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Abstract

This master thesis details a proof-of-concept software system for estimating stu-

dent abilities. The system combines Elo rating and collaborative filtering in order

to present students with tasks that best reflect their knowledge. The system was

designed and developed successfully. A substantial amount of 8th-grade math

tasks were added to the system, and the system was tested on a relevant student

population without technical issues. However, the size of the experiment was not

sufficient to reach a conclusion regarding whether or not the Elo rating algorithm

performs better when combined with collaborative filtering.





Sammendrag

Denne masteroppgaven omhandler et proof-of-concept programvaresystem for å

måle elevers ferdigheter innen matematikk. Systemet kombinerer Elo rating og

collaborative filtering for å presentere elever med oppgaver som best viser frem

kunnskapen deres. Design og utvikling av systemet var vellykket. En vesentlig

mengde matematikkoppgaver for åttende klasse ble lagt til i systemet, og systemet

ble testet uten problemer p̊a en gruppe studenter. Størrelsen p̊a eksperimentet var

ikke stor nok til å kunne konkludere med om Elo rating algoritmen fungerer bedre

n̊ar den kombineres med Collaborative filtering.
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Chapter 1

Introduction

In this master thesis, we seek to improve the process of testing students’ ability by

using a combination of the Elo rating system, a system for calculating relative skill

[1] and collaborative filtering, which is a recommender system algorithm, normally

used to make predictions based on similarities between users [2].

The goal is to present individual students with mathematical tasks that most

accurately reveal their skill level. This will be achieved by using the Elo rating

algorithm to find tasks that are close to the student’s estimated abilities. After

having found tasks that have a fitting difficulty, collaborative filtering is used to

predict which of those tasks the student is most likely to answer correctly. This

task will then be presented to the student. The desired effect of this is that

the collaborative filtering algorithm will present each student with a task they

understand, within a desired difficulty, giving them a better chance at displaying

their knowledge.

One of the biggest obstacles in todays teaching methods is that the same cur-

riculum and learning material is presented to all students. However, students

possess different skills and enter education with different knowledge. Therefore,

the ability to personalize and adapt the learning process to their needs and skills

is a prerequisite for tailoring successful students that learn based on their current

knowledge and advance based on their skills. Having a system that combines the

1
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Elo rating method and collaborative filtering, might aid teachers to better under-

stand students behavior and skills. It may also be used to optimize the learning

process, by supporting interventions and aiding scaffolding in learning tasks. The

system developed in this thesis is a proof-of-concept and will focus on fractions,

but should be applicable to most other concepts and fields as well.

The combination of Elo rating and collaborative filtering may be beneficial to both

students and teachers. By more accurately knowing the abilities of the students,

a teacher will be able to tailor lectures based on the abilities of the students.

Collaborative filtering may also be used to identify students who have similar

abilities or lack of abilities. These groups may be used to create study groups

or groups who receive a tailored curriculum. Having an accurate estimate of

the student’s ability also allows for adaptive e-learning environments to be used

more effectively, as an estimate of ability is crucial when choosing which learning

material to present the student for learning purposes. More accurate grading of

students will also be helpful outside of the educational setting, for example when

the student is applying for jobs or higher education, as grades often are criteria

for admission. This emphasizes the importance of setting grades accurately.

1.1 Problem definition and hypothesis

While grades are the most important metric for grading students in the school sys-

tem, they are usually not an exact representation of the true skill of the student.

Using tests is the standard way of determining the skill of a student. A teacher

puts together a set of tasks with the goal of choosing tasks that most accurately

reveal whether the students have mastered the concept that is tested. The main

problem this thesis is trying to explore is the problem of every student having

different ideal tasks needed to best display their knowledge. Let’s say you want to

test whether a student knows how to divide a number by another number. There

are several ways of representing this concept as a task. Some alternatives are:
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1. ”Calculate 10
5

”

2. ”You buy ten pieces of cake and have four friends with you, how many pieces

do you get?”

3. Display a picture of a chocolate bar divided into ten squares and ask the

student to color a fifth of the squares.

One of the main challenges when creating and picking tasks to be used in testing is

figuring out what the task is testing. The goal is usually to test only one concept,

like division. Still, tasks like task number 2 listed above may test other concepts

as well. Task number 2 tests, among other things, the ability to read. This greatly

disfavors students who are dyslectic. Other smaller properties of tasks may also

affect the outcome of a task. Task number 2 even tests the willingness to share

food. There is usually not a definitive answer to which representation is best, as

different students have different performance biases. We aim to develop a system

that lessens the impact of students having different performance biases.

Another problem we wish to address is the challenge of item difficulty estimation.

The difficulty of a task is possible to estimate by looking at how skilled you gener-

ally need to be to solve it. However, the difficulty is subjective. One task may be

easy for one student and hard for another student, even though the students are

equally skilled within the current concept. The system proposed in this thesis ac-

counts for both the average difficulty as well as the individual subjective difficulty

of tasks. The Elo rating of the task is based on overall difficulty, while collab-

orative filtering is used to estimate the difficulty of a specific task for a specific

student.

Hypothesis:

• A combination of Collaborative Filtering and Elo rating will better represent

the skill of a student, compared to using only Elo rating.

The first presumption of this hypothesis is that a better representation of the skill

results in a higher Elo rating. We believe this is a fair presumption because the
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Elo algorithm works independently from collaborative filtering, meaning that any

increase in Elo rating is the result of a student solving a task with a higher rating,

i.e. a harder task.

An analogy of this is: Consider a scenario where you are a parent who has a child

that will have their knowledge of fractions tested. The child will be asked questions

regarding fractions in front of judges who will estimate the child’s ability based

on the correctness of the child’s answers. You, as the parent, are choosing which

questions to ask the child. You know that your child loves to play hide-and-seek

and is exceptionally good at calculating fractions when playing. You therefore ask

your child ”If there were four people hiding, and you found two, what fraction of

players are still hiding?”. This is, in essence, what we are trying to achieve using

collaborative filtering and Elo rating, presenting students with problems that best

allow them to display their knowledge.

The second presumption of our hypothesis is that the curriculum used is narrow

and specific. If the curriculum is to wide, the students may be presented only with

the concepts they master and never be presented concepts they do not master. This

proof-of-concept system only looks at one concept, fractions.

1.2 Approach

We wish to address this problem by completing the following steps:

• Design and develop a hybrid method that combines the collaborative filtering

algorithm and the Elo rating algorithm.

• Implement the method in an already existing e-learning system.

• Run simulations and test different recommender algorithms.

• Conduct an experiment in two phases with test users.

• Evaluate and analyze the results.
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The experiment we will conduct will include two different groups; the control group

and test group. The test group will be presented with tasks based on their current

Elo rating and recommendations from collaborative filtering. The control group

will be presented with tasks based only on their current Elo rating.

We will utilize an existing system for e-learning called Matistikk to implement the

combination method described in this thesis. Matistikk does not provide any form

of adaptivity, and it is our job to implement this as a feature in the already existing

system. The details of the implementation itself are described in Chapter 4.

The Elo rating algorithm will be used to automatically quantify the skill of stu-

dents, as well as the difficulty of tasks. This will be done by giving both users

and tasks an initial rating. For the students, this will be 1300. This is below the

expected average, to try keeping the students from being demotivated. For the

tasks, this initial rating was set based on the authors’ estimates combined with

guidelines from math textbooks. The tasks were set to range between 1200 and

1800. A higher rating indicates a higher difficulty for tasks and a higher skill

level for users. Elo rating is most widely known from the board game chess. Each

player in chess has a rating that reflects their current skill level. After a completed

game, the rating of the winner increases and the rating of the loser decreases. The

change in rating is dependant on the difference in rating between the players. If a

highly skilled player wins a game against a low skilled player, the ratings hardly

change. If the low skilled player wins, their ratings will change significantly.

In the proposed software solution of this thesis, both students and tasks are con-

sidered to be players with a numerical skill rating. If a Student answers a task

correctly, their rating will increase and the rating of the task will decrease. This

allows the system to estimate the probability of a student answering a task cor-

rectly based on the ratings of the student and the task. The system will then select

appropriate tasks for the user based on this probability. The Elo rating algorithm

is fully automated and the accuracy of the student’s Elo rating will increase for

each task answered.
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The second part of the proposed solution is the collaborative filtering algorithm.

This algorithm will be used to predict whether a student will answer a task cor-

rectly, based on whether or not similar students answered correctly. The similarity

between two students is based on how many tasks they answered similarly. The

purpose of collaborative filtering in this thesis is to select tasks that best allow the

student to display their knowledge.

Collaborative filtering will be used to present the students with the tasks they

are most likely to solve. Note that collaborative filtering happens after the Elo

algorithm has selected a set of tasks with a fitting overall difficulty. If this was not

done, collaborative filtering would recommend the easiest tasks in the set every

time. The way we will use collaborative filtering is by:

1. Calculating similarity between the target student and the other students.

2. Choosing the students that have performed most similarly to the target

student.

3. Presenting the target student with the task most similar students have

answered correctly.

The system should then be able to automatically find students that have the

most correct answers within textual tasks, image tasks etc. Students that have a

performance bias towards a certain representation may be presented tasks of this

type.

Both the Elo rating algorithm and the collaborative filtering are used to estimate

the chance of the learner answering a task correctly. However, although they try

to estimate the same probability, the basis for these calculations is different, and

both systems are needed for the proposed solution to function as desired.

Without the Elo rating algorithm, collaborative filtering would converge towards

the easiest tasks in the database, as these tasks have the highest chance of being
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correctly answered by anyone. The collaborative filtering algorithm will try to re-

commend tasks that are suited for the user, based on results from similar students,

besides only considering the difficulty.

When the Elo rating algorithm is combined with the collaborative filtering al-

gorithm, the process of selecting new tasks for the user will look like this:

1. Use the Elo rating algorithm to find tasks of appropriate difficulty levels.

2. Use collaborative filtering to choose which one of these tasks the student

should be presented.

1.3 Structure of this thesis

Chapter 2 will describe the most important background theory in the field of adapt-

ive e-learning. This includes test theories, Elo rating systems, and recommender

systems in detail. In Chapter 3 we present the state of the art. This chapter

contains relevant research and some existing systems are described in more detail.

The architecture and implementation of the solution we propose in this thesis are

described in detail in Chapter 4. Implementation of collaborative filtering and

the Elo rating system are also explained in depth. The experiments and their

corresponding results are presented and discussed in Chapter 5. Lastly, Chapter 6

contains discussion and conclusion to the problems raised in this thesis, as well as

future work.





Chapter 2

Background theory

In the book Online education: learning management systems: global e-learning in

a Scandinavian perspective [3] Paulsen describes e-learning as interactive learning

in which the learning content is available online and provides automatic feedback

to the students. Online communication with real people may or may not be

included, but the focus of e-learning is usually more on the learning content than

on communication between learners and tutors.

The term e-learning is also often used in a broader perspective than just online

education. Kaplan-Leiserson has created an online glossary for e-learning termin-

ology [4] which provides this definition of e-learning:

E-learning covers a wide set of applications and processes, such as

Web-based learning, computer-based learning, virtual classrooms, and

digital collaboration. It includes the delivery of content via Internet, in-

tranet/extranet (LAN/WAN), audio and videotape, satellite broadcast,

interactive TV, and CD-ROM.

