
June 2006
Torbjørn Skramstad, IDI
Lillian Røstad, IDI
Erlend Oftedal, Bekk Consulting As

Master of Science in Computer Science
Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Framework Support for Web
Application Security

Leif Ødegård

Problem Description
There is currently a number of rather well-known security pitfalls when developing web
applications. Current technologies offer little or no support for avoiding these pitfalls, which
results in need for acute attention to these matters from programmers. The project will consist of
the following:
-Create an overview of the most common web security pitfalls and discuss the architectual
patterns from which these arise.
-Discuss how and to what degree relevant web application frameworks address these pitfalls.
-Give an overview of and evaluate existing initiatives to add framework support for such pitfalls.
-Suggest how support for avoiding these security pitfalls could be added to relevant frameworks.
The project should at least address Java EE (Enterprise Edition) based frameworks, but possibly
also Microsoft .NET, PHP, or Ruby on Rails.
Oppgaven utføres i samarbeid med Bekk Consulting AS.

Assignment given: 20. January 2006
Supervisor: Torbjørn Skramstad, IDI

ABSTRACT

There are several good reasons to use a framework when you are developing a new
web application. We often here that:

• frameworks use known patterns that result in an easily extendable architec-
ture

• frameworks result in loose couplings between different modules in the appli-
cation

• frameworks allow developer to concentrate on business logic instead of rein-
venting wheels that is already reinvented several times

• frameworks are often thoroughly tested and contains less bugs than custom
solutions

But security is rarely mentioned in this setting. Our main motivation in this thesis is
therefore to discuss what three popular web application frameworks do to improve
the overall security level.

In this thesis we have chosen to research Spring, Struts and JavaServer Faces.
We use them to develop small applications and test whether they are vulnerable
to different types of attacks or not. We focus on attacks involving metacharacters
such that SQL-injection and cross-site scripting, but also security pitfalls connected
to access control and error handling.

We have found out that all three frameworks do implement some metacharac-
ter handling. Since Spring tries to fill the role of a full-stack application frame-
work, it provides some SQL metacharacter handling to avoid SQL-injections, but
we have identified some implementation weaknesses that may lead to vulnerabil-
ities. Cross-site scripting problems are handled in both Spring, Struts, and JSF by
HTML-encoding as long as custom RenderKits are not introduced in JSF.

When it comes to access control, the framework support is somewhat limited.
They do support a role-based access control model, but this is not sufficient in
applications where domain object access is connected to users rather than roles.
To improve the access control in Struts applications, we provide an overall access
control design that is based on Aspect-Oriented Programming and integrates with
standard Struts config files. Hopefully, this design is generic enough to suit several
application’s needs, but also useable to developers such that it results in a more
secure access control containing less bugs than custom solutions.

i

ii

PREFACE

This report is the result of thesis work performed during the spring semester 2006
by one student at Norwegian University of Science and Technology, Department of
Computer and Information Science. The project was initiated by Erlend Oftedal
who works at Bekk Consulting AS.

I would like to thank my teaching supervisors, Erlend Oftedal and Lillian Røstad,
for their continuous support and constructive criticism throughout the project pe-
riod.

iii

iv

CONTENTS

1 Introduction 1
1.1 Motivation . 1
1.2 Goals . 2
1.3 Scope . 2
1.4 Software used throughout this thesis 3
1.5 Report outline . 3

2 Web security pitfalls 5
2.1 Input . 5

2.1.1 What is input? . 5
2.1.2 What is input validation? . 5
2.1.3 Client side validation . 6
2.1.4 Server side validation . 6
2.1.5 Why input validation is not enough 7

2.2 Meta-character problems . 7
2.2.1 Metacharacters . 7
2.2.2 SQL-injection . 8

2.2.2.1 The problem . 8
2.2.2.2 A metacharacter problem? 10

2.2.3 Cross-site scripting . 10
2.2.3.1 The problem . 10
2.2.3.2 Stealing a session 11
2.2.3.3 A metacharacter problem? 12

2.3 Other threats . 12
2.3.1 Weak authentication . 12
2.3.2 Access control . 13
2.3.3 Leaking information to the user 13

2.4 How to handle metacharacters? . 14
2.4.1 Avoiding SQL-injection . 14

2.4.1.1 Using prepared statements 14
2.4.1.2 Handle each metacharacter manually 14

2.4.2 Avoiding Cross-site scripting 15
2.4.3 Avoiding metacharacter problems in general 15

2.5 Handling other threats . 15
2.6 Summary . 16

3 Web application frameworks 17
3.1 What is a framework? . 17
3.2 MVC/Model 2 . 17
3.3 Spring . 18

3.3.1 Spring architecture . 19
3.3.2 Inversion of Control . 20
3.3.3 Aspect-Oriented Programming 23

3.4 Struts . 26
3.4.1 Struts Model . 26
3.4.2 Struts View . 27
3.4.3 Struts Controller . 28

3.5 JavaServer Faces . 30

v

3.5.1 Components, components and components 31
3.5.2 Event management . 31
3.5.3 Navigation . 32

3.5.3.1 Static navigation . 32
3.5.3.2 Dynamic navigation 33

3.5.4 Backing beans . 33
3.5.5 Request processing . 34

3.5.5.1 Restore view . 34
3.5.5.2 Apply request values 35
3.5.5.3 Process validations 35
3.5.5.4 Update model values 36
3.5.5.5 Invoke application 36
3.5.5.6 Render response . 36

3.6 Summary . 36

4 Spring Security 37
4.1 Error handling . 37
4.2 Security in Spring modules . 37

4.2.1 Spring DAO . 38
4.2.1.1 Exceptions . 38
4.2.1.2 Spring’s JdbcTemplate 38

4.2.2 Spring MVC . 39
4.2.2.1 Requests in Spring MVC 40
4.2.2.2 View layer and security 42
4.2.2.3 Validating form input 42

4.3 Acegi Security System . 45
4.3.1 Security Interceptors . 45
4.3.2 Authentication . 47
4.3.3 Access control . 47

4.4 Summary . 48

5 Struts Security 49
5.1 Error handling . 49
5.2 Struts Model . 49
5.3 Struts View . 49
5.4 Struts Controller . 50
5.5 Input validation . 50
5.6 Access control . 51

5.6.1 Access control in Actions and JSPs 52
5.6.2 Extending the RequestProcessor 52
5.6.3 Access control through Servlet filtering 52

5.7 Summary . 53

6 JavaServer Faces Security 55
6.1 Error handling . 55
6.2 Metacharacter handling . 55
6.3 Input validation . 56
6.4 Authentication . 57
6.5 Access control . 57
6.6 JSF Security initiatives . 58

6.6.1 JSF-Security . 58
6.6.2 JSF-Comp . 59

6.7 Summary . 60

vi

7 Struts ACL extension 61
7.1 Case: Internet banking application 61
7.2 Framework extension requirements 62
7.3 Why Struts? . 62
7.4 Aspect-oriented access control in Struts 63

7.4.1 Framework abstractions . 64
7.4.2 ACL management . 65
7.4.3 Struts ACL advantages . 65
7.4.4 Struts ACL disadvantages . 66

7.5 Summary . 66

8 Conclusion 67

9 Future work 69
9.1 Prototype(s) . 69
9.2 JSF customization/generalization . 69
9.3 Investigate more pitfalls . 69
9.4 Research more frameworks . 70

A Form source 71

B Register user source 73

C Cookie page source 75

D Steal session source 79

E Prepared statement source 81

F MySQL and JDBC 85
F.1 General security measures . 85
F.2 Semicolon as metacharacter . 85

Acronyms 87

Glossary 91

Bibliography 93

vii

viii

LIST OF FIGURES

2.1 Java EE overall architecture . 8
2.2 Handling metacharacters when they leave the application code . . . 16

3.1 The Model 2 pattern . 18
3.2 Spring architecture . 19
3.3 JSF request processing . 35

4.1 Acegi Security Interception Filters . 46

7.1 ACL architecture overview . 63

ix

x

LIST OF LISTINGS

2.1 request.getParameter() . 9
2.2 Login query . 9
2.3 Bypassing the password check . 9
2.4 Injecting a DELETE query . 10
3.1 MovieLister . 20
3.2 MovieLister using the IoC pattern . 22
3.3 Wiring Spring beans . 23
3.4 LogMovieAdvice . 24
3.5 Wiring a logging aspect into our application 25
3.6 web.xml for a simple Struts application 28
3.7 struts-config.xml for a simple Struts application 29
3.8 Navigation case when using static navigation 32
3.9 Navigation case when using dynamic navigation 33
3.10 Declaring a backing bean as a managed bean in faces-config.xml . . . 33
3.11 JSP accessing an AuthenticationBean 35
4.1 web.xml for a Spring application . 40
4.2 Simple Spring config file . 40
4.3 UserValidator . 43
5.1 Catching global exceptions in a secure manner 49
5.2 validation.xml for loginForm . 50
6.1 Web container access control . 57
6.2 Web container access control . 59
6.3 Authorization component provided by Acegi-JSF 60
7.1 Extended Struts configuration . 64
A.1 Login form . 71
B.1 Register a new user . 73
C.1 Page creating a cookie . 75
D.1 Saving the stolen session information 79
E.1 Using a prepared statement . 81

xi

xii

LIST OF TABLES

6.1 JSF-Security variable expressions [63] 58

xiii

xiv

CHAPTER1
INTRODUCTION

This chapter serves as a general introduction to this thesis. We provide sections dis-
cussing our motivation, the research goals and scope and an outline of the chapters
in this report.

1.1 MOTIVATION

In traditional software applications, vulnerabilities is a well-known term. We often
hear that attacks like buffer overflows, format string attacks, command injections,
etc. may result in execution of arbitrary code. However, there are some addi-
tional groups of vulnerabilities connected to web applications. SQL-injections and
cross-site scripting are terms describing common security vulnerabilities in these
applications.

To avoid introducing vulnerabilities when developing new web applications, it
seems like a good idea to use some kind of framework that is providing suitable
abstractions. This approach has several advantages over developing every web ap-
plication from scratch:

• Using a framework often leads to a more loose coupling between the compo-
nents in the system.

• A framework often recognizes typical programming tasks and provides generic
solutions to these tasks.

• Frameworks are often tested by more developers than custom solutions. This
lowers the number of bugs per line of source code.

• A framework may implement generic security functionality such that devel-
oper may focus on the business logic. This approach supports the security
principle known as “Secure by default”.

Based on these statements, our main motivation for this thesis is to get an under-
standing of the security functionality implemented by web application frameworks.
Some of the questions we want to find answers to are:

• Are there any framework security measures?

• Are they enabled by default?

• How can we use frameworks to improve the security level?

• Can we develop custom framework extensions to improve web application
security?

1

1.2 GOALS

In addition to the scope description in section 1.3, our task specifies at set of goals.
We have chosen to rewrite these goals with some modifications, to restrict the num-
ber of pitfalls, frameworks, etc. we are concentrating on. The goals are:

• Discuss security pitfalls found in web applications and in which architectural
patterns they occur.

• Discuss architectural patterns used in three popular Java-based frameworks
(Struts, Spring and JavaServer Faces (JSF))

• Discuss if and to what degree these three frameworks implement functionality
that may help the programmer to avoid typical security pitfalls.

• Suggest how the security may be improved in at least one of the discussed
frameworks.

1.3 SCOPE

Because of this project’s limited amount of resources, we think it is important to
point out the key topics clearly, but also mention those we will pass over in silence.

First of all, we have chosen to focus on server side Java web application frame-
works. This means that client-side web applications based on Java Applets [36],
Microsoft ActiveX Controls [9] and JavaScript [72] are defined to be out of our
scope. This is an important restriction, but it is not enough. [38] mentions tens of
existing frameworks that still matches this project’s criteria. Some of them are:

• Struts

• Turbine

• Tapestry

• WebWork

• Cocoon

• Spring

• Maverick

• Echo

• JavaServer Faces

• Stripes

Based on Bekk Consulting’s wishes and general popularity among Java web appli-
cation developers (see e.g. [64]), we have decided to concentrate on Struts, Spring
and JavaServer Faces.

The last point we will comment on in this section is communication link security
(e.g. cryptographic primitives). We do not consider flaws in the crypto software to
be relevant in this thesis because we focus on flaws in the application layer and
they may be exploited even if the communication link is encrypted at the IP- and
transport layer and the firewalls are securely installed.

2

1.4 SOFTWARE USED THROUGHOUT THIS THESIS

To get an understanding of how our three chosen web application frameworks pro-
cess web browser requests, we have used them to develop small examples through-
out the thesis. To get these examples up and running, we needed different software:

• Acegi-JSF components 1.1.2 [62]

• Acegi Security System 1.0.0-RC2 [42]

• Apache Tomcat 5.5.16 [18]

• JSF-Security 1.0 [63]

• MyFaces 1.1.2 [16]

• MySQL 5.5.21 [4]

• Spring Framework 1.2.5 [74]

• Struts Action Framework 1.2.9 [17]

Even if there are several JSF implementations available (e.g. Sun JSF Reference
Implementation [53], Oracle ADF Faces [11]), we chose to use the Apache My-
Faces implementation because of its business friendly license and some quite useful
extensions that is not part of the official specification.

1.5 REPORT OUTLINE

• Chapter 1 – Introduction
This chapter provides a general introduction our project, containing motiva-
tion, goals, scope and a report outline.

• Chapter 2 – Web security pitfalls
This chapter discusses common security pitfalls found in web applications.

• Chapter 3 – Web application frameworks
In this chapter we will discuss Spring, Struts and JavaServer Faces in some
detail. We will focus on their architecture and how they use different design
patterns.

• Chapter 4 – Spring security
This chapter discusses to what degree web applications developed using Spring
are vulnerable to the security pitfalls discussed in chapter 2.

• Chapter 5 – Struts security
This chapter discusses to what degree web applications developed using Struts
are vulnerable to the security pitfalls discussed in chapter 2.

• Chapter 6 – JavaServer Faces security
This chapter discusses to what degree web applications developed using JavaServer
Faces (JSF) are vulnerable to the security pitfalls discussed in chapter 2.

• Chapter 7 – Struts ACL extension
In this chapter we focus on the limited support for Access Control List (ACL)s
in Struts. We use an Internet banking service to illustrate our points, and
provide an overall design of a Struts ACL extension.

3

• Chapter 8 – Conclusion
This chapter provides a summary of our findings and lessons learned through-
out the project.

• Chapter 9 – Future work
The last chapter outlines future work related to this project.

4

CHAPTER2
WEB SECURITY PITFALLS

In this chapter we will discuss several groups of security pitfalls found in today’s
web applications. It includes problems like the well-known SQL-injection problem
and cross-site scripting, but other problems are also mentioned. We will try to
focus on the real causes of these problems, and this often means bad metacharacter
handling. This chapter is inspired by the work of Sverre H. Huseby [29, 31] and
the pitfalls discussed in [23, 65].

2.1 INPUT

Input is an essential part in all the web applications we know today. If web users
were not allowed to enter input, the applications seem quite useless. In this section
we will discuss the role input plays in web applications, the differences between
client side- and server side input validation and why input validation alone is not
enough to enforce a secure operation.

2.1.1 What is input?

In web applications, we usually think of input as the text that we type into Hyper-
Text Markup Language (HTML) form elements like text fields, text areas, password
fields, etc. This is true, but we should remember that there are at least three other
sources to input as well:

1. Data from form elements like radio buttons, drop-down and check boxes and
hidden fields.

2. HyperText Transfer Protocol (HTTP) headers and cookies

3. Backend databases or other software systems

The important point is that we know and understand all the sources of input such
that no dangerous data is allowed to leave our web application.

2.1.2 What is input validation?

Validating input is about ensuring that the input given to our application belongs
to the correct domain (e.g. an integer) and within the range accepted by the appli-
cation code (e.g. >= 0 and < 99). Different domains requires different validation.
Some the domains are:

• E-mail addresses

• Account numbers (e.g. in Internet banking services)

5

• Country codes

• Postal codes

• URLs

• Phone numbers

• Credit card numbers

• Usernames

• Real names

• Year of birth

We do not think of input validation as a way to enforce security by disallowing
input that may threat our application. Instead we think that validation is important
to ensure that our web application behaves as expected. If we allow the user to
input whatever he/she would like to without any validation at all, we risk that
the user may be able trick our application into making wrong decisions. This may
compromise the security of the application completely.

2.1.3 Client side validation

The most common way to validate input at the client side often means using some
kind of web browser scripting language (e.g. JavaScript). The input may be val-
idated as the user enters it or a JavaScript function may be called when the user
presses a submit button. No data is passed from the web browser to the web server
before the input is accepted by the script.

Unfortunately, client side validation does not contribute to web application secu-
rity at all. An attacker may easily bypass this validation by saving the file to his/her
hard drive and then using the HTML comment tags (<!– –>) or, by using a proxy
application (e.g. PenProxy, [30]) to change the input given to the web server after
the client side validation has taken place.

Client side input validation may be a good technique to use when creating easy-
to-use interfaces because a script may guide the user through the form fill-in pro-
cess, but all the validation related to security should be placed on the server-side.

2.1.4 Server side validation

Server side input validation is required if want keep our web applications out of
an attacker’s hands. Regular expressions are often used to limit the set of accepted
input. There are at least two ways to use these expressions:

Whitelisting
When using whitelisting, we develop regular expressions that describes what
input our application should accept. If the strings, integers, etc. given by
the user matches our expression(s), we accept it and some business logic is
executed.

Blacklisting
In blacklisting we try to identify the set of dangerous strings, integers, etc.
that may trick our application and develop regular expressions suiting these
situations. If the user input match these expressions, we reject them. Other-
wise, they are accepted.

6

We usually prefer using whitelisting in input validation routines because there are
usually, almost impossible to identify all expressions that may defeat our web ap-
plication. A creative attacker may use different character encodings and other tech-
niques to bypass our input validation.

Server side validation do contribute to application security because there is no
way for an attacker to bypass this validation without gaining access to the source
code on the server itself. If he/she already has gained such access, he/she would
probably spend his/her time on executing more harmful attacks than bypassing the
input validation.

2.1.5 Why input validation is not enough

It is not trivial to understand why input validation all by itself is not enough to
prevent web applications from being vulnerable to attacks. The root of the problem
is that all software applications usually define a set of characters that have special
meaning to them. For instance does the character ’ in Structured Query Language
(SQL) mean that we are switching to or from a context that is accepting a plain
text string. As we do not want to disallow names like “Chloe O’Brian” in our web
application, we need to handle these special characters at some level. We will
discuss the security implications of metacharacters in the following sections.

2.2 META-CHARACTER PROBLEMS

SQL-injection and cross-site scripting are both well-known terms in web application
security. These are discussed in details in section 2.2.2 and 2.2.3, respectively. A lot
of security experts claim that these flaws occur when the input from the user is not
validated properly, but is it really so? And what is a metacharacter?

2.2.1 Metacharacters

A metacharacter is defined by [29] as

. . . a character that is not treated as plain text by the receiver. The
metacharacters represents control information.

One of the classical metacharacter vulnerabilities occur when a web application
calls command line system tools. Classes and functions in several major web pro-
gramming languages (e.g. Java, PHP, Perl) provide this functionality. These func-
tions themselves are not unsafe, but they may be vulnerable to attacks if unfiltered
user input is just concatenated with the rest of the command.

To illustrate the dangers of calling GNU/Linux shell utilities, let us assume that
we are developing a web application which uses lpr to do some printing. The
command executed by the application is:

lpr -PMainPrinter $file

where MainPrinter represents a printer name and $file is user-specified variable
indicating the file name of the file that should be printed. If we assume the there is
no validation or filtering implemented, this code represents several risks:

• If a user may specify $file without restrictions, there is a trivial task to get
hands on copy of /etc/passwd which contains information about registered
users and possibly an encrypted version of their passwords.

7

• If lpr is running with root privileges and an attacker is able to inject some-
thing like:

testFile.pdf; rm -rf /;

into $file, every piece of stored data on the mounted filesystems is erased.

This last example fits exactly with our metacharacter definition. Semicolon is
treated as an end-of-command character in a GNU/Linux shell and the attacker
is able to add a new and more damaging command. The attacker forces a context
switch within the shell environment by injecting a metacharacter. But what hap-
pens if a user is capable of injecting metacharacters and thus switching contexts in
a SQL-statement?

2.2.2 SQL-injection

SQL-injection means to inject SQL-statements into web applications, but possible
also other software. In the rest of this section we will discuss how this is possible
through some examples and then, why SQL-injection problems may be classified as
metacharacter problems.

2.2.2.1 The problem

To make a piece of software worth using, it needs to do some data processing.
As discussed in section 2.1, input to an application may come from quite differ-
ent sources. Usually, we have an architecture consisting of a user interface, some
business logic and a data store (e.g. DBMS). This is shown in figure 2.1.

Figure 2.1: Java EE overall architecture

This architecture is found a lot a web applications as well. The user interface
often consists of several HTML pages viewed in a web browser and input is accepted
through HTML forms [71]. The HTML code for a simple login form is given in
appendix A.

When a form is submitted, all the input given by the user (text fields, text areas,
radio buttons, drop-down lists etc.), is represented as strings in the request for the

8

page specified in action attribute of the form tag1. A sample request may look like
the following:

http://localhost:8080/form.jsp?
username=leifode
&password=seCretPassWord
&submit=Submit

Then, when the requested page is about to render, the programmer may use the
getParameter() method of the request object to access the submitted data. This is
shown in listing 2.1.

Listing 2.1: request.getParameter()� �
1 <%
2 Str ing username = reques t . getParameter (” username ”) ;
3 Str ing password = reques t . getParameter (” password ”) ;
4

5 i f (username != n u l l && password != n u l l)
6 {
7 Str ing sqlQuery = ”SELECT ∗ user s WHERE username=’ ”+

username+” ’ AND password=’ ”+password+” ’ ” ;
8 out . p r i n t l n (” Execut ing query . . . : < br/>”) ;
9 out . p r i n t l n (sqlQuery) ;

10 }
11 %>� �

This listing also displays an SQL-query that is about to executed. Let us say that a
user without bad intentions enter leifode and seCreTpaSsword as username and
password, respectively. Then the query given in listing 2.2, is executed.

Listing 2.2: Login query� �
1 SELECT ∗ FROM user s WHERE username= ’ l e i f o d e ’ AND password= ’

seCreTpaSsword ’� �
The user is considered authenticated if the returned ResultSet contains a single row.

