
Automatic Grading of Programming
Exams

Jørgen Sirhaug

Master of Science in Informatics

Supervisor: Trond Aalberg, IDI

Department of Computer Science

Submission date: June 2018

Norwegian University of Science and Technology

Abstract

The fields of Computer Science and IT are more needed than ever before, and the
number of students enrolled in programming courses is rising. An increase in students
leads to an increased demand for more teachers and student assistants, and for the
final exam, more graders.

To resolve this need, this thesis explored the possibility of an automated grading
system, which would learn grading patterns from human graders by extracting fea-
tures from students’ exam submissions and using them to train a machine learning
classification system.

A variety of source code evaluation strategies, classification algorithms, parameter
ranges and feature sets were assessed, and an experiment was conducted using the
continuation exam of 2017 for the course TDT4100 – Object-Oriented Programming
as a dataset. The experiment lays the foundation for further research and develop-
ment within the fields of source code analysis and quality checks, while results were
inconclusive because of what we believe to be a sub-optimal dataset.

Keywords: Machine learning, classification, Linear SVC, Naive Bayes, feature ex-
traction, scikit-learn

i

Sammendrag

Studier innenfor informasjonsteknologi og informatikk er mer trengende enn noensinne,
og antall studenter som tar programmeringsfag er p̊a vei opp. En slik økning fører
til en voksende behov etter flere lærere og studentassistenter, og mot eksamen trengs
det flere sensorer.

For å løse dette behovet tar denne masteroppgaven og utforsker muligheten for å
lage et automatisk graderingssystem, som skal lære rettemønstere fra menneskelige
sensorer og bruke disse til å trene opp et klassifiseringssystem.

En utvalg av evalueringsmetodikker, klassifiseringsalgoritmer, parametersett og kodee-
genskaper (eng: feature sets) ble vurdert, og et eksperiment ble utført p̊a et datasett
best̊aende av besvarelser fra TDT4100 – Objektorientert Programmering sin utsatte
eksamen i 2017. Eksperimentet har lagt grunnlaget for videre forskning og utvikling
innen analyse av kildekode og kvalitetskontroll. Derimot er resultatene mangelfulle
p̊a bakgrunn av det vi vurderer som et ufullstendig datasett.

Nøkkelord: Maskinlæring, klassifisering, Linear SVC, Naive Bayes, egenskapsutvin-
ning, scikit-learn

ii

Preface

This Master thesis is written as a final part of the Master’s degree in Informatics,
submitted to the Department of Computer Science at the Norwegian University of
Science and Technology. It is completed under the supervision of Associate Professor
Trond Aalberg.

I would like to say thank you to everyone who has helped me during my studies.
To family, friends, acquaintances, strangers and everyone in between, no matter how
great a favour or how small an explanation: You have my warmest of thanks, because
this would have been impossible to do alone.

iii

Table of Contents

Abstract i

Preface iii

1 Introduction 1

1.1 Problem description . 1

1.2 Motivation . 1

1.3 Project goal . 2

1.4 Machine learning classification . 2

1.5 Thesis contents and order . 3

2 Theory 4

2.1 Code quality . 4

2.1.1 Code quality in the industry 4

2.1.2 Testing code for quality in education 5

2.2 State of the art in code evaluation . 6

2.2.1 Testing . 6

2.2.2 Parsing . 7

2.2.3 Language processing . 8

2.2.4 Code idioms . 9

2.2.5 Program synthesis . 10

iv

Table of Contents

2.2.6 Benchmark testing . 11

2.3 Comparing evaluation strategies . 12

3 Grading and Features 13

3.1 The grading process . 13

3.2 Feature extraction . 15

3.3 Parsing exam deliveries . 17

3.4 Halstead complexity measures . 20

3.5 Code similarity . 21

3.6 AST similarity . 24

3.7 Extra features . 24

3.8 Data collection . 25

3.8.1 Continuation exam . 25

3.8.2 Privacy . 26

4 Training and Prediction 27

4.1 Machine learning . 27

4.2 scikit-learn . 27

4.3 Classification . 28

4.3.1 Training and testing . 31

4.3.2 Tweaking algorithms . 32

4.4 Grid-search and scoring . 32

4.4.1 Grid-search . 33

4.4.2 Scoring . 34

v

Table of Contents

5 Experiment and Results 36

5.1 The experiment . 36

5.2 Table walkthrough . 38

5.3 Input . 39

5.4 Output . 40

5.5 Result summary . 43

6 Discussion, Conclusion and Future Work 44

6.1 The experiment . 44

6.2 The dataset . 45

6.3 Conclusion . 45

6.4 Future work . 46

References I

A Alternatives V

A.1 Data collection . V

A.1.1 Comparing datasets . V

A.2 Parsing exam deliveries . VII

B Acronyms and Abbreviations VIII

vi

Chapter 1
Introduction

1.1 Problem description

Computer Science is a growing field, and for programming courses this means that
more and more students are taking exams each year. Assessment and grading of
these exams is a time-consuming task, and with very large courses and exam sets
this increases the chance of grade inconsistencies; two fairly similar exam submissions
getting two different grades.

Given that digital exams are becoming the norm then this opens up the possibility
of automating the grading process. For multiple-choice exams this is a trivial issue,
as automatic grading exists even today for analogue, pen-and-paper multiple-choice
exams. For exams where the answers must be source code this is not as simple. This
thesis will describe one such non-trivial grading system, and the processes behind it.

1.2 Motivation

Time.

Today, hours upon hours are being spent manually reading through and evaluating
code. Not just in large scale production, but also for educational purposes, where
professors, teachers and assistants are reading heaps of student-produced code so that
the students may end up with a working program, some feedback and eventually a
grade.

Grades can be given out in any way the teachers deem fit, and in many cases this boils
down to asking questions and somehow evaluate the answers. The easiest questions
and answers to evaluate are those that have one clear and defined solution, for
example multiple-choice. Such exams can be fed into a computer and evaluated

1

Chapter 1. Introduction

automatically, and the final grade can be given out to the students that very same
day. On the other hand we have exams where both questions and answers may be
somewhat open and ambiguous while still being correct. Here the teacher(s) may
have to create their own interpretation of what the student actually meant, and
give an explanation and a grade which might be completely different from what the
student thought the end result would be.

And programming lays somewhere in the middle.

The logical and technical side of programming suggests that each problem presented
by the teacher may only have one correct solution, while the students are required
to answer with free-hand code. By creating a tool which is able to change the way
programming exams are evaluated, it may be possible to reduce the time spent by
teachers evaluating source code from exams, and bring more consistent and pre-
dictable evaluations to the students as well.

1.3 Project goal

The main goal for this project can be summarized as follows: Let teachers spend less
time grading, while giving students equal grades and better feedback.

To accomplish this, three questions were asked:

◦ What kinds of source code evaluation techniques exists today, and how can they
be used for machine learning?
◦ Which features and metrics are viable for an objective evaluation of source

code?
◦ How would a machine learning classifier perform when grading programming

exams?

1.4 Machine learning classification

The problem was to create an evaluation tool which could be used on a smaller set of
exam submissions for a programming exam, and return a grade for each submission.
This problem description fits the scope of classification, a type of supervised machine
learning where a set of known data is fed into a learning algorithm, and returns its
best estimation for which of the pre-defined categories the data matches best.

2

Chapter 1. Introduction

The automatic grading system described and used in this thesis and its experiment
is built with scikit-learn, a set of machine learning tools made for the programming
language Python.

1.5 Thesis contents and order

In addition to the thesis introduction, which was chapter 1, this thesis consists of
the following:

Chapter 2 introduces the concept of code quality, before presenting various methods
for evaluating source code and how they are used today, both in education and within
the industry.

Chapter 3 describes subjects relevant to grading and how exam submissions and
source code can be represented as objective features.

Chapter 4 presents this project’s use of machine learning; which algorithms were
used and how they were implemented.

Chapter 5 features the experiment and its results.

Chapter 6 rounds off this thesis with a discussion, conclusion and recommendations
for future work.

3

Chapter 2
Theory

2.1 Code quality

The ability to analyze and validate the quality of source code is important for every
professional or aspiring programmer, but it comes with a few limitations: what does
it mean for something to have high quality? The Oxford English Dictionary defines
”quality” as follows: “The standard of something as measured against other things
of a similar kind; the degree of excellence of something.”1 In short, something of a
high quality is simply better than other, comparable things around. So what do we
use to measure the quality of our code? What is our baseline?

2.1.1 Code quality in the industry

Just as with spoken languages there exists a long list of available programming
languages, each with their own strengths and quirks. But is any definition of ”good
code” restricted to only one language? In his book Clean Code [25], Robert C. Martin
describes how he thinks code should be written by imbuing a set of rules for how
to write classes, methods, comments, tests and everything in between. The general
take is that code should be efficient, elegant, readable, simple and non-repeating,
but there are also more specific rules. For instance, two such rules for methods is
that they must do something and return something, and that the optimal number
of parameters is zero, after one and two.

While very detailed and quite helpful, it is no secret that this book was written
with the industry in mind. Just as there is a difference between writing text for a
school assignment and writing a best-selling series of novels, there is a distinction
between answering a programming exam and writing code for a huge project spanning

1Definition taken from the Oxford Dictionaries’ website, https://en.oxforddictionaries.
com/definition/quality at the 20th of June, 2018.

4

https://en.oxforddictionaries.com/definition/quality
https://en.oxforddictionaries.com/definition/quality

Chapter 2. Theory

multiple years and dozens of developers. Still, while project scope and size might
have an impact on how to design your program, and by extension how to write your
code, there is one thing that Clean Code holds above everything else: source code is
created for humans, by humans and should be understood by humans.

