


6.1. The Metaphors

6.1.1 The Conveyor

The Metaphor for the Conveyor class can be that of a conveyor belt, but it

may be more natural to compare it with the anthill. In other words Conveyor

is the infrastructure of the hive of the swarm. When Conveyor is started,

it will be given the location of the blueprint. Conveyor will then start to

construct the anthill according to the description in the blueprint. It will

create rooms for all the different types of agents and will set up path-ways

for communication, between those rooms that are going to communicate.

Each room will be made for a certain number of agents of that type. So

Conveyor decides not only which agents should be invited into the anthill,

but also how many there are room for and where their communications will

go to and come from.

6.1.2 The Swarm

The agents in this system was meant to act a bit like a swarm, and so it

is natural to think of them as a swarm. The swarm may consist of strange

insects indeed, but that is not the point. The point is that they all focus on

individual tasks and communicate together in order to solve a much bigger

and more complex task. The agents will be presented in order, according to

the work-flow when trying to solve a task. Let us imagine that the system

gets a request to find out more about bananas. The first agent to receive

this request is:

1. SearchApprovalAgent

SearchApprovalAgent can be compared to some sort of automated traffic-flow

surveillance. Much of the data sent between agents will go through SearchAp-

provalAgent. The data sent contains special fields that SearchApprovalAgent

will register for future reference. SearchApprovalAgent will however not only

register data, it will also act upon it. It can be viewed also as a traffic-warden.

It will not forward data that contains a request for a search that has already

been requested. SearchApprovalAgent also has some more related functions,

but they will be discussed later in the work-flow. For now banana is sent to

GoogleAgent or similar.

33



Chapter 6. Implementation

2. GoogleAgent

GoogleAgent is the only implemented agent of its kind. But the system

was designed for having multiple agent-types of this kind. GoogleAgent

and its kind can be compared to fast and agile scouts, maybe they have

wings and can quickly find points of interest based on the search-request

received. These points of interest are sent back to SearchApprovalAgent.

GoogleAgent has one more function later in the work-flow, but for now we

return to SearchApprovalAgent.

3. SearchApprovalAgent

This time SearchApprovalAgent will register information about the URLs

that are sent as points of interest by the scouts. If SearchApprovalAgent

has registered poor results from any of the URLs, then those URLs are

not forwarded, thus the system will concentrate on the URLs that yield

interesting results. This is an effort to save resources which is a good idea

when using brute force on the Internet. The approved URLs are sent on to

HTMLFetcherAgent.

4. HTMLFetcherAgent

HTMLFetcherAgent can be compared to some sort of heavy-duty lifter.

HTMLFetcherAgent is not as fast as the scouts, but he can carry a huge

load. Let us imagine that the scouts have identified 3 places you can find

bananas: A banana tree, a freight-ship and a grocery store. The heavy lifter

will then go out and fetch the tree, the freight-ship and the grocery store.

These will then be passed on to FilterAgent.

5. FilterAgent

FilterAgent can be compared with the toll-agent whose job it is to stop illegal

goods from entering the system. FilterAgent will remove unwanted material

before sending the modified data on to KnowledgeGatherAgent.

34



6.1. The Metaphors

6. KnowledgeGatherAgent

KnowledgeGatherAgent is the meticulous scientist. He will sit down and an-

alyze the banana carefully and try and figure out what connections he can

discover between bananas and other objects. With a good set of key-sentences

maybe he can find out that bananas grow on trees, that they are shipped

on freighters and that they are sold in grocery stores. Whenever Knowl-

edgeGatherAgent finds something out, it will send data back to SearchAp-

provalAgent.

7. SearchApprovalAgent

A hit is associated with the URL it was found at, thus making it less likely

that that particular URL will not be pursued in the future. If a new object

has been discovered in connection with the hit, that hasn’t been investigated

already, then there will be sent a new request to the scouts, to find out more

about that object. SearchApprovalAgent will check if this knowledge have

already been sent to verification. If the information has not already been

verified, then it will be sent to the scouts for verification.

8. GoogleAgent

When a request comes in for verification of some knowledge found, the scouts

will fly out to try and recognize how many bananas grow on trees, how many

are shipped with freighter and how many are sold in a grocery store. The

number from this count is sent back to SearchApprovalAgent.

