
Semantic User Behaviour Prediction in
Online News
Applying Topic Modeling, Community

Detection, and User Modeling for News

Recommendation

Nina Kjekstad
Elida Karina Reknes

Master of Science in Computer Science

Supervisor: Jon Atle Gulla, IDI
Co-supervisor: Lemei Zhang, IDI

Peng Liu, IDI

Department of Computer Science

Submission date: June 2018

Norwegian University of Science and Technology

Abstract

In recent years, predicting user behaviour has become increasingly important within

the news recommendation area. Knowledge of behavioural patterns offers valuable

insight for developing efficient and user friendly services, ensuring good user expe-

riences for users and increased revenues for companies. Though very useful, these

user recommendations can be difficult to make and the news domain poses its own,

unique challenges for the task. Challenges such as short life span for item recom-

mendations, sparse connections to large item vocabularies, and volatile networks

and user behaviours are prominent in news recommendation. This creates perfor-

mance difficulties for traditional recommendation methods, especially due to the

need to recommend unseen items.

By employing topic modeling on the rich text objects provided by the news

domain, new articles introduced in the system can be compared to old articles in

a meaningful way. Organizing these articles in clusters based on topic proportions,

useful topic combinations can be elicited. Using these clusters to create user models

based on composite interests, newly introduced articles can be recommended to

users.

While a key finding is the conflict between optimizing goals for subtasks and

optimal performance in the prediction task, implementing these technologies does

lead to improvements of user prediction results. Different combinations of param-

eters provides prediction results with very different qualitative characteristics, but

comparing to predictions using original labels and random recommendations, the

models obtain better Mean Average Precision (MAP) and Ranking Accuracy (RA)

than both. With models using both topic modeling and clustering, RA shows im-

provements on random, ranged from 34%-64%, for models which performed well.

Other models gains improvements ranging from 18%-278 % on top 3, 5, 10 and 30

positions for MAP, but declines in performance on RA by 18% − 28%. Consider-

ing the characteristics of each prediction evaluation metric, RA appears to better

capture the quality of recommendations.

i

Sammendrag

Behovet for å forutse brukerhandlinger for å anbefale artikler har blitt tydeligere

de siste årene. Forst̊aelse av brukermønste kan gi lønnsom innsikt som forbedrer

anbefalingssystemer sin evne til å øke brukere sin brukeropplevelse, og dermed

inntekt. Å gi nyttige brukeranbefalinger kan være vanskelig, og nyhetsdomenet

sine tendenser til uberegnelige og sammensatte brukermønste medfører egne utfor-

dringer for oppgaven. Stort spenn i artikkeltyper og tema de omhandler kombinert

med mengden artikler som publiseres hver dag, resulterer i f̊a koblinger mellom

brukere og artikler sammenlignet med størrelsen p̊a artikkelvokabularet. I tillegg

til det korte tidsrommet hver artikkel vil være interessant å anbefale, gjør dette

det vanskelig å bruke tradisjonelle anberfalingsmetoder.

Ved å lage semantiske modelleringer av abstrakte temaer, som kan modellere

artikler sett i lys av innhold, kan nye artikler sammenlignes med gamle. Organiseres

disse artiklene i klynger som deler temakombinasjoner, kan brukere f̊a anbefalinger

som samsvarer med innhold i klynger de deler bruksmønster med.

Hovedfunnet er uoverensstemmelser mellom optimale resultater i delprosessene

og optimale resultater for brukeranbefalinger. Til tross for dette, og store vari-

asjoner i kvalitative egenskaper for forskjellige parametre, viser modellene evnen

til å forbedre anbefaling av nye artikler sammenlignet med bruk av originale kat-

egorier og tilfeldig anbefalinger. Evaluering viser at enkelte av modellene f̊ar en

økning for evalueringsmetrikken RA p̊a 34%-64%. Den andre gruppen modeller f̊ar

en økning p̊a 18%-278% for MAP i posisjonene 3, 5, 10 og 30, men redusert RA

med 18%-28%. Med hensyn til karakteristikkene til evaluerignsmetrikkene, synes

RA å bedre speile behov i anbefalingsscenarioet.

i

Preface
This thesis documents research conducted in the period of January to June 2018,

as a partial fulfillment of the degree Master’s of Science at Norwegian University of

Technology and Science (NTNU). The submission is a part of the course TDT4900

Computer Science, and the work has been performed at the Department of Com-

puter Science (IDI) as a part of the SmartMedia project. We would like to express

our gratitude to our supervisors Professor Jon Atle Gulla, and PhD candidates

Lemei Zhang and Peng Liu, for productive guidance and useful feedback on our

work.

Trondheim, June 7, 2018

Nina Kjekstad Elida Karina Reknes

ii

Table of Contents

Summary i

Summary in Norwegian i

Table of Contents iv

List of Tables vi

List of Figures viii

1 Introduction 1

1.1 Background and Motivation . 1

1.2 Research Context . 4

1.3 Research Questions . 4

1.4 Contributions . 5

1.5 Report Structure . 6

2 Theoretical Background 7

2.1 Clustering . 7

2.2 User Modeling and User Behaviour Prediction 9

2.3 Natural Language Processing . 13

2.4 Topic Modeling . 14

2.5 Deep Learning . 16

2.6 Dimensionality Reduction . 19

3 Related Works 21

3.1 Topic Clustering . 21

3.2 Topic Embedding . 22

iii

TABLE OF CONTENTS

3.3 User Models in Recommendations 25

3.4 User and Content Dynamicity . 25

3.5 Sparsity in Recommender Systems 26

4 Methodology 29

4.1 Implementation . 29

4.2 Experiment Methodology . 31

5 Experiments 43

5.1 Prerequisites . 43

5.2 Experiments . 46

6 Results and Discussion 51

6.1 Data Characteristics . 51

6.2 User Modeling with LDA and Clustering 54

6.3 User Modeling with TopicVec and Clustering 67

6.4 Prediction Results . 83

6.5 Discussion Summary . 88

7 Conclusion 93

7.1 Research Contributions . 93

7.2 Further Work . 94

Bibliography 100

Appendix 111

iv

List of Tables

2.1 Clustering evaluation metrics . 9
2.2 Prediction evluation metrics . 12
2.3 Topic model evaluation . 16

5.1 Comparison of data sets within RS 44

6.1 Data set statistics for training set . 52
6.2 Word count percentiles in each data set 52
6.3 Data set category distributions . 53
6.4 Top terms for LDA with t = 4 . 55
6.5 Top terms for LDA with t=80 . 57
6.6 Document-Topic matrix example after LDA topic modeling 58
6.7 User-Cluster matrix example after LDA topic modeling 58
6.8 Best k -Means models based on Silhouette after LDA topic modeling 59
6.9 Best k -Means models based on CH index after LDA topic modeling . 59
6.10 Qualitatively chosen k -Means model. 63
6.11 Top terms for k -Means after LDA, t=5, k=10 65
6.12 Best HDBSCAN models based on Silhouette after LDA 65
6.13 Best HDBSCAN models based on CH index after LDA 66
6.14 Word embeddings statistics in the original word embedding vocabulary 68
6.15 Brexit embedding statistics . 68
6.16 Support count percentiles for words outside of original vocabulary . 72
6.17 Number of words added after embedding update 72
6.18 Parameters for TopicVec . 73
6.19 Top terms for TopicVec on Reddit Posts with t = 5 74
6.20 Embedded topic with low word allocation count 75
6.21 Performance on classification task for original topic embeddings . . . 76
6.22 Top words for TopicVec with t = 5 on News Aggregator data set . . 77
6.23 Clusters sizes for topic embeddings with k = 5 78
6.24 TopicVec models selected for prediction after k -Means end topic em-

bedding . 80
6.25 Word embedding after update, Reddit Posts, k -Means, t=5 81
6.26 Cluster sizes for topic embeddings with 4 clusters 81
6.27 Best HDBSCAN with topic embeddings 83

v

LIST OF TABLES

6.28 Predictor Specifications . 84

vi

List of Figures

2.1 Comparison of k -Means and DBSCAN 8
2.2 Standard model of LDA . 15
2.3 Simple example of a neural network 17
2.4 Simple gradient descent visualization 18
2.5 Simple block coordinate descent visualization 18
2.6 Word embedding illustration of word distances 19
2.7 Non-negative matrix factorization . 20

