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Foreword
This master thesis is written by Johan Høye as a part of the Master of Science in Informatics 
degree at the Department of Computer and Information Science (DIS), Norwegian University 
of Science and Technology (NTNU). The following assignment description lays the basis for 
this thesis.

“The assignment is to design and test a novel artificial development system implementing a  
biologically inspired development process used for the process of mapping the genotype to the  
phenotype in an evolutionary algorithm.”
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Abstract
Evolutionary algorithms (EAs) are a class of population-based stochastic search algorithms 
which have proven themselves to be powerful tools in optimization problems where the search 
space is complex, contains many local optima, and is so large that an exhaustive search is not 
possible. An application area where EAs have great potential is in the design of electronic 
circuits. However, for this type of task such a large representation is typically required for each 
of the proposed solutions that using an EA approach is not feasible because of the immense 
computational power this would require. This limitation of EAs is known as the scalability 
problem:  EAs  perform  well  when  dealing  with  problems  requiring  a  small  solution 
representation, but when the required size for these representations increases the EAs quickly 
become too computationally expensive to be useful.

Numerous approaches for dealing with the scalability problem have been proposed. One of the 
more promising approaches is inspired by the way nature copes with scaling: the process of an 
organism  growing   from  a  single  fertilized  cell  and  into  a  multi-cellular  being,  called 
development. By adapting some of the mechanisms of development to a computer program, 
the EA can evolve a relatively small genome which when developed i.e. decompressed, using 
this  program will  represent  a  solution.  There  are,  however,  some problems regarding this 
approach.  One  issue  is  that  biological  development  is  such  a  complex  process  that 
implementing it in all its detail is neither feasible nor desired, meaning a decision regarding 
which mechanisms to implement and which ones to leave out must be made. Another issue is 
the increased difficulty to  evolve a  good solution.  This  occurs  because EAs depend on  a 
gradual refinement of the solution to be effective, but with this approach a small change in the 
genome may lead to a large change in the corresponding solution.  This is  because in this 
approach there  is  no  longer  a  direct  correspondence  between  the  genotype  space  and  the 
solution space, so that what is adjacent in the genotype space may be far apart in the solution 
space. This means that even though gradual refinement is achieved in genotype space, the 
changes in the corresponding solution space may appear to be more or less random

A novel artificial development system, designed and implemented from scratch, is presented in 
this thesis. A novel system was built because, although a number of other such system already 
have been implemented, they are all in the experimental stage, and this system is though to be 
a useful supplement to the existing ones, providing more material to base the understanding of 
what may be useful in an artificial development system on. An explorative approach was taken 
where the implemented system was put through a number of tests to investigate its capabilities. 
First the systems ability to develop a varied set of different shapes was investigated. Secondly, 
four parameters were tested for their effect on the system's ability to develop good solutions: 
the  initial  number  of  neighbours,  the  number  of  chemical  types  used  (both  part  of  a 
precondition), the number of cell types available to the system, and the degree of symmetry in 
the target shapes.

The experiments performed showed that the system is able to develop a number of shapes. For 
the four investigated parameters, indications were found that each has a profound effect on the 
systems ability to develop a given target.
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Part I - Introduction and Background





1 Introduction
The way biological development works, starting with only one cell  containing the genome 
which,  over time, grows and divides into a mature multicellular  organism, is  no less than 
astonishing. It is hypothesised that imitating some aspects of this process in a computer system 
would make it possible to greatly reduce the needed size for the representation of a solution in 
an  evolutionary  algorithm.  The  need  for  a  rapidly  increasing  solution  size  with  growing 
problem complexity is one of the more serious limitation of evolutionary algorithms, inhibiting 
their usefulness in a number of real-life application areas where they have great potential, such 
as in the design of digital circuits.

A number of approaches aimed at reducing this problem of scaling have been proposed over 
the  years,  like  the  messy  genetic  algorithm  (mGA)  [GOLD89] and  the  breeder  genetic 
algorithm (bGA) [MUEH93]. The mGA is a variant over the traditional genetic algorithm that 
pays more attention to the distance between building blocks in the genotype when performing 
crossover. The bGA is a genetic algorithm inspired by the artificial selection performed by 
human breeders. This algorithm is suitable for parallel processing as each bGA is responsible 
for its own population and once in a while they exchange individuals with other running bGAs.

However, lately there has been a growing interest in trying to adapt the way nature copes with 
scaling  –  biological  development.  This  approach  is  so  novel  that  it  does  not  yet have  a 
standardized  name.  Names  like  computational  development,  developmental  mapping, 
embryology and artificial development have been used for this approach in the literature. In 
this thesis the process will be referred to as artificial development.

The  idea  behind  an  artificial  development  system  is  as  follows:  instead  of  the  standard 
approach of letting the evolutionary algorithm evolve the solution more or less directly, the 
algorithm evolves  a  DNA (the  genotype)  of  the  solution  (the  phenotype).  The  process  of 
development takes the DNA and develops an artificial organism which represents the solution. 
Fitness of  the solution is,  therefore,  based on the phenotype and not  the genotype that  is 
represented within the EA. As the size of the DNA is more or less independent  from the 
complexity of the full-grown organism, this approach has the potential of greatly reducing the 
size needed for representing a solution in evolutionary algorithms.

In this thesis a novel artificial development system is designed and implemented. An effort is 
made to design a system that models biological development to some degree, implementing 
what is thought to be the most relevant mechanisms. Because of the immense complexity of 
biological development a decision had to be made regarding which mechanisms to include in 
the system. Implementing biological development in every detail is not desirable both because 
it  would  result  in  an  ineffective  system  which  would  require  tremendous  amounts  of 
processing power, and because all mechanisms may not be necessary to fulfil the purpose of 
such a system. Additionally, even biologists do currently not have a complete understanding of 
all the intricate details of biological development.

The implemented system is analysed through empirical testing. A decision was made to first 
investigate  the  system's  ability  to  develop  a  varied  set  of  different  shapes,  and  secondly 
investigate how the changing of certain parameters of the system affects its ability to find good 
solutions.
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The thesis is  separated into 4 parts:  introduction and background, the development model, 
experiments, and conclusion and future work.

The introduction and background section begins with this introduction chapter, followed by a 
discussion  regarding  the  motivation  for  this  thesis  in  chapter  2.  A  description  of  the 
evolutionary algorithm method used in ArtDev3D, genetic programming, is given in chapter 3. 
Theoretical background of biological development is presented in chapter 4, and an overview 
over the field of artificial development is laid out in chapter 5.

The development model section contains three chapters.  Chapter  7 gives an overview of the 
initial  system that  the author participated in the design of,  BioDev. This is  followed by a 
description of the system which is the main focus in this thesis, ArtDev3D, in chapter 8, and in 
chapter 9 the initial testing of ArtDev3D is performed.

In the experiments section a detailed analysis of the two experiments series performed with 
ArtDev3D is given. In chapter 10 the effect on the system when changing a chosen set of 
parameters  is  investigated,  and  in  chapter  11  a  deeper  investigation  of  these  effects  is 
performed.

The conclusion and future work section contains two chapters. In chapter 12 the conclusion of 
this  thesis  is  presented,  and  in  chapter  13  a  number  of  suggestions  for  future  work  on 
ArtDev3D is given.
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2 Motivation
My first encounter with evolutionary algorithms (EAs) was back in 1999 when I was surfing 
the Internet for information on artificial intelligence. Jumping back and forth through more or 
less  interesting  pages,  I  suddenly  stumbled  into  something  which  caught  my  attention; 
evolution as it occurs in nature, adapted to a digital world and used in search problems. First of 
all, I found it incredibly fascinating that it was possible to move something biological into the 
digital realm of a computer. Secondly, I just had to learn more about how simulating evolution 
could be used to perform a search. After reading some pages and viewing a couple of demo's 
of the algorithm in action, I was past what film-critiques refer to as “the point of no return”; 
this was something I just had to learn more about!

2.1 Evolutionary Algorithms
EA refers to a class of population-based stochastic search algorithms that are developed from 
ideas  and  principles  of  natural  evolution.  They include  evolutionary strategies  [RECH73], 
evolutionary  programming  [FOGE66],  genetic  programming  [KOZA92],  and  genetic 
algorithms [HOLL75]. Each variant has it's own characteristics and areas of use, but for this 
chapter it will be sufficient to look at them collectively as a set of search algorithms with more 
or less equal qualities.

2.1.1 Application Areas
The area where EAs have proven themselves to be most powerful is in optimizing problems 
where  the  search  space  is  complex,  contains  many local  optima,  and  is  so  large  that  an 
exhaustive search is  not  possible.  A classical  example of such a  problem is  the  Traveling 
Salesman Problem, where the optimal (shortest) route between a list of cities is sought. The 
possible solutions to this problem increases with factorial speed, so as the number of cities to 
travel increases, traditional search algorithms will have a hard time finding the solution within 
reasonable time. EAs, on the other hand, is capable of finding a good approximation to the 
optimal solution relatively quick. While this particular problem perhaps is mainly interesting 
from a theoretical point of view, EAs also have many various real-world application areas. 
These include design of  artificial  neural  networks  [KOZA91][JONE93],  creation of  music 
[SPEC95][JOHA98], evolution of art [SIMS94][ROOK96], and the use of EAs as automated 
invention machines [KOZA99].

2.1.2 Problems
Given this wide spectre of uses for EAs, it would seem that this set of search algorithms is 
both  versatile  and  powerful.  This  is  to  some  extent  true,  but  unfortunately  this  set  of 
algorithms also have their shortcomings. First of all, setting all the parameters correct is often 
difficult  as  there is  no universal  recipe for how to decide the optimal  settings;  the values 
depend greatly on the chosen application area. This is, however, not a major obstacle as “good 
enough”  parameters  can  be  found  relatively  quick  using  a  trial-and-error  approach.  More 
serious  are  the  problems  of  premature  convergence,  stagnation,  loss  of  diversity,  lack  of 
reliability, lack of efficiency and the fact that EAs do not scale well.
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Premature  convergence,  stagnation  and loss  of  diversity  are  different  aspects  of  the  same 
problem; the algorithm looses search capability as it progresses. Loss of diversity means that 
the difference between  individuals in the population decreases over time. This is desirable to 
avoid because it focuses search along a certain path, a path that may well lead in the wrong 
direction. Loss of diversity may in turn lead to premature convergence and stagnation. The 
former happens when the search gets stuck in a local optima, the latter when the fitness in the 
population ceases to increase.

The lack of reliability is  closely related to the three problems just  described.  EAs are  not 
guaranteed to find the optimal solution to a problem, although they are able to find a good 
approximation to the solution most of the time. Whether this is a problem, depends on the area 
of  application.  In  many  areas,  finding  the  optimal  solution  is  not  a  necessity,  so  an 
approximation will be sufficient.

Because EAs are computationally expensive some efficiency, in term of search powers, has to 
be sacrificed in order to be able to run them within reasonable time. The efficiency of the 
algorithm also depends on the representation chosen, where knowledge of the search-space 
may allow for a biased representation, making the search more effective.

Despite these problems, EAs perform reasonably well on problems where the solution can be 
expressed in  a short, compact form. However, when the size and complexity of the solution 
increases,  the computational requirements of the algorithm increases at  a much faster rate, 
making it impractical to use.  This is known as the scalability problem, and overcoming this 
obstacle is  the main driving force behind this  thesis.  The scalability problem will  now be 
described in greater detail along with a discussion of the work done so far to overcome this 
problem.

2.2 The Scalability Problem
Scalability is  a  term used to  encompass how good an EA is  at  solving problems as  their 
respective solutions grow larger and more complex. Because many real-world problems where 
EAs are applicable has a solution which cannot be represented in a short manner, it is a desired 
property of the EA that it is able to scale in order to handle also these problems. Unfortunately, 
this is currently not the case.

2.2.1 The Need For Scaling
EAs are computationally expensive: the need for several hundred individuals going through 
thousands of evolutionary steps, requires both a big memory to hold the individuals, and a fast 
processor to drive the evolutionary process. Additionally, both evaluating the fitness for each 
individual and expressing the solutions may also be computationally expensive. This makes 
the use of EAs impractical when the solution to the problem in question reaches a certain 
complexity.

This scalability problem is a major obstacle in such areas as digital circuit design [VASS00], 
artificial neural network [CORB03], and  robot body design [HORN03]. These are areas where 
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EAs bear promise of good performance, and a lot of effort has been put in to find ways to 
overcome this problem.  Unfortunately, the effort so far has not led to any satisfactory solution.

2.2.2 Approaches Towards Overcoming the Scalability Limitation
A number of suggestions regarding how to overcome the limitation the scalability problem 
puts on EAs have been put forth. A selection of the most successful approaches will now be 
presented.

Jim Tørresen suggests, in [TORR98], a scheme called increased complexity evolution, which is 
based on a divide-and-conquer methodology. This scheme is used to evolve complex systems 
in the field of evolvable hardware.  The scalability problem is reduces in that the system in 
question is based on the evolution of several sub-systems. This approach was later picked up 
again  and  extended  to  an  adaptive  divide-and-conquer  methodology  by  Purshouse  and 
Flemming  in  [PURS03].  Their  approach  decomposes  a  global  problem  into  several 
independent sub-problems where this is possible. These sub-problems may then be solved in 
parallel.  The  results  from  the  experiments  performed  are  promising,  but  the  automatic 
identification  of  independent  sub-problems  is  tricky,  and  the  methodology  infers  some 
overhead.

Another approach, suggested by [GOLD89], is called messy genetic algorithm (mGA). This is 
a variant over the traditional genetic algorithm where the linkage between building-blocks is 
taken much more seriously. Linkage is a term used for the probability that two building blocks 
will remain together after crossover. The closer two building blocks are, the tighter they are 
said to be linked. The algorithm first chooses a set of suitable building blocks, and then these 
building blocks are labelled so that their ordering can be evolved. A major drawback of mGA 
is that  the initialization procedure of finding suitable building blocks is  a computationally 
intensive  process.  A modified  version  of  the  mGA,  called  fast  messy  Genetic  Algorithm 
(fmGA), was later developed to remedy this problem.  The fmGA's use of building blocks is 
supposed to make it more scalable, and results showing it is able to solve difficult problems 
fast and reliable have been found [GOLD93]. Unfortunately, this algorithm is difficult to use, 
which may explain why it is not more widely used. It requires fine tuning of parameters, which 
can often be a complicated task [HARI97].

Some of the ideas from fmGA is also used in what is  called  the  linkage learning genetic 
algorithm (llGA),  introducing  introns  (non-coding  building  blocks),  and  a  circular 
representation of the genome where the building-block are  allowed to move freely around 
[HARI97].  Moreover,  the  llGA doesn't  identify  the  building  block  beforehand,  as  do  the 
fmGA. The llGA performs well (solvable within linear time) on problems where the building 
blocks are exponentially scaled1. When the building blocks are uniformly scaled2, however, the 
llGA needs a population growing exponentially with the problem size.

The  breeder genetic algorithm (bGA) is  yet another algorithm dealing with the scalability 
problem. It was put forth by [MUEH93] in 1993, and can be seen as a recombination between 
evolution  strategies  and  genetic  algorithm.  The bGA is  inspired  by the  artificial  selection 
performed by human breeders. The algorithm can run distributed as a collection of bGAs, and 

1 Exponentially scaled problems have sub problems of different importance.
2 Uniformly scaled problems have sub problems of equal importance.
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then  each  bGA is  viewed  as  a  virtual  breeder  with  the  sole  responsibility  for  its  own 
population.  Once  in  a  while,  the  virtual  breeders  exchange  individuals  to  promote  global 
progress. The bGA is easy to use (only the population size has to be decided by hand), and is a 
robust global optimization method which has been successfully applied to a number of real 
world applications. 

Others, like [THIE99], have made an effort to overcome the scalability problem by doing some 
minor  changes  to  the  traditional  GA.  In  this  case,  three  techniques  were  used:  elitist  
recombination,  niching and  restricted mating.  Unfortunately, this approach did not achieve 
much success.

A number of researchers, like [BENT99], [HADD01],  [MILL03] and [FEDE05], have lately 
begun looking to  nature for  inspiration.  The way nature is  able  to  shrink  the  information 
required for a one-to-one mapping of a multicellular organism, like a human, into a relatively 
small and information poor DNA is no less than astonishing. If it is possible to model this in a 
computer, it would make it possible to greatly shrink the size of the genotype, thereby reducing 
the impact of the scaling problem. The process of “decompressing” the DNA into a full-grown 
organism is called development, and is that which will be discussed next.

2.3 Development – The Way Nature Copes With Scaling
The  process  in  which  a  fertilized  cell  grows  into  a  multicellular  organism  is  called 
development. Several factors guide this process, including the organisms DNA (genome) and 
its environment. Development as it occurs in nature includes three features which would be 
desirable to achieve in an artificial development system: it is scalable, flexible and robust.

2.3.1 Scalability
As already stated, development is natures way of coping with scaling. Consider the differences 
in both size and complexity between a mature human and a mature mouse. The differences are 
tremendous, but when looking at their respective genome, the difference in size is relatively 
small. This is possible because the genome do not contain explicit information about every 
details of the body, instead it serves as a building plan, describing how the organism is to be 
build. Or, as the vice president for medical research at Howard Hughes Medical Institute puts 
it, “complexity does not come from the number of genes but from the way in which they are 
used” [RUBI00].

2.3.2 Flexibility
Nature exhibits great flexibility in expressing a wide array of wildly different organisms, all 
developed from their respective genome. Achieving this feature in an AD system could be 
useful  because  it  would  make  the  system  generally  applicable.  Pursuing  this  feature  is, 
however, currently not a goal for artificial development systems.  
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2.3.3 Robustness
Living organisms display an incredible robustness towards accidental changes to their body. 
This is because destroyed cells may be regenerated – replaced by new cells. A typical example 
of this is the salamanders ability to regenerate a lost limb. Humans also possess this ability, but 
in  a  more  limited way.  This  feature  would be very valuable  to  achieve  in  an AD system 
because it would enable a device created through the AD system to be able to repair faulty 
components, without the need for external technical assistance [FEDE05].

2.4 Motivating Work
To create an AD system implementing all details of biological development is not feasible. 
This is both because of the extreme complexity of biological development and because all the 
details regarding it are currently not known, even to biologists. Hence, some details need to be 
left out. Exactly how much detail to implement and how much to leave out is still a debated 
issue amongst computational development researchers. Some, like [DELL95], [EGGE97] and 
[BENT99] have made an effort  to  create  biologically plausible  models,  while  others,  like 
[LUKE96],  [DITT98],  [HADD01] and  [MILL03],  are  merely  inspired  by  biology.  Both 
approaches have their advantages and disadvantages. By modelling biology closely, more of 
the desired features may be included in the system. However, this results in a more complex 
development  process,  requiring  more  computational  power.  By  only  implementing  the 
mechanisms  who  are  thought  to  play  a  key  role  in  development,  the  computational 
requirements is lowered, resulting in a more efficient system.

The system designed and implemented in this thesis, ArtDev3D, is greatly inspired by the work 
of Miller [MILL03] and Federici [FEDE04]. An effort was made to create a system that would 
be, to some extent, biological close. However, it  was deemed more important to achieve a 
certain  amount  of  efficiency,  and to  try to  extract  only the  most  essential  mechanisms of 
biological development, than to model it in great detail. Hence, some biological elements had 
to be sacrificed for efficiency. Using this approach, it  was hoped that the resulting system 
would  provide  a  both  minimalistic  and  effective  alternative  to  the  current  artificial 
development systems.
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3 Genetic Programming
As mentioned earlier – see chapter  2.1, there exists a number of evolutionary algorithms. In 
this thesis only genetic programming (GP) is used. Therefore, a description of GP will now by 
given, while the other variants will not be discussed any further.

The  major  components  of  GP  will  be  described  first,  followed  by  an  overview  of  the 
mechanisms  needed for  evolution.  Finally,  the  basic  version  of  the  GP algorithm will  be 
presented.

This chapter is in large part based on the book “Genetic Programming – An Introduction” by 
Banzhaf, Nordin, Keller and Francone [BANZ98].

3.1 The Components
A GP has a population consisting of a number of individuals.  Each individual  has both a 
genotype and a phenotype. The genotype is the way the individual is represented inside the GP, 
while the phenotype is the version of the individual which is tested by the fitness function.

The most common way to represent the genotype in GP, is in a tree structure. The tree structure 
consists  of  nodes  along  with  lines  connecting  the  nodes  to  each  other.  The  nodes  are 
categorized into two groups: functions and terminals. Functions are nodes with one or more 
nodes as input while terminals are nodes without any input. See figure 3.1 for an example of a 
genotype. This genotype is a tree structure representing the expression “3 + (2 * 7)”. Both the 
functions + (plus) and  * (multiply) take two arguments as input. The multiply function has the 
two terminals “2” and “7” as input, while the plus function has the terminal “3” and the result 
from the multiply function as inputs.

Figure  3.1:  Tree  structure 
representing  the  expression 
“3 + (2 * 7)”
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The allowed values and functions for the nodes must be decided before running the GP, and 
care must be taken when choosing these values and functions so that the solution will  be 
expressible through them. Two sets must be decided, one for the functions and one for the 
terminals. The function set is comprised of the statements, operators and functions available to 
the GP system. The terminal set is comprised of the inputs to the GP program and the supplied 
constants.

3.2 The Mechanisms of Evolution
The following is a description of the mechanisms used by the GP both to achieve evolution, 
and to guide the evolution in the correct direction. These mechanisms include three genetic 
operators  (search  operators):  reproduction,  crossover  and  mutation.  Additionally,  one 
mechanism for calculating fitness and one for selecting individuals for mating, is needed.

3.2.1 Reproduction
Reproduction is a straightforward operator; select an individual, create a copy of it and place 
the copy in the population for the next generation.

3.2.2 Crossover
Crossover  is  considered  to  be  the  most  important,  and  effective  search  operator  in  a  GP 
system.  When  performing  crossover,  one  node  in  each  of  the  two  parents  are  chosen  at 
random. These nodes, along with their corresponding sub tree of nodes, are then exchanged 
between the parents, creating two offspring. See figure  3.2 for an example of this. The root 
node of the sub tree enclosed by the dotted circle in each of the two parents are chosen at 
random. Both of the sub trees are cut out from their respective tree structure, and attached to 
the other tree structure at the place where the other sub tree was cut out. This results in two 
offspring, both containing parts of both parents.
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Figure 3.2: Crossover between two individuals creates two offspring, each containing a subset of the nodes  
from both of the parents

Why is the crossover operator considered to be so important? In [KOZA92], Koza argues that 
a GP population contains what is called building blocks. A building block can be any sub tree 
present  in the population.  Individuals  containing good building blocks  will  achieve higher 
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fitness scores, and hence be more likely to be selected for crossover or reproduction.  This 
increases the possibility for good building blocks to multiply and spread across the population. 
The hypothesis is as follows: the good building blocks combine into even larger and better 
building blocks, thereby further increasing the fitness in the population. This hypothesis is 
based on the  schema theorem  [HOLL75],  and follows  the  same line  of   reasoning as  the 
building block hypothesis for genetic algorithms [GOLD89b].

3.2.3 Mutation
The mutation operator is used on one individual at a time. A random node in the individual is 
selected, and this node, along with its sub tree, is replaced by a randomly generated sub tree. 
An example of this is given in figure 3.3.
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Figure 3.3: Mutation replaces a sub tree within the genotype with a randomly created tree.

Usually, each individual resulting from a crossover or reproduction has a certain chance of 
being  mutated. The probability of mutation is typically set to a low value.
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3.2.4 Fitness Function
Fitness is the measure of how well an individual performs when tested against the given goal. 
In other words, it is a measure of the quality of the individual. The higher value, the more fit 
the  individual  is.  Other  fitness  schemes  are  also  possible,  like  standardized  fitness  and 
normalized fitness. With standardized fitness, a value of zero denotes the most fit individual. 
The advantage of this scheme is that the best fitness is always the same value. The normalized 
fitness is always in the range zero to one, where zero is the worst fitness and a value of one is 
the best.

The fitness function evaluates and assigns the fitness value for each of the individuals. To be 
able to guide evolution in a good way, the fitness function should be designed so that it gives 
graded and continuous feedback to the GP.

Examples of fitness functions includes:

• The number of matching pixels in an image matching application

• The deviation between prediction and reality in a prediction application

• The money won by a GP-controlled agent in a betting game

3.2.5 Selection Mechanism
Selecting two individuals for crossover or reproduction is the job of the selection mechanism. 
It uses the fitness assigned to the individuals by the fitness function when performing the 
selection. There exists a variety of selections algorithms, each having a different effect on the 
way evolution is guided.

Examples of selection algorithms includes:

• Fitness-proportional selection – An individual is given a probability, proportional to its 
fitness,  of  passing an  offspring  into  the  next  generation.  In  order  to  calculate  this 
probability, the fitness of all the individuals in the population must first be evaluated.

• Ranking selection – The selection probability for an individual is a function of their 
rank in the population. The rank of an individual is decided by its fitness; the more fit, 
the higher rank.