Today the term e-learning often refers to learning material provided through the

World Wide Web. Often this experience is interactive and may be personalized in

some way. The term e-learning may also be used to describe content management

systems, which do not provide the training experience but rather to organize,

9
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communicate and distribute learning objects. Two well know examples of this are

It’s Learning1 and Blackboard2.

2.1 Adaptation in e-learning

The main purpose of computerized adaptive e-learning is to perform iterative

and adaptive administration of tasks given to users in order to aid a dynamic

learning process. The systems customize the learner’s experience based on the

individual learner’s performance and/or preferences. The degree of adaptiveness

in these systems vary from a simple approach of predefining different curriculum

based on difficulty and letting the user choose difficulty, to autonomous systems

that continuously acquire a better understanding of the user’s skill, needs, and

preferences over time. Adaptive e-learning systems may also change the item

sequence at any point in time for any user if the difficulty is not a good fit for the

learner.

Adaptivity in an e-learning context can be divided into two different categories.

The first category, adaptive interaction, describes adaptations that take place at

the system’s Graphical User Interface (GUI) and are intended to facilitate or

support the users interaction with the system. This does not affect the learning

content itself, only how it is presented. Examples of adaptive interactions can

include font sizes, color schemes or using different graphical modules. This is

often done to accommodate user preferences or user disabilities.

The second category, adaptive course delivery, focuses on the fit between course

contents and user characteristics or requirements, aiming for the ”optimal” learn-

ing result. This will only affect the learning content, and not how it is presented

to the user. This technique will also keep time and effort economy to a minimum.

This adaptation technique is the most common and is widely used among adaptive

e-learning systems today.

1https://www.itslearning.com/
2https://www.blackboard.com/index.html
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In this thesis, we define adaptation as a system’s ability to change depending

on the performance or preference of the users. We define personalization as the

adaptation from the users’ point of view.

Over the last decades there have been four major paths to adaptation in e-learning

[5]:

Learning style identification

H. Pashler et. al. describes learning style as the concept that individuals differ in

regard to what mode of instruction or study is most effective for them [6].

Many adaptive e-learning systems are mainly based on identifying the students

learning style prior to the start of the course. This is often done by using a survey

or questionnaire, where the students give answers about their own behavior in

different settings will classify the students preferred learning style.

Felder-Silvermans model from 1988 [7] differentiates learning styles through four

dimensions: perception (Sensory/Intuitive), information input (Image/Verbal),

information process (Active/Reflective) and understanding (Sequential/Global).

A survey conducted by H. M. Truong in 2016 [8] shows that the FelderSilvermans

model was by far the most widely used theory in adaptive learning systems based

on learning style identification. It was used by 70.6% out of the 51 papers surveyed.

Truong also points out some major drawbacks to using learning styles adaptation.

Firstly, the results may be biased, as the results of the survey depend on the

students’ judgment and how well they are able to evaluate their own behavior in

different environments and settings. Secondly, the learning style is often measured

only at a single point in time. The preferred learning style of a student may change

over time, and also during a single course or subject. These surveys can also be

time-consuming, demotivating and tiring for the students.

In later years, the concept of learning style identification has been highly criticized.

This is regarding the lack of scientific evidence, fundamental problems regarding
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measuring learning styles, and that the significant empirical evidence is almost

non-existent [9].

Learning styles are therefore considered as old and outdated today, and we have

decided to utilize other techniques for adaptation in e-learning.

Recommender systems

The core functionality of a recommender system in an e-learning environment is to

provide recommendations of appropriate educational material for the user. These

recommendations are based on explicit or implicit feedback from the user or users

that are similar to them. Over time the system will have better and stronger

opinions about the users’ preferences (as more data is available) and will have the

ability to make better recommendations.

The most used techniques in recommender systems are collaborative filtering,

content-based filtering or a combination of those. This makes it possible to take ad-

vantage of the strengths and minimize the weakness of each approach [10]. These

are described in more detail in Section 2.4.

Link adaptation

Link adaptation is a class of hypermedia adaptation, which is a technique of ad-

justment (presentation, highlighting or concealment) of hyperlinks with the aim

of selecting the appropriate content for the user. Link adaptation can also be

described as Adaptive navigation support, and its goal is to guide the student

through the curriculum with an optimal path by adaptively sorting, annotating,

partly hide or disabling links or a direct guidance (e.g. a ”continue” button). This

will make the users choice easier in how to proceed [11].

Link adaptation is more suitable for a computerized adaptive practice system, than

a test system like ours. We have therefore decided not to utilize this strategy.
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Personalized software agents

In the book Artificial intelligence: A modern approach Russel and Norvig de-

scribe a software agent as anything that can be viewed as perceiving its environ-

ment through sensors and acting upon that environment through actuators [12].

More specifically, intelligent agents are defined as agents that have some degree of

intelligence.

The growth of artificial intelligence over the last years has led to a trend of im-

plementing intelligent software agents in adaptive e-learning systems. The use of

intelligent agents in an e-learning environment can be categorized into two groups:

harvesters and pedagogical agents. Harvester agents’ main objective is to collect

learning material. This is often done from heterogeneous repositories and its suc-

cess depends on the quality and standard of teaching material representation. The

main goal of pedagogical agents is to motivate and guide the users through the

curriculum, by asking questions and proposing solutions to the user [13].

2.1.1 Optimal difficulty

Presenting a leaner with tasks of optimal difficulty is crucial for keeping the learner

motivated. This is applicable to both learning scenarios and ability assessment

scenarios because the motivation of the user may affect the ability to solve tasks.

Csikszentmihalyis flow theory states that a students’ intrinsic motivation and per-

sonal experience are dependent on the balance between the difficulty of the task

and the skill of the user [14]. An adaptive e-learning system should aim towards

placing every student in their personal flow zone. The optimal flow varies between

students and means that presenting the same task to an entire class is not op-

timal. Adaptive e-learning systems should have the ability to find each student’s

flow zone [15].
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Figure 2.1: Flow zone chart

Previous research suggests that the optimal difficulty may differ depending on the

type of subject to be learned and motivation (internal, external), particularly that

in school-related activities students prefer lower levels of challenge [16]. Papoušek,

J. and Pelánek, R. suggest a success rate target is around 65% [17]. They also point

out that there is a difference between the optimal target success rate for activities

in school, compared to out-of-school activities. Klinkenberg, S. et al, however,

suggest in their study somewhere between 60% and 80% as the best target success

rate [18]. Eggen and Verschoor state in their paper from 2006 that a target success

rate below 50% will demotivate students [19]. They suggest raising this to 70%.

For this proof of concept we decided to go with the middle ground and use the

target success rate of 65% as Papoušek, J. and Pelánek, R. suggests [17].

2.2 Test theories

A test can be studied from different angles. The estimate of a user’s ability and

the task difficulty can be evaluated according to different theories. This section

will describe two; Classical Test Theory (CTT) and Item Response Theory (IRT).
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In 1904, Charles Spearman published his article The proof and measurement of

two things [20], describing how to find errors in measurement of item difficulty or

user ability and how to obtain an index of reliability for making corrections. This

is considered to be the beginning of Classical Test Theory. Item Response Theory

was first described by Lord and Novick in their paper Statistical theories of mental

test scores from 1968 [21], and is considered to be a more modern and complex

approach.

CTT was originally the leading framework for analyzing and developing stand-

ardized tests. Since the beginning of the 1970s IRT has to some degree replaced

the role of CTT, and is now the major theoretical framework used in the field of

testing and statistical psychometrics [22].

2.2.1 Classical Test Theory

The most important concept in classical test theory is the reliability of the observed

test scores. The Glossary of Important Assessment and Measurement Terms, by

The National Council on Measurement in Education (NCME) describes classical

test theory as a theory of testing, based on the idea that a persons observed or

obtained score on a test is the sum of a true score (error-free score) and an error

score [23].

Observed score = True score + Error (2.1)

The reliability, X is denoted ρ2XT , and is calculated based on the ratio between

observed score variance and the true score variance:

ρ2XT =
σ2
T

σ2
X

(2.2)

According to the classical test theory the reliability cannot be calculated, hence

the true score is not available. But CTT has other shortcomings as well. The
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most important is the inability to separate the test characteristics and user char-

acteristics. E.g the item difficulty could only be interpreted in the context of the

users and vice versa. There are also other drawbacks to CTT. It lacks support for

adaptive testing, it does not account for guessing, and it is built for the average

student. The results of this are that the students who deviate from the average

will receive less accurate skill estimations. On the upside, classical test theory is

easy to calculate and to understand for humans in comparison to IRT, which has

relatively complex estimation procedures.

Item response theory is the more modern approach and was developed to overcome

some of the drawbacks with CTT. Today IRT is preferred in most cases and is

described in more detail in Section 2.2.2.

2.2.2 Item Response Theory

Item Response Theory has roots in Psychometrics and is concerned with accurate

test scoring and development of test items. IRT consists of statistical models that

relate item responses to the latent abilities that the items measure [21].

IRT is widely used in education today. It is often used to calibrate and evaluate

items in a test, and to score students abilities, attitudes, or other latent traits.

Xinming An and Yiu-Fai Yung state that over the last decades, educational as-

sessment has used more and more IRT-based techniques to develop tests [24].

Major educational tests like the Scholastic Aptitude Test (SAT)3 and Graduate

Record Examination (GRE)4 are developed by using Item Response Theory. This

is due to accuracy and reliability while providing potentially significant reductions

in assessment time and effort, especially via computerized adaptive testing [24].

IRT can be divided into two categories: unidimensional and multidimensional.

Unidimensional models a single ability dimension, θ (e.g user ability, item diffi-

culty). The multidimensional models account for multiple traits. This greatly

3https://collegereadiness.collegeboard.org/sat
4https://www.ets.org/gre
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increases the complexity, therefore most of IRT research and applications utilize

a unidimensional model.

IRT models can also be classified based on the way responses are scored. Often

multiple choice tasks are dichotomous, which means the tasks only can only be

answered correctly or incorrectly. This is regardless of the number of multiple

choice options. Another class of models applies polytomous responses. This means

the outcome of the answer can have multiple score values. Examples of tasks of

this type may be ”rate this product on a scale from 1-10” or multiple choice tasks

with more than exactly one correct answer.

The main building block of IRT is the item response function, which describes

the probability of a given response as a function of a persons true standing on a

latent trait or ability. Equation 2.3 shows the three-parameter logistic function. θ

represents student’s ability. The three item parameters a, b and c are representing

discrimination, difficulty and guessing probability, respectively. D is a factor used

for scaling. Students with higher ability have a higher probability of a correct

response, but this probability cannot exceed 1.0.

P (θ) = c+
1− c

1 + e−Da(θ−b)
(2.3)

By letting c = 0, a = 1 and D = 1 we obtain the one parameter logistic function

(1PL, eq. 2.4) which is also known as the Rasch model. This is described in detail

in Section 2.2.3.

P (θ) =
1

1 + e−(θ−b)
(2.4)

The item response theory was designed to overcome some of the problems with

CTT, and therefore features some advantages by implementing more sophisticated

mathematical modeling:

• It makes stronger assumptions, and can, therefore, present stronger findings.
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• Scaling of the item difficulty and the user’s ability.

• User abilities and item difficulty can be meaningfully compared, using the

same scale.

• IRT is more flexible and not test-dependent. The true score in CTT is

defined in the context of a specific test.

• CTT tends to force a linear model on something that is nonlinear. IRT uses

a more complex model to solve a complex problem.

2.2.3 The Rasch model

The Rasch model was developed by Georg Rasch [25] in 1960. In the Rasch model,

the probability of a specific response to a task (correct or incorrect) is calculated

using a logistic function of the difference between the person and item parameter.