9. SearchApprovalAgent

SearchApprovalAgent now receives the result from the verification and stores

the result with the knowledge. This knowledge with the verification data is

stored in a queue that SearchApprovalAgent shares with PrologAgent and

possibly other agents that want to format the knowledge into some form.

When one of the SearchApprovalAgents finds out that the system is ready

to finish, then that agent will go through all the results in that queue and

remove the knowledge that have few hits on the verification, relative to the

35



Chapter 6. Implementation

other knowledge found. That way the knowledge that remains is the data

that is most likely relevant and correct.

10. PrologAgent

PrologAgent and other agent of the same kind will only start up after all

others have finished. PrologAgent can be compared with a computer screen,

that takes the information and present it in that way instead of displaying

the information in a printout or something similar. PrologAgent will format

the knowledge in sentences in the knowledge-representation language called

Prolog, and stores the information in a file that can be read by a Prolog

interpreter. That way the information is presented in a way that can be used

to reason over in another program.

6.2 Technically

The implementation of this system relies on the new Java 1.5 (Also known

as Java 5) specifications. This section of the paper is easier to understand if

you have some familiarity with java.

6.2.1 Descriptions of simple building-blocks

This section contains a description of some simple elements of the system

that is not really very important in themselves but may be important for

understanding some of the more important elements.

DataPackage

DataPackage is a simple class for storing information. DataPackage is meant

to simply be overwritten by a new implementation of it if it does not fit the

needs of the system. It contains some variables and some methods to read

and write to those variables

AgentFormat

AgentFormat is also a pretty simple class. It is an abstract class which

means that it is not possible to make an instance of this class. This class

36



6.2. Technically

is only meant to be extended by all the agents in the system. AgentFor-

mat implements “Runnable”, which means that all the agents that extend

AgentFormat will have to include a method called “run”. AgentFormat will

have some general methods that all agents should have, one of them is called

“init” and will receive two Vector<Vector<DataPackage>>. These will be

stored in two variables that each agent will have. One is called “input” and

the other is called “output”. That means that all the agents will have an

unspecified number of input and output variables, where one variable will be

Vector<DataPackage>. That means that each variable contains an unspec-

ified number of DataPackages. In the system presented in this paper, these

variables will be treated as queues.

6.2.2 The Conveyor

The Conveyor-class is really a pretty simple class in terms of lines of code,

but conceptually it is not so simple.

Variables

finished The only public variable is a boolean variable named “finished”

which is also a static variable, which means that the value of this variable

can be set and read by any thread in the system. finished is meant to be a

control variable that should be checked by all agents, to see if they should

terminate, or keep running.

agentSettings Conveyor will receive and store the location of the settings

file. This file will tell Conveyor what agents to start, and how many of each

type should be started and their priority. It will also tell Conveyor about

communication between agents. But this will be discussed in more detail

further down.

agents is a Vector<Thread>, which means that it can contain an unspeci-

fied number of Thread-instances. Each instance of an agent will be wrapped

in its own Thread-instance. Everyone of these Thread-instances are stored

37



Chapter 6. Implementation

in this variable. This makes it possible to initialize all variables before the

agents are started.

data is a Vector<Vector<DataPackage>>. data will contain all the vari-

ables used by the agents to communicate. Since all variables used by the

agents to communicate will possibly contain multiple elements, each of these

variables will be a Vector<DataPackage>. That means that each variable

can contain an unspecified number of DataPackages. (See description of

DataPackage under “Description of simple building-blocks”) So each vari-

able is a Vector<DataPackage>, and since there is an unspecified number

of variables in this system, we will create a Vector containing all of these

variables. This means that the final structure for keeping all the variables

will be: Vector<Vector<DataPackage>>

index is a Vector<String>. index is what links the names of the variables

with the variables themselves. Whenever a new variable is created, there will

be created an entry in index as well, with the name of the variable. Thus

the name of the variable in “index” will have the same index as the variable

in “data”.

Methods

All the methods in Conveyor are public, but only one of them is static so that

it can be used without making an instance of Conveyor and referring to that

instance. And even that method needs Conveyor to be already instantiated.