4.1 Basic architecture for article recommendation 30
4.2 Illustration of the generative TopicVec model 35

6.1 Topic modeling on Reddit Titles data set 54
6.2 Visual comparison of metrics for k -Means models after LDA 59
6.3 Visualization of k -Means after LDA, t=5, k=4 61
6.4 Word cloud for k -Means after LDA, t=5, k=4 61
6.5 Visualization of k -Means after LDA, t=4, k=4 62
6.6 Word cloud for k -Means after LDA, t=4, k=4 62
6.7 Visualization of category labeled k -Means after LDA, t=4, k=4 . . . 62
6.8 Visualization of subreddit labeled k -Means after LDA, t=4, k=4 . . 62
6.9 Visualization of k -Means after LDA, t=5, k=10 64
6.10 Visualization of category labeled k -Means after LDA, t=5, k=10 . . 64
6.11 Visualization of subreddit labeled k -Means after LDA, t=5, k=10 . . 64
6.12 Visualization of HDBSCAN after LDA, t=100, s=10, c=15 66
6.13 Visualisation of Ransomware embedding 70
6.14 Visualization of 30 closest terms to Brexit 70
6.15 Visualization of topic embedding k -Means clustering with t = 5 k = 5 78
6.16 Visualization of category labeled k -Means topic embedding, t=5, k=5 78
6.17 Word cloud for k -Means after topic embedding, t=5, k=5 78
6.18 Word cloud for k -Means after topic embedding, t=40, k=5 78
6.19 Visualization of k -Means after topic embedding, t=5, k=40 79
6.20 Visualization of k -Means after topic embedding, t=40, k=40 79
6.21 Visualization of k -Means clustering on News Aggregator set 82
6.22 Diagram comparing predictors results 83
6.23 Heat maps for positive documents positions in the ranking 85

vii

LIST OF FIGURES

6.24 Diagram showing aggregated documents on ranking position 86
6.25 Gini indices for users ordered by prediction performance 87

viii

Chapter 1

Introduction

1.1 Background and Motivation

The number of people using online services daily has been increasing vastly over
the years, with the amount of users accessing their news online increasing along
with it [1]. News outlets no longer rely mainly on paper format news, and some
have even become online-only papers after decades of publishing in order to stay
in production [2]. Main sources of income are sales of subscriptions and advertise-
ments, with the latter being traditionally essential and lately declining in revenue
[3]. Even before the current level of digitalization of newspapers, advertisement
income were being redirected to online services providing free space and markets
for classified ads [4], and now news outlets are competing with technology giants
for ad revenues online [3]. With so much of the news industry conducted online,
clicks and individual article reads will generate much of the advertisement income
where printed classified ads did before.

Along with this change in how users consume their news, competition has
changed within the news field. While reading the paper delivered in your mail-
box each morning is a natural habit, online news provides users with hundreds of
potential news sources covering partly overlapping news. When users can get the
same service from many different providers, increasing user satisfaction and loyalty
is crucial [5]. A personalized service can achieve this while also alleviating the issue
of information overload, an increasingly frequent occurrence with the vast increase
in information available online [5]. A common tool to provide this personalized
service which can improve user experience and loyalty is Recommender Systems
(RSs).

1.1.1 Problem Outline

This opportunity to increase user satisfaction and company revenues simultane-
ously, has resulted in the field of user modeling and predicting user behaviour
gaining an increasing interests in many domains, news recommendation among

1

Chapter 1. Introduction

them. While many recommender system challenges are shared across domains,
some specific domain characteristics of users or items can result in amplified con-
sequences or unique combinations of these challenges. The field of recommender
systems, and consequently user modeling, has struggled with making useful recom-
mendations on sparse data and computational efficiency on large datasets since the
start and across all domains [6]. Sparse data can be a result of not having enough
information about a user’s activity in a large item space, or about the items that
are being recommended. Both these situations can inhibit a system from provid-
ing good recommendations, and are relevant issues to address when recommending
news articles to users.

The expansion of online news services and number of users has generated a great
deal of data, available for user and purchase history analysis when creating better
services. In the scenario of news recommendations, collected data available for
item modeling may often include the articles themselves, user read history, authors
and manual category tags. In terms of user activity information, the news field
intuitively has a certain advantage over typical movie streaming or online store
recommendation services. Users often read several news articles a day, but many
users may visit an online store a few times a month. While the news area may be
able to collect more user activity data than many other services, it also maintains
a high pace of item addition. Hundreds of articles may be published each day for a
single paper, with most users reading only a handful, and the user activity matrices
will still be significantly sparse.

Though the amount of item and user data collected in the news field is often
vast, utilizing it for recommendations is not always easy. Traditional methods of
recommendations such as collaborative filtering, recommends items to users based
on items that similar users have favoured, often even if the item was consumed
or rated some time ago. In the news field, unlike many other domains, recency of
content recommended is one of the most important aspects, and recommendation
of older items will generally be of little interest to most users due to the commonly
short expiration date of relevance for news articles [1]. Thus, the recommendations
cannot benefit from the higher frequency of user activity by traditional methods.
This poses the challenge of exploiting historical user activity in order to generate
recommendations on items that have yet to be read by sufficiently many users to do
user comparisons. Making recommendation to users or with items of which little
or no information is known is referred to the ”cold start” problem.

Another data collection deviation between the news domain and certain other
recommendation fields, is the lack of explicit feedback [7]. Users rarely rate an
article on a scale from 1 to 5, or even provide a binary positive or negative feedback
after reading. Even if they were asked to do so, content and topics in news may
make it difficult for users to properly reflect their preference for an article, or
where it stems from. A reader can disagree with the sentiment expressed by an
article, while still being interested in reading it due to interests within the topics
it discusses. With the frequency at which users read articles, it would also be
immensely disrupting to request feedback after each article. In recent times, with
many news outlet having their own comment sections or linking to news content

2

1.1 Background and Motivation

on social media, some feedback could theoretically come from observing responses
to mentions of news articles. While these comments could be interesting in a
sentiment analysis context, mapping user comments from separate data sources
to users within a system can be difficult. Additionally, the previously mentioned
tendency for news readers to be interested in reading articles which deviates from
their own topical interests, or sentiment about a topic, could make this work more
confusing than helpful. Depending on this type of feedback is also not viable in
a large-scale news recommender system, as only a marginal portion of the readers
are likely to engage in social media responses, making it specialized for users with
very specific behavioural patterns. Consequently, feedback is generally based on
whether a user clicks on, or reads, an article or not, data which can be assumed non-
discriminatory available for all users with persistent user identification. This lack
of explicit feedback to indicate whether a user in fact liked read articles, combined
with the volatility of expressed user interests, leads to additional challenges when
eliciting user interests in the news field recommendations [7]. Especially when
noting that the news domain is also prone to users reading articles that diverges
from their expressed personal interests, such as breaking news or an article linked by
a friend [1]. This can create additional noise or misinterpretations in user interest
models.

1.1.2 Approach

To summarize, the problem at hand includes deriving user models from topical in-
terests without much user feedback and recommending articles with little to no user
reading history, due to the high turnover rate of news articles’ relevance. Approach-
ing this problem, knowledge from two developing fields in particular constitutes the
main focus of this thesis, accounted for in the following.

Parallel to the developments and data volume increase in the news domain, the
extraction of abstract topics from text has been a growing field over the last decades.
While some news articles are published with manually added tags representing
topics or categories, these tags are often few, very overarching and lacking in full
topical coverage. With the news field’s easy access to rich text that not only
describes the item to be recommended, but is the item itself, topic modeling is a
natural tool for discovering similarities and differences across articles. This can be
used as a way to circumvent the lack of information about item consumption. A new
published article will always offer text that can be analyzed through topic modeling,
making topic modeling a consistently useful tool in the news recommendation area.
By enabling the comparison of new and old items, the disadvantage brought on by
a lack of data to perform user comparisons will hopefully be minimized. Topic
modeling is also a tool for reducing the impact of sparsity and efficiency issues,
through representing user interest as accumulative topic interest instead of relations
to each read article in the item space.