The Rasch model is often considered to be the one-parameter logistic function in

Item Response Theory model. Despite the fact that these models are identical,

some argue that they differ in approach to conceptualizing the relationship between

data and theory [26]. Item Response Theory emphasizes the primacy of the fit of

a model to observed data over the requirements for fundamental measurement as

in the Rasch model. The Rasch model also states that adequate data-model fit

is an important requirement in order to claim a research instrument as valid for

trait measurement [27].

P (Xni = 1) =
e(βn−δ)

1 + e(βn−δ)
(2.5)

βn represents the users’ ability, while δ represents the difficulty of the item. In an

educational setting P (Xni = 1) is the probability that the student n will success-

fully solve task i.

For the combination method presented in this thesis, we will be using a modified

version of the Rasch model. We will use this to calculate the probability of a user
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solving a specific task correctly. This probability will affect the Elo rating for both

the user and the task.

2.3 The Elo rating system

Elo rating is a system for calculating relative skill of players in competitive games.

It is used in online multiplayer games like World of Warcraft and real-life games

like chess. The main purpose of the system is to be able to rate and compare

players using the same scale. Each player receives an initial numerical rating

before their first match. This rating increases or decreases based on performance

in subsequent matches. The difference in rating between the players is used to

estimate the likelihood of each player winning the match. It scales so that if

a highly skilled player wins a match against a low skilled player, the change in

rating is minimal. If the high skilled player loses, the ratings of both players will

receive a greater change. In the proposed solution, the Elo rating algorithm will

be used to match users to tasks of appropriate difficulty. The Elo rating system

also diminishes the impact of math problems with an inaccurate initial rating.

The ratings of the tasks should converge toward the correct relative skill level over

time. A precise estimate of the difficulty is still beneficial, as it reduces the time

needed for the system to accurately estimate the difficulty. This also applies to

users. A user will be classified quicker if the initial rating is close to the true skill

of the user.

2.3.1 The Elo rating system for chess

The Elo rating system (ERS) was developed by Arpad Elo in 1960 for evaluating

chess performances in United States Chess Federation. Elo himself describes the

system as a numerical system in which differences in rating may be converted into

scoring or winning probabilities [28].
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The ERS consists of several different update formulas, designed for different type

of matches. In this thesis, we will focus on current rating formula for continuous

measurement.

Rn = R0 +K(W −We) (2.6)

Rn is the new rating after the event.

R0 is the pre-event rating.

K is the rating point value of a single game score.

W is the actual game score, each win counting 1, each draw 1
2
.

We is the expected game score based on R0.

Both players’ ratings are updated after each match. Equation 2.6 shows that a

player will gain rating points if his performance is above expected and likewise

lose rating points if the performance is below expected. The consequences are

therefore greater if the gap in rating between the players is large.

The expected outcome (winning probabilities), We is calculated by the Bradley

Terry Luce (BTL) model in the original Elo rating system. This model is closely

related to the Rasch model but is based on player versus player instead of player

versus item. It is more suitable to use the Rasch model to calculate winning

probabilities in an e-learning environment, as the scenarios are player vs item.

2.3.2 The Elo rating system in e-learning

Radek Pelanek states that the Elo rating system is suitable mainly for adaptive

practice or low stakes testing in an educational application [29]. He also points

out in his paper that the Elo rating system can easily be modified and applied in

different domains. For example in educational systems with multiple choice tasks,

where the students have a significant chance of answering correctly simply just by

guessing.
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Radek Pelanek’s systematic survey shows that the Elo rating system is partic-

ularly attractive when the main focus is to build a reasonably behaving system

quickly and cheaply. It provides a degree of adaptive behavior without expensive

expert input. This achieved because the system can estimate the difficulty of items

(questions, problems) and skills of users from the results of previously completed

tasks. His system also shows that a system like this needs at least 100 students to

get good estimates of item difficulty.

For every user i there is a rating score θi and θj for every task j. Both of theese

ratings are updated after every task is completed, utilizing equations 2.7 and 2.8

respectivly for the user and the task. For every task j and user i, the probability

of the outcome Rij ∈ {0, 1}, is calculated (Rij = 1 for success and Rij = 0 for

failure). The expected probability that player i will manage to solve the task is

calculated by a logistic function (equation 2.9 and 2.10), known from the Rasch

model.

θi = θi +K(Rij − P (Rij = 1)) (2.7)

θj = θj +K(Rji − P (Rji = 1)) (2.8)

P (Rij=1) =
1

(1 + e
(θi−θj)

400 )
(2.9)

P (Rji=1) =
1

(1 + e
(θi−θj)

400 )
(2.10)

If the user i manages to solve the task j, the result for the user would be Rij = 1,

and Rji = 0 for the task. Likewise, if the user fails to solve the task, the outcome

of functions 2.9 and 2.10 will be Rij = 0 and Rji = 1.

The K value in equations 2.7 and 2.8 are used to specify the sensitivity of the

model. The K value also represents how many rating points a user or a task

can possibly gain or lose. Often K is set to a constant value, but could also

represent uncertainty. This by making it a function of time or items encountered
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for example. A high K value will make a great impact on the Elo rating, and a

small K value will make less impact.

2.4 Recommender systems

Recommendation systems are systems designed to use explicit or implicit feedback

from users to recommend items the user likes, wants or needs [2]. This is in contrast

to systems where the user has to explicitly search or browse to find the items they

are looking for. Recommender systems are used in a variety of domains. This

includes online shopping, dating services, online newspapers and video streaming

services. The core feature of a recommender engine is to estimate how good of a

match an item is for a given user. The item may be a movie, a news story, or in

this case, a math problem.

2.4.1 Content based filtering

Content-based filtering is the use of metadata to recommend items to users. Items

need to have metadata defined and users need to specify properties, or prefer-

ences, about themselves. The system recommends items to users based on the

preferences specified by the users and the properties of the items. Although this

method of making recommendations is widely used in media and shopping do-

mains, content-based filtering does not fit well within the e-learning domain [30].

This is because, in an educational setting, The category of problems is either

chosen by the teacher or the student directly. Content-based filtering also relies

heavily on explicit information from the user, which will reduce the time available

for math problem-solving.
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2.4.2 Collaborative filtering

Collaborative filtering exploits the principle that users who have had similar pref-

erences in the past, most likely will have similar preferences in the future. This

assumption is used to estimate the preference of a given item for a given user.

Note that in this thesis, the chance of a successful answer is estimated instead of

a preference. Collaborative filtering is a part of most recommender systems and

is applicable in a wide variety of domains. The collaborative filtering algorithm

generates a space with as many dimensions as there are items in the database. A

vector is generated for each user, where the value for each dimension is the rating

of the item. The system then calculates the similarity between every user. There

are multiple approaches to calculate similarities, such as Pearson correlation and

vector cosine. When the system predicts how a user will rate an unseen item, the

ratings given by similar users are weighted by their similarity and averaged.

Table 2.1 shows the ratings of four users where user A has completed items 1-3

and users B, C, and D have completed items 1-4. The ratings are either 1 (like) or

-1 (dislike). The similarity between user A and the other users are based on the

items that both A and the other users have completed (items 1-3). The rating of

user A on item 4 will be predicted by averaging the other users’ ratings of item 4

multiplied by their similarity score. In this case, that would be

User Item1 Item2 Item3 Item4 Similarity to user A

A -1 -1 1 ? 1

B 1 1 -1 -1 -1

C -1 -1 1 1 1

D -1 -1 -1 1 0.33

Table 2.1: Collaborative filtering example

(−1×−1) + (1× 1) + (1× 0.33)

3
= 0.78 (2.11)
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This is the predicted value of whether or not user A will answer correctly on item

4.

k-Nearest Neighbors

Collaborative filtering is one of the most successful recommender techniques, but

there are drawbacks to using it. The biggest one being the need for computing

resources. Making predictions based on the entire data set will normally yield the

most accurate results, but it also requires a large amount of computing resources

[31]. Most implementations of collaborative filtering use a neighborhood-based

algorithm [31]. These algorithms only look at the most relevant users when making

predictions. Users that are significantly different from the target user will generally

provide little information when making predictions and can be removed to reduce

the need for computational resources.

k-Nearest Neighbors (k-NN) is the most widely used neighborhood algorithm. k-

NN calculates the similarity between users in the same way as the version of

collaborative filtering described in chapter 4.3.2. The difference is that k-NN only

looks at a subset of users. The number of users to look at is either given explicitly

or as a minimum requirement.

The algorithm places users in an n-dimensional space, where each dimension is

one item the user has rated. In this thesis, items refer to math tasks and user

rating refers to whether or not the user answered the task correctly.

Figure 2.2 is an example of a prediction scenario where k-nearest neighbors is used.

The goal of the example is to predict the chance that users A and B will answer

Task 3 (T3) correctly given their answers to T1 and T2. There are 13 other users

that have completed all three tasks.
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Figure 2.2: k-NN basic example

Let us look at user A. User A has answered both T1 and T2 correctly. There are

three other users that have answered both T1 and T2 correctly. In this case, the

number of most relevant users is three. When calculating the prediction for User

A, you average the results from the neighbors. In this case, the algorithm predicts

a 100% chance of success.

Now let us predict the chance of user B answering T3 correctly. User B has

answered T1 falsely and T2 correctly. Four other users have also answered T1

false and T2 correct. Out of the four users, three answered T3 falsely, and one

answered correctly. The algorithm will then predict that user B has 25% chance

of answering T3 correctly.

If the system uses a minimum number of neighbors, and this number is not met,

the system will either be unable to predict a score, or the system uses less similar

neighbors. Neighbors who are not completely similar may still provide some data.

The data from less ideal users are weighted by their similarity score.
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k-NN will be used to implement collaborative filtering in this thesis. This choice is

based on the tradeoff between the accuracy of the algorithm and the computational

resources needed. A simulation was performed to test the accuracy of k-NN and

its alternatives within a relevant scenario. The simulation procedure, as well as

the alternative algorithms, is described in detail in Section 4.3.2

2.4.3 Implicit vs. explicit feedback

The basis of all recommender systems is data. A movie recommender needs to

know what movies each user likes so that other users can receive suggestions based

on other people’s preferences. A news story recommender needs data about what

articles each user have read, and a music recommender needs data about how

frequently each song is listened to by each user.

Each recommender system designer needs to choose whether to use implicit feed-

back, explicit feedback, or a combination of both to gather data. Explicit feedback

may contain more accurate data, but it requires users to actively rate the item,

which is intrusive. Implicit feedback may contain less usable data, but require no

additional work for the user. If a combined feedback mechanism is possible, it is

usually the best approach. A combined system relies on both data gathered auto-

matically and on data given by users. Netflix is an example of a service that uses

a combined feedback system. Netflix has recently changed the explicit feedback

system from a 5-star rating system to a binary thumbs-up-or-down system. This

change resulted in more data, as more users took the time to give feedback when

the choice was simpler [32].

Service Feeback Style Explicit Feedback Implicit Feedback
Netflix Combined Thumbs up-or-down Content watched
Spotify Implicit N/A Songs played
Amazon Combined Rate products Products bought and viewed

Table 2.2: Type of feedback in popular services



Chapter 2 Background theory 27

The system developed in this thesis will use the results of completed tasks as

implicit feedback. This data will be the basis for calculating the similarity between

students.