Conveyor is the constructor-class which will make an instance of Con-

veyor. It requires a reference to where the settings-file can be located, but

will not do anything except store that reference.

setAgentSettings will enable the system to refer to a new location for the

settings-file.

getVectorWithName is the only static method in Conveyor. This means

that this method can be called from any class within the system. getVec-

38



6.2. Technically

torWithName will take a String as input. It will use this String to try and

find a match in “index”. If “index” contains a variable name that equals the

name in the String, then the variable in “data” with the same index as the

name in “index” will be returned. If there is no match between the name in

the String and any of the variable names in “index”, then this method will

create a new variable in “data” and put the name in the String in “index”.

After the name in “index” and the new variable in “data” have been given

places with same index, the new variable is returned. This means that this

method will always return a variable. It will either return one it has an old

reference to or a newly created one.

resetAllData will throw away all old information stored in the system.

resetAllData will also read the settings-file and create new fresh variables

and agents based on the information in the settings-file. This method will

use initiate all the agents with the variables specified in the settings-file, and

thus will decide what agents will share variables. One will have a variable as

output while another agent will have the same variable as input. Each agent

may have any number of input and output variables.

start sets the variable finished to false, and starts all the agents.

Summary

Conveyor makes up a framework for starting up agents and assigning vari-

ables. All the specifics on how it will all fit together is found in a settings-file

that Conveyor will read. The location of this settings-file is sent in to Con-

veyor, and can be changed during run-time. This means that you can make

many different configurations of your system in different settings-files and

make sure that Conveyor will refer to the settings-file of your choice. In

other words, this framework will make it easy to replace agents, reroute in-

formation, skip agents in the work flow, etc. Conveyor depends on two other

classes. One is called “AgentFormat” and the other is called “DataPackage”.

Both these classes are intended to be expendable, and to be overwritten if

you want to change their function.

39



Chapter 6. Implementation

Comment The intention of explaining Conveyor in this level of detail is

not to set in stone that this is how it has to be, nor to bore the reader

with details. The reason for this thorough explanation is to illustrate one

approach to this kind of framework for agents. Hopefully it will also help to

know how this has been implemented if someone wants to use this concept

in their own work.

6.2.3 The Swarm

Technically the swarm is not that interesting. You receive a request for infor-

mation about a word that is sent into the system. This request is forwarded

by SearchApprovalAgent to GoogleAgent. GoogleAgent finds URLs and

sends them back to SearchApprovalAgent. SearchApprovalAgent forwards

the approved URLs to HTMLFetcherAgent. HTMLFetcherAgent downloads

the text from the URLs and sends the text to FilterAgent. FilterAgent reads

what elements are unwanted from a language-specific portion of its settings-

file. FilterAgent filters away elements that will distract, and will send the

filtered text to KnowledgeGatherAgent. KnowledgeGatherAgent will read

the language-specific portion of its settings-file and try to find matches for

the key-sentences in the text. The key-sentences have reserved spaces for

key-words. These key-words will be the words that the sentence will signal

a relation between. If there is a match for a key-sentence, then Knowledge-

GatherAgent will see if one of the key-words match the word the system

is searching for. If there is a match, then some knowledge has been found

and data concerning that knowledge is sent to SearchApprovalAgent along

with sentences that can be used to verify the data found. SearchApprovalA-

gent will extract different parts of the data received. SearchApprovalAgent

will send queries for information about new words to GoogleAgent, and it

will send verification-sentences for verification to GoogleAgent. GoogleAgent

uses the verification-sentences to find how many hits there are using that spe-

cific sentence. Thus giving an indication on how probable the information is.

The number of hits are sent back to SearchApprovalAgent, which will send

store the information in the variable it shares with PrologAgent. When the

system is about to finish, SearchApprovalAgent will go through all the veri-

40



6.2. Technically

fication data and remove the low-probability knowledge. When that is done,

the global variable called “finished” in “Conveyor” is set to “true”. When

PrologAgent reads that the system is finishing, PrologAgent will start con-

verting the knowledge into Prolog-statements. These statements are written

out to a file which can be read by a Prolog interpreter.

6.2.4 Swarm Intelligence

Swarm intelligence was used as a paradigm for modeling the system. In

addition to this, there were two particular concepts from swarm intelligence

as defined in “Swarm Intelligence: From Natural to Artificial Systems” [10]

implemented in this system.