This statement, that readable and understandable code (or ”clean code”, if you will)
must be the goal of every programmer is also backed up by other sources. A 2009
study [6] concluded that there was a significant connection between the quality of
identifier names and the number of bugs and warnings found when analyzing the
source code; an older study from 1982 [11] showed that breaking a large program up
into smaller functions (not changing functionality, but focusing on readability) had
a positive impact on maintainability, and reduced the overall number of bugs. By
looking at source code features which may indicate a level of readability, it could be
possible to assess whether it could be deemed as good code or not. These features
will be discussed later in chapter 3.

2.1.2 Testing code for quality in education

Codecademy and Treehouse are two of many websites where users can take online
programming courses. However, these courses are created and maintained by the sites
themselves, and are not necessarily meant to work as supplements to courses taken at
a university or college. One of the main differences between a university course like
TDT4100 – Object-Oriented Programming at NTNU and a course at Codecademy
or Treehouse is the scale: TDT4100 had just over 700 students enrolled in spring
2017 who have to follow a pre-planned semester, while Codecademy has 45 million
registered users and Treehouse 180 000 users2, who are able to take whichever course
they want at whichever time that suits them the best. This means that their tasks
and assignments must be evaluated quickly and precisely.

Even though the scale and scope of traditional universities and these online learning
sites might be different, the evaluation techniques seems to be the same. There are
a lot of different evaluation tools available, for example Web-CAT and AutoGradr
for education, DOMjudge and Mooshak for programming competitions, HackerRank
for recrutation and even TDT4100 ’s own tool, JExercise. But all of these tools have
one thing in common: they generally use unit tests to evaluate their tasks.

One possible reason for there being so many evaluation options for assignments and
2Numbers taken from NTNU’s official grade statistics, Codecademy’s and Treehouse’s websites,

respectively (15th of May, 2018).

5

Chapter 2. Theory

single tasks, but not for exams could be that assignments are meant to teach people
in how to do programming, while exams are meant to test learned knowledge and
skills. By reusing tasks for teaching, those tasks could be incrementally improved
over time; the opposite can happen with exams, where tasks are remade, changed
and/or randomized each year to keep the tests from becoming too predictable. In
other words, creating tasks and tests for education may happen once, while creating
tasks and tests for exams may have to be done anew each semester.

2.2 State of the art in code evaluation

2.2.1 Testing

Generally speaking, the term testing refers to any one of a number of different prac-
tices, including system testing, acceptance testing, integration testing and user test-
ing. However, for the purpose of this thesis, testing is referring to unit testing, which
tests the functionality of different units of the program. A unit might be a function
or a class, and unit tests ensures that these functions and classes behaves as intended.

In quite a few scenarios, testing code is a good way to check if your program behaves
at it should. By writing test cases, a developer is able to define which types of results
that should be approved and which should be declined. Test-driven development
(TDD)3 has shown to be of great help both in large scale production [16] and when
used in education [12].

Tests are both acceptable and reasonable when the output is the most important
part of the program and when incremental development is employed, but not in an
extremely restricted time frame where the code itself is important, which it is during
an exam. If, during an exam, a student writes code which would not compile nor
give the correct answer, the student might very well get partial or even a high score
because the code itself was written according to the specified task.

In addition to this, there is another problem. With production code, test cases are
not only used to test the current state of development, but they also serve as a
simple way of checking that existing functionality isn’t hampered by new additions
or improvements [16]. The tests are as much a part of the program as the rest of the

3TDD is a programming and development strategy where a solution is defined by a series of
test-cases (unit tests). These test-cases are made first, while the actual solution is made as a
response, aiming to pass the tests.

6

Chapter 2. Theory

code, which indicates that the test cases are written specifically for each program.
This is not great news for exams, as exams tend to change from year to year. Yes,
some tasks may be changed, updated and reused, but this means that in addition to
updating all of the task descriptions and example code, all test cases must also be
rewritten and updated.

It seems like test cases, accompanied by a (quick) manual review of the written code,
can be a great way of evaluating homework or assignments during the semester; not
so much as a reliable way of scoring programming exams.

As per December 2017, a quick search on Google for the phrase ”unit test” lists
just shy of 36 million results, including numerous blogposts and articles about the
subject; Wikipedia has a comprehensive list of unit test frameworks for about 80
separate programming languages and development systems [47]; Microsoft has its
own guide for unit tests in Visual Studio [27], and the official Python documentation
has its own section for unit testing [34], based on the popular JUnit framework for
Java [41].

In education, websites such as Codecademy [8] and Treehouse [42] are sites where
you can take online programming courses. This includes solving programming tasks,
and getting direct feedback on whether you solved the task or not. In the case
of Codecademy, the feedback is a combination of different messages related to the
current task, console output and a set of red or green checkboxes, indicating which
subtasks which has been cleared. A senior web developer from Treehouse answered
a question on Quora [26] and confirmed that they are using unit testing to validate
the users’ code. Others who also answered this question said the same for both
Codecademy and Treehouse. At NTNU, the course TDT4100 – Object-Oriented
Programming utilizes JExercise [43], an extension of JUnit, to present and validate
the students’ course assignments.

Applied to real-world projects, unit testing (as well as TDD) is used in companies
of all sizes, from Fortune 500 [36] to those smaller and less known [9, 46]. Several
studies also shows that unit testing can improve productivity in a project, and reduce
time it takes to fix a problem [4, 28, 36, 40].

2.2.2 Parsing

Parsing, in general, is referring to the process of analyzing written languages, be it
natural or programming languages, as sequences of symbols. These analyses must

7

Chapter 2. Theory

follow a strict, formal grammar. When parsing source code, the result can be an
Abstract Syntax Tree; a tree structure representing code segments as nodes, and
body/condition splits as edges.

As an evaluation tool for programming tasks and exams, parsing (and by extension,
the AST) can be used to look for conceptual similarities between the students’ an-
swers and the actual solution. This can be done by building an AST for the solution,
searching the tree for important concepts, and comparing these concepts to what
is found in the students’ syntax trees. To know which concepts are more impor-
tant than others, a manual review and ranking could be made before the automatic
analyses are run.

An advantage to this type of evaluation is that no compiling is necessary. The code
is processed as a string, or a sequence of symbols; the grammatical rules for that
language, in addition to concept mining, is what is needed to evaluate the code.

A disadvantage is that even though the code doesn’t need to compile to be evaluated,
the parser must still be able to decipher what the different symbols are, and what they
represent. Code with (a lot of) grammatical errors (including missing parenthesis,
semi-colons and indentations) could make the parser return an error, or wrongly
analyze the code.

The result of parsing code, the Abstract Syntax Tree, have many different applica-
tions, and can be utilized wherever a structural overview of source code is needed.
For instance, when dealing with the concept of code similarity there has been re-
search into how one can use ASTs to discover structural similarities between two
samples of source code, both in terms of clones and plagiarism [14, 20].

2.2.3 Language processing

It is also possible to evaluate a whole programming language as a natural language.
Source code could then be analyzed the same way one would written text, like a
newspaper article.

There are many challenges with Natural Language Processing, one of them being
dealing with context and knowledge which comes from outside the written document,
i.e. ”worldly knowledge”. In a sense, this can be related to the problem of defining
how a computer program has to do something. A bit of code can be grammatically
and syntactically correct, but also be absolutely useless for any practical purpose.

8

Chapter 2. Theory

The work of Marcus and Maletic [24] dives into the realm of using information
retrieval techniques on source code. By processing both ”sentences” and individual
words/tokens of source code, they have shown that it is possible to identify domain
concepts, and using these to detect what they call high-level concept clones. Similar
work is done by Kuhn, Ducasse and Gı̂rba [21] where they use some of the same
techniques (latent semantic indexing) to detect source code topics and to “reveal the
intention of the code”.

As with parsing, language processing tools are also used to detect plagiarism, both
within the industry and academia. Agrawal and Sharma [1] did a review of different
plagiarism detection tools, where natural language processing techniques where used
in one of those tools.

2.2.4 Code idioms

In natural languages, an idiom is a set of words, or a phrase, where the words have
an implied meaning greater than the individual words themselves. Some idioms are
more transparent than others, and can be (directly) translated to other languages;
other idioms can’t be translated, because the implied meaning would have been lost
in translation.

Code idioms they are similar to those in natural languages: bits of code which have
an implied meaning, or specific usage, which is only really useful (or possible) in the
particular language the idiom is written in. One very clear example is the usage of
list comprehensions in Python. Most, if not all programming languages have for-
loops, which can be used to fill a list with increasing numbers. In Python, such a
for-loop would look like this:

1) Define a new list

2) Using a Pythonic for−loop, append
each integer from 0 to 9 to the list

my list = []

for i in range(10):

my list.append(i)

9

Chapter 2. Theory

An idiomatic way to do this in Python would be

Using Pythonic list comprehension , unpack

all integers from 0 to 9 into a new list

my list = [i for i in range(10)]

An argument could be made that a programmer who fully understands the usage
of code idioms for a given programming language is fluent in that language, and is
capable of utilizing said language beyond that which is similar to other languages.
If the purpose of a programming course is to teach the student the ways of a specific
languages, then evaluating their usage of code idioms could provide an indicator to
whether they fully understand that language or not.

Analyzing and utilizing code idioms is also a much wider field than first anticipated,
and have also been studied for much longer. For instance, Programming with idioms
in APL by Perlis and Rugabe discusses the usage of code idioms in a symbol-rich
language like APL, and was published in 1979 [33]; Analyzing and compressing as-
sembly code by Fraser, Myers and Wendt, which was published in 1984, mentions the
use of code idioms as a part of code compression [13]. Today, examples of code idiom
usage include bug detection [17] and building code from templates [7], in addition to
tools which can detect and extract code idioms shared between multiple projects [2].

The argument about code idioms being representative for a programmer’s knowledge
of a certain language is supported by Buschmann et al., who states that “(...) we
can say that idioms demonstrate competent use of programming language features.
Idioms can therefore also support the teaching of a programming language” [5]. This
is put into practice with the tool Pencil Code, where common snippets and idioms
are presented as graphical blocks to make it easier to learn the language in use [3].