• Tournament  selection  –  A subset  of  the  population,  called  a  tournament  group,  is 
selected at random, and a selective competition between the individuals in this group 
takes place. Selection pressure is controlled through the size of the tournament group; 
small groups give low pressure, while bigger groups give higher pressure.

3.3 The Algorithm
The evolution process may be run in two modes: either with distinct generations, or without 
generations. The former is called generational evolution, while the latter is called steady-state 
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evolution. Generational evolution is the technique traditionally used in GP, and is also the one 
used in this thesis, hence the steady-state evolution will not be discussed further.

The basic generational GP algorithm is as follows:

1. Generate a population of randomly created individuals

2. Evaluate each individual and assign a fitness value based on similarity with the target

3. Repeat the following until the new population is filled up

• Select two individuals from the current population, based on their fitness

• With a certain probability, perform crossover between the two individuals, creating 
two offspring

• With a certain probability, perform mutation on the first offspring

• With a certain probability, perform mutation on the second offspring

• Insert the two offsprings into the new population

4. Check if the termination criterion is fulfilled. If it is, continue, if not, repeat steps two 
and three

5. Present the individual in the last population having the best fitness as the solution
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4 Biological Development
All  living  organisms  are  composed  of  one  or  more  cells.  Multicellular  organisms,  like 
vertebrates, start their existence as a single cell, the fertilized egg. The process of this single 
cell,  the  zygote,  growing into  a  full-grown multicellular  organism,  is  called  development. 
During this process the developing organism undergoes a series of progressive changes. These 
involve cells growing, reproducing and dying. The changes continue even after the organism 
has reached its full-grown stage, as they are vital for maintenance of the organism.

Three kinds of development are distinguished in biology:

• Chemical: atoms -> molecules

• Cellular: cells -> tissues -> organs -> organ systems - > organisms

• Ecological: organism -> population -> community -> ecosystem ->  biosphere

The relevant one for this thesis is cellular development, which will now be described in greater 
detail.

This chapter is in large part based on the book “Biology” by Raven, Johnson, Losos and Singer 
[RAVE05].

4.1 Overview
The cells in an organism are not just clustered together in a random, unstructured blob. In 
vertebrates, cells are organized into tissues, which are groups of cells similar in structure and 
function. Tissues are, in turn, organized into organs. Organs are body structures composed of 
several different tissues that form a structural and functional unit. An example of such an organ 
is the heart. Organs are in turn grouped into organ systems, groups of organs that cooperate to 
perform the major activities of the body. An example of this is the digestive system, which 
consists of the stomach and the gallbladder, among others.

Biological macromolecules are the basic chemical building blocks for all organisms. They are 
large, complex assemblies of  functional groups – atoms bonded together in a constellation 
with definite chemical properties.

Macromolecules are traditionally grouped into four major categories: nucleic acids, proteins, 
lipids and carbohydrates.

• Nucleic acids are DNA and RNA. DNA encodes genes, and RNA is needed for gene 
expression. Both will  be described in greater detail in chapter 4.1.1. 

• Proteins  are  complex  and  versatile  molecules  able  to  carry  out  a  wide  array  of 
functions. Proteins will be described in chapter 4.1.2.
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• Lipids  are  a  diverse group of  macromolecules.  Their  functions  ranges  from energy 
storage to chemical messengers.

• Carbohydrates are used as energy storage, cell walls and structural support.

The discussion on macromolecules in this thesis will be limited to proteins, DNA and, to some 
extent, RNA.

The structure and function of the DNA will be described next. This is followed by a section on 
the protein and finally a section on the cell.

4.1.1 The DNA
Nucleic acids are the information storage and expression devices of the cell. There are two 
varieties of nucleic acids: deoxyribonucleic acid (DNA) and ribonucleic acid (RNA). Unique 
among macromolecules, nucleic acids are able to serve as templates to produce precise copies 
of themselves. This means the information that specifies what an organism is can be copied 
and passed down to its descendants. Because of this, DNA is often referred to as the hereditary 
material.

DNA is a long polymer of repeating subunits called nucleotides. Each nucleotide consists of 
three components: a five-carbon sugar (deoxyribose), a phosphate group (-PO4), and an organic 
nitrogenous base – see figure 4.1. Two types of organic bases occur in nucleotides: purines and 
pyrimidines. Purines are large, double ring molecules, which in DNA exists in two variants: 
adenine (A) and guanine (G). Pyrimidines are smaller, single-ring molecules. They also come 
in two variants in the DNA: cytosine (C) and thymine (T). The information held by the DNA is 
encoded as sequences of these 4 bases, somewhat similar to the way the letters on a page 
encode information.
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Figure  4.1:  The  chemical  components  of  the  DNA 
molecule [RAVE05]

The DNA molecule has a characteristic double helix shape – see figure  4.2. Two chains of 
what is called DNA polymers wind around each other like the outside and inside rails of a 
spiral staircase. Each step of the DNA's helical staircase is a base-pair, one from each of the 
two chains, held together by a hydrogen bond. The rules for this base-pairing are rigid: A can 
only pair with T, and C can only pair with G.

Figure  4.2:  The  structure  of  the  DNA  molecule  
[RAVE05]
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RNA is used to read the DNA-encoded information and direct the synthesis of proteins in cells. 
RNA is  similar to DNA in structure – see figure  4.3. There are three types of RNA, each 
having a different  function:  rRNA (ribosomal RNA),  mRNA (messenger  RNA) and tRNA 
(transfer RNA).

Figure  4.3:  The  structure  of  the  RNA  molecule 
[RAVE05]

Messenger RNA from the nucleus is created as a transcripted copy of portions of the DNA. 
This transcript is passed out from the nucleus into the rest of the cell, where it serves as a 
blueprint specifying a protein's amino acid sequence. Ribosomal RNA is a component of the 
ribosomes.  The  ribosomes  are  structural  units  capable  of  synthesizing  a  protein  from the 
information carried by an mRNA. Transfer RNA is used by the ribosomes to help synthesize 
proteins.

RNA will be described in greater detail in chapter  4.2.

4.1.2 The Protein
Proteins  are  complex  and  versatile  molecules  carrying  out  a  diverse  array  of  functions, 
including defence, transport, support, motion, regulation, and storage. They are composed of 
one or more long chains (polypeptides) of up to 20 different amino acids linked by peptide 
bonds. An amino acid is a molecule which contains an amino group (NH2), a carboxyl group 
(COOH), and a hydrogen atom, all bonded to a central carbon atom. Each amino acid also has 
a side group which determines the amino acid's chemical properties. Although many different 
amino acids occur in nature, only 20 commonly occur in proteins.

The  shape  of  the  protein  is  very  important  because  it  determines  the  protein's  function. 
Proteins consist of long amino acid chains folded into complex shapes. The structure of the 
protein has traditionally been discussed in terms of four levels of structure: primary, secondary, 
tertiary  and  quaternary.  Lately  an  additional  two  levels  of  structure  are  increasingly 
distinguished by molecular biologists, namely motifs and domains. This next section briefly 
describes each of the structural levels. An overview is given in figure 4.4.
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Primary structure. The specific amino acid sequence of a protein is its primary structure. This 
is determined by the nucleotide sequence of the gene that encodes the protein.

Secondary structure. Hydrogen bonding between the polar groups of the main chain decides 
the secondary structure. The hydrogen bonding results in two different structures: the alpha 
helix and the beta pleated sheet.

Motifs. The elements  of  the  secondary structure can combine to  proteins  in  characteristic 
ways.  These  combinations  are  called  motifs.  One  very  common  motif  is  beta-alpha-beta, 
named “Rossman fold”

Tertiary structure. The final folded shape of a protein, which positions the various motifs and 
folds non-polar side groups into the interior, is called a protein's tertiary structure. The stability 
of a protein, once it has folded into its 3D shape, is strongly influenced by how well its interior 
fits together.

Domains. A structurally independent functional unit in the protein is called a domain. A single 
polypeptide chain connects the various domains, like a rope tied into several adjacent knots.

Quaternary  structure. A protein's  subunit  arrangement  is  called  its  quaternary  structure. 
When two or more polypeptide chains associate to form a functional protein, the individual 
chains are referred to as subunits of the protein.
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Figure 4.4: The six levels of structure in a protein [RAVE05]

4.1.3 The Cell
A cell is a membrane-bound unit containing, among other things, DNA and proteins. Cells are 
so small, typically 10-100 micrometers, that their existence were not discovered until 1665, 
when Robert Hooke used a self-built microscope to examine a thin slice of cork. He found in it 
a  honeycomb  organization  of  tiny,  empty  compartments.  The  compartments  were  empty 
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because the cells were dead. He termed the compartments  cellulae (Latin, “small  rooms”). 
This term has later come down to us as cells.

The Cell Theory
The modernized form of the cell theory includes the following principles:

1. All  living organisms are composed of  one or more cells,  and the life  processes of 
metabolism and heredity occur within these cells.

2. Cells are the smallest living things, the basic unit of organization in all organisms.
3. Cells arise only by division of a previously existing cell.

The  third  principle  raises  an  interesting  question:  how  did  the  very  first  cell  come  into 
existence?  This  touches on a highly debated issue:  the origin of life.  There is  no definite 
answer to this question. Many possible solutions have been put forward, some with more merit 
than others. Perhaps the most widely accepted theory nowadays is “the RNA world”, which 
basically states that given the right environment a cell may spontaneously arise  [DUVE95]. 
This is an extremely oversimplified explanation of the theory, but a further discussion on this 
topic would clearly be outside the scope of this thesis.

Two Types of Cells
Cells can be separated into two major groups, procaryotes and eucaryotes. 

Procaryotes are the simplest of the known organisms. They consist of cytoplasm surrounded by 
a plasma membrane and encased within a rigid cell wall with no distinct interior compartments 
– see figure 4.5. Most procaryotes have no membrane-bounded organelles (an organelle is any 
structure within the cell with a specialised function), nor do they have a true nucleus. The 
DNA, coiled up in a loop, floats freely inside the cell. Some of the procaryotes also have one 
(or more) flagella which they use to move. 

Figure  4.5: Procaryotes are simple organisms with no  
distinct interior compartments. [RAVE05]

Eucaryotes are the far more complex counterpart to the procaryotes – see figure 4.6. They are 
compartmentalized, which means multiple biochemical processes can proceed simultaneously 
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and independently. This compartmentalization is achieved by the endomembrane system and 
by numerous organelles. Eucaryotic cells also contain vesicles; smaller sacks used to store and 
transport  a variety of materials.  One of the major differences from procaryotic cells is the 
separation of the genome (the DNA) from the rest of the cell by a nuclear envelope. The DNA 
is wound tightly around proteins, packaged into compact units called chromosomes, and stored 
inside the nuclear envelope. While the procaryotes are characterized by a strong cell  wall, 
many eucaryotes lack this  feature.  They maintain their  structure trough an internal protein 
scaffold, the cytoskeleton, which all eucaryotes possess.

Figure 4.6: The eucaryotic cell is far more complicated  
than the procaryotic [RAVE05]

As  the  focus  in  this  thesis  is  on  modelling  the  development  processes  as  it  occurs  in 
eucaryotes, procaryotes will not be further discussed. There are two main reasons for focusing 
solely  on  eucaryotes:  first  of  all,  procaryotes  are  unicellular  organisms,  making  them 
unsuitable  as  models  for  growing  a  multicellular  organism.  Second,  the  gene  regulatory 
network in eucaryotic cells are far more interesting (the existence of introns and exons is one 
example), enabling complex interactions 

When writing about cells, eucaryotic cells are to be understood, unless clearly stated otherwise.

Structure
The cell consists of three major parts: the plasma membrane, the cytoplasm and the nucleus

Plasma membrane. The plasma membrane encloses a cell and separates its contents from its 
surroundings – see figure  4.7. It is a phospholipid bilayer, about 5-10 nanometers thick, and 
embedded with proteins.

These proteins in the plasma membrane are largely responsible for the cell's ability to interact 
with its environment. Transport proteins help molecules and ions move through the plasma 
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membrane, either from the surrounding environment to the interior of the cell or vice versa. 
Receptor proteins induce changes within the cell  when they come in contact with specific 
molecules  in  the  environment,  such  as  hormones,  or  with  molecules  on  the  surface  of 
neighbouring  cells.  These  molecules  can  function  as  markers  that  identify  the  cell  as  a 
particular  type.  This  interaction  between cell  surface  molecules  is  especially  important  in 
multicellular organisms, whose cells must be able to recognize each other as they form tissue.

Figure  4.7:  The  plasma  membrane  separates  the 
interior of the cell from its environment [RAVE05]

Cytoplasm. A semifluid matrix called the cytoplasm fills the interior of the cell, exclusive of 
the nucleus lying within it. The cytoplasm contains sugar, amino acids, proteins and organelles.

Nucleus.  The nucleus  is  the “information centre” of  the cell  –  see figure  4.8.  This is  the 
repository of the genetic information (DNA). The nucleus is roughly spherical in shape, and in 
animal  cells,  it  is  typically located in  the central  region of  the cell.  Most  eucaryotic  cells 
possess only one nucleus, but some have two or more.

The nucleus is wrapped in two phospholipid bilayer membranes, separating it from the rest of 
the cell. This double layered membrane, called the nuclear envelope, is crowded with shallow 
depressions called nuclear pores. These pores are filled with proteins that act as gatekeepers, 
permitting certain molecules to pass in and out of the nucleus.
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Figure 4.8: The nucleus is where the DNA is located in  
eucaryotic cells [RAVE05]

4.2 Protein Synthesis - From DNA to Protein
The biochemical activity of a cell depends on production of a large number of proteins, each 
with a specific sequence of amino acids. The ability to produce the correct proteins is passed 
between generations  of  organisms,  even though the  protein molecules  themselves  are  not. 
DNA encodes information which specifies the sequences of amino acids that makes up the 
proteins in a cell. Because the two chains in the DNA double helix are complementary to each 
other, and because DNA replication is semiconservative, DNA is able to create exact copies of 
itself. The DNA replication is semiconservative because  each of the two strands of the DNA 
will become a new DNA, using itself as a template to build the new DNA. This allows for all 
the cells  in  an organism to carry DNA encoding the same information,  and hence for the 
organism to pass  this information on to new generations via gametes (egg or sperm cell).

4.2.1 Gene Expression
All organisms, from the simplest bacteria to humans, use the same basic mechanism of reading 
and expressing genes. This is a mechanism so fundamental to life as we know it that it is often 
referred to as the Central Dogma: information passes from the genes (DNA) to an RNA copy 
of the gene, and the RNA copy directs the sequential assembly of a chain of amino acids – see 
figure 4.9. The two steps of the Central Dogma, taken together, are a concise summary of the 
events involved in the expression of an active gene. Biologists refer to this process as  gene 
expression.  The  implementation  of  the  development  simulator  will  relay  heavily  on  this 
mechanism.
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Figure 4.9: During gene expression DNA is transcribed  
to a strand of mRNA, which in turn is translated to a  
protein [RAVE05]

Within genes that encode proteins, the nucleotide sequence of DNA is read in blocks of three 
consecutive nucleotides. Each block, or codon, codes for one amino acid.

Transcription
The first step of the Central Dogma is the transfer of information from DNA to RNA. This 
occurs when an mRNA copy of the gene is produced. Because the DNA sequence in the gene 
is transcribed into an RNA sequence, this stage is called transcription.

Only one of the two strands of DNA is transcribed. This strand is called the template strand, 
while the other is called the coding strand. Transcription starts at RNA polymerase binding 
sites called promoters on the template strand. A promoter is a short sequence that is not itself 
transcribed by the polymerase that binds to it. RNA polymerase is an enzyme which carries out 
the transcription. In procaryotes there is only one RNA polymerase, while in eucaryotes there 
are  three;  RNA polymerase  I,  RNA polymerase  II,  and  RNA polymerase  III.  They  are 
specialized  to  transcribe  rRNA (ribosomal  RNA),  mRNA (messenger  RNA)  and  tRNA 
(transfer RNA), respectively. Of these three, only RNA pol II is relevant for this thesis, so 
when  writing  about  transcription,  the  transcription  of  mRNA by  RNA pol  II  is  to  be 
understood.

The  transcription  process   is  accomplished  in  three  phases:  initiation,  elongation and 
termination.

Initiation. Transcription is initiated when a set of transcription factors (proteins) recognizes a 
promoter and binds to it.  RNA pol II then associates with the transcription factors and the 
DNA, forming the initiation complex – see figure 4.10. A segment of the DNA helix is now 
unwound and opened up by RNA pol II, creating what is called a  transcription bubble. The 
stage for the assembly of the mRNA chain is now set.
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Figure 4.10: The formation of the initiation complex at  
a gene's promoter [RAVE05]

Elongation. Inside the transcription bubble the two strands of DNA are exposed. The synthesis 
of  mRNA takes place at the exposed template strand where nucleotide building blocks are 
assembled into an mRNA chain. The transcription bubble now moves along the DNA strands 
into the gene. RNA pol II transcribes the DNA by adding the corresponding complementary 
nucleotide to the growing mRNA strand as it encounters each DNA nucleotide – see figure 
4.11. The DNA is unwound as it enters the RNA pol II, transcribed into mRNA inside, and 
finally rewound when it leaves. This process continues until the whole gene is transcribed.

Figure  4.11: The synthesis of mRNA takes place inside  
the transcription bubble [RAVE05]

Termination. When the RNA pol II arrives at a transcriptional “stop” signal at the end of the 
gene, it disengages from the DNA and releases the newly assembled mRNA chain. An example 
of a  simple “stop” signal is the GC hairpin, a series of G-C base-pairs followed by a series of 
A-T base-pairs

RNA polymerase has no proofreading capabilities, so transcription errors do occur. However, 
most genes are transcribed many times, so a few faulty mRNA will not be harmful.

Translation
The second step of the Central Dogma is the transfer of information from RNA to protein, 
which occurs when the information contained in the mRNA transcript is used to direct the 
sequence of amino acids assembled during the synthesis  of  polypeptides.  This  process   is 
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called translation because the nucleotide sequence of the mRNA transcript is translated into an 
amino acid sequence in the polypeptide.

The translation of mRNA into protein is accomplished in large RNA-protein aggregates named 
ribosomes,  located in the cytoplasm. Activation enzymes capable of linking tRNA molecules 
to specific amino acids, are doing the actual translation. The ribosome uses mRNA to place the 
tRNA molecules in correct sequence, and then the  amino acids connected to the tRNAs are 
linked to each other, forming a polypeptide chain.

Ribosomes consist of two major parts: the small and the large ribosomal subunits. They have 
three sites used in the assembly of a polypeptide chain: the A site (for aminoacyl) where the 
tRNA will bind, the P site (for peptidyl) where peptide bonds will form, and the E site (for 
exit) where empty tRNA will exit the ribosome.

The translation is done in four phases: initiation, elongation, translocation and termination. 

Initiation. A tRNA (with anticodon UAC) linked to the amino acid methionine binds to the 
small ribosomal subunit at the P site. It is helped into the correct position by proteins called 
initiation factors. This forms the initiation complex. The initiation complex, guided by another 
initiation factor,  then  binds to the “start”  sequence (the codon AUG) on the mRNA. This 
initiation process is illustrated in figure 4.12.

Figure 4.12: The initiation complex binds to the "start" sequence on the mRNA [RAVE05]

Elongation. Once the initialization complex has formed, the large ribosomal subunit binds to 
it and the codon next to AUG is exposed at the A site. This makes it possible for a tRNA with 
the appropriate anticodon to bind to the exposed codon. A peptide bond between the first and 
second amino acids is created, and the link between the tRNA at site P and its amino acid is 
broken. Elongation is illustrated in figure 4.13.
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Figure 4.13: Elongation is the actual translation from mRNA to protein. This is the step where the correct amino  
acid is added to the growing peptide chain, as guided by the mRNA transcript [RAVE05]

Translocation. The ribosome now moves (translocates) three nucleotides along the mRNA, 
moving the tRNA at site P to site E, the tRNA at site A to site P, and exposes the next codon at 
site A. Again, a tRNA with the appropriate anticodon may bind to this codon. This process is 
repeated, translating one codon at a time.

Termination. Elongation  and  translocation  continue  in  this  fashion  until  the  ribosome 
encounters a translational “stop” signal (nonsense codon). Nonsense codons do not bind to 
tRNA, but are recognized by proteins called  release  factors, which releases the polypeptide 
from the ribosome. A new protein has now been created.

4.2.2 Control of Gene Expression
The ability to control gene expression in a cell is an essential mechanism to all organisms. It is 
critical  both  in  directing  development  and  maintaining  homeostasis  (constant  internal 
environment) in the cells. 

Gene expression can be controlled at six levels – see figure 4.14:

1. Initiation of transcription

2. RNA splicing

3. Passage through the nuclear membrane

4. Destruction of the transcript

5. Protein synthesis

6. Post-translational modification

Initiation  of  transcription  is  referred  to  as  the  transcriptional level,  while  levels  2-6  are 
collectively referred to as the posttranscriptional levels.
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Figure 4.14: The six levels where gene expression can be controlled [RAVE05]
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4.3 Transcriptional Control
This is the most common form of gene expression. Basically it is a control of which genes in 
the DNA are transcribed to mRNA and which are not.

For transcription to take place a variety of proteins (factors) is needed. These factors fall into 
two categories: the basal transcription factors and the specific transcription factors. The former 
is necessary for the assembly of the initiation complex at a promoter (see chapter 4.2.1), while 
the latter increases the level of transcription in certain cell types or in response to specific 
signals.

Basal factors, while necessary for transcription to occur, are not capable of raising the level of 
transcription above the basal level. When higher levels of transcription is required, specific 
factors, called activators, are needed.

Activators work by binding to the DNA at regions called enhancers. Activators and enhancers 
act in a position- and orientation-independent manner, which means the enhancer need not be 
next to the gene it affects. When bound to the enhancer, the activator interacts with transcript 
factors associated with RNA pol II (when present at the promoter), thereby increasing the level 
of transcription – see figure 4.15.

Figure  4.15:  Activators  work  in  a  position-  and  
orientation  independent  manner,  and  are  capable  of  
raising the level of transcription [RAVE05]

The DNA is divided into several  linear units  called chromosomes. Histones are packaging 
proteins associated with these chromosomes. The chromosomes are coiled up around clusters 
of  histones  called  nucleosomes.  These  again  are  organized  into  higher-order  structures. 
Nucleosomes are able to block binding of transcription factors and RNA pol II at the promoter, 
while higher-order structures are able to make promoters more or less accessible by modifying 
the  histones.  Gene  regulation  at  higher-order  structures  is,  however,  not  yet  completely 
understood.
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Taken together, all this contributes to a great flexibility in the control of gene expression.

Posttranscriptional Control
The  unaltered  mRNA transcript  of  a  gene  is  called  the  primary  transcript.  In  general, 
posttranscriptional  control  processes  involve  the  recognition  of  specific  sequences  on  the 
primary transcript. The primary transcript is composed of numerous short coding sequences 
(exons) embedded within long stretches of noncoding sequences (introns).

The first  and major point  of control  is  RNA splicing where the introns are removed by a 
spliceosome. The remaining exons can be spliced together in different ways, allowing different 
proteins to be assembled from the same gene – see figure 4.16. Editing the mRNA is also a 
possibility. This involves chemical modification (deamination) of a base to change its base-
pairing properties, cytosine to uracil or adenine to inosine (pairs as G during translation).

Figure 4.16: Example of two different ways of splicing a  
primary  mRNA  transcript,  creating  either  a  CGRP 
peptide or a Calcitonin peptide [RAVE05]

The mRNA is not allowed to leave the nucleus before the splicing is completed. The nuclear 
pores may regulate if, and how efficiently, the mRNA is exported into the cytoplasm. There is 
little hard evidence for this actually happening, but some support has been found.
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The degree of protection on the mRNA decides how long it will survive in the cytoplasm. 
Increasing protection makes the mRNA survive longer, and hence more likely to be translated.

The  translation  of  mRNA by  the  ribosomes  requires  a  variety  of  proteins.  Increasing  or 
decreasing the availability of these proteins is another way to control gene expression.

When the mRNA has been translated, the resulting protein may be further altered in a process 
called post-translational modification. This involves chemical modification which may alter 
properties like activity or stability.

An overview of the basic elements in biological development has now been given. But so far, 
the discussion has been kept on the cellular level. How are these basic elements related to the 
growth and shaping of a multicellular organism? This is the topic of the next chapter, where 
the development mechanisms will be discussed.

4.4 Development Mechanisms
In biology, development refers to the process of growing and developing the fertilized egg into 
a full-grown organism. Three important mechanisms involved in this process are cell growth, 
differentiation and morphogenesis. These mechanisms do overlap and should not be viewed as 
independent  mechanisms  working alone.  Rather,  they depend in  great  deal  on each  other, 
working together  to  achieve successful  development.  They will  now each be  described in 
greater detail.

4.4.1 Cell Growth – Division of Cells
The term “cell growth” is used in two different ways in biology. One is the reference to an 
increase in the cell's size, while the other is a shorthand for the idea of growth in cell numbers 
by means of cell reproduction. The focus in this section will be on the latter.