Positive Feedback

In the system in this paper there were a kind of positive feedback imple-

mented. The usual form of positive feedback will mark certain sources or

paths, so that they are preferred over other paths or sources. The best path

or source get marked more often and so will receive more visits. This is

implemented a bit differently in the system presented in this paper. In our

system marks will be given to those URLs that yield knowledge, but this is

not used to prioritize sources. The system uses a formula to determine which

sources should be ignored. What we want to accomplish is to ignore sources

that often appear but does not give any knowledge. Instead of focusing on

the whole URL, the host name of the URL is extracted and used for the

purpose of figuring out which URLs should be pursued. The algorithm used

in this system is:

h = [The number of hits found using that host]

s = [The number of searches that have been made with that host]

H = [The total number of results returned]

S = [The total number of searches made]

5h

s
+ S −H

If the result of this equation is greater than -10, then the URL is approved.

41



Chapter 6. Implementation

There are some reasons why the equation was made this way, but it is proba-

bly not very hard to find better solutions. The first section of the equation is

5 times the number of hits with that host, divided by the number of searches

made with that host. This gives an average amount of hits per search using

this host. But we want to reward hits more than just one point, so we give

5 points for each hit. Then we add the total number of searches to that

number, so that we have sort of a buffer building up to not exclude hosts

before they have had a chance to prove themselves. Finally we subtract the

total number of hits, which really serves to exclude low-yielders. This means

that if the hit-ratio is low, every source will be approved, but if there is a

high hit-ratio it will be a harder competition to be approved.

Division of Labor

Another feature typically associated with social insects is the concept of

division of labor and specializing on certain tasks. Each of the agents in this

system is specialized to perform its specific task. The advantages of multiple

agents working in parallel have been discussed in the previous chapter.

42



Chapter 7

Results

I may not have gone where I intended to go, but I think I have

ended up where I needed to be.

- Douglas Adams

7.1 Results

7.1.1 Framework

The success and results of this project can be as much measured in the

framework created as in actual answers. Creation of a functioning framework,

well equipped to solve the problem of extracting knowledge in this way, is

in a way a major success of this whole project. The framework presented in

this paper shows the way to one possible solution to implementing such a

system as is described. The solution presented solves the set task and must

therefor be considered a success.

7.1.2 Some answers

In this section there will be presented some screen-shots of answers the pro-

gram has come up with. The user interface should be pretty self-explanatory.

There is one input field, where you can input a word you want to know more

about. There is a field where it says: “Input number of layers to expand:”. In

this field you enter the number of “generations” that you want the program

to run. In other words, how many layers of new words should be investigated.

43



Chapter 7. Results

The minimum number of layers that make any sense is one. Then there is

the start button. There is also a field where you are not allowed to write

anything. It is only for delivering messages to the user. When the system

has finished, it will show a message-box with its findings to the user. Some

examples are included in the next few pages.

44



7.1. Results

Figure 7.1: Benzene

Figure 7.2: Terrorist

45



Chapter 7. Results

Figure 7.3: Religion

Figure 7.4: War

46



7.1. Results

Figure 7.5: heroin

47



Chapter 7. Results

7.2 Conclusion

It is obvious that there are a lot of unexpected information from these

searches. Some answers are wrong, many are heavily biased, a lot of in-

formation is missing. On the other hand there is a lot of information that is

found, and some of it seem surprisingly insightful. Information that would

not be found in an encyclopedia, but which most people would agree on e.g.

“war is a crime”. Often a lot of information is checked but found too unlikely

after verification. Sometimes things that are true are not included in the final

result and sometimes things that are false are included. There are probably

a lot of tweaks that could be made which would improve the results of this

program.

48



Chapter 8

Evaluation & Discussion

What was, was. The past defines itself. Historians refuse to

accept that definition and instead superimpose their analysis of

the past through the eyes of the present, while the true past is

lost behind the reflected image presented by historians who would

have us see what they believe, rather than what was.

- Neil Gaiman

This project has been a journey. When this project first was conceived

of, it was at best a vague idea. A desire to make a system that relied on

simple logic and the vast amount of information on the Internet to extract

knowledge. It was early on decided that the system would be designed using

the swarm-concept.