At the same time, researchers have utilized and improved on community detec-
tion methods across many domains and applications. Community detection can
extract useful patterns and groupings, often from networks where nodes represent
users with attached features in the scenario of recommendation systems. The use-

3

Chapter 1. Introduction

fulness of community detection is not restricted to use within recommender systems
though, and has been researched in contexts such as biology and physics as well
as more social networks. Discovering the underlying community structure within
a news article network, these structures can be used by leveraging the common
behavioural patterns to predict a single user’s behaviours or clicks. This more so-
phisticated manner of mapping a user’s behaviour to composite topic patterns, can
hopefully mitigate some of the sparsity issues faced in RSs, as well as improving
the general quality of recommendations.

1.2 Research Context

This Master Thesis report is written as the final requirement to obtain a Master
of Science degree at NTNU within the field of Computer Science.

1.2.1 NTNU SmartMedia Project

The project is a part of the SmartMedia Program1, a project run by the Department
of Computer Science at NTNU. SmartMedia collaborates with the Norwegian media
industry and investigates topics that aid the industry, such as the use of semantics
and linked data in large-scale real-time news recommendation. Predicting user
behaviour is a central part in the recommendation of relevant content with topics
of interests for the user, as well as in marketing, which has become critical in the
media industry over the last few years.

1.3 Research Questions

This project aims to improve news article recommendations through technologies
such as topic modeling and community detection. These methods, and their abil-
ity to improve user models and prediction results, are also the main focus of the
research questions.

1. What types of topic models or semantic approaches can be used to
extract the temporal user-item interactions to improve the perfor-
mance of news recommendation?

When extracting item information, it is important to generate a model which
efficiently can infer comparable information for items introduced at a later
time. Topic models and embeddings can provide this for textual items through
detecting common patterns in training, and applying them to unseen data to
label them accordingly. A key question becomes how these models can aid in
discovering and recommending new and relevant documents to users without
attached read history about the item, encompassing the effect the different
models and varying choices of topic granularity has on the prediction results.

1https://www.ntnu.no/wiki/display/smartmedia/

4

https://www.ntnu.no/wiki/display/smartmedia/

1.4 Contributions

2. How can topic-based community detection and dimensionality re-
duction technology help solve the sparsity issue and improve effi-
ciency in recommender systems?

Excessively sparse data is a challenge when recommending items to users,
resulting in difficulties such as lack of scalability and efficiency reduction. By
using topic modeling and embedding, articles will be presented in a lower
dimensional space, with topically similar articles having similar representa-
tions. How will this topical dimensionality reduction impact the sparsity
challenges, together with clustering employed on said article representations?
Additionally, this may aid in increasing the coverage of documents being rec-
ommended, as documents with few interactions in sparse user-item matrix
are traditionally rarely recommended. The research will explore how clusters
found through community detection on topic modeled documents compares
to the manually labeled categories, and how this may impact the quality of
recommendation.

3. How can community detection technology be used to mitigate item-
side cold-start issues in news recommendation?

Expecting no or insufficient read history about articles due to the short time
frame of relevance, how can community detection aid in circumventing the
need for user-item interaction before a new item can be recommended? This
includes developing content based user models by discovering optimal clus-
terings for the topical items and utilizing user history, in order to extract
useful recommendations among cold items.

1.4 Contributions

This section will briefly present the thesis’ main contributions, in answer to the
aforementioned research questions. Firstly, notable gains in prediction quality is
observed when performing dimensionality reduction through semantic analysis,
and the two investigated generative processes for extracting topics, namely La-
tent Dirichlet Allocation (LDA) and TopicVec, is proven to perform approximately
equal to each other on the given data set. With models using both topic mod-
eling and clustering, the prediction metric RA shows improvements on random,
ranged from 34%-64%, for models which performed well. Other models gains im-
provements ranging from 18%-278 % on top 3, 5, 10 and 30 positions for MAP,
but declines in performance on RA by 18%− 28%. Considering the characteristics
of each prediction evaluation metric, RA appears to better capture the quality of
recommendations.

However, the evaluation of predictions must also be seen in light of the compli-
cations related to simulating a real news domain, both in terms of language and
sparsity in feedback, and that consequently lack of documented interaction does
not implicate disfavour. Nevertheless, some of the models do show improvements
on cold start items recommendations, compared to random and a method utilizing

5

Chapter 1. Introduction

original labels. Moreover, further dimensionality reduction with topical commu-
nity detection by traditional clustering shows very varying performance, and results
indicate that more sophisticated evaluation metrics is needed in parameter selec-
tion and optimization of sub-processes. Lastly, as mentioned, community detection
yielded results of varying quality depending of parameter choice, and in addition
to more sophisticated optimization methods, less conventional clustering methods
in this sub-process may be fruitful to serve the main process better. With that
being said, the communities found do show tendencies of not simply replicating
the original labels, being evidence of the insight achievable from the process.

1.5 Report Structure

This report consist of seven chapters. This chapter, chapter 1, explains the back-
ground and motivation for the project, as well as a problem outline and research
goals and questions. The rest of the report is structured as follows: Chapter 2
provides an overview of the basic theory used in the the report, followed by chap-
ter 3 documenting a literature review of related works and comments how these
are relevant for the project. In chapter 4, we describe the methodology, including
the data sets, as well as introducing our experiments. Experiment sets up will be
detailed in Chapter 5, while Chapter 6 presents and discusses the results. Finally,
Chapter 7 concludes the research and outlines potential further work.

6

Chapter 2

Theoretical Background

This chapter will provide an overview of the basic theory for technologies and
methods used in the the report.

2.1 Clustering

Clustering is the task of grouping data points, such that data points within a group
(or cluster) are more closely related to each other than to those in other groups.
The technique is used in many disciplines and can be considered as one of the core
tasks in data mining, the process of discovering patterns and new information in
large data sets [8].

One of many usages of clustering is community detection, often used to represent
real community structures derived from graphs [9]. It is an important area of
research, and can represent data sets from many different domains [10]. One such
domain is social media applications, where a user’s content may be partially decided
by the activity of friends or communities consisting of similar users. If diligently
implemented, this may open for exploration while also taking history of user’s
own preferences into account. However, this puts high demands on attributes and
quality of the data set.

2.1.1 Clustering Algorithms

A numerous amount of clustering algorithms and variations exists, and which is
the most suitable depends on a range of different features. These features include
whether the use case requires many or few clusters and if this number of clusters
can be predefined, if the cluster sizes are likely to be uneven, if the clusters’ are
of a non-flat geometrical shape, and the size of the data set in terms of scalability.
Different clustering methods may yield quite different clusters, as exemplified in
figure 2.1. In the news domain, a suitable clustering algorithm should be able
to handle large data sets, many clusters of varying sizes and preferably also non-
flat geometrical shapes. Two commonly practiced and relatively basic clustering

7

Chapter 2. Theoretical Background

methods are k -Means and Density-Based Spatial Clustering of Applications with
Noise (DBSCAN), described below and presented in figure 2.1.

k-Means

k -Means is a frequently used baseline clustering algorithm, and is described in detail
by Hartigan [11]. In short, the algorithm divides the data points into k clusters by
minimizing the within cluster sum of squares. It requires a predefined number of
clusters and is more suitable when the clusters are of even size and flat geometry,
which is not optimal for the news domain. However, it is a simple and scalable
algorithm, and may serve as a well-known general-purpose baseline algorithm.