The reproduction of a cell is a process in which the cell, called the mother cell, is divided into 
two daughter cells, passing along genetic material. This is called cell division. There are two 
kinds of cell divisions: meiosis and mitosis. Meiosis is a reduction division process in which 
the number of chromosomes in certain cells is halved during gamete (egg and sperm cells) 
formation. This kind of cell division is not relevant for this thesis, and will not be discussed 
further.  Mitotic  cell  division  involves  nuclear  division  in  which  replicated  chromosomes 
separate to form two genetically identical daughter nuclei. Followed by a division of the cell's 
cytoplasm, a process called cytokinesis, this results in two identical daughter cells.

4.5 The Cell Cycle
Mitosis is a key phase of what is called the cell cycle. The cell cycle is a process of growth and 
division which is repeated over and over in most eucaryotic cells. The length of this cycle 
varies considerably; from a few minutes to several years. The cell cycle can be divided into 
three major phases: interphase, mitosis and cytokinesis – see figure 4.17.
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Figure  4.17:  The  cell  cycle  consists  of  three  phases:  
interphase (G1, S and G2), mitosis (M)  and cytokinesis 
(C) [RAVE05]

Interphase. This is the portion of the cell cycle between cell divisions. The interphase consists 
of three sub phases; G1, S and G2. G1 is the primary growth phase of the cell. S is the phase in 
which the cell synthesizes a replica of the genome. G2 is the second growth phase, in which 
preparations  are  made  for  genomic  separation.  During  interphase  the  chromosomes  are 
dispersed in the nucleus and appear as a network of threadlike strands.

Mitosis. During mitosis the nuclear division takes place. This is done in four phases, which 
occur without interruption: prophase, metaphase, anaphase and telophase. When the prophase 
begins,  the  individual  condensed  chromosomes  become  visible  with  an  ordinary  light 
microscope.  The  nuclear  envelope  breaks  down,  the  spindle  apparatus  (an  array  of 
microtubular spindle fibers) is assembled, and the gene expression stops. More microtubules 
appears, growing from the two poles towards the chromosomes, linking sister chromatids to 
opposite  poles.  During  metaphase  the  chromosomes  align  in  the  centre  of  the  cell.  This 
alignment is called the metaphase plate and is an indication of the future axis of cell division. 
During  anaphase  the  sister  chromatids  are  pulled  apart  by  the  microtubules,  and  during 
telophase  the  spindle  apparatus  is  disassembled,  nuclear  envelopes  are  reestablished,  and 
normal expression of genes is once again initiated.

Cytokinesis.  The process of physically dividing the cytoplasm of a mother cell to create two 
daughter cells is call cytokinesis. The two nucleus created by mitosis is now arranged in the 
mother cell in such a way that each of them will will end up in one of the two daughter cells. 
The number of organelles going to each daughter cell is not controlled, but as long as some of 
each  organelle  are  present  in  each daughter  cell,  the  organelles  can  replicate  to  reach the 
appropriate number.
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Control of the cell cycle
The cell  cycle can be put  on hold at  different  points,  called checkpoints.  At  any of  these 
checkpoints the process can be checked for errors and, if necessary, halted. This makes the cell 
responsive to both its internal state as well as signals from the environment. There are tree of 
these checkpoints: G1/S, G2/M, and at the spindle assembly. G1/S is the primary point at which 
the cell “decides” to divide or not. Once the decision is made, the cell is committed to divide. 
The next checkpoint is G2/M, where the success of DNA replication is assessed. The spindle 
assembly is  in  late  metaphase.  It  ensures that  all  of  the chromosomes are  attached to  the 
spindle in preparation for anaphase.

4.5.1 Differentiation
Differentiation  is  a  developmental  process  by  which  an  unspecialised  cell  undergoes  a 
progressive change to a more specialized form or function. Put more simply: it is the process 
by which cells acquire a type. It is through this process the forming of different cell types in 
different parts and tissues of an organism is possible.

The DNA in a cell will, with a few exceptions (like the blood cells, which have no DNA), stay 
the same even after differentiation have taken place. This was shown by the cloning of the 
sheep Dolly, where a fully differentiated cell  was able to develop into a full-grown sheep 
[CAMP96].

In vertebrates, all cells up until the eight-cell stage (after the three first cell divisions) in the 
developing organism are said to  be  totipotent.  This  means that  they have the potential  to 
express all genes in their DNA, and hence the ability to become any of the cell types found in 
the full-grown organism. At the eight-cell  stage, the pathway that will  influence the future 
development fate of the cells  (i.e.  which cell  types they will  eventually differentiate to) is 
determined. The commitment of a particular cell to a specialized development path is called 
determination.

How do the cells go from being totipotent to being committed to a special development path? 
Proteins called  gene regulatory proteins are used to initiate  developmental changes.  When 
genes  coding  these  proteins  are  activated,  one  of  their  effects  is  to  reinforce  their  own 
activation. This makes the developmental switch deterministic, initiating a chain of events that 
leads down a particular development pathway. Often, before the cell becomes fully committed 
to  a  particular  developmental  pathway,  it  first  becomes  partially  committed,  acquiring 
positioning labels. These labels reflect the cell's location in the organism.

4.5.2 Morphogenesis
Morphogenesis is the shaping of tissues, organs and the entire organism. This encompasses the 
mechanisms which for example give humans the head at the right place, and makes us more 
than just a lump of cells. Many molecules are involved in morphogenesis, but three types are 
particularly important: morphogens, transcription factor proteins, and cell adhesion molecules.

Morphogens  are  soluble  molecules  that  can  diffuse  and  carry  signals  that  control  cell 
differentiation decisions in a concentration-dependent fashion. Transcription factor proteins are 
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a class of molecules that determine cell fate by interacting with the DNA, and by control of 
cell adhesion molecules a cell is able to migrate from one place to another.

Morphogenesis is achieved through different mechanisms, including cell movement, induction, 
pattern formation and programmed cell death.

Cell Movement
The migration of cells is important during many stages of development. Migration makes it 
possible for cells to rearrange themselves into specific structures. This arrangement is directed 
through both cell-to-cell interactions and cell-to-environment interactions.

Induction
In mammals, body form is determined by cell-to-cell interaction, a pattern called  regulative 
development. Induction happens when a cell switches from one path to another as a result of 
interaction with an adjacent cell.

Pattern Formation
This  is  an  unfolding  process  during  development.  In  the  later  stages  it  may  involve 
morphogenesis of organs, but during the earliest events of development, it lays down the basic 
body plan. The way this is achieved varies among different organisms, but some similarities do 
exist, like the establishment of the anterior-posterior (head to tail) axis and the dorsal-ventral 
(back to front) axis. This establishment of axis is possible because of an unequal distribution 
of developmental signals (called determinants) in the cell, creating a gradient. The gradient is 
created  based  on  numerous  factors,  including  control  by  maternally  expressed  genes 
(maternally produces mRNAs deposited in the egg cell), and entry point of the sperm cell.

Programmed cell death
Just like all living creatures, the life of a cell has a beginning and an end. However, both the 
beginning and ending of a cell's life are a bit different from that of most other living creatures. 
As stated earlier, cells arise only by division of a previously existing cell. This means a cell is 
not given birth to in the usual sense, but is “born” by division of the mother cell. When a cell 
dies, it either dies as a result of injury (necrosis) or because it is “programmed” to do so by its 
genome (apoptosis).  When a cell dies because of necrosis it  will  typically swell  and burst, 
releasing its contents into the extracellular fluid. Necrosis can be viewed as accidental death of 
cells, and therefore has no integral part in the development process. When dying of apoptosis 
cells shrivel and shrink, and their remains are taken up by surrounding cells. In contrast to 
necrosis, apoptosis plays an important role in the development of an organism, and all animal 
cells appear to possess this ability [RAVE05]. As an example of the impact apoptosis has on 
development, consider the fingers on the hand of a human; the cells between the fingers have 
died because of apoptosis, if not, humans would have paddles rather than digits.
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5 Artificial Development and Related Work
Artificial development (AD) is in this thesis used as a term to describe a biologically inspired 
development  process  which  performs  the  genotype-phenotype  mapping in  an  evolutionary 
algorithm. The idea of an artificial development system can be traced back to the work of 
Mjolness  et  al  in  1988  [MJOL88] and Kitano in  1990  [KITA90].  They  proposed the first 
examples  of  evolving  formal  grammars  in  such  a  context.  Their  implementations  did  not 
involve  cell  division  as  they  used  matrix  grammars  instead.  This  approach  has  some 
drawbacks, as discussed in [GRUA92].

5.1 The Genotype To Phenotype Mapping Process
Kumar and Bentley uses the term embryogeny to describe the process guiding the genotype-
phenotype  mapping  [BENT99]. They make  a  distinction  between  three  different  types  of 
embryogenies: external, explicit and implicit.

5.1.1 External
External  embryogenies  are  globally defined and they are  external  to  the  genotypes.  These 
embryogenies are characterized by fixed, non-evolvable structures specifying how a phenotype 
should  be  constructed  from  the  genotype.  They  are  mainly  designed  by  hand,  and  when 
designing,  care  must  be  taken  to  ensure  it  will  always  perform the  desired  function.  An 
example of this type of embryogeny is Latham's system for evolving art [TODD92].

5.1.2 Explicit
Embryogenies  where every step of  the development  process  is  explicitly stated are  called 
explicit  embryogenies.  Although designing  such  an  embryogeny by hand is  possible,  it  is 
usually more practical to evolve it by means of genetic programming. This can be done by 
allowing the genotype and embryogeny to evolve simultaneously, making adaptive genotype-
phenotype  mapping  possible.  Broughton  uses  this  type  of  embryology  in  his  system  for 
evolving  architectural  forms,  where  a  Lindenmayer  system  is  used  as  the  embryogeny 
[BROU97].

5.1.3 Implicit
Using  biological  embryogeny  as  model,  implicit  embryogeny  incorporate  the  important 
concepts  conditional  iteration,  subroutines  and  parallel  processing.  This  is  in  contrast  to 
explicit embryogenies, where these concepts needs to be introduced manually. According to 
Holland, implicit embryogenies are types of constrained generating procedures which resemble 
neural nets, game theory and classifier systems [HOLL98]. By evolving a set of simple rules 
which can then be iteratively applied to each element of the growing solution, many large-scale 
problems can be tackled. An example of this is de Garis, who has had some success evolving 
CA-based implicit embryogenies to grow artificial neural nets on an immense scale [GARI94]
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If using this categorization artificial development, as it is defined in this thesis, falls into the 
category implicit embryology.

5.2 Modelling Biology
What  is  there to  gain from modelling development  as  it  occurs  in  biology? According to 
Kumar and Bentley [KUMA03] the main benefit is that of construction: in biology, complex 
organisms are constructed, in the field of EA the knowledge of how to construct complex 
technology capable of adaptive, robust self-organization is sought.

They also suggest a number of advantages and disadvantages of using an algorithm based on 
development. The disadvantages include:

• Difficult to evolve by computer

• Difficult to analyse

• Difficult to create by hand

• Computationally expensive

Although  these  disadvantages  are  serious  obstacles,  there  are  many  potential  advantages, 
including:

• Reduction of the genotype

• Automatic emergence of complexity

• Compact genotypes defining complex phenotypes

• Repeated structure (subroutining, symmetry, segmentation)

• Adaptability

• Robustness to noise (fault tolerance)

• Regenerative capabilities

• Regulatory capabilities

• Able to help in understanding real biological processes and mechanisms

For an extensive explanation of these advantages and disadvantages regarding the use of a 
developmental algorithm, see [KUMA03].
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5.3 Application areas and related work
The field of AD is relatively new. As earlier stated, the first known idea of an AD system was 
presented in [MJOL88] and  [KITA90]. Various versions of such a system has been proposed 
and tested over the years, like Banzhafs et al's  self-organizing binary string system [BANZ98], 
Dellaert and Beers system based on a random boolean network [DELL96], and the system of 
Cangelosi et al for developing neural networks, including both the mechanisms of cell division 
and of cell migration [CANG94]. The fact that this field is so new makes it difficult to get a 
structured overview of it. Additionally, the field has only been explored to a limited extent. 
This makes it often difficult to distinguish the promising approaches from the less promising 
ones.

The current application areas are limited, but the developmental approach has the potential for 
a much wider area of application. Current application areas include artificial neural networks, 
structure optimization and evolvable hardware. Researchers who have contributed, and some 
are still contributing, in these areas are Kitano [KITA90], Gruau [GRUA94], Miller [MILL03], 
Haddow and Tufte  [HADD01][TUFT03], Gordon and Bentley  [GORD02], and Sipper et al 
[SIPP97], to mention a few.

As already stated – see chapter 9, the research on AD can to some extent be segregated into 
two groups: those who make an effort to create a biologically plausible model and those who 
do not care that much about biological plausibility because their main goal does not require it. 
A presentation of some researchers in both these groups will now be presented.

5.3.1 Research Aimed at a Biologically Plausible Model of 
Development
Dellaert presented in his master's thesis from 1995 what he calls a biologically defensible 
development  model  [DELL95].  The  model  includes  such  biological  concepts  as  the  gene 
regulatory system, multicellular development, cell differentiation and neural development. The 
gene regulatory network is represented as a boolean network with genes and gene products as 
nodes  and  the  connections  between  nodes.  Gene  products  is  a  term  used  to  encompass 
enzymes, proteins, receptors and other molecules participating in the gene regulatory network. 
The difference in activity among the various networks provides for differentiation of  the cells. 
Dellaerts model is capable of generating a range of morphologies in a two dimensional grid 
world. It is also capable of evolving the gene regulatory system to optimize some performance 
function for the fully developed organism.  Neural development was demonstrated by hand 
coding a functional agent, and the developmental process proved itself robust to changes in the 
morphology of an agent. 

Eggenberger-Hotz  is  also one of those trying to model biological  development  in  greater 
detail. He has designed systems capable of developing three dimensional organisms using such 
biological  development  mechanisms  as  gene  regulation,  cell  division,  cell  death,  cell 
differentiation  and positional  information  [EGGE97].  Extensions  of  this  basic  system also 
incorporate cell induction [EGGE99], cell cleavage [EGGE03], and asymmetric cell division 
[EGGE04]. With these development systems he has been able to successfully demonstrate that 
it  is  possible,  using  these  mechanisms,  to  develop  shapes,  patterns,  organisms  with 
regeneration ability (the ability to replace lost parts of itself), and moving creatures.
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Kumar and Bentley are perhaps the two currently most profiled researchers trying to model 
biological  development  closely.  Over  the  years  they  have  experimented  with  different 
approaches.  Their  early  research  includes  comparison  between  different  types  of 
developmental  genotype-to-phenotype  mapping  in  evolutionary algorithms.  Three  types  of 
embryogenies were distinguished: external, explicit and implicit – see chapter 5.1. They found 
through experiments that implicit embryogeny outperformed, with respect to scalability, both 
the two other types of embryogeny and the standard one-to-one mapping. The experiments 
were performed using both tessellating tiles [BENT99] and letters of the alphabet [KUMA99] 
as targets. Later work include systems evolving three dimensional embryos. The first of these 
system that  they implements had serious problems regarding evolvability,  and experiments 
hinted  that  the  representation  used  could  be  improved  by  allowing  genotype  redundancy 
(many-to-one mappings) along with placing similar solutions together in the solution space 
(allowing  a  more  gradual  evolution)  [KUMA00].  A  later  system,  the  Evolutionary 
Developmental System (EDS), was aimed at modelling biology very close to learn more about 
which developmental mechanisms might be useful in an AD system. EDS included biological 
concepts  such as embryos,  cell,  cell  cytoplasm, cell  wall,  proteins,  receptors,  transcription 
factors,  genes  and cis-regulatory regions.  The  system develops  the  embryo in  a  isospatial 
coordinate system, instead of the more standard Cartesian, making the system biased towards 
developing  more  “natural”  shapes.  They  experimented  with  the  systems  gene  regulatory 
system, the shaping of embryo (morphogenesis), oriented cell division and cell differentiation 
[KUMA03b][KUMA03c][KUMA04b].  They  found  that  it  is  possible  to  achieve 
morphogenesis without cell signalling, that the orientation of cell divisions may have major 
implications on the development, and that the EDS is capable of breaking symmetry.

5.3.2 Research Inspired by Biological Development
Miller does not consider it a goal to model biology closely in his development systems, even 
though he borrows numerous concepts from nature. He represents in [MILL03] and [MILL04] 
a system capable of growing a French flag organism in a two dimensional grid. The organism 
consists of cells with different colours (types). The cell's genotype is a representation of a feed-
forward boolean circuit (the cell program). This cell program receives data regarding external 
environmental signals, the type of its own cell along with the cell type and chemical level for 
all neighbouring cells. The output of the cell program is a new chemical level, a new cell type 
(including dead and the current cell type), and growth (more than one direction at once is 
possible).  The chemicals  are  allowed to  diffuse.  They do this  according to  a  conservative 
diffusion rule which also ensures that the chemicals over time diffuse away from their origin. 
This  development  system  was  able  to  perform  morphogenesis,  self-repair  and  it  showed 
adaptability  to  environmental  changes.  Morphogenesis  was  achieved  in  both  producing  a 
recognizable French flag which remained recognizable even after further development steps 
were introduced, and the successful development of a growing pattern of blue dots. Self repair 
was shown through partly recovery from severe damage of the French flag. The successful 
development of alternating red / blue dots showed the system was capable of adaption. Miller 
also found during his experiments with this system that although it was possible to develop 
organisms without chemicals, they were of much lower fitness and lacked stability. Miller also 
made contributions  to  the  work  of  Vassilev  [VASS00],  and  Liu and Tyrell  [LIU05],  both 
working towards evolution of digital circuits.
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Bongard and Pfeifer created in [BONG01] and [BONG03] an artificial evolutionary system 
that uses a developmental encoding scheme to translate a given phenotype into a complete 
agent. This agent then acts in a physically realistic virtual environment to determine its fitness 
based on its performance on an assigned task. The genotype is  in this system treated as a 
genetic regulatory network, and the changing expression patterns of this network over time 
leads to the growth of both the morphology and neural control of the multi-unit,  articulate 
agent. The morphology of an agent is grown as follows: the genome (the genetic regulatory 
network) is placed inside a unit (roughly similar to the concept of a cell in other artificial 
development  systems),  the unit  is  injected with a small  amount of gene products,  and the 
genome is executed. Gene products are produced by genes and they do either have a direct 
effect on the phenotype or they regulate the expression of other genes. The initial injection of 
these gene products, where the gene products will be asymmetrically distributed, establishes a 
gradient  which  enables  a  breaking  of  shape  symmetry  in  the  developing  agent.  This  is 
analogous to the establishment of the symmetry breaking morphogen gradient in a biological 
embryo. The unit is then allowed to grow, split and form connections to new units in a process 
regulated by the genome. The neural control is co-evolved with the morphology using cellular 
encoding  [GRUA96].  Cellular  encoding is  a  developmental  method for  evolving both  the 
architecture and synaptic weights of a neural network. The evolved agents were assigned a task 
of either directed locomotion or block pushing. The results suggest that the designed system 
was sufficient to produce hierarchical, repeated structures, and that the inclusion of differential 
gene expression dissociated the information content of the genotype from the complexity of 
the phenotype.

Federici presents in  [FEDE04] an extension of the model proposed by Miller [MILL03]. The 
model of Federici grows cells in a two dimensional grid. The cell growth is regulated by what 
he calls a Morpher: a standard feed-forward artificial neural network representing the gene 
regulatory system in a cell. This Morpher is what is evolved by the genetic algorithm part of 
this system. The system implements such biological concepts as cell type, internal metabolism 
and external chemicals. The cell type and the internal metabolism are both part of the cell, 
while the external chemicals is independent of the cells: it belongs to the environment. The 
Morpher receives data regarding the type of its own cell, the type of each of the four neighbour 
cells, the chemical diffusion, and the internal metabolism as inputs. The output includes cell 
production, chemical production, changing the cells type, and changes in internal metabolism. 
The development starts with one single cell containing a Morpher, which is allowed to execute 
its program, igniting the development process. Development is then allowed to continue for a 
specific number of steps, creating a pattern of cells. This pattern is then mapped to the hidden 
layer in an artificial neural network which is used in the control of a virtual agent. The fitness 
of an agent is calculated based on the its ability to collect food and avoid both poison and other 
agents.  To  enable  a  more  incremental  refinement  of  the  Morpher,  a  novel  method  was 
introduced: embryonic stages. The idea behind embryonic stages is that each stage has control 
over a specific part of the development process. New stages are added incrementally, where 
those  controlling  earlier  stages  of  development  are  developed  first.  When  a  new stage  is 
introduced, it is created as a copy of the former stage, and the former stage is locked – it can 
not be changed any more. Later work with this system includes investigation regarding the 
effect  of  embryonic  stages  [FEDE04b] and  investigation  of  system  scalability  and  the 
robustness of the evolved phenotype [ROGG04][FEDE05b]. In these experiments, the system 
was assigned the task of evolving two dimensional patterns, like a Norwegian flag, instead of 
evolving a neuro-controller. This was done to make the system easier to analyse. The results 
were promising: the use of embryonic stages seems to increase evolvability, the system had 
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better  scaling  behaviour  than  its  opponents  (including  direct  encoding  and  a  simpler 
development system aimed at hardware implementation), and the phenotypes created showed 
robustness towards changes, also when this feature was not selected for.

Dellaert and Beer extended the work of [DELL95] with the design of a much simpler and less 
biologically plausible system in  [DELL96]. This system was able to develop, from scratch, 
complete autonomous agents that could perform simple tasks, like following a line.  Dellaert 
has,  since this  work,  moved from the field  of development to do research in the areas of 
robotics and computer vision.
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6 Goal
In this  thesis  an effort  is  made to  design  and test  an  artificial  development  (AD) system 
implementing a biologically inspired development process for the mapping of the genotype to 
the phenotype in an evolutionary algorithm (EA).

The  objective  of  modelling  biological  development  is  two-folded:  one  objective  regards 
computer science,  while the other regards biology. The main reason for doing research on 
development from a computer science point of view is its potential to reduce the scalability 
problem  troubling  evolutionary  algorithms.  This  is  thought  to  be  achievable  through  the 
introduction of a process of development to perform the genotype to phenotype mapping. The 
objective from a biological point of view is to gain a deeper understanding of the mechanisms 
at work during development, as this is a topic that is currently not completely understood by 
biologists. The focus in this thesis, however, will be on the former of these two; reducing the 
scalability problem.

As limited research has been performed in the field of artificial development a decision was 
made to create a novel system, providing an alternative to the current approaches, instead of 
performing a deeper investigation of one of the current systems.

Two systems were built during the work on this thesis: BioDev and ArtDev3D. BioDev was 
the first system designed and implemented, and was designed to model nature closely. The 
author  had  a  participatory  role  in  this  project  which  was  initiated  and  directed  by  Chen 
[CHEN04]. BioDev served as a source for insight into both the mechanisms of development 
and to which elements were crucial and which ones may be left out. This knowledge was later 
put  to  use in  the design of  the ArtDev3D system, the system which this  thesis  focus  on. 
ArtDev3D was designed and implemented by the author alone, based on the experiences with 
BioDev.

The main goal in this thesis is to design an AD system implementing an effective development 
algorithm capable of reducing the scalability problem in EAs.

The  scaling  property  will  not  be  investigated  directly  in  this  thesis  because  of  the  time 
constraint. However, if the system is to be scalable it must also prove itself as useful on a 
smaller scale first. The way this is tested in this thesis, is by investigating two properties of the 
system. First of all, it  is important that the system is capable of expressing a varied set of 
phenotypes. Secondly, it is important to be able to control the system, achieving the wanted 
effect when tweaking the system's parameters. Investigating these two properties lays the base 
for later testing of the system's scalability.

Effectiveness, in terms of the required computer power, is important if the algorithm is to be 
useful  for  practical  application.  ArtDev3D  strives  to  achieve  effectiveness,  compared  to 
BioDev,  by  reducing  the  complexity  of  the  development  process.  A  direct  testing  of 
effectiveness was not investigated in this thesis because of the time constraints.

One main goal, along with two sub goals have now been distinguished:
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• Main goal – design an AD system implementing an effective development algorithm 
capable of reducing the scalability problem in EAs.

• Sub goal  one – Ensure the development  algorithm is  flexible  enough to  develop a 
variety of different shapes

• Sub goal two – Ensure it is possible to control the system in such a way that tweaking 
it's parameter results in the wanted effects

Sub goals one and two are investigated in the experiments performed in chapters  10 and 11. 
These two sub goals lays the base for a throughout investigation of the main goal: the system's 
scalability.
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Part II – The Development Model





7 BioDev – The Initial Model
My work on this master thesis started out in January 2004 as a teamwork between another 
master student, Yan Hua Chen, and myself. Together we designed and implemented a system 
supposed to “simulate artificial development using a biologically plausible model” [CHEN04] 
To reflect the fact that this system was supposed to model biological development closely, the 
system was given the name BioDev (Biological Development).