8.1 What has been accomplished?

The goals that were set have been accomplished. The system is not a a

highly polished product ready for the end-user, but the principles and the-

ory show much promise. The system produces very interesting answers to

some questions. It is apparent that this program gives much better answers

to questions concerning technical terms. The answers to technical terms seem

to be similar to answers one could find in an encyclopedia, in that they are

non-biased and factual. In the author’s opinion the answers to other ques-

tions are even more interesting though. Those answers are not so interesting

49



Chapter 8. Evaluation & Discussion

for building a relevant knowledge-network maybe, but they are very interest-

ing for sampling opinions. Something that was never considered before the

answers themselves came in.

8.2 Problems

8.2.1 Problem-description

Frameworks

When implementing this system the point was not to reinvent the wheel, so

instead of designing a framework for extracting the text from html-documents

a completed framework was found and used instead. There have however

been a lot of trouble with that framework. There have also been some prob-

lems with the framework from Google. On the other hand it would have

taken a lot of time to design and implement a html-parser, but in hindsight

a better framework might have been found.

Answers

Answers are often heavily biased, lacking information and contain false in-

formation.

8.2.2 Handled problems

Some of the worst problems with the external frameworks have been handled,

though not in an optimal way.

HTMLParser

This external framework will sometimes hang for several minutes when trying

to retrieve the text from certain URLs. This sometimes turned this part of

the system into a terrible bottleneck, but after setting up several agents of

this type to work in parallel, this problem was not so apparent.

50



8.2. Problems

Google

The framework from Google made many things a lot easier, but it seems that

quite often it is very hard to get any queries through. And particular search-

words are harder to get through than others. Some times it will work fine,

but some times it is impossible to make a search at all. The solution used

in our system was to take a small time-out and try again if any problems

occurred. This will unfortunately not always solve the problem, because

sometimes the system will not, in reasonable time, get the query processed.

8.2.3 What can be done?

Given time and resources, what could have been done to better solve the

problems.

Frameworks

HTMLParser To improve the function of the HTMLParser one could ei-

ther find a better framework, or create one.

Google is but one search-engine, and it would be a good idea not to rely on

just one search-engine. Future improvements could be to implement several

agents for interfacing with different search-engines.

Answers

• One way to improve the answers of a search would be to investigate

more sources. This would however increase the processing time of a

query.

• Include more unwanted words in the filter-file, thus increasing the qual-

ity of the data sent to KnowledgeGatherAgent.

• Adding more key-sentences to the settings-file of KnowledgeGather-

Agent, for recognizing additional types of knowledge and improving

recognition of types already included.

51



Chapter 8. Evaluation & Discussion

• Revising verification-sentences in the settings-file of KnowledgeGather-

Agent.

All these measures, except the first, could benefit from application of

formal linguistic theory. The settings-files have all been created without

thorough consideration, from a linguistic perspective.

52



Chapter 9

Summary

9.1 Goal

• Test the viability of using simple techniques for knowledge-acquisition,

with brute force on the Internet.

• Using techniques from both multi-agent system and swarm intelligence

paradigms to structure the system, improving searches, increasing sta-

bility and increasing modularity.

• Building a framework for easy and modular implementation of multi-

agent systems.

9.2 Method

To solve the goal, a combination of a modeling/abstraction approach and a

design/experimental approach was used. First a theoretical background was

built, together with a framework model. A functional system was then built

to verify the theory and the framework.

9.3 Result

A functional framework was built, thus fulfilling one of the goals in itself.

Additionally this framework verified that the theory could be realized in

practice. Consequently it was possible to run the program and view the

53



Chapter 9. Summary

theory in light of the answers given. The answers were often interesting and

surprising, and gave information beyond an encyclopedic scope. However the

answers were often biased, lacking or false. Much of the faulty knowledge

can be attributed to imperfections in the implementation of the system. It is

hard to estimate to what extent the theoretical foundation is to blame for the

faulty knowledge, when it is clear that adjustments to the implementation

could improve results.

Therefor one must consider the state of the implementation when evalu-

ating the answers.