DBSCAN

DBSCAN, clusters points based on density [12]. It groups points in areas of high
density together based on a given value for the minimum number of surrounding
data points required within a radius. Any points lying alone in areas of low density
which does not meet the requirements of surrounding data points are marked as
outliers. Due to this generic view, the algorithm can handle clusters of non-convex
shapes, in contrast to k -Means. The algorithm is also scalable, can handle un-
even cluster sizes and does not require a predefined number of clusters, making it
promising for clustering in the dynamic and composite news domain.

Figure 2.1: Comparison of k -Means and DBSCAN1.

1http://ogrisel.github.io/scikit-learn.org/sklearn-tutorial/ images/plot cluster comparison 1.png

8

http://ogrisel.github.io/scikit-learn.org/sklearn-tutorial/_images/plot_cluster_comparison_1.png

2.2 User Modeling and User Behaviour Prediction

2.1.2 Clustering Evaluation

The validity of a cluster is an assessment of the confidence level surrounding
whether the extracted clusters are actually true [13]. In contrast to methods where
the groupings of the data points are learned from knowledge of correctly assigned
groups, or labels (supervised learning), clustering methods may often be tasked
with grouping unlabeled data points, or ”learning without a teacher” (unsupervised
learning) [14]. Accordingly, quality of an unsupervised clustering is measured based
on internal evaluation [15], solely using the data clustered, for instance calculating
metrics for cohesion within clusters and separation between. Several indices exists
to evaluate cluster validity, and two of these are the Silhouette Coefficient [16] and
Calinski-Harabasz (C-H) Score [17] (table 2.1).

Evaluation Metric Equation Parameters

C-H
index

s(k) = Tr(Bk)
Tr(Wk) ×

N−k
k−1

N is number of points
Wk is d(nodes to centroid)
Bk is d(centroid to centroid)

Silhouette
Coefficient

s = b−a
max(a,b)

a: mean(d(nodes in same cluster))
b: mean(d(nodes in next nearest cluster))

Table 2.1: Clustering evaluation metrics.

The Silhouette Coefficient is a ratio value of the mean distance values between
the points in the cluster to its own points, as a measure of cohesion, and to the
closest other cluster, as a measure of separation. The C-H index is a similar metric,
being defined as ratio of between-clusters dispersion mean and the within-cluster
dispersion, but is less computationally demanding than the Silhouette Coefficient,
which might be advantageous when working with large data sets. Both metrics
favor dense and well-separated clusters, and optimal values are max. The Silhouette
Coefficient will always be in the range -1 to 1, which makes it easier to compare
across implementations. The C-H penalizes high values of k, shown in the N−k

k−1 -
element. This could affect the performance of the metric in such a large dataset,
as some lower values of k may get the same or better score based on this element.
Both methods’ performance are skewed to give higher scores to convex clusters,
such as those more aptly found by k -Means. This must be taken into consideration
when comparing results across clusterings algorithms.

2.2 User Modeling and User Behaviour
Prediction

User modeling is the field of creating a representation of a user’s preferences and
behaviour, based on information collected and features generated by a model [18].
Usage of user models includes Information Retrieval (IR) [19], adapting links or
content on pages [20], system guides [21] and RSs. The latter, being the focus of

9

Chapter 2. Theoretical Background

this research, will be further described in this section, after briefly describing some
of the basics in construction of a user model. The main building block in a user
model is collected knowledge of user behaviour through direct or indirect feedback.

2.2.1 User Feedback

User feedback is commonly separated into implicit and explicit feedback [22], where
explicit feedback is feedback the user is directly involved in, and aware of, provid-
ing. Examples include a user rating an item they have bought or movie they have
watched, indicating a quantifiable favor of the item. Other examples could include
asking users questions about demographic attributes, or to choose interesting topics
from a list. These methods often have the advantage of providing correct informa-
tion, as the user is able to explicitly control how they are presented. Some issues
are however present. First of all, it puts task demands on the user. In the news
domain for instance, users will often read several articles each day, but likely not
a significant portion of the total number of articles published. Users are also not
likely to take the time to, or appreciate a prompt to, rate all articles they read
within a day. This can contribute to very sparse matrices when creating user mod-
els based on item rate history [22]. This is expected to be especially prominent in
the news domain due to volatility in articles’ relevance and individuals’ behaviours.
Additionally, some users may not have optimal insight into their own interests, or a
way to express them in such discrete formats as named categories or a 1 to 5 rating.
Users may be interested in news within a topic, without having a particular interest
or favour of a certain article within the subject. Users who provide contradictory
item ratings are also an issue [23], as well as potential opinion changes over time.

With news domain users usually not being willing to rate the relevance of each
read article, user behaviour patterns will be captured by interpreting various im-
plicit signals to second-guess their interests and satisfaction [7]. The goal of implicit
feedback is thus to extract useful information from user behaviours that can help
improve the user model [6], without requiring explicit statements from users. In-
formation collected from implicit feedback can range from simple records of search
and item purchase history, to more detailed statistics and measurements of user
behaviour. The latter have included comprehensive user behaviour data collec-
tion of metrics such as time spent on page and mouse movement [24][25]. These
measures are often not available datasets or expensive to collect, and user activity
in the form of purchase history and the like is more likely to be of practical use.
Implicit feedback can be used both as a replacement for explicit feedback, or as
a supplement to get more accurate user models. It has the advantage of being
non-intrusive, thus it is not dependent on users being willing to respond frequently
to questions, or performance-wise skewed in favor of those users who do.

2.2.2 Recommender Systems

In a RS, a user model can be used to predict what items would be the most
preferential, or what actions would be most likely for a user. It can be useful to both
users and service providers, making it easier to provide personalized service. The

10

2.2 User Modeling and User Behaviour Prediction

systems have had vast uses, and have been especially popular among e-commerce
as an efficient method of simultaneously increasing user satisfaction and their own
revenues [26].

As the amount of content available online and within services increases drasti-
cally, many users would struggle with a information overload when trying to use
online systems if RSs were not used to filter out vast amounts of information [19].
In the news domain, this involves predicting what news and topics users prefers in
order to recommend relevant items, like articles.

RSs share some features with IR systems. Both systems filters information in
order to provide optimal results fitting user interests, but the goal in a RS is to
recommend items that the user would be interested in at any given time. This is
in contrast to IR systems, which more often have a direct idea of what the user
is currently interested in form of a query requesting information on a given topic.
This leads to a greater demand for recall in IR systems in order to avoid missing
important information on a user specified topic. RSs systems on the other hand,
are often trying to recommend a few items from a vast selection and precision may
be more important than attempting to recommend all relevant items, reintroducing
the information overload issue. Precision in recommendations over time, can be
used to gain users trust in recommendations, as well as to encourage users to try
them.

The recommendations given are often based simply on information about user
history and items. Most methods for recommending items to users can generally
be categorized as collaborative or content-based, or hybrid systems [6] combining
these methods.

Collaborative Filtering vs. Content Based

Collaborative Filtering (CF) methods model a user based on interests which are
usually inferred from collected consumption, and possibly rating, history. Items
are recommended based on other users with similar historical item preferences as
the user. These items are usually discovered by estimating a rating for each item
that has been featured in the user’s nearest neighbours of users’ history [27]. The
fundamental assumption of collaborative methods is that users with similar item
purchase or rating history, are inherently similar in respects to interests and ex-
pected future purchases. Over the years, user-item and item-item collaborative
filtering has been used as a baseline for experiments, inspiring many modified ver-
sions and hybrids that improve on the traditional method and still takes advantage
of its simplicity [26][27].

Content Based (CB) methods utilize information about the items to recommend
items similar to those a user has preferred previously [28]. Other methods may use
demographic information about users or a specified knowledge base that provides
information about items and their ability to meet known user needs. Where such
information is limited, log files or user click data may be used in order to detect
a sequence of actions, time spent on page etc in order to more accurately model
users or calculate degree of interest in an item. However, as mentioned earlier, in
many cases one cannot assume access to such a detailed level of user data.