Although BioDev is not the system used to conduct the experiments described in this thesis, 
the  system actually  used,  ArtDev3D,  is  heavily  inspired  by  the  BioDev  system.  Also,  as 
designing and building BioDev was the initial part of my work on this master thesis, a brief 
description and discussion of the system will now be given.

7.1 The Model
BioDev consists of two major modules; the development module and the genetic programming 
module. The former takes care of the mapping from genotype to phenotype, while the latter is 
used to evolve a good approximation for the given target. The genetic programming module is 
a fairly standard implementation, and hence will not be discussed any further.

The major components of the model will now be described, followed by a description of its 
features.

7.1.1 The Organism
The organism is the developing lump of cell, from the zygote to the full-grown creature. It 
“lives” in an environment, called the universe,  with definite space and time bounds.

The space the universe provides is a two dimensional grid. Each cell occupies exactly one 
location in the grid, and only one cell is allowed at each location.

The time is divided into discrete time steps, called clock ticks. The processes occurring in the 
universe are serialized within each clock tick, but in an effort to try to model the massive 
parallelism occurring in nature, processes executed within each clock tick, will not affect the 
organism until the end of that tick.

7.1.2 The Cell
The cells have a fixed size, and each cell occupies exactly one square in the universe grid. 
Inside each cell is a DNA, which is what decides how the cell will develop.

The cell can perform a variety of functions

• Cell division – the cell divides, creating two daughter cells.

• Cell death – the cell kills itself
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• Movement – the cell can move a certain distance in the universe

• Signal emittance and reception – the cell is capable of sending an receiving signals 
from other cells

Each cell also has a precondition which must be fulfilled before the cell will perform any of 
these functions.

7.1.3 The DNA
The DNA consists of a number of genes. Each gene is composed of two parts: the regulatory 
region and the coding region.

The regulatory region contains both the information about whether the gene is blocked from 
transcription, and the promoter. The promoter is used when deciding if the gene should be 
transcribed.

The coding region contains all  the information necessary to construct the protein the gene 
codes for.

7.1.4 The Protein
Each protein has a specific time to live, a function it performs, and a set of preconditions.

The time to live refers to how many clock ticks the protein is alive (active). When the protein 
dies, it is simply removed from the cell.

The function of a protein is the action it performs when activated. A protein may perform any 
of the following actions:

• Split – instructs the cell to divide

• Activate – transcribes genes from the DNA

• Apoptosis – instructs the cell to kill itself

• Block gene – blocks specific genes

• Unblock gene – unblocks specific genes

• Update the precondition of the cell – updates the precondition of the cell

• Send signal – sends a signal to specific target cells

The set of preconditions looks at the concentration of a certain type of protein, in addition to 
global  and  local  location  information.  If  all  the  preconditions  are  fulfilled,  the  protein  is 
allowed to perform its action.
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7.2 The Process of Development
The BioDev model focuses on four essential mechanism in development: growth, cell division, 
differentiation  and  morphogenesis.  In  nature,  these mechanisms  involves  both  the  gene 
regulatory  system,  and  cell  communication.  These  two  features  are  also  implemented  in 
BioDev,  and  will  now  be  described.  Following  this  comes  a  description  of  each  of  the 
development mechanisms.

7.2.1 The Gene Regulatory System
The “engine” behind the whole process of development is the gene regulatory system. Two 
important parts of the gene regulatory system are the expression of genes and the regulation of 
this.

Gene expression in BioDev is accomplished in one single step. This means that a gene is not 
first  transcribed to  mRNA which then is  translated into a protein,  as  it  is  done in  nature. 
Instead, the gene is directly transcribed to a protein. Also, one transcription protein (protein 
capable of transcribing genes) may, in this model, transcribe many genes simultaneously. This 
is not the way it  works in nature, where a protein binds to a promoter when transcribing, 
making the protein unable to transcribe any other genes until it is finished transcribing the 
current one. The reason for the former implementation choice is to avoid what is thought to be 
unnecessary complexity. The latter choice was made because it allows for a smaller number of 
proteins  than  the  biological  approach  to  control  the  gene  regulatory  system,  making  the 
development process more efficient.

Regulation of gene expression occurs in nature at numerous places. In BioDev, regulation is 
restricted to happen in three ways. The first regulation mechanism is the production level of 
activator proteins in the cell. This depends on whether the specified preconditions are fulfilled. 
The second mechanism is the blocking and unblocking of genes, and the third is provided 
through the cell's precondition. The third mechanism is a particularly powerful one, as it makes 
it possible to activate or inhibit all gene expression in the cell at once.

7.2.2 Cell Communication
The signal proteins are responsible for all communication between cells. These proteins act as 
both hormones and chemical signal emitters. This enables these proteins to send signals both 
to adjacent cells and distant ones.

The receptor of a cell targeted by such signals is responsible for queuing and forwarding the 
signals to the interior of the cell, where they are handled along with the other actions supposed 
to take place in the cell.

7.2.3 Growth
As the cells have a fixed size,  the growth of the organism is solely achieved through cell 
division. Inspired by the mechanism of contact inhibition in nature, a cell is only allowed to 
divide in a given direction if no cell is currently present there.
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7.2.4 Differentiation
Differentiation is controlled through gene regulation. Two cells with different patterns of gene 
transcription and protein activation are, in this model, said to be differentiated from each other. 
This may happen through a change in the cell's precondition or the blocking of a set of genes, 
possibly induced by a received signal protein.

7.2.5 Morphogenesis
The positional information available to a cell in an evolving organism in nature, is in this 
model emulated through the use of what is called location information. Location information is 
used to encompass information on both a global (organism) and local (cell) level. The location 
information available  to a cell  includes the distance to  both the centre and surface of the 
organism,  the  neighbours  in  a  given  direction,  the  neighbours  within  a  given  radius,  the 
number of cells in the organism, and the height and width of the organism.

7.3 Results
A number of experiments where carried out, using different shapes as target. In addition, a set 
of fitness functions were tested. Some of the experiments were run with DNA coded by hand, 
while others were run using the GP to evolve the most fitting DNA.

Because of the time constraint, it was only possible to test BioDev for its capability to perform 
development.  It was shown that  the system was indeed able to develop differently shaped 
targets,  starting from only one cell.  In addition to this,  some support  for the properties of 
artificial  development,  as  set  forth  by  Kumar  in  his  PhD  thesis  [KUMA04],  was  found. 
Examples of these are the possibility of a decentralized control, and the compactness of DNA 
in contrast to the full-grown organism. The interested reader is encouraged to read Kumar's 
thesis.

7.4 Limitations
What seems to be the greatest limitation of the BioDev system, is its inability to evolve good 
solutions. It has been shown, through hand coding of the DNA, that the development part of 
the system is capable of developing various shapes. However, when trying to evolve a given 
target using GP to find a usable DNA, the system experiences difficulties. A number of reasons 
for what causes this problem are suggested in [CHEN04].

Another type of problem troubling this implementation of BioDev is that the development 
process is very complex, with lots of interdependency between the various elements. This may 
in turn be a reason for the problem of achieving high fitness, because guiding evolution in 
correct  direction  is  difficult  when  the  discrepancy  between  the  genotype  space  and  the 
phenotype  space  is  large.  This  is  unfortunately  not  the  only  consequence  of  a  complex 
development process. The time required to complete the process of developing a DNA to a 
full-grown organism is relatively large, making the system too time consuming to be of any 
practical use.
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Because  of  these  limitations,  a  decision  was  made  to  design  a  new  system  where  the 
development process would be less complex. This new system was baptised ArtDev3D, and 
will now be described.
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8 ArtDev3D – The new and improved model
As discussed in chapter  7.4, the BioDev system had become too complex, and it was also 
shown to be very difficult to evolve a good DNA to use for the development. A decision was 
made to design and implement a new system based on the experiences from BioDev.

One of the main difficulties when designing an artificial development system is to know which 
mechanisms in nature could be useful to include in it.  Including every detail  of biological 
development is out of the question for two reasons: all the details are simply not known, and 
even if they were, biological development is such an incredibly complex process that including 
every detail of it would just not be possible in practise. Working with BioDev gave a deeper 
insight  into  which  mechanism  could  be  useful  and  which  ones  not,  than  just  theoretical 
knowledge could have given. This knowledge has been used to build what is believed to be a 
more effective and versatile artificial development system; the ArtDev3D.

ArtDev3D  is  an  acronym  for  Artificial  Development  in  3D.  The  name  was  chosen  to 
emphasize the change in focus from BioDev, where biological  development  was modelled 
closely,  to  a  focus  on an effective and simplified development  process.  The “3D” postfix 
denotes the change from a two dimensional organism to a three dimensional one.

As the  ArtDev3D system is  a  novel  model,  it  had to  be designed and implemented from 
scratch. A lot of time and effort has been put into making the system both user-friendly (easy to 
understand  and  use),  and  extendible  (including  new  mechanisms  can  easily  be  done  by 
extending the framework).

8.1 System Overview
On  a  high  abstraction  level  the  system  can  be  seen  as  having  3  layers:  the  artificial 
development layer (AD), the converter layer and the evolutionary algorithm layer (EA) – see 
figure 8.1. The converter layer is responsible for the proper conversions between the AD and 
the EA layers. The genotype from the EA is converted to a DNA, which is used to direct the 
development of the organism in the AD. The organism / phenotype is then evaluated by the 
fitness function, and the EA is updated with the evaluated fitness.
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Figure  8.1:  Design  overview  of  the  ArtDev3D 
system

This separation of the system into three distinct layers makes the AD completely independent 
from  the  EA.  This  is  useful  because  it  provides  an  easy  way  of  testing  different 
implementations of the EA in combination with the AD. The conversion layer will  not be 
discussed as a stand-alone layer, as it,  in practice, is an integrated part of the evolutionary 
algorithm.

8.2 The Evolutionary Algorithm
Genetic programming (GP) was chosen as the evolutionary algorithm to use in ArtDev3D. To 
make the algorithm better suited for the task, some variations to the classical GP – see chapter 
3, were made. These variations concern both the way the genotype is represented and the way 
crossover  and  mutation  are  performed.  The  genotype  representation  will  now  be  first 
described, followed by a discussion of the crossover and mutation operators, and finally the 
choice of fitness function and selection mechanism.

8.2.1 Genotype Representation
The genotype is represented in what can be viewed as a combination of variable length linear 
and tree structure – see figure 8.2. On the top layer, the genotype is a list structure of nodes. 
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The number of nodes in this list may increase or decrease during evolution. Each of these 
nodes is the root node in a tree structure representing a gene. The structure of these trees are 
rigid; all genes are represented as the same structure, and this structure cannot be changed.

Figure 8.2: The structure of the genotype
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Using  the  function  and  terminal  terminology  from  chapter  3.1,  the  function  set  is  the 
following: gene, promoter, coding region, precondition, neighbourhood, chemical thresholds, 
time to live and each of the different types of protein (change chemical concentration in cell, 
change cell type, transcribe genes, and divide cell). Each function in the function set has its 
own terminal set. These terminal sets are specified at run time.

8.2.2 Crossover
The crossover operator can be a very disruptive operator, but it is also what contributes to the 
spreading of good building block. To minimize the disruptive force, but at the same time allow 
good building blocks to spread, the crossover operator is only allowed to work on the top level 
of  the  genotype.  This  means  that  only  whole  genes,  not  sub  trees  within  the  genes,  are 
exchanged between parents during crossover – see figure 8.3.

The crossover method used is two-point crossover. This method chooses two locations within 
the genotype at random and exchanges the information located between this two points with 
the other genotype. The variant used in ArtDev3D uses the same crossover points in both 
genotypes, so the number of genes exchanged are the same for both.

Figure 8.3: The crossover operator exchanges an array of genes between the two individuals it is  
applied to
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8.2.3 Mutation
Two  types  of  mutations  are  used  in  ArtDev3D:  mutation  at  a  node  inside  a  gene,  and 
duplication /  removal  of  a  gene.  The former applies  to  the  tree structure,  while  the latter 
applies to the linear top level of the genotype.

The mutation operator applied at the node level is a variation of the classic mutation operator – 
see chapter  3.2.3. However, this mutation operator has some limitations: only the terminals 
may be mutated, and when one of these is mutated, the new value is not freely chosen, only a 
small  random change in  the  current  value  is  allowed.  These limitations  results  in  smaller 
changes in the genotype,  and are implemented to make it  easier  to  guide the evolution in 
correct direction. The node where the mutation is to be performed is selected at random. Figure 
8.4 shows an example of a mutation operation.

Figure 8.4: An example of the mutation operator applied at the node level. The value of  
the promotor is changed from 10100 to 10110 (bit number four is flipped)

The mutation operator working on the top level of the genotype, is special. It does not mutate 
in the classical sense (changing the content of a node), but instead introduces or removes a 
gene.  The introduction  of  a  gene is  accomplished through gene duplication,  a  mechanism 
known from biology.  This  mechanism has  also  been  used  with  some success  in  artificial 
development  systems  [BONG01].  Gene  duplication  may  be  useful  because  although  the 
duplicate gene may not result in any change in the phenotype right away, it may do so after 
further mutations (at the node level). This should make it possible to do smaller and more 
gradual refinements of the phenotype. Gene removal is useful for deleting excess gene (genes 
not contributing to the development) and disruptive genes (a more fit phenotype would be 
developed without these genes). Genes which are contributing to the development may also be 
accidentally deleted by this mutation, but as these “good” genes will have already been spread 
throughout the population, deleting a few of them should not be too harmful. For an example 
of how gene duplication  and gene removal works, see figure  8.5 and 8.6, respectively.
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Figure  8.5:  The mutation operator applied at  the top level  of  the genotype.  Shows an example of  gene  
duplication, where gene 3 is selected for duplication, and the duplicate is inserted at the end of the gene list
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Figure  8.6:  The  mutation  operator  applied  at  the  top  level  of  the  genotype.  Shows an  
example of gene removal, where gene 3 is selected for removal.

8.2.4 Fitness Function
ArtDev3D is designed to support various fitness functions. Currently, only one fitness function 
is  implemented:  CellByCellComparisonFitness.  This  function  compares  the  phenotype  to 
evaluate against the target, and returns a normalized fitness – see chapter 3.2.4.

The algorithm used when comparing the two phenotypes is as follows:

1. Compare each location in the phenotype to evaluate against the corresponding location 
in the target phenotype.

• If both locations are empty (no cell) add two to a temporary fitness sum.

• If both locations are occupied by a cell, and the cells are of the same type, add two 
to a temporary fitness sum.

• If both locations are occupied by a cell, and the cells are of different type, add one 
to a temporary fitness sum.

• If one location is occupied by a cell while the other is not, the temporary fitness 
sum is not changed.
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2. Calculate the maximum reachable value for the temporary fitness sum (the number of 
locations in the target phenotype times two)

3. Divide  the  temporary  fitness  sum  with  the  maximum  reachable  sum  to  find  the 
normalized fitness.

8.2.5 Selection Mechanism
The  tournament  selection  algorithm  was  chosen  as  the  selection  mechanism  to  use  in 
ArtDev3D.  In  tournament  selection,  a  subset  of  the  population,  the  tournament  group,  is 
selected at random and a selective competition between the individuals in this group takes 
place.

Tournament selection was chosen for two reasons: it does not require that the fitness of all 
individuals  in  the  population  is  evaluated,  and  the  algorithm has  proven  itself  to  handle 
premature convergence better than the alternative selection mechanisms. The former reason is 
especially important in ArtDev3D because the development from genotype to phenotype is 
such a time-consuming process. The latter reason touches on a critical problem with GPs: as 
evolution  goes  by,  the  population  tend  to  loose  its  diversity,  resulting  in  premature 
convergence in the population.  This happens when the GP gets  stuck in a local  optimum, 
making it unable to find the global optimum.

8.3 The Artificial Development Process
The development part of the system can be run in one of two ways: either as a stand alone 
application, or in combination with an evolutionary algorithm. Either way, the development 
process takes a DNA, the number of development steps to use, and the bounds of the organism 
to develop as inputs. The output of the process is the full-grown organism. An overview is 
given in figure 8.7.

Figure 8.7: The development process

The interesting part here is what happens during the development process. But before that, a 
summary of the different components in this model is necessary.
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8.3.1 The Components
The major components used in this implementation are much the same as the ones used in 
BioDev – see chapter  7.1: the organism, cells, the DNA, proteins and chemicals. Each will 
now be described.

The Organism
The organism is a three dimensional grid with a fixed size. A location inside the organism may 
be either empty or filled by a cell. Each cell may occupy exactly one location within the grid, 
and only one cell is allowed at each location.

The biggest change from BioDev is that the organism now is three dimensional. A more subtle 
difference is that the notion of universe does not exist any more. It has been replaced by a 
broader definition of the term organism, which now also encompasses what was previously 
called the universe.

The Cell
The cells have a fixed size; they occupy exactly one location within the organism grid. Inside 
each cell  is  a  DNA and (possibly) a  number  of proteins  and chemicals.  Each cell  is  of  a 
specific type, which  is one of a set of explicitly defined cell types.

The cells are capable of performing a variety of actions:

• Cell  division  –  the  cell  divides,  creating  copies  of  itself  which  is  placed  in  the 
neighbouring location in one or more directions

• Change type – the cell changes its type it is

• Transcribe genes – transcribes one or more genes

• Produce / consume chemicals – produces or consumes some amount of one or more of 
the chemical types inside the cell

A number of changes have been done on the cell from BioDev. While in BioDev, the type of 
the cell was implicitly defined through differences in gene expression patterns, in ArtDev3D, 
the type of the cell is explicitly defined. The cell may only be one of a limited set of cell types. 
The available actions also have changed. The cell may no longer kill itself, move or send and 
receive  signals.  Although  these  actions  are  biologically  plausible,  they  complicates  the 
development process unnecessarily (as experienced with BioDev), and are hence not included 
in ArtDev3D. A final change is the removal of the cell's precondition, which was removed for 
much the same reasons as the actions.

The DNA
The DNA consists of a number of genes. Each gene is composed of two parts; the promotor 
and the coding region. The promotor is the gene marker, which is used when deciding which 
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genes  are  to  be  transcribed.  The  coding  region  contains  all  the  information  necessary to 
construct the protein the gene codes for.

In contrast to BioDev, it is in this model not possible to block a gene from transcription by 
putting an inhibitor in the regulatory region. This choice was made because the blocking of 
particular genes is thought to be a complexity that is not necessary with respect to the goal of 
ArtDev3D.

The Protein
The protein has a specific time to live, a function it performs, and a precondition which must 
be fulfilled in order for it to carry out its function.

The time to live specifies how many clock ticks the protein is active, before it  dies and is 
removed from the cell.

A protein can have one of the following functions:

• Divide cell – request the cell to perform a division

• Change chemical concentration – request the cell to produce or consume chemicals

• Change type of cell – request the cell to change its type

• Transcribe genes – request the cell to transcribe genes

A protein is not able to directly perform any actions, it can only request the cell it resides in to 
perform the action for it. If and how the action is actually performed, is decided by the cell.

The precondition of the protein consists  of two parts.  One part  checks the neighbourhood 
surrounding the cell,  while the other part  checks the concentration of chemicals in it.  The 
neighbourhood  part  of  the  precondition  checks  each  of  the  neighbouring  locations  in  the 
directions up, down, left, right, in front of and behind for the presence of a cell and, if present, 
the type of cell. This part of the precondition is fulfilled if all neighbours fits the specified 
neighbourhood pattern. The chemical part of the precondition checks the concentration of each 
of the chemical types in the cell to see if it is above the specified level. If the concentrations of 
all the chemical types are above their specified level, this part of the precondition is fulfilled.

One of the most significant differences from BioDev regarding the protein, is the way proteins 
affect its environment. In BioDev, proteins where allowed to perform their function directly, 
and  in  a  first-come-first-serve  fashion.  In  ArtDev3D,  proteins  are  not  allowed  to  affect 
anything directly. They are only allowed to request the cell to perform actions for them, and the 
cell does not make the decision of whether to perform the action or not until all the proteins in 
the cell have performed their request for the current tick. This way of handling the protein 
actions eliminates the problem of deciding in which order the proteins should be allowed to 
perform their actions. Because of this, a kind of parallelism is achieved at the cellular level.
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In nature, the complex structuring of the protein decides the function of the protein – see 
chapter 4.1.2. In ArtDev3D this is greatly simplified in the way that the protein has an explicit 
type and function, instead of implicitly specified by its shape.

Chemicals
Each cell may contain zero, one, or more chemical types. It is not which chemical types are 
present in a cell that is important, it is the concentration of each type that is important. The 
concentration of a chemical type may change with time. All the cells contains the same number 
of chemical types, and this number must be decided before running the development process.

The use of chemicals is a novel feature in ArtDev3D, not implemented in BioDev. Chemicals 
where included because they are thought to help when developing more complex organism 
[MILL03].

8.3.2 Overview of the Development process
The development process is accomplished in three steps: initialization, development, finish.

Initialization
First, an empty cell is created. The DNA given as input is put inside this cell, and all the genes 
in the DNA are transcribed. Then, an organism is created using the given bounds, and the cell 
is placed in the middle of this organism – see figure  8.8.  The development process is now 
ready to run.
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Figure 8.8: Initialization of the development process

Development
The process of development is divided into discrete time steps called ticks. For each tick, all 
the cells currently in the organism are allowed to perform their actions, like cell division and 
protein production. Unlike in nature, the cells perform their actions one after the other, and not 
in parallel.  This has serious implications for the result  of  the development process,  but  is 
necessary to keep the model simple enough. An example of a developing organism is given in 
figure 8.9.
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Figure 8.9: The development of an organism

Finish
The development continues until the organism has developed for the given number of ticks. 
The full-grown organism is then given as output of the system.

8.3.3 Details of the Development Process
The development process can be separated into two levels of detail: at the organism level, and 
at the cell level. A description of the process at the level of the organism will be given first, 
followed by a description at the level of the cells.

The Organism Level
Each time the development process proceeds one step, the organism is notified that a tick has 
happened. The organism, consisting of cells and empty space, notifies each of its cells that a 
tick has occurred. The cells are notified one after the other, so the actions a cell performs may 
be affected by the actions of the cells receiving the tick notification before it. The cells are not 
notified of the tick at random; they are notified in the order in which they were created. This 
means the zygote is notified first, then the first cell created by the zygote, and then it continues 
in this fashion until the last created cell is notified.

Most of the actions that a cell can perform are affected indirectly through the neighbourhood 
part of the protein precondition. This is because if a cell divides and places its daughter cell in 
the neighbourhood of another cell, which is notified of the tick after this cell, the other cell's 
neighbourhood has changed. Hence, other proteins will perform their functions than if the two 
cells were notified of the tick in opposite order.
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An example  of  this  is  given  in  figure  8.10.  The  organism  is  here  represented  as  a  two 
dimensional grid instead of a three dimensional one. This is done to make it easier to see what 
is happening. At time n (figure A) the blue cell wants to divide downwards and the green cell 
wants to change it type to yellow. However, the protein requesting the change in cell type has a 
neighbourhood precondition which says that all neighbours must be empty. If not, it will not 
request the cell to change its type. How the organism looks at time n+1 depends on which one 
of the two cells are notified of the tick first. In figure B, the green cell received the notification 
first, and hence was able to change its type to yellow. After this, the blue cell are allowed to 
divide. In figure C, the blue cell is notified first. The blue cell divides downwards, but when 
the green cell is notified of the tick, its neighbour in direction up is a cell and hence the protein 
responsible for the change of type will not request the cell to change type.

Figure  8.10: In A, the green cell  wants to change its  
type, the blue cell wants to divide downwards. Because  
of  the  neighbourhood  precondition  of  the  protein  
requesting the change in  cell  type,  the organism may 
look  like  either  B  or  C after  one  tick,  depending  on  
which cell is notified first of the tick

Because ArtDev3D implements the mechanism of contact inhibition, the divide cell action is 
directly influenced by the actions of other cells, as a cell may only divide in a given direction if 
the neighbour location in that direction is empty.

An example  of  this  is  given  in  figure  8.11.  As  in  figure  8.10,  the  organism is  also  here 
represented as a two dimensional grid. This time, a blue cell and a green both want to divide 
and place their daughter cell at the same location. This is the situation at time n (figure A). At 
time n+1, the organism will be either figure B or figure C, depending on which of the two cell 
are first notified of the tick. If the green cell is first notified, the organism will be figure B. If 
the blue cell is first notified, the organism will be figure C.
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Figure  8.11:  Both  cells  want  to  divide  into  the  same  
location in A. The result after a tick has passed will be  
either B or C, depending on which of the two cells is  
first notified of the tick

The Cell Level
Each time a cell is notified of a tick, the same series of discrete steps occur: the chemical 
concentrations are normalized, the proteins are notified of the tick, and the cell performs the 
actions requested by the proteins.

The  normalization  of  the  chemical  concentrations  is  simply  that  if  they  are  out  of  their 
predefined  bounds,  they  are  set  to  the  nearest  legal  value.  In  other  words,  if  a  chemical 
concentration above the specified max value, it is set to the max value, and it is set to the min 
value if below min.