2.4.4 Cold start problem

The cold start problem within the domain of recommender systems refers to the

challenge of making predictions to new users and suggesting new items. The cold

start challenge can be divided into three types of problems: (1) recommendations

for new users, (2) recommendations for new items, and (3) recommendations on

new items for new users [33].

If a new user has made no ratings, the system will not have any data to base their

recommendations on. A new item with no ratings may never be recommended, as

recommendations are based on prior ratings.

One solution is to combine collaborative filtering with content-based recommend-

ations. An example of this could be a movie recommender that queries the user

about genre preferences. This can be used as a basis for recommendations until

the system has enough data to include collaborative filtering recommendations.

The proposal of this thesis is to use the Elo ratings of users and items to recommend

items until the RS has enough data to accurately predict outcomes. This should

let the system recommend tasks based on the difference in relative skill until

predictions can be made accurately.

Because the experiment we will carry out will consist of two phases, the first phase

will be a completely cold start for the recommender system. The second phase

will have new users, but the data from the previous users should lessen the impact

of the cold start.
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State of the art

Adaptation has been studied thoroughly in the context of Computerized Adaptive

Testing (CAT) with the use of Item Response Theory [34]. The main idea of CAT is

to determine the ability level of a person dynamically. In CAT, item administration

depends on the subjects previous responses. If the preceding item is answered

correctly (incorrectly), a more (less) difficult item is presented. Hence, each person

is presented with a test tailored to his or her ability. Computerized Adaptive

Practice (CAP) systems, which focuses more on the learning and development of

the learners’ abilities. One example of such system is the Math Garden system,

which focuses on practicing basic arithmetical operations. This system is described

further in Section 3.2.

Adaptivity in an e-learning context has also been studied in the field of Intelligent

Tutoring Systems (ITS). This type of system focuses more on learning complex

cognitive skills (e.g. mathematics, physics). An ITS also often provides guidance

to mastering a specific problem. This could hint to solving a specific problem,

tailored feedback, or step-by-step solution monitoring.

Learner modeling is an important factor in most adaptive e-learning systems [35].

The learner model provides an estimate of the students’ abilities and skill level at

a certain state, based on the students’ performance. The modeling is used to give

feedback to the students, recommend specific parts of the curriculum or to tailor

29
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the instructions to the students. One example of this is in the ALEKS1 system. It

tries to estimate the students’ knowledge state at a certain point in time. This is

in order to monitor the students’ current skill level, progress, and highlight specific

topics where the student is performing well and topics the student is struggling

with. The student model could also be used to recommend relevant topics the

student is ready to learn or not. According to a paper written by Pelnek, R.

et al. in 2017 [36], the two most popular approaches to learner modeling is the

Bayesian knowledge tracing [37] and models based on the logistic function. These

models can be seen as extensions of the Rash model [25] from Item Response

Theory. Learner modeling techniques most related to our work in this thesis are

item response theory and the Rasch model, using a modified version of the logistic

function.

3.1 Combining ERS and IRT for adaptive item

sequencing

In 2013 Antal, M. presented a new item response model by combining item re-

sponse theory and the Elo rating system [38]. This was developed as an alternative

model for adaptive item sequencing, offering estimates for both learner’s abilities

and task difficulty. In her paper, she compared three different methods for diffi-

culty estimation: IRT, ELO, and proportion correct, which is a simple approach

where the estimates are given by dividing the number of incorrect answers by the

number of total answers for the given item.

Two comparison tests were conducted, and consisted of 30 questions each (single

choice, multiple choice, fill in), and were administered using Moodle2. A total

of 137 students participated in the two experiments. The results show that all

estimation methods produced difficulty estimates, which highly correlated with

the other estimation methods.

1https://www.aleks.com/
2https://moodle.org/
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The system developed shows that the combined Elo-IRT system obtains reliable

examinee ability estimates after using a test of at least 30 tasks. This result

supports the findings of van der Maas and Wagenmarkers, who concluded that 25

games were needed to obtain a reliable Elo rating for chess players [39]. Antal

also points out that combining IRT with an Elo rating system has the benefit of

providing both learner’s ability estimates and item difficulty.

3.2 Use of ERS in the Math Garden system

The Math Garden system is a challenging web environment for children to practice

arithmetic. It was used in a study by S. Klinkenberg et. al in 2010 [18]. In a period

of ten months, 3648 children completed over 3.5 million arithmetic problems within

the domains addition, subtraction, division, and multiplication. The Elo rating

system was used for on-the-fly estimation of item difficulty and person ability

parameters. The Rasch model was used for calculating the probability of a student

to solve a specific task. In addition to measuring the student’s success or failure of

a task they also included response time in the estimation of the student’s ability.

The system was built as an educational game, to motivate the students. They

also used two reward systems to keep the students interested and motivated over

time. First, performing well rewarded virtual coins and having the flowers grow in

their virtual garden. The flowerbeds would, therefore, represent the Maths ability

of the student. The coins awarded could be spent on rewards in an own section

of the website (The Price Cabinet). Secondly, the user’s flowerbeds would wither

over time. The only way to undo this was completing a session of 15 tasks.

Equation 3.1 describes how the K value of the Elo system is calculated after solving

a task with user j, and the task(item) i. The same calculation was used for both

user and task. The K value can be interpreted as the learning rate.

Kj = K(1 +K+Uj −K−Ui)

Ki = K(1 +K+Ui −K−Uj)
(3.1)
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K = 0.0075 is the default value, when there is no uncertainty(U = 0). K+ = 4

and K− = 0.5 are weights for rating the uncertainty for the user and the task.

Û = U − 1

40
+

1

30
D (3.2)

The uncertainty equation (eq. 3.2) depends on recency and frequency. This equa-

tion is used for calculating uncertainty for the user and the task, with a provisional

uncertainty of U = 1 and 0 ≤ U ≤ 1. After completing 40 tasks, the uncertainty

will reach the minimum of 0. After D number of days of not playing the uncer-

tainty will increase, and after 30 days without playing it will reach the maximum

of 1.

The system also uses a scoring rule to incorporate speed. This is known as the

high-speed high-stakes (HSHS) scoring rule. This is a trade-off for the user between

speed and accuracy, where quick responses will grant higher scores. The score in

case of a correct answer will be equal to the remaining time. In case of an incorrect

answer, the score will equal the remaining time multiplied by −1.

The tasks are selected based on the mean probability of answering correctly is

∼ .75. The probability is restricted to be > .5. Repetition of tasks is restricted to

only be reused after 20 tasks.

The results concerning the validity and reliability presented are promising. It

showed an increase in player ability rating across all grades tested on (from kinder-

garden through secondary education), except grade 5 and 6, where the ratings did

not differ. The results also show high correlations to the reference scores used

(CITO scores). Concerning the item bank, they noticed that the item difficulty

ratings converged in about 8 weeks, and stayed consistent across time. No indic-

ation of learning effects was found as some of the items were reused.

The Math Garden system has many similarities to our system. However, they

differ in some major concepts. First of all, the Math garden system’s concept is

practicing, where our focus is more towards testing. The Math Garden system is
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only considering the tasks’ and user’s Elo rating to select new tasks for the users.

For calculating the uncertainty (k value) it uses the number of days since last

playing as a factor, in addition to the number of tasks completed. When selecting

tasks they have used a target success rate of .75 with a lower limit of .5. This is

slightly higher than in our system, where we use .65, with lower and upper limits

of −25/+ 75 Elo rating points.

The system is also built more like an educational game, with more focus towards

keeping students motivated. The use of HSHS adds a competitive dimension to

the system.

3.3 Other adaptive e-learning systems

There exists a multitude of Learning Management System (LMS) environments

that have implemented adaptive learning algorithms. Examples of these are Fishtree,

Smart Sparrow, and Knewton among others. However, these systems are commer-

cial closed-source products that do not share details about the underlying tech-

nologies and algorithms used, therefore they cannot be evaluated in detail nor

compared.

FishTree3

”Fishtree was created to solve the challenges of scaling personalized learning.

Fishtree automates resource generation, automatically aligns content to learning

objectives or competencies and adapts to the learning profile and knowledge gaps

of every learner with one click”.

FishTree is a commercial for-profit service and does not go into detail about the

algorithms they use. The patent owned by FishTree Inc. shows that the adaptation

of FishTree mainly stems from the identification of learning styles [40].

3https://www.fishtree.com/
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Smart Sparrow4

Smart Sparrow is an adaptive learning platform incubated at the School of Com-

puter Science and Engineering at the University of New South Wales in Sydney,

Australia in 2011. It provides adaptive learning through different pathways through

a course, which can be different for each student. Different modules in the courses

can also be customized, but this needs to be done by the instructor. Course cre-

ation can also include interactive multimedia such as pictures, videos, and sliders.

The system also provides information about the students and the parts of the

curriculum where they are suffering and which parts the students find easy. The

instructor can also distribute learning content online, so teachers can access it

from anywhere. Smart Sparrow is a global leader in adaptive and personalized

learning technology and is used by over 500 institutions.

Knewton5

Knewton is a web-based adaptive learning platform founded in 2008 and is concen-

trated in the fields of science, technology, engineering, and mathematics in both

lower and higher education. The Knewton system keeps track of the student’s

profile, and log how they overcame problems. This information is reused to help

other similar students in similar situations. The system also gives parents the

opportunity to follow their child’s progression, to learn what they are struggling

with and to understand specific concepts. The content is presented based on the

preferences of the user. This can be video, text, games or provide short or long and

detailed explanations. The difficulty of the practice questions can also be adjusted.

Knewton also partners with several companies to provide learning material.

4https://www.smartsparrow.com/
5https://www.knewton.com/
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3.4 The use of Recommender Systems

Recommender systems are currently being used in a wide array of domains. They

are used by Netflix to recommend movies to users [41]. Recommender system have

been used by Amazon to recommend products to buyers for over two decades [30].

These systems are also reportedly used to match users in dating services and to

find restaurants when on vacation.

Content-based filtering uses metadata to recommend items. An example of this is

that Netflix may ask you if you like action movies, and if you do, it will rank action

movies higher than other recommendations. These kinds of recommendations work

well in domains where the user know what they like or want [41]. However, in

the domain of e-learning, this does not typically apply. Preferences of students

are relevant on the item-level, i.e. representations of concepts, but the overall

curriculum is usually predetermined. There have been attempts at generating

content-based profiles for students by using their browsing history to classify their

preferences of learner material [42]. But this did not yield good results and is quite

intruding to the privacy of the students.

The ordering of tasks in e-learning is referred to as item sequencing. Item sequen-

cing has successfully been performed by using collaborative filtering [43]. This was

done by creating similarities between students based on previously given answers,

and by using k-Nearest Neighbors to predict the chance that a student will be able

to successfully answer a given question.





Chapter 4

Architecture and implementation

An implementation of the proposed solution was needed to conduct the experiment

as planned. Some of the design choices were forced, as the system was already

fully developed, and rewriting parts of the system is time consuming and out

of our scope. The implementation of the proposed solution in Matistikk can be

viewed as a proof of concept and is meant for scientific purposes only. This chapter

will present the chosen architecture, the reasoning behind design choices, and the

implementation.

4.1 Matistikk

The proposed solution was implemented as an extension to Matistikk. Matistikk is

an e-learning system that focuses on organizing, presenting and correcting math-

ematical problems for students of all ages. Matistikk lets teachers create math

tasks, organize the tasks into tests, and publish the tests to specific groups of stu-

dents, schools, or classes. Matistikk was developed as a bachelor thesis at NTNU

Trondheim, during the spring of 2017 [44]. The proposed solution is based on

the underlying software of Matistikk, but it functions as a standalone feature. A

brief overview of how Matistikk functions will be presented to illustrate how the

proposed solution works.