11

Chapter 2. Theoretical Background

2.2.3 Prediction Evaluation

Evaluation
Metric

Equation Parameters

Precision P = Relevant items∪Retrieved items
Retrieved items -

Recall R = Relevant items∪Retrieved items
Total relevant items -

F1-score F1 = 2× P×R
P+R -

Accuracy A = TP+TN
Total

TP = True (correct) Positives
TN = True (correct) Negatives

Precisioni Pi=
of correct items among first i

i -

∆Recalli ∆Ri=
1
n

if ith item is correct,
0 otherwise

-

Average
Precision

AP@k =
∑k

i=1 Pi ·∆Ri -

Mean
Average
Precision

MAP == 1
|Q|
∑

q∈QAP@k Q = set of all users

Percentile
Ranking

rank =

∑
u,i αu,i·ranku,i∑

u,i αu,i

αui = if user u interacted with article i,
0 otherwise

Further described in related works (3.5.2)

Ranking
Accuracy

RA =50%−rank
50%

Further described in related works (3.5.2)

Table 2.2: Prediction evaluation metrics.

The standard metrics precision and recall are convenient when evaluating clas-
sification, as in prediction of words, topics, or clusters. The harmonic average of
precision and recall, F1-score, describes a balance between precision and recall.
These two values often become a trade-off, as the increase in Recall often can lead
to diminishing Precision and vice versa. F1-Score is thus also often used for classi-
fication, and it’s basis from the number of positive results requires a ground truth
to be set, as with precision and recall.

In a RS it is common to generate a ranked list of recommendations ordered by
relevance. In order to see how precise the recommendations are, one can calculate
precision at different positions in the ranked list. MAP considers whether the
relevant items tend to get ranked highly, and takes all relevant items found into
consideration, in contrast to the also common Mean Reciprocal Rank (MRR), only
considering the single highest-ranked relevant item.

12

2.3 Natural Language Processing

Average percentile ranking [29] is an efficient method to evaluate ranking based
on implicit feedback [30][31], searching for relevant articles in the list, and calculat-
ing in which percentiles they are positioned. The evaluation method will be further
described in 3.5.2, together with ranking accuracy.

2.3 Natural Language Processing

Natural Language Processing (NLP) is the field of applying natural language for
useful purposes, through manipulation and analysis of speech or text to let com-
puters gain an understanding of human language [32]. It spans many domains such
as linguistics and Machine Learning (ML), and has been gained a lot of research
interests in the later years.

2.3.1 Generative Models

Generative prediction models are named so due to their ability to generate example
pairs of observable data X and class Y after its training [33]. In generative models,
the joint probability distribution of P (Y,X) is used to calculate the conditional
probability P (X|Y), the probability of seeing data X when you are given class Y . It
is this calculation of this joint distribution which makes it possible to generate pairs
of (x, y) data pairs, through sampling [33]. This ability is absent in discriminative
models, where the goal is more directly related to a traditional classification tasks,
to calculate the probability of a given class label Y given the features X, P (Y |X).

Generative models often use distribution priors such as Gaussian and Dirich-
let, chosen by domain knowledge to appropriately fit the data in question, with
variables being drawn from these [34]. This offers a flexibility that discriminative
methods have lacked, though they have in turn been preferred for many NLP tasks
because of the more direct link to the classification task of labeling x with a label
from Y and often superior performance on classification tasks [35]. Generative
models do however tend to perform better than discriminative models in settings
lacking labelled data [33], making it more suitable in cases where labelled data is
difficult to come by or only applied to parts of a corpus.

2.3.2 Smoothing

Smoothing is used in lanugage models and n-grams in order to avoid overfitting and
an abundance of zeros when calculating the probabilities of observing words [36].
The name derives from its tendency to ”smooth out” distributions by increasing
the zero-values and decreasing some of the higher values, avoiding overly sparse
probability values. It has been shown to improve models and can avoid making
the model overly dependent on small excerpts of text [36], hence the advantage of
decreasing overfitting.

13

Chapter 2. Theoretical Background

Jelinek-Mercer Smoothing

Jelinek-Mercer Smoothing interpolates a maximum likelihood probability method
and a collection model method, given by the following general equation [37]:

Pλ(w | d) = λpml(w | d) + (1− λ)p(w | C). (2.1)

Here, p(w | d), refers to the probability of the observed word w in a current
document d, and λ is a parameter coefficient deciding the influence levels of the
first and last term. The first term, pml, is the maximum likelihood probability
of the observed word w in document d. The latter term, p(w | C), is commonly
used in smoothing methods, and aims to increase the probability of words that
are currently unseen in the document by considering its presence in the corpus C
[37]. This is referred to as the collection language model. Considering the word
frequencies and probability of the entire collection, not just the current document,
can help avoid having many zero probabilities for currently unseen words. This
allows for globally frequent words gaining a higher probability than less frequent
words, even if they have yet to be observed in the current document. This again
avoids zero probabilities being assigned to instances not observed in the training
set at the time, which may be present in the test set.

2.4 Topic Modeling

Topic modelling is a known and tested field within both ML and NLP, and is of-
ten represented as a statistical model. It allows for discovering overall themes, or
topics, from unstructured data [38], such as news articles. Having a more gen-
eral representation of the articles, and consequently user history, can be useful in
prediction of relevant user content.

2.4.1 Latent Dirichlet Allocation

LDA is a relatively simple and popular generative probabilistic model of a corpus,
often used for topic modeling. The statistic model allows for documents to describe
several topics, a natural assumption for many documents. The naming originates
from the Dirichlet distribution, used to describe topics per documents in the model
[38]. The distribution is able to generate relatively sparse results [39], which can
support the idea that each document contains relatively few main topics. Topics
are represented by a distribution of words in the vocabulary, defined by the corpus.
Simply put, topics are related to specific words, and a document containing many
of these words are more likely to be categorized within this topic. The model
depends on pre-defined topics, and the number of topics is predetermined.

Figure 2.2 shows a standard representation of the LDA model. N represents
a word-topic combination, where w is the word and z is the topic distribution of
the word. M denotes the document in the collection. θ is the topic distribution

2Source: pp.997 [40]

14

2.4 Topic Modeling

Figure 2.2: The standard model of LDA2.

of the document, with θm representing the distribution for the document m. α is
a Dirichlet parameter prior on the topic distribution per document, while β is a
Dirichlet parameter prior on the word distribution of topics [40]. These are both
corpus-level parameters, and are called priors due to representing a distribution
prior to being presented with the observable data [41]. The shaded node w is the
only observable factor before generation of the model [40].

The topic mixture of each document is a problem of Bayesian inference, and
can be inferred calculating the following joint distribution:

p(θ,z,w | α, β) = p(θ | α)

N∏
n=1

p(zn | θ)p(wn | zn, β), (2.2)

where p(zn | θ) is θi for i such that zin = 1. Integrating over θ and summing over
z leaves us with the marginal distribution of a document. Using the product of the
documents’ marginal probabilities, we obtain the probability of the full document
corups D :

p(D | α, β) =

M∏
d=1

∫
p(θd | α)

(
Nd∏
n=1

∑
zdn

p(zdn | θd)p(wdn | zdn, β)

)
dθd. (2.3)

The function is intractable for exact inference (details [42][40]), but the posterior
may be approximated through convexity-based variational inference, in addition to
multiple other alternative inference algorithms [40].

In the dynamic news domain, the requirement of pre-defined topics is a chal-
lenge, as topics frequently might disappear or emerge. Another challenge is aligning
topics as content changes over time. For instance, the term distribution of a 20
year old article about photography would most likely differ from one today where
old camera technology is more or less phased out. Another example is digital cur-
rency, where credit cards and online accounts more recent years has been joined
by blockchain technology. However, many improvements, extensions and adaptions
of LDA has been introduced, and it appears to be a powerful and intuitive tool
to incorporate as part of a topic modelling solution. Adaptions include support
of topic correlations, and allowing topics to include the notion of words that are
unlikely to be associated with it [38].

15

Chapter 2. Theoretical Background

2.4.2 Topic Model Evaluation

The topic learning is unsupervised, and corrections and evaluation might be done
by performing topic modeling on labeled corpora, comparing performance across
models. However, where this is not present or topics have very coarse granularity,
other metrics based on internal evaluation can be used.

