraints are defined on the entities, making it possible to state different 
constraint sets for the same slot type on different entities. The possibility do define 
constraints on the relations was not implemented due to time restrictions, but a sketch 
for how this could be solved was given. A simple user interface for defining and editing 
constraints was implemented. 
 
Finally the constraint mechanism was evaluated. Using a small and uncomplicated test 
model the different constraint types was shown to give the expected result. Although 
this is no solid proof for the reliability of the mechanism, it demonstrates its 
functionality.  
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8.2  Further work 
In section 7.3 we discussed parts of the constraint mechanism that is not realised in 
this project. The ability to define constraints on relation types constraining all 
constraints of the type is very useful when modelling large domains. This functionality 
can save the modeller from defining the same constraint on the same relation type for 
different entities.  
 
Another important weakness of the implementation discussed in 7.3.2 7.3 is the failure 
to integrate the constraint mechanism in the frame ontology. For the current 
mechanism this is not a serious problem – the constraints works well. However, 
including the constraints or constraint types in the ontology can help the modeller to 
understand the meaning of each constraint type.  
 
Partly related to this is the possibility to use the constraint mechanism in the inference 
process. Constraints can be used for example to represent incomplete knowledge. 
When used this way, constraints are not only constraints but also domain knowledge. 
 
The KL-ONE system described in 2.5 has a graphical notation for constraints. As 
mentioned (3.1 ) the TrollCreek system has a graphical map view and a form based 
frame view as two different views of the knowledge model. The map view gives a good 
overview of the model while the form view shows the details of each frame. The user 
interface components developed for the constraints in this project is solely tied to the 
frame view. Making a graphical representation of the constraints in the map view 
should be considered as this will make it easier to “read” the model. 
 
Although it is outside the scope of this project we will suggest using ideas from the 
general constraint mechanism to introduce procedural attachment functionality in 
TrollCreek. The underlying mechanisms can be used as they are, but a user interface 
that is not constraint-like must be developed. There are several situations where such a 
mechanism can be useful: 

• Procedure as a value for slots 

• Batch jobs 

• Trigger routines 
 
These aspects should be considered in the further development of the TrollCreek 
system. 

8.3  End note 
A digital version of this thesis and the attached file archive is accessible through the 
DAIM5 system at http://daim.idi.ntnu.no. The file archive contains a standard TrollCreek 
distribution with source code, runnable jar-files and documentation in the Javadoc 
format. The documentation is customized with a description of what parts of the code 
that is developed in this project. See the readme.htm file for details. 
 
The TrollCreek system without the additions from this project can be downloaded from 
the Creek home page at http://creek.idi.ntnu.no. The page also contains documentation 
on the system. 
 

                                                
5
 System for digital archiving of Master’s theses at Department of Computer and Information 
Science, Norwegian University of Science and Technology. 
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A  Ontologies 

Creek IsoPod model 

 

Figure 8.1 - Creek IsoPod model 

The three highest levels of the IsoPod onltology 
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B  Class diagrams 

Constraint and its subclasses 
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ConstraintObjects 

 