37
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The index page of Matistikk is a log-in page (fig. 4.1). Based on your account

privileges, you will either be presented with available tests if you are a student, or

administrative functionality if you are a teacher or administrator, such as creation

or management of learning content.

Figure 4.1: Matistikk: Login view

In this thesis, the administrative features are only used to monitor statistics

and to create tasks and tests. Two new buttons have been added to this page.

”Tilbakemelding” will redirect the user to a feedback form used in the experi-

ment. ”Testomr̊ade” will initiate the test by automatically generating a new user

account and logging the user in. This process is not visible to the user. The user is

presented with some basic instructions (fig. 4.2). When the user clicks the ”start

test” button, the first task is displayed. Examples of tasks are shown in Figure 4.3.
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Figure 4.2: Matistikk: Start page view

After the first task is answered, the system decides which task should be presen-

ted next, then the user is presented with the new task. Note there is no explicit

feedback to the user if the last answer was correct or not. The only indication is

the displayed Elo rating of the user. This continues until the system has no more

fitting tasks, or if the student wishes to end the session. The session may be ended

by clicking the ”Logg ut” button. For the purpose of this thesis, every task is in

the form of a multiple choice question. This was chosen because Mattisikk already

had built-in features for auto-correcting multiple choice questions.
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Figure 4.3: Matistikk: Example task views

4.1.1 System architecture

Matistikk is a web application that uses the Django framework for python1. Django

handles the core features of the web-server, as well as providing a direct admin-

istration interface used to manipulate the database entries. Django was used

in combination with HTML5, JavaScript, CSS, and Bootstrap. Matistikk was

1https://www.djangoproject.com/
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initially run on an SQLite database. This was replaced with a MySQL database

ahead of the experiment because the SQLite database does not support concurrent

handling of multiple users. The open source libraries Pandas and Surprise were

used to structure the data and to implement the collaborative filtering algorithm.

These libraries are described in detail in Section 3.

The system did not feature a convenient way of selecting tasks to be presented

on the fly. The system required all tasks to be handled within tests. It was not

possible to give a student a specific task, only tests (sets of tasks). There was no

way to rearrange the tasks within a test while the test was ongoing. This was a

problem, as the goal of the proposed solution was to select the most fitting task

after each completed task. We addressed this problem by creating tests for every

task in a one-to-one relationship. This means that all tests consisted of only one

task. That way, a student would be given a complete test at a time, but the

test would only contain one task. After the test was completed, a new test was

selected. This had no practical impact on the users other than requiring more

button presses to advance through the tasks. This also made the creation of the

learning content more challenging and time-consuming, as each new task needed

to be placed in a unique test.

When a new user is logged in, the user is assigned to either the test group or the

control group. This is done by assigning even user ids to the test group and odd

user ids to the control group (listing 1). This happens behind the scenes and the

user is not shown which group they are assigned to.

1 if Person.objects.count() % 2 == 0:

2 user.inControlGroup = False

3 else:

4 user.inControlGroup = True

5 user.save()

Listing 1: User assignment to test- or control group
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The attribute inControlGroup is stored in the Person model in the database.

This is used in the selection of the next task. The implementation of the Person

model can be studied in appendix B.

All new users were initiated with the same Elo rating. For test phase one this

was set to 1300. For test phase two this was adjusted to 1400. The initial Elo

ratings of the tests were set in advance by the authors. The initial task ratings

were based on estimates from the authors and textbook guidelines, and is further

described in Section 4.4. The Elo rating score was stored in the Person and Test

models respectively, in the attribute elo rating (Appendix B).

4.2 Task selection

The next task presented to the user is selected in the func-

tions get next task(user id) for users in the test group and

get next task for control group user(user) for users in the control group. These

functions are located in Matistikk/administration/templatetags/administra-

tion extras.py. The algorithm used to select the next task is dependent on which

group the user is in; either the test group or the control group. The test group

algorithm use both Elo rating and collaborative filtering, while the control group

only use Elo rating. The task selection for the test group and the control group

are described in detail in Section 4.2.1 and Section 4.2.2, respectively.
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Figure 4.4: Task selection in Matistikk - flowchart

As Figure 4.4 shows, When a user starts a new session, they are instantly

presented a task. When the user submits an answer, this is sent to the database

and new Elo ratings for both the user and the task is calculated and stored in the

database. If there are no more relevant tasks for the user, the test is terminated

and the user will be logged out. The user is then presented with the ”finished

view” as depicted in Figure 4.5.
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Figure 4.5: Matistikk: Finished view

If there are more relevant tasks available for the user, the next task will be selected

and presented to the user. This will repeat until there are no more relevant tasks

available for the user.

4.2.1 Task selection for test group

For the test group, the task selection is dependent on the user’s Elo rating and

the recommendations from the collaborative filtering algorithm. This process is

described by the Algorithm 1.
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Algorithm 1: Select next task for test group

Input: user id

Output: selected task

1 user = get user from database with current user id

2 if user is in control group then

3 return get next task for control group user(user)

4 end

5 elo candidates = get all uncompleted tasks for user which is in the range -25/+75

6 if length of elo candidates == 0 then

7 no tasks available, redirect to home

8 end

9 collaborative filtering estimates = get list of tasks sorted on best

recommendations

10 write meta data to log file

11 return collaborative filtering estimates[0][0]

This algorithm is called for all users, regardless of whether they are in the control

group or the test group. If the user is in the control group, they will be redirected

to the appropriate algorithm, Algorithm 2, in step 2 and 3.

If the user is in the test group, the algorithm will retrieve all uncompleted tests

with a maximum Elo difference of -25/+75 Elo rating points compared to the

user. If there are no tasks available within the Elo rating interval, −1 is returned.

The session will then be terminated. If the list is not empty, it will be passed on

to get collaborative filtering estimates.

The collaborative filtering algorithm receives the list of tasks and returns the list

sorted by the probability of success for the specific user. The first element of the list

is the task that the user most likely will answer correctly, based on the predictions

made by the collaborative filtering algorithm. The algorithm also returns data
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about the accuracy of the prediction model and the number of neighbors used

to predict the values. If there is a tie between the best tasks returned by the

collaborative filtering algorithm, the task closest to the target Elo difficulty is

selected. The ideal Elo rating is set to be one that that results in a 65% chance

of success for the user. The selected task is then presented to the user.

4.2.2 Task selection for control group

The task selection for the control group is only dependent on the Elo rating of the

user. Collaborative filtering is not applied to this group of users. The selection

process is described in Algorithm 2.

Algorithm 2: Select next task for control group

Input: user

Output: selected task

1 uncompleted tests = get all uncompleted tasks for user which is in the range

-25/+75

2 if length of uncompleted tests == 0 then

3 no tasks available, redirect to home

4 end

5 uncompleted tests sorted = sort uncompleted tests on closest to target success

rate

6 return uncompleted tests sorted[0][0]

The function get next task for control group user(user) handles the task selection

for the control group users. First, the relevant tasks (not completed by the user

and are in the range -25/+75 Elo rating points from the user) are found. Then

the tasks are sorted by how close they are to the target success rate, utilizing

the modified version of the Rasch model (eq. 4.1). The first item is chosen and

returned. If no relevant tasks are available the test will be terminated and the

user will be presented with the ”finished view” (fig. 4.5).
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4.3 Implementation

4.3.1 Implementation of the Elo rating algorithm

The calculation of both the user’s Elo rating θi and the task’s Elo rating θj is

computed directly after each task is completed. First, the expected outcome of the

task is calculated. The equation 4.1 is a slightly modified version of the logistic

function 2.9 from Section 2.3.2. These adjustments are implemented to bet-

ter fit the rating scale used in this thesis and do not alter the underlying principles.

The following equation is used to estimate the probability of success for a user

attempting a task. Let the user i encounter task j. The probability of success

from the user’s perspective will be:

P (Rij = 1) =
1

1 + 10−
θi−θj
100

(4.1)

This probability of success is then used to calculate the new Elo rating θi, based

on the result of the task and the probability calculated in equation 4.1.

θi = θi +K(Rij − P (Rij = 1)) (4.2)

The implementation of these functions can be studied further in Appendix A.

Example:

If a user i, with an Elo rating of 1330 encounters a task j with the Elo rating of

1345, the probability of success for the user P (Rij = 1), would be:

P (Rij = 1) =
1

1 + 10−
1330−1345

100

(4.3)

P (Rij = 1) ≈ 0.4145 (4.4)
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The probability of success for the task will equal the probability of failure for the

user. This can simply be calculated like this:

P (Rji = 1) = P (Rij = 0) = 1− P (Rij = 1) ≈ 0.5855 (4.5)

The probabilities are then carried over to the update functions (eq. 4.6 and 4.7).

If the user is able to solve the task, the result for the user is set to 1, and the

result of the task is set to 0.

θi = 1330 + 20(1− 0.4145) ≈ 1342 (4.6)

θj = 1345 + 20(0− 0.5855) ≈ 1333 (4.7)

The new Elo rating for the user θi will be 1342, and 1333 for the task θj. The

K value in this example is set to 20 for demonstration purposes and was chosen

arbitrarily.

Listing 2 shows the implementation of calculate new elo(user id). The listing

shows the process of calculating and storing the Elo ratings for both the user

and the task. This function runs directly after a user completes a task.

1 def calculate_new_elo(user_id):

2

3 # Get user from DB

4 user = Person.objects.get(id=user_id)

5 user_elo = user.elo_rating

6

7 # Get last answer for user from DB

8 all_answers_for_user = Answer.objects.filter(user=user_id)

9 if not all_answers_for_user:

10 return json.dumps(True)

11

12 last_answer = all_answers_for_user[len(all_answers_for_user) - 1]

13
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14 # Get task from DB

15 test = Test.objects.get(id=last_answer.test.id)

16

17 if len(all_answers_for_user) <= 0:

18 return json.dumps(False)

19 if last_answer.elo_has_been_calculated:

20 return json.dumps(True)

21

22 new_user_elo =

23 elo_calc.calculate_new_elo_for_user(

24 calculate_K_user(user_id),

25 user_elo,

26 int(last_answer.correct),

27 elo_calc.calculate_expected_success_for_user(user_elo,

28 test.elo_rating))

29

30 # Reversed last answer represents the result of the last task from the

31 # opponents(task) point of view

32 # 1 = user failed, 0 = user succeeded

33

34 reversed_last_answer = 1

35 if int(last_answer.correct) == 1:

36 reversed_last_answer = 0

37

38 new_test_elo =

39 elo_calc.calculate_new_elo_for_task(

40 calculate_K_test(test),

41 test.elo_rating,

42 int(reversed_last_answer),

43 elo_calc.calculate_expected_success_for_task(test.elo_rating,

44 user_elo))

45 test.elo_rating = new_test_elo

46 test.save()

47

48 if new_user_elo < 1200:

49 user.elo_rating = 1200

50 else:

51 user.elo_rating = new_user_elo

52

53 user.save()

54

55 user_logger(user, test, last_answer.correct)

56 test_logger(user, test, reversed_last_answer)

57 all_answers_for_user[len(all_answers_for_user) - 1].elo_has_been_calculated = True

58 all_answers_for_user[len(all_answers_for_user) - 1].save()

Listing 2: Implementation Elo task selection
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First, the user and the last answered task is fetched from the database. Then the

new user Elo is calculated and the result is reversed(1 = 0 and 0 = 1), to represent

the result of the task. This result is used when calculating the new Elo for the

task. The new user Elo rating is checked against a threshold of 1200, to prevent

users from decreasing their rating below the available tasks. Finally, the user is

saved to the database and some logging is done for monitoring purposes.