As proteins cannot change their environment in such a way that it affects the actions of the 
other proteins, the order in which they are notified of the tick is unimportant. As discussed 
above, this way of handling the proteins is a way to achieve some of the massive parallelism 
occurring  in  biological  processes.  When  notified  of  the  tick,  each  protein  with  fulfilled 
preconditions performs its request to the cell. Dead proteins are collected and removed from 
the cell.

When all this is completed, it is the cell's turn to do the requested actions. As the different 
types of actions cannot be performed in parallel,  some sort of ordering has to be made. A 
choice has been made to perform the actions in the following order: transcribe genes, change 
chemical concentrations, divide cell, and change the cell's type. How each action is performed 
differs to some extent, and each will now be described.
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Transcribe Genes
All requested transcriptions are performed.

Change Chemical Concentrations
Changes all the chemical concentrations as requested by the proteins. The concentrations are 
allowed to exceed the upper and lower bounds during this process. This is done to avoid the 
ordering of the request to having any influence on the final concentrations.

Divide Cell
The cell is able to divide once in each of the six directions during one tick. Whether the cell 
divides in a direction is decided by the value of the corresponding stimuli level, making a total 
of six stimuli levels for this action. The stimuli levels are reset each tick. Each request made by 
the proteins affects all these six stimuli levels, either by increasing or decreasing each of them. 
A request may also have a neutral effect on one or more of the stimuli levels. When all the 
requests have been processed, each stimuli level is checked against a threshold value and, if 
above  this  threshold,  the cell  decides  to  divide in  the corresponding direction.  If  the  cell 
actually divides in the directions it decides to divide depends, for each direction, whether the 
location to divide into is empty and within the bounds of the organism. If so, the cell will 
divide.

Change the Cell's Type
As with the divide cell action, this action also uses stimuli levels to make a decision, one level 
for each cell type. First, all the requests are processed, changing the stimuli level of choice. 
Then a winner is  chosen (the highest  stimuli  level)  and,  if  this  stimuli  level  is  above the 
specified threshold value, the cell will change its type to the corresponding one.
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9 Testing
When designing the ArtDev3D system, three features of development (as it works in nature) 
were deemed important to achieve:

• Cell division – necessary for the organism to grow in size

• Cell differentiation – allows for specialisation of cells

• Morphogenesis – the shaping of the organism

Cell  division  is  supposed  to  be  achieved  through  the  protein  DivideCellProtein,  and  cell 
differentiation through ChangeTypeOfCellProtein.  Morphogenesis  on the other hand, is  not 
achieved through a specific protein, but rather through the interdependencies and interactions 
of a collection of proteins. Or, in other words,  morphogenesis is supposed to be achieved 
through the gene regulatory system.

9.1 Issues
In practice there are a number of concerns regarding the development process: as proteins only 
can be transcribed (“created”) by another protein, namely TranscribeGeneProtein, how should 
the whole process of gene transcription be initiated? Initiating the cell with no proteins at all is 
out  of  the  question  as  that  would  make  it  impossible  to  achieve  both  cell  division,  cell 
differentiation and morphogenesis. What is necessary to achieve any of these three features is 
the presence of at least one TranscribeGeneProtein in the cell when it is initiated. Exactly how 
the presence of such a protein is made certain, is another important question. In this series of 
testings, the cell is initialized in the following way: for each gene in the cell's DNA, create the 
corresponding protein. This does not guarantee that a TranscribeGeneProtein is present in the 
cell,  but  it  seems  reasonable  to  believe  there  is  a  fair  chance  one  TranscribeGeneProtein 
capable of igniting the gene regulatory system of the cell  will  be made present  using this 
method.

Other concerns are the length of a genes promotor and the length of the sub promotor used by 
TranscribeGeneProtein to find genes to transcribe, the discrete time to live for a protein once 
transcribed, the number of genes in the DNA, and the time to allow the organism to develop 
before it is considered full-grown.

Through some informal test runs, usable values for these parameters have been found. The 
values found may not be the optimal ones, but they have proven themselves to be good enough 
for initial testing.

9.2 Initial Number of Don't Care Neighbours
Each protein used in ArtDev3D has a precondition which, if fulfilled, activates the protein. The 
precondition has a check for both the neighbouring cells and for the concentration of chemicals 
within the cell. Initial number of don't care neighbours (IDN) concerns the former part of the 
precondition. It checks for both the presence/absence of adjacent cells and their cell type. The 

73



cells checked are the ones to the right, left, above, below, behind and in front of  the cell where 
the protein resides. The neighbourhood part of the precondition has six values, one for each 
direction. The allowed values are: cell type, no cell, or don't care (wild card). All values must 
match with the cell's neighbourhood for this part of the precondition to be fulfilled.

Because  a  more  specifically  defined  neighbourhood  in  the  precondition  allows  for  more 
specificity when growing an organism i.e. allows more complex organisms to be grown, using 
as few don't cares as possible may be desired. However, a more specific neighbourhood also 
means that it will be more difficult to start the development (i.e. it will be difficult to achieve 
any growth). With little or no growth it will be very hard for the genetic algorithm to search in 
the correct direction, resulting in poor fitness score. Because of this the number of don't cares 
may need to be relatively high.

IDN is used as a term to describe the number of don't cares the genetic algorithm puts in the 
neighbourhood part of a protein's precondition when creating the first random generation. The 
number of don't care neighbours may well change during the course of evolution: IDN only 
denotes the starting condition.

9.3 Number of Chemical Types
As  already  discussed,  the  precondition  of  a  protein  has  two  parts:  one  checking  the 
neighbourhood and one checking the chemical concentration. While IDN concerns the former 
of these two, number of chemical types (CHT) concerns the latter. This part checks to see 
whether the concentrations of the different chemicals are above their specified thresholds. If all 
chemical concentrations are above, this part of the precondition is fulfilled.

Increasing the number of chemical types may be a way to achieve the growth of more complex 
organisms. This is because, like decreasing IDN, increasing CHT makes the precondition more 
specific, possibly allowing for more detailed structuring of the growth process.

9.4 The Experiments
All the three desired features of the development process were tested for. As cell division is 
required for both of the two other features to appear, this feature is first tested alone. To be able 
to test for any of the two other features, the system must first be able to achieve cell division 
and an acceptable growth of the organism.

9.4.1 The Growth Experiments
The experiments performed regarding the cell division feature are referred to as the growth 
experiments.  Because of  the uncertainty regarding what  the best  value is  for  some of  the 
parameters, the growth experiment series was run with a collection of parameter values. The 
two connected with the most uncertainty and whose effects on the development process are 
unknown,  are  the  number  of  chemical  types  (CHT)  to  use  and  the  specificity  of  the 
neighbourhood part of the proteins precondition: the initial number of don't care neighbours 
(IDN). Seven different values were chosen for each of these two parameters (zero to five plus 
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ten for chemicals,  zero to six for neighbours) and experiments were run for each possible 
combination of these, resulting in a total of 49 experiments.

The hypothesis behind the growth experiments is that a shape with fewer dimensions will be 
easier  to  develop.  Therefore,  three different  target shapes were created:  a one dimensional 
stick, a two dimensional plane, and a three dimensional cube – see figure  9.1,  9.2 and  9.3 
respectively. The 49 experiments discussed above where performed for each of these targets, 
resulting in a total of 147 experiments for the growth experiments.

Figure 9.1: One dimensional target  
phenotype

Figure 9.2: Two dimensional target  
phenotype

Figure  9.3:  Three  dimensional  
target phenotype

Only simple morphogenesis is necessary when developing these targets, as the whole interior 
i.e everything within the bounds of the organism,  is  filled with cells.  This means that  the 
growth of the organism need not be restricted by the DNA to achieve the correct shape, as the 
shape will be formed by the bounds of the organism (cells are not allowed to divide outside the 
bounds of the organism).

The results from these experiments showed that the system did not find it particularly difficult 
to evolve any of these three phenotypes: roughly half the runs achieved perfect fitness, while 
the  remaining  half  achieved  close-to  perfect  fitness.  The  three  dimensional  phenotype 
achieved, on average, higher fitness compared to the other two phenotypes, followed by the 
two  dimensional  one,  and  then  the  one  dimensional  one.  Although  far  from  statistically 
significant (because of the small number of runs performed), this trend seems highly likely for 
the phenotypes used here. Increasing the number of dimensions also means an increase in 
compactness. The three dimensional phenotype may be perfectly developed in only two steps, 
requiring one single protein (DivideCellProtein which divides twice in all direction) to achieve 
this. The one dimensional one, on the other hand, requires at least 13 steps to be perfectly 
developed,  and  in  addition  requires  the  DivideCellProtein  to  be  transcribed  (activated) 
multiple times.

There seemed to be an increase in fitness with increasing IDN, and a decrease with increasing 
CHT. However, for IDN values of four to six and CHT values of zero to two, there seemed to 
be no real difference in the achieved fitness.
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9.4.2 The Morphogenesis Experiments
It was now established that ArtDev3D is capable of growing an organism, but achieving cell 
growth alone is not enough. A more detailed control over the shaping of the organism than the 
bounds can provide, is desired.

There are several ways to achieve morphogenesis. The way morphogenesis is implemented in 
ArtDev3D is that cell division (growth) may cease to continue at specific locations, thereby 
restricting the growth of the organism. Other ways to achieve morphogenesis is through cell 
movement, cell shaping and apoptosis (cell death), but these have not been implemented. To 
test ArtDev3D's ability to restrict the growth of the organism three new targets were designed. 
These three targets have a border of empty space between the outermost cells and the bounds 
of the organism, requiring the cells to stop dividing before the bounds – see figure 9.4, 9.5 and 
9.6. The setting and parameters used when running this experiment series are the same as the 
ones used in the growth experiment.

Figure 9.4: One dimensional target  
phenotype.  The  lines  represent  the 
bounds.

Figure 9.5: Two dimensional target  
phenotype.  The  lines  represent  the 
bounds.

Figure  9.6:  Three  dimensional  
target  phenotype.  The  lines 
represent the bounds.

Developing phenotypes with shapes requiring morphogenesis, as expected, seems to be more 
difficult. Although perfect fit organisms for both the one dimensional and the two dimensional 
cases were found, no perfect fit was found for the three dimensional one. However, fairly high 
fitness (0,97) was achieved in a number of runs and the variation in achieved fitness was 
small. The two dimensional phenotype on average achieved better fitness than the two other, 
followed by the one dimensional one, and finally the three dimensional one.

There was no obvious difference found in the achieved fitness with the various values of IDN 
and CHT.

As the experiments performed were run with both a relatively small population size and few 
generations,  it  is  believed  that  increasing  the  population  size  and  /  or  the  number  of 
generations will result in better fit individuals. If so, also the runs using the three dimensional 
target should be able to evolve a perfect fit  individual. One reason why no perfect fit  was 
found when using the three dimensional target may be because this target requires first growth 
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and then a stop in growth in six direction, while the two dimensional an one dimensional only 
requires this in four and two directions respectively.

These experiments showed that ArtDev3D is capable not only to grow a random blob of cells, 
but also stop the growth process at desired location in order to shape the growing organism.

9.4.3 The Differentiation Experiments
This experiment series takes us one step back, forgetting all about the previous morphogenesis 
experiment and builds solely on the growth experiment. What was tested now, was the systems 
ability to differentiate cells.

These experiments  use  the same parameters  and phenotypes  as in  the growth experiment, 
described above. The only difference is the introduction of a second cell type in each of the 
three phenotypes – see figure 9.7, 9.8 and 9.9. A cell type is recognised by its unique colour.

Figure 9.7: One dimensional target  
phenotype.

Figure 9.8: Two dimensional target  
phenotype.

Figure  9.9:  Three  dimensional  
target phenotype.

As  with  the  growth  experiments,  no  morphogenesis  is  necessary  when  developing  these 
targets, as the whole interior i.e. everything within the bounds of the organism, is filled with 
cells.

To achieve the patterns present in each of the three phenotypes, some sort of differentiation has 
to happen at some point in the development. This challenge seems to have been a hard one for 
ArtDev3D. The system was only able to develop an organism with perfect fitness in one of the 
runs for the three dimensional target phenotype. However, the purpose of these experiments 
were simply to  test  if  the system was capable of  performing differentiation,  and this  was 
accomplished for all the three phenotypes.
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9.4.4 The Morphogenesis Combined With Differentiation 
Experiments
So far it was shown that ArtDev3D is indeed capable of performing all the three features. It 
was, however, also interesting to test if the system is capable of handling both morphogenesis 
and differentiation at the same time. This is the purpose of this final experiment series in the 
testing phase.

Once  again,  the  parameters  and  settings  were  the  same  as  the  ones  used  in  the  growth 
experiment,  described  above.  The  shape  and  colour  pattern  are  the  same  as  in  the 
differentiation  experiments,  while  the  border  of  spaces  are  the  same  as  was  used  in  the 
morphogenesis experiments – see figure 9.10, 9.11 and 9.12.

Figure  9.10:  One  dimensional 
target  phenotype.  The  lines 
represent the bounds.

Figure  9.11:  Two  dimensional 
target  phenotype.  The  lines 
represent the bounds.

Figure  9.12:  Three  dimensional  
target  phenotype.  The  lines 
represent the bounds.

The  results  showed  that  ArtDev3D was  unable  to  find  a  perfect  fit  for  any  of  the  three 
phenotypes used as targets. This is not as surprising, keeping in mind the results from both the 
morphogenesis  and  the  differentiation  experiments.  There  is  no  reason  to  believe  this 
experiment series should be any easier for the system.

More surprisingly, the fitness achieved in these experiments is generally higher than the fitness 
achieved  in  both  the  morphogenesis  and  the  differentiation  experiments.  One  reasonable 
explanation for this is the way the fitness function calculates the fitness: it is easier to achieve 
higher fitness when there are lot of empty space between the outer cells and the organism 
bounds.  This  is  because  the  empty  border  makes  up  a  large  percentage  of  the  available 
locations in the organism, so the fitness is automatically relatively high as long as the organism 
does not develop into these locations.

9.5 Conclusion
This series of experiments has shown that the ArtDev3D system is capable of performing the 
three desired features cell division, cell differentiation, and morphogenesis. It has also been 
established  that  the  chosen  values  for  the  system  parameters  in  these  experiments  are 
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reasonably good This is implied by the high fitness achieved despite the constraints in the 
genetic  algorithm (only 50  generations  and  a  population  size  of  100).  Another  limitation 
probably originating from the genetic algorithm is the fact that the fitness for the population 
increases fast during the first few generations and then stagnates. This is an indication that 
some of the parameters used for the genetic algorithm will require some tweaking.

Although relatively high fitness was achieved in most of the runs, the fact that the system was 
unable to develop a number of the targets perfectly indicates that ArtDev3D has its limitations. 
The targets in question are relatively small, meaning the solution space is also small, so the 
search should not have been that hard. The fact  that  the search was indeed difficult,  is an 
indication that maybe the target is not possible to express using the available components, or 
that maybe the guiding of evolution, as provided by the fitness function, is not good enough.

One of the hypothesis  made before the experiments  were run was that  a  one dimensional 
phenotype would be easier to evolve than a two dimensional one, and the three dimensional 
phenotype would be the hardest to develop. No evidence supporting this hypothesis was found 
during these experiments, so this hypothesis had to be rejected.

The  results  from  these  experiments  has  shown  that  the  system  is  capable  of  developing 
organisms  requiring  both  morphogenesis  and  differentiation.  The  relatively  high  fitness 
achieved  despite  the  sub  optimal  settings  in  the  genetic  algorithm,  is  promising  for  the 
experiments to come.
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Part III – Experiments
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10 Experiment 1
The initial testing of the ArtDev3D system showed that the system was capable of developing 
simple  three  dimensional shapes.  However,  for  very simple  three  dimensional shapes  the 
biological mechanism of cell division is sufficient, as shown in chapter  9. The experiments 
went further to show that the model could also handle cell differentiation and morphogenesis, 
mechanisms required for more advanced  three dimensional shapes. It was now time to, not 
only explore what types of three dimensional shapes the model is capable of developing, but to 
investigate the model itself.  A fuller understanding of the effect of the model's parameters and 
their inter-relationship was needed so as to be able to refine the model.

10.1 Setup
Five phenotypes were designed to use as targets for this experiment series: a cube embedded 
with a three dimensional cross inside, a tree, a christmas tree, a sphere, and a sphere which is 
separated in the middle. See figure 10.1 for an overview of these phenotypes. Each phenotype 
is shown in two different ways: normal view and exploded view. The normal view is how the 
phenotype  actually  looks  like,  while  the  exploded  view shows  the  phenotype  with  space 
around  each  cell.  The  exploded  view  is  provided  to  get  a  look  “inside”  of  the  three 
dimensional phenotype.

Three different shapes were used for these phenotypes: the cube,  the tree, and the sphere. 
These shapes were chosen to represent classes of shapes which provide different challenges for 
development.  The cube is a regular target, requiring the same growth and differentiation in all 
six directions, the tree is a bit more complex, requiring different growth in several directions, 
and the sphere is fairly simple, possible to achieve just by having the cells to divide in all six 
directions two times. What distinguishes the tree from the christmas tree, and the sphere from 
the  divided  sphere,  is  the  number  of  different  cell  types  needed  when  designing  them. 
ArtDev3D allows for a number of different types of cells in the organism, each distinguished 
by its unique colour. The use of different number of cell types is done to test for differences in 
the results when using more or less cell types, keeping the shape constant.

Numerous different values for the same two parameters investigated in chapter 9, the number 
of chemical types (CHT) – see chapter  9.3, and the initial number of don't care neighbours 
(IDN)  –  see  chapter  9.2,  were  used  when  running  experiments  for  each  of  the  target 
phenotypes. IDN denotes the number of don't cares in the neighbourhood part of each protein's 
precondition in the very first generation created by the genetic programming algorithm. For 
CHT the set of values used was zero up to five and ten, while for IDN all allowed values (zero 
up to and including six) were used. For each phenotype all possible combinations of these two 
sets  of values were conducted and the experiment  run for each combination was repeated 
twenty  times.  This  was  done  both  because  of  statistical  relevance,  and  to  make  sure  the 
achievement of developing a shape was not just by chance to ensure the system has a certain 
degree of stability.
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Cube – normal view Cube – exploded view

Tree – normal view Tree – exploded view

Christmas tree – normal view Christmas tree – exploded view

Sphere – normal view Sphere – exploded view

Divided sphere – normal view Divided sphere – exploded view

Figure 10.1: The five target phenotypes
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10.1.1 Parameters
Most of the values used for the parameters are the same as during the testing phase – see 
chapter  9.  However,  due to the results  of these experiments it  was chosen to increase  the 
population size and the number of generations.  The size of the population is increased from 
100 to 1000 and the number of generations is increased from 50 to 500.

The parameters were held constant during all five experiments except for the number of cell 
types  to  use,  the  number  of  chemical  types  (CHT),  and  the  initial  number  of  don't  care 
neighbours (IDN). For the two experiments using the  tree and the christmas  tree, more cell 
types where allowed to be chosen among than what was absolutely necessary. This was done 
so that "natural" colours could be used on the trees (like green on the leaves) without having to 
make any changes in the system's program code. The cell types are implemented in such a way 
that it is not possible to specifically chose which cell types to make available to the system: if 
one cell type is needed, cell type one is made available to the system, if two cell types are 
needed, cell types one and two are made available, and so on. 

Genetic Algorithm
The following are the parameters used by the genetic algorithm.

General settings
Population size = 1000
Crossover rate = 0.9
Mutation rate = 0.1
Termination criterion = Generations=500 OR fitness=1.0
Fitness function = CellByCellComparisonFitness
Selection method = TournamentSelection

• Group size = 4

Genotype specification
Promotor = 6 bits
Initial no genes = 5
Proteins used = GAdivideCellProtein

GatranscribeGeneProtein
• Length of subpromotor = 3 bits

GachangeTypeOfCell
• Cube – number of allowed cell types: 2
• Tree – number of allowed cell types: 8
• Christmas tree – number of allowed cell types: 12
• Sphere – number of allowed cell types: 1
• Divided sphere – number of allowed cell types: 2

Proteins
Max time to live = 5 ticks
Precondition = Chemicals – number of different types = {0, 1, 2, 3, 4, 5, 10}
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Neighbours – initial number of don't cares = {0, 1, 2, 3, 4, 5, 6}

Target phenotypes
Five different phenotypes are used as targets:

1. Cube – number of allowed cell types: 2
2. Tree – number of allowed cell types: 8
3. Christmas tree – number of allowed cell types: 12
4. Sphere – number of allowed cell types: 1
5. Divided sphere – number of allowed cell types: 2

All the phenotypes have the same dimensions: five-by-five-by-five units.

Development
Development time is the number of steps (ticks) the organism is allowed to live before it is 
evaluated by the fitness function. All the experiments in this series use the same development 
time of 12 ticks.

The number of ticks to use for development is calculated using the following formula:
x = (a + 5) * 1,5

Where:
x is the calculated development time
a is the minimum needed ticks to grow to wanted size for the biggest of the targets (calculated 
by hand)
5 is added to ensure enough time for differentiation to happen
1,5 is multiplied to this sum to give extra time to develop

10.2 Running the experiments
All  the  experiments  in  this  series  were  run  on  the  two  Beowulf  clusters  Clustis2 
(clustis.idi.ntnu.no) and Norgrid (norgrid.ntnu.no). Clustis2 and Norgrid features 22 and 63 
computational nodes respectively. Each node contains 1GB of memory and a 3.4GHz Pentium 
IV processor. The two clusters use Linux as the operating system, and Torque as the program 
for queuing the jobs to be run .

10.3 Results
A significant amount of data is  generated with so many development experiments.  It was, 
therefore,  important  to  select  which data  should  be stored for  each experiment,  providing 
sufficient information to enable the analysis sought to be undertaken. The following data was 
used for this  analysis: the  fitness of the best  evolved individual in each repetition of each 
single experiment, along with the DNA used to construct it, and its phenotype representation.

The final fitness is used to plot graphs to visualize the “goodness” of the various runs, and the 
stability of the results. The stability of the results refers to the systems ability to repeatedly 
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evolve equally fit individuals in separate runs using the same parameters and target phenotype. 
The standard  deviation,  which is  plotted  on top  of  the  fitness  bars,  is  a  measure  for  this 
stability.

Two graphs was plotted for each of the targets: one showing the fitness with respect to CHT, 
and one showing the fitness with respect to IDN. For each CHT value, the average fitness over 
all runs performed using this CHT i.e. all runs with a combination of this CHT value and any 
of the IDN values, was used. Similarly for the IDN values: here the average fitness over all the 
CHT values was used. Also the standard deviations were calculated in this manner.

The  DNA of  the  best  evolved  individual,  regardless  of  CHT  and  IDN,  for  each  target 
phenotype was used to investigate the development process the individual goes through, from 
the zygote to the full-grown organism.

The phenotype  of the best evolved individual, regardless of CHT and IDN, for each target 
phenotype was used to investigate the differences to the corresponding target phenotype.

The fitness results for each of the target phenotypes will be discussed next, followed by a brief 
discussion of the step-by-step development the best evolved individual goes through.

10.3.1 Cube
Nine out of the 980 experiment runs where the cube was used as the target phenotype achieved 
perfect fitness. The perfect fitness was typically achieved in runs with high IDN, combined 
with low CHT. This impression is strengthened when analysing the graphs plotting the fitness 
data with respect to CHT and IDN – see figure 10.2 and 10.3, respectively. The tendency is for 
low values of CHT, and higher values of IDN, resulting in high fitness.

Figure  10.2:  Fitness  achieved  when  developing  the 
cube with different numbers of chemicals (CHT)

Figure  10.3:  Fitness  achieved  when  developing  the 
cube  with  different  initial  number  of  don't  care 
neighbours (IDN)
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The standard deviations are roughly equal large regardless of CHT and IDN. This means that 
the achieved fitness do not become more or less random when these two values are changed, 
indicating that with increasing CHT, or decreasing IDN, the achieved fitness goes steadily 
down without inducing any larger changes in the systems ability to guide evolution.

10.3.2 Tree
None of the experiments using the tree as target phenotype were able to achieve perfect fitness. 
However, four of the runs achieved a fitness of 0,996. As in the cube experiments, this high 
fitness was achieved in runs using low CHT values and high IDN values.  Looking at the graph 
displaying  the  fitness  data  with  respect  to  CHT  and  IDN  –  see  figure  10.4 and  10.5 
respectively, much of the same trend may be seen: low values of CHT and high values of IDN 
result in high fitness values.

Figure  10.4:  Fitness  achieved  when  developing  the 
tree with different numbers of chemicals (CHT)

Figure  10.5:  Fitness  achieved  when  developing  the 
tree  with  different  initial  number  of  don't  care 
neighbours (IDN)

Compared to the cube, the standard deviation are here more varied. For CHT the standard 
deviations are almost equally large for zero to five and smaller for ten, while for IDN they 
increases from zero to tree, roughly equal from tree to five and slightly decreases from five to 
six. The small standard deviations for high values of CHT, respectively small value of IDN, 
may be because these values makes the search so difficult  that  not  even by chance is  the 
system able to evolve an organism with any higher fitness.