54



Bibliography

[1] Technology for a Realistic End-User Access Network Test-bed (TOR-

RENT), http://cordis.europa.eu/ist/rn/torrent.htm.

[2] Swarm intelligence, http://en.wikipedia.org/wiki/Swarm intelligence.

[3] The Artificial Intelligence Group, http://www.site.uottawa.ca/∼szpak/AI Group.html.

[4] J. Abbate. The internet challenge: Conflict and compromise in computer

networking. In Changing large technical systems. Westview Press, 1994.

[5] Fabio Bellifemine, Agostino Poggi, and Giovanni Rimassa. Developing

multi-agent systems with a fipa-compliant agent framework. In Software:

Practice and Experience, volume 31, pages 103–128. John Wiley & Sons,

Ltd., 2000.

[6] G. Beni. The concept of cellular robotic system. In Proceedings 1988

IEEE Int. Symp. on Intelligent Control, pages 57–62. IEEE Computer

Society Press, 1988.

[7] G. Beni and S. Hackwood. Stationary waves in cyclic swarms. In Pro-

ceedings 1992 IEEE Int. Symp. on Intelligent Control, pages 234–242.

IEEE Computer Society Press, 1992.

[8] G. Beni and J. Wang. Swarm intelligence. In Proceedings Seventh Annual

Meeting of the Robotics Society of Japan, pages 425–428. RSJ Press,

1989.

55



Bibliography

[9] G. Beni and J. Wang. Theoretical problems for the realization of dis-

tributed robotic systems. In Proceedings 1991 IEEE International Con-

ference on Robotic and Automation, pages 1914–1920. IEEE Computer

Society Press, 1991.

[10] Eric Bonabeau, Marco Dorigo, and Guy Theraulaz. Swarm Intelligence:

From Natural to Artificial Systems. Oxford University Press, 1999.

[11] G. Bowker and S.L. Star. Knowledge and infrastructure in international

information management: Problems of classification and coding. In In-

formation acumen: The understanding and use of knowledge in modern

business. Routledge, London, 1994.

[12] Gunnar Ellingsen and Eric Monteiro. Mechanisms for producing working

knowledge: Enacting, orchestrating and organizing. Information and

Organization, 13(3):203–229, 2003.

[13] S. Hackwood and G. Beni. Self-organizing sensors by deterministic

anealing. In Proceedings 1991 IEEE/RSJ International Conference on

Intelligent Robot and Systems, IROS’91, pages 1177–1183. IEEE Com-

puter Society Press, 1991.

[14] S. Hackwood and G. Beni. Self-organization of sensors for swarm intelli-

gence. In Proceedings IEEE 1992 International Conference on Robotics

and Automation, pages 819–829. IEEE Computer Society Press, 1992.

[15] Eric Monteiro. Integrating health information systems: A critical ap-

praisal. Methods of Information in Medicine: a critical perspective,

42:428–432, 2003.

[16] Nonaka and H. Takeuchi. A theory of the firms knowledge-creating

dynamics. In The dynamic firm. The role of technology, strategy, orga-

nization and regions. Oxford University Press, 1998.

56



Bibliography

[17] C. Perrow. Complexity, coupling and catastrophe. In Normal accidents,

chapter 3, pages 62–100. Princeton University Press, 1984.

[18] N. Sager, C. Friedman, and M. Lyman. Medical Language Processing.

Computer Management of Narrative Text. Addison-Wesley, 1987.

[19] C. Soh, S.S. Kien, and J. Tay-Yap. Cultural fits and misfits: Is ERP a

universal solution.

[20] G. Walsham. Knowledge management: The benefits and limitations

of computer systems. European Management Journal, 19(6):599–608,

2001.

[21] S. Wermter and V. Weber. Artificial neural networks for automatic

knowledge acquisition in multiple real-world language domains. In Pro-

ceedings of the International Conference on Neural Networks and their

Applications, pages 289–296, Marseille, 1995.

[22] Xindong Wu. Building intelligent learning database systems. The AI

Magazine, 21(3):61–67, 2000.

[23] C. T. Yu and W. Sun. Automatic knowledge acquisition and mainte-

nance for semantic query optimization. IEEE Transactions on Knowl-

edge and Data Engineering, 1(3):362–375, September 1989.

57