K value

Pelanek [29] and Glickman [45] suggest using an uncertainty function for the K

value instead of using a constant. Because the ratings become more accurate when

the user has answered more tasks, the rate of change in Elo rating should decrease

as a function of the number of tasks completed. This allows for users of all skill

levels to quickly be placed near their correct rating while avoiding spikes in the

rating when the system has gained a high accuracy. In this thesis, we used a

logistic uncertainty function (eq. 4.8), proposed by J. Ninan et. al in 2015 [46].

K =
a

1 + b× n
(4.8)

where a = 125, b = 0.2, n = number of tasks completed

The variables a and b can be adjusted to fit the scale of the system. Figure 4.6

shows how the sensitivity of the Elo rating will decrease with the number of tasks

completed by the user. We can see that after 15-20 tasks completed the certainty

is stabilizing. This is approximately the number of consecutive tasks needed to

solve to reach the highest rated task.
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Figure 4.6: Logistic uncertainty function

The Elo calculations were done using a constant K value. This was done because

the experiment that would be carried out would be held in multiple phases. The

constant K value would lessen the impact of one phase having higher skilled users

than the other. Another reason for not having a dynamic K value is to decrease

the number of variables affecting the system. For future work, using a dynamic K

value for both users and tests should be investigated.

4.3.2 Collaborative filtering design choices

Collaborative filtering can be implemented using a variety of algorithms. These

algorithms have different efficiency and accuracy. In order to pick an implement-

ation, a simulation of a prediction scenario was conducted.

This was done by creating fictional tasks, students, and answers to run a

simulation on. To populate the database with data that represented a relevant

scenario, each of the fictional students was labeled as either type A or type B.

The tasks were also labeled as either type A or B. This was done to simulate

that students may have a performance bias towards a certain task representation.

Type A students have a performance bias towards tasks of type A. Type B

students has a performance bias towards type B tasks.

Note that these two types were only simulated, and could represent any kind of

performance bias e.g. textual task bias, numerical task bias etc. In the simulation,
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this meant that a Student of type A had a higher chance of answering tasks of

type A correctly.

The rule used to generate answers in the database was fairly simple. If a student

had an equal or higher rating than the task, then an answer is generated and set

to be ’correct’. If a student has a lower rating than the task, then the answer will

be set to be ’wrong’. To represent the two types of students and their performance

biases, students received a +50 Elo rating while solving a task of compatible type.

Type A Student Type B student

Type A task +50 +0

Type B task +0 +50

Table 4.1: Extra Elo received while solving tasks

Figure 4.7: Data used to simulate the collaborative filtering algorithms

Each algorithm was tested on the artificially generated data-set(Figure 4.7) and

the data-set was reset after the test of each algorithm. After completing 20 tasks

of each algorithm, the Root-mean-square error (RMSE) was recorded and used

to evaluate the accuracy of the algorithms. The number of tasks was chosen to
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reflect the amount of task the students should be able to complete the upcoming

experiment.

Algorithm RMSE Computational complexity

Singular Value Decomposition (SVD) 0.09 O((k2) ∗ n)

Non-negative Matrix Factorization (NMF) 0.15 NP-hard

k-NN Basic 0.11 O(nd+ kn)

Table 4.2: Evaluation of algorithms after 20 completed tasks

From Table 4.2 we can see that the NMF algorithm provides the least accuracy.

Both SVD and k-NN Basic scores better in this simulation. We decided to use

k-NN Basic since this has the lowest computational complexity of those two.

4.3.3 Implementation of collaborative filtering

1 def get_collaborative_filtering_estimates(user_id, tasks_to_consider):

2

3 answers = Answer.objects.all()

4 ratings_dict = {'itemID': [],

5 'userID': [],

6 'rating': []}

7 for answer in answers:

8 ratings_dict['itemID'].append(str(answer.test_id))

9 ratings_dict['userID'].append(str(answer.user_id))

10 ratings_dict['rating'].append(str(answer.correct))

11

12 df = pandas.DataFrame(ratings_dict)

13 reader = surprise.Reader(rating_scale=(0, 1))

14 data = surprise.Dataset.load_from_df(df[['userID', 'itemID', 'rating']],

15 reader)

16 train_set = data.build_full_trainset()

17

18 algo = surprise.KNNBasic()

19 algo.train(train_set)

20

21 estimates = 0

22 tests_with_predictions = []

23 predictions = []

24 for test_id in tasks_to_consider:

25 prediction = algo.predict(str(user_id),
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26 str(test_id),

27 r_ui = 0,

28 verbose=True)

29

30 predictions.append(prediction)

31 tests_with_predictions.append([prediction[1],

32 prediction[3],

33 get_elo_diff(user_id, prediction[1])])

34 estimates += prediction[3]

35

36 mae = surprise.accuracy.mae(predictions, False)

37

38 average_estimate = round(estimates/len(tests_with_predictions), 2)

39 sorted_tests_with_predictions = sorted(tests_with_predictions,

40 key=lambda x: (x[1], -x[2]),

41 reverse=True)

42

43 above_average = round(sorted_tests_with_predictions[0][1] - average_estimate, 2)

44 return [sorted_tests_with_predictions, above_average, mae]

Listing 3: Implementation collaborative filtering selection

After the task selection algorithm (Algorithm 1) has filtered out the tasks with too

low or too high difficulty, the collaborative filtering algorithm sorts the remaining

task candidates based on the estimated likelihood of successful completion. The

list is sorted so that the first element of the list is the task that the student most

likely will answer correctly.

A step-by-step description of the get collaborative filtering estimates() is as fol-

lows:

1. Retrieve all answers on the database.

2. Create a ’rating dictionary’ which contains taskID, userID, and whether the

answer was correct or false.

3. Convert the rating dictionary into a data structure called a DataFrame.

4. Set that the rating scale to start at 0 (incorrect answer) and to end at 1

(correct answer).
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5. Load the data from the DataFrame into the collaborate filtering framework

Surprise.

6. Create a subset of the data to be used as a training set.

7. Set k-NN Basic as the algorithm to be used for making predictions.

8. Train the model of the recommender system on the training data.

9. Predict, and store, the estimated likelihood of success on all the tasks pre-

viously chosen by the Elo skill rating.

10. Calculate the Mean Average Error of the predictions.

11. Calculate the average predicted success rate.

12. Sort the predictions based on the estimates from the collaborate filtering

algorithm. If there are tasks with similarly predicted outcomes, sort those

tasks based on the skill rating deviation from the user.

13. Calculate the difference between the average estimates and the best estimate.

This is only logged and used as statistics for the authors.

14. Return the sorted list.

In essence, this complete algorithm takes a list of tasks with fitting difficulty and

returns the same list sorted based on predicted success based on collaborative

filtering.

Pandas and Surprise

Pandas is an open source, BSD-licensed library providing high-performance, easy-

to-use data structures and data analysis tools for the Python programming lan-

guage2. Pandas was used in this thesis to structure data properly prior to the

calculation of collaborative filtering estimates. It structures the data into matrices

with the columns userID, itemID, and rating (Listing 3).

2https://pandas.pydata.org/
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Surprise3 is an open-source Python scikit for recommender systems. For tasks

selection based on collaborative filtering, the prediction algorithms package was

used. More specifically the k-NN Basic algorithm. Surprise was also used to

calculate the Mean Absolute Error (MAE) to measure the difference between the

observed result and the predicted result from collaborative filtering.

k-NN Basic

The k-Nearest Neighbor (k-NN) algorithm is a non-parametric lazy learning al-

gorithm which is well suited for classification problems. The implementation of the

algorithm is in the Surprise library and was used to compare similarities between

students. The only parameter used to compare students was whether the specific

task was solved successfully by the user or not. Equation 4.9 demonstrates how

the similarity between two users is calculated.

r̂ui =

∑
v∈Nk

i (u)

sim(u, v) · rvi∑
v∈Nk

i (u)

sim(u, v)
(4.9)

4.4 Learning content

Before moving on to the experiment, a large set of tasks (math problems) with

estimated difficulties was needed. Because Matistikk did not feature a method for

importing tasks, they were manually transcribed from 8th-grade math curriculum

books [47][48][49][50]. The tasks were constrained to only feature fractions. The

books used to find tasks were borrowed from the NTNU library for teacher

education. The process of importing the tasks was divided into three phases.

The first phase consisted of going through the chapters on fractions to transcribe

and create the tasks in Matistikk. The total number of tasks needed was based on

3http://surprise.readthedocs.io/en/stable/index.html
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the scale of the upcoming experiment. It was important to cover all skill segments

with a sufficient number of tasks. This was crucial because a wide variety of tasks

with similar difficulty greatly improves the ability to recommend specific tasks to

specific users. If there were too few tasks, the recommender system would not

be able to make specific recommendations. Every task was made into a multiple

choice problem. This was done to simplify the auto-correcting. Using input fields

may yield a better representation of the students’ skill, but they also require a

significant amount of parsing of the answers. The authors created the answer

choices for the tasks that did not feature multiple choice in the curriculum books.

After having transcribed and created over 300 tasks the next phase was initiated.

The second phase consisted of estimating difficulty ratings of the tasks. Although

the Elo rating algorithm should find the correct ratings for the tasks after

a sufficient amount of usage, a good initial estimate would shorten the time

needed to calibrate the system, as well as give the first users more accurate

recommendations. Each of the tasks created was given an estimated difficulty

rating based partly on the difficulty scheme in the curriculum books, and partly

on the judgment of the authors. The curriculum books had different color ratings

for the different sub-chapters which somewhat represented difficulty. The colors

represented the learning curve more than the difficulty. The blue chapter was the

easiest and the tasks were defined (by the authors) to range from 1200 to 1500

difficulty rating. The yellow chapter represented the medium difficulty chapter.

The yellow tasks were estimated to range from 1400 to 1700 rating. The red

chapter was the hardest and consisted of tasks ranging from 1600 to 1800 in Elo

rating. These color ratings were used as a baseline for the Elo ratings set by the

authors. After setting the initial rating based on the color scheme, the authors

went through every task manually to judge if the difficulty rating was appropriate.

The initial Elo rating was applied directly to the tasks in the database.

The third phase consisted of both authors solving all of the tasks. This was

performed in order to find errors in phrasing or in the multiple choice options.
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The third phase also resulted in an additional judgment of the difficulty ratings

of the tasks.



Chapter 5

Experiment and results

The infrastructure presented in Chapter 4 will be used and tested as presented in

this chapter. The results and details about each phase are presented chronologic-

ally. The size and scope of this experiment introduced some limitations, which

are described at the end of this chapter.

The hypothesis of this thesis is

• A combination of Collaborative Filtering and Elo rating will better represent

the skill of a student, compared to using only Elo rating.

To test this hypothesis we decided to carry out an experiment. We divided

the users into a test group and a control group. The test group will use our

combination of Elo rating and collaborative filtering, and the control group will

use only Elo rating. We will evaluate the final Elo ratings of the users with

an independent two tail sample t-test to see if there is a statistically significant

increase of ratings in the test group compared to the control group. This test is

further described in Section 5.2.3.