Now consider an attacker entering

leifode’ --

as username and leaving the password text field empty. Since the user input is only
concatenated with the rest of the query, we get the following:

Listing 2.3: Bypassing the password check� �
1 SELECT ∗ FROM user s WHERE username= ’ l e i f o d e ’ −− ’ AND

password = ’ ’ ;� �
This query returns a ResultSet containing a single row because the hyphens have
a special meaning in MySQL. Like the ’#’ character they indicate a comment to the
end of the line [1]. The password condition is simply commented out. Sadly, this is
only the beginning. . .

If we assume that we have a JSP similar to the one given in appendix B, more
destructive attacks are possible. Assume that an attacker enters a username like:

1 This is not necessary correct. The form fields are only represented as a part of the URL as long
as the method attribute of the form tag is set to GET. If we set the method attribute to POST, the data
entered by the user is not append to the Uniform Resource Locator (URL).

According to several comments (e.g. [41]) it is not correct to use GET in this particular example, but
we do it to clarify our examples.

9

leifode’,’seCreTpaSsword’); DELETE FROM users; #

Then, the query given in listing 2.4, is executed.

Listing 2.4: Injecting a DELETE query� �
1 INSERT INTO user s (username , password) VALUES (’ l e i f o d e ’ , ’

seCreTpaSsword ’) ; DELETE FROM user s ; # ’ , ’ ’)� �
This query may delete the contents of any table in the database and we may even
reformulate it using the DROP command of MySQL [2] to remove the table from
database2.

2.2.2.2 A metacharacter problem?

Definitely. This is quite clear if we look back to the metacharacter definition given
in section 2.2 and at listing 2.3 and 2.4.

In listing 2.3, two hyphens are used to bypass the password condition of the
query. This is possible because these hyphens represent a piece of control informa-
tion in MySQL (e.g. the rest of the line is treated as a comment).

Listing 2.4 uses a couple of other MySQL metacharacters. Some apostrophes
are used to control which parts of the of input that should be treated as strings
and which parts that should be considered as control information. The semicolons
indicate the end of each query and a ’#’ at the end of the input ensures that the rest
of the line is commented out.

These two examples show only a few metacharacters found in MySQL and the
problems related to them. They also illustrate how important it is to handle the
metacharacters properly to ensure a secure operation.

In the next section we will look at another pitfall found in various web appli-
cations, namely cross-site scripting. We will look into the root of the problem and
then connect cross-site scripting back to the discussion in section 2.2.1.

2.2.3 Cross-site scripting

Cross-site scripting is another pitfall related to web applications and it is often men-
tioned together with SQL-injections. The reasons for this may not be obvious, but
we will try to make it clear throughout this section. We will use a couple of exam-
ples to illustrate our points.

2.2.3.1 The problem

As stated by [31], cross-site scripting is

. . . about tricking a web server into presenting malicious HTML code,
typically script code, to a user. The intention is often to steal session
information, and thus to be able to contact the site on behalf of the
victim.

You may recognize that this is almost the same problem as SQL-injection except
that the cross-site scripting problems occur when data leave the application code
and enter a web browser whereas SQL-injection issues occur when data enter a
database system. We are talking about two variants of the same problem and that is
most of the explanation why these pitfalls are mentioned in the same paragraphs.

2Actually, MySQL AB has incorporated some piece of security both in their Java Database Connectivity
(JDBC) driver and database itself. More details on these topics is found in appendix F.

10

When looking for web sites vulnerable to cross-site scripting attacks, the first
thing to do is to locate a HTML form which accepts user input and a page that
shows the inputted data. In the following we continue to use the examples found
in appendix A and B.

If we assume that a malicious user inputs

leifode<script>alert("CrAckinG ThAh PaGe!")</script>

as username and

seCreTPassWoRD

as password on the page called registeruser.jsp. The he/she access the page
where the details are printed (e.g. loginform.jsp) to check whether there is a mes-
sage box popping up showing the string ”CrAckinG ThAh PaGe!”.

If the message box is displayed, the web site is vulnerable to cross-site scripting
attacks because the web browser executed our script. Based on this knowledge, the
attacker may continue the attack and inject more complicated scripts that e.g. steal
session information.

2.2.3.2 Stealing a session

The first half of this section discusses what a session is and why an attacker want
to get access to a user’s session identifier. The last part uses a complete example to
show the steps in a session stealing attack. The example is a somewhat extended
version of an example found in [31].

To understand why we want to steal an HyperText Transfer Protocol (HTTP)
session, we need some basic understanding of HTTP [33, 34], and what a session
is. HTTP is a protocol used by web browsers (e.g. Firefox [10]) to access web pages,
images and other files found on a web server (e.g. Apache HTTP Server[15]). This
protocol is stateless which means that the server does not save any information
about which web pages that was accessed in the past. The client passes only a
request to the server and the server returns the requested resource if it exists and is
accessible.

To maintain state information between requests, HTTP sessions were intro-
duced. A HTTP session is a collection of variables saved on the server side, identified
by a non-guessable session identifier. Each time a client access the web server, it
also passes the session identifier. The server validates the identifier and uses the
saved session information if the identifier is valid (e.g. not expired or invalidated).
If an attacker is able to guess or get the session identifier, he or she may impersonate
the user and access the web page on behalf of the user. If the vulnerable applica-
tion is a web shop where credit card information is stored, we all understand the
consequences.

Let us use a concrete example to illustrate our points. Suppose that we have
the cross-site scripting vulnerable page given in appendix C. Each user entering this
page is associated with a session identifier and some other information. This page
is just a “dummy” page accepting comments. In real life this could have been a
web shop allowing the users to comment on the products they have bought. Every-
thing works well if comments like “A product worth buying ” and “Do not buy this
product!” are inputted. But what happens if a cracker enters something like:

<script>
if(document.cookie.indexOf("stolen") < 0)
{

document.cookie = "stolen=true";
document.location.replace(

11

"http://localhost:8080/cookie/stealsession.jsp?what="
+document.cookie
+"&whatnext=http://localhost:8080/cookie/cookiepage.jsp")

}
</script>

To understand the intention of the cracker, we need to understand some simple
lines of JavaScript. The script operations are:

1. Check whether the cookie connected to the current user is already stolen. If
it is, do nothing. Otherwise continue to the next JavaScript operation.

2. Add a small piece of information (e.g. stolen=true) to the cookie to ensure
that we are not entering an infinite redirection loop.

3. Then replace the current page, with a page on a server controlled by the
attacker and post both the user cookie and the address of the page to which
we will return after the session identifier hijacking.

So, each time a new user accesses this page, he/she is redirected to a file (e.g.
stealsession.jsp found in appendix D) on a server controlled by the attacker. The op-
eration of this JavaServer Page (JSP) script is quite simple, it only saves the posted
session information before redirecting the user back the original page. By installing
this stolen information in his/her browser, the attacker may be able to impersonate
a user and the misuse available personal data (e.g. credit card information).

Stealing session information is only one possible attack that uses the cross-site
scripting techniques. [31] explains some other attacks, but like all other software
attacks they are only limited by the creativity of the attacker.

2.2.3.3 A metacharacter problem?

Absolutely. However, the characteristics of cross-site scripting problems are some-
what different than the characteristics of SQL-injections. While SQL-injections oc-
cur when metacharacters enter a database subsystem, the cross-site scripting prob-
lems begin when HTML metacharacters enter a browser. There is a quite elegant
solution to cross-site scripting problems in general, that is discussed in section 2.4.

2.3 OTHER THREATS

Even if metacharacter problems form a large set of web application vulnerabilities,
there are other problem worth mentioning as well. In this section we will focus on
weak authentication routines, access control flaws, and what the dangers of leaking
too much information are.

2.3.1 Weak authentication

Weak authentication is major threat to web application security. Custom authentica-
tion services often fail to identify all the treats that they face. If there is a single bug
in the authentication that allows an attacker to bypass e.g. a password condition,
the authentication is useless. There is also an underlying assumption in access con-
trol mechanisms that blindly trusts the authenticated subject. If the authentication
fails, so does the access control.

Authentication in web applications today often means an HTML form requiring
a username and a password. To keep this authentication as secure as possible,
several precautions should be taken:

12

Use Secure Sockets Layer (SSL)
If Secure Sockets Layer (SSL) is enabled before any password is submitted, no
attacker can gain access to a plain text password by listening to the commu-
nication channel.

Do not store passwords in plain text
No password should ever be stored in plain text. If there is a vulnerability in
the application that allows an attacker to print out stored data, it would be
an easy task to compromise the authentication procedure. It makes sense to
practice defense in depth, even when we are storing password.

Use password requirements
To reduce the likelihood of dictionary attacks, it is good practice to imple-
ment password restrictions. This means that we should reject passwords e.g.
shorter that six characters, not containing at least two upper-case ones.

2.3.2 Access control

A failing access control is almost as bad as a failing authentication. We know who
the user is, but is not able to deny or grant access based on this information. There
are at least a couple of well-known access control schemes:

• Role-based access control

• Access Control Lists (ACLs)

Role-based access control is the simplest model of these two and flaws are some-
what less likely to occur when it is used instead of Access Control List (ACL). Each
user is assigned to one or more roles and access is granted if this role is allowed to
access the requested resource. Otherwise, it is denied.

There are some threats related to role-based access control:

• A user is assigned to a wrong role, possibly an administrator role.

• The access control fails such that a user is granted access to an object that is
usually protected.

ACLs are slightly more complex because they require more configuration than
roles. For each object, an ACL lists users and their permissions. However, the threats
are the same as the ones we listed in the previous paragraph, but their likelihood is
somewhat larger.

2.3.3 Leaking information to the user

Leaking information imposes a significant threat in all sorts of situations and not
only in web applications. Suppose that a security guard should be giving up alarms
codes and other security routines that a bank uses to all his/her friends, just because
he/she wants to point out how important his/her job is. It would be a fairly easy
job for a thief to get his/her hands on this information to compromise the security
systems and rob the bank.

We find this situation in web applications too. If our application fails, we should
not return complete stack traces to the user. First of all, this does not make any
sense to users other than developers or attackers. To make our web application user
friendly, a message describing the problem should be returned. The second point
is that printing the stack traces give away a lot of information about the internal
structures of the system that may be used to identify weak points.

13

2.4 HOW TO HANDLE METACHARACTERS?

After a couple of sections demonstrating the power of metacharacters, it seems quite
clear that these characters need special treatment. In this section we will discuss
several ways to remove their magic.

2.4.1 Avoiding SQL-injection

As discussed in section 2.2.2, the SQL-injection problem occurs when the data is
leaving the application code and entering a database. This means that we need
to handle the metacharacters before they are used by the Database Management
System (DBMS). There are at least two different solutions to this problem:

1. Using PreparedStatements

2. Handle each metacharacter manually

2.4.1.1 Using prepared statements

To avoid SQL-injections, the easiest solution is to use a construction called Prepared-
Statement. According to the Java Application Programming Interface (API) docu-
mentation [35], a PreparedStatement is an

. . . object that represents a precompiled SQL statement. This object can
then be used to efficiently execute this statement multiple times.

But how does this ensure that all SQL-injection attempts are avoided? Let us look
at the example given in appendix E.

In this example we create a PreparedStatement object that contains our SQL-
query. We insert placeholders (e.g. ’?’) where we want to append user input later
on. This object now represents the control information of the query. Then, to
include the data given the user in the query, we use the setters (e.g. setString(int
parameterIndex, String string)) of the PreparedStatement object. By using such
an object we have separated the control information and the user data, and any
SQL metacharacter (e.g. ’;’) given by the user will always be treated as just plain
text by the database system.

2.4.1.2 Handle each metacharacter manually

Instead of using PreparedStatement, we may choose or be forced to handle the
metacharacters of a system manually. This is the case if

1. We are using a programming language that does not support PreparedStatements

2. We are talking to a database that does not support PreparedStatements

First of all, we need to read the documentation thoroughly through to identify
all the metacharacters used by the system we are sending our data to. Then, we
have to develop a strategy to handle every single one of them. This does usually
mean some kind of escaping. However, we recommend that PreparedStatements
are always used when they are available because it is quite easy to forget only a
single metacharacter unhandled, leaving the application vulnerable to attackers.

14

2.4.2 Avoiding Cross-site scripting

In the same way as SQL-injections (section 2.2.2), cross-site scripting problems
occur when user input leaves the web application code and enter another software
subsystem. This time, the problem is not related to DBMSs and SQL-queries, but
to web browsers accepting scripts. However, the solution to the problem is more
or less the same as the one we discussed in section 2.4.1.2. We have to identify
all the metacharacters used by the web browser and then escape them somehow to
remove their “magic”. In HTML this escaping is called HTML encoding.

[31] sketches a quite simple algorithm for HTML encoding:

1. Map every occurrence of & to &.

2. Then replace every " with ".

3. Then every < with <.

4. And finally replace every > with >.

It ensures that all the HTML- or scripting code given by the user is only represented
as plain text and nothing more by the web browser. If we want to allow our users
to format their input by using a restricted set of HTML tags, selective filtering is
possible. Sverre H. Huseby writes more about this in [31].

2.4.3 Avoiding metacharacter problems in general

Metacharacter problems are closely related to software systems that use metachar-
acters. Earlier in this chapter, we have discussed two types of such problems - SQL-
injections and cross-site scripting problems - and how they should be handled. But
what do we do if our web application accesses a subsystem that defines a custom
set of metacharacters?

Based on [31]’s elaborations on metacharacter handling we suggest the follow-
ing approach:

1. Identify all metacharacters that the system uses. The system manual may be
a good place to start.

2. Then for each metacharacter:

(a) Escape it if it makes sense as a plain character

(b) Otherwise remove it.

As we illustrate in figure 2.2, this algorithm should be run every time data is passed
from our application to a subsystem to avoid metacharacter problems.

2.5 HANDLING OTHER THREATS

Handling weak authentication, access control and information leaks is somewhat
more difficult than dealing with metacharacters. They form limited sets that may
be identified and escaped properly. Detecting weak authentication procedures is
not that straightforward.

[65] discusses several attacks (e.g. replay attacks, persistent logins)towards
authentication and access control functionality and suggest how a developer may
implement PHP functionality to counter these treats. These principles are not
language-specific and may be used in Java web applications as well. However, the

15

Figure 2.2: Handling metacharacters when they leave the application code

best solution to these problems is probably to develop and use well tested authen-
tication and access control features implemented by web application frameworks.
These modules tend to contain less bugs and be more secure than custom solutions.

Leaking information is another fuzzy threat, but it can easily be countered by
web application frameworks if they dump stack traces to log files instead of in
browser windows. However, it should be possible to override this setting because it
could lead to more efficient development.

2.6 SUMMARY

In this chapter we have discussed several security pitfalls found in web applica-
tions through both explanations and examples. We have focused on metacharacter
problems like SQL-injections and cross-site scripting problems, but also weak au-
thentication, bad access control and information leaks. The last couple of sections
concentrate on how these problems may be solved, or at least reduced.

16

CHAPTER3
WEB APPLICATION FRAMEWORKS

In this chapter we will discuss what a framework is, and how frameworks differ.
Then, we look at three frameworks and the architectural patterns they use. As we
stated in the introduction, we focus on Spring, Struts and JavaServer Faces, which
are three popular and widely used Java/Java EE software frameworks.

3.1 WHAT IS A FRAMEWORK?

[32] defines a framework as

. . . a reusable, semi-complete application that can be specialized to
produce custom applications.

The idea is to provide the developers with a common and reusable structure that
may serve as a foundation for their software applications. Additionally, [32] states
three important framework characteristics:

1. A framework is known to work well in several applications.

2. A framework is ready to use in the next project.

3. A framework can be used by other developer teams in the organization.

Application frameworks may be divided into several categories according to
their functionality and architecture. The Spring framework (section 3.3) is, as they
state at their homepage a:

. . . leading full-stack Java/Java Enterprise Edition (Java EE) application
framework.

This means that Spring itself is not only designed to be used when developing web
applications, but also other software applications. In this setting, full-stack points
to the application stack. Spring provides support for all the layers in a typical web
application including database access layer, business logic layer and the web layer.

Struts (3.4) and JavaServer Faces (JSF) (3.5) represent another category of ap-
plication frameworks. In contrast to Spring, these frameworks do not try be a full-
stack frameworks. This means that they do not include support for e.g. database
persistence. Instead they focus on developing abstractions on top of the Servlet API
only. More details on each of these frameworks are found in the following sections.

3.2 MVC/MODEL 2

Model View Controller (MVC) is a well-known design pattern. It is widely used in
a lot of software applications (e.g. Java Swing [58]) and is an acronym for:

17

Model
A model is representation of the data for an application.

View
A view is the visual representation of the data.

Controller
A controller ties the model and the view together by translating view changes
into model changes.

This pattern does not fit the request-response behaviour of HTTP and web applica-
tion in general, so it is somewhat changed into a new pattern called Model 2.

An illustration of the Model 2 pattern [45] is given in figure 3.1. From this figure

Figure 3.1: The Model 2 pattern

we see that there is still a model, a view and a controller and that they are all placed
on the server side of the web application. The controller receives the requests made
by the web browsers. Then, it manipulates the model according to the request,
before redirecting to the view which is returned to the user.

One of the consequences of this architectural pattern is that an error in a JSP
does not affect the model or the controller. On the other side, if there is an error in
the model, this error does not affect the application code or the JSP. This architec-
ture also allows unit testing of each component and different developers may work
at the different MVC-components simultaneously.

3.3 SPRING

As we quoted in 3.1, Spring [73] tries to play the role of the leading full-stack
Java/Java Enterprise Edition (Java EE) framework. In this section we will discuss
Spring’s architecture and some important patterns it uses to play this role. We
will show how these patterns influence the security level, when discussing Spring
security in chapter 4.

18

3.3.1 Spring architecture

Spring’s architecture is discussed in a lot of books (e.g. [73]) and articles (e.g.
[7]). It consists of seven clearly separated modules that are build on top of the
Spring Core. This is shown in figure 3.2. There are no dependencies between the

Figure 3.2: Spring architecture

illustrated modules, so each developer may freely choose the modules that fits the
current project. The responsibility of each module is described by [73] as:

Spring Core
The functionality found in Spring core, forms the heart of every Spring ap-
plication. Within this module there is a BeanFactory that instantiates the
beans described in the application’s configuration files and then, injecting the
dependencies into each bean by using the IoC pattern. More details on this
process are found in section 3.3.2.

Spring AOP
Spring AOP provides support for aspect-oriented programming in Spring ap-
plications. The classes found in this module, is based on the API defined by
AOP Alliance [6] to ensure that Spring AOP is compatible with other AOP
implementations. A developer may base his or her custom aspects on the
functionality found in this module. AOP is discussed in more details in sec-
tion 3.3.3.

Spring DAO
Spring DAO offers a Java Database Connectivity (JDBC) abstraction that takes
care of the JDBC code needed to perform database queries. This includes
opening Connections, creating Statements, iterating over ResultSets and,
finally, closing Connections. This means that the developer may focus on the
business logic instead of boilerplate JDBC code.

Spring ORM
This module is included in Spring to support object/relational mapping tools
(e.g. Hibernate [39]) if such a tool is preferred instead of plain JDBC.

Spring Context
Because of the BeanFactory found in the Spring Core module, we may think

19

of Spring as a container. The Spring Context module expands this container
into a framework by adding support for internationalization, application life
cycle events and validation. This module also adds support for Enterprise Java
Beans (EJB) integration, remoting and template frameworks like Velocity.

Spring Web
The Spring Web module is deployed on the top of the Spring Context module
offering a context that is suitable for web applications. For instance, this in-
cludes tasks like binding request parameters to domain objects. This module
also offers support for MVC frameworks like Struts, Tapestry, JSF and Web-
Work.

Spring Web MVC
The Spring Web MVC module offers a full-featured MVC framework for web
application development. Unlike Struts, JSF and other MVC web frameworks,
Spring MVC relies heavily on Inversion of Control. Additionally, Spring MVC
is closely integrated with other Spring services like internationalization and
validation. More details on Spring MVC is found in section 4.2.2.

As you can see, Spring offers integration with several different other frame-
works at different levels. At the bottom of the application stack we find Spring’s
persistence layer which is often represented by the Spring ORM or the Spring DAO
modules. Spring ORM offers hooks for popular object/relational mapping frame-
works like Hibernate [39], Java Data Objects (JDO) and iBATIS SQL Maps [14]. At
the other end of the stack we find the web- and user interface layers. Spring Web
MVC provides a complete module for these two layers, but, as stated earlier, Spring
Web also contains integration with other frameworks.

When we discuss Spring security in chapter 4, we will concentrate on a plain
Spring application using Spring modules only. This means our discussion is centered
around the Spring DAO and the Spring Web MVC modules. The details are found
in sections 4.2.1 and 4.2.2, respectively.

We have now explained the seven Spring modules in short. In the next section
we discuss Inversion of Control (IoC), which is a very important design pattern in
Spring.

3.3.2 Inversion of Control

Inversion of Control or dependency injection, as the pattern is named by [24],
is a key pattern in Spring. Any non-trivial application consists of several classes
that depend on each other to perform some business logic. When implementing
applications, we usually let the objects themselves obtain references to the objects
it collaborates with. This often leads to highly connected code that is difficult to
test. Martin Fowler, uses a simple example called MovieLister to illustrate these
points [24]. The MovieLister class and the related classes are given in listing 3.1.

Listing 3.1: MovieLister� �
1 package movief inder ;
2

3 import j ava . u t i l . I t e r a t o r ;
4 import j ava . u t i l . A r r a y L i s t ;
5 import j ava . u t i l . L i s t ;
6

7 public c lass MovieL i s te r
8 {

20

9 private MovieFinder movieFinder ;
10

11 public MovieL i s te r ()
12 {
13 movieFinder = new ColonDelimitedMovieFinder (” movies . t x t ”

) ;
14 }
15

16 public Movie [] moviesDirectedBy (S t r i ng arg) {
17 L i s t a l lMov ies = movieFinder . f i n d A l l () ;
18 for (I t e r a t o r i t = a l lMov ies . i t e r a t o r () ; i t . hasNext

() ;) {
19 Movie movie = (Movie) i t . next () ;
20 i f (! movie . g e t D i r e c t o r () . equals (arg)) i t . remove

() ;
21 }
22 return (Movie []) a l lMov ies . toArray (new Movie [

a l lMov ies . s i z e ()]) ;
23 }
24

25 public in ter face MovieFinder
26 {
27 public L i s t f i n d A l l () ;
28 }
29

30 public c lass ColonDelimitedMovieFinder implements
MovieFinder

31 {
32 private S t r ing f i lename ;
33

34 public ColonDelimitedMovieFinder (S t r ing f i lename)
35 {
36 th i s . f i lename = fi lename ;
37 }
38

39 public L i s t f i n d A l l ()
40 {
41 L i s t l = new A r r a y L i s t () ;
42 /∗
43 ∗ Map the c o n t e n t s o f the f i l e named f i l ename
44 ∗ to movie o b j e c t s and add them to l .
45 ∗/
46 return l ;
47 }
48 }
49 }� �

In this example MovieFinder is an interface that is implemented by the class
called ColonDelimitedMovieFinder. This interface decouples the MovieFinder
from the MovieLister and may only change to a different implementation of MovieFinder
to read data from another source, e.g. an eXtensible Markup Language (XML)-file
or a database. The most important line in listing 3.1 is line 13. This line illustrates
the exact opposite to IoC - the MovieLister itself is instantiating a MovieFinder
object.