2.2.5 Program synthesis

Program synthesis is the task of creating (the source code of) a computer program
by utilizing a high-level program specification or template. This concept is explored
within the field of Model Driven Development, where computer programs are created
by a combination of high level graphical models and pre-written snippets of functional
source code. In short, rules and models that fulfill certain requirements are created,
which can be combined to describe and solve more complex problems.

10

Chapter 2. Theory

While the aim of evaluating solutions to programming exams doesn’t quite fall into
the realm of ”building new programs”, there are aspects here which can be put
to good use. If the professor or teacher writes source code as a solution to the
programming task, this code can be used as a reference solution, while the students’
answers will serve as the templates for program synthesis. By trying to build the
reference programs with a student’s solution as a basis, it is then possible to mark
the number of changes needed for the template to be as functionally equivalent as
possible to the reference solution.

Program synthesis is not wildly used as a form of code evaluation, but a 2013 paper
from MIT [39] presented research into this field. Here the authors created a system to
find and correct common errors made by students when solving assignment problems.
While this tool is not created to evaluate or grade assignments it is still a base-line
for other, potential projects. For example: rating the severity of the corrections
made in assignment submissions, and deducting points away from a full score. The
authors themselves concluded that “We believe this technique can provide a basis
for providing automated feedback to hundreds of thousands of students learning from
online introductory programming courses that are being taught by MITx, Coursera,
and Udacity,” so there might be more research into this field in the coming years.

2.2.6 Benchmark testing

Another way to measure quality is to look at the program’s performance when it is
running. The term ”benchmarking” is really an umbrella statement, not describing
one specific way of measuring a program, but rather stating a goal of making the
best and most efficient program possible. Benchmarking is not restricted to just
software, and can also refer to hardware testing.

Some comparisons can be made between benchmarking and unit testing. Both utilize
tests to check for very specific behaviour within the program, and the results from
those tests are used as a basis for further improvements. The difference is that the
result from a unit test can only be right or wrong, the developers know in advance
which exact values the different tests should yield, while for a benchmark test the
results are a performance indicator.

While high benchmark scores can be useful for validating the performance and effi-
ciency of a program, it is not indicative of good source code.

11

Chapter 2. Theory

2.3 Comparing evaluation strategies

Below is a quick summary and comparison between the different code evaluation
strategies described in the above sections. All of these strategies have their own
strengths, weaknesses and uses, also when seen through the scope of machine learn-
ing. Every one can be used to convert source code into a set of values, which in
turn can be used when training the classifier. For example, unit testing can return
scores for each function and method in a program, while the experimental software
from MIT [39] can count the number of differences or similarities between a student
program and the teacher’s solution.

Name Industrial use Educational use
Unit testing Design compliance Scoring

Parsing Compilers and interpreters Plagiarism
NLP Intent and meaning Plagiarism

Idioms Templates and patterns Graphical code
Program synthesis Templates and patterns Experimental

Benchmarks Performance testing None

Table 2.1
A quick comparison between various code evaluation strategies.

For the purpose of this thesis we will focus on one of these strategies. Because
of how exams are conducted, with limited time to ensure that your written code is
runnable, it is unreliable to rely on output from any submissions, which rules out unit
and benchmark testing. In addition to this, program synthesis is an experimental
field, while NLP and idiom analysis seems to be, in our opinion, a bit too contextual.
This leaves us with one option.

For the purpose of this thesis we will focus on source code parsing and the use of
ASTs, which will be described in the next chapter. We will also be using benchmarks
and performance testing, not directly in relation to the exam submissions, but as
a method of finding the best possible parameters for our classification algorithms.
This is covered in section 4.4.

12

Chapter 3
Grading and Features

3.1 The grading process

The way that grading is done today is a simple process, if not an easy one: After
the students have completed their exams, the submissions are sent to the assessors
(which could be the teachers) for grading, and after a while the grades are released
to the students. Figure 3.1 illustrates this process. Every single exam submission
has to be evaluated and graded manually, and, as an example, for NTNU’s course
TDT4100 – Object-Oriented Programming that is around 600 submissions each time.

Figure 3.1
Today’s grading process, done manually.

A new grading tool, designed to make this job easier is needed. By using this tool
and handing over most of the work to it, only a fraction of the submissions has to

13

Chapter 3. Grading and Features

be graded by the teacher. The concept is that each grader may use distinct grading
patterns which might be so ingrained that they become difficult to explain to others,
but which can be learned. The grading tool can pick up this pattern by analyzing
a subset of manually graded exam submissions, and take over the job from there.
Figure 3.2 shows this new process.

Figure 3.2
New steps are introduced (marked in green), letting the grading tool take over the

majority of the work.

14

Chapter 3. Grading and Features

After a subset of exams has been manually graded, it is fed into the grading tool as
a training set which will act as a template for how to grade the remaining exams.
It is the teachers’ responsibility to ensure that the training set is (fairly) evenly
distributed, so that none of the grades are mis- or overrepresented in the training.
Based on this training set the grading tool will give a grade to each of the remaining
submissions. At last, to ensure the quality of the automated grading, a review needs
to be done on a sample of the autograded submissions.

The rest of this chapter will go through the steps to design such a grading tool.

3.2 Feature extraction

The concept of machine learning and how that is implemented in this project will
be discussed in further detail in chapter 4, but a short explanation will be given for
context: To let the machine learning tool be able to give correct grades to exam
submissions we need to tell the tool what to look for in the code. In other words, the
raw code needs to be transformed into a set of numerical features so that out new
grading tool can grasp what it is analyzing. The chosen approach was to find a set
of features which could reflect two goals when analyzing code.

First off: How complex is the code? Subsection 2.1.1 mentioned how the industry
seem to value readable code, so by bringing the concept of readability over to exam
assessment we try to add something new to a tried and true process. Readability
is linked with simplicity, and measuring simplicity is just another way of measuring
complexity. So to get an idea of the readability and complexity of the code, we have
chosen the Halstead complexity measures.

Second: How similar is the exam submission to one of the teacher’s solutions? If we
accept that the teacher’s solution is the ideal answer, then anything that is similar
to the solution should also be considered a good answer. Here we have chosen to
determine similarity by calculating the cosine distance between the submissions’ and
solution’s term-frequency vectors and feature set vectors.

Figure 3.3 shows how these features will be extracted, and the rest of this chapter
will be used to describe the different features and parts of this figure.

15

Chapter 3. Grading and Features

Figure 3.3
Flowchart showing the process of extracting features from exam deliveries and

solutions. The complete feature set is a set of Halstead complexity measures and
two similarity scores.

16

Chapter 3. Grading and Features

3.3 Parsing exam deliveries

If the first step was to collect data, then the second is to read through the students’
code in such a way that features can be extracted. This could be achieved by a
few lines of standard Python code if only the number of lines, words or characters
were to be counted, but here we needed something to differentiate between variables,
literal values, methods, keywords, etc. One way to accomplish this was to parse the
students’ code to create an Abstract Syntax Tree (AST), and search the AST for
wanted patterns of nodes; this is represented by the third column (Graph handler)
of figure 3.3. The tool chosen to generate and search through such a tree was ANTLR
4 [31].

Using ANTLR, every snippet of code would first be parsed with an already existing
set of Java 8 grammars4, and if that failed, parsed with a custom grammar5. This
custom grammar was a lot more forgiving regarding missing semicolons and paren-
thesis, as well as code structure, while still creating an AST which could be used
for feature extraction. Figure 3.5 shows an AST created with the standard Java
8 grammar, and it also shows that there are two minor errors in the code. These
would stop the code from compiling and running, but they are not severe enough
that ANTLR can’t make a guess of what the rest of the AST should look like. If the
errors were worse, the fallback custom grammar would have been applied instead.

After an AST is made it is subject to a depth-first search where each node (or sub-
tree6) is analyzed, and relevant data is recorded. This data is used for calculating
Halstead complexity measures, the AST similarity score and four extra features, all
described in the following sections.

4The Java 8 grammar for ANTLR 4 was downloaded and used ”as is” from the ANTLR GitHub
page (https://github.com/antlr/grammars-v4/tree/master/java8) at the 12th of February,
2018.

5The custom grammar for ANTLR 4 was made by the author, with guidance and inspiration
from T. Parr’s book The Definitive ANTLR 4 Reference [30].

6In ANTLR 4, each node is either of type ParseTree or TerminalNode, indicating whether that
node has children or not.

17

https://github.com/antlr/grammars-v4/tree/master/java8

Chapter 3. Grading and Features

Figure 3.4
Example of an AST generated by ANTLR. Split into three parts for readability.

Colored arrows indicate where the tree is connected.

18

Chapter 3. Grading and Features

Figure 3.5
Example of an AST generated by ANTLR.

19

Chapter 3. Grading and Features

3.4 Halstead complexity measures

The Halstead complexity measures [15] is a set of software metrics used to measure
properties of source code. While there is some debate about the usefulness of the
Halstead measures, there are other researchers who continue to use them [23, 48];
Zhao et.al. said in their footnote about Halstead measures that “We are aware
that some researchers do not support the use of Halstead metrics. Our work to date
has shown them to assist greatly in maintainability predictions.” ; Leach [22] used
Halstead measures as one of the methods to discover plagiarism within his students’
code deliveries by comparing extremely similar measures. Also, the company Virtual
Machinery [45] are using the volume and effort measures (described below) as part
of their JHawk metrics tool for Java.

There are four key numbers used for these metrics:

η1 → the number of distinct operators

η2 → the number of distinct operands

N1 → the total number of operators

N2 → the total number of operands

The definition of what constitutes an operator and operand may vary, but here we
are using the following: An operand is defined as an identifier, a numerical literal
or a string literal, while an operator is everything else. The reasoning for such a
broad definition of an operator is that because we are not dealing with production
code, but simplified exam answers from an introductory programming course, we
can assume that each answer contains no more information than necessary: Package
declarations are almost never written, class definitions are not always present either,
and methods are usually short and non-complex.