The four best evolved phenotypes were all identical: their shape had developed perfectly, the 
only error was the colour of the foot of the tree. The foot should have differentiated into an 
orange  cell  type,  but  instead  it  is  green  like  the  rest  of  the  tree.  See  figure  10.6 for  a 
comparison of one of the best evolved phenotypes with the target. An explanation for this error 
may be based on the facts that the dominant colour of the phenotype is green and the fitness 
function values correct shape higher than correct colour: the genetic programming algorithm 
may  have  been  so  focused  on  evolving  genes  responsible  for  the  correct  shape  and  for 
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differentiation to green that the genes for differentiation to orange simply have been “evolved 
away”.

Best evolved phenotype – fitness 0,996 Target phenotype

Figure 10.6: The only thing separating the best evolved phenotype (left) from the target (right) is the colour of  
the foot of the tree

10.3.3 Christmas Tree
As  in  the  tree  experiments,  none  of  the  experiments  using  the  christmas  tree  as  target 
phenotype was able to achieve perfect fitness. This is not surprising as these two phenotypes 
have exactly the same shape and the christmas tree requires more differentiation than the tree. 
Indications  that  differentiation  is  difficult  to  achieve  was found in  chapter  9.4.3.  The  two 
graphs plotting the fitness data with respect to chemical types and neighbours – see figure 10.7 
and  10.8 respectively,  display the same trends  as  was  seen in  both  the  cube and the  tree 
experiments: low values of CHT and high values of IDN both result in high fitness values. The 
highest fitness achieved for the christmas tree phenotype was 0,98. This value was achieved in 
only one run.
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Figure  10.7:  Fitness  achieved  when  developing  the 
christmas  tree  with  different  numbers  of  chemicals 
(CHT)

Figure  10.8:  Fitness  achieved  when  developing  the 
christmas  tree  with  different  initial  number  of  don't  
care neighbours (IDN)

No noteworthy differences was found in the standard deviations, compared to the tree. This 
may be an indication that developing shapes requiring more differentiation does not affect the 
systems ability to guide evolution. However, the support for this hypothesis is weak as the 
difference between the tree and the christmas tree is not large.

As with the tree, the shape of this phenotype was perfectly developed. The errors were that the 
cells which were supposed to differentiate to another colour than green, differentiated to the 
wrong colour: the foot of the tree became green instead of orange, and the star along with the 
“decoration” all became blue – see figure 10.9. It may seem a bit odd that the cells supposed to 
have another colour than green achieved this, but they got the wrong colour. However, the 
colour these cells  got  is  blue,  and as this  is  the colour of the zygote (the first  cell  in the 
organism) it may be that the organism first developed into shape and then differentiated the 
needed cells to green, just leaving the cells who did not need to be green as they were.
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Best evolved phenotype – fitness 0,98 Target phenotype

Figure 10.9: Some of the cells in the best evolved phenotype (left) was unable to differentiate to the right type of  
cell, as specified in the target (right)

10.3.4 Sphere
Using the sphere as a target seems to have been a simple task for the system: perfect fitness 
was achieved in  856 out of the 980 experiment runs performed.  Looking at the two graphs 
plotting the fitness achieved for various values of CHT and IDN – see figure 10.10 and 10.11 
respectively, a light tendency of increased fitness with increasing IDN can be seen. For the 
chemicals, it is difficult to see any tendency at all. The only noticeable fact is that a CHT value 
of ten achieves much  lower fitness than any of the other values tested. Looking at the standard 
deviations,  however,  it  is  seen  that  there  are  differences,  also  amongst  the  different  CHT 
values: the standard deviation increases with increasing CHT. Just the opposite occurs with the 
standard deviations for the various IDN: they decreases with increasing IDN.
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Figure  10.10: Fitness achieved when developing the 
sphere with different numbers of chemicals (CHT)

Figure  10.11:  Fitness  achieved  when developing  the  
sphere  with  different  initial  number  of  don't  care 
neighbours (IDN)

The small differences with respect to the average fitnesses achieved and the relatively large 
differences between the different standard deviations, indicates that even though the achieved 
fitness is, on average, fairly equal regardless of CHT and IDN, achieving high fitness with high 
CHT or low IDN is much more by chance than with lower values of CHT, respectively higher 
values of IDN.

10.3.5 Divided Sphere
Even when introducing a different coloured plane inside the sphere, dividing it into two halves, 
the task seems to be a fairly simple one: 433 out of the 980 runs performed achieved perfect 
fitness. Compared to the experiments using the sphere as the target, the two graphs plotting the 
fitness achieved for various values of CHT and IDN for this phenotype – see figure 10.12 and 
10.13 respectively, display a more marked tendency of the effect lowering the CHT value and 
increasing the IDN has on fitness. What is seen here is the same relation as was also seen in 
the results for the other phenotypes.
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Figure  10.12: Fitness achieved when developing the 
divided  sphere  with  different  numbers  of  chemicals  
(CHT)

Figure  10.13: Fitness achieved when developing the 
divided  sphere  with  different  initial  number of  don't  
care neighbours (IDN)

As  with  the  sphere,  also  here  the  standard  deviations  increases  with  increasing  CHT, 
respectively  decreasing  IDN.  This  strengthens  the  hypothesis  from  chapter  10.3.3,  that 
introducing more differentiation does not affect the systems ability to guide evolution.

10.3.6 Development
To gain a better understanding of how the development process actually goes about developing 
the zygote (the first cell) into the full grown organism, some of the DNAs evolved in this 
experiment series were chosen to be developed in a step-by-step fashion. A snapshot was taken 
at each discrete time step. The DNAs chosen, were the ones whose corresponding organism 
(phenotype) had the highest fitness. One DNA was chosen for each different target phenotype. 
When two or more shared the same fitness, one of them was chosen at random. The results can 
be seen in figure  10.14. Since the development process induced no change in the growing 
organism after six development steps, the steps seven to eleven are left out.
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Figure 10.14: The development of the best evolved phenotypes, from zygote to full grown organism

What is common for all these developing organisms is that they all stop developing at a much 
earlier time than the expected one. Also, it seems that the more complex phenotypes requires 
more development time than the less complex ones. The longest development time (in the 
chosen ones) is six ticks, which was used by the DNA for the christmas tree phenotype. The 
shortest development time was used by the sphere, which only needed two ticks to grow into 
perfect shape.  Why the organisms reach their  final  shape and colours at  an early stage in 
development and do not develop any more after that, is not known. It may happen because of 
the limited number of ticks each protein lives: when there are no more proteins alive in the 
organism,  no further development  will  occur.  Another  possibility is  that,  as  the organisms 
developed  fully  earlier  than  anticipated,  after  12  ticks  only  the  organisms  that  stopped 
developing at an early stage achieve high fitness. Those who did not stop to develop would at 
the  12th tick,  when  the  fitness  is  measured,  have  developed  away  from  their  maximum 
closeness to the target, and thus receive low fitness. If this hypothesis is correct, this puts a 
larger burden on evolution to come up with a good DNA, as only those who stops their own 
development will achieve high fitness. This finding is an indication that the chosen formula for 
estimating the required development  time may need refinement.  However,  no experiments 
have been performed to investigate what the optimal number of development steps actually is. 
Also, the achievements of ArtDev3D so far is satisfactory, so no changes to the formula for 
calculating development time i.e. the number of ticks, is performed. 
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10.4 Conclusion
This  experiment  series  has  shown  that  ArtDev3D  is  capable  of  developing  a  number  of 
different phenotypes. The investigation of the effect different values for CHT and IDN have on 
the systems ability to  evolve good phenotypes  indicated that  increasing CHT, respectively 
decreasing IDN, resulted in a decrease in the achieved fitness. Investigation of the randomness 
of  the  achieved  fitness  (achieving  high  fitness  by  “luck”),  as  measured  by  the  standard 
deviations,  indicated  that  increasing  CHT,  respectively  decreasing  IDN,  results  in  more 
randomness for the simpler shapes, while opposite, less randomness, for the more complex 
shapes.  This  may be  because  when evolving  simpler  shapes,  it  is  easier  for  to  guide  the 
evolution correctly, resulting in stable and high results. When evolving more complex shapes 
the guiding of evolution is more difficult,  resulting in a need for luck to evolve highly fit 
individuals.  However,  it  is  difficult  to  draw any conclusions  without  further  experiments. 
Additionally,  some support  for  the  hypothesis  that  the  amount  of  differentiation  does  not 
influence the systems ability to guide evolution was found. Further investigations regarding 
CHT and IDN's effect on the achieved fitness will be conducted in the following chapter.

It was also found that the time required for successful development may have been set too high 
and  that  complex  target  phenotypes  may  require  longer  development  time  than  the  less 
complex ones.  The long development  time revealed,  however,  an interesting aspect  of the 
system: it is capable of producing organism which remains stable i.e stops developing, after 
they reach maturity.
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11 Experiment 2
The initial testing of ArtDev3D – see chapter 9, showed that the system was able to perform 
the three required features growth, differentiation, and morphogenesis. Further experiments, 
see chapter  10, established that the system was capable of developing a number of different 
phenotypes and investigated the effect of changing two of the systems parameters. The results 
from these experiments are promising, and now it was time for a look into the finer details of 
how the system works.

11.1 Description
Two development parameters and two phenotype parameters are thought to play a key role in 
affecting  the  system's  ability  to  achieve  high  fitness.  The  two development  parameters  in 
question are parts of a proteins precondition: the initial number of don't care neighbours (IDN) 
and the number of different chemical types (CHT) to use. The two phenotype parameters in 
question are the target phenotype's  shape and colours (as given by the cell type). What was 
tested for in this experiment series was both the degree of symmetry (DoS) and the number of 
colours (NoC) used for the target.  The four parameters have been tested using an array of 
different values for each one of them.

As indications were found in the previous experiment series that low values for IDN and high 
values for  CHT resulted in  low fitness,  some of  the least  promising values for  these two 
parameters were changed or left out in this experiment series.

11.2 Setup
To investigate these four parameters, 300 single experiments were performed. These include 
experiments for all possible combinations of zero, two, four, five and six IDN, zero, one, two, 
four and eight CHT, and 12 different target phenotypes (four different shapes – zero to three 
DoS, each using two, four or six NoC)

All experiments were repeated 20 times.

11.2.1 Experiment arrangement
This experiment series can be divided into four groups based on the degree of symmetry (DoS) 
of the phenotype:

• 0 DoS, shape: Blob

• 1 DoS, shape: Airplane

• 2 DoS, shape: Tree

• 3 DoS, shape: Diamond
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Each of these four can then be further divided into three subgroups, based on the NoC value: 
two, four and six colours.

Each of the above groups can again be divided into five subgroups, based on the IDN value, 
and each of these can be divided into five single experiments, based on the CHT value.

This arrangement of the experiments ensures that only one parameter is changed from one 
experiment to the next (see table 11.1).

Experiment no. Degree of 
Symmetry 

(DoS)

Number of Colours 
(NoC)

Initial Number 
of Don't Care 
Neighbours 

(IDN)

Number of 
Chemical Types 

(CHT)

1 0 2 0 0
2 1
3 2
4 4
5 8

6 – 10 2 0, 1, 2, 4, 8
11 – 15 4 0, 1, 2, 4, 8
16 – 20 5 0, 1, 2, 4, 8
21 – 25 6 0, 1, 2, 4, 8
26 – 50 4 0, 2, 4, 5, 6 0, 1, 2, 4, 8
51 – 75 6 0, 2, 4, 5, 6 0, 1, 2, 4, 8
76 – 150 1 2, 4, 6 0, 2, 4, 5, 6 0, 1, 2, 4, 8
151 – 225 2 2, 4, 6 0, 2, 4, 5, 6 0, 1, 2, 4, 8
226 – 300 3 2, 4, 6 0, 2, 4, 5, 6 0, 1, 2, 4, 8

Table 11.1: Experiment series setup

11.2.2 Parameters
The  same  parameters  were  used  in  all  experiments  except  for  the  four  parameters  to  be 
investigated: initial number of don't care neighbours (IDN),  number of chemical types (CHT), 
number of colours (NoC), and degree of symmetry (DoS). 

Genetic Algorithm
The following are the parameters used by the genetic algorithm during this experiment series.

98



General settings
Population size = 1000
Crossover rate = 0.9
Mutation rate = 0.1
Termination criterion = Generations=500 OR fitness=1.0
Fitness function = CellByCellComparisonFitness
Selection method = TournamentSelection

• group size = 4

Genotype specification
Promotor = 6 bits
Initial no genes = 5
Proteins used = GAdivideCellProtein

GAtranscribeGeneProtein
• length of subpromotor = 3 bits
GAchangeTypeOfCell
• number of different cell types = {2, 4, 6}

Proteins
Max time to live = 5 ticks
Precondition = Chemicals – number of different types = {0, 1, 2, 4, 8}

Neighbours – initial number of don't cares = {0, 2, 4, 5, 6}

Target phenotypes
Four different shapes, each with a specific degree of symmetry, are used as target phenotypes:

• Blob – 0 DoS
• Airplane – 1 DoS
• Tree – 2 DoS
• Diamond – 3 DoS

Each of the shapes has either two, four or six colours, making a total of 12 phenotypes

All the phenotypes have the same dimensions: seven-by-seven-by-seven units. The size of the 
phenotypes were increased, with respect to the previous experiment series, to allow the use of 
six cell types while maintaining the required symmetry.

Development
All the experiments use the same development time of 17 ticks. The formula used to calculate 
the number of ticks is the same as in the previous experiment series - see chapter 10.1.1.
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11.2.3 Target phenotypes
Following is a graphical presentation of the 12 different phenotypes used as targets in these 
experiments (exploded view).

Zero Degrees of Symmetry (Blob)

Figure 11.1: Blob with two colours Figure 11.2: Blob with four colours Figure 11.3: Blob with six colours

One Degree of Symmetry (Airplane)

Figure  11.4:  Airplane  with  two 
colours

Figure  11.5:  Airplane  with  four  
colours

Figure  11.6:  Airplane  with  six 
colours

100



Two Degrees of Symmetry (Tree)

Figure 11.7: Tree with two colours Figure 11.8: Tree with four colours Figure 11.9: Tree with six colours

Three Degrees of Symmetry (Diamond)

Figure  11.10:  Diamond  with  two 
colours

Figure  11.11:  Diamond  with  four 
colours

Figure  11.12:  Diamond  with  six 
colours

11.3 Results
A significant amount of data is  generated with so many development experiments.  It was, 
therefore,  important  to  select  which data  should  be stored for  each experiment,  providing 
sufficient information to enable the analysis sought to be undertaken. The following data was 
used for this analysis: the final fitness of the best evolved individual in each repetition of each 
single experiment, along with the DNA used to construct it, and the best fitness score for each 
generation.

The final fitness was used to plot graphs to visualize the effect a parameter has on the achieved 
fitness.
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The DNA was used to determine the average number of don't  care neighbours in the best 
individuals. This was then used for comparison with the initial number of neighbours to see if 
any patterns appear.

The best fitness for each generation was used to analyse the genetic algorithm. Using this data 
it can be investigated how the evolution proceeds, making it possible too see, for example, 
whether it is likely that increasing the number of generations will result in higher fitness.

The parameters were analysed one by one. Because IDN and CHT are parameters that can be 
changed at will according to the wanted phenotype (which is specified by shape and colours), 
they was analysed first. After these two, DoS and finally NoC were analysed.

11.3.1 The Initial Number of Don't Care Neighbours
The first parameter to be investigated was the initial number of don't care neighbours (IDN) – 
see chapter 11.3.2. The allowed values for IDN ranges from zero to six. Experiments were run 
for IDN values of zero, two, four, five, and six. IDN values of one and three were left out of 
this series to save computation time as the results from the previous experiment series – see 
chapter 10, indicated that little information could be gained by including also these two values.

General effect
To find the general effect on fitness when changing the IDN, the data was plotted as a bar 
graph  with  standard  deviations  on  top.  The  data  was  obtained  using  the  highest  fitness 
achieved in every run, and for every experiment. This was then organized in such a way that 
the various values of IDN could be plotted with their  corresponding average and standard 
deviation values. The resulting graph – see figure  11.13, shows that the average of the best 
fitness is  higher  for  high values of  IDN than for low values,  and that  the average fitness 
increases with increasing IDN. The increase seems to be almost  linear.  The differences in 
fitness are relatively small, the lowest is 0,83 and the highest 0,91. With respect to this, the 
standard deviations are large, which makes it difficult to draw any valid statistical conclusions.

The  graph  gives  the  impression  that  there  exists  a  positive  correlation  between  IDN and 
fitness. The fact that the increase is almost linear indicates that the correlation is steady and 
robust.  To  test  this  impression  for  statistical  significance,  a  one-way  ANOVA test  was 
employed to compare group means. Two assumptions need to be fulfilled to perform such a 
test: the groups must both be normally distributed and have equal variance. The ANOVA test 
was chosen because it is robust to modest violations of these two assumptions. This robustness 
is  important  because the experiments  were only repeated 20 times each,  a  number that  is 
generally too small to fulfil these two assumptions.

The  results  obtained  from testing  the  data  at  a  95  % confidence  interval  strengthens  the 
hypothesis that there exists a positive correlation between fitness and IDN. It shows that there 
are indeed statistically significant differences among the group means. However, this does not 
mean that a positive correlation has been proven, only that changing IDN has an effect on 
fitness. The graph is used as a visual aid to get an idea of the direction of this effect.
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Figure 11.13: Fitness achieved using various values for IDN

According to the findings so far, the highest IDN should be chosen to achieve highest possible 
fitness.  Is  it  really  that  simple?  Not  necessarily.  Although  the  graph  seems  to  imply  this 
correlation,  and  the  ANOVA test  confirms  statistically  significant  differences  between  the 
group means, the standard deviations are relatively big and the correlations with the other three 
parameters  are  not  known.  This  means  that  there  might  be  other,  maybe  more  complex, 
correlations between IDN and fitness, given various values for the other parameters.

To get a clearer picture of the relationship between IDN and fitness, three more graphs were 
created, each showing this relationship given each of the other three parameters. To make the 
data easier to analyse visually, the graphs were plotted as dots with connecting lines, and the 
standard deviations were left out. As CHT is the most interesting of the three parameters, IDN 
is first analysed against this one, followed by DoS and NoC.

Initial Number of Don't Care Neighbours vs. Number of Chemical Types
The graph plotting IDN vs. CHT – see figure 11.14, indicates that when taking the number of 
chemical types into account, the relationship between IDN and fitness becomes more complex.

The curves for low values of CHT resembles a cut-out in the upper left corner of a bell-shaped 
curve. There is an increase in fitness for IDN values up to five, where it has its top, and then a 
decrease from five to six. The curve for one chemical type shows a small irregularity from this 
description at two IDN. For higher values of CHT, the curve resembles a sigmoid function 
(CHT=4), and an exponential function (CHT=8).
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For almost all values of CHT, there is a relatively rapid increase in fitness for some value of 
IDN. For low values of CHT, this rapid fitness increase appears for low values of IDN, but 
there seems to be an increase in the IDN required for this rapid fitness increase with increasing 
CHT.

Figure 11.14: Fitness achieved with various values for inital number of don't care  
neighbours (IDN) and number of chemical types (CHT)

Difficult to see in the above graph alone, but more evident when comparing an array of graphs 
where IDN vs. CHT is plotted for each of the values for NoC and DoS, is that the graph seems 
to resemble a bell-shaped curve which shifts right and left  with increasing and decreasing 
values of CHT – as illustrated in figure  11.15.  When looking at the fitness achieved with 
respect to IDN for a given combination of CHT, DoS and NoC, only a part of this hypothesised 
bell-shaped  curve comes into view – see figure  11.16. If this really is the case, the way to 
achieve the highest possible fitness will be to adjust the value for CHT so the top of the bell-
shaped curve comes into view (i.e. the top lies within zero-six IDN), and then choose the value 
for IDN where the top is.
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Figure 11.15: Shifting of the bell-shaped curve according to changes in the number  
of chemical types used
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Figure 11.16: Examples of graphs supporting the hypothesis of a bell-shaped curve

The investigation of graphs plotting  IDN vs. CHT for each value of NoC and DoS, showed no 
noteworthy deviations from the graph plotted using the averages.

Initial vs. Final Number of Don't Care Neighbours
So far it was shown, for the experiments performed, that when disregarding the values for 
CHT, NoC and DoS, fitness increases with IDN. This implies that using six IDN would be the 
best choice when these three parameters are unknown. However, this does not mean that taking 
the neighbourhood into account (i.e. when the number of don't cares is less than six) is a bad 
choice. There are two important reasons for this. First, the value of CHT can be set manually, 
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meaning this parameter need not be unknown. And, as has been shown, when CHTis taken into 
account the relationship between IDN and fitness becomes more complex, often leaving six 
IDN with less fitness than five IDN. Second, as IDN denotes the initial number, the number of 
actual don't care neighbours may well change during evolution. It might be the case that the 
optimal number of don't care neighbours lies below six, and that it is just easier for the genetic 
algorithm to evolve the correct neighbourhood when starting with many don't cares. 

To look into the possibility that the optimal number of Final Don't care Neighbours (FDN) is 
different from the optimum for IDN, the two variables were plotted as arrows, one for each 
different IDN. The starting point for the arrow is the IDN value, and the ending point is the 
average FDN for this IDN. The boxes represent the range (minimum and maximum values) of 
different FDN values evolved. This way to plot the data makes it easy to see both how big the 
change in number of don't care neighbours is, the direction of the change, and how much the 
FDN  varies.  The  latter  is  important  because  it  gives  an  impression  of  how  much  the 
evolutionary algorithm is able to vary the number of don't care neighbours given an IDN. The 
FDN  is  calculated  as  the  average  number  of  don't  care  neighbours  in  each  of  the  best 
individuals evolved.

As can be seen in figure  11.17,  the number of don't  care neighbours seems to be moving 
towards an overall optimum, which seems to lie just above four don't cares. For IDN values of 
four or less, the FDN is greater than IDN, and for IDN above four, smaller. Also, the further 
away from the assumed overall optimum the IDN is, the greater the change. The range of FDN 
is larger for low IDN's than for high ones, possibly suggesting that low values of IDN make it 
easier to evolve the best number of don't care neighbours. However, when looking closer at 0 
IDN it  becomes evident that the average is low, meaning only a few individuals evolves to 
have many don't care neighbours. Also, it was established that low values of IDN generally 
result  in  lower  fitness,  meaning  high  values  of  IDN  may  have  a  smaller  range  because 
increasing their range implies evolving less fit  individuals. Taken together with the finding 
that, on average, higher IDN results in higher fitness – see chapter 11.3.1, the hypothesis that 
low IDN makes the evolution easier doesn't seem plausible.
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Figure 11.17: Changes in the number of don't care neighbours from before (IDN) to  
after (FDN) evolution

So far it was found that the number of don't cares seems to move towards a global optimum. 
However, the plot uses averages and min-max values, making it difficult to see how the FDN 
is distributed. To get a better understanding of what is going on, it is useful to look at a visual 
representation of this distribution. When plotting the data as a histogram – see figure 11.18, it 
is easy to see that an FDN value of four or five (i.e. between 3,5 and 5,5) is the most frequent 
one with 30,75 % and 34,56 % of the occurrences respectively. They are both more than twice 
as frequent as the third-most frequent one (three FDN, occurring 12,97 %).
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Figure  11.18:  Histogram  showing  the  frequency  distribution  of  final  don't  care  
neighbours (FDN)

Plotting histograms of FDN distribution for specific DoS, NoC and CHT does not reveal any 
large deviation from this “collective” histogram. Some have the highest frequency for four 
FDN, while others have five FDN as the most frequent – see figures  11.19 and 11.20. What 
seems to be the main theme is that four and five FDN are the two most frequent ones.

Figure 11.19: Three DoS (Diamond) with four colours 
has four FDN as the most frequent one when not using  
any chemicals

Figure  11.20: Zero DoS (Blob) with four colours has  
five  FDN as  the  most  frequent  when  not  using  any  
chemicals
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However, some deviations do exists. Some plots have a bimodal distribution, others have a 
more even distribution, and for some the rise in frequency is almost linear with increasing 
FDN – see figures 11.21, 11.22 and 11.23 respectively. One explanation for the first deviation 
might be the values chosen for IDN in the experiments. No experiments where performed for 
one and three IDN. Low values of IDN generally results in low fitness, and it may be the case 
that because low fitness makes it difficult to guide the evolution in the correct direction, the 
genetic algorithm has a problem “evolving away” from two don't care neighbours. Also, zero 
and four IDN were found to move towards higher FDN. The even distribution was found in 
experiments which are typically difficult to evolve. This difficulty may mean that the search 
was more or less random, making the value of FDN unimportant; the fitness was bad even for 
high numbers of don't cares. The linear rise in frequency is harder to explain. It might be a sign 
of “good” evolution of the neighbourhood, meaning the evolutionary algorithm is able to freely 
evolve a good number of don't cares given the IDN, and that for the number of don't cares 
there is no threshold where the fitness suddenly gets much higher (like the ones seen in figure 
11.18).