Evaluation metric Equation Parameters

Perplexity exp

{
− L(w)

count of tokens

} L(w): log-likelihood of
the unseen documents
wd: unseen documents

Topic Coherence
∑

i<j log
1+D(wi,wj)

D(wi)

D(wi, wj): count of documents containing
words wi and wj

D(wi): count of documents containing
the word wi

Bound
Eq[log(p(corpus))]

- Eq[log(q(corpus))]

corpus: documents to infer
variational bounds from

p: prior
q: posterior

Table 2.3: Topic model evaluation.

When topic modeling the aim is to extract topics aligned with human judg-
ment, which by itself is difficult as human may disagree on semantics in a topic.
The perplexity is the per-word likelihood bound for an unseen held-out corpus,
where a lower score should indicate a better model. However, one should take into
consideration that perplexity and human judgment are often not correlated [43].
Another metric is topic coherence which can be measured using UMass measure
[44], and scores how much words within a topic describes it. Since the scores are log
probabilities, they are negative, and large negative values indicate words that do
not co-occur often. The bound estimates the variational bound of documents from
corpus and is the lower of the log probability of observations. If the approximation
distribution is perfectly closed to the true posterior distribution the bound hits the
log probability [45].

2.5 Deep Learning

Deep Learning (DL) is a popular sub-field of machine learning which processes data
through trainable deep, weighted Neural Networks (NNs). The deep NNs open up
for several layers of abstraction which can be fine-tuned through training, and have
been noted for their ability to extract useful representations of data and discover
structures in high-dimensional data. NNs has yielded good results on relevant tasks
such as sentiment analysis, topic modeling and NLP[46].

16

2.5 Deep Learning

2.5.1 Neural Networks and Training Basics

Each arrow in the fully connected NN, indicating that all nodes are connected to all
nodes in the previous layer, in figure 2.3 will have a unique weight value attached
to it. This weight is denoted by wij for the weight applied to information sent
from node i to node j. It is these weights that are tuned when training NNs in
DL. This training often aims to minimize a cost function by nudging weight values
in a direction that currently lowers cost or loss, moving around in the error space.
This can be done in several different ways.

Figure 2.3: An example of a simple Nerual Network with all-to-all connections, two
hidden layers and one output node.

Descent Training

For years, it has been common to use optimization algorithms which takes itera-
tive steps descending towards the minimum of a given cost, or loss, function when
training neural networks [47][48][49][50]. In each step, the algorithm tunes the
weights in the neural network slightly in the direction that moves towards a min-
imization of the cost function value. This is usually done in batches, often called
minibatches, where each weight is updated at the end of processing a set number
of training cases. This makes updating the entire network for each training case
unnecessary, while keeping generalization relatively high compared to running all
test cases in one batch [50]. Variables in such descent training often include a step
size, or a learning rate, a choice of how far to move in the chosen error-minimizing
direction. The learning rate should be adapted in accordance with the loss function
landscape, too small step sizes in non-smooth landscapes can lead to getting stuck
in a local minima or simply very slow convergence, and too high learning rates in
landscapes such as smooth hyperbolic shape can lead to oscillating between points
centering around a vertex minimum. Several manners exist to determine step sizes
for different methods, but no all-encompassing rules for choosing an optimal learn-
ing rate exists across networks or problems for the methods, and likely monitoring
results for a given case is the best option [50]. The step size often decreases for each
iteration, as you expect to start relatively far from the goal and to get closer for
each step [51][50]. The choice of direction to move in, is sometimes dependant on a

17

Chapter 2. Theoretical Background

Figure 2.4: Simplified visualiza-
tion of a Gradient Descent training
algorithm’s movement in an error
space given by f(x, y) = x2 − xy +
y2.

Figure 2.5: Simplified visualiza-
tion of a Block Coordinate De-
scent training’s movement in an er-
ror space given by f(x, y) = x2 −
xy + y2.

derivative of the loss function in order to determine whether the cost is increasing or
decreasing, meaning that not all descent training methods are a preferable option
when dealing with non-differential cost functions. Non-convex problems can also
be a challenge for some descent methods. A very common descent training algo-
rithm used in training neural networks is the Gradient descent, often in the form of
Stochastic Gradient Descent. As the name indicates, gradient descent moves along
the steepest gradient in the error space, allowing it to change multiple variables
at a time, illustrated in figure 2.4. Gradients can be slow to compute and rate of
convergence is not always good, but it has been a popular training algorithm in
many cases. Coordinate descent, such as Block Coordinate Descent (BCD), on the
other hand, will move along one axis at a time in the error space, illustrated in
figure 2.5. It will iteratively choose a single of the variables to change in order to
minimize, and is built on the idea that performing the easier task of minimizing
each variable individually will eventually lead to the optimal solution. It has the
advantage of being applicable even in cases where the function cannot produce a
derivative [52]. Still, BCD also struggle with with non-smooth cost functions due
to the increased chance of getting stuck in a local minimum.

2.5.2 Representation Learning and Embeddings

Unsupervised learning has been used for the task of finding optimal representations
for data for quite some time. The goal when modifying representation often vary,
but generally one wants to keep as much information as possible from the original
format, while representing it in a manner which is more useful to the task at hand.
Common methods include reducing the dimensionality of the data, or representing
it in a sparser manner to enhance likeness and differences between data entries. The
latter, sparse representations, creates data representation in which most of the
values are zero. Creating sparse representations is sometimes called embedding.
Concepts or words can be represented as embeddings, or continuous vectors, to

18

2.6 Dimensionality Reduction

model the relationships between them [53]. NLP has been proven to have great
use of word embeddings learned in an unsupervised manner [54].

In word embeddings, each word starts as a one-hot vocabulary size vector before
being embedded into a lower-dimensionality space. When embedding words, those
that frequently share contexts or other chosen features, will be placed close to
each other in the lower-dimensionality space. This means that a well-performed
word embedding will provide a vector space in which small distances equals a
certain semantic or contextual similarity [55]. Similarly, word pairs which share
a similar semantic relationship should also share similar distances in a good word
embedding, e.g. the distance between embeddings for countries and their capital
cities, illustrated in a 2-dimensional space in figure 2.6. The usefulness of these
embedding features has shown promise for use in fields such as translation, where
one can compare each language’s word embeddings to compare word use in context.
They can be learned by dimensionality reduction methods such as Singular Value
Decomposition (SVD), probabilistic models and neural networks [55]. [56] divides
word embeddings largely into two coarse groupings of methods utilizing either low-
rank Matrix Factorization (MF), often with SVD, or Neural embedding models
utilizing neural networks, often with gradient batch descent optimization.

Figure 2.6: Word embedding feature of similar distances indicating similar relationships
between words.

2.6 Dimensionality Reduction

Several methods described in this chapter aims at making more generalized rep-
resentations, and some may be viewed as dimensionality reduction, which is the
process of transforming a high dimensional data set to a data set with lesser di-
mensions, still capturing the original data sets information. This can be useful
in regards to computational requirements, but also has the quality of extracting
hidden features. It is also a valuable tool in qualtitative evaluation, enabling visual-
izations of high dimensional data, through techniques like t-Distributed Stochastic
Neighbor Embedding (t-SNE) [57], linear discriminant analysis [58] or Principal
Component Analysis (PCA) [59].

19

Chapter 2. Theoretical Background

2.6.1 Nonnegative Matrix Factorization

Nonnegative Matrix Factorization (NMF), also called Nonnegative Matrix Approx-
imation (NNMA), is a popular method for dimensionality reduction and data anal-
ysis, which has proven to be useful in a range of applications, like text analysis
or image recognition [60], and more relevant for this paper, community detection
[61][62], topic modeling [63], recommendation [64], and embedding [65]. Like the
name indicates, it uses non-negativity constraints, leading to a parts-based repre-
sentation where parts can be used separately to recognize items [66]. The basic idea
is to derive latent features by factorizing a matrix V into (usually) two matrices
W and H, as displayed in figure 2.7. Here matrix V might represent purchases or
interactions with items (for instance movies), and W and H represents latent fea-
tures (for instance genres) for users and items, used to approximately reconstruct
V .