From η1, η2, N1 and N2 we calculate four additional metrics:

20

Chapter 3. Grading and Features

η = η1 + η2 → program vocabulary

N = N1 +N2 → program length

N̂ = η1log2η1 + η2log2η2 → calculated program length

V = N × log2η → program volume

In addition to these eight complexity measures there are others which can be derived,
but are not used as features in this project:

D = η12 × N1
η2 → difficulty

E = D × V → effort required

T = E / 18 → time to program (in seconds)

B = E (2/3) / 3000 → expected number of bugs

These four measures are used to explain how likely errors might occur, how much
effort and time (in seconds) it takes to implement a program, and how many bugs
you are likely to find, respectively. The reason why these measures were dropped
is that we view these as not intrinsic to the code itself, but as ways to measure the
programmer. In the case of an exam, the difficulty, effort and time required to solve
a problem are preset by the teacher (the last questions of an exam are often more
difficult than the first; the time required to complete an exam usually is four hours),
and the expected number of bugs is by extension not needed, as the measure from
which it is derived (effort) is not used.

3.5 Code similarity

As mentioned in section 3.2 we will focus on two similarity measures. Both are cal-
culated as the cosine distance between two vectors, where one represents a student’s
exam submission while the other represents a solution. The difference between these
two similarity measures lies in how the vectors are created.

The first similarity measure is based on a statistic from information retrieval, Term

21

Chapter 3. Grading and Features

Frequency / Inverse Document Frequency, or TF-IDF. For the uninitiated, TF-IDF
is a measure of words, symbols or numbers (collectively called tokens) in a document
and collection of documents (corpus), where TF counts every word in any isolated
piece of text (document) and IDF weights that count towards the the total number
of occurrences in the corpus.

In this context, every answer to a subtask is a document, and the collection of answers
from all students for a subtask is a corpus, i.e. there is one corpus per subtask. The
TF for each document will be represented as a vector, or row in a table. The top row
is the token names, while the rows below are the token counts for each document.

for while variable 1 variable 2 . . .
document 1 2 1 3 4 . . .
document 2 1 2 5 1 . . .
document 3 0 3 2 2 . . .

.

Table 3.1
Example of token counts in a corpus

While IDF weighting is useful for finding identifying features in a document by giving
less weight to words which appear in multiple documents in a corpus, the vocabulary
of a programming language is rather restricted. This would essentially give no weight
to all common Java keywords (and potentially no weight to intuitive variable names)
while giving more weight to obscure variable and method names. With this in mind
it was decided to drop the IDF weighting.

But having the TF matrix was not the end; a score needed to be given to each
document (subtask) as to indicate its similarity with the solution document. First,
the solution document was added to the TF matrix:

for while variable 1 variable 2 . . .
solution 2 2 3 3 . . .

document 1 2 1 3 4 . . .
document 2 1 2 5 1 . . .
document 3 0 3 2 2 . . .

.

Table 3.2
Example of token counts in a corpus containing a solution document

22

Chapter 3. Grading and Features

Second, each document’s row, including the solution’s, was converted into a vector
consisting of the term counts:

solution → [2, 2, 3, 3, . . .]
document 1 → [2, 1, 3, 4, . . .]
document 2 → [1, 2, 5, 1, . . .]
document 3 → [0, 3, 2, 2, . . .]

. . .

Figure 3.6
TF matrix as count vectors

And finally, each document was given a similarity score, calculated as the cosine
similarity between the solution vector and that document’s vector. If u and v are
vectors, and n is the length of those vectors, then distance is equal to

n∑
i=1 uivi

n∑
i=1 u

2
i

n∑
i=1 v

2
i

Because distance is a value between 0.0 and 1.0, where a higher distance means
less similar vectors, then similarity is simply the inverse of distance, or

similarity = 1− distance
There is no direct advantage to using similarity over distance, except for making
the terminology a bit easier; a similarity of 1 is, at least for this project, more
intuitive than a distance (or dissimilarity) of 0. If the cosine similarity between
two vectors are 1, then those vectors, and documents, are identical. For simplicity,
only the three example values are used in the calculation. When compared to the
exam solution’s vector, the result looks like this:

Document Vector Similarity score
document 1 [2, 1, 3, 4] 0.96676
document 2 [1, 2, 5, 1] 0.84536
document 3 [0, 3, 2, 2] 0.85617

.

Figure 3.7
Calculated similarity between the documents and the solution

23

Chapter 3. Grading and Features

3.6 AST similarity

The second similarity measure is a combination of the Halstead complexity measures,
the cosine similarity and a few other measures extracted from the AST. To calculate
this similarity score, a process was used similar to that which has already been
described in this chapter:

1. Create abstract syntax trees for each subtask solution, as described in section
3.3. ASTs for the submissions are reused.

2. Extract Halstead measures from the solutions’ ASTs (section 3.4).
3. Extract an extra three measures from all ASTs (submissions and solutions),

indicating whether the code contains for-loops, while-loops and/or
if-statements.

4. Create a vector for each subtask solution and submission, consisting of the
Halstead measures and the three extra measures, ending up with a table similar
to table 3.2 for each subtask.

5. Calculate the cosine similarity between the solution’s and the deliveries’ mea-
sures as described in section 3.5.

3.7 Extra features

There are four features in addition to those described previously in this chapter.
These last features marks very specific attributes of the submitted code based on
the fact that we are dealing with introductory level programming exams, and that
some of the questions are designed to check for very specific types of programming
knowledge and skill.

For example, there are questions which might ask the student to write a piece of
code that iterates over a list of four integers and add 1 to each number. While in
this case the correct answer would be to write a for-loop, the student might submit
something like this:

void addOneToNumbers (i n t [] numbers) {
numbers [0] += 1 ;
numbers [1] += 1 ;
numbers [2] += 1 ;
numbers [3] += 1 ;

}

24

Chapter 3. Grading and Features

So to check for possible mistakes similar to this one, features measuring if for-loops,
while-loops, if-statements are present, as well as the number of methods are intro-
duced.

3.8 Data collection

3.8.1 Continuation exam

The purpose of a continuation exam is to give those who did not complete the
standard exam a second chance before a new school year starts. Those eligible to
take a continuation exam are usually students who withdrew from the original exam,
could not attend because of medical issues or failed their previous attempt.

The dataset used in this project was from TDT4100 ’s continuation exam of 2017,
which was at the time of writing the only digital exam available for this course. When
having digital exams at NTNU, a system called Inspera Assessment [18] (shortened
to ”Inspera”) is used. Inspera presents questions and accepts answers on various
forms: scanned PDF documents, raw text, code, mathematical symbols, multiple
choice answers, drag-and-drop as well as interactive tools (drawings, hotspot, etc).
The continuation exam had answers delivered as code and raw text. The answer set
(provided by Inspera) was a single JSON file which contained, in addition to some
metadata, a list of all candidates and their respective submissions. Each submission,
one per candidate, came with a final grade as well as a score and a max score for
each subtask. A total of 45 students handed in their deliveries.

The exam structure was similar to exams from the past few years, consisting of 4
main tasks divided into a total of 17 subtasks. Of those 17, 11 subtasks required
some form of code delivery, which meant that with 45 students taking this exam we
had a potential 495 code responses in our dataset. As it were, only one of the 495
subtasks could not be preprocessed and parsed properly, so we ended up with 494
subtask deliveries ready to be used as training and testing data.

It is not unusual for the average grade after a continuation exam to be lower than
its original. As the number of code responses for each grade was skewed towards F ,
there was an inherent risk of overfitting the training algorithms, that is, training the
machine learning algorithm so well on a particular class or category that it becomes
unable to recognize new or other patterns. This will be discussed in greater detail
in chapter 6.

25

Chapter 3. Grading and Features

3.8.2 Privacy

The dataset provided by Inspera’s contact person only contains one type of private
information: the candidate number (CN) for each student taking the exam. No other
information about the students is known. This CN is not related to NTNU’s official
student number, and no information is available which would allow a linking between
the CN and other student details.

After registering this project with the Norwegian Centre for Research Data [29]
(NSD) they concluded that even though the CN is sensitive and private information,
the data collection could be conducted given that we were not able to link the CN
to any additional information, and that the CNs should be anonymized after the
project’s end.

26

Chapter 4
Training and Prediction

4.1 Machine learning

Machine learning describes a system which is capable of teaching itself how to per-
form a task, without the programmers explicitly instructing the system how to do so.
The term was first used by Arthur L. Samuel in Some Studies in Machine Learning
Using the Game of Checkers[35], where he also said that “Enough work has been done
to verify the fact that a computer can be programmed so that it will learn to play a
better game of checkers than can be played by the person who wrote the program.”
This behaviour is extremely useful for pattern recognition; completing tasks where
we know what kind of answer we want, but not exactly how to reach those answers.

4.2 scikit-learn

For this project, everything related to machine learning is handled by scikit-learn [32,
38], a set of tools for the Python programming language used for machine learning,
data mining and analysis. One of the code examples in this chapter (specifically,
the one in subsection 4.4.1) will show some of the functions from scikit-learn. Most
notable are the functions train test split, fit and predict.

train test split takes lists as input and splits them up into new lists used for
training and testing, meaning that a list of 12 elements will be returned as two lists
with 9 and 3 elements, used for training and testing the classifier, respectively.

fit is the function used to train a classifier, where the training sets from train test split
are used as input.

predict is used after training the classifier, and will predict classes for new input
(predict grades for new exam submissions).

27

Chapter 4. Training and Prediction

Similar descriptions are also written as comments within the appropriate code ex-
ample.