The two latter were found only in a few experiments, and they don't deviate that much from 
the “collective” histogram, meaning they might well be no more than random fluctuations.

Figure  11.21: Bimodal distribution 
of  FDN found for  two DoS (Tree) 
with  six  colours,  using  four  
chemical types

Figure  11.22:  A,  to  some  extent,  
even distribution of FDN was found 
for  zero  DoS  (Blob)  with  six  
colours, using eight chemical types

Figure  11.23:  The  distribution  of  
FDN for two DoS (Tree)  with  two 
colours,  using two chemical  types,  
shows  a  close-to  linear  rise  in  
frequency with increasing FDN

Initial Number of Don't Care Neighbours vs. Degrees of Symmetry
When plotting IDN vs. DoS – see figure 11.24, the relationship between IDN and fitness also 
becomes more complex, although not in the same way as with IDN vs. CHT. Here it seems 
like  the value of  DoS has  an effect  on how important  IDN is  for  the fitness,  rather  than 
indicating what the optimal value for IDN is.

The graph shows an almost linear relationship between IDN and fitness for all values of DoS. 
The slope of the curve is pointing upward for all values, but the steepness of the slope is 
dependent  on  the  value  of  DoS.  For  one  to  three  DoS  the  slope  becomes  steeper  with 
increasing DoS, and the lines cross each other at two IDN. The line for zero DoS is somewhat 
special. Its slope has about the same steepness as the slope for three DoS, but the fitness values 
are much lower.
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All the lines are rising.  This indicates that increasing IDN has a positive effect on fitness 
regardless of the DoS, and that six IDN is the optimal value. The latter must not be taken as an 
absolute fact, as it was found above that the value of CHT has a great influence on which value 
of  IDN  is  the  optimal  one.  The  varying  degree  of  steepness  of  the  lines  indicates  how 
important the choice of IDN is for fitness, given the DoS. A steep slope indicates the choice of 
IDN has  a  big  influence  of  the  fitness,  while  a  more  moderate  slope  indicates  a  weaker 
influence. For this graph this means that for zero and three DoS, the choice of IDN will have a 
greater impact on the resulting fitness (max fitness gain: 0,13 and 0,10) than for two and one 
(max fitness gain: 0,06 and 0,03).

If disregarding the line for zero DoS, the graph also seems to indicate that increasing DoS 
increases the importance of the value of IDN. One reason for zero DoS to fall outside of this 
assumed pattern may be the shape chosen to represent zero DoS. This shape is essentially a 
cube,  embedded  with  small  cubes  here  and  there  to  make  it  asymmetric.  As  this  shape 
generally achieved low fitness in the experiments, it may be the case that the algorithm was 
never able to evolve a shape that was more than a cube. If this is so, then it would explain why 
the line for zero DoS resembles that of three DoS. After all, a cube is a shape with three DoS. 
This issue is given more attention in chapter 11.3.3.

Figure 11.24: Fitness achieved with various values for initial numbers of don't care  
neighbours (IDN) and degrees of symmetry (DoS)

Plotting IDN vs. DoS for each value of CHT and NoC (not shown), does not reveal much new 
information. For the various values of NoC, the relationship between IDN and fitness is still 
linear, giving the same visual impression as the IDN vs. DoS plot. For CHT, the lines are not 
linear, but they resemble the lines found when analysing IDN vs. CHT. This is as expected. 
What is interesting, however, is the change in IDN value for the crossing point between the 
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lines for one, two and three DoS. With increasing CHT, the crossing-point moves to higher 
IDN, and the same happens for increasing NoC. To give a good answer to what this could 
indicate is difficult. What both increasing CHT and NoC have in common is the fact that they 
make the evolution process more complicated. It seems like the slope of the line for one DoS 
remains unchanged, while two DoS becomes somewhat steeper with increasing CHT or NoC, 
and three DoS even more steep. At the same time all lines shifts downward to lower fitness. 
Three DoS has a bigger decrease in fitness than two DoS, and one DoS decreases the least. 
Taken together, this may indicate that the value for IDN becomes more and more important not 
only for increasing DoS, but also for increasing CHT or NoC.

Initial Number of Don't Care Neighbours vs. Number of Colours
To complete the picture we have been getting so far as to how IDN influences the system, IDN 
was plotted against fitness for various NoC – see figure 11.25. The graph shows three almost 
parallel lines. All lines are rising, and they are all close to being straight lines, except for each 
having a slight left-hook. The line for two colours deviates to some extent from the shape of 
four and six colours.

The fact that the lines run almost in parallel indicates that the number of colours used doesn't 
affect the complexity of the relationship between IDN and fitness much.

Figure 11.25: Fitness achieved with various values for initial number of don't care  
neighbours (IDN) and number of colours (NoC)

Plotting IDN vs. NoC for each value of CHT and DoS does, however, reveal that the picture is 
more complicated after all. Although the plots resemble the one using averages for most values 
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of  CHT and  DoS,  there  are  two  noticeable  deviations,  namely  when  plotted  using  four 
chemical types, and when using two degrees of symmetry.

The deviation found when using four chemical types is not that large – see figure 11.26, but it 
seems clear that different  numbers of colours leads to different  effects  on the relationship 
between IDN and fitness. While the lines for the three values of NoC have an almost constant 
distance between them when plotted using averages, this is not the case for four chemical 
types. In this plot the curve for two colours is close-to linear with a slight left hook, while the 
curves for four and six colours resemble a sigmoid function. For IDN values of four, five and 
six, two and four colours overlap, achieving almost equally high fitness.

What may have happened is that evolution was simply unable to achieve high enough fitness 
for two colours to match the steep increase in fitness from two to four IDN which occurred for 
four and six colours. This is based on the observation that for zero to two IDN all three lines 
are close-to parallel, but from two to four IDN, four and six colours have a steep increase in 
fitness which two colours fails to follow. For four to six IDN, they are all parallel again. Why 
is evolution able to achieve this steep increase in fitness for four and six colours, but not for 
two colours? As two colours achieves highest fitness regardless of IDN, it may be that with 
four and six colours and IDN values of zero and two it is just too difficult to evolve something 
good, but suddenly, when the search becomes easier (IDN values equal to or greater than four) 
fitness increases rapidly. Fewer colours should be easier to evolve so this explanation seems 
plausible.

Figure 11.26: Plotting IDN vs. NoC for four chemical types (CHT) reveals a minor  
deviation.
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The graph in figure 11.26 is a compound of results for DoS values of zero to three. This data 
can be broken down into graphs for each particular DoS. Two of these are shown in figures 
11.27 and  11.28. Zero and one DoS – see figure  11.27 (only one DoS is shown), have the 
expected sudden increase in fitness, but for two and three DoS – see figure 11.28 (only three 
DoS is shown), the line for two colours is almost flat and actually achieves lower fitness than 
four colours for some values of IDN. There is no obvious explanation why this happens, but it 
may be that getting the perfect shape of the organism is easier when more colours are used as 
this gives more detailed information about the neighbourhood of each cell.

Figure  11.27:  IDN vs.  NoC for  four  chemical  types  
(CHT)  and  one  degree  of  symmetry  (DoS)  doesn't  
exhibit the effect found when using the average of DoS

Figure  11.28:  Two  colours  actually  achieves  lower 
fitness than four colours for IDN values of four to six  
in IDN vs. NoC with four chemical types (CHT) and 
three degrees of symmetry (DoS) 

The graph for two DoS – see figure  11.29,  closely resembles the one using averages,  but 
deviates in that for five and six IDN the line for four colours lies below the one denoting six 
colours. This does not fit  well with any assumptions made about the system, and no good 
explanation has been found. One likely cause is that this is just a result of random fluctuations. 
Taken into account that the experiments were only run twenty times each, and the deviation is 
small, this seems to be the most plausible explanation.
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Figure 11.29: Six colours achieves higher fitness than four colours for IDN values 
of five and six in IDN vs. NoC for two degrees of symmetry (DoS)

Analysis  taking  the  number  of  colours  into  account  was  also  performed,  but  no  new 
complication for the IDN-fitness correlation was found so the results will not be presented 
here. Although deviations do exists that may suggest a more complicated relationship between 
IDN and fitness, these deviations are small and most probably a result of random fluctuations.

Summary
Investigation of the effect of changing the initial number of don't care neighbours revealed a 
positive  correlation  between  IDN  and  fitness  when  nothing  was  known  about  the  other 
parameters. Further, it was found that the value of CHT has a great impact on this correlation. 
For  certain  values  of  CHT the  correlation  is  not  always  positive.  This  means  that  when 
deciding the value of IDN, the value of CHT must also be taken into account. The degree of 
symmetry  also  has  an  impact  on  the  IDN-fitness  relationship  as  different  values  of  DoS 
changes the strength of this relationship. The number of colours did, however, not have such 
an impact. In general, with increasing NoC, the fitness achieved decreases, but the relationship 
between IDN and fitness remains more or less the same.

11.3.2 The Number of Chemical Types
The second parameter  to  be  investigated was the  number  of  chemical  types  (CHT)  –  see 
chapter  9.3. Unfortunately, problems similar to those described in chapter  11.3.1 occur also 
here. Achieving growth may be an increasing problem with increasingly many chemical types. 
This  is  because with  each extra  chemical  type it  becomes increasingly difficult  to  get  all 
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chemical  concentrations  above  their  given  thresholds.  The  increased  complexity  and 
possibilities of the development process with increasing CHT makes the search more random, 
implying a more difficult search. Additionally,  the search space is increased because of the 
extra parameters which need to evolve (one for each chemical type). This will lead to lower 
fitness score when all other parameters, like the number of generations to evolve, are held 
constant.

The value of CHT denotes the number of different chemical types used in the system. This 
number does not change during evolution, or even across different cells; if two chemical types 
are used, all proteins check the concentration of both these chemical types

The allowed values for CHT are all non-negative integers. CHT values of zero, one, two, four 
and eight was chosen to be used in this experiment series.

General effect
To find the general effect changing the value of CHT has on fitness, the data was plotted as a 
bar graph with standard deviations on top. The data was obtained using the highest fitness 
achieved in every run, and for every experiment. This was then organized in such a way that 
the various values of CHT could be plotted with their corresponding average and standard 
deviation.

The graph – see figure 11.30, shows that the average fitness is highest for low values of CHT 
and  lowest  for  high  values.  The  average  fitness  achieved  decreases  almost  linearly  with 
increasing CHT, with a high for zero CHT (0,90) and low for eight CHT (0,83). The standard 
deviation is relatively high for all values of CHT, but lower for low than high CHT. It increases 
from a low 0,08 at zero CHT to a high 0,11 at eight CHT. With respect to the range of average 
fitness  values,  the  standard  deviations  are  rather  large,  making  it  difficult  to  draw  any 
statistical conclusion.

The impression given by this graph is that there exists a negative correlation between CHT and 
fitness. The fact that the decrease is almost linear indicates that the correlation is steady and 
robust.  To  test  this  impression  for  statistical  significance,  a  one-way  ANOVA test  was 
employed  to  compare  group  means.  The  ANOVA test  was  chosen  for  reasons  previously 
discussed – see chapter 11.3.1.

The  results  obtained  from testing  the  data  at  a  95  % confidence  interval  strengthens  the 
assumption that there exists a negative correlation between fitness and CHT. It shows that 
there are indeed statistically significant differences among the group means. When performing 
a more thourough investigation, however, the test shows that the difference between group 
means for zero and one CHT is not statistically significant, as there is a 24 % chance they are 
actually equal. This is a relatively high chance, but that alone is not enough to invalidate the 
hypothesis that a negative correlation does exist. After all, the average fitness achieved for one 
CHT is lower than that for zero CHT, it is just not statistically significant lower.
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Figure 11.30: Fitness achieved using various numbers of chemical types (CHT)

According to the findings so far, the lowest CHT should be chosen to achieve highest possible 
fitness. As the lowest CHT value  is zero, which corresponds to the development not using the 
concept of chemicals at all, does this mean that including chemicals in the development system 
was  a  bad  choice?  To  answer  this  question,  a  more  thorough  analysis  is  necessary.  The 
standard deviations are relatively high, and the other three parameters are not known. This 
means there might be other,  maybe more complex,  correlations between CHT and fitness, 
given various values for the other parameters.

To get a clearer picture of the relationship between CHT and fitness, three more graphs were 
created, each showing this relationship given each of the other three parameters. A quick visual 
inspection  of  these  graphs  revealed  the  one  plotting  CHT for  each  IDN to  be  the  most 
interesting one. Therefore CHT vs. IDN was analysed first, followed by DoS and NoC.

Number of Chemical Types vs. Initial Number of Don't Care Neighbours
The graph plotting CHT vs. IDN – see figure 11.31, indicates that when taking the number of 
initial don't care neighbours into account, the relationship between the number of chemical 
types and fitness becomes more complex, just as it did for IDN when introducing CHT – see 
chapter 11.3.1.

For zero, four and five IDN the fitness is steadily decreasing with increasing CHT. The curve 
for zero IDN has a slight left-hook, while four and five IDN have a slight right-hook. Two and 
six IDN have an increase in fitness from zero to one CHT, followed by a decrease from one to 
eight CHT.
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IDN values of zero,  four an five do not reveal much new information on the relationship 
between CHT and fitness, they more or less show the same trend as was found in the bar graph 
of CHT, depicted in figure 11.30. For these values of IDN, not using chemicals at all seems to 
be  the  best  option,  as  using  chemicals  only leads  to  a  decrease  in  fitness,  and  the  more 
chemical types used, the worse the fitness achieved. Two and six IDN, on the other hand, show 
a  more  interesting  pattern.  In  these  two  cases  it  seems  like  including  chemicals  in  the 
development process has a positive effect on fitness. However, using too many chemical types 
has a negative effect on fitness; when using more than one chemical type, the fitness decreases 
with increasing CHT. Another thing to notice is the curve for six IDN being flatter (fitness 
range is only 0,03) than for the other four (next lowest fitness range is 0,06). This indicates 
that, relative to the other values of IDN,  using six IDN reduces the effect the value of CHT has 
on fitness.

The explanation for the peak at one CHT for six IDN is most likely as straight forward as this: 
When the neighbourhood is not used as a guideline for development, something else is needed. 
If no guidelines are present,  it would be very difficult to develop regular shapes, as opposed to 
just  a blob of cells.  It is not impossible, however, to develop regular shapes even without 
taking neighbourhood into consideration,  or by using chemicals;  by carefully selecting the 
proteins in the zygote (initial cell) basic shaping is possible. In addition, six IDN does not 
mean that neighbourhood is not taken into consideration, only that it is initially ignored in the 
evolution. But, as was seen in figure  11.17, six IDN on average results in about five don't 
cares. Even though five don't cares does give development some guiding, it is reasonable to 
assume this is not enough. It also seems reasonable that starting with just a hint of guiding (i.e. 
using one chemical type) will make it easier for evolution to evolve more fit individuals than 
with no guiding at all.

The peak displayed by two IDN at one CHT, is not as easy to explain. Using one-way ANOVA 
to test for statistical significant difference between group means for zero and one CHT, shows 
that the peak may actually be just a random fluctuation, as there is a 24,45 % chance there is 
no real difference between these two groups. Although the ANOVA test fails to confirm the 
visual impression of a peak at one CHT, a visualization of the data where CHT vs. IDN is 
plotted for each value of NoC and DoS, shows that this trend is present in roughly half of the 
plots, indicating this could be an interesting finding after all. The fact that a similar deviation 
was found in the graph plotting IDN vs CHT – see figure 11.14, strengthens the assumption of 
this as an interesting finding. It might be that the combination of two IDN and one CHT is a 
particularly powerful one, but with only the data obtained from these experiments it is difficult 
to  draw  any conclusions.  Further  investigation  into  this  issue  by  running  some  carefully 
planned experiments may be useful to get a deeper understanding of how the development 
system works.
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Figure 11.31: Fitness achieved using various numbers of chemical types (CHT) and  
initial number of don't care neighbours (IDN)

The lines for two and six IDN runs parallel for zero to one CHT. The values two and six are 
both roughly equally far apart from the optimum of just above four, which in chapter  11.3.1 
there was found support for being the optimal number of don't care. In addition to this, four 
and five IDN runs in parallel. This makes it tempting to hypothesize that two IDN could be 
parallel to six IDN for all values of CHT, if they were allowed to evolve for more generations. 
After all, increasing CHT increases the search space, and hence may require more generations 
to achieve good fitness. However, no support for this hypothesis was found when analysing the 
fitness during evolution for the best individual in each generation; all tested values of CHT 
shows the same pattern of fast increase in the beginning and then levelling off – see figure 
11.32.
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Figure  11.32: Change in fitness during evolution when using various numbers of  
chemical types (CHT)

Number of Chemical Types vs. Degrees of Symmetry
When plotting CHT vs. DoS – see figure 11.33, a graph strikingly similar to the one plotting 
IDN vs. DoS – see figure 11.24, appears. The main difference is that this one is a mirror image 
of the other, with sinking curves instead of rising ones. Thinking about it, this is not such a 
surprise,  as  both  the  value  of  CHT and  IDN have  an  effect  on  the  expressibility  of  the 
development system. The expressibility is in turn assumed to be in close connection to the 
degree  of  symmetry  of  the  target.  Of  course,  IDN  does  not  have  a  direct  effect  on  the 
expressibility, as any number of don't care neighbours may result from any given IDN. But 
FDN affects expressibility, and FDN is greatly influenced by IDN, as was shown in chapter 
11.3.1.

The figure shows four close-to linear lines, all monotonically decreasing. Three of the lines 
(one, two and three DoS) are clustered together in the upper half of the graph, while the last 
line (zero DoS) lies in the lower part of the graph, relatively far below the other three. The 
slope of the lines varies to some extent: the steepest slope is found in zero DoS, followed by 
three, two and one DoS, the latter being nearly flat.

As the achieved fitness itself is not of much interest in this analysis, the fact that zero DoS 
achieves so much lower fitness than the other three is irrelevant; it is the shape and the slope of 
the lines that are the interesting aspects. The fact that all the lines are almost linear indicates a 
steady and predictable relationship between CHT and fitness, regardless of DoS. The slope of 
the lines gives an indication of the strength of the relationship between CHT and fitness; the 
steeper the slope, the stronger the relationship. According to this graph, it seems that as the 
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degree of symmetry decreases, so does the strength of this relationship. One line, however, 
does not fit into this hypothesis; zero DoS has the steepest slope of them all. In chapter 11.3.1 
it was questioned whether the shape chosen to represent zero DoS really captured the essence 
of an asymmetric shape. It was also suggested that the shape chosen may actually be more like 
a shape with three DoS than one with zero DoS. If this is correct, the line for zero DoS may be 
disregarded  and  hence  the  hypothesis  that  the  relationship  between  CHT  and  fitness  is 
weakened with decreasing DoS, remains valid.

Figure 11.33: Fitness achieved using various numbers of chemical types (CHT) and  
degrees of symmetry (DoS)

CHT vs.  DoS was also plotted  for  each value  of  IDN and NoC to  investigate  closer  the 
components of the graph in figure 11.33. Looking first at the graphs for each IDN, the same 
shape of the curves occurs as in the plot showing CHT vs IDN – see figure 11.31. This is as 
expected,  and  indicates  that  the  shapes  of  the  curves,  as  found  in  CHT  vs  IDN,  is 
representative regardless of the value of DoS. Further, it is found that the curve for three DoS 
shifts upwards, and one DoS shifts downwards, relative to two DoS, with increasing IDN. This 
is an indication that, relative to two DoS, one DoS achieves higher fitness for low values of 
IDN, and three DoS achieves higher fitness for high values of IDN. When looking at CHT vs 
DoS for each value of NoC, the same shifting-pattern is found, only inverse; three DoS shifts 
down, and one DoS shifts up with increasing NoC. However, the effect is much less obvious in 
these plots. This shifting-effect is illustrated in figure 11.34.
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Figure  11.34:  The  shifting  of  one  and  three  DoS  relative  to  two  DoS,   with  
increasing IDN, and to some extent with decreasing NoC

When plotting CHT vs. DoS for each combination of IDN and NoC, it is found that the graphs 
plotting averages give a good impression of the underlying values. Some exceptions exist, like 
bimodal curves – see figure 11.35, curves with a peak at one or two CHT – see figure 11.36 
and  11.37, and plots where the curve order is upside-down – see figure  11.38. Testing the 
bimodal curves for statistical significance shows that the fitness values between the two peaks 
can not be said to be statistically lower than the fitness at the peaks. This indicates that the 
bimodal shape of the curves is most likely just a random fluctuation. The close-to flat curves 
indicate that changing the value of CHT has little effect on the fitness. A peak for one CHT is 
found in several  graphs,  and fits  well  with previous  findings – see figure  11.31.  The plot 
showing a peak for two CHT for zero DoS, in addition shows that four CHT achieves higher 
fitness that both zero and one CHT. This indicates that for zero DoS and the combination of 
five IDN and two NoC, more chemical types are better than few. However, the peak at two 
CHT is not significantly different from the fitness achieved for other values of CHT, so it may 
be no more than a random fluctuation. The upside-down ordering of the curves occurs for 
values of IDN and NoC that  makes it  particularly difficult  to  develop anything with high 
fitness (zero IDN and six  NoC).  Under these circumstances it  seems that  shapes of fewer 
degrees of symmetry are easier to evolve, as one DoS achieves the highest fitness for all values 
of CHT followed by two and three DoS. Zero DoS achieves the lowest fitness of all, but as 
earlier explained, the shape chosen for zero DoS may not actually represent zero degrees of 
symmetry very well, and hence may be disregarded.
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Figure 11.35: Bimodal curves found for zero, one and  
three DoS when plotting CHT vs. DoS for five IDN and 
four NoC

Figure  11.36: A peak at  one  CHT for  one,  two and 
three DoS was found when plotting CHT vs. DoS for  
zero IDN and two NoC

Figure  11.37: A peak at two CHT for zero DoS was  
found when plotting CHT vs. DoS for five IDN and two 
NoC

Figure  11.38: For CHT vs. DoS for zero IDN and six  
NoC, one DoS achieves highest fitness for all values of  
CHT followed by two, three and finally zero DoS

Number of Chemical Types vs. Number of Colours
As with CHT vs DoS, plotting CHT vs. NoC – see figure 11.39, results in a mirror image of 
the plot showing IDN vs. NoC – see figure  11.25. This is as expected, following a similar 
reasoning as the one used in chapter 11.3.2.

The figure shows three close-to linear lines, all monotonically decreasing, and with a more-or-
less equal distance from each other. The three lines runs in almost perfect parallel.

Since the three lines are parallel to each other, with equal distance between them, it seems like 
the effect of changing the number of colours is to shift the fitness a given amount up or down 
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with  decreasing  and  increasing  number  of  chemical  types.  It  seems  like  no  additional 
complexity in  the relationship between the number of chemical  types and fitness  emerges 
when changing the number of colours.

Figure 11.39: Fitness achieved using various numbers of chemical types (CHT) and  
number of colours (NoC)

Also when plotting CHT vs. NoC for each of IDN and DoS, the same pattern appears. For 
CHT vs. NoC with various values of IDN, some minor deviations are found. The shape of the 
curves are as expected when comparing to the plot of CHT vs. IDN – see figure  11.31, and 
they run more-or-less parallel to each other. However, for two IDN – see figure  11.40, the 
curves for two and four colours have a peak at one CHT while six colours has its peak at zero. 
The differences between the fitness at zero and one CHT for all values of NoC are too small to 
have statistical significance, so this minor deviation is not investigated further.
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Figure 11.40: Peak at one CHT for two and four NoC in combination with two IDN

For four, five and six IDN, a more interesting deviation appears – see figure 11.41. The curves 
for four and six NoC are as expected with respect to the analysis already performed. Two 
colours has a steeper slope, resulting in two and four colours achieving an almost equally high 
fitness at four CHT. This indicates that when using two colours, the effect on fitness when 
changing CHT is greater than with four or six colours for four, five and six IDN. There is no 
obvious explanation for this phenomenon, and the difference between two colours and four or 
six colours is not that large, indicating it is probably not significant. In addition, using few 
colours is an easier task for the genetic algorithm, which makes this finding a contradiction to 
the finding in chapter 11.3.2. There, it was found that the number of chemical types used has a 
greater  effect  on  fitness  when  evolving  a  more  complex  shape.  This  strengthens  the 
assumption of this being merely a random fluctuation.
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Figure 11.41: The curve for four NoC is not parallel to those of two and six NoC for  
five IDN

When investigating CHT vs. NoC for various values of DoS, no noteworthy deviations are 
found: they all highly resemble the plot of CHT vs. NoC using averages.