21

Listing 3.2: MovieLister using the IoC pattern� �
1 package movief inder ;
2

3 import j ava . u t i l . I t e r a t o r ;
4 import j ava . u t i l . A r r a y L i s t ;
5 import j ava . u t i l . L i s t ;
6

7 public c lass MovieL i s te r IoC
8 {
9 private MovieFinder movieFinder ;

10

11 public void setMovieFinder (MovieFinder movieFinder)
12 {
13 th i s . movieFinder = movieFinder ;
14 }
15

16 public Movie [] moviesDirectedBy (S t r i ng arg) {
17 L i s t a l lMov ies = movieFinder . f i n d A l l () ;
18 for (I t e r a t o r i t = a l lMov ies . i t e r a t o r () ; i t . hasNext

() ;) {
19 Movie movie = (Movie) i t . next () ;
20 i f (! movie . g e t D i r e c t o r () . equals (arg)) i t . remove

() ;
21 }
22 return (Movie []) a l lMov ies . toArray (new Movie [

a l lMov ies . s i z e ()]) ;
23 }
24

25 public in ter face MovieFinder
26 {
27 public L i s t f i n d A l l () ;
28 }
29

30 public c lass ColonDelimitedMovieFinder implements
MovieFinder

31 {
32 private S t r ing f i lename ;
33

34 public void setF i lename (S t r i ng f i lename)
35 {
36 th i s . f i lename = fi lename ;
37 }
38

39 public L i s t f i n d A l l ()
40 {
41 L i s t l = new A r r a y L i s t () ;
42 /∗
43 ∗ Map the c o n t e n t s o f the f i l e named f i l ename
44 ∗ to movie o b j e c t s and add them to l .
45 ∗/
46 return l ;
47 }
48 }

22

49 }� �
Listing 3.2 shows an IoC implementation of the functionality found in listing 3.1.
Now there are no line stating new ColonDelimitedMovieFinder("movies.txt"),
but instead we need to provide the container with an XML file describing the re-
lationship between the objects. In Spring applications, this XML file may look like
listing 3.3.

Listing 3.3: Wiring Spring beans� �
1 <?xml version=” 1.0 ” encoding=”UTF−8” ?>
2 <!DOCTYPE beans PUBLIC ”−//SPRING//DTD BEAN//EN”
3 ” h t t p : //www. springframework . org / dtd / spr ing−beans . dtd

”>
4

5 <beans>
6 <!−− B u s i n e s s o b j e c t s s t a r t −−>
7 <bean id=” mov ieL i s te r ” c l a s s=” movief inder . Mov ieL i s te r ”>
8 <proper ty name=” movieFinder ”>
9 <r e f bean=” movieFinder ” />

10 </ proper ty>
11 </bean>
12 <bean id=” movieFinder ” c l a s s=” movief inder .

ColonDelimitedMovieFinder ”>
13 <proper ty name=” f i lename ”>
14 <value>movies . t x t</ value>
15 </ proper ty>
16 </bean>
17 <!−− B u s i n e s s o b j e c t s end−−>
18 </ beans>� �

When this example is about to be deployed, the container resolves that movieLister
bean depends on the movieFinder bean. This means that the container have to in-
stantiate the movieFinder before the movieLister. The execution steps are:

1. Instantiate the Java Bean named movieFinder.

2. Inject the filename property by calling setFilename("movies.txt").

3. Instantiate the Java Bean named movieLister.

4. Inject a reference to the movieFinder bean by calling setMovieFinder() and
give a reference to the movieFinder as parameter.

In this revised example we see that the MovieLister class does not look up
references to their dependencies themselves. Instead the container inject the de-
pendencies as they are defined in the XML configuration file and this is exactly
what IoC is about.

3.3.3 Aspect-Oriented Programming

[73] states that Aspect-Oriented Programming (AOP) is often defined as:

. . . a programming technique that promotes separation of concerns within
a software system.

23

The background for introducing aspect-oriented programming is quite clear. Each
software system often consists of several components where are responsible for car-
rying out a limited set of functions. As the application evolves, the responsibility
tends to increase beyond their core functionality. Functionality like logging, transac-
tion management and security is often included in business objects that have other
concerns simply because there no other way to make this functionality available to
the objects. AOP allows this functionality to be separated from the business objects
in independent modules.

To understand how Spring implements AOP, there are a couple of terms that
need further explanation [73]:

Aspect
An aspect is the functionality that we are implementing. The most common
example is logging. Such an aspect allows us to do extensive logging through-
out our application without weaving logging code into business objects.

Advise
An advise is the implementation of the aspect. If we use our logging example,
the advise is the code that e.g. writes the logging information to a file. Advises
are plugged into our applications at joinpoints.

Joinpoint
Joinpoints are places in our code where advises may be plugged in. This may
be a method being called, an exception being thrown or a field being modified.
However, Spring only supports method joinpoints which means that an advise
run before, after or before and after a specified method has been run.

Pointcut
A pointcut defines at which joinpoints the advise should be executed. We may
choose freely among the available joinpoints.

To illustrate these concepts, we will give an example. We will extend the example
given in section 3.3.2 to illustrate how a logging module may archived through
AOP.

To develop a logging aspect we first need to decide at what joinpoint(s) we want
our advice to be plugged in, and then write the advice implementation itself. One
trivial implementation is given in listing 3.4.

Listing 3.4: LogMovieAdvice� �
1 package movief inder ;
2

3 import j ava . lang . r e f l e c t . Method ;
4

5 import org . springframework . aop . MethodBeforeAdvice ;
6

7 public c lass LogMovieAdvice implements MethodBeforeAdvice
8 {
9 public void before (Method arg0 , Object [] arg1 , Object arg2

) throws Throwable
10 {
11 System . out . p r i n t l n (” ∗∗∗ Logging s t a r t ∗∗∗ ”) ;
12 System . out . p r i n t l n (” ∗∗∗ I n t e r cep ted method : ”+arg0+” ∗∗∗ ”

) ;
13 System . out . p r i n t l n (” ∗∗∗ Logging end ∗∗∗ ”) ;
14 }
15 }� �

24

This class implements the MethodBeforeAdvice interface which means that we
want our advice to be executed before the intercepted methods execute (e.g. the
before-joinpoint).

Then, to wire the aspect into our application, we have to change our XML con-
figuration file. The revised version is given in listing 3.5.

Listing 3.5: Wiring a logging aspect into our application� �
1 <?xml version=” 1.0 ” encoding=”UTF−8” ?>
2 <!DOCTYPE beans PUBLIC ”−//SPRING//DTD BEAN//EN”
3 ” h t t p : //www. springframework . org / dtd / spr ing−beans . dtd

”>
4

5 <beans>
6 <!−− B u s i n e s s o b j e c t s s t a r t −−>
7 <bean id=” mov ieL i s te r ” c l a s s=” movief inder . MovieL i s te r IoC

”>
8 <proper ty name=” movieFinder ”>
9 <r e f bean=” movieFinder ” />

10 </ proper ty>
11 </bean>
12 <bean id=” movieFinderTarget ” c l a s s=” movief inder .

ColonDelimitedMovieFinder ”>
13 <proper ty name=” f i lename ”>
14 <value>movies . t x t</ value>
15 </ proper ty>
16 </bean>
17 <!−− B u s i n e s s o b j e c t s end −−>
18

19 <!−− A d v i c e s s t a r t −−>
20 <bean id=” logMovieAdvice ” c l a s s=” movief inder .

LogMovieAdvice ” />
21 <!−− A d v i c e s end −−>
22

23 <!−− Adv i s o r p o i n t c u t d e f i n i t i o n f o r b e f o r e a d v i c e s t a r t
−−>

24 <bean id=” movieFinder ” c l a s s=” org . springframework . aop .
framework . ProxyFactoryBean ”>

25 <proper ty name=” p r o x y I n t e r f a c e s ”>
26 <value>movief inder . MovieFinder</ value>
27 </ proper ty>
28 <proper ty name=” interceptorNames ”>
29 < l i s t>
30 <value>logMovieAdvice</ value>
31 </ l i s t>
32 </ proper ty>
33 <proper ty name=” t a r g e t ”>
34 <r e f bean=” movieFinderTarget ” />
35 </ proper ty>
36

37 </bean>
38 <!−− Adv i s o r p o i n t c u t d e f i n i t i o n f o r b e f o r e a d v i c e end−−

>
39 </ beans>� �

25

The most important changes are the advice- and advisor pointcut beans we have
introduced. The logMovieAdvice bean is the advice itself, doing nothing spe-
cial. However, notice that we have renamed to original movieFinder bean to
movieFinder Target and then created a new ProxyFactoryBean named movieFinder.
This is the bean that wires our logging aspect into the application and it contains
three important properties:

proxyInterfaces
A proxy interface is an interface that Spring’s ProxyFactoryBean will mas-
querade as. This allows us to get the proxy bean from the application con-
text and casting it to a MovieFinder object even if it is an instance of the
ProxyFactoryBean found in the org.springframework.aop.framework pack-
age.

interceptorNames
A interceptor name is the name of a advice bean that is executed when a
method is intercepted.

target
A target is the class that is being adviced. This is usually a custom class
written by the developer or a third-party class that is extended by e.g. a
logging aspect.

We have now discussed two of the most important patterns found in the Spring
framework. They form the basis of all Spring applications including Acegi Security
System that we will discuss in section 4.3.

3.4 STRUTS

Struts is another software framework designed to support Java web application de-
velopment. Like Spring MVC and JSF, it is based on the well-known MVC pattern
variant called Model 2 (see section 3.2). But this is almost everything these frame-
works have in common. Whereas Spring tries to fill the role as a full-stack Java
application framework, Struts is only concerned with the web-layer of the applica-
tions [32]. This leads to somewhat different security concerns in Struts, than in
Spring. We will come back to the security details of Struts applications in chapter
5. In the following sections we will discuss the Struts model, view and controller in
more detail.

3.4.1 Struts Model

The model in the MVC pattern represents the data. Struts does not provide any
classes or interfaces that may be used as part of the model. It is up to the de-
veloper to implement a model that is based on data from a data source like a file
or a database. There are several frameworks available that may support a model
implementation and among them we find:

Hibernate ORM
Hibernate is an object/relational mapping that tries to resolve the mapping
mismatch between the object-oriented paradigm of the today’s programming
languages and the relational databases. Hibernate recognizes typical tasks
that developers are required to implement in every project which involves
some sort of DBMS, and tries to automate these. This includes creating,

26

reading, updating and deleting domain objects and handling their dependen-
cies. These properties complement the functionality found in Struts and make
Hibernate, but also other Object Relational Mapping (ORM) mapping tools,
good partners to Struts when implementing a data model. More details are
found in [8, 39].

Apache Commons Scaffold
Apache Commons Scaffold is not an ORM mapping tool. It is rather a set
of reusable software components that often are needed in web applications.
Commons Scaffold provides several classes that are designed for Struts appli-
cations, and among these we also find classes that eases the job when imple-
menting a model based on data from one or several databases. This solution
is far less sophisticated than ORM mapping tools, but it is still an alternative.
More details are found on the project home page [19].

JDBC
Java Database Connectivity (JDBC) is the simplest and most demanding way
of implementing a model based on data stored in a database. However, we
do not recommend using plain JDBC in larger projects both because there
are more secure solutions with high performance available and because plain
JDBC is more resource demanding.

These are only some of the available solutions. We have mentioned these three to
indicate that is up to the software architects to choose what is best suited in every
project. The important point to notice is that Struts does not place any restrictions
on which technique to choose.

3.4.2 Struts View

The view in the MVC pattern is responsible for rendering the data stored in the
model. When the model is changed, the view should be rerendered. Because Struts
is a web framework based on Java, JSP taglibs are usually used in the view compo-
nents. Velocity templates [21] and JavaServer Pages Standard Tag Library (JSTL)
are also supported, but we will concentrate on the taglibs provided in the Struts
distribution.

The taglibs provided by Struts are divided into four distinct libraries:

1. bean taglib

2. html taglib

3. logic taglib

4. nested taglib

where each taglib is responsible for a limited set of tags.
The first taglib is called bean mainly because it provides tags that allow bean

manipulation in JSPs. This taglib allows a developer to create variables based on
HTTP headers, request parameters or cookies, create new JavaBeans based on re-
quests, determining the number of elements in a Collection or Map object, localizing
labels and, finally, print property values of beans found in the request, the session
or the application scope.

The html taglib provides a set a tags that is needed to implement dynamic web
pages based on JSP. This include tags like checkboxes, radio buttons, text fields,
text areas, hidden fields and so on.

27

The Struts taglib called logic, contains tags that represents logic operations.
This include testing if values are equal, less then, greater than, empty or present,
but also tags representing iteration over data structures and tags for redirection and
request forwarding.

The last taglib is called nested. It was introduced in Struts 1.1 to provide better
support for nested properties. This means that if we have a Blog bean containing
a List of BlogEntry beans, we may iterate and access the blog entries by using the .
notation (e.g. blog.blogentries) which leads to more easy-to-follow JSP code.

This is the main components of the view provided with Struts. We will discuss
some security details of these taglibs in chapter 5.

3.4.3 Struts Controller

A large part of the code found in the Struts framework, is related to the controller.
The main reason for this is that a lot controller tasks (e.g. client request process-
ing, form submission) require almost the same processing. Struts recognizes the
differences and allow the developer to customize through XML configuration and
by extending different Struts framework classes.

To implement its functionality, Struts divides the controller into several compo-
nents which are responsible for their own limited set of tasks:

ActionServlet
The ActionServlet receives state changes through interactions and passes
these changes to other components of the controller.

ActionMappings
The actual state change event.

ActionForms
The data for the state change.

Actions
The Actions interact with the model to process state changes and point out
the next view that the ActionServlet should select.

ActionForwards
ActionForwards form the set of the states that a user may select from.

Let us look at an example to illustrate how these components interact to create and
send a response to a client request.

When we are deploying and loading a Struts application in a Servlet container
(e.g. Apache Tomcat), the container looks for a file called web.xml. It describes the
Servlet class that the container should pass the client requests to, the Uniform Re-
source Locator (URL) patterns that should be interpreted by Struts’s ActionServlet
and the path of the Struts configuration files. A simple example file is given in
listing 3.6.

Listing 3.6: web.xml for a simple Struts application� �
1 <?xml version=” 1.0 ” encoding=”UTF−8” ?>
2 <!DOCTYPE web−app PUBLIC ’−//Sun Microsystems , Inc . / /DTD Web

App l i c a t i on 2.3//EN ’
3 ’ h t t p : // java . sun . com/ dtd /web−app 2 3 . dtd ’>
4

5

6 <web−app>

28

7 <s e r v l e t>
8 <s e r v l e t−name>blog−s t r u t s</ s e r v l e t−name>
9 <s e r v l e t−c l a s s>org . apache . s t r u t s . a c t i on . A c t i o n S e r v l e t</

s e r v l e t−c l a s s>
10

11 < i n i t −param>
12 <param−name>con f i g</param−name>
13 <param−value>/WEB−INF/ conf / s t r u t s −con f i g . xml</param−

value>
14 </ i n i t −param>
15

16 <load−on−s t a r t u p>1</ load−on−s t a r t u p>
17 </ s e r v l e t>
18

19 <s e r v l e t−mapping>
20 <s e r v l e t−name>blog−s t r u t s</ s e r v l e t−name>
21 <ur l−pat te rn>∗ . do</ ur l−pat te rn>
22 </ s e r v l e t−mapping>
23 </web−app>� �

Struts is triggered by a request sent by a client. If this request matches the
pattern defined in web.xml (i.e. *.do), it is forwarded to ActionServlet defined by
Struts. Then, the ActionServlet looks up the mapping of ActionMapping (e.g. login)
defined in struts-config.xml (see listing 3.7).

Listing 3.7: struts-config.xml for a simple Struts application� �
1 <?xml version=” 1.0 ” encoding=”UTF−8” ?>
2 <!DOCTYPE s t r u t s −con f i g PUBLIC
3 ”−//Apache Software Foundation //DTD S t r u t s Conf igura t ion

1.3//EN”
4 ” h t t p : // s t r u t s . apache . org / dtds / s t r u t s−con f i g 1 3 . dtd ”>
5

6 <s t r u t s −con f i g>
7 <form−beans>
8 <form−bean name=” loginForm ” type=” org . apache . s t r u t s .

v a l i d a t o r . DynaValidatorForm ”>
9 <form−proper ty name=” username ” type=” java . lang .

S t r i ng ” />
10 <form−proper ty name=” password ” type=” java . lang .

S t r i ng ” />
11 </form−bean>
12 </form−beans>
13

14 <global−forwards>
15 <forward name=” / log in ” path=” log in . do” />
16 </ global−forwards>
17

18 <act ion−mappings>
19 <ac t ion path=” / log in ”
20 type=” blog . a c t i o n s . LoginAct ion ”
21 v a l i d a t e=” t rue ”
22 input=” /WEB−INF/ j s p / log in . j s p ”
23 />
24 </ act ion−mappings>

29

25

26 <global−except ions>
27 <except ion type=” java . lang . NumberFormatException ”
28 path=” /WEB−INF/ j s p / e r r o r s /numberformat . j s p ” />
29

30 <except ion type=” java . lang . Except ion ”
31 path=” /WEB−INF/ j s p / e r r o r s / except ion . j s p ” />
32 </ global−except ions>
33 </ s t r u t s −con f i g>� �

Before the execution continues, several ActionMapping properties are investi-
gated by the ActionServlet:

1. If a form bean is specified in name attribute of the ActionMapping, this bean
is instantiated.

2. If the validate property is set to true, then the ActionServlet calls validate()
on the form bean.

3. Then, if validate() returns at least one ActionError, the ActionServlet forwards
the user to the path specified by the input attribute (e.g. login.jsp in listing
3.7) and the request-response sequence is ended.

4. Otherwise, if validate() does not return ActionErrors, the ActionServlet
looks up the Action specified by the ActionMapping. If it is not already in-
stantiated, the ActionServlet creates the Action object this point.

5. The next step is to call execute() on the Action object. This method is often
overridden by the developer and it typically creates, read, updates or delete
business objects.

6. When the execute() method has completed, it returns an ActionForward to
the ActionServlet. If the ActionForward indicates a new URL that should be
processed by Struts, we start all over again. Otherwise, if it is a JSP, then
this page is rendered and returned to the user. This ends the request-response
sequence.

These are the basic steps in Struts when processing a client request. We will
give some more details connected to this framework when we are discussing how
security is ensured in chapter 5.

3.5 JAVASERVER FACES

JSF is a component-based Java/Java EE web application framework specification
developed by Sun Microsystems [37, 45]. The process of developing this speci-
fication was started back in 2001 through Java Specification Request (JSR) 127.
Several major software vendors have participated in this process, hopefully leading
to a web application framework that is widely adopted.

At an early stage of the specification process three key design goals were stated:

1. JSF should use the MVC pattern variant called Model 2 (see section 3.2).

2. The JSF view component should not rely on any particular display technology
(e.g. JSP).

3. JSF should be based on components using events and listeners to send and
receive events.

30

These goals form the basis of what we today know as JSF.

3.5.1 Components, components and components

Like we mentioned in the introduction to this section, JSF is component-based. If
we think of links, forms and other HTML entities, we see that they are all repre-
sented as components in JSF. Depending on its goal, a HTML tag
may be represented as both a HtmlCommandLink or a HtmlOutputLink JSF compo-
nent. Each view rendered by JSF is formed by a tree of components where the root
is always an instance of UIViewRoot.

For each component to complete its tasks, it is associated with a set of objects
where each of them is delegated more specific tasks. A component usually depends
on:

a Renderer
The Renderer is responsible for displaying a component and translating input
from users into component values. Several Renderers form a RenderKit. JSF
is shipped with a default RenderKit for HTML 4.01

a Validator
The validator is responsible for ensuring that values given by users are accept-
able.

a Converter
The Converter is responsible for converting an object to a string when the
object is viewed, and from a string to an object when user input is processed.

one or more backing beans
The backing beans collect values from JSF components and implement event
listeners.

3.5.2 Event management

In opposite to Spring and Struts, a developer is not required to deal with plain
form submissions in JSF. Instead the framework defines an event- listener model
similar to the model found in Swing [58]. When a JSF button or link is clicked, an
event is generated. Such events are then distributed to the registered listeners, and
appropriate actions are executed. JSF defines four groups of events:

Value-change events
Value-change events are executed when values in input components are changed.
A ValueChangeListener should implement a method with a signature like
public void <<name>>(ValueChangeEvent e){}.

Action events
Action events may be divided into two subgroups: actions events that impli-
cate navigation to another view and action events that do not. The first group
of events requires a method signature like public String <<name>>(){}
while the latter requires a signature on form public void <<name>>(ActionEvent
e){}.

Data model events
Data model events are fired when “a data-aware component processes a row”.
This means that these events are generated when e.g. a row is selected in a
HtmlDataTable instance.

31

Phase events
As we discuss in section 3.5.5, each request that is passed to the JSF Servlet
is processed in, at most, six phases. Phase events are generated by JSF before
and after each of these phases. Phase events may be used if we e.g. instantiate
backing beans before a view is displayed.

The reason for mentioning the method signatures and not the interfaces they are
defined in, may not be obvious for developers new to JSF. JSF does not require the
listeners to implement the listener interfaces. They are just markers to indicate the
correct method signature. Instead, JSF uses the reflection API (module found in the
Java Software Development Kit (SDK)) to check if the signatures are on the correct
form. This leads to a slightly looser coupling between JSF and the application code.