4.3 Classification

The field of machine learning is a big one, and just like with human problem solving
there is no ”one size fits all” solution. Each type of problem requires its own process,
or class of algorithms, to work, and finding the best algorithm for your problem may
simply be the case of trial and error. Most of the effort regarding machine learning
goes into something other than actually coding the ”machine learning program”;
experimenting with feature sets, trying different learning algorithms and tweaking
the parameters of those algorithms is an important part of the job.

To help with the grading of code exams a kind of machine learning called classification
was used. Classification is a type of problem solving which tries to answer questions
like “If all men wear hoodies and are generally taller then women, while all women
wear pink clothing, what is the probability that a short person wearing a pink hoodie
is a woman?” This is a gross oversimplification, but it serves to illustrate the point:
Given a set of known data and a finite group of categories, or classes, in which class
does a new data-entry fit in with the highest probability?

The end result is perfect for this project, classifying each exam submission into 1 of
6 classes representing the grades A to F . However, there are some guidelines which
can help to set a more clear path, and one of those is a flowchart from scikit-learn
called the scikit-learn algorithm cheat sheet [37] (shown in full as figure 4.2 on page
30). The purpose of this flowchart is to give everyone a starting point based on
which kind of dataset is being used, and what the output or result of the learning
algorithm should be.

Based on the bottom line within the classifier category of figure 4.1, showing the
top-left section of figure 4.2, we got two separate types of algorithms to use: Linear
Support Vector Classification (Linear SVC) and Naive Bayes. The latter has three
different implementations (or decision rules) in scikit-learn: Bernoulli, Gaussian and
Multinominal7. Bernoulli Naive Bayes assumes binary features and will therefore not
be used. In the end, three viable algorithms were used to classify exam submissions:
Linear SVC, Gaussian Naive Bayes and Multinominal Naive Bayes.

7Descriptions of the different algorithms and implementations can be found at scikit-learn’s
website [38].

28

Chapter 4. Training and Prediction

Figure 4.1
A section of figure 4.2, to help users specify a type of classification algorithm.

29

Chapter 4. Training and Prediction

Figure 4.2
A flowchart from scikit-learn, to help users choose which type of algorithm they

should use for their projects.

30

Chapter 4. Training and Prediction

4.3.1 Training and testing

Back in chapter 3 it was illustrated through figure 3.3 how the relevant features was
extracted from exam submissions and solutions, and it is in this chapter that the
usage of these features will be shown. The most important thing to keep in mind
is that while the text will refer to ”training” and ”testing”, what lays behind those
words are relatively simple concepts, which will be explained here. Another thing is
that after the feature extraction process, the exam submissions (and solutions) no
longer looks like code, but are lists of numerical values. As a short example: Given
the simple code snippet ’HelloWorld.java’ and an extraction process which finds the
number of methods, variable references and comments, as well as the number of lines
in the code, the code would go from this

pub l i c c l a s s HelloWorld {
pub l i c s t a t i c void main (St r ing args []) {

St r ing message = ” He l lo World ! ” ;
/∗ Print a message to the conso l e . ∗/
System . out . p r i n t l n (message) ;

}
}

to this [1, 2, 1, 7]
Training, within the context of this thesis, is simply the act of giving a bunch of
such lists to an algorithm, together with the correct grade for each list, and asking
“Hey! These lists represents some exams which were given these grades. Would you
please try to find some pattern between all feature-lists with similar grade? Thanks!”
This leaves us with a classifier which hopefully was able to sense a pattern between
all As, Bs, and so on.

Testing is when the trained classifier is given a new set of feature lists and asked
“Based on what you’ve already seen, could you please guess which grade these exams
should have?” The result from the algorithm’s guessing (or prediction) is checked
against a list of grades which are known to be correct, which in turn gives us the
classifier’s prediction accuracy.

31

Chapter 4. Training and Prediction

4.3.2 Tweaking algorithms

One correction needs to be made from the previous section: Nothing is simple when
it comes to machine learning. No matter how much data preparation has been done
up until this point, there is at least one more thing that has to be done; tweaking
the parameters of machine learning algorithms is more often than not essential to be
able to get them to perform optimally, and a lot of time goes into finding the best set
of algorithm parameters. Figure 4.1 shows a quick overview of the four algorithms,
including the number of parameters that can be adjusted for each of them.

Linear SVC Naive Bayes
Bernoulli Gaussian Multinominal

Specialty Loss and penalties Boolean features Distributed data Text data
Computation Vector distance Probabilistic Probabilistic Probabilistic
Parameters 11 4 1 3

Used 3 7 3 3

Table 4.1
A quick overview of the four evaluated algorithms.

Linear SVC is the algorithm with the highest number of parameters, and thus the
highest number of possible configurations. Many of these parameters have binary
options (i.e. choose between two separate modes), and some are even mutually
exclusive. In addition to this, only one of the options for the parameter multi class
will be used, as the other option is “interesting from a theoretical perspective as it is
consistent, [but] is seldom used in practice as it rarely leads to better accuracy and is
more expensive to compute”[38]. This means that the actual number of configurations
is in reality not that high, and mostly depends on the granularity of the floating point
parameters.

Both Gaussian and Multinominal Naive Bayes center around the parameter priors
(called class prior in MNB), which takes in a set of pre-defined probabilities for
each class. If these probabilities are not given, as is the case here, they will be
automatically generated based on the input data.

4.4 Grid-search and scoring

No matter which type of software is being made, the goal is always to end up with
a tool that can outperform all previous iterations in some way or another. In the

32

Chapter 4. Training and Prediction

case of ”regular” software development a new iteration is complete when a list of
specifications is implemented, and it is up to the developers to figure out how to
implement every new specification. However, when creating a machine learning tool
the goals will be clear, but the path to them are not so. As shown in table 4.1
there can be a multitude of different options to experiment with, given the right (or
wrong) algorithm. To avoid having to do everything manually, a grid-search was
implemented.

4.4.1 Grid-search

An example: Let us imagine an algorithm A which takes 3 parameters, x, y and z,
which is a floating point number, a boolean and a string keyword, respectively; x can
theoretically take any imaginable floating point number, y is restricted to the values
True and False while z accepts one out of three keywords, ’alpha’, ’beta’ and
’gamma’. To make the grid-search possible we limit x to [0.0, 0.2, 0.4, 0.6, 0.8, 1.0],
which gives us a total of 6×2×3 = 36 possible parameter combinations. Instead of
manually testing every combination of parameters, we define a grid of all parameter
names and their possible values. This grid is then passed to a special kind of classifier,
GridSearchCV, which also takes in an algorithm to run the parameters with, in this
case A.

’train test split’ is a scikit−learn function which splits up a list
of features (X) and a list of classes (y) into respective training

and testing sets

X train , X test , y train , y test = train test split(X, y)

Acceptable values for each parameter

grid of parameters = {
’x’: [0.0, 0.2, 0.4, 0.6, 0.8, 1.0],

’y’: [True, False],

’z’: [’alpha’, ’beta’, ’gamma’]

}

Passing an estimator plus our grid of parameters

classifier = GridSearchCV(

estimator=A(),

param grid=grid of parameters

)

33

Chapter 4. Training and Prediction

Train the classifier on all possible parameter combinations

classifier.fit(X train , y train)

Get the best results, and test on our training set

predicted ys = classifier.predict(X test)

GridSearchCV’s fit-function will then run through all parameter combinations, and
train itself with the parameter set which gives the highest score.

4.4.2 Scoring

When rating the performance of a machine learning algorithm it is necessary to get
some form of measure from the learning and prediction process. The score is based
on the predictions the algorithm makes after its training, and scikit-learn comes with
a variety of different scoring functions, as well as the ability to create such a scoring
function from scratch. For this thesis both one pre-made and one custo, scoring
function is used.

The first scoring function is the one which is default for Linear SVC and Naive
Bayes, and is a simple score of accuracy. The scoring function counts the number
of correct predictions and the total number of predictions, and returns the fraction.
For example, given a prediction table for an arbitrary algorithm and parameter set
(table 4.2) we see that 3 out of 5 predictions are correct, which gives this particular
algorithm/parameter combination a score of 0.6, or 60 %.

ID Predicted class Actual class
0 ’a’ ’a’
1 ’a’ ’b’
2 ’b’ ’b’
3 ’a’ ’a’
4 ’b’ ’a’

Table 4.2
Example predictions for an arbitrary algorithm with random parameters

The second scoring function is a custom variety of the accuracy scoring, made to
compensate for the fact that grades may not be evenly distributed, and that too
many elements within a few number of classes may overfit the algorithm to only
recognize those classes. This works as follows:

34

Chapter 4. Training and Prediction

1. The algorithm is trained and tested.
2. A score is given for each class according to the accuracy scoring function.

◦ The grades A through F are counted and scored according to the predic-
tion accuracy for each grade.

3. Each class’ score is weighted based on the disproportion of total class elements.
◦ i.e. if there are fewer elements graded B than C , then B will be weighted

higher than C .
4. At last, the final score is calculated as the sum of the weighted accuracy scores

for all classes.

This score is only used internally for evaluating the effectiveness of the algorith-
m/parameter combinations, as it does not directly correlate with any percentage of
accuracy. For example, given the predictions from table 4.2 the accuracy is 60 %, but
with this weighted scoring function the internal score would be 2.3611; evaluating
this as a percentage would give an accuracy of 236.11 %, which makes no sense. So
to reiterate: The scoring function is a function used internally by GridSearchCV to
rate the different combinations of algorithms and parameters, and should be seen as
separate from the accuracy results presented in chapter 5.

35

Chapter 5
Experiment and Results

5.1 The experiment

All of the different components of the experiment has been described throughout this
thesis, and will in this section be presented as one connected process. The goal of the
experiment was to check how well the different classification algorithms, parameters
and scoring functions would perform with our chosen dataset.

Figure 5.1
A depiction of all the necessary parts for the experiment.