This experiment is split into two phases. Phase one will evaluate the system with

an empty database. This means there are no students for the collaborative filtering

to base recommendations on in phase one. The performance of the recommender

algorithm is therefore expected to be worse in phase one. Phase two will be

initialized with the data gathered in phase one. Because of this, the cold start
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problem should be mitigated to some degree. We expect to see a steeper increase

in the accuracy of the recommendations in phase two. The users were all given the

same initial Elo rating of 1300 for the first phase and 1400 for the second phase.

The initial rating was raised between the test phases to better fit the ability level

of the participants in the experiment. This was based on results from test phase

one.

Phase Users Duration Empty DB Initial rating # of users

One Teacher Students ∼ 45 min YES 1300 23

Two Teacher Students ∼ 45 min NO 1400 25

Table 5.1: Experiment phase details

All of the tasks used in the experiment was in the form of multiple choice, with

3-4 options in each task. All tasks had exactly one correct answer. The types

of tasks given varied in layout (textual, figures, plain calculations). Examples of

tasks are shown in Figure 4.3. There were over 300 tasks in the database with an

initial task difficulty ranging from 1200 to 1800.

The two test phases were performed on March 1st and 8th, 2018, in a standard

classroom-setting at the Department of teacher education, NTNU. A total of 48

first grade teacher students participated in total (23 in phase one, and 25 in phase

two). It should be noted that the users in the two different phases were not in

the same class, meaning that none of the test users participated in both phases.

Approximately half of the participants were placed in the test group and the

other half in a control group. They were assigned to a group automatically by

the system, upon starting the test. The users were never informed about the

groups or which group they were placed in. The test group was given tasks based

on their Elo rating combined with suggestions from collaborative filtering. The

control group was given recommendations only based on their current Elo rating.
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The experiment was conducted during a normal lecture, which was paused for

the entire duration of the experiment. At the very beginning of the lecture, the

test users were given some background information about the system and what

we wanted to test. They were also given a short demo of how the system works,

and how they should proceed. This part of the experiment took about 15 minutes.

After this, the test users started the test, by solving as many tasks as they pos-

sibly could in 45 minutes using their own computers and the university network.

During the experiment, the system developed was hosted on a server running on

the university network. The participants were allowed to use pen and paper to

aid them, but no calculators nor collaboration was allowed during the test. The

authors were present during the whole experiment to answer questions the users

may have, or to deal with issues that may occur. The procedures for the test were:

1. Navigate to the server URL.

2. Enter the test environment (fig. 4.1).

3. Read the instructions and click the ”Start test” button (fig. 4.2).

4. Answer the presented task (fig. 4.3)

5. Click the ”Send inn” button to submit their answer.

6. Click ”Logg ut” to quit, or click ”Neste oppgave” to go to step 4.

Upon completion of a task, a new task automatically calculated and presented,

as described in Section 4.2.

5.1 Data collection

When a user initiated the test, a test user account was automatically created

and logged in behind the scenes. This was done to simplify the process for the

user while carefully protecting their privacy. The user was not prompted to input

any information besides answers to the tasks presented. The users were given
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information concerning their privacy and how the data collected would be handled,

before starting the test (fig. 4.2). At the end of the test, the user would click the

”Logg ut”-button, or close the browser window to quit. Upon completion, a small

questionnaire about perceived difficulty was given. The users were asked to rate

the fairness of the tasks given in terms of difficulty on a scale from 1 to 5, where 1

represents too easy and 5 is too hard. The purpose of this questionnaire is to get

an estimate of the difficulty from the users’ point of view.

For every active user and every task completed, the system created a log file in

CSV-format which was stored on the server. The task log files were updated

with the values shown in Figure 5.1 after a task was completed by a user. The

user log files were updated with the values from Figure 5.2 after every task the

user completed. By saving the progression throughout the test we were able

to monitor the progression of the ratings and to evaluate the recommendations

provided by the collaborative filtering algorithm. The log files also contained user

id or test id, and whether the user was in the test group or the control group.

The log files were named by id and name.

Figure 5.1: Example of task log file

Figure 5.2: Example of user log file
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5.1.1 Data filtering

Some of the test data was removed prior to the analysis. This was done due to

incomplete data. Users that had completed too few tasks were removed prior to

the analysis. The lower limit of tasks completed was set to include as many of

the users as possible without making the sample size too small. The limit for the

first test phase was 16 tasks and 10 for the second test phase. In phase one, one

user was removed from the control group. In test phase two, three users from the

control group and one user from the test group were removed.

5.2 Test results

The results are presented in their respective phases. This is done because the data

from phase one was carried over to phase two.

5.2.1 Test phase one

Out of 22 participants in the first phase, the control group consisted of 13 users

and the test group consisted of 9 users. The numbers presented in Table 5.2 does

not differ between users in the test group and in the control group. This is meant

to give an overall summary of the test phase. The results show that the users

averaged at 29.82 tasks completed, which means about 1.5 minutes per task on

average. The average Elo rating for the users was 1592.09. The median value also

supports this result. The standard deviation was 98.78.

Users total (test group/control group) 22(9/13)

Number of tasks completed in total 656

Average number of completed tasks per user 29.82

Average Elo for users 1592.09

Median Elo for users 1596

Standard deviation for users (Elo) 98.78

Table 5.2: Key numbers from test phase one
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Figure 5.3 illustrates the average Elo rating of both user groups after a number of

completed tasks.

Figure 5.3: Average Elo rating in test phase one

Task Elo calibration

The Elo ratings of the tasks were initially set by the authors. This procedure

is described in detail in Section 4.4. As users complete tasks the system will

calibrate the task Elo rating over time. The initial and final distribution is shown

in Figure 5.4. After the test phase, we can see that the distribution is getting

closer to a normal distribution as more tasks get pushed against the middle. We

also observe that some of the harder tasks were solved by some students and the

Elo rating of these tasks decreased.
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Figure 5.4: Test Elo distribution before and after test phase one

5.2.2 Test phase two

For test phase two we decided to increase the initial rating for each user from

1300 to 1400. By increasing the initial Elo rating, the skill rating of the user

could be found more efficiently as for most users the Elo ranking will converge

faster. On average the users in test phase one used the 3-4 first tasks to only

reach the rank of 1400.

Test phase two consisted of 21 users in total, spread between 9 users in the test

group, and 12 in the control group. On average, they completed 16.71 tasks each.

This means around 2.7 minutes per task.

Users total (test group/control group) 21(9/12)

Number of tasks completed in total 351

Average number of completed tasks per user 16.71

Average Elo for users 1565.18

Median Elo for users 1565

Standard deviation for users (Elo) 66.71

Table 5.3: Key numbers from test phase two
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Figure 5.5 shows the average Elo rating through test phase two. the average Elo

rating converges faster, in this case to ∼ 1550. This is as expected since we decided

to raise the initial user Elo ratings.

Figure 5.5: Average Elo rating in test phase two

Task Elo calibration

The data from test phase one was carried over to the second test phase. This

means that the final ratings from phase one was used as initial ratings in phase two.

This means the task difficulty calibration from phase one continued in phase two.

Figure 5.6 shows that the distribution is even closer to the Gaussian distribution.

That means after 1007 tasks completed in total, by 43 users, we have a good

estimate for the difficulty of the tasks.
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Figure 5.6: Test Elo distribution before and after test phase two

5.2.3 t-test

The main hypothesis of this thesis is

• A combination of Collaborative Filtering and Elo rating will better represent

the skill of a student, compared to using only Elo rating.

The presumption for this hypothesis is that a better skill estimate results in a

higher Elo rating. We believe this is a fair presumption. The Elo rating algorithm

works independently from collaborative filtering, meaning that any increase in

Elo rating is the result of a student solving a task with a higher rating, i.e. a

harder task.

As a part of testing the hypothesis, we will test if there is any improvement in Elo

rating for the test group compared to the control group.

• H1 : A combination of Collaborative Filtering and Elo rating will result in

an increased Elo rating for the test group compared to the control group.

• H0 : There is no statistically significant difference in the Elo rating between

the test group and the control group.
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in order to prove the hypothesis H1, we must be able to reject hypothesis H0. We

will conduct this test with a confidence level of 95%. For the degrees of freedom,

we have used 20 for phase one and 19 for phase two.

To be able to reject the hypothesis H0 for both phases the t-value must be higher

than the critical t-value for the confidence level of 95%.

Phase one Phase two

Critical t-value 2.086 2.093

Table 5.4: Critical t-values

The t-values for both phases were calculated as shown in Equations 5.1 and 5.2.

t− valuep1 =
|1595.11− 1589.08|√

5238.86
9

+ 14278.91
13

≈ 0.1460 (5.1)

t− valuep2 =
|1553.78− 1576.58|√

3878.19
9

+ 4588.81
12

≈ 0.7997 (5.2)

As we can see from the calculations the t-value is far lower than the critical

t-values required to reject the hypothesis H0.

We can therefore state that there is no statistically significant difference in Elo

rating when using the combination of Collaborative Filtering and Elo rating.

Phase one Phase two

p-value 0.8944 0.4394

Table 5.5: p-values from the t-test

The entire data-set and results from the t-test can be studied in Appendix C.

5.2.4 Collaborative Filtering accuracy

Figure 5.7 shows the difference and the development of Mean Absolute Error

(MAE) average during the two test phases. Figure 5.7 shows that the MAE
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descends more rapidly in test phase two.

Figure 5.7: Mean Absolute Error average

5.2.5 Feedback from users

After completing the test, the users were asked to evaluate the difficulty of the

tasks they were given. This data was collected using Google Forms1 directly after

completing the test. Responding to this survey was optional.

Out of 23 participants in test phase one, 18 responded to this survey. The average

score of the responses was 2.944. Out of 20 participants in phase two, 16 of the

users responded. The average score on difficulty fairness of this phase was 3.375.

Figure 5.8 shows all the results collected in this survey.

1https://www.google.com/intl/en en/forms/about/
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Figure 5.8: Task difficulty fairness score

5.3 Limitations

This experiment has a few limitations that imply the future directions of this

study. First, the sample size (n = 48) is relatively small. However, by analyzing

1039 tasks completed over two test phases provided a clear data-set, and allowed

to present this proof of concept for the proposed architecture.

Another limitation of this experiment is the participants. Tasks in the database

were suited for 8th-graders (12-14 years), while the participants in this experiment

where first-grade university students. This meant that the students needed to

complete several trivial tasks before being presented challenging tasks.

Besides conducting another study with a bigger sample size to enrich the analysis,

other estimation algorithms than k-NN Basic could be beneficial if investigated

further.
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Discussion and future directions

6.1 Conclusion

This master thesis details a proof-of-concept software system for estimating stu-

dent abilities. The system combines Elo rating and collaborative filtering in order

to present students with tasks that best reflect their current skill level. The sys-

tem was developed successfully. A substantial set (> 300 tasks) of 8th-grade math

tasks was added to the system, and the system was tested on a population of

students without technical issues. The following tasks were completed during the

development, testing, and writing of this thesis:

• Designed a hybrid method for recommendations of tasks in e-learning.

• Implemented the same method in an existing e-learning system.

• Conducted two experiments, simulation and testing with users.

• Proved the feasibility of the approach and provided a proof of concept.

• Performed a t-test to test if there is a statistically significant difference in

Elo rating between the control group and the test group.