3.5.3 Navigation

Like we stated in the previous section, navigation is JSF web applications is closely
related to actions. When a button or a link is clicked, an ActionEvent is generated.
JSF refers to different groups of actions used in navigation:

1. Static navigation

2. Dynamic navigation

3.5.3.1 Static navigation

When a user clicks a JSF button or link that is associated with an action, an event is
generated. If the action attribute refers to a string constant defined in the JSFconfig
file (i.e. faces-config.xml), JSF refers to this as static navigation. An example is
given in listing 3.8.

Listing 3.8: Navigation case when using static navigation� �
1 <?xml version=” 1.0 ” encoding=”UTF−8” ?>
2 <!DOCTYPE faces−con f i g PUBLIC
3 ”−//Sun Microsystems , Inc . / /DTD JavaServer Faces Config

1.0/EN”
4 ” h t t p : // java . sun . com/ dtd /web−f a c e s c o n f i g 1 0 . dtd ”>
5

6 <faces−con f i g>
7 <navigat ion−ru l e>
8 <from−view−id>/ log in . j s p</from−view−id>
9 <navigat ion−case>

10 <from−outcome>succe s s</from−outcome>
11 <to−view−id>/ b logent ry / l i s t . j s p</ to−view−id>
12 <r e d i r e c t />
13 </ navigat ion−case>
14 </ navigat ion−ru l e>
15 </ faces−con f i g>� �

This listing specifies a navigation case of the JSP called login.jsp found at the
root of the web application. If we assume that there is a JSF button or link on this
page setting its action attribute to “success”, the navigation case ensures that the
user is redirected (because of the redirect tag) to list.jsp in the blogentry direc-
tory. As long as the action attribute is not changed, the user is always forwarded to
the same JSP without regard to the system state.

32

3.5.3.2 Dynamic navigation

Dynamic navigation is somewhat different than static navigation. Instead of speci-
fying a constant string as action attribute, we use a reference to an object method
available in the application context. This is illustrated in listing 3.9.

Listing 3.9: Navigation case when using dynamic navigation� �
1 <?xml version=” 1.0 ” encoding=”UTF−8” ?>
2 <!DOCTYPE faces−con f i g PUBLIC
3 ”−//Sun Microsystems , Inc . / /DTD JavaServer Faces Config

1.0/EN”
4 ” h t t p : // java . sun . com/ dtd /web−f a c e s c o n f i g 1 0 . dtd ”>
5

6 <faces−con f i g>
7 <navigat ion−ru l e>
8 <from−view−id>∗</from−view−id>
9 <navigat ion−case>

10 <from−ac t ion>#{createBlogEntryBean . c r ea t e }</from−
ac t ion>

11 <from−outcome>succe s s</from−outcome>
12 <to−view−id>/ b logent ry /new . j s p</ to−view−id>
13 </ navigat ion−case>
14 <navigat ion−case>
15 <from−ac t ion>#{createBlogEntryBean . c r ea t e }</from−

ac t ion>
16 <from−outcome> f a i l u r e</from−outcome>
17 <to−view−id>/ e r ro r / b l o g e n t r y e r r o r . j s p</ to−view−id>
18 </ navigat ion−case>
19 </ navigat ion−ru l e>
20 </ faces−con f i g>� �

In this example we are able to use navigation based the overall system state. If
createBlogEntryBean.create() returns the string “success”, the user is forwarded to
/blogentry/new.jsp. Otherwise, if the outcome is “failure”, /error/blogentry error.jsp
shows an appropriate error message. Because JSF places no restrictions on the num-
ber of allowed navigation cases, we may specify as many as we need.

3.5.4 Backing beans

If we compare the backing beans found in JSF to the ActionForms and Actions
found in Struts, we see that the backing beans are some sort of hybrids of these
objects. The backing beans used in JSF provides both data and operations, while
ActionForms represent the data in Struts and the Actions provide the operations.
An example backing bean instantiated as a managed bean is illustrated in listing
3.10.

Listing 3.10: Declaring a backing bean as a managed bean in faces-config.xml� �
1 <?xml version=” 1.0 ” encoding=”UTF−8” ?>
2 <!DOCTYPE faces−con f i g PUBLIC
3 ”−//Sun Microsystems , Inc . / /DTD JavaServer Faces Config

1.0/EN”
4 ” h t t p : // java . sun . com/ dtd /web−f a c e s c o n f i g 1 0 . dtd ”>
5

33

6 <faces−con f i g>
7 <managed−bean>
8 <d e s c r i p t i o n>Used to implement log in and logout</

d e s c r i p t i o n>
9 <managed−bean−name>authent i ca t ionBean</managed−bean−name

>
10 <managed−bean−c l a s s>beans . Authent icat ionBean</managed−

bean−c l a s s>
11 <managed−bean−scope>s e s s i o n</managed−bean−scope>
12 <managed−proper ty>
13 <property−name>v i s i t</ property−name>
14 <value>#{sess ionScope . v i s i t }</ value>
15 </managed−proper ty>
16 </managed−bean>
17 </ faces−con f i g>� �

In this listing a bean named authenticationBean is instantiated based on the
beans.AuthenticationBean class. This bean is then placed in the session scope,
which means that this bean is available as long as the session is valid. Further
on, this configuration ensures that the visit property of the authenticationBean is
properly initialized with a reference to an object named visit found in the session
context.

3.5.5 Request processing

Each request that is passed from the Servlet container to the JSF Servlet, is pro-
cessed in at most six phases. We say at most because it is possible to render and
send a response in every of these phases, thus bypassing the rest of the processing
steps. [45] discusses this phase bypassing in more details.

The processing phase found in JSF are:

1. Restore view

2. Apply request values

3. Process validations

4. Update model values

5. Invoke application

6. Render response

The execution of these phases is also illustrated in figure 3.3.

3.5.5.1 Restore view

As we discussed in section 3.5.1, each view in JSF is a tree of JSF components. In
the restore view phase, JSF creates a component tree at the server-side based on
the requested view identifier. No action is taken if the requested view is the same
as the current view of JSF because then, the component tree is already generated
and cached. If the view involves validators, managed beans or listeners, these are
restored as well.

34

Figure 3.3: JSF request processing

3.5.5.2 Apply request values

The processing in this phase is pretty well described by the phase name. In this
phase, JSF iterates over all the components in the component tree and updates
their values according to the values found in the request submitted by the user. Let
us the JSP source code in listing 3.11 as an example.

Listing 3.11: JSP accessing an AuthenticationBean� �
1 . . .
2 <h : inputText id=” usernameInput ”
3 value=”#{authent i ca t ionBean . username} ”
4 requ i red=” t rue ” />
5 . . .
6 <h : commandButton id=” submitButton ”
7 action=”#{authent i ca t ionBean . l og in } ”
8 value=” Login ” />
9 . . .� �

When the apply request values phase for a component tree containing these com-
ponents is executed, the component associated with the id “usernameInput” is as-
sociated with the value given by the user. As we discuss in section 3.5.5.4, all
the backing beans properties (e.g. authenticationBean.username) are updated only
when the values have passed the validation.

The other main responsibility of this phase, is to add ActionEvents to the event
queue if a command button or a command link has been clicked [26]. These events
are processed in the invoke application phase (see section 3.5.5.5).

3.5.5.3 Process validations

In the process validations phase, JSF asks every component in the component tree
whether they have acceptable values or not. Based on the architecture we sketched
in section 3.5.1, each component’s validator is main responsible for this validation.
If all the given values are acceptable, the processing continues to the next phase.
Otherwise JSF jumps to the last phase called render response. Notice that Val-
ueChangedEvents are generated and consumed before the next phase is executed,
but after the validation is completed.

35

3.5.5.4 Update model values

When the JSF execution enters the update model values phase, we know that
the user has given acceptable values and JSF is ready to update the properties
of the backing beans. To look up references to the backing bean properties, JSF
uses the value attribute associated with each component. If we look back to the
example given in listing 3.11, this means that setters similar to authentication-
Bean.setUsername(...) is called during the update model values phase. Finally,
data model events are generated and distributed to its listeners before the invoke
application phase is initiated.

3.5.5.5 Invoke application

When entering this phase, JSF knows that its model- and component values are
up-to-date, and this is the time when the business logic should be executed. In
this phase, JSF consumes the ActionEvents generated in the Apply request values
phase. Usually, the receiving listeners often call methods on other Java objects to
do access control, update database entries or do other sorts of processing. Based on
the processing results, the value of the action attribute is finally reduced to a string
value indicating the next page to load.

3.5.5.6 Render response

The last phase is called render response because of quite obvious reasons. Its main
responsibility is to generate and send a response back to the user based on updated
component- and model values and the application execution. Additionally, the ren-
der response ensures that the view is saved before the response is sent to the client.
This increases the performance of the web application if the user requests it again
due to e.g. invalid input.

3.6 SUMMARY

We have now discussed the architectural patterns used in Spring, Struts and JSF.
Our focus has been placed on how different components in frameworks cooperate
and how they process incoming request. These discussions form our basis when
we, in the next chapter, discuss how each of them perform in terms of typical web
application vulnerabilities like the ones discussed in chapter 2.

36

CHAPTER4
SPRING SECURITY

This chapter touches important topics connected to the security level of Spring web
applications. The first sections explains the functionality found in Spring itself in
details and what issues Spring does not address. In the last one we discuss the Acegi
Security System and how this package integrates with Spring and addresses some
of its issues.

4.1 ERROR HANDLING

Errors happen all the time in all sorts of software including web applications. All
these errors should be taken care of in a secure manner because:

1. A software application returning error details is not very user-friendly. If the
user entered something that the application cannot handle, this should be
reported. Based on this, the user may change his or her input to something
that is accepted.

2. An application printing the complete stack trace when failing, is leaking a lot
of information that may be useful to an attacker. We do not want to pro-
vide the him/her with this information because it may describe the internal
architecture of our software, making it a lot easier to an attacker to identify
weak points. Not leaking error details is also support by an important security
principle stated by Viega and McGraw in [70]: “Fail securely”.

In Java/Java EE generally, and Spring specially, error handling often means
catching exceptions. The Spring Web modules provides a class called SimpleMapping
ExceptionResolver that is used to catch unhandled exceptions. When instantiat-
ing this bean, the exceptionMappings property is set. Each of these mappings state
what Exceptions it handles and to what view the user should be redirected when
this exception is thrown. Given this approach, it is possible to redirect to error pages
explaining the error to the user without giving away too much details to possible
attackers. Thus, Spring addresses both issues mentioned in the beginning of this
section.

4.2 SECURITY IN SPRING MODULES

In this section we will discuss how security is ensured in two of the seven Spring
modules. These modules are Spring Data Access Objects (DAO) and Spring MVC.
We have chosen to concentrate on these modules because they are responsible for
passing data to other subsystems (e.g. DBMS, web browser) when developing pure
Spring application. If we take a look back to section 2.2.1, we see that this is exactly
where metacharacter problems occur and where they need to be taken care of. We

37

will discuss each module in some detail, before we investigate what they do to avoid
metacharacter problems.

4.2.1 Spring DAO

In general, a DAO is an object-oriented way to read data from and write data to a
database. The DAO provides an interface through which an application can access
a database without exposing what technologies it uses to get the data. This means
that we can change data source from an XML-file to a DBMS without changing
our application. We only need to switch from one DAO implementation to another.
Besides, this architecture allows mockup implementations of the interfaces to speed
up testing.

Spring DAO uses Java interfaces, a consistent exception hierarchy and an object
called JdbcTemplate to create a data access layer that the business objects can ac-
cess without knowing anything about the underlying technologies. We will discuss
the Spring DAO details throughout this section, starting with the exceptions.

4.2.1.1 Exceptions

Spring’s first step to create a data access layer is to provide an exception hierarchy.
These exceptions encapsulate all technology specific exception into a limited set
of Spring DAO exceptions which extends the DataAccessException. According to
[73], these objects have some important properties:

1. All DataAccessExceptions are RuntimeExceptions. This means that we are
not forced to handle these exceptions by means of try - catch blocks.

2. All DataAccessExceptions are NestedExceptions. This allows us to ac-
cess the cause of the problem by calling getCause() on the DataAccess
Exception.

As long as we handle the limited set of Spring exceptions by e.g. using the
approach sketched in section 4.1, we may use several different data sources in
our applications and even add a new data sources without changing a single line
of our application code. This makes it easier not to leak information to attackers
when changing or introducing new data sources because no new technology-specific
exceptions are introduced.

4.2.1.2 Spring’s JdbcTemplate

Java Database Connectivity (JDBC) is the traditional way to access database from
within Java. It is a clear interface defined in the Java API by Sun Microsystems
that makes it easy for database vendors to develop JDBC drivers supporting their
products. However, there are several problems occurring when using plain JDBC:

1. Each developer using plain JDBC works closely with the database, but they
also have to take care of a lot resource handling (e.g. establishing connec-
tions, iterating over ResultSets) and exception handling.

2. Plain JDBC requires a lot of boilerplate code each time it is used. In examples
given by [73], 70-80% of the code needed to execute a database query is
boilerplate code.

3. In plain JDBC, security issues occur more often because the developers are
tempted to build SQL-queries dynamically instead of using safer constructs
like PreparedStatements.

38

The JdbcTemplate found in Spring recognizes these issues and try to provide
classes and other abstractions to clean up the JDBC code. The first improvement im-
plemented by means of the JdbcTemplate, is the resource administration. When the
JdbcTemplate is instantiated in an XML-file it is given a reference to a DataSource
bean. This DataSource contains the database connection details such as driver
name, URL, username and password. By using this approach, the developers are al-
lowed to focus on writing the application specific queries because resource handling
is taken care by the Spring framework.

Spring provides several classes and interfaces that represent traditional database
operations like INSERT, UPDATE and DELETE. Some places in our code we execute
unique queries and in other modules we execute the same queries over and over
again. In the first case, we may simply use the methods (e.g. update(String sql,
Object[] params)) defined by the JdbcTemplate while in the latter we define the
query in a standalone class. Spring offers several ways to execute queries and it is
up to the developer to choose the best suited one.

In the light of security, the way the queries are represented and executed is quite
important. When the queries are executed, the data leaves our application code and
all the metacharacters should be taken care of to ensure that no SQL-injections are
possible (see section 2.2.2). Two common ways to execute queries in Spring using
the JdbcTemplate approach are:

Using jdbcTemplate.query(..) and jdbcTemplate.update(..)
These methods do not use PreparedStatements and, in some contexts (see
e.g. appendix F), these methods may be vulnerable to SQL-injections.

Extending the SqlQuery and SqlUpdate classes
This approach is normally used if the same queries are needed in several parts
of an application. However, the approach should always be used because, in
opposite to the jdbcTemplate methods, they use PreparedStatements that
avoid SQL-injections. Thus, they lead to a higher level of application security.

The third and last improvement that Spring implements, is connected to the way
we usually handle ResultSets. In plain JDBC we always need to iterate through all
the rows of a ResultSet. Spring recognizes this and introduces an interface called
RowCallbackHandler containing a method named processRow(java.sql.ResultSet
rs). A developer only needs to implement this method, stating how to map the data
found in each row of the ResultSet to domain objects. Then, when a query is ex-
ecuted, a suitable RowCallbackHandler implementation is passed a parameter and
the corresponding domain object is returned.

Spring also defines some other interfaces that may be suitable when process-
ing ResultSets. Some of them are RowMapper, ResultReader, and RowMapper
ResultReader. We consider the details of these interface to be out the scope of
this discussion, because they do not affect the security of Spring applications in
general.

4.2.2 Spring MVC

We use the Spring MVC module when we are developing Spring-based web appli-
cations. As the name suggests, Spring MVC puts a MVC layer on top of the request-
response centered HTTP. In this section we will focus on the MVC pattern, how
incoming request are managed by the Spring framework, some view layer security
topics and, finally, how form validation is implemented by Spring.

39

4.2.2.1 Requests in Spring MVC

In typical web applications, several events happen when a web browser sends a
request to a web server. If the user clicked a link to add a new user in a web
application, Spring is likely to execute the following steps [73]:

1. The DispatcherServlet receives a request containing an URL like “/user/reg-
isternew.html”. This DispatcherServlet is configured in web.xml, just like
we illustrate in listing 4.1.

2. Then, the DispatcherServlet consults the HandlerMapping in the applica-
tion config file to look up a controller whose bean name is RegisterNewController.
Both the HandlerMapping, the controllers, and the ViewResolver is defined
in a Spring config file. An example is given in listing 4.2.

3. The DispatcherServlet dispatches the request to the RegisterNewController.

4. The RegisterNewController returns a ModelAndView object which includes
a logical view named registernew.

5. The DispatcherServlet then consults the ViewResolver to find a view whose
logical name is registernew. This ViewResolver usually returns something like
/WEB-INF/jsp/user/registernew.jsp.

6. At the last step, the DispatcherServlet forwards the request to the JSP at
/WEB-INF/jsp/user/registernew.jsp. This file is rendered and returned to
the user.

Listing 4.1: web.xml for a Spring application� �
1 <?xml version=” 1.0 ” encoding=”UTF−8” ?>
2

3 <!DOCTYPE web−app PUBLIC ’−//Sun Microsystems , Inc . / /DTD Web
App l i c a t i on 2.3//EN ’

4 ’ h t t p : // java . sun . com/ dtd /web−app 2 3 . dtd ’>
5

6 <web−app>
7 <s e r v l e t>
8 <s e r v l e t−name>blog</ s e r v l e t−name>
9 <s e r v l e t−c l a s s>org . springframework . web . s e r v l e t .

D i s p a t c h e r S e r v l e t</ s e r v l e t−c l a s s>
10 <load−on−s t a r t u p>1</ load−on−s t a r t u p>
11 </ s e r v l e t>
12 . . .
13 </web−app>� �

Listing 4.2: Simple Spring config file� �
1 <?xml version=” 1.0 ” encoding=”UTF−8” ?>
2 <!DOCTYPE beans PUBLIC ”−//SPRING//DTD BEAN//EN”
3 ” h t t p : //www. springframework . org / dtd / spr ing−beans . dtd ”>
4

5 <beans>
6 . . .
7 <bean id=” simpleUrlMapping ” c l a s s=” org . springframework . web

. s e r v l e t . handler . SimpleUrlHandlerMapping ”>
8 <proper ty name=” mappings ”>

40

9 <props>
10 <prop key=” / user / reg i s te rnew . html ”>

r eg i s t e rNewCont ro l l e r</prop>
11 . . .
12 </ props>
13 </ proper ty>
14 </bean>
15

16 <bean id=” reg i s t e rNewCont ro l l e r ” c l a s s=”web .
Reg i s terNewContro l le r ”>

17 <!−− Dependency i n j e c t i o n s . . . −−!>
18 <proper ty name=” use rSe rv i ce ”>
19 <r e f bean=” use rSe rv i ce ” />
20 </ proper ty>
21 <proper ty name=” formView ”>
22 <value>e d i t u s e r</ value>
23 </ proper ty>
24 <proper ty name=” successView ”>
25 <value>e d i t u s e r s u c c e s s</ value>
26 </ proper ty>
27 </bean>
28

29 <bean id=” viewResolver ” c l a s s=” org . springframework . web .
s e r v l e t . view . Interna lResourceViewReso lver ”>

30 <proper ty name=” viewClass ”>
31 <value>org . springframework . web . s e r v l e t . view .

J s t lV i ew</ value>
32 </ proper ty>
33 <proper ty name=” p r e f i x ”>
34 <value>/WEB−INF/ j s p /</ value>
35 </ proper ty>
36 <proper ty name=” s u f f i x ”>
37 <value> . j s p</ value>
38 </ proper ty>
39 </bean>
40 . . .
41 </ beans>� �

If the origin of the request represents a form submission, then some validation
is needed to ensure that the input is within the domain and range expected by our
application. This validation takes place before the DispatcherServlet consults
the ViewResolver. If the validation fails, the DispatcherServlet looks for the
failureView of the controller. Otherwise the successView is fetched. More details on
Spring’s validation approach is found in section 4.2.2.3.

When the user input has passed the validation, the remaining steps described
above are executed. When the JSP rendering is completed, the JSP is returned to
the user. It is at this point we need to take care of all the metacharacters, to make
sure that all web browser metacharacters are only treated as plain data and not as
control information. We discuss how Spring handles this challenge in the following
section.

41

4.2.2.2 View layer and security

Even at the top of the application stack, Spring offers the developers to choose be-
tween several popular view technologies to fill its role as “the leading full-stack
Java/Java EE framework”. It supports template engines like Velocity [22] and
FreeMarker [61] in addition to plain JSP files. To lay out the application pages,
Jakarta Tiles is supported. However, we will concentrate on the JSP and JSP taglibs
and their security aspects.

First of all, we need to point out what taglibs are, why they are preferred when
developing web pages using JSP technology. According to [56]

. . . tag libraries define declarative, modular functionality that can be
reused by any JSP page. Tag libraries reduce the necessity to embed
large amounts of Java code in JSP pages by moving the functionality of
the tags into tag implementation classes.

Taglibs allow web site developers to embed JSP functionality without using <%
. . . %>, <%= . . . %> or similar constructs to include Java code in JSP pages.
Instead, a taglib provides special tags that look like traditional HTML tags, e.g.
<c:out value=”Hello World!” /> to print values or <c:out value=”${name}” /> to
print the contents of the variable name. This is only one of the tags found the JSTL.
It is possible to develop custom taglibs. Spring comes with a custom taglib simply
named Spring. Among the tags in this library we find the spring:bind tag, which is
used to bind form fields to object member variables. Struts and JSF also provides
custom taglibs. More details of these are found in chapters 5 and 6, respectively.

In terms of security and metacharacters, the important part of the taglibs is at
the points where data leaves our application code and enters another subsystem.
This include tags like <c:out />, <sql:query />, <sql:update /> and possibly oth-
ers. Since the only subsystem we are passing data to through JSTL in simple Spring
applications is web browsers, we will focus on <c:out />. However, we will use a
paragraph to comment on security aspects of using <sql:query /> and <sql:update
/> as well.

According to the specification of JSTL 1.1 [57],

. . . <c:out /> converts the characters <, >, ’, ”, & to their corresponding
character entity codes (e.g. < is converted to <).

This is the exact process we recognize as HTML-encoding described by several
sources, e.g. [31]. We have investigated the JSTL implementation by The Apache
Software Foundation [20], and conclude that this implementation follows Sun’s
specification. Hence it is safe to use the <c:out /> tag in this implementation to
avoid cross-site scripting problems. Remark that if other tags are passing data to a
web browser, they may be vulnerable to cross-site scripting attacks if they do not
use HTML-encoding properly.