Figure 2.7: Non-negative matrix factorization3.

3https://en.wikipedia.org/wiki/Non-negative matrix factorization#/media/File:NMF.png

20

https://en.wikipedia.org/wiki/Non-negative_matrix_factorization#/media/File:NMF.png

Chapter 3

Related Works

The following chapter documents a literature review of related works and comments
how these are relevant for this research.

3.1 Topic Clustering

Community detection as a tool for personalized recommendations has gained pop-
ularity in research the last five years. It has proven to be an efficient method when
using interactions between users and rather permanent items such as books [67] or
movies [68][69][70]. However, these methods deal with relatively stable item sets,
making it less sustainable in the news domain.

An alternative method should therefore be able to quickly predict article rele-
vance for a user without relying on user interactions. Sure the articles can, through
manual labour, be targeted to communities, but manual labour is a demanding task
susceptible to reduced objectivity and subjectivity. At the same time, community
detection has potential to help deal with the sparsity of data [71], and some sug-
gest that overlapping communities that allow for a user to be members of several
community may assist in providing diversity in recommendations due to a larger
relevant item space to choose from. This is also seemingly realistic way to rep-
resent users, as people’s interests are nuanced and most people in reality do not
exclusively belong to only one community [72].

A way to deal with this problem could be by clustering the articles by semantic
topics. Li et al. [73] propose a online blog reading system providing personal
ranked content based on topic clustering, resulting in generally satisfied users in a
user study. However, one should note that the clustering methods are based on link
structure among items (articles, blog posts etc.), where traditional news articles
and blog posts might differentiate.

In [74] Wu et al. compares topic models by topic clustering Chinese web news.
For a topic model of K topics each document di is represented by a K -dimensional
topic distribution vector ~V (di). Topic distance is then defined as the distance

between two document di and dj measured by their topic vectors ~V (di) and ~V (dj),

21

Chapter 3. Related Works

shown in equation 3.2. These distances are then used in topic clustering (by K-
center clustering) on web page collections with different number of topics and
articles, showing that topic clustering using topic distance benefits from the topic
features captured by more complex topic models, such as LDA described in 2.4.1,
compared to simpler models further described in paper.

D(di, dj) =

K∑
k=1

P (θk|di) ln(
θk|di
θk|dj

). (3.1)

~V (di) = (P (θ0|di), ..., P (θk|di)). (3.2)

3.2 Topic Embedding

Recent efforts have seen many important improvements in word embeding methods,
such as the model word2vec enabling more efficient training on larger corpora, and
a multitude of other methods employing for instance regularization or bilinear
regression for better performance [56]. Over the last few years, several efforts
have been made to extend the theory of word embeddings, outlined in section 2.5,
into useful representations of longer texts. This could provide opportunities for
representing documents as fixed-length vectors derived from content and context,
a useful format for many ML, recommendation, and NLP cases. Most testing has
been focused on information retrieval, text classification and sentiment analysis
tasks, not performance in applications such as recommender systems. In [75], topic
embeddings are used to cluster news text with promising results, but this is never
extended to use for prediction or recommendations. While several of the models
attempt to take advantage of the additional semantic information contained in
trained word embeddings when extracting topics [76], others generate both at the
same time [77] and some do not make use of word embeddings [78].

Paragraph Vector is one of the earliest, and maybe the most known, document
embedding methods. Authored by the researchers behind the earlier mentioned
word embedding method word2vec, [79] extends work from [80][81] to generate vec-
tor representations for text of variable length. Their goal descriptive is to predict
words within a paragraph, allowing semantic features to be captured and embed-
ded into the randomly initiated vectors as training progresses. A combination of
Efficient Correlated Topic Modeling, an extention of LDA, and topic embedding
is created in [78], gaining solid results on classification and information retrieval
tasks. It’s most promising feature, is scalability.

Comparable results to these are achieved in [82] when testing on some of the
same datasets. Here, Li et al. presents the topic embedding method TopicVec. It is
extended from PSDVec, a word embedding built to be scalable through exploitation
of sparseness, as well as to avoid corpus information loss which can be caused by
combinations of MF and SVD by capturing non-linear interaction between words
[56]. PSDVec is a generative model made with facilitation of later learning of
latent factors, such as topics, in mind. Simply put, documents in TopicVec are
presented as ”bags-of-vectors” in which the elements refer to embeddings of the

22

3.2 Topic Embedding

words contained in the document [82]. In a document, groups of related words
are expected to show up which will have shorter distances to each other in the
embedding space than to other groups of words. These groups have been named
semantic clusters. Each semantic cluster has a semantic centroid, which is consid-
ered to be the most representative entity for the semantic cluster. These centroids,
along with surrounding words, can be used to represent the document. Due to the
setup and qualities of embeddings, words surrounding the centroid should have a
semantic relation to the same topics even if it was not specifically mentioned in the
document.

The semantic centroids produced by this generative method is compared in rep-
resentation and practical tendencies to the topics produced by LDA, as both models
uses Dirichlet priors to represent the distribution relationship between words, doc-
uments and topics. This means that each topic has few high-probability words re-
lated to them, and that each document is expected to contain a few high-probability
topics. Several other attempts at combining word embeddings with LDA like meth-
ods have been made earlier, but [82] notes them as too slow to function on larger
corpora [83], potentially choosing improper distance relations between topics and
words [84] or lacking statistical foundations and requiring a large corpus to create
good topics [85]. An advantage of TopicVec is its expressive output, with topic
vectors describing word distribution for topics, document vectors describing topic
distributions for documents, as well as influential words related to the topics.

[77] notes the disadvantage and potential risks of pre-training word embeddings
used for topic models on external data sources such as Wikipedia. The poten-
tial lack of appropriate data and semantically different tendencies are the main
concerns. While this is a valid concern in many fields, commonly available large
corpora such as Wikipedia should share many common features with the news field
and be appropriate for pre-training in this context. Commonalities include similar
language and diverse coverage within many different topics and events. Wikipedia
articles also vary greatly in size, such as news articles. In [77], Xun et al. ques-
tions the choice of the many heuristic methods like PSDVec, in which word and
topic embeddings are trained separately, because it can lead to loss of information
learned by taking advantage of both local and global contexts during training.

3.2.1 Embeddings in Recommendation Systems

Some work has been done to incorporate embeddings in recommender systems, but
domain focus appears to fall outside the parameters of direct relevance to the news
domain.

[86] takes inspiration from NLP and uses word2vec, but creates embeddings on
venue check-ins instead of textual information in order to recommend new venues to
users. Vasile et al. creates embeddings of products based on sequences of purchases
based on a model named Prod2Vec, while incorporating available textual meta data
such as tags are used on a dataset music playlist and listening history, in [87].

In [88], textual information is collected from Wikipedia articles related to the
items and used to create word embeddings by Word2Vec based on the gained cor-
pus. Then items are presented as vectors based on their related words, and further

23

Chapter 3. Related Works

used to create user models from item purchase history. While this method has the
most potential of relevance in the research setting of this thesis, a difference is that
the processed texts are the items to be recommended and will not be augmented
by external datasources.

None of the methods appear to have stated a strategy for addressing new topics
or updating the embedding vocabulary without rerunning a process or continuing
iterating through a training process which will modify several parts of the embed-
dings. Concerns for scalability are mainly focused on exploiting sparsity or other
data features in order to improve the efficiency of the training process. Many
methods use pretrained word embeddings, provided through own work or publicly
available libraries such as Word2Vec1. These pretrained word embeddings may be
of high quality, but could become suboptimal over time. With the number of new
items being added being a very frequent happening in the news field [89], adding
new words, which can be associated with topics, could be an important feature for
maintaining model quality and alignment across time. The importance of avoid-
ing additional training algorithm iterations become apparent when considering the
consequential change of interpretation of the topics built on top of the word em-
beddings berfore updating. While some methods allow for adding of new word
embeddings at a later time, the calculation of these are not explicitly mentioned,
nor the potential attachment to topic embeddings.