The hypothesis we were testing in this thesis was:

• A combination of Collaborative Filtering and Elo rating will better represent

the skill of a student, compared to using only Elo rating.
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The t-test for phase one and phase two show that there is no significant difference

between the Elo ratings in the control group and the test group in either test

phase. Therefore, the hypothesis H0 can not be rejected. With p-values of 0.8944

and 0.4394, the difference between the two groups is far from significant. The

small sample size influences this result to some degree. Increasing the number of

participants in the two test phases would cause a lower p-value.

We can not draw a conclusion on whether or not the collaborative filtering

algorithm resulted in a better Elo skill rating of the users. However, Figure 5.7

shows that the accuracy of the recommender algorithm was increasing throughout

both test phases. As expected, the accuracy of the recommender algorithm

increased faster when the database was initialized with data from phase one.

Because the accuracy kept increasing throughout both test phases, we do not

know how accurate the recommendations may become over time, but this result

is promising. A bigger experiment is needed to fully evaluate the potential of

using collaborative filtering in combination with the Elo rating algorithm.

The automatic calibration of task difficulty has shown pleasing results. After

the experiment was concluded, the difficulty ratings were converging towards a

Gaussian distribution (Figure 5.6), which is to be expected when the tasks cover

sufficient parts of the difficulty scale.

The feedback regarding the difficulty level received from the users after the

experiment was conducted indicates that the tasks given were at an appropriate

level. The difficulty reported in the survey, 2.944 was rated slightly lower than

average (3.000) by the users after the first phase. This was partially the reason

for the increased initial rating in phase two. In addition to the feedback from the

users, the initial Elo rating was increased to reach the point of convergence earlier,

and spend less time climbing towards the true skill level of the participants, which

was expected to be higher than the main audience.
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The phase two participants rated the difficulty higher with a score of 3.375. This

may be because the participants did not need to complete trivial tasks with a low

rating before being placed within their correct skill level.

6.2 Future work

There are multiple potential improvements that can be made to the proposed

solution of this thesis. These improvements were not implemented either because

they required more time than was available, or they would make the solution too

complicated to accurately analyze the results.

6.2.1 Applying the recommender system to answers

The recommender system part of the proposed solution creates similarity ratings

between users based on whether the users answered the tasks correctly or falsely.

Another approach is to base similarity on the exact answer given. Because the

tasks used are exclusively multiple choice, creating similarity ratings based on

what multiple choice option was chosen may yield more accurate similarities. In

essence, this means that the system could cluster users that not only answered the

same problems correctly or falsely, but gave exactly the same answer. This can

then be used to find more specific clusters of users. With more specific clusters,

the system should perform better at recommending fitting tasks. In addition to

better recommendations, finding smaller clusters of students may assist a teacher

in finding groups of students that have the same lack of knowledge within a

specific area of the curriculum.

The reason this was not implemented was because the size of the experiment that

was conducted. With a small group of participants, dividing the clusters into more

specific clusters increases the impact of the cold start problem. If the proposed

solution was to be tested in a real-life scenario on a bigger scale, this feature may

yield better results.
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6.2.2 Using Time Spent

The LMS Matistikk has built-in functionality for recording the time it takes

a user to complete a task. This is currently not being used in the proposed

solution, but it has a few potential use cases. Time spent could be used as

another parameter for the recommender system. This would cluster students that

work quickly or slowly together in their respective groups. The authors did not

find any documented evidence that time spent on tasks correlates with what type

of tasks the user will answer correctly. Because of this, as well as to keep the

proposed solution simple, this was not implemented. However, the correlation

may exist, and it may be worth looking into.

Time spent could also be used to make the Elo calculations reflect how well the

user did. However, time spent does not always equal the effective time spent.

Users could load a task, do something else for a while, and then go back to solve

it. A solution where exceedingly long times were discarded was considered, but it

was dismissed to keep the solution from becoming too complicated.

6.2.3 Using Elo calculations in a non-binary way

The Elo calculation algorithm used in the proposed solution operates in binary.

The leaner either passed (1) or failed (0) the task they were given. The Elo

calculation could be modified to reflect a degree of success. An example of this

could be to scale the calculations by how much time was spent on the task such

that a fast correct answer gives a higher change in rating. The presumption is

that users that have mastered the topic should be able to answer quicker than

those who are unfamiliar with the topic.

It is also possible to give the users multiple attempts at each task but weight the

calculation differently if the task was completed on the second or third attempt.

In practice, this could be to multiply the Elo rating gained, by a fraction, if the

task was completed on the second attempt.
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6.2.4 Alternative ways of combining Elo and RS

In the proposed solution, the Elo rating algorithm is used to choose tasks with

appropriate difficulty. Afterward, the collaborative filtering algorithms sorts those

tasks based on the estimated probability of the user answering the task correctly.

An alternative approach to this could be:

The Elo rating algorithm and collaborative filtering both return a probability of

success. This allows for calculating an average estimate for the total probability

of success. A task can then be selected based on this estimate.





Appendix A

Elo calculations in python

1 import math

2

3 def calculate_expected_success_for_user(user_elo, task_elo):

4 res = 1 / (1 + math.pow(10, (-(user_elo - task_elo) / 100)))

5 return res

6

7

8 def calculate_expected_success_for_task(task_elo, user_elo):

9 res = 1 / (1 + math.pow(10, (-(task_elo - user_elo) / 100)))

10 return res

11

12

13 def calculate_new_elo_for_user(k_value, user_elo, result, expected_success):

14 res = user_elo + k_value * (result - expected_success)

15 return round(res)

16

17

18 def calculate_new_elo_for_task(k_value, task_elo, result, expected_success):

19 res = task_elo + k_value * (result - expected_success)

20 return round(res)

Listing 4: Implementation of Elo calculations
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Implementation of Models

1 class Person(AbstractUser):

2

3 grades = models.ManyToManyField(Grade,

4 default="",

5 blank=True,

6 verbose_name="klasse")

7 SEX = [

8 ("M", "Gutt"),

9 ("F", "Jente")

10 ]

11 ROLE = [

12 (1, "Elev"),

13 (2, 'Laerer'),

14 (3, 'Skoleadministrator'),

15 (4, 'Administrator')

16 ]

17 sex = models.CharField(max_length=1,

18 choices=SEX,

19 verbose_name="kjonn",

20 null=True)

21 date_of_birth = models.DateField(max_length=8,

22 verbose_name='Fodselsdato',

23 null=True)

24 role = models.IntegerField(choices=ROLE,

25 default=1,

26 verbose_name='brukertype')

27 tests = models.ManyToManyField('maths.Test',

28 blank=True,

29 verbose_name='tester')

30 elo_rating = models.IntegerField(default=1400,

31 verbose_name='ELO rating')

79



80 Appendix B Implementation of Models

32 inControlGroup = models.BooleanField(default=False,

33 help_text='',

34 verbose_name='Kontrollgruppe')

Listing 5: Implementation of the Person model
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1 class Test(models.Model):

2

3 task_collection = models.ForeignKey(TaskCollection)

4 published = models.DateTimeField(verbose_name='Publisert')

5 dueDate = models.DateTimeField(verbose_name='Siste frist for besvarelse',

6 null=True,

7 blank=True)

8 randomOrder = models.BooleanField(default=False,

9 verbose_name='Tilfeldig rekkefolge',

10 help_text='')

11 strictOrder = models.BooleanField(default=False,

12 verbose_name='Laas rekkefolge')

13 public = models.BooleanField(default=False)

14 elo_rating = models.IntegerField(default=1500,

15 verbose_name='ELO rating')

Listing 6: Implementation of the Test model





Appendix C

t-test

Test group Control group

1565 1732

1593 1750

1629 1661

1488 1579

1599 1709

1617 1537

1620 1487

1736 1663

1509 1466

1478

1388

1505

1703

Mean 1595.11 1589.08

Standard deviation 72.38 119.91

Variance 5238.86 14378.41

n 9 13

Degrees of freedom 20

Critical t-value 2.086

p-value 0.8944

t-value 0.1460

Table C.1: T-test for phase one
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Test group Control group

1584 1540

1612 1631

1650 1604

1511 1564

1464 1560

1542 1484

1596 1645

1479 1565

1546 1620

1661

1431

1614

Mean 1553.78 1576.58

Standard deviation 62.28 67.74

Variance 3878.19 4588.81

n 9 12

Degrees of freedom 19

Critical t-value 2.093

p-value 0.4394

t-value 0.7997

Table C.2: T-test for phase two



Bibliography

[1] Arpad E Elo. The rating of chessplayers, past and present. Arco Pub., 1978.

[2] Paul Resnick and Hal R. Varian. Recommender systems. Commun. ACM, 40

(3):56–58, March 1997. ISSN 0001-0782. doi: 10.1145/245108.245121. URL

http://doi.acm.org/10.1145/245108.245121.

[3] Morten Flate Paulsen. Online education : learning management systems :

global e-learning in a scandinavian perspective, 2003.

[4] Eva Kaplan-Leiserson. E-learning glossary. URL http://www.lupi.ch/

Schools/astd/astd2.htm.

[5] Vesin B. Ivanovic M. Budimac Z. Klasnja-Milicevic, A. E-learning personal-

ization based on hybrid recommendation strategy and learning style identi-

fication. Computers Education, 56(3):885899, 2011.

[6] Harold Pashler, Mark McDaniel, Doug Rohrer, and Robert Bjork. Learning

styles: Concepts and evidence. Psychological Science in the Public Interest,

9(3):105–119, 2008. doi: 10.1111/j.1539-6053.2009.01038.x. URL https:

//doi.org/10.1111/j.1539-6053.2009.01038.x. PMID: 26162104.

[7] Richard M Felder, Linda K Silverman, et al. Learning and teaching styles in

engineering education. Engineering education, 78(7):674–681, 1988.

[8] Huong May Truong. Integrating learning styles and adaptive e-learning sys-

tem: Current developments, problems and opportunities. Computers in Hu-

man Behavior, 55(Part B):1185 – 1193, 2016. ISSN 0747-5632. doi: https://

85

http://doi.acm.org/10.1145/245108.245121
http://www.lupi.ch/Schools/astd/astd2.htm
http://www.lupi.ch/Schools/astd/astd2.htm
https://doi.org/10.1111/j.1539-6053.2009.01038.x
https://doi.org/10.1111/j.1539-6053.2009.01038.x


86 BIBLIOGRAPHY

doi.org/10.1016/j.chb.2015.02.014. URL http://www.sciencedirect.com/

science/article/pii/S0747563215001120.

[9] Paul A. Kirschner. Stop propagating the learning styles myth. Com-

puters Education, 106:166 – 171, 2017. ISSN 0360-1315. doi: https://

doi.org/10.1016/j.compedu.2016.12.006. URL http://www.sciencedirect.

com/science/article/pii/S0360131516302482.

[10] Gordan Durović. Educational recommender systems. University of

Rijeka, FHSS, Department of Polytechnics. URL http://www.inf.

uniri.hr/files/studiji/poslijediplomski/kvalifikacijski/Gordan_

Djurovic-Kvalifikacijski_ispit.pdf.

[11] Peter Brusilovsky et al. Adaptive educational systems on the world-wide-web:

A review of available technologies. In Proceedings of Workshop” WWW-Based

Tutoring” at 4th International Conference on Intelligent Tutoring Systems

(ITS’98), San Antonio, TX, 1998.

[12] Stuart J Russell and Peter Norvig. Artificial intelligence: A modern ap-

proach. Pearson Education Limited, Edinburgh Gate, Harlow, Essex CM20

2JE, England, 3 edition, 2016. ISBN 1292153962.
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