Even if it not recommended to access a database directly from a JSP, the JSTL
specification [57] provides a couple of tags that make such access possible (e.g.
<sql:query />, <sql:update />). The specification arguments that such tags may
be used in prototype implementations and some other cases. What is important,
is that they both use PreparedStatements to execute their operations. As we have
mentioned several times already, these objects make it almost impossible to do SQL-
injections.

4.2.2.3 Validating form input

To ensure that our application is receiving data within the expected domain and
range, input validation is needed. In Spring, this validation is implemented by

42

means of the Validator interface found in the org.springframework.validation
package. A validator class should be implemented for each of the domain objects
that may be created or changed using the web interface.

Suppose that we are developing a simplified blog service where users can cre-
ate their own blogs. To use this service, users only register their details at web
page containing a HTML form. Spring maps these details to a domain object (e.g.
User) that should be validated before it is accepted. If we assume that this User
object contains member variables for username, password, first name, last name,
and email, the UserValidator may look like the validator given in listing 4.3.

Listing 4.3: UserValidator� �
1 package v a l i d a t o r s ;
2

3 import j ava . u t i l . L i s t ;
4

5 import org . apache . oro . t e x t . pe r l . P e r l 5 U t i l ;
6 import org . springframework . v a l i d a t i o n . E r ro r s ;
7 import org . springframework . v a l i d a t i o n . V a l i d a t i o n U t i l s ;
8 import org . springframework . v a l i d a t i o n . Va l i da to r ;
9

10 import data . User ;
11

12 /∗∗
13 ∗ @author l e i f o d e
14 ∗
15 ∗ Thi s c l a s s i s r e s p o n s i b l e f o r u s e r v a l i d a t i o n . The
16 ∗ use r d e t a i l s are v a l i d a t e d both when a new use r i s
17 ∗ c r e a t e d and when use r d e t a i l s are updated .
18 ∗/
19 public c lass UserVa l ida to r implements Va l i da to r
20 {
21 private s t a t i c f i n a l S t r ing EMAIL REGEXP =
22 ” \ˆ[a−z0−9]+([\\ .−][a−z0−9]+)∗@([a−z0−9]+([\\.−][a−z0

−9]+)∗) +\\.[a−z]{2 ,}$/ i ” ;
23

24 /∗∗
25 ∗ I n d i c a t e s j u s t tha t on ly the u s e r c l a s s i s
26 ∗ suppor t ed .
27 ∗
28 ∗ @see org . spr ingframework . v a l i d a t i o n . V a l i d a t o r#suppo r t s (

java . lang . C l a s s)
29 ∗/
30 public boolean supports (C la s s c l a z z)
31 {
32 return c l a z z . equals (User . c lass) ;
33 }
34

35 /∗∗
36 ∗ The method v a l i d a t e s the username , password ,
37 ∗ f i r s t name and l a s t name p r o p e r t i e s o f a User o b j e c t .
38 ∗
39 ∗ @see org . spr ingframework . v a l i d a t i o n . V a l i d a t o r#v a l i d a t e (

java . lang . Ob je c t , org . spr ingframework . v a l i d a t i o n .
E r r o r s)

43

40 ∗/
41 public void v a l i d a t e (Object obj , E r ro r s e r r o r s)
42 {
43 User u = (User) obj ;
44

45 V a l i d a t i o n U t i l s . re jec t I fEmptyOrWhitespace (e r ror s , ”
username ” , ” requ i red . username ” , ” Username i s
requ i red . ”) ;

46 V a l i d a t i o n U t i l s . re jec t I fEmptyOrWhitespace (e r ror s , ”
password ” , ” requ i red . password ” , ” Password i s
requ i red . ”) ;

47 V a l i d a t i o n U t i l s . re jec t I fEmptyOrWhitespace (e r ror s , ”
f i r s tName ” , ” requ i red . f i r s tName ” , ” F i r s t name i s
requ i red . ”) ;

48 V a l i d a t i o n U t i l s . re jec t I fEmptyOrWhitespace (e r ror s , ”
lastName ” , ” requ i red . lastName ” , ” Las t name i s
requ i red . ”) ;

49 }
50

51 /∗∗
52 ∗ Using a r e g u l a r e x p r e s s i o n to v a l i d a t e the format o f

the
53 ∗ emai l addr e s s .
54 ∗/
55 private void va l ida teEma i l (S t r i ng email , E r ro r s e r r o r s)
56 {
57 V a l i d a t i o n U t i l s . re jec t I fEmptyOrWhitespace (e r ror s , ” email

” , ” requ i red . email ” , ”An email address i s requ i red . ”
) ;

58

59 P e r l 5 U t i l p5u = new P e r l 5 U t i l () ;
60 i f (! p5u . match (EMAIL REGEXP , email))
61 e r r o r s . r e j e c t (” i n v a l i d . email ” , ” Email i s i n v a l i d . ”) ;
62 }
63 }� �

As long as this validator is properly wired in through a XML-configuration file,
Spring ensures that these validation methods are called when the form is submitted.
If the form is not accepted by the validator, the user is returned to the form view
showing appropriate error messages written by the developer.

In our UserValidator the username, password, first name and last name fields
are rejected if they consist of whitespaces only or are empty. We also could have
forced the users to select passwords which are at least five characters long consisting
of at least two upper-case letters. This make brute-force password attacks less likely
to succeed.

The email validation is somewhat more complex. The final String object called
EMAIL REGEXP, defines the format of addresses that are accepted. If no email ad-
dress is given or it is not matching this regular expression, it is not accepted.

These are the principles of the validation functionality that is included in the
Spring framework. If we look back to section 2.1, we see that this approach is
a combination of whitelisting and blacklisting. Spring uses blacklisting when the
rejectIfEmptyOrWhitespace() method is called because this method looks for
an empty form element or an element only containing whitespace and rejects it
if found. On the other side when defining regular expressions, the approach has

44

changed to whitelisting. All terms that do not match the expression are rejected.

4.3 ACEGI SECURITY SYSTEM

The Acegi Security System is developed to complement the functionality imple-
mented by the Spring framework. The project’s homepage states that:

“The Acegi Security System for Spring provides authentication and au-
thorization capabilities for Spring-powered projects, with optional in-
tegration with popular web containers. The security architecture was
designed from the ground up using “The Spring Way” of development,
which includes using bean contexts, interceptors and interface-driven
programming. As a consequence, the Acegi Security System for Spring
is useful out-of-the-box for those seeking to secure their Spring-based
applications, and can be easily adapted to complex customized require-
ments.”

In other words, Acegi uses AOP, IoC, and JavaBeans to provide security services
for Spring applications. In this chapter we will discuss the principles used by these
services. We will focus our discussion on important topics like security interceptors,
authentication, access control, servlet filtering and how to secure method invoca-
tions. Please remark that we will use several sources, [5, 42, 43, 69, 73], throughout
this section.

4.3.1 Security Interceptors

To enforce security, Acegi uses security interceptors. Each interceptor is delegated
responsibility for a limited set of tasks. Because of the architecture of Acegi, it is
quite easy to plug it into web applications. The developer only needs to define
a servlet filter in the web.xml of the web application that filters all the incoming
requests through a class called FilterToBeanProxy in the Acegi API. This class del-
egates all the request processing to Spring beans including the security processing.

The security processing itself is split in several separate filters. In a web applica-
tion using role-based authorization, the FilterToBeanProxy bean ensures that the
following filters are applied in order:

1. HttpSessionContextIntegrationFilter
This filter simply holds the HTTP session object between requests if one exists.
The HTTP session object is queried for a SecurityContext object at the start
of request and posted back at the end of the request processing if it is changed.

2. AuthenticationProcessingFilter
This filter is responsible for the authentication. If the SecurityContext ob-
ject looked up by the HttpSessionContextIntegrationFilter contains an
Authentication object, the user is already authenticated and the request is
forwarded to the FilterSecurityInterceptor. If the user is not previously au-
thenticated, this filter throws an AuthenticationException.

3. ExceptionTranslationFilter
This filter takes care of the exceptions that is thrown by the other filters. If
an AuthenticationException is caught, this filter launches the authenticatio-
nEntryPoint. Otherwise if an AccessDeniedException has occurred, the filter
determines whether the user is an anonymous user or not. If he/she is, the

45

authenticationEntryPoint is launched. If not, a HTTP FORBIDDEN response is
sent.

4. FilterSecurityInterceptor
When the user has successfully authenticated, the rest of the job is taken care
of by this filter. Even though, this FilterSecurityInterceptor delegate a lot of
its tasks to other objects (e.g. an AccessDecisionManager is used to authorize
the request.).

Another filter worth mentioning that may be applied, is the ChannelProcess-
ingFilter. This filter contains a ChannelDecisionManager which supports one or
more ChannelProcessors. If we define a SecureChannelProcessor here and then, in
the ChannelProcessingFilter definition, state that a secure channel is required to
access some resources, a Secure Sockets Layer (SSL) must be set up before we are
allowed to access them. By using this filter, we may ensure that no password is sent
in plain text through the network.

These are the most important principles when considering request filtering. All
the filters except the ChannelProcessingFilter are illustrated in figure 4.1.

Figure 4.1: Acegi Security Interception Filters

46

4.3.2 Authentication

As stated in 4.3.1, the AuthenticationProcessingFilter is responsible for the au-
thentication. Roughly, this means to check if user credentials are correct and if they
are, place a Authentication object within the SecurityContext. But where are the
correct credentials stored?

Acegi provides clear interfaces for credentials storage. It is possible to imple-
ment a custom authentication data source by implementing these interfaces. Addi-
tionally, Acegi provides four complete implementations that fit most user’s needs:

• In-memory user DAO authentication (e.g. user details stored in an XML-file)

• JDBC DAO authentication (e.g. user details stored in a database)

• LDAP authentication (e.g. user details stored in a LDAP repository)

• Single sign-on using Yale Central Authentication Service (CAS) (e.g. user
details stored in a CAS)

4.3.3 Access control

When the authentication is taken care of and each user is accepted or rejected, it
is time decide whether the current user should be allowed to access the requested
resource or not. This is what we call access control or authorization. The Acegi
Security System introduces two different authorization principles:

• Role-based authorization

• ACLs

When using role-based authorization, all the users are divided into groups which
are associated roles. Administrators may be associated with ROLE ADMIN, while
moderators are associated with the ROLE MODERATOR role and regular users get
the ROLE USER role. This may be sufficient in some situations, but we run into
trouble if each user should be allowed to edit and change their user details. There
is no way to distinguish between users, so a logged-in user is allowed to change
the details of every other user, theoretically. One solution to this challenge is called
Access Control List.

An ACL is a list that:

for each object, (. . .) lists users and their permitted access rights. The
ACL may contain a default, or public entry.

This means we, in Acegi are able to specify who (Authentication), where (Method-
Invocation) and what (e.g. a domain object). Acegi provides a simple set of classes
and interfaces that is almost usable out-of-the-box. Additionally, Acegi implements
a class named JdbcDaoImpl. This class is used when ACL information from a
database. More details on how ACL is implemented in Acegi and how to use it,
is found in [5].

47

4.4 SUMMARY

In this chapter we have discussed some important security properties of a couple
of important Spring modules including error handling, and how two of the seven
Spring modules influence security. Even though, the Spring framework is not ad-
dressing important web application security functionality like authentication and
access control which is often needed in more advanced application. This is the ex-
act point where the Acegi Security System complements Spring. It provides the
missing services and is built on the same principles as Spring itself.

48

CHAPTER5
STRUTS SECURITY

In this chapter, we will elaborate on Struts functionality and how it influences se-
curity. The first section discusses error handling and the following ones focus on
important topics like security in MVC components, input validation, and access
control.

5.1 ERROR HANDLING

As we saw in Spring, error handling in Struts also means proper exception handling.
Based on the same reasons that are mentioned in section 4.1, it is very important
that web application frameworks like Struts provide proper functionality to take
care of these exceptions securely.

Since Struts 1.1, the tag called <global-exceptions /> has been part of the Struts
config file. A sample configuration is given in listing 5.1.

Listing 5.1: Catching global exceptions in a secure manner� �
1 <s t r u t s −con f i g>
2 <global−except ions>
3 <except ion type=” java . lang . NumberFormatException ”
4 path=” /WEB−INF/ j s p / e r r o r s /numberformat . j s p ” />
5 </ global−except ions>
6 </ s t r u t s −con f i g>� �

This setup ensures that all NumberFormatExceptions thrown by the Struts appli-
cation are caught and the user is forwarded to a JSP that describes the error in
a user-friendly manner. All exceptions should be treated this way, probably also
objects of the Exception base class.

5.2 STRUTS MODEL

Since Struts does not provide any classes or interfaces related to the model, the de-
velopers are responsible for the security in this module. Anyway, like we mentioned
in section 3.4, there are several frameworks available that may ease this task. The
important point is that all the metacharacters of the model subsystems are identi-
fied and properly escaped. For instance, if we use plain JDBC to pass queries to a
database, we have to make sure that ’-characters are somehow taken care of.

5.3 STRUTS VIEW

As discussed in section 3.4.2, the view component of Struts web applications mainly
consists of JSPs using taglibs. The main task of these tag libraries is to render

49

HTML pages and nothing else. One of the largest security risks related to this page
rendering (notice that this is the exact point where the data is leaving our subsystem
and entering the browser), is cross-site scripting [23]. Looking back to the solutions
sketched in section 2.4, all the tags found in these taglibs that are outputting data,
are required to escape all HTML metacharacters.

The most common tag found in Struts’s taglibs that is outputting data, is <bean:write
/>. This tag is capable of printing beans, bean properties, HTTP headers, re-
quest parameters and because the data found in these variables if often dictated
by the user, all HTML metacharacters should be properly HTML-encoded. After
some source code research, we conclude that the Struts bean taglib handles these
metacharacters pretty well.

5.4 STRUTS CONTROLLER

When we discussed the Struts controller in section 3.4.3, we stated that it consists
of five different modules. In terms of security, we think that the Actions are most
important because their execute() method is dealing directly with the submitted
request parameter without any validation. There are at least two methods that may
be extended to ensure proper request parameter validation:

1. We can do the validation in the execute() method of each Action using
request parameters.

2. We can overload the validate() method of the ActionForm and use it vali-
date request parameters.

We prefer the last alternative because it separates that validation from the rest of
the business code in execute().

5.5 INPUT VALIDATION

Looking back to section 2.1.2, input validation is about ensuring that our web appli-
cation is getting the expected input within the expected domain and range. Struts
provides input validation through the module called Struts Validator. It includes
functionality both for client- and server-side validation, but in this project we con-
centrate on the server-side since validations at the client side are inherently inse-
cure.

In Struts, the form beans are responsible for the validation. To enable vali-
dation, the developers only have to let their form beans extend ValidatorForm
or ValidatorActionForm instead of the plain ActionForm class. Then, when the
ActionServlet calls validate() on this form, it looks for a related entry in a file
called validation.xml. If we continue to use the example given in section 3.4.3, a
validator for the form bean named “loginForm” may be configured like we show in
listing 5.2.

Listing 5.2: validation.xml for loginForm� �
1 <?xml version=” 1.0 ” encoding=” ut f−8” ?>
2

3 <!DOCTYPE form−v a l i d a t i o n PUBLIC
4 ”−//Apache Software Foundation //DTD Commons Va l i da to r

Rules Conf igura t ion 1.0//EN”
5 ” h t t p : // j a k a r t a . apache . org /commons/ dtds / v a l i d a t o r 1 0 . dtd ”

>

50

6

7 <form−v a l i d a t i o n>
8 <formset>
9 <form name=” loginForm ”>

10 < f i e l d proper ty=” username ” depends=” requ i red ” >
11 <arg0 key=” l a b e l . username ” />
12 </ f i e l d>
13 < f i e l d proper ty=” password ” depends=” requ i red ”>
14 <arg0 key=” l a b e l . password ” />
15 </ f i e l d>
16 </ form>
17 </ formset>
18 </form−v a l i d a t i o n>� �

This is a simple validator only stating that the user is required to fill in something
in the two textboxes. This is only one of the validators that are provided by Struts
Validator module. Some of the others are:

mask
Allows the developer to specify a regular expression that the input should
match. If it does not, the validation fails.

range
The range validator is used to check if the given value is within the expected
range. If we specify that the minimum value is 1 and the maximum is 4, then
the validation succeeds only if 1, 2, 3, or 4 is given by the user.

minLength
minLength is used to specify the minimum number of letters that an inputted
string should consist of (e.g. a password must be at least five characters long).

maxLength
maxLength is the opposite of minLength. It specifies the maximum number of
letters that are accepted in a string.

date
The date validator checks if the given date corresponds to a legal date format.

In addition to the validators provided by Struts, the developers are encouraged to
develop more advanced validators to fill their requirements. In an example given
by [32], a validator that checks if two HTML text fields are equal is developed.

We recognize that Struts Validator uses the whitelisting approach we discussed
in section 2.1.4. Each validator lists the values, ranges, formats etc. that should be
accepted, instead of trying to identify all deniable input. This design decision is one
of the Struts Validator advantages compared to e.g. custom solutions.

5.6 ACCESS CONTROL

Since Struts is an extensible framework, it provides extension points for different
access control implementations. However, as [28] mentions, there are mainly two
ways to secure Struts applications:

• Using container-managed security

• Using application-managed security

51

Container-managed security means that we are using the functionality found in
the Servlet container to enforce proper access control, while application-managed
security is related to the functionality implemented by Struts. Since we are focusing
on Struts, we will concentrate on access control in terms of application-managed
security in the rest of this section.

The access control mechanisms found in Struts is mainly based on roles, also
known as role-based access control. Each user is assigned a role or a set of roles
where each role is associated with a specific set of privileges. If a user tries to access
a page which requires a role that the user is not connected to, access is denied.

When it comes to implementation, the access control may be part of several
layers depending on the application’s requirements. [28] suggests three different
solutions:

• Implement the access control in terms of execute() in Actions and bean
property checks in the JSPs.

• Implement the access control by extending the RequestProcessor class found
in Struts API.

• Implement the access control by using Servlet filtering.

5.6.1 Access control in Actions and JSPs

Implementing access control in terms of Actions and JSPs is a simple way to achieve
proper access control in Struts applications. The idea is to save a User object in the
session during the login procedure, then, when a page with restricted access is
requested, the JSP checks if there is a User object in the session having the required
roles. If these checks complete successfully, access is granted. Otherwise an error
message or page with limited functionality is returned to the user.

Another variant of this solution is to do all the authorization checks in the
Action class. This approach scales better than the previous solution and it is easier
to get things right.

One of the main drawbacks using this approach, is the that direct access to
the JSPs are allowed as long as they are not placed in folder within the WEB-INF
directory of the web application.

5.6.2 Extending the RequestProcessor

Every request received by the ActionServlet are handed off to the RequestProcessor.
This class includes a method named processRoles(...) which may be overridden
in a subclass to implement a proper access control. [28, 32] develops an example
using this approach. Additionally, the RequestProcessor contains an even more
generic method called processPreprocess(...) that may be overridden if the
role-based access control is insufficient.

This approach still suffers from the same drawback as mention in the previous
section, there is no way to deny direct access to the JSPs.

5.6.3 Access control through Servlet filtering

Servlet filters were introduced in the Servlet 2.3 specification. A Servlet filter can
provide a quite powerful access control if it is combined with Struts Actions and

52

JSPs because the filter may be applied to an URL or set of URLs. Notice that Servlet
filtering is the main principle used in the Acegi Security System discussed in section
4.3.

A Servlet filter is a Java class that is executed before the request is handled and
possibly, after the response is sent back to the client. This allows the web application
to do all authentication and authorization before the application code is executed.
This organization leads to a loose coupling between important security concerns
and the application logic and it also allows the developers to reuse large parts of
the authentication- and authorization logic in several projects.

5.7 SUMMARY

In this chapter we have discussed how Struts implements error handling to avoid
giving away too much information to attackers (e.g. stack traces), how each of
the MVC components is implemented to avoid metacharacter problems and other
vulnerabilities, and how the Struts Validator works. The final section discusses three
different ways to implement access control in Struts applications.

53

54

CHAPTER6
JAVASERVER FACES SECURITY

JavaServer Faces security is quite a sad story. From the very beginning, JSF has
been developed to suit several needs and security was not one of them. This is
reflected in a lot of written material, among them [45], which has devoted two out
of over 600 pages (!) to security. In this chapter we will discuss the functionality
JSF actually implements to improve security.

6.1 ERROR HANDLING

JSF provides only a limited set of error handling functionality. If we look back
to the event listener signatures we sketched in section 3.5.2, we see that these
methods do not throw exceptions. This means that every listener is required to catch
the exceptions that are thrown and handle them properly. JSF uses this approach
mainly because it allows each web application to convert every thrown exception
into appropriate error messages that are shown to the user when the HTML form is
redisplayed. By [45] this should lead to a more user friendly application because it
is unnecessary to forward the user to a more generic error page.

From a security point of view, the JSF approach alone is not enough. The Java
compiler ensures that there are no unhandled exceptions as long as they are not ex-
tending RuntimeExceptions. If such an exception is thrown, additional measures
are required. However, since JSF is built on top of the Servlet API and the appli-
cations are run in web containers, it is possible to use error handling mechanisms
provided by this API. If all the related exceptions are identified and specified in
web.xml, the user is forwarded to a generic error page if these errors occur.

6.2 METACHARACTER HANDLING

As we discussed thoroughly in chapter 2, JSF has to ensure that every metacharacter
that is passed to subsystems, is properly escaped. Since JSF only cares about the
web layer, only the metacharacters found in this layer should be taken care of by
the framework. The responsibility for metacharacters found in other subsystems
(e.g. DBMS) is handed over to the developer or to another framework if an Object
Relational Mapping (ORM) solution is used.

Web layer metacharacter handling is quite a challenge when using JSF because
of the extensive use of components. As we stated in section 3.5.1, each component
is associated with at least one Renderer. Each Renderer is responsible for convert-
ing an JSF component into an appropriate format. The default implementation of
JSF comes with a HTML 4.01 RenderKit (a collection of HTML Renderers). Each
of the Renderers in the RenderKit is responsible for proper HTML encoding of user
strings to avoid cross-site scripting vulnerabilities. We have done some research on

55

MyFaces 1.1.2 and it seems to us that the HTML 4.01 RenderKit ensures proper
HTML encoding.