36

Chapter 5. Experiment and Results

Part 1 – Feature extraction: Using the methods from chapter 3 we extract a set of
10 features, which are responsible for representing each piece of code in a way the
classifier can understand.

Feature name Feature type Description

vocabulary int
The sum of the distinct number of operators
and operands. The total number of distinct
symbols or tokens in a program.

length float
The sum of all operators and operands.
Equivalent to counting all words, commas
and periods in a paragraph of text.

calculated length float An estimation of program length based on
the distinct number of operators or operands.

volume float

Measures the amount of information con-
tained within the program. How much does
a reader have to understand to comprehend
the program’s meaning.

code similarity float
Measures the similarity between a program
submission and its solution, based on raw
text.

ast similarity float
Measures the similarity between a program
submission and its solution, based on mea-
sures from their Abstract Syntax trees.

num methods int Counts the number of distinct methods in
the program.

has for loop boolean Marks if the program contains for-loops or
not.

has while loop boolean Marks if the program contains while-loops
or not.

has if statement boolean Marks if the program contains if-statements
or not.

Table 5.1
All features used for the experiment, and a description of them.

Part 2 – Grid-search: Each grid-search combined the exam submissions (represented
as lists of the above features) with a scoring function and a classification algorithm
(together with its related parameters).

Part 3 – Results: The results from each grid-search were tables containing a set
of parameter values which the classifier deemed as optimal, and a set of prediction
scores.

37

Chapter 5. Experiment and Results

5.2 Table walkthrough

Section 5.3 shows tables of input ranges for each of the algorithms’ parameters,
where the possible values are different for each parameter: Square brackets are used
around the allowed values for that parameter; the parameters accepting floating point
numbers were all tested with the same range of numbers, shown in tables 5.2 and
5.4 as Float range, and is defined as [10x/2, 10x] where x ∈ [−4, 4] (in other words,
Float range is the set [0.00005, 0.0001, 0.0005, . . . , 1000, 5000, 10000]); parameters
with no specified range is marked with None, meaning that the algorithm is using
its default behaviour for that parameter; a single value indicates that it will be used
for every combination of parameters.

The three tables in section 5.4 are each composed of four sub-tables, where the
ones on the left represents parameter and scoring output for the standard scoring
function, while the ones on the right are equivalent tables for the weighted scoring
function. Details on how the scoring functions are implemented can be found in
section 4.4. For each table, sub-tables (a) and (b) contains the optimal parameters
for each combination of algorithm and scoring function, while sub-tables (c) and (d)
shows the prediction results.

The results in (c) and (d) are shown as two values: Accurate and One off. The former
is the ratio of correct predictions, while the latter is where we accept a misprediction
by one grade in either direction, meaning that a prediction of C will be marked as
correct if the real grade is B, C or D. The columns In test set and Total shows how
many code submissions for each grade there were in the test set and whole dataset,
respectively; they are identical for all tables, but are included for quick reference.

38

Chapter 5. Experiment and Results

5.3 Input

Linear SVC

Parameter name Value ranges
C Float range
class weight None
dual [True,False]
fit intercept [True,False]
intercept scaling Float range
loss [’hinge’, ’squared hinge’]
max iter [100, 1000, 10000]
multi class [’ovr’, ’crammer singer’]
penalty [’l1’, ’l2’]
random state 751
tol Float range

Table 5.2
Value ranges for Linear SVC parameters

Gaussian Naive Bayes

Parameter name Value ranges
priors None

Table 5.3
Value ranges for Gaussian Naive Bayes

parameters

Multinominal Naive Bayes

Parameter name Value ranges
alpha Float range
fit prior [True,False]
class prior None

Table 5.4
Value ranges for Multinominal Naive

Bayes parameters

39

Chapter 5. Experiment and Results

5.4 Output

Linear SVC

Parameter name Value
C 0.0005
class weight None
dual True
fit intercept True
intercept scaling 10.0
loss ’squared hinge’
max iter 1000
multi class ’ovr’
penalty ’l2’
random state 751
tol 0.0001
(a) Parameters for standard scoring

Parameter name Value
C 500
class weight None
dual True
fit intercept True
intercept scaling 5.0
loss ’hinge’
max iter 10000
multi class ’ovr’
penalty ’l2’
random state 751
tol 0.0001

(b) Parameters for weighted scoring

Grade Correct In test set Total
A 0 6 14
B 0 8 25
C 1 6 14
D 0 8 30
E 0 5 16
F 86 91 271
Accurate 70.16 %
One off 75.00 %

(c) Results for standard scoring

Grade Correct In test set Total
A 0 6 14
B 0 8 25
C 2 6 14
D 1 8 30
E 0 5 16
F 77 91 271
Accurate 64.52 %
One off 70.97 %

(d) Results for weighted scoring

Table 5.5
Parameters and results of Linear SVC grid-search

40

Chapter 5. Experiment and Results

Gaussian Naive Bayes

Parameter name Value
priors None

(a) Parameters for standard scoring

Parameter name Value
priors None

(b) Parameters for weighted scoring

Grade Correct In test set Total
A 0 6 14
B 0 8 25
C 2 6 14
D 6 8 30
E 1 5 16
F 47 91 271
Accurate 45.16 %
One off 55.65 %

(c) Results for standard scoring

Grade Correct In test set Total
A 0 6 14
B 0 8 25
C 2 6 14
D 6 8 30
E 1 5 16
F 47 91 271
Accurate 45.16 %
One off 55.65 %

(d) Results for weighted scoring

Table 5.6
Parameters and results of Gaussian Naive Bayes grid-search

41

Chapter 5. Experiment and Results

Multinominal Naive Bayes

Parameter name Value
alpha 5000.0
class prior None
fit prior True

(a) Parameters for standard scoring

Parameter name Value
alpha 0.00005
class prior None
fit prior False

(b) Parameters for weighted scoring

Grade Correct In test set Total
A 0 6 14
B 0 8 25
C 0 6 14
D 0 8 30
E 0 5 16
F 91 91 271
Accurate 73.39 %
One off 77.42 %

(c) Results for standard scoring

Grade Correct In test set Total
A 1 6 14
B 0 8 25
C 2 6 14
D 2 8 30
E 1 5 16
F 79 91 271
Accurate 68.55 %
One off 79.03 %

(d) Results for weighted scoring

Table 5.7
Parameters and results of Multinominal Bayes grid-search

42

Chapter 5. Experiment and Results

5.5 Result summary

The set of continuation exams used for this project’s experiment consisted of 494
parseable code snippets from 45 different students. These were run through 3 differ-
ent machine learning classification algorithms with 2 separate scoring functions and
a multitude of parameter combinations. The best results came from the algorithm
Multinominal Naive Bayes (table 5.7) where the most accurate prediction gave a
hit-rate of 73.39 % using the standard scoring function; MNB with weighted scoring
had a prediction accuracy of 79.03 % when including ”one off” results.

However, when looking at the distribution of grade predictions wee see that they are
skewed in favour of F , which contains the most code snippets by far; the number of
snippets marked F is almost 2.75 times larger than the set of A to E combined.

The two results with the lowest and highest accurate prediction values are interesting
for a couple of different reasons. First off is the Gaussian Naive Bayes algorithm
(table 5.6), which achieved the lowest scores for both ”accurate” and ”one off”, 45.16
% and 55.65 %, respectively. GNB also yielded the same results for both the standard
and the weighted scoring function, the only algorithm of the three to do so. If we
compare the distribution of results to the other two algorithms, we see that GNB
appears to have done some sort of trade-off between D and F . While F seems to
have been overfitted for the other algorithms, it only achieved a prediction accuracy
of 51.65 %. D, on the other hand, has its highest score of any other grade (except
for F) in any other result table: 75 %.

Second is the MNB with standard scoring, which had the highest accurate prediction
rate of 73.39 %. This run is the only one with a 100 % match for F , and also with
a 0 % match for every other grade. If we add the predictions for E and F together,
and calculate for ”one off”, we get

(5 + 91) / (6 + 8 + 6 + 8 + 5 + 91)= 96 / 124
≈ 0.7741935
≈ 77.42%

which is exactly what the ”one off” results are. This points to the algorithm guessing
F for every member of D, which, by extension, could point to a case of overfitting,
and possibly a prediction of F for every code snippet in this run.

43

Chapter 6
Discussion, Conclusion and Future Work

6.1 The experiment

Both of the Naive Bayes algorithms presented some points of interest. In the case
of GNB, the results from tables 5.6c and 5.6d shows that there are some values for
priors which will work better for grades other than F . It would be interesting to
see if repeating this experiment with a focus on statistical pre-analysis could have
any viable impact on prediction results, if the score would be the same but with a
more balanced spread, or if the scores could become better overall. The same could
be said for MNB; we relied on scikit-learn’s ability to find a good statistical spread
for class prior, as with GNB’s priors.

Another possible variant of Naive Bayes classification would be to split up the grad-
ing prediction, making six distinct classifiers where each would deal with a binary
classification, i.e. grade A classifier would check if a submission matched for an A
or not, grade B classifier would check for a B, etc. Training a classifier solely to
predict for example A-graded code could potentially lower the negative effects of a
skewed dataset, as each subgrader would be expected to recognize a smaller (an more
manageable) set of patterns. It could also be easier to identify outliers, since that
would be the submissions not recognized by any of the classifiers.

The runs conducted with Linear SVC were overall the most average. There were some
expectations for these grid-searches to perform better than the two other algorithms,
simply because of the sheer number of parameter combinations in addition to there
being no special tweaking for the priors or class prior parameters. Again, it
would be interesting to see how this would perform with another dataset.

44

Chapter 6. Discussion, Conclusion and Future Work

6.2 The dataset

Multiple options for which dataset to use was considered, and three alternatives stood
out as plausible candidates; standard exams, continuation exams and assignment
submissions. As became evident when these datasets were examined they all had
their own good and bad sides, which presented three scenarios:

1. Dataset: Standard exams.
Advantage: Large dataset, standard grade distribution.
Disadvantage: Analogue; written with pen and paper.
Solution: Manually re-writing every exam submission to a digital format.

2. Dataset: Continuation exams.
Advantage: Digital.
Disadvantage: Small dataset with a skewed grade distribution.
Solution: No immediate solution possible.

3. Dataset: Assignments.
Advantage: Very large dataset.
Disadvantage: Not graded, and tasks are different from a standard exam.
Solution: Manually grading assignment submissions.

Option 1 was heavily considered as it would, if completed, give the most reliable
dataset; option 3 was also considered, because even though the assignment deliveries
were different than the code from an ordinary exam, this code base was larger than
the smaller-than-hoped set of continuation exams. But the main issue with these
two options was time. These tasks, even doing just one of them, would be too time-
consuming to do by ourselves, and were eventually dropped as it proved too difficult
to find additional resources and assistance for re-writing or grading. In the end, the
dataset of continuation exams was chosen as the basis for training and testing data
because it was ready to use.

6.3 Conclusion

This Master thesis has explored the possibility of creating an automatic grading
tool to make the process of grading programming exams more efficient and reliable.
Three questions were asked at the beginning, and now those have been answered:

45

Chapter 6. Discussion, Conclusion and Future Work

◦ What kinds of source code evaluation techniques exists today, and how can they
be used for machine learning?

There are a variety of different methods used for evaluating source code, from as-
sessing the code’s structure and syntax, to only focusing on the compiled program’s
performance or output, all of which have their own interpretation of what constitutes
”good code” and how to make code better. We have mentioned 5 such methods (6,
including benchmarks) in this thesis, reported their uses for industry, education and
research, as well as given our own view in regards to how and if they could be used
for machine learning and exam evaluation.

◦ Which features and metrics are viable for an objective evaluation of source
code?

The purpose of an exam is to give as objective an assessment as possible, and to
accomplish this we selected a set of objective features to use as a basis for the
evaluation process. These features consisted of Halstead measures, two separate
similarity scores and four metrics meant to check for discrepancies between a task
and a student’s submitted solution.

◦ How would a machine learning classifier perform when grading programming
exams?

To answer this question an experiment using the described system was conducted
on a dataset consisting of exam submissions from the TDT4100 continuation exam
of 2017. The results from this experiment were inconclusive, which we believe to
come from the fact that the dataset was suboptimal, and ended up overfitting the
classifier.

6.4 Future work

Automatic evaluation, assessment and feedback for source code is a growing field,
with multiple projects trying to expand its usefulness in different ways. The purpose
of this Master Thesis was to look into the possibility of using machine learning on
university level programming exam submissions, and train a classification system to
give out grades for said exams.

More work needs to be put into studying how and when to use machine learning as
an evaluation tool. Not only within the context of education and exams, but also

46

Chapter 6. Discussion, Conclusion and Future Work

how we wish that the finished product should be able to operate. There are still
many unexplored options for how to use different software evaluation strategies for
systems driven by machine learning.

The features used in this thesis for evaluation and classification were selected based
on objective metrics, revealing no information about the code’s quality. While this
was done deliberately, giving all responsibility of distinguishing between ”good” and
”bad” to the classifier, it would be interesting to see how using subjective measures
would impact such a system.

And, most importantly, to reach more conclusive results for this experiment it should
be rerun with a new set of exam submissions, preferably when a digital version of
the standard exam is available.

47

References

[1] M. Agrawal and D. K. Sharma, “A state of art on source code plagiarism detec-
tion,” in Next Generation Computing Technologies (NGCT), 2016 2nd Interna-
tional Conference on. IEEE, 2016, pp. 236–241.

[2] M. Allamanis and C. Sutton, “Mining idioms from source code,” in Proceed-
ings of the 22nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering. ACM, 2014, pp. 472–483.

[3] D. Bau, D. A. Bau, M. Dawson, and C. Pickens, “Pencil code: block code for a
text world,” in Proceedings of the 14th International Conference on Interaction
Design and Children. ACM, 2015, pp. 445–448.

[4] M. Bloch, S. Blumberg, and J. Laartz, “Delivering large-scale it projects on
time, on budget, and on value,” Harvard Business Review, 2012.

[5] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal, Pattern-
Oriented Software Architecture, A System of Patterns, ser. Pattern-Oriented
Software Architecture. Wiley, 2013, ch. 4, pp. 345–346. [Online]. Available:
https://books.google.no/books?id=j ahu BS3hAC

[6] S. Butler, M. Wermelinger, Y. Yu, and H. Sharp, “Relating identifier naming
flaws and code quality: An empirical study,” in 2009 16th Working Conference
on Reverse Engineering, Oct 2009, pp. 31–35.

[7] R. Clifton-Everest, T. L. McDonell, M. M. Chakravarty, and G. Keller, “Embed-
ding foreign code,” in International Symposium on Practical Aspects of Declar-
ative Languages. Springer, 2014, pp. 136–151.

[8] Codecademy. (2011–) Codecademy. https://www.codecademy.com/.

[9] E. Dietrich. (2013) Employers: Put your money where your mouth is. https:
//www.daedtech.com/employers-put-your-money-where-your-mouth-is/.

[10] Eclipse Foundation. (2001–) Eclipse ide. https://www.eclipse.org/ide/.

[11] J. L. Elshoff and M. Marcotty, “Improving computer program readability to
aid modification,” Commun. ACM, vol. 25, no. 8, pp. 512–521, Aug. 1982.
[Online]. Available: http://doi.acm.org/10.1145/358589.358596

I

https://books.google.no/books?id=j_ahu_BS3hAC
https://www.codecademy.com/
https://www.daedtech.com/employers-put-your-money-where-your-mouth-is/
https://www.daedtech.com/employers-put-your-money-where-your-mouth-is/
https://www.eclipse.org/ide/
http://doi.acm.org/10.1145/358589.358596

References

[12] H. Erdogmus, M. Morisio, and M. Torchiano, “On the effectiveness of the test-
first approach to programming,” IEEE Transactions on Software Engineering,
vol. 31, no. 3, pp. 226–237, March 2005.

[13] C. W. Fraser, E. W. Myers, and A. L. Wendt, Analyzing and compressing as-
sembly code. ACM, 1984, vol. 19, no. 6.

[14] D. Gitchell and N. Tran, “Sim: a utility for detecting similarity in computer
programs,” in ACM SIGCSE Bulletin, vol. 31, no. 1. ACM, 1999, pp. 266–270.

[15] M. H. Halstead, Elements of software science. Elsevier New York, 1977, vol. 7.

[16] P. Hamill, Unit test frameworks: tools for high-quality software development.
”O’Reilly Media, Inc.”, 2004.

[17] D. Hovemeyer and W. Pugh, “Finding concurrency bugs in java,” in Proc. of
PODC, vol. 4, 2004.

[18] Inspera. (2016–) Inspera assessment. http://www.inspera.com/.

[19] JBoss Forge. (2013–) Roaster. https://github.com/forge/roaster.

[20] L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “Deckard: Scalable and accurate
tree-based detection of code clones,” in Proceedings of the 29th international
conference on Software Engineering. IEEE Computer Society, 2007, pp. 96–
105.

[21] A. Kuhn, S. Ducasse, and T. Gı̂rba, “Semantic clustering: Identifying topics in
source code,” Information and Software Technology, vol. 49, no. 3, pp. 230–243,
2007.

[22] R. J. Leach, “Using metrics to evaluate student programs,” SIGCSE
Bull., vol. 27, no. 2, pp. 41–43, Jun. 1995. [Online]. Available: http:
//doi.acm.org/10.1145/201998.202010

[23] M. Madhan, I. Dhivakar, T. Anbuarasan, and C. Thirumalai, “Analyzing com-
plexity nature inspired optimization algorithms using halstead metrics,” in
Trends in Electronics and Informatics (ICEI), 2017 International Conference
on. IEEE, 2017, pp. 1077–1081.

[24] A. Marcus and J. I. Maletic, “Identification of high-level concept clones in source
code,” in Automated Software Engineering, 2001.(ASE 2001). Proceedings. 16th
Annual International Conference on. IEEE, 2001, pp. 107–114.

II

http://www.inspera.com/
https://github.com/forge/roaster
http://doi.acm.org/10.1145/201998.202010
http://doi.acm.org/10.1145/201998.202010

References

[25] R. C. Martin, Clean code: a handbook of agile software craftsmanship. Pearson
Education, 2009.

[26] K. Meyer. (2016) How do websites such as codecademy.com and teamtree-
house.com evaluate user entered code? – Answered by Kyle Meyer.
https://www.quora.com/How-do-websites-such-as-codecademy-com-and-
teamtreehouse-com-evaluate-user-entered-code.

[27] Microsoft. (2016–) Unit test basics. https://docs.microsoft.com/en-us/
visualstudio/test/unit-test-basics.

[28] N. Nagappan, E. M. Maximilien, T. Bhat, and L. Williams, “Realizing quality
improvement through test driven development: results and experiences of four
industrial teams,” Empirical Software Engineering, vol. 13, no. 3, pp. 289–302,
2008.

[29] Norsk senter for forskningsdata. (1971) NSD – Norsk senter for forskningsdata.
http://www.nsd.uib.no/.

[30] T. Parr, The Definitive ANTLR 4 Reference. Pragmatic Bookshelf, 2013.
[Online]. Available: https://pragprog.com/book/tpantlr2/the-definitive-antlr-
4-reference

[31] ——. (2010–) Antlr. http://www.antlr.org/.

[32] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Ma-
chine learning in Python,” Journal of Machine Learning Research, vol. 12, pp.
2825–2830, 2011.

[33] A. J. Perlis and S. Rugaber, “Programming with idioms in APL,” in ACM
SIGAPL APL Quote Quad, vol. 9, no. 4. ACM, 1979, pp. 232–235.

[34] Python Software Foundation. (2001–) Unit testing framework. https://docs.
python.org/3/library/unittest.html.

[35] A. L. Samuel, “Some studies in machine learning using the game of checkers,”
IBM Journal of Research and Development, vol. 3, no. 3, pp. 210–229, July
1959.

[36] R. S. Sangwan and P. A. Laplante, “Test-driven development in large projects,”
IT Professional, vol. 8, no. 5, pp. 25–29, 2006.

III

https://www.quora.com/How-do-websites-such-as-codecademy-com-and-teamtreehouse-com-evaluate-user-entered-code
https://www.quora.com/How-do-websites-such-as-codecademy-com-and-teamtreehouse-com-evaluate-user-entered-code
https://docs.microsoft.com/en-us/visualstudio/test/unit-test-basics
https://docs.microsoft.com/en-us/visualstudio/test/unit-test-basics
http://www.nsd.uib.no/
https://pragprog.com/book/tpantlr2/the-definitive-antlr-4-reference
https://pragprog.com/book/tpantlr2/the-definitive-antlr-4-reference
http://www.antlr.org/
https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/unittest.html

References

[37] scikit learn. (2007–) Choosing the right estimator. http://scikit-learn.org/
stable/tutorial/machine learning map/index.html.

[38] ——. (2007–) scikit-learn: Machine learning in python. http://scikit-learn.org.

[39] R. Singh, S. Gulwani, and A. Solar-Lezama, “Automated feedback generation
for introductory programming assignments,” ACM SIGPLAN Notices, vol. 48,
no. 6, pp. 15–26, 2013.

[40] D. Talby, A. Keren, O. Hazzan, and Y. Dubinsky, “Agile software testing in a
large-scale project,” IEEE software, vol. 23, no. 4, pp. 30–37, 2006.

[41] The JUnit Team. (2000–) Junit. http://junit.org/.

[42] Treehouse Island, Inc. (2011–) Treehouse. https://teamtreehouse.com/.

[43] H. Trætteberg. (2010–) Jexercise - test-based java exercise. https://github.com/
hallvard/jexercise.

[44] D. van Bruggen. (2011–) Javaparser. http://javaparser.org/.

[45] Virtual Machinery. (2017–) Virtual machinery. http://www.virtualmachinery.
com.

[46] WeDoTDD, LLC. (2016) We do tdd. http://www.wedotdd.com/about.

[47] Wikimedia Foundation. (2017) List of unit testing frameworks. https://en.
wikipedia.org/wiki/List of unit testing frameworks#Java.

[48] L. Zhao and J. Hayes, “Predicting classes in need of refactoring: an application
of static metrics,” in Proceedings of the 2nd International PROMISE Workshop,
Philadelphia, Pennsylvania USA, 2006.

IV

http://scikit-learn.org/stable/tutorial/machine_learning_map/index.html
http://scikit-learn.org/stable/tutorial/machine_learning_map/index.html
http://scikit-learn.org
http://junit.org/
https://teamtreehouse.com/
https://github.com/hallvard/jexercise
https://github.com/hallvard/jexercise
http://javaparser.org/
http://www.virtualmachinery.com
http://www.virtualmachinery.com
http://www.wedotdd.com/about
https://en.wikipedia.org/wiki/List_of_unit_testing_frameworks#Java
https://en.wikipedia.org/wiki/List_of_unit_testing_frameworks#Java

Appendix A
Alternatives

This appendix is meant as a supplement describing two alternatives which were used
or considered at some point during this project, and is not vital for any potential
replication. However, the following sections can be used in part as an inspiration or
a guideline for later projects.

A.1 Data collection

In addition to using exams it was also considered basing the auto-grading on assign-
ment submissions. The evaluated assignment set consisted of tasks labeled 00 to
10, where each task was divided into several subtasks. The tasks were given out to
the students on a weekly basis, where 00 was the introductory assignment, and 10
was the last assignment, incorporating some earlier topics into that of game devel-
opment. 5 out of these 11 assignments were deemed suitable for this project based
on their topics; these 5 assignments covered the majority of the curriculum, and was
comparable to tasks given at various TDT4100 exams:

◦ 01 – Objects and classes, state and behaviour
◦ 02 – Encapsulation and validation
◦ 05 – The structure of objects
◦ 08 – Observer-observed and delegation
◦ 09 – Inheritance and abstract classes

A.1.1 Comparing datasets

The structure of the continuation exam was described in section 3.8: “[The continu-
ation exam of 2017 consisted] of 4 main tasks divided into a total of 17 subtasks. Of
those 17, 11 subtasks required some form of code delivery, which meant that with 45

V

Appendix A. Alternatives

students taking this exam we had a potential 495 code responses in our dataset. As
it were, only one of the 495 subtasks could not be preprocessed and parsed properly,
so we ended up with 494 subtask deliveries ready to be used as training and testing
data.”

A portion of the hand written exams from 2017 were made available, with more
on the ready if needed. Even though the responses on this exam would have been
preferable over the responses on the continuation exam, the fact that everything was
hand written made them very hard and time consuming to work with: Every subtask
from every exam delivery would have had to be re-written as a digital copy for them
to be useful.

The assignments for TDT4100 – Object-Oriented Programming is set up in such a
way that there are more subtasks available than required to be eligible for taking
the exam. For example, in each of the 11 assignments there might be 5 subtasks to
complete, but only one or two are required to pass the assignment. Because of this,
some students have delivered a lot more code than others. Out of 474 students (with
at least one submission):

◦ 153 students delivered at least one subtask per task
◦ 54 students delivered at least two subtasks per task
◦ 10 students delivered at least three subtasks per task
◦ 321 students had one or more tasks where no subtasks were delivered

No exact count was made of how many subtasks in total were delivered, but the
dataset contained 6702 separate files. In some cases there were multiple files per
delivered subtask, but there were 6702 code snippets nonetheless. This dataset was
over 13.5 times larger than the one from Inspera, but it was missing a very important
feature: it was not graded. Instead, the students’ code had to go through a series
of unit tests to be marked as ”Passed” (in theory each submission should have been
marked with a score from 0 to 100, which could have been converted to a grade; in
practice most were marked as a flat 0 or a flat 100). As mentioned in subsection 2.2.1,
the course TDT4100 – Object-Oriented Programming utilizes an in-house plugin for
the IDE Eclipse [10] called JExercise which, in addition to running the students’
code through the unit tests, presents the students with more detailed information
about the assignment, each task and the tests for that task. Because of this major
difference in code validation between these assignments and an exam, a classifier
would most likely not yield the most accurate results for exam grading if trained
with this dataset.

VI

Appendix A. Alternatives

A.2 Parsing exam deliveries

There are many tools available for parsing source code, and while JavaParser [44]
and Roaster [19] seemed like good and solid options for parsing Java code, the choice
fell on ANTLR [31] for one simple reason: ANTLR is not restricted to just Java.

While not explicitly stated in the thesis, the original intent was to use digitally re-
written pen-and-paper exams. When writing source code on a computer, using a full
IDE or modified text editor, many of the small errors become clear immediately after
making them, for example a missing parentheses or spelling errors. These luxurious
correction features are not available at an exam, which means that it is common
for code deliveries to contain some amount of errors. This would also trip up any
parser trying to parse the code as ”proper Java”; if a statement in Java doesn’t end
with a semicolon, then the entire statement is wrong. This could be circumvented
by writing custom error handlers for the parser, letting a special-case-parser handle
the incorrect code segments or writing a more forgiving Java grammar to be used by
ANTLR.

The idea behind writing our own Java grammar was that a good deal of customization
would have to be done in either case, and a new grammar would allow for creating
a more relaxed set of rules for Java code, where for instance

◦ parenthesis, brackets and square brackets are (mostly) optional,
◦ semicolons are ignored, and
◦ methods and variables does not have to be written inside a class.

But, as described in section 6.2, the chosen dataset ended up not being the one con-
sisting of pen-and-paper exams, but one where the code was written digitally. After
a review of the dataset it became clear that most of the code could be parsed by a
standard parser, which in this case ended up being ANTLR with a pre-written gram-
mar for Java 8. The special case grammar was still kept as a backup, as mentioned
in section 3.3.

VII

Appendix B
Acronyms and Abbreviations

AST Abstract Syntax Tree

CLF Classifier

CN Candidate Number

DFS Depth-First Search

GNB Gaussian Naive Bayes

IDE Integrated Development Environment

JSON JavaScript Object Notation

LSVC Linear Support Vector Classification

MNB Multinomial Naive Bayes

NLP Natural Language Processing

NSD Norsk senter for forskningsdata

NTNU Norges Teknisk-Naturvitenskaplige Universitet

TFIDF Term Frequency / Inverse Document Frequency

VIII

	Abstract
	Preface
	Introduction
	Problem description
	Motivation
	Project goal
	Machine learning classification
	Thesis contents and order

	Theory
	Code quality
	Code quality in the industry
	Testing code for quality in education

	State of the art in code evaluation
	Testing
	Parsing
	Language processing
	Code idioms
	Program synthesis
	Benchmark testing

	Comparing evaluation strategies

	Grading and Features
	The grading process
	Feature extraction
	Parsing exam deliveries
	Halstead complexity measures
	Code similarity
	AST similarity
	Extra features
	Data collection
	Continuation exam
	Privacy

	Training and Prediction
	Machine learning
	scikit-learn
	Classification
	Training and testing
	Tweaking algorithms

	Grid-search and scoring
	Grid-search
	Scoring

	Experiment and Results
	The experiment
	Table walkthrough
	Input
	Output
	Result summary

	Discussion, Conclusion and Future Work
	The experiment
	The dataset
	Conclusion
	Future work

	References
	Alternatives
	Data collection
	Comparing datasets

	Parsing exam deliveries

	Acronyms and Abbreviations