3.2.2 Updating Word Embedding Vocabulary

The news domain faces challenges with respect to it’s dynamicity and rapid change
of relevant content, which will inevitably impact topic embeddings in terms use
of word embeddings and vocabulary. Within news, the vocabulary can change
as new terms and expressions emerges, and already embedded terms might change
semantic meaning over time. Incorporating new terms frequently used over a longer
time period could be important to include relevant content for predictions, but the
dimensionality of the embedding space and demand for inference may be too large
for the potential semantic changes in the terms being worth constant costly updates,
despite being low-dimensional compared to traditional representations.

Though it does not appear to have been a prominent subject of interest within
the field of recommender systems with content information encoded in embeddings,
incremental learning has been of interest within the domain of dimensionality re-
duction and embeddings. The topic aims to avoid the computationally demanding
task of rerunning a full algorithm when presented with new data. This has often
been achieved by adapting existing models in order to handle incremental changes,
rather than using more rigid data inputs in the form of data batches [90] or sim-
ply feeding all available data as input [91]. Important considerations in [90] and
[91] include handling skewed and non-uniform data in order to adapt to smaller
and less predictable data input, or incrementally updating all affected embeddings
with the impact of the new data or removal of old data. A natural disadvantage
with these methods, is their focus on incremental training, while a common use

1https://code.google.com/archive/p/word2vec/

24

https://code.google.com/archive/p/word2vec/

3.3 User Models in Recommendations

case will be post-training modifications. While the models could merely run an ex-
tra training iteration, this would leave the previous embedding basis vulnerable to
changes. In the case of word embeddings generated to operate as a basis for topic
embeddings, this may cause alignment issues or require heavy re-computations of
word embeddings which propagates into the topic embeddings, clusterings and user
models.

3.3 User Models in Recommendations

The concept of modeling users was introduced decades ago, then named stereotyp-
ing [92], and has even been described as one of the earliest tools in user modeling
[93][70]. However, these early user models were often more rigid and pre-modeled
with attributes manually attached [93][70], generating the need for a lot of man-
ual labour as well as risks for subjectivity and missing connections between user
patterns. Consequently, more automated methods of using user feedback for user
modeling has been used in later time [94][95], and is also the focus in this report,
being a more realistic use case for current systems.

Both CF and CB, briefly introduced in 2.2.2, has proven to be useful tech-
niques for representing users with recommendation purposes. As mentioned, the
techniques has inspired many modified versions and hybrids, combining elements
from both [6]. However, in a domain where both users and items are rapidly chang-
ing, like in the news domain, there may not exist sufficient history about items, or
articles, in order to give good recommendations before the item is outdated. Nev-
ertheless, a purely CB system may get stuck with repeatedly recommending similar
items, and hence lack the ability for exploration. Building an underlying network
structure, like described in section 2.1 could be a possible solution, but lack of
explicit connections in relevant data sets often enforces extraction of connections
based on available data, like article content. This is challenging due to implication
of users within a cluster preferring similar content, while interest profiles may be
rather complex composite.

In [96], the content of scientific papers are used to recommend papers to users.
The method improves on the traditional method of having keywords representing
content. The use of topic modeling of content appears to have become a popular
method to enrich the amount and quality of content information before performing
CF, often successfully [97][98]. This makes sense, as the amount of data to analyze
is increasing and some data sets may have non-sufficient description of items which
may be costly or inefficient to expand on manually.

3.4 User and Content Dynamicity

The challenge of data analysis in a dynamic domain with drifting concepts and
preferences has been solved in different ways. In [99], three ways to address the
representation of concept drifts are presented. Instance selection generally only
consider the instances within a given time frame relevant, and often attribute the

25

Chapter 3. Related Works

same importance to all the instances within that time period. This method will
generally risk providing wrong insight in cases where the concept drifts are changing
over longer periods of time rather than abruptly within definable time periods,
making it less relevant for the perspective of news recommendation. There is also
a risk of increasing the issues of sparsity when using this method [100].

Employment of instance weighting is a technique that can be used to mitigate
some of these problems. A weighting, usually given by a formula defining a decay
rate, can discriminate instances based on their recency without having to have a
set cutoff of which instances to consider. The last approach described in [99], is
ensemble learning. Here, one keeps track of the prediction indicators which con-
tribute to the final prediction made, weighting them by an assessment of relevance
of the indication to the current time.

However, [101] notes that using these methods to merely disfavor older instances
is not sufficient. Through experimentation they found that having low or no decay
rate provided better prediction abilities at times, attributing this to influences such
as persistent user interests which exists in addition to those interests which change
over time or is merely present for a short amount of time. They did still find
the tendency for user interest, as well as their rating scale, to change with time.
They argue that the findings could be rooted in the importance of the persisting
user interests when making predictions across users or items. This emphasizes the
necessity for finding a model which correctly interprets variations and new user
interests, while still maintaining the persistent user interests. If a user has shown
a continuous interests in a topic for several months, it is important not to choose
a decay rate which may underestimate the relevance of this topic merely because
the user shows interests in many other topics in a short, more recent time span.

3.5 Sparsity in Recommender Systems

This section will present methods dealing with some of the main challenges brought
on by the news domain’s volatile nature leading to sparse user-item matrices.

3.5.1 Item Cold-Start Recommendation

As mentioned, one of the main challenges in RS is making meaningful predic-
tions when a new user or item is introduced to the system, due to the cold start
problem, being particularly relevant in the news domain. One attempt of dealing
with this problem is the Saveski et al. proposal of a hybrid approach, Local Col-
lective Embedding (LCE) [30], combining collaborative and content information,
exploiting both the properties of the items and the similarity of the user prefer-
ences using matrix factorization. They define these matrices as follows: content
matrix Xs ∈ Rn×m describes n items by representing each item as a row with
m properties, and collaborative matrix Xu ∈ Rn×u describes user interests by
representing a cell (i, j) as user i’s interest in item j. Given a new item q with
properties qs ∈ R1×m and user interest qu ∈ R1×u, the goal is to predict qu. That
is to say, predicting user-item preference qu through document-term matrix Xs

26

3.5 Sparsity in Recommender Systems

and document-user matrix Xu. Both matrices are factorized to lower dimensions,
where Xs discovers topics in documents and Xu discovers communities. In or-
der to utilize this in recommendations, LCE collectively factorize Xs and Xu and
enforce a low-dimensional representation in a common space so that each factor
can both be described by a topic and a community. Given a new item, LCE may
project it in this common space and infer likely interested user communities. The
model is evaluated using data from the news domain and has proven to outperform
several state-of-the-art methods for item cold-start.

3.5.2 Implicit Feedback and Evaluation

As mentioned in section 2.2 the news domain suffers from lack of explicit feedback
from users for different reasons, making implicit feedback the foundation for pre-
diction. It is important to note that in contrast to explicit feedback, where items
may be rated both positively or negatively, implicit feedback will not reflect feed-
back regarding undesired articles. While interaction with an article is an evidence
of the user’s interest in it, the absence of such is not an indication of disfavour, as
this may stem from multiple different reasons. Due to this and lack of ability to
receive user feedback on generated recommendations, precision based metrics are
not suitable, but rather recall based metrics.

Average percentile ranking [29] is an efficient method to evaluate ranking based
on implicit feedback [30][31]. Defining ranku,i as the percentile ranking of article
i in the ordered list of recommendations for user u, ranku,i = 0% if article i is
predicted to be the most interesting article for user u, while if ranku,i = 100% the
article is predicted to be least preferred. For an article the total average percentile
ranking, rank, is then defined:

rank =

∑
u,i αu,i · ranku,i∑

u,i αu,i
(3.3)

αu,i =

{
1 if user u interacted with article i

0 otherwise
. (3.4)

, where lower rank values indicate correct predictions closer to the top of the
ranked list. By calculating rank for each article, we can use mean average percentile
ranking to