JSF is developed to be independent of view technology, but the HTML RenderKit
is the only default implementation provided the framework. [45] encourage devel-
opers to write custom RenderKit implementations for SVG, XML, etc. However,
it is very important that the Renderers identify all metacharacters found in these
technologies to avoid security vulnerabilities in custom RenderKits.

6.3 INPUT VALIDATION

Input validation is one of the areas where JSF do quite a good job if we disregard
client side validation. JSF does not support JavaScript validation out of the box, but
it is possible to develop custom validators that support client side validation [45].
It is also provided in the JSF-Comp project (section 6.6.2).

The JSF server side validation may be split into two groups, each containing
several components:

• Standard validators

– Required

– Double range validator

– Length validator

– Long range validator

• Converters

– Boolean converter

– Byte converter

– Character converter

– Date Time converter

– Double converter

– Float converter

– Integer converter

– Long converter

– Number converter

– Short converter

The standard validators above is called in the JSF life-cycle phase called process
validations, discussed in section 3.5.5.3. If the required attribute is set on an input
component, the required validator ensures that no empty value is accepted. The
other three validators bundled with JSF are quite self-explanatory:

• Double range validator
This validator ensures that the user input may be converted to a double value
and that it is respecting the minimum and the maximum values specified by
the application.

• Length validator
The length validator ensures that given input is at least as long as the mini-
mum attribute specifies, but not longer than the value specified by the maxi-
mum attribute.

56

• Long range validator
The long range validator is similar to the double range validator. It ensures
that the given value may be converted to a long value and that it respects the
specified range.

If validation errors occur, these errors are reported and the JSF execution jumps to
the render response phase.

If the validation succeeds, the rest of the validation is carried out in the update
model values phase (section 3.5.5.4) by converters. JSF calls the correct converter
based on the data type of the variable that input is assigned to. JSF provides ten
different converters and each developer may create custom ones if needed. If any
conversion fails, the JSF continues in the render response phase just like we saw
when the validation failed.

6.4 AUTHENTICATION

JSF provides not no direct support for authentication services. However, it is pos-
sible to use the authentication and authorization scheme supported by the Servlet
API through servlet filtering. This approach is similar to the one used by Acegi Se-
curity System, discussed in section 4.3. Since this framework does not depend on
Spring, it is possible to use it together with JSF as well. We discuss a custom Acegi
Security System for JSF in section 6.6.2.

6.5 ACCESS CONTROL

JSF does not implement any access control. If it is needed, which it often is, the
developer has to use the access control mechanisms provided by the Servlet API
and the web containers, or design a custom solution. The access control provided
by the containers, is illustrated in listing 6.1 [44]. Notice that we referred to this
access control model as container-managed security in 5.6.

Listing 6.1: Web container access control� �
1 <?xml version=” 1.0 ” encoding=”UTF−8” ?>
2 <!DOCTYPE web−app PUBLIC ’−//Sun Microsystems , Inc . / /DTD Web

App l i c a t i on 2.3//EN ’
3 ’ h t t p : // java . sun . com/ dtd /web−app 2 3 . dtd ’>
4

5 <web−app>
6 . . .
7 <!−− De f in e a s e c u r i t y c o n s t r a i n t on t h i s a p p l i c a t i o n −−>
8 <s e c u r i t y−c o n s t r a i n t>
9 <web−resource−c o l l e c t i o n>

10 <web−resource−name>Admin pages</web−resource−name>
11 <ur l−pat te rn>/admin/∗</ ur l−pat te rn>
12 </web−resource−c o l l e c t i o n>
13 <auth−c o n s t r a i n t>
14 <!−− Thi s r o l e i s not in the default use r d i r e c t o r y

−−>
15 <ro le−name>admin</ ro le−name>
16 </auth−c o n s t r a i n t>
17 </ s e c u r i t y−c o n s t r a i n t>
18

57

19 <!−− S e c u r i t y r o l e s r e f e r e n c e d by t h i s web a p p l i c a t i o n −−>
20 <s e c u r i t y−r o l e>
21 <d e s c r i p t i o n>
22 The r o l e tha t i s requ i red to log in to the Manager

App l i c a t i on
23 </ d e s c r i p t i o n>
24 <ro le−name>admin</ ro le−name>
25 </ s e c u r i t y−r o l e>
26 . . .
27 </web−app>� �

This example adds access control to the admin directory of the web application.
To get access to files within this directory, a user has to be logged in and associated
with the admin role. In our example, the admin role is the only registered role.

6.6 JSF SECURITY INITIATIVES

Several people has recognized the security disadvantages and a few initiatives have
been started to develop solutions that integrate with JSF, providing proper authen-
tication and authorization. In this section we will discuss a couple of these projects,
JSF-Security Components [63] and JSF-Comp [62].

6.6.1 JSF-Security

By default, JSF uses four scopes where variables may be saved. These are:

Application scope
Variables saved in this scope are available for the entire life of the application.

Session scope
Variables saved in this scope are available as long as the user’s session is valid.

Request scope
Variables saved in this scope are only available during the current request.

Page scope
Variables saved in this scope are only available on the current page.

To implement its functionality, JSF-Security provides a new scope called securityScope
where all the related variables are stored. When they are placed in this scope,
they are available as long as the session is valid, similar to the session scope. The
variables implemented by the JSF-Security project provides important functional-
ity connected role-based access control. The variable expressions provided by this
project are :

Table 6.1: JSF-Security variable expressions [63]

Variable expression Action
#{securityScope.securityEnabled} Returns false if the user is not authenti-

cated or if no security is installed.
#{securityScope.remoteUser} If an is user is authenticated, the asso-

ciated username is returned.
#{securityScope.authType} Returns a string indicated what type of

authentication is being used.
Continued on next page

58

Variable expression Action
#{securityScope.userInRole[’roleList’]} Returns true if the user is assigned to

at least one of the roles listed in the
comma separated list named ’roleList’.

#{securityScope.userInAllRoles[’roleList’]} Returns true if the user is assigned to
all the roles listed in ’roleList’.

These expressions may be plugged in the JSPs like we show in listing 6.2.

Listing 6.2: Web container access control� �
1 . . .
2 <!−− Only v i s i b l e i f s e c u r i t y i s not enab led −−!>
3 <h : panelGroup rendered=” #{! s ecur i t yScope . secur i t yEnab led } ”

>
4 <h : outputText value=” Secu r i t y i s not enabled . Access

denied . ” />
5 </h : panelGroup>
6

7 <!−− Only v i s i b l e i f s e c u r i t y i s enab led −−!>
8 <h : panelGroup rendered=”#{secur i t yScope . secur i t yEnab led } ”>
9

10 <!−− Thi s l ink i s on ly v i s i b l e i f the u s e r i s a s s i g n e d
the ’ user ’ r o l e . !−−>

11 <h : commandLink . . . rendered=”#{secur i t yScope . user InRole
[’ user ’] } ”>

12 <h : outputText value=” Edi t user d e t a i l s ” />
13 </h : commandLink>
14

15 <!−− Thi s l ink i s on ly v i s i b l e i f the u s e r i s a s s i g n e d
the ’ admin ’ r o l e . !−−>

16 <h : commandLink . . . rendered=”#{secur i t yScope . user InRole
[’ admin ’] } ”>

17 <h : outputText value=” Access admin pages ” />
18 </h : commandLink>
19 </h : panelGroup>
20 . . .� �

This example shows how the JSF-Security expressions are used to render only
the components that are accessible for the user that is logged in. If security is not
enabled, no links are shown. Otherwise if there is a logged in user, one or two links
are shown depending on the roles that are assigned to the logged in user.

6.6.2 JSF-Comp

The JSF-Comp project provides several JSF components that extend the default
functionality implemented by the framework [62]. These components are:

Chart Creator
Allows the developer to create JFreeCharts on JSF pages.

Client Validators
These components add client validation support to JSF.

59

Acegi-JSF components
The components found in this package implement a JSF version of the tags
found in Acegi Security System, discussed in section 4.3.

Excel Creator
Excel creator allows JSF to export dataTables to Excel with one click.

OnLoad
Allows JSF actions to be run on page load instead of form posting.

In the following we will concentrate on the Acegi-JSF components, since these are
the only components relevant in this security discussion.

The goal of Acegi-JSF components is develop components that integrate JSF
with the Acegi Security System with JSF. Through their components, this project
provides JSF with functionality similar to the role-based access control model we
found in JSF-Security (see section 6.6.1).

One Acegi-JSF component is exemplified in listing 6.3.

Listing 6.3: Authorization component provided by Acegi-JSF� �
1 . . .
2 <authz : au thor i ze i f A l l G r a n t e d=”ROLE SUPERVISOR”>
3 Components tha t are only v i s i b l e to the user s tha t

s a t i s f y the requirements here . . .
4 </ authz : author i ze>
5 . . .� �

This example illustrates how the role-based access control may be enforced in a JSF
setting. The ifAllGranted attribute may specify a list of roles. If the current user
is not assigned to all of these roles, the child components are not rendered.

6.7 SUMMARY

In this chapter we have discussed to what degree security is enforced in JSF web
applications. We have pointed out why exception handling in listeners along, is
not enough and that metacharacters are handled in the HTML 4.01 RenderKit.
Next, we have touched validators provided by JSF, authentication, authorization
and a couple of projects that extend the default authentication and authorization
functionality provided by JSF.

60

CHAPTER7
STRUTS ACL EXTENSION

In the previous four chapters, we have elaborated on important architectural prin-
ciples used in three popular Java web application frameworks and how these influ-
ence on web application security. In this chapter we will discuss an Internet banking
web application to illustrate some of the security shortcomings of these frameworks.
In the last section we will sketch how ACLs may be implemented in and integrated
with Struts.

7.1 CASE: INTERNET BANKING APPLICATION

In the last ten years, Internet banking applications have become very popular. They
allow us to access our bank accounts, transfer money, get updates on our invest-
ments, etc. from all over the world. These services only require a browser (e.g.
a HTML browser or Wireless Markup Language (WML) browser) and an Internet
connection. Even if this has increased the flexibility of banking services, it has also
challenged the web application security. No bank want to offer insecure services
that allow crackers to get in control of their customer’s accounts.

To provide a secure Internet banking service, a lot of security threats at different
levels have to be considered. First of all there is a need for strong authentication.
The bank has to make sure that each customer may identify themselves uniquely
to the services and it should not be possible for users to act on behalf of others.
Next, there is a need for a flexible access control mechanism. Each customer is
only allowed to transfer money from a limited set of accounts, while the operators
in the bank itself should be allowed to access all the accounts in order to execute
transactions and get paid for their services.

Companies that use these banking services, often have some additional require-
ments. Usually, a group of users is granted access to their banking accounts. It
seams quite clear that a role-based access control model would be insufficient in
these applications. Access to business objects like accounts, should be granted on a
per-user basis and not based on their roles.

Several other threats related to Internet banking services are connected to the
data transfer itself. If a cracker is listening to the communication link, he or she
should not be able use that transferred information to defeat the security of the
application. SSL solves some of these problems by introducing cryptography, but
web application developers still need to keep attention to replay attacks and other
groups of attacks.

In the rest of this chapter, we will concentrate on the access control part of an
Internet banking service. We will assume that the access control implemented in
the web application, is the only access control used by the application, and that
the data is stored in a file or a database. This is a very unrealistic simplification if
we think of the large production systems needed to serve thousands of concurrent
users, but the access control principles are more or less the same.

61

7.2 FRAMEWORK EXTENSION REQUIREMENTS

Every developer designing a framework needs proper knowledge of patterns and
best practices to ensure that the framework is usable in a wide range of applications.
Additionally, he or she needs to have a very good understanding of the technologies
the framework uses and is build on top of. In Java, this often means the Servlet
API, the reflection API, HTTP, etc.

To design a framework extension the already mentioned requirements are still
important, but there are several other general requirements as well:

Framework integration
To convince a developer to use a framework, the framework has to provide
some advantages that he or she finds useful. Well integrated modules or
increased overall security are two such advantages. This means that a new
standalone security framework (e.g. JGuard [40]) is not a good solution for
our task. In a well designed framework, it should be possible to configure all
the modules using a single interface (e.g. XML file).

Dependencies
Developing a framework that depends on a lot of extern and evolving APIs is
not a good approach either. If one of the APIs change, the framework code
itself, also has to be rethought. A better approach is to based the framework
on stable APIs and program to interfaces. This leads to loose couplings, and
it should be a fair task to make the framework work with future versions of
external dependencies.

Clearly defined interfaces
We have already mentioned how important stable and clear interfaces are,
when choosing framework dependencies. However, we also have to define a
clear interface for the functionality provided by our framework. No developer
is going to use our framework if he/she has to change their applications every
time a framework bug is fixed.

To implement ACLs in a framework, there are some additional requirements:

Deny all access by default
Denying all access by default is a very important principle in software security.
It should also be supported in a framework setting because it ensures that no
default settings compromise the security of the user web application.

Centralize access control
Centralizing access control decisions is another important principle that eases
the job the developers/maintainers. If he or she suspects that there are errors
in the access control, there should be possible to resolve it by inspecting a
predefined set of files, database tables, etc.

Flexibility
An ACL framework implementation should be quite customizable in order to
fit the need of quite different applications. It should support access control at
several levels from object access down to object field access.

7.3 WHY STRUTS?

Before we move on to the high level architecture of the ACL implementation/ inte-
gration code, we will point out why we chose to work with Struts instead of Spring
or JSF.

62

Spring itself, does not support ACLs at all. However, the Acegi Security System
implements both ACLs and a role-based access control model. Since this project
uses IoC as well, it should be a fairly easy task to implement a web application
based on Spring using ACLs. Hence, we do not think there is a need for another
Spring ACL implementation.

On the other side, we have JSF. Even if it has been under development since
2001, it is still changing due to developer requests and the JSF 1.2 specification is
still not considered stable. The JSR process is making slow progress, and we think
that there is more development needed before JSF is ready to use in enterprise
applications. A similar solution to the one we sketch in 7.4 may be possible to use
with JSF too, but as long as the APIs are unstable, we think there is no need for
advanced and complicated access control mechanisms either.

Based on these considerations, we chose to extend Struts because it has quite
a stable API, is widely used and tested and the default implementation does not
provide ACL support.

7.4 ASPECT-ORIENTED ACCESS CONTROL IN STRUTS

To remove the access control limitations found in Struts, we suggest implementing
ACLs using AOP. An overall architecture diagram is given in figure 7.1.

Figure 7.1: ACL architecture overview

In this figure, Account represents a domain object, AccountAclAspect repre-
sents an aspect that is intercepting all the method calls to Accounts to enforce

63

proper access control. The AccountAclAspect delegates most of its work to the
AccountAclProvider. This provider accesses an XML-file, a DBMS or similar to
check whether the access should be granted or not.

7.4.1 Framework abstractions

In order to make the ACL functionality more usable and generic, a framework imple-
mentation of this access control should provide some well-documented interfaces
and some classes that implements them. We suggest that the framework should
include a(n):

AclAspect
The AclAspect should provide generic aspect functionality that is needed to
intercept all the method calls to the associated domain object. This default
aspect should then ask an AclProvider whether this access should be allowed
or not. If the access is granted, the requested method is invoked, otherwise
an NotGrantedException should be thrown. This will force the application
to take action if access is denied.

AclProvider
An AclProvider is an abstract class providing the interface that every AclProvider
subclass should support. As we indicated in figure 7.1, the AclProvider
should at least provide methods for create, read, update, and delete opera-
tions.

XmlAclProvider The XmlAclProvider class extends the abstract AclProvider
class to support ACLs saved in an XML-file.

JdbcAclProvider The JdbcAclProvider class is similar to the XmlAclProvider,
but instead of supporting ACLs in XML-files, it supports ACLs saved in a
DBMS.

To connect the aspect and the domain objects, we suggest that Struts configura-
tion Document Type Definition (DTD) should extended to support tags we illustrate
in listing 7.1

Listing 7.1: Extended Struts configuration� �
1 <?xml ver s ion=” 1.0 ” encoding=”UTF−8” ?>
2

3 <s t r u t s −con f i g>
4 . . .
5 <domain−c l a s s e s>
6 <domain−c lass>
7 <class−name>beans . Account</ class−name>
8 <acl−aspec t>
9 <aspect−name>aspec t s . AccountAclAspect</ aspect−name>

10 <!−− A l l method c a l l s are i n t e r c e p t e d by d e f a u l t ,
but i t may ov e r r i dd en by the i n t e r c e p t s tag . −−!
>

11 < i n t e r c e p t s>
12 < l i s t>
13 <item>get ∗</ item>
14 <item>s e t ∗</ item>
15 </ l i s t>
16 </ i n t e r c e p t s>

64

17 </ ac l−aspec t>
18 </domain−c lass>
19 </domain−c l a s s e s>
20 . . .
21 </ s t r u t s −con f i g>� �

In this listing we see how an aspect is associated with the Account class. It also
shows how to let the aspect only intercept method names starting with get and set.

7.4.2 ACL management

One of the ACL challenges, is proper management. If a single entry is wrong in
the ACL, it may compromise parts of the system security. Let us assume that we
use an access control model in our Internet banking application that combines roles
and ACLs. Each account owner has debit and credit rights for his/her accounts.
Additionally, the bank staff may be assigned a role called “operator” which allows
them to debit and credit a set of accounts. A single error in an ACL e.g. “User A is
allowed to debit and credit user B’s account”, may lead to both bad reputation and
economical losses.

In our design, we would like to automate as much as possible of the ACL man-
agement process. Every time a new account (or other domain object in the general
case) is created, the creator is assigned proper rights which usually include read
and update (write) for all the domain object properties. In our banking example,
this means that we have to do some customization because we will not allow the
user to change account metadata like account number, account owner, etc.

In a business setting, there are situations where several users should be able
to access a single account. If it possible to keep this functionality out the web
application and include it in a local application instead, it should because it reduces
the risks related to the ACL management. Otherwise, it is possible to associate a
role “acl-admin” to every user that is allowed to change ACLs.

7.4.3 Struts ACL advantages

The solution we have discussed in this section, have several advantages over custom
access control implementations:

Modularity
Access control based on AOP has several advantages compared to traditional
access control that is coded into every method that accesses restricted prop-
erties. If we use AOP, all this code may be place in single aspect that is
weaved into the application. A default aspect may be configured to inter-
cept all method calls for a class of objects, such that access to these objects is
restricted by default.

ACLs are stored in a limited set of tables, files, etc.
When ACLs are stored in a limited a set of files, there is somewhat easier to
main them. It is also possible to develop simple ACL maintaining tools that
could reduce the risk of introducing configuration errors.

Security by default
Our extension provides security by default as long as at least the default aspect
is connected to each of classes in the domain model. This aspect denies all
access to object properties of the associated class by default.

65

Framework support instead of custom solutions
By integrating ACLs into a framework, there is often a lot more users that use,
review, test and debug this functionality than a custom solution developed by
the company itself. This often leads to a better architecture and more scalable
code and the developers may focus on the task at hand instead of making
creative solutions to framework limitations.

7.4.4 Struts ACL disadvantages

Even if we think our design looks quite promising, we have identified several fac-
tors that should be taken into consideration before a full scale implementation is
planned:

Not using the Java Authentication and Authorization Service (JAAS) API
This is one of the main disadvantages of our approach: even if the Java Au-
thentication and Authorization Service (JAAS) API is shipped with the Java
Development Kit (JDK), we do not consider it in our Struts extension. A
Struts ACL implementation should probably use the JAAS API instead of our
custom classes simply because it is more flexible and more thoroughly tested.

Testing and Debugging
Unit tests are usually more difficult write when introducing AOP. AOP may
connect objects such that it is impossible to test one object without testing
three other simultaneously.

AOP, in general, may increase the time needed to resolve bugs because method
calls are intercepted behind the developer scenes, making it more difficult to
follow the application execution.

Does not protect URLs
We have chosen to place our access control model at the domain object level
which means the higher-level elements like URLs are not protected by this
model. Our ACL only ensures that the authenticated user will not be able to
access or edit restricted values without proper permissions.

To protect URLs, the default implementation of Struts provides a role-based
access control model. It is fairly straightforward task to combine this model
with our ACL implementation.

Introduces AOP in a non-AOP framework
When we use AOP for ACLs in Struts, we introduce a new way of implement-
ing Struts functionality that is quite different from the rest of Struts. This may
lead to developer confusion because the architecture is not consistent within
the framework. To resolve this problem, it is possible to redesign parts of
Struts and introduce other aspects where suitable, e.g. logging.

7.5 SUMMARY

In this chapter we have discussed how ACLs may improve the access control security
in Struts web applications. We use an Internet banking application for motivation
and provide a general architecture diagram showing and describe how different
components in the design interact. In the last two sections we discuss some advan-
tages and disadvantages related to our approach, and suggest some alternatives.

66

CHAPTER8
CONCLUSION

The services provided by web applications, has increase a lot in number and com-
plexity the last 5 years. Business critical applications like banking services and
shopping portals let us pay our bills and buy food without leaving the computer
screen. To get customers, these services have to focus on usability, but also security.
Sadly, if both are not feasible, usability is often preferred.

In this project we have focused on security pitfalls found in these web appli-
cations and what Java/Java EE frameworks do to avoid them. We have analyzed
three widely used frameworks – Spring, Struts, and JavaServer Faces – and suggest
a solution to how the overall security may be improved in applications based on
Struts and, possibly, JSF.

We have found out that using a web application framework makes sense in terms
of security. All three frameworks that we have researched, do implement HTML-
encoding such that a lot of potential cross-site scripting problems are avoided. Be-
cause Spring tries to fill the role of full-stack application framework, it also ensures
that a lot SQL-injections are avoided. However, as we have discussed in section
4.2.1.2, the implementation is not bulletproof so the developer still needs to focus
metacharacter handling.

Struts and JSF only concentrate on the web layer leaving all the metacharac-
ter handling, except HTML-encoding, to the developer. Anyway, there are tools
available (e.g. Hibernate) that may ease the implementation of the DAO layer.

One major security disadvantage we have identified in Struts and JSF, is the
lack of a flexible access control model. They both support a quite limited role-based
access control, but fail to provide standardized functionality that is needed in larger
web applications where domain objects are tied to users rather than roles.

To provide better support for user-based access control when using web appli-
cation frameworks, we have designed a Struts extension that supports ACLs at the
domain object level. It is based on Aspect-Oriented Programming and is configured
in struts-config.xml, just like the other parts of an Struts application.

In the last part, we discuss several alternatives that may be worth thinking
through before a full-scale design and implementation takes place. One other im-
portant decision is whether an implementation should be using the Java Authenti-
cation and Authorization Service (JAAS) API provided by Sun Microsystems or not.
We think that both these approaches should be evaluated before the final decision
is made.

67

68

CHAPTER9
FUTURE WORK

Despite our work in this thesis, there is a lot of loose ends that still need to be taken
care of. In this chapter, we point out some of the topics that future work in the web
application framework security area should focus on.

9.1 PROTOTYPE(S)

Before designing and implementing a full-scale Struts ACL extension, there is a
need for evaluation of design flexibility and how suitable our design is in different
web applications. By developing working prototypes, it is also possible to evaluate
different designs. We suggest that at least two prototypes are developed:

• One prototype using our design

• One prototype based on JAAS API

These prototypes should focus on different security aspects, of course, but also
developer usability.

9.2 JSF CUSTOMIZATION/GENERALIZATION

When Struts ACL extension is developed, the next step could be developing similar
functionality that integrates with JSF. JSF is also failing to provide more advanced
access control mechanisms like ACLs. AOP may be a good approach here as well
because it may plug ACL functionality into existing JSF components, without chang-
ing the components themselves. However, a JSF ACL extension requires some more
research and thinking before it is designed (we refer to the requirements we stated
in section 7.2).

9.3 INVESTIGATE MORE PITFALLS

Even if we have concentrated on several threats mentioned in [23], there are still
large groups of flaws remaining. Some of them are:

• application denial of service

• insecure configuration management

• insecure storage

• buffer overflows

Doing research on how web application frameworks can be developed to counter,
or at least, reduce the likelihood of denial of service attacks or some of the other
threats, seems quite interesting.

69

9.4 RESEARCH MORE FRAMEWORKS

Adding more frameworks, is an another extension to this project. As we stated in
the introduction, [38] lists tens of other Java web application frameworks whose
security functionality may be researched.

Additionally, there are other popular web programming languages as well. PHP,
.NET, and Ruby are popular competitors to Java and there are frameworks available
for each of them. While PHP and .NET are widely known, Ruby on Rails is one of
the newest guys in the web application town. It is:

. . . an open-source framework that’s optimized for programmer hap-
piness and sustainable productivity. It lets you write beautiful code by
favoring convention over configuration [27].

All these three programming languages/frameworks could lead interesting secu-
rity research. Important topics are how metacharacters are treated, which access
control models are supported, etc.

70

APPENDIXA
FORM SOURCE

In this appendix we present the source code for a simple web page that is vulnerable
SQL-injection (see listing A.1). It prints the query that is executed before execut-
ing it. However, this example only works if the MySQL JDBC driver is configured
according to appendix F.2.

Listing A.1: Login form� �
1 <%@ page import=” java . s q l .∗ ” %>
2

3 <html>
4 <head>
5 < t i t l e>form . j s p</ t i t l e>
6 </head>
7 <body>
8 <%@ inc lude f i l e=” databaseConnect . j s p ” %>
9 <form action=” loginform . j s p ” method=”GET”>

10 <table>
11 <t r>
12 <td>
13 Username :
14 </ td>
15 <td>
16 <input type=” t e x t ” name=” username ” />
17 </ td>
18 </ t r>
19 <t r>
20 <td>
21 Password :
22 </ td>
23 <td>
24 <input type=” password ” name=” password ” />
25 </ td>
26 </ t r>
27 <t r>
28 <td></ td>
29 <td>
30 <input name=” submit ” value=” Submit ” type=” submit

” />
31 <input name=” r e s e t ” value=” Reset ” type=” r e s e t ” />
32 </ td>
33 </ t r>
34

35 </ table>

71

36 </form>
37

38

39

40

41 <%
42 Str ing username = reques t . getParameter (” username ”) ;
43 Str ing password = reques t . getParameter (” password ”) ;
44

45 i f (username != n u l l && password != n u l l)
46 {
47 Str ing sqlQuery = ”SELECT ∗ FROM users WHERE

username=’ ”+username+” ’ AND password=’ ”+password
+” ’ ; ” ;

48 out . p r i n t l n (” Execut ing query . . . : < br/>”) ;
49 out . p r i n t l n (sqlQuery) ;
50

51 out . p r i n t l n (”

”) ;
52 t r y
53 {
54 r s = statement . executeQuery (sqlQuery) ;
55 out . p r i n t l n (” I t e r a t i n g over r e s u l t s e t r s . . . < br/>”)

;
56 while (r s . next ())
57 {
58 out . p r i n t l n (” User : ”+r s . g e t S t r i n g (” username ”)+”

−− Password : ”+r s . g e t S t r i n g (” password ”)+” .<
br/>”) ;

59 }
60 }
61 catch (Except ion e)
62 {
63 out . p r i n t l n (” Query f a i l e d because you got a . . . < br

/>”) ;
64 out . p r i n t l n (e) ;
65 }
66

67 }
68 %>
69 <%@ inc lude f i l e=” databaseDisconnect . j s p ” %>
70 </body>
71 </html>� �

72

APPENDIXB
REGISTER USER SOURCE

This appendix illustrates another SQL-injection vulnerability. It is similar to the JSP
listed in appendix A and it is possible to inject all sorts of SQL statements. Again,
the MySQL JDBC driver has be configured according to appendix F.2.

Listing B.1: Register a new user� �
1 <%@ page import=” java . s q l .∗ ” %>
2

3 <html>
4 <head>
5 < t i t l e>r e g i s t e r u s e r . j s p</ t i t l e>
6 </head>
7 <body>
8 <%@ inc lude f i l e=” databaseConnect . j s p ” %>
9 <form action=” r e g i s t e r u s e r . j s p ” method=”GET”>

10 <table>
11 <t r>
12 <td>
13 Username :
14 </ td>
15 <td>
16 <input type=” t e x t ” name=” username ” />
17 </ td>
18 </ t r>
19 <t r>
20 <td>
21 Password :
22 </ td>
23 <td>
24 <input type=” password ” name=” password ” />
25 </ td>
26 </ t r>
27 <t r>
28 <td></ td>
29 <td>
30 <input name=” submit ” value=” Submit ” type=” submit

” />
31 <input name=” r e s e t ” value=” Reset ” type=” r e s e t ” />
32 </ td>
33 </ t r>
34

35 </ table>
36 </form>

73

37

38

39

40

41 <%
42 Str ing username = reques t . getParameter (” username ”) ;
43 Str ing password = reques t . getParameter (” password ”) ;
44

45 i f (username != n u l l && password != n u l l)
46 {
47 Str ing sqlQuery = ”INSERT INTO user s (username ,

password) VALUES (’ ”+username+” ’ , ’ ”+password+” ’)
” ;

48 out . p r i n t l n (” Execut ing update . . . : < br/>”) ;
49 out . p r i n t l n (sqlQuery) ;
50

51 out . p r i n t l n (”

”) ;
52 t r y
53 {
54 i n t nofUpdatedRows = statement . executeUpdate (

sqlQuery) ;
55 i f (nofUpdatedRows == 1)
56 out . p r i n t l n (nofUpdatedRows+” row were updated in

the database . ”) ;
57 e l s e
58 out . p r i n t l n (nofUpdatedRows+” rows were updated

in the database . ”) ;
59

60 }
61 catch (Except ion e)
62 {
63 out . p r i n t l n (” Query f a i l e d because you got a . . . < br

/>”) ;
64 out . p r i n t l n (e) ;
65 }
66

67 }
68 %>
69 <%@ inc lude f i l e=” databaseDisconnect . j s p ” %>
70 </body>
71 </html>� �

74

APPENDIXC
COOKIE PAGE SOURCE

The example given in listing C.1, is somewhat different than the examples we saw
in appendix A and B. It is vulnerable to cross-site scripting, and since it uses a
cookie to save session information, it is possible to inject scripts similar to those we
illustrated in section 2.2.3 to act on another user’s behalf.

Listing C.1: Page creating a cookie� �
1 <%@ page import=” java . u t i l . Date ” %>
2 <%@ page import=” java . net .∗ ” %>
3 <%@ page import=” java . s q l .∗ ” %>
4

5 <%
6 // Creat ing a cookie for the user en te r ing the web page . . .
7 Date now = new Date () ;
8 Str ing timeStamp = now . t o S t r i n g () ;
9 Cookie cookie = new Cookie (” RedirectTime ” , timeStamp) ;

10 cookie . setMaxAge(365∗24∗60∗60) ;
11 response . addCookie (cookie) ;
12 %>
13

14 <html>
15 <head>
16 < t i t l e>cookiepage . j s p</ t i t l e>
17 </head>
18

19 <body>
20 <%@ inc lude f i l e=” databaseConnect . j s p ” %>
21 <%
22 out . p r i n t l n (”Welcome to t h i s page . . . < br/>”) ;
23 out . p r i n t l n (” Your a s so c i a t e d s e s s i o n i d e n t i f i e r i s : ”)

;
24 out . p r i n t l n (cookie . getValue ()+”

”) ;
25 %>
26

27 <table>
28 <form method=” get ” action=” cookiepage . j s p ”>
29 <t r>
30 <td>
31 Comment :
32 </ td>
33 <td>
34 <input type=” t e x t ” name=”comment” />
35 </ td>

75

36 </ t r>
37 <t r>
38 <td></ td>
39 <td>
40 <input type=” submit ” name=” submit ” value=” Submit

” />
41 <input type=” r e s e t ” name=” r e s e t ” value=” Reset ” /

>
42 </ td>
43 </ t r>
44 </form>
45 </ table>
46

47

48

49

50 <%
51 Str ing comment = reques t . getParameter (”comment”) ;
52

53 i f (comment != n u l l)
54 {
55 comment = comment . t r im () ;
56 i f (! comment . equals (” ”))
57 {
58 Str ing sqlQuery = ”INSERT INTO xss (value) VALUES (’

”+comment+” ’) ” ;
59 out . p r i n t l n (” Execut ing query . . . : < br/>”) ;
60 out . p r i n t l n (sqlQuery+”

”) ;
61

62 t r y
63 {
64 i n t nofUpdatedRows = statement . executeUpdate (

sqlQuery) ;
65 i f (nofUpdatedRows == 1)
66 out . p r i n t l n (nofUpdatedRows+” row were updated

in the database . ”) ;
67 e l s e
68 out . p r i n t l n (nofUpdatedRows+” rows were updated

in the database . ”) ;
69 }
70 catch (Except ion e)
71 {
72 out . p r i n t l n (” Query f a i l e d because you got a . . . <

br/>”) ;
73 out . p r i n t l n (e) ;
74 out . p r i n t l n (”

”) ;
75 }
76 }
77 }
78 %>
79

80 Comments given so f a r :

81 <%
82 Str ing s q l = ”SELECT ∗ FROM xss ” ;

76

83 r s = statement . executeQuery (s q l) ;
84 i n t cNumber = 0;
85

86 while (r s . next ())
87 {
88 Str ing value = rs . g e t S t r i n g (” value ”) ;
89 out . p r i n t l n (”Comment ”+cNumber+” : ”+value+”<

br/>”) ;
90 cNumber++;
91 }
92 %>
93

94 <%@ inc lude f i l e=” databaseDisconnect . j s p ” %>
95 </body>
96 </html>� �

77

78

APPENDIXD
STEAL SESSION SOURCE

When an attack script has been injected, there is a need for an attacker controlled
page that can save the stolen information. One simple example page providing
this functionality is given in listing D.1. This example stores the information in a
database, but there is possible to extend the source code such that an email is sent
to the attacker each time fresh session information is hijacked.

Listing D.1: Saving the stolen session information� �
1 <%@ page import=” java . s q l .∗ ” %>
2 <html>
3 <head>
4 < t i t l e>
5 s t e a l s e s s i o n . j s p
6 </ t i t l e>
7 </head>
8

9 <body>
10 <%@ inc lude f i l e=” databaseConnect . j s p ” %>
11 S t e a l i n g a user s e s s i o n i d e n t i f i e r . . .

12

13 <%
14 Str ing fe tchedCookie = reques t . getParameter (” what ”) ;
15 out . p r i n t l n (”The forwarded cookie conta ins the

fo l lowing informat ion . . . < br/>”) ;
16 out . p r i n t l n (fetchedCookie) ;
17

18 // Saving s e s s i o n informat ion in the database
19 Str ing s q l = ” INSERT INTO s t o l e n s e s s i o n i n f o (value)

VALUES (’ ”+fetchedCookie+” ’) ” ;
20 i n t nofUpRows = statement . executeUpdate (s q l) ;
21

22

23 i f (nofUpRows == 1)
24 out . p r i n t l n (”
”+nofUpRows+” row were updated in

the database . ”) ;
25 e l s e
26 out . p r i n t l n (”
”+nofUpRows+” rows were updated in

the database . ”) ;
27

28 // Red i rec t ing back to the o r i g i n a l page
29 Str ing whatNext = reques t . getParameter (” whatnext ”) ;
30 i f (whatNext != n u l l && ! whatNext . equals (” ”))
31 {

79

32 out . p r i n t l n (”
Red i rec t ing to ”+whatNext+” . . . < br
/>”) ;

33 out . p r i n t l n (”<s c r i p t >document . l o c a t i o n . rep lace (\ ” ”+
whatNext+”\ ”)</ s c r i p t >”) ;

34 }
35 e l s e
36 {
37 out . p r i n t l n (”No whatnext−parameter given . . .

Red i r ec t ing to google . . . ”) ;
38 out . p r i n t l n (”<s c r i p t >document . l o c a t i o n . rep lace (\ ”

h t tp :// google . com\ ”)</ s c r i p t >”) ;
39 }
40

41 %>
42

43 <%@ inc lude f i l e=” databaseDisconnect . j s p ” %>
44 </body>
45 </html>� �

80

APPENDIXE
PREPARED STATEMENT SOURCE

In this appendix we present a somewhat updated version of the JSP listed in ap-
pendix B. However, in listing E.1 we use PreparedStatements instead of concate-
nating the query dynamically. This ensures that the SQL metacharacters are handled
properly and no SQL-injections are possible.

Listing E.1: Using a prepared statement� �
1 <%@ page import=” java . s q l .∗ ” %>
2

3 <html>
4 <head>
5 < t i t l e>form . j s p</ t i t l e>
6 </head>
7 <body>
8 <%@ inc lude f i l e=” databaseConnect . j s p ” %>
9

10 <form action=” prepared . j s p ” method=”GET”>
11 Input some t e x t to i n s e r t i n to the database :

12 <input type=” t e x t ” name=” t e x t F i e l d ” />

13

14 <input type=” submit ” name=” submit ” value=” Submit ” />
15 <input type=” r e s e t ” name=” r e s e t ” value=” r e s e t ” />
16 </form>
17

18 <%
19 // I n s e r t i n to the database
20 Str ing text = reques t . getParameter (” t e x t F i e l d ”) ;
21 i f (text != n u l l && ! text . equals (” ”))
22 {
23 // Dynamical ly bu i ld ing the query through s t r ing

concatenat ion
24 // Str ing s q l = ” INSERT INTO prepared VALUES (’ ”+text+

” ’) ” ;
25

26 // Using a prepared statement
27 Str ing preparedSql = ” INSERT INTO prepared VALUES(?)

” ;
28 PreparedStatement ps = connect ion . prepareStatement (

preparedSql) ;
29

30 // I n j e c t i n g the data i n to the precompiled query
31 ps . s e t S t r i n g (1 , text) ;
32

81

33 out . p r i n t l n (” Execut ing query . . . : < br/>”+preparedSql+”

”) ;

34

35 t r y
36 {
37 // Execut ing the dynamic query
38 // statement . executeUpdate (s q l) ;
39

40 // Execut ing the PreparedStatement object
41 ps . executeUpdate () ;
42

43 out . p r i n t l n (” Query completed s u c c e s s f u l l y .
”) ;
44 }
45 catch (Except ion e)
46 {
47 out . p r i n t l n (” Query f a i l e d because you got a . . . < br

/>”) ;
48 out . p r i n t l n (e) ;
49 }
50

51 }
52 %>
53

54

55

56

57 <%
58 // Fetch the data s to red in the database
59 out . p r i n t l n (”The database now conta ins the fo l lowing

va lues . . . : < br/>”) ;
60

61 Str ing s q l = ”SELECT ∗ from prepared ” ;
62 t r y
63 {
64 r s = statement . executeQuery (s q l) ;
65 i n t valNr = 0;
66 while (r s . next ())
67 {
68 out . p r i n t l n (” Value ”+valNr+” : ”+r s . g e t S t r i n g (”

value ”)+”
”) ;
69 valNr++;
70 }
71 }
72 catch (Except ion e)
73 {
74 out . p r i n t l n (” Query f a i l e d because you got a . . . < br/>”

) ;
75 out . p r i n t l n (e) ;
76 }
77 %>
78

79

80

81 <%@ inc lude f i l e=” databaseDisconnect . j s p ” %>

82

82 </body>
83 </html>� �

83

84

APPENDIXF
MYSQL AND JDBC

MySQL is an DBMS licensed under GNU GPL. In this appendix we will discuss some
of the security measures MySQL itself and the JDBC driver implements to improve
application security.

F.1 GENERAL SECURITY MEASURES

The most important security measure, is the access control. MySQL uses a fine-
grained ACL model where it is possible defined access rights per database table.
Some users are allowed to create and delete tables, whereas others are only allowed
to read and update the table contents. These access rights should be granted in a
very strict manner. Each user should not have access for more operations and tables
than needed.

You could ask what the point is using this sort of access control when you are
already using some sort of domain object- or other web application oriented access
control. The fact is that two levels of access control can reduce the performance of
the application. But, if there is a bug in one of them, the other could (probably!)
ensure that the application is not vulnerable to attackers. Additionally, practicing
defence in depth is a well-known and effective security principle stated by several
sources, [65, 70]. Notice that using predictable passwords may compromise this
access control completely because an attacker may act on another user’s behalf.

F.2 SEMICOLON AS METACHARACTER

Even if MySQL itself provides proper authentication and access control modules, the
company recognized that their DBMS were often involved in SQL-injection attacks.
To avoid these problems, they pointed out the importance of semicolon. The JDBC
driver looks for semicolon in the queries it is about to send to the DBMS and if one
is found, an Exception is thrown. This is the default behaviour of the driver, but it
is possible to use the allowMultiQueries parameter to disable this functionality [3].

There are several advantages and disadvantages connected to this approach.
The most important advantage is that the application security is improve by default.
Some of the disadvantages are:

Fail to identify other metacharacters
Metacharacters like # and ’ are still allowed. This means that an attacker may
still bypass or even add conditions the queries. These attacks may be used to
bypass application authentication or other restrictions.

Hide details to the developer
When the JDBC driver implements semicolon detection without pointing out
what the real problem is and how it can be solved, the developer will continue

85

to introduce vulnerabilities. Instead of throwing a generic MySQLSyntaxErrorException,
it would be better to throw a security exception indicating that the developer
should PreparedStatements to avoid these and similar problems.

86

ACRONYMS

Access Control List (ACL)

An ACL is one out of several ways to implement access control in software
applications. An ACL lists, for each object, users and their permissions [66].

Aspect-Oriented Programming (AOP)

AOP is a way to integrate a module (e.g. logging) containing a limited set
of functionality into a software application without intermingling the module
code with the business object. More details on how this is implemented in
Spring is found in section 3.3.3.

Application Programming Interface (API)

An API is an interface that is used when developing software application. It
allows a developer to focus on using the abstractions defined by API classes
and he/she does not have to care about all the implementation details. The
Java 2 Platform implements several APIs, among them the Java 2 SDK API
[50].

Central Authentication Service (CAS)

CAS is a single sign-on implemention by Yale University’s Technology and
Planning group. It allows users to authenticate once and then, by using tick-
ets, they are granted access to several applications [73].

Data Access Objects (DAO)

According to [73], “DAOs exist to provide a means to read and write data to
the database. They should expose the functionality through an interface by
which the rest of the application will access them.”

Database Management System (DBMS)

[25] defines a DBMS as “a powerful tool for creating and managing large
amounts of data efficiently and allowing it to persist over long periods of
time, safely.”. A DBMS usually provides capabilities like persistent storage,
programming interface, and transaction management.

Document Type Definition (DTD)

A DTD describes the entities allowed in one type of XML documents [59].

Enterprise Java Beans (EJB)

[46] states that an EJB is“the server-side component architecture for the Java
2 Platform, Enterprise Edition (J2EE) platform. EJB technology enables rapid
and simplified development of distributed, transactional, secure and portable
applications based on Java technology.”

HyperText Markup Language (HTML)

HTML is a markup language used to create web documents. HTML allows
users to produce Web pages that include text, graphics, and pointers to other
web pages. HTML is a markup language, a language for describing how doc-
uments are to be formatted [68].

87

HyperText Transfer Protocol (HTTP)

By [68], “HTTP is defined as the transfer protocol used throughout the World
Wide Web. It specifies what messages clients may send to servers and what
responses they get back in return. Each interaction consists of one ASCII
request followed by one RFC 822 MIME-like response. All clients and all
servers must obey this protocol. The protocol itself is specified in RFC 2616.”

Inversion of Control (IoC)

IoC is way to resolve an object’s dependencies. The idea is to let a container
inject the dependencies instead giving each object the responsibility to look
up their dependencies. More details are found in section 3.3.2.

Java Enterprise Edition (Java EE)

[48] states that Java EE is “Java Platform, Enterprise Edition is the indus-
try standard for developing portable, robust, scalable and secure server-side
Java applications. Building on the solid foundation of Java SE, Java EE pro-
vides web services, component model, management, and communications
APIs that make it the industry standard for implementing enterprise class
service-oriented architecture (SOA) and web 2.0 applications.”

Java Authentication and Authorization Service (JAAS)

By [47], JAAS is “. . . a set of APIs that enable services to authenticate and
enforce access controls upon users. It implements a Java technology version
of the standard Pluggable Authentication Module framework, and supports
user-based authorization.”

Java Database Connectivity (JDBC)

According to [55], the “JDBC technology is an API (included in both J2SE and
J2EE releases) that provides cross-DBMS connectivity to a wide range of SQL
databases and access to other tabular data sources, such as spreadsheets or
flat files.”

Java Development Kit (JDK)

The JDK is a piece of software aimed at Java developers. It contains a com-
piler, a javadoc generator, a debugger, a runtime environment, etc. [50].

Java Data Objects (JDO)

JDO is a standard interface-based Java model abstraction of persistence de-
veloped as JSR 12. An implementation of this by the Apache Software Foun-
dation is called Apache ObJectRelationalBridge [13, 67]

JavaServer Faces (JSF)

As stated by [45], JSF is a component architecture, a standard set of UI wid-
gets, and an application infrastructure. The JSF itself is only specification
named JSR-127. There are at least a couple of implementations available
(e.g. MyFaces). More details are found in section 3.5

JavaServer Page (JSP)

A JSP is a file consisting of HTML and Java code. A JSP compiler generates
a servlet from the JSP file and this servlet is executed by a servlet container
(e.g. Apache Tomcat)

88

Java Specification Request (JSR)

According to [60], a JSR is “a Java Specification Request. This is the document
submitted to the Process Management Office by one or more members to
propose the development of a new specification or significant revision to an
existing specification.”

JavaServer Pages Standard Tag Library (JSTL)

As Sun Microsystems state in [54], JSTL “encapsulates as simple tags the core
functionality common to many Web applications. JSTL has support for com-
mon, structural tasks such as iteration and conditionals, tags for manipulating
XML documents, internationalization tags, and SQL tags. It also provides a
framework for integrating existing custom tags with JSTL tags.”

Model View Controller (MVC)

MVC is a pattern that separates the view implementation from the processing
logic and model data. We discuss a MVC variant called Model 2 in section 3.2.

Object Relational Mapping (ORM)

ORM is a mapping tool that tries to remove the paradigm mismatch that exists
between today’s DBMS and object-oriented programming languages [8].

Software Development Kit (SDK)

A SDK is a set of software tools needed when developing applications. It
typically includes a compiler, a debugger, but possibly also other handy tools.
The JDK is a SDK for Java.

Structured Query Language (SQL)

SQL is a query language used to fetch and update information in databases.

Secure Sockets Layer (SSL)

SSL is a two-layered protocol that is designed on top of TCP to “provide a
reliable end-to-end secure service” [66].

Uniform Resource Locator (URL)

An URL is the address of a single file located on the World Wide Web. Each
URL consists of three parts: the protocol (e.g. http://), the DNS name of
the server on which the page is located (e.g. www.vg.no) and a unique local
filename (e.g. index.html) [68].

Wireless Markup Language (WML)

WML is markup language similar to HTML except that it is designed for wire-
less applications. [12] provides a WML language reference.

eXtensible Markup Language (XML)

XML is a generic and extensible markup language based on SGML [59].

89

90

GLOSSARY

Java Bean

[51] states that the “JavaBeans technology is the component architecture for
the Java 2 Platform, Standard Edition (J2SE). Components (JavaBeans) are
reusable software programs that you can develop and assemble easily to cre-
ate sophisticated applications. JavaBeans technology is based on the Jav-
aBeans specification [52].”

Java Servlet Technology

Sun Microsystems [49] claims that the “Java Servlet technology provides Web
developers with a simple, consistent mechanism for extending the functional-
ity of a Web server and for accessing existing business systems. A servlet can
almost be thought of as an applet that runs on the server side–without a face.”

91

92

BIBLIOGRAPHY

[1] MySQL AB. MySQL 5.0 Reference Manual. http://dev.mysql.com/doc/
refman/5.0/en/comments.html. Accessed March 6, 2006. 9

[2] MySQL AB. MySQL 5.0 Reference Manual. http://dev.mysql.com/doc/
refman/5.0/en/drop-table.html. Accessed March 7, 2006. 10

[3] MySQL AB. MySQL 5.0 Reference Manual. http://dev.mysql.com/doc/
refman/5.0/en/cj-configuration-properties.html. Accessed June 1,
2006. 85

[4] MySQL AB. MySQL AB. http://www.mysql.com. Accessed May 19, 2006. 3

[5] Ben Alex. Acegi Security System for Spring - Reference documentation. http:
//acegisecurity.org/docbook/acegi.html. Accessed April 3, 2006. 45, 47

[6] AOP Alliance. AOP Alliance. http://aopalliance.sourceforge.net/. Ac-
cessed March 20, 2006. 19

[7] Naveen Balani. The Spring series, Part 1: Introduction to the Spring frame-
work. http://www-128.ibm.com/developerworks/library/wa-spring1/.
Accessed March 20, 2006. 19

[8] Christian Bauer and Gavin King. Hibernate in Action. Manning Publications
Co, 2005. ISBN: 1-932-39415-X. 27, 89

[9] Microsoft Corporation. Microsoft ActiveX Controls Overview. http:
//msdn.microsoft.com/library/default.asp?url=/library/en-us/
dnaxctrl/html/msdn_actxcont.asp. Accessed February 27, 2006. 2

[10] Mozilla Corporation. Firefox - rediscover the web. http://www.mozilla.com/
firefox/. Accessed March 13, 2006. 11

[11] Oracle Corporation. Oracle ADF Faces Components. http://www.oracle.
com/technology/products/jdev/htdocs/partners/addins/exchange/
jsf/index.html. Accessed May 19, 2006. 3

[12] Refnes Data. WML Reference. http://www.w3schools.com/wap/wml_
reference.asp. Accessed June 1, 2006. 89

[13] Apache Software Foundation. Apache ObJectRelationalBridge. http://db.
apache.org/ojb/. Accessed March 22, 2006. 88

[14] Apache Software Foundation. iBATIS. http://ibatis.apache.org/. Ac-
cessed March 22, 2006. 20

[15] The Apache Software Foundation. Apache HTTP Server Project. http://
httpd.apache.org. Accessed March 13, 2006. 11

[16] The Apache Software Foundation. The Apache MyFaces Project. http://
myfaces.apache.org/. Accessed March 16, 2006. 3

[17] The Apache Software Foundation. Apache Struts Project. http://struts.
apache.org/. Accessed March 16, 2006. 3

93

http://dev.mysql.com/doc/refman/5.0/en/comments.html
http://dev.mysql.com/doc/refman/5.0/en/comments.html
http://dev.mysql.com/doc/refman/5.0/en/drop-table.html
http://dev.mysql.com/doc/refman/5.0/en/drop-table.html
http://dev.mysql.com/doc/refman/5.0/en/cj-configuration-properties.html
http://dev.mysql.com/doc/refman/5.0/en/cj-configuration-properties.html
http://www.mysql.com
http://acegisecurity.org/docbook/acegi.html
http://acegisecurity.org/docbook/acegi.html
http://aopalliance.sourceforge.net/
http://www-128.ibm.com/developerworks/library/wa-spring1/
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnaxctrl/html/msdn_actxcont.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnaxctrl/html/msdn_actxcont.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnaxctrl/html/msdn_actxcont.asp
http://www.mozilla.com/firefox/
http://www.mozilla.com/firefox/
http://www.oracle.com/technology/products/jdev/htdocs/partners/addins/exchange/jsf/index.html
http://www.oracle.com/technology/products/jdev/htdocs/partners/addins/exchange/jsf/index.html
http://www.oracle.com/technology/products/jdev/htdocs/partners/addins/exchange/jsf/index.html
http://www.w3schools.com/wap/wml_reference.asp
http://www.w3schools.com/wap/wml_reference.asp
http://db.apache.org/ojb/
http://db.apache.org/ojb/
http://ibatis.apache.org/
http://httpd.apache.org
http://httpd.apache.org
http://myfaces.apache.org/
http://myfaces.apache.org/
http://struts.apache.org/
http://struts.apache.org/

[18] The Apache Software Foundation. Apache Tomcat. http://tomcat.apache.
org/. Accessed May 19, 2006. 3

[19] The Apache Software Foundation. Commons Scaffold. http://jakarta.
apache.org/commons/sandbox/scaffold/. Accessed May 1, 2006. 27

[20] The Apache Software Foundation. Taglibs. http://jakarta.apache.org/
taglibs/. Accessed March 30, 2006. 42

[21] The Apache Software Foundation. Velocity. http://jakarta.apache.org/
velocity/. Accessed May 1, 2006. 27

[22] The Apache Software Foundation. Velocity. http://jakarta.apache.org/
velocity/. Accessed March 30, 2006. 42

[23] The OWASP Foundation. Top Ten. http://www.owasp.org/index.php/
Category:OWASP_Top_Ten_Project. Accessed May 3, 2006. 5, 50, 69

[24] Martin Fowler. Inversion of Control Containers and the Dependency Injection
pattern. http://martinfowler.com/articles/injection.html. Accessed
March 20, 2006. 20

[25] Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom. Database Sys-
tems – The Complete Book. Prentice Hall, 2002. ISBN: 0-130-31995-3. 87

[26] David Geary and Cay Horstmann. Core JavaServer Faces. Pretience Hall, 2004.
ISBN: 0-131-46305-5. 35

[27] David Heinemeier Hansson. Ruby on Rails. http://www.rubyonrails.org/.
Accessed June 6, 2006. 70

[28] James Holmes. Securing Struts Applications. http://www.devarticles.com/
c/a/Java/Securing-Struts-Applications/. Access May 4, 2006. 51, 52

[29] Sverre H. Huseby. Common Security Problems in the Code of Dynamic Web Ap-
plications. http://shh.thathost.com/text/common-web-code-vulns.pdf.
Accessed March 2, 2006. 5, 7

[30] Sverre H. Huseby. PenProxy - a web application pen-test proxy. http://shh.
thathost.com/pub-java/#PenProxy. Accessed March 14, 2006. 6

[31] Sverre H. Huseby. Innocent code - a security wake-up call for web programmers.
John Wiley & Sons, Ltd, 2004. ISBN: 0-470-85744-7. 5, 10, 11, 12, 15, 42

[32] Ted Husted, Cedric Dumoulin, George Franciscus, and David Winterfeldt.
Struts in Action. Manning Publications Co, 2003. ISBN: 1-930-11050-2. 17,
26, 51, 52

[33] IETF. Hypertext Transfer Protocol – HTTP/1.0. http://www.ietf.org/rfc/
rfc1945.txt. Accessed March 13, 2006. 11

[34] IETF. Hypertext Transfer Protocol – HTTP/1.1. http://www.ietf.org/rfc/
rfc2616.txt. Accessed March 13, 2006. 11

[35] Sun Microsystems Inc. Java 2 Platform Standard Edition 5.0 API Specification.
http://java.sun.com/j2se/1.5.0/docs/api/index.html. Accessed March
14, 2006. 14

[36] Sun Microsystems Inc. Java Applets. http://java.sun.com/applets/. Ac-
cessed February 27, 2006. 2

94

http://tomcat.apache.org/
http://tomcat.apache.org/
http://jakarta.apache.org/commons/sandbox/scaffold/
http://jakarta.apache.org/commons/sandbox/scaffold/
http://jakarta.apache.org/taglibs/
http://jakarta.apache.org/taglibs/
http://jakarta.apache.org/velocity/
http://jakarta.apache.org/velocity/
http://jakarta.apache.org/velocity/
http://jakarta.apache.org/velocity/
http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
http://martinfowler.com/articles/injection.html
http://www.rubyonrails.org/
http://www.devarticles.com/c/a/Java/Securing-Struts-Applications/
http://www.devarticles.com/c/a/Java/Securing-Struts-Applications/
http://shh.thathost.com/text/common-web-code-vulns.pdf
http://shh.thathost.com/pub-java/#PenProxy
http://shh.thathost.com/pub-java/#PenProxy
http://www.ietf.org/rfc/rfc1945.txt
http://www.ietf.org/rfc/rfc1945.txt
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2616.txt
http://java.sun.com/j2se/1.5.0/docs/api/index.html
http://java.sun.com/applets/

[37] Sun Microsystems Inc. JavaServer Faces Technology. http://java.sun.com/
javaee/javaserverfaces/. Accessed March 16, 2006. 30

[38] java source.net. Open Source Web Frameworks in Java. http://java-source.
net/open-source/web-frameworks. Accessed March 16, 2006. 2, 70

[39] Inc JBoss. hibernate.org - Hibernate. http://www.hibernate.org/. Accessed
March 20, 2006. 19, 20, 27

[40] jGuard Project. jGuard. http://www.jguard.net. Accessed May 27, 2006.
62

[41] Jukka ”Yucca” Korpela. Methods GET and POST in HTML forms - what’s the
difference? http://www.cs.tut.fi/~jkorpela/forms/methods.html. Ac-
cessed March 16, 2006. 9

[42] Acegi Technology Pty Limited. Acegi Security System for Spring. http:
//acegisecurity.org. Accessed April 3, 2006. 3, 45

[43] Acegi Technology Pty Limited. Overview (Acegi Security System
for Spring. http://acegisecurity.org/multiproject/acegi-security/
apidocs/index.html. Accessed April 3, 2006. 45

[44] Cafesoft LLC. Tomcat Security Overview and Analysis. http://www.cafesoft.
com/products/cams/tomcat-security.html. Accessed May 31, 2006. 57

[45] Kito D. Mann. JavaServer Faces in Action. Manning Publications Co, 2005.
ISBN: 1-932-39412-5. 18, 30, 34, 55, 56, 88

[46] Sun Microsystems. J2EE - Enterprise JavaBeans Technology. http://java.
sun.com/products/ejb/. Accessed March 27, 2006. 87

[47] Sun Microsystems. Java Authentication and Authorization Service (JAAS).
http://java.sun.com/products/jaas/. Accessed June 1, 2006. 88

[48] Sun Microsystems. Java Platform, Enterprise Edition. http://java.sun.com/
javaee/index.jsp. Accessed March 27, 2006. 88

[49] Sun Microsystems. Java Servlet Technology. http://java.sun.com/
products/servlet/. Accessed March 27, 2006. 91

[50] Sun Microsystems. Java Technology. http://java.sun.com. Accessed June
1, 2006. 87, 88

[51] Sun Microsystems. JavaBeans. http://java.sun.com/products/
javabeans/. Accessed March 27, 2006. 91

[52] Sun Microsystems. JavaBeans Spec. http://java.sun.com/products/
javabeans/docs/spec.html. Accessed March 27, 2006. 91

[53] Sun Microsystems. JavaServer Faces Technology Download. http://java.sun.
com/javaee/javaserverfaces/download.html. Accessed May 19, 2006. 3

[54] Sun Microsystems. JavaServer Pages Standard Tag Library. http://java.sun.
com/products/jsp/jstl/index.jsp. Accessed March 30, 2006. 89

[55] Sun Microsystems. JDBC Technology. http://java.sun.com/products/
jdbc/. Accessed March 27, 2006. 88

[56] Sun Microsystems. JSP Tag Libraries. http://java.sun.com/products/jsp/
taglibraries/index.jsp. Accessed March 30, 2006. 42

95

http://java.sun.com/javaee/javaserverfaces/
http://java.sun.com/javaee/javaserverfaces/
http://java-source.net/open-source/web-frameworks
http://java-source.net/open-source/web-frameworks
http://www.hibernate.org/
http://www.jguard.net
http://www.cs.tut.fi/~jkorpela/forms/methods.html
http://acegisecurity.org
http://acegisecurity.org
http://acegisecurity.org/multiproject/acegi-security/apidocs/index.html
http://acegisecurity.org/multiproject/acegi-security/apidocs/index.html
http://www.cafesoft.com/products/cams/tomcat-security.html
http://www.cafesoft.com/products/cams/tomcat-security.html
http://java.sun.com/products/ejb/
http://java.sun.com/products/ejb/
http://java.sun.com/products/jaas/
http://java.sun.com/javaee/index.jsp
http://java.sun.com/javaee/index.jsp
http://java.sun.com/products/servlet/
http://java.sun.com/products/servlet/
http://java.sun.com
http://java.sun.com/products/javabeans/
http://java.sun.com/products/javabeans/
http://java.sun.com/products/javabeans/docs/spec.html
http://java.sun.com/products/javabeans/docs/spec.html
http://java.sun.com/javaee/javaserverfaces/download.html
http://java.sun.com/javaee/javaserverfaces/download.html
http://java.sun.com/products/jsp/jstl/index.jsp
http://java.sun.com/products/jsp/jstl/index.jsp
http://java.sun.com/products/jdbc/
http://java.sun.com/products/jdbc/
http://java.sun.com/products/jsp/taglibraries/index.jsp
http://java.sun.com/products/jsp/taglibraries/index.jsp

[57] Sun Microsystems. JSR-000052 A Standard Tag Library for JavaServer
Pages. http://jcp.org/aboutJava/communityprocess/final/jsr052/
index2.html. Accessed March 30, 2006. 42

[58] Sun Microsystems. A Swing Architecture Overview. http://java.sun.com/
products/jfc/tsc/articles/architecture/. Accessed March 27, 2006.
17, 31

[59] Simon North and Paul Hermans. Lær XML på 21 dager. Tano Aschehoug,
2000. ISBN: 8-251-83955-6. 87, 89

[60] Java Community Process. The Java Community Process Program FAQ. http:
//www.jcp.org/en/introduction/faq. Accessed March 27, 2006. 89

[61] FreeMarker Project. FreeMarker. http://freemarker.sourceforge.net/.
Accessed March 30, 2006. 42

[62] JSF-Comp Project. JSF-Comp. http://jsf-comp.sourceforge.net/. Ac-
cessed May 22, 2006. 3, 58, 59

[63] JSF-Security Project. JSF-Security. http://jsf-security.sourceforge.
net/. Accessed May 22, 2006. xiii, 3, 58

[64] Matt Raible. Java Web Frameworks. http://www.virtuas.com/files/
osl-jwf-01.pdf. Accessed March 16, 2006. 2

[65] Chris Shiflett. Essential PHP Security. O’Reilly, first edition edition, 2006.
ISBN: 0-596-00656-X. 5, 15, 85

[66] William Stallings. Network Security Essentials - Applications and Standards.
Pearson Education International, second edition edition, 2003. ISBN: 0-131-
20271-5. 87, 89

[67] Inc Sun Microsystems. Java Data Objects. http://java.sun.com/products/
jdo/. Accessed March 22, 2006. 88

[68] Andrew S. Tanenbaum. Computer Networks. Pearson Education International,
forth edition edition, 2003. ISBN: 0-130-38488-7. 87, 88, 89

[69] Bart van Riel. Spring Acegi Tutorial. http://home.hccnet.nl/bart.van.
riel/SpringAcegiTutorial/PDF/SpringAcegiTutorial.pdf. Accessed
April 3, 2006. 45

[70] John Viega and Gary McGraw. Building Secure Software - How to Avoid Security
Problems the Right Way. Addison-Wesley, 2005. ISBN: 0-201-72152-X. 37, 85

[71] W3C. Forms in HTML documents. http://www.w3.org/TR/html4/interact/
forms.html. Accessed March 3, 2006. 8

[72] w3Schools.com. JavaScript Tutorial. http://www.w3schools.com/js/
default.asp. Accessed February 27, 2006. 2

[73] Craig Walls and Ryan Breidenbach. Spring in Action. Manning Publications
Co, 2005. ISBN: 1-932-39435-4. 18, 19, 23, 24, 38, 40, 45, 87

[74] www.springframework.org. Spring Framework. http://www.
springframework.org. Accessed March 16, 2006. 3

96

http://jcp.org/aboutJava/communityprocess/final/jsr052/index2.html
http://jcp.org/aboutJava/communityprocess/final/jsr052/index2.html
http://java.sun.com/products/jfc/tsc/articles/architecture/
http://java.sun.com/products/jfc/tsc/articles/architecture/
http://www.jcp.org/en/introduction/faq
http://www.jcp.org/en/introduction/faq
http://freemarker.sourceforge.net/
http://jsf-comp.sourceforge.net/
http://jsf-security.sourceforge.net/
http://jsf-security.sourceforge.net/
http://www.virtuas.com/files/osl-jwf-01.pdf
http://www.virtuas.com/files/osl-jwf-01.pdf
http://java.sun.com/products/jdo/
http://java.sun.com/products/jdo/
http://home.hccnet.nl/bart.van.riel/SpringAcegiTutorial/PDF/SpringAcegiTutorial.pdf
http://home.hccnet.nl/bart.van.riel/SpringAcegiTutorial/PDF/SpringAcegiTutorial.pdf
http://www.w3.org/TR/html4/interact/forms.html
http://www.w3.org/TR/html4/interact/forms.html
http://www.w3schools.com/js/default.asp
http://www.w3schools.com/js/default.asp
http://www.springframework.org
http://www.springframework.org

	Introduction
	Motivation
	Goals
	Scope
	Software used throughout this thesis
	Report outline

	Web security pitfalls
	Input
	What is input?
	What is input validation?
	Client side validation
	Server side validation
	Why input validation is not enough

	Meta-character problems
	Metacharacters
	SQL-injection
	The problem
	A metacharacter problem?

	Cross-site scripting
	The problem
	Stealing a session
	A metacharacter problem?

	Other threats
	Weak authentication
	Access control
	Leaking information to the user

	How to handle metacharacters?
	Avoiding SQL-injection
	Using prepared statements
	Handle each metacharacter manually

	Avoiding Cross-site scripting
	Avoiding metacharacter problems in general

	Handling other threats
	Summary

	Web application frameworks
	What is a framework?
	MVC/Model 2
	Spring
	Spring architecture
	Inversion of Control
	Aspect-Oriented Programming

	Struts
	Struts Model
	Struts View
	Struts Controller

	JavaServer Faces
	Components, components and components
	Event management
	Navigation
	Static navigation
	Dynamic navigation

	Backing beans
	Request processing
	Restore view
	Apply request values
	Process validations
	Update model values
	Invoke application
	Render response

	Summary

	Spring Security
	Error handling
	Security in Spring modules
	Spring DAO
	Exceptions
	Spring's JdbcTemplate

	Spring MVC
	Requests in Spring MVC
	View layer and security
	Validating form input

	Acegi Security System
	Security Interceptors
	Authentication
	Access control

	Summary

	Struts Security
	Error handling
	Struts Model
	Struts View
	Struts Controller
	Input validation
	Access control
	Access control in Actions and JSPs
	Extending the RequestProcessor
	Access control through Servlet filtering

	Summary

	JavaServer Faces Security
	Error handling
	Metacharacter handling
	Input validation
	Authentication
	Access control
	JSF Security initiatives
	JSF-Security
	JSF-Comp

	Summary

	Struts ACL extension
	Case: Internet banking application
	Framework extension requirements
	Why Struts?
	Aspect-oriented access control in Struts
	Framework abstractions
	ACL management
	Struts ACL advantages
	Struts ACL disadvantages

	Summary

	Conclusion
	Future work
	Prototype(s)
	JSF customization/generalization
	Investigate more pitfalls
	Research more frameworks

	Form source
	Register user source
	Cookie page source
	Steal session source
	Prepared statement source
	MySQL and JDBC
	General security measures
	Semicolon as metacharacter

	Acronyms
	Glossary
	Bibliography