Although the plot of CHT vs. NoC using averages seems to be very representative for the data 
for specific parameter values, there are some interesting deviations. For the combination two 
DoS and two IDN, all  three values for NoC have a peak at  one CHT – see figure  11.42. 
However, the curves retain their properties from the average plot of being parallel and equally 
shaped. This indicates that for these parameter values, it  is not the number of colours that 
determines that one CHT is best, it is the combination of two DoS and two IDN.



Figure 11.42: The curves for all NoC have a peak at one CHT for the combination  
of two DoS (tree) and two IDN

For the parameter combination two DoS and five IDN, - see figure 11.43, the curves for four 
and six  colours  are  almost  on  top  of  each  other  while  two NoC seems to  be  completely 
unrelated the the others, starting high above at zero CHT, then going below at four CHT, and 
ending  a  little  above at  eight  CHT.  Two questions  arise  here:  why is  there  no  difference 
between four and six NoC? Why is the curve for two NoC so different from those of four and 
six?

The most plausible explanation for the first question is that the shape and placement of the 
colours, for four and six colours, makes it easy for both to achieve equally high fitness for five 
IDN. In other words; it is not as much a property of the development system, but of the fitness 
function used in the genetic algorithm that causes this to happen.

Thinking about it, the second question isn't that much of a mystery after all. The only thing that 
is out of place is the fitness achieved at four CHT. And a deviation at four CHT was also found 
in the investigation of CHT vs. NoC for each IDN. Keeping to what was found there, this can 
also be regarded as just a random fluctuation.

127



Figure 11.43: The curves for four and six NoC are almost indiscriminant from each 
other, and the curve for two NoC does not follow their pattern, for the combination  
of two DoS (tree) and five IDN.

For the combination of one DoS and four IDN  – see figure 11.44, a bimodal curve was found 
for two NoC. The fitness for two NoC decreases from zero to one CHT, then increases from 
one to two CHT where it reaches its peak, and then decreases from two to eight. Four NoC 
increases from  zero to one CHT, and then decreases, while six NoC decreases all the way 
from zero to  eight  CHT. The bimodal shape of the curve for two NoC is  not statistically 
significant. However, it is interesting to note that the highest fitness is found at decreasing 
CHT with increasing NoC. When few colours are used, the genetic algorithm may focus more 
on evolving the correct shape. This may be a small indication that chemicals are important for 
the shaping of the organism.
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Figure 11.44: Different peaks for different values of NoC, for the combination of one  
DOS (airplane) and four IDN

Summary
The investigation of the effect changing the number of chemical types (CHT) has on fitness, 
showed that, when disregarding other parameters, there exists a negative correlation between 
CHT and fitness. When taking other parameters into account, it was found that the relationship 
is not all that simple. For certain values of initial numbers of don't care neighbours (IDN) the 
correlation is not always negative, meaning the highest fitness is not always achieved when not 
using any chemical types. Because of this, it is important that the value of IDN is taken into 
account when deciding the value to use for CHT. The degree of symmetry (DoS) also has an 
impact on the relationship between CHT and fitness:  Different values of DoS changes the 
strength of  this  relationship,  and some support  for  the hypothesis  that  the strength  of  the 
relationship between CHT and fitness increases with increasing symmetry, was found. The 
number  of  colours  (NoC)  did,  however,  not  have  such  an  impact  on  this  relationship.  In 
general,  with increasing NoC, the fitness achieved decreases,  but  the relationship between 
CHT and fitness remains more or less the same.

11.3.3 The Degree of Symmetry
The third parameter to be investigated was the degree of symmetry (DoS) of the target shape. 
Because of the way the development system is built to work, it is plausible to assume that the 
degree  of  symmetry  in  the  target  will  have  an  effect  on  how easy  it  is  to  develop.  The 
symmetry of  a  shape  is  divided into  four  categories:  zero,  one,  two and three  degrees  of 
symmetry. A shape has three degrees of symmetry if  it is symmetric in all three dimensions 
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right-left, top-bottom, and front-back. An example of such a shape is a diamond. A shape is 
considered to be of two degrees of symmetry if it is symmetric in two of these dimensions, and 
of one degree of symmetry if symmetric in only one dimension. Shapes which are completely 
asymmetric fall into the last category, zero degrees of symmetry.

The biggest problem when testing this parameter was to find a representative shape for each of 
the four categories. After some consideration, the choice fell on the following four shapes: a 
blob, an airplane, a tree, and a diamond, for zero, one, two and three DoS respectively.

Because of the way the fitness function evaluates the phenotype, and because of the specific 
shapes chosen, a direct comparison of the fitness for each of the four values of DoS would be 
misleading. Even if two shapes achieve equally high fitness, it  doesn't mean they resemble 
their respective target equally much. This is, however, not regarded as a big problem, as a 
direct comparison of the fitness is not that interesting anyway.

The blob chosen to represent zero DoS may have been a bad choice, as it turns out. Because it 
essentially is a cube, which is symmetric in three dimensions, embedded with small blobs, it is 
likely to be treated as a shape with three DoS by the fitness function. This happens because the 
shape is greatly dominated by the cube shape, and if the cube is developed the shape will be 
assigned high fitness even if the blobs are in the wrong place. This is supported by the findings 
that zero DoS achieves comparable fitness with three DoS – see 11.3.1 and 11.3.2. Because of 
this, the results obtained for zero DoS will be given less attention than the results from the 
other three.

General effect
To find the general effect changing DoS has on fitness, the data was plotted as a bar graph with 
standard deviations on top.

The graph – see figure 11.45, shows that the average fitness achieved is lowest for zero DoS 
(asymmetric), then increasing with increasing DoS with the highest average fitness achieved 
for three DoS. The difference in fitness between zero DoS (0,74) and the other three (0,92 – 
0,93) is noteworthy. Also, the standard deviations display relatively large variations, from 0,02 
at one DoS to 0,09 at zero DoS.

The impression given by this graph is that there exists a positive correlation between DoS and 
fitness. But the relationship is far from linear, indicating the relationship is probably not a 
straightforward one. This is as expected, because of the way the fitness function evaluates the 
fitness of a shape, as discussed in chapter 11.3.3.

Even though a direct comparison of the fitness will most likely be misleading, it is interesting 
do  test  for  statistically  significant  differences,  as  this  could  give  some  hints  about  the 
relationship between DoS and fitness. Once again, a one-way ANOVA test were employed to 
test for statistical significance. The ANOVA test was chosen for reasons previously discussed – 
see chapter 11.3.1.
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At a 95% confidence interval, it was shown that both zero and three DoS are significantly 
different  from all the others, while one and two DoS are so close to each other that it cannot 
be ruled out their fitness is actually equal.

Figure  11.45.:  Fitness  achieved  with  various  degrees  of  symmetry  (DoS)  in  the 
target

To get more comparable fitness values, the fitness for each of the best evolved phenotypes 
were recalculated using a fitness function which reduces the unfair differences in fitness based 
on the size of the target (the number of cells in the target). The fitness function used during the 
evolution  compares  each  point  in  the  target  with  the  corresponding  point  in  the  evolved 
phenotype.  Fitness  increases  with  each  matching  point.  This  approach assigns  phenotypes 
which are compared to small targets with relatively higher fitness than to those compared to 
bigger targets.

The fitness function used to rescale fitness based on the size on the target, on the other hand, 
counts both how many correct non-cell points and how many correct points containing a cell 
there are. This makes the fitness less dependent on the number of cells in the target.

As can be seen in figure 11.46, the rescaled fitness is to some extent very different from the 
“normal” fitness – see figure 11.45. Now the fitness score for one DoS is the lowest one, while 
zero DoS is slightly lower than two DoS. Also, there is a bigger and more linear increase in 
fitness from one DoS to tree DoS compared to figure 11.45. The fact that the fitness achieved 
for zero DoS is higher than that for one DoS, fits well with the assumption made previously 
that  the  blob  used  to  represent   zero  DoS  actually  resembles  a  shape  of  tree  DoS.  An 
explanation for the relatively low fitness for the blob compared to tree DoS, may be that if it 
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really is evolving as a cube, then the failure to evolve the blobs embedded in the cube will 
results in a loss of fitness.

Figure  11.46.:  Fitness  achieved  with  various  degrees  of  symmetry  (DoS)  in  the 
target when the fitness is rescaled to be more comparable

Even though the rescaled fitness values seem to fit better with previous findings, and make the 
fitness more comparable, it is important to remember that the fitness function used to get these 
values  is  not  the  same  as  the  one  used  by  the  genetic  algorithm  during  evolution.  The 
following analysis will only make use of the fitness values obtained using the “normal” fitness 
function.

According to the findings so far, the development system will perform better when evolving 
and developing a symmetrical target than a more asymmetric one. However, the relationship 
appears to be complex, and it is hoped that looking at the data with fixed values of the other 
three parameter will give a deeper understanding of this relationship. In addition, the question 
of wether the shapes used in the experiments represent the various degrees of symmetry good 
enough, still remains.

The graphs where DoS is plotted against each of the other three parameters resemble each 
other to a great extent. A quick visual inspection of each of them shows that none of them 
seem more interesting than the others, Therefore, the same pattern of analysis as in previous 
investigations will be applied. DoS vs. initial number of don't care neighbours (IDN) will be 
analysed first,  followed by DoS vs. number of chemical types (CHT), and finally DoS vs. 
number of colours (NoC).
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Degrees of Symmetry vs. Initial Number of Don't Care Neighbours
The graph plotting DoS vs. IDN – see figure 11.47, does not display any large deviations from 
the bar graph – see figure 11.45. All values of IDN have an increase in fitness from zero DoS 
to one DoS, followed by a small increase from one to two DoS for four, five and six IDN, and 
a small decrease for zero and two IDN. Finally, from two to tree DoS, there is a bigger increase 
for all value of IDN except zero, which has a further slight decrease. This graph also gives a 
good representation of the variance seen in figure 11.45, with smallest variance at one DoS, 
increasing variance up to three DoS, and the biggest variance at zero DoS.

The coherence between the standard deviations in  figure  11.45 and the variance in fitness 
achieved for the different values of IDN makes it plausible to assume that most of the variance 
can be accounted for when looking at the value of IDN. The differences between the fitness 
achieved at one DoS is relatively small (only 0,03), indicating that for this value of DoS the 
value chosen for IDN doesn't have much effect. For two and three DoS, the differences are 
greater, indicating the value of IDN has a greater effect. This could be an indication that with 
increasing symmetry the value of IDN becomes more and more important. However, for zero 
DoS this hypothesis doesn't hold: here the differences is even bigger than for three DoS. But, 
as discussed in chapter  11.3.3, this could be because the blob chosen to represent zero DoS 
actually is evaluated as a shape with three degrees of symmetry by the fitness function.

Figure 11.47.: Fitness achieved with various degrees of symmetry (DoS) and intial  
number of don't care neighbours (IDN)
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Degrees of Symmetry vs. Number of Chemical Types
The graph showing  DoS vs. CHT – see figure 11.48, is highly similar to the one showing DoS 
vs. IDN – see figure 11.47. Here too the lines seem to originate from more or less the same 
spot at one DoS, and spread out in both directions.

This graph can therefore be interpreted analogously to the one of DoS vs. IDN. It seems that 
the importance of the CHT value increases with increasing DoS. Here too the exception is for 
zero DoS, which looks more like three DoS.

Taken together with the findings in chapter 11.3.3 it seems plausible to believe that the reason 
for the small differences in fitness at one DoS, is that this shape is harder to develop, making 
the effect of changing the value of CHT and IDN almost insignificant.

Figure 11.48: Fitness achieved with various degrees of symmetry (DoS) and number 
of chemical types (CHT)

Degrees of Symmetry vs. Number of Colours
Also the graph showing  DoS vs. NoC – see figure 11.49, is highly similar to both DoS vs. 
IDN and DoS vs. CHT – see figure 11.47 and 11.48. Once again the lines seem to originate 
from more or less the same spot at one DoS, and spread out in both directions. However, the 
spreading is less pronounced here than in the two other graphs.

Here also, it seems that the importance of the NoC value increases with increasing DoS, with 
the exception of zero DoS.
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The hypothesis made above, that the shape for one DoS is harder to develop, seems to apply 
here also, although these three lines run more in parallel compared to the other two graphs.

Figure 11.49: Fitness achieved with various degrees of symmetry (DoS) and number 
of colours (NoC)

Summary
The investigation of how well the development system is at developing (and evolving) shapes 
with different  degrees of symmetry, indicated a positive correlation between the degree of 
symmetry and fitness when disregarding other parameters.  Because a direct  comparison of 
fitness may be misleading, both because of the way the fitness function calculates the fitness 
and because the choice of shapes to represent each degree of symmetry is questionable, one 
must be careful not to put too much meaning into these findings. Although both this and the 
increasing differences between fitness with increasing degrees of symmetry seem to support 
the hypothesis that the development system is better at developing symmetrical shapes, a more 
extensive experiment must be performed on this subject before any conclusions may be drawn.

11.3.4 Number of Colours
The fourth, and final, parameter to be investigated was the number of colours (NoC) used in 
the target organism. What the value of NoC actually denotes is the number of different cell 
types that may be present in the organism. However, as all that separates the different cell 
types, at least in the experiments performed in this thesis, is the colour of the cell, it is just as 
correct and also more convenient to discuss it as colours.
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Changing the number of cell types ArtDev3D uses changes the search space. This is because 
increasing/decreasing the number of cell types increases/decreases the number of bits required 
to represent the parameter for cell type. As an increase in search space results in lower fitness 
score when all other parameters are held constant, an decrease in fitness with increasing NoC 
are to be expected.

A choice was made to run experiments with two, four and six NoC. As the number of colours 
was expected to only have a minor effect on the fitness, this was deemed enough to get an idea 
of its effect on fitness.

General effect
To find the general effect changing NoC has on fitness, the data was plotted as a bar graph 
with standard deviations on top. The data were obtained using the highest fitness achieved in 
every run, and for every experiment. This was then organized in such a way that the various 
values of NoC could be plotted with their corresponding average and standard deviation.

The graph – see figure 11.50, shows that the highest average fitness is achieved at two NoC. 
The fitness then decreases with increasing NoC, and the lowest average fitness is achieved at 
six NoC. The decrease in fitness with increasing NoC seems to be almost linear. However, as 
the graph lines are only made up of three data points, care must be taken not to put to much 
importance into this observation.

The impression given by the graph is that there exists a negative correlation between NoC and 
fitness.  Because  the  decrease  is  almost  linear,  this  indicates  the  correlation  is  steady and 
robust.  To  test  this  impression  for  statistical  significance,  a  one-way  ANOVA test  were 
employed  to  compare  group  means.  The  ANOVA test  were  chosen  for  reasons  already 
discussed – see chapter 11.3.1.

The  results  obtained  from  testing  the  data  at  95  %  confidence  interval  strengthens  the 
hypothesis that there exists a negative correlation between fitness and NoC. The test shows 
that there are indeed statistically significant differences among the group means. However, this 
does not mean that a negative correlation has been proven, only that changing NoC has an 
effect on fitness. The graph is used as a visual aid to get an idea of the direction of this effect.
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Figure 11.50: Average fitness achieved with standard deviations for various number  
of colours (NoC) in the target phenotype

As was done with the previous parameters, this one was also plotted against the other three to 
check for underlying relationships. The same pattern of analysis as before was applied: NoC 
vs. IDN will be analysed first, followed by NoC vs. CHT, and finally NoC vs. DoS.

Number of Colours vs. Initial Number of Don't Care Neighbours
The plot  of  NoC vs.  IDN –  see  figure  11.51,  shows how the  effect  of  changing NoC is 
dependent on the value of IDN. All lines are nearly linear, except for zero IDN which has a 
slight left hook. The steepness of the slope of the lines seems to decrease with increasing IDN 
and, at the same time, the lines shift upwards. This indicates that with increasing IDN, the 
effect on fitness when changing NoC becomes smaller and, when NoC is held constant, the 
achieved fitness increases. The latter is the same effect as was found in chapter 11.3.1.

The former of these two effects fits well with the previous finding that,  in general,  fitness 
increases  with  increasing  IDN –  see chapter  11.3.1.  This  was hypothesised to  be  because 
increasing IDN led to an easier search for evolution, and  increasing NoC complicates the 
search, because it increases the search space. It is expected that further complicating a complex 
search will  lead to  greater loss  in  fitness.  The slight  left  hook at  zero IDN is  difficult  to 
explain, but is most likely just a random fluctuation.
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Figure  11.51: Fitness achieved with various number of colours (NoC) and initial  
number of don't care neighbours (IDN)

Number of Colours vs. Number of Chemical Types
The plot  of  NoC vs.  CHT – see figure  11.52,  shows how the effect  of  changing NoC is 
dependent on the value of CHT.

In this plot as well, all the lines are nearly linear and shift downwards with increasing CHT. 
However, in this graph the lines are more parallel  compared to NoC vs.  IDN – see figure 
11.51. 

This indicates that changing the value of CHT only has a minor impact on the effect changing 
NoC has on fitness. Also, it seems like the fitness achieved decreases with increasing CHT 
regardless of NoC.

The latter is the same effect as was found in chapter  11.3.2. It is interesting to note that the 
change in impact for NoC on fitness found in chapter  11.3.4 is not seen in this graph. As 
increasing CHT also makes the search more complicated, the same effect should be expected 
to appear here. Why it does not is unclear, and more experiments are required to find a good 
answer to this issue. The data from the experiments performed seems to indicate that IDN and 
CHT actually play different roles in the development of organisms with various NoC.
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Figure 11.52: Fitness achieved with various number of colours (NoC) and number 
of chemical types (CHT)

Number of Colours vs. Degrees of Symmetry
The plot of NoC vs. DoS – see figure 11.53, shows how the effect on fitness when changing 
NoC is dependent on the value of DoS.

Once again, all the lines are close-to linear. As opposed to figure 11.51 and figure 11.52, all the 
lines here are not running neatly separated; the lines for one and two DoS cross between four 
and six NoC. For reasons discussed in chapter  11.3.3, zero DoS may be viewed as a special 
case, and therefore disregarded. So, if disregarding zero DoS, which has the steepest slope of 
them all, the steepness of the slopes increases with increasing DoS.

As  discussed  in  chapter  11.3.4,  further  complicating  an  already  complicated  search  will 
normally lead to a lower fitness score. However, it was hypothesised in chapter 11.3.3, that as 
high values of DoS achieve higher fitness than low values of DoS, increasing DoS must make 
either the search or the development easier. If respecting the hypothesis made in chapter 11.3.4, 
that is, increasing the complexity of the search will lead to a steeper slope, this means that the 
search actually has to get more difficult  with increasing DoS. This in turn means that the 
development process must be at least correspondingly more fit to develop shapes with higher 
DoS to counter this. This is an interesting finding, and a deeper investigation into this issue, 
requiring new experiments to be performed, should be conducted.

While it might apear significant, the fact that the lines for one and two DoS cross each other is 
actually not an issue, as this happens because the slope of the line for two DoS is steeper than 
that of one DoS, and the distance between them is so small.
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Figure 11.53: Fitness achieved with various number of colours (NoC) and degrees 
of symmetry (DoS)

Summary
The investigation  of  how well  ArtDev3D is  at  developing  (and evolving)  organisms  with 
different  number  of  colours,  indicated the existence of  a  negative correlation  between the 
number of colours and fitness, when disregarding all other parameters. This is as expected, as 
increasing the number of colours also increases the search space, and hence should result in 
lower fitness score. Investigating the impact the value of the other three parameters had on 
NoC's effect on fitness, indicated that the relationship between NoC and fitness was almost 
independent of their values. This, together with the the fact that all the lines are close-to linear, 
indicates that the relationship is steady and robust. However, as only three different values of 
NoC were tested, one should be careful not to overinterpret the meaning of the lines being 
linear.

11.4 Conclusion
To find the general effect of changing one of the parameters on fitness, the data were plotted as 
bar graphs with standard deviations. The graphs were then investigated for changes in fitness 
with changing values for the parameters in question. Both the direction of the change and the 
regularity of change from one value to the next were taken into account, together with the 
standard deviations. It was found that both the initial number of don't care neighbours (IDN) 
and the degree of symmetry (DoS) had a positive correlation with fitness. On the other hand, it 
was also found that the number of chemical types (CHT) and the number of colours (NoC) had 
a negative correlation with fitness.
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Further investigation, where the values of the other parameters were also taken into account, 
showed that these findings may have been an oversimplified explanation of the relationship. 
There exists  combinations of parameter values where, for the parameter in question,  other 
values than the expected ones were optimal (with respect to the general correlations found). In 
particular, there seemed to be great interdependency between IDN and CHT.
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Part IV – Conclusion and Future Work





12 Conclusion
A novel artificial development system, ArtDev3D, was presented in this thesis. A number of 
the mechanisms appearing in biological development were modelled while, at the same time, 
making sure the system did not become too complex to be useful in practice.

The initial testing of ArtDev3D showed that the system was capable of developing both simple 
and more advanced three dimensional shapes. The development of simple shapes showed that 
the system is capable of handle the mechanism of growth, while the more advanced shapes, 
showed that the system additionally can handle both cell differentiation and morphogenesis.

Further experiments went on to investigate the effect of the system's parameters and their inter-
relationship.  Through  these  experiments  it  was  both  shown that  the  system is  capable  of 
developing a number of different three dimensional shapes, like a tree or a sphere, and that 
tweaking the systems parameters may have great influence on the systems ability to develop a 
given shape.

The final experiments investigated in more detail the effect of changing certain parameters of 
the system. Four parameters were chosen:  the initial  number of don't  care neighbours,  the 
number of chemical types (both part of the precondition for a protein), the number of available 
colours (cell types) to the system, and the degree of symmetry of the target phenotype. When 
concentrating  on  one  parameter  at  a  time,  the  results  indicate  that  a  more  stringent 
precondition (more chemical types, or less initial don't care neighbours) for the proteins makes 
it difficult for the system to evolve a good solution, at least for the more regularly shaped 
targets. For the more irregular shapes the results were inconclusive, indicating a more stringent 
precondition may be required to develop these targets. Also, it was found that an increase in 
the number of colours available to the system decreases its ability too develop good solutions, 
with some few exceptions. Finally,  the results indicate that using a shape with higher degree 
of symmetry has a positive effect on the system's ability to develop good solutions. However, 
when  looking  at  the  inter-relationship  between  the  parameters,  it  was  found  that  this 
correlation between each of these parameters and fitness was too simple. In particular, there 
seemed to be great interdependency between the initial number of don't care neighbours and 
the number of chemical types.

The lack of a set of standard tasks usable for benchmarking development systems is a serious 
problem in  the  field  of  artificial  development,  making  it  difficult  to  compare  the  various 
approaches. This issue was already pointed out in [STAN03] and [ROGG04], and suggestions 
for a suitable set of tasks have been proposed. These suggestions have, however, to date not 
been established as a standard.

The novel artificial development model proposed in this thesis has through the experiments 
performed so far shown itself as a potential supplement to other current models. ArtDev3D 
seems to have a great potential, but further investigation is needed before its real value can be 
established.
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13 Future work
Several issues were not investigated in this thesis because of the time constraint. While it was 
shown  through  experiments  that  ArtDev3D  was  capable  of  developing  a  set  of  different 
shapes,  and  some  tweaking  with  the  system's  parameters  was  performed  to  get  a  deeper 
understanding of the system, the systems scalability, effectiveness, robustness and evolvability 
were not investigated.

The scalability of ArtDev3D can be investigated by using as targets phenotypes having varying 
size and degree of complexity. A comparison of the relationships between the relative size of 
the genotype according to its corresponding phenotype for each target will give an idea of the 
systems scaling behaviour.

The effectiveness of the system can be established through a comparison with other known 
approaches. This comparison should be performed using target phenotypes having a wide array 
of different representation sizes. This is advisable because as the development process infers 
some computational overhead, ArtDev3D is likely to be outperformed when tested with small 
phenotypes even if it proves itself to be more effective than the alternatives when tested with 
larger phenotypes. 

Robustness  towards  abrupt  changes  in  the  phenotype  is  a  desired  feature  in  an  artificial 
development system, as discussed in  2.3. Achieving this feature was not considered a goal 
when designing ArtDev3D, but as support  for this being an emergent property of artificial 
development  systems  has  been  found  [FEDE05b],  it  is  interesting  to  investigate  whether 
ArtDev3D possesses this feature. Robustness can be tested for by deleting a number of cells in 
the developing organism at a given stage in the development process and analyse the organism 
when  it  reaches  maturity  for  differences  compared  to  a  normally  developed  organism 
containing the same genome.

Combining  an  evolutionary  algorithm  and  an  artificial  development  process,  introduces 
problems regarding evolvability. This is because introducing the development process moves 
the  genotype  space  further  away  from  the  solution  space,  leading  to  a  rougher  fitness 
landscape, and hence a more difficult search. This discrepancy between genotype space and 
solution space means, for example, that a small change in genotype space may result in a large 
change in the solution space. Different methods may be applied to increase the evolvability of 
ArtDev3D,  like  tweaking  the  parameters  of  the  genetic  algorithm  to  increase  population 
diversity. Another method, suggested in [FEDE04], is to separate the development process into 
several distinct stages, where development at each stage is controlled by a different genome.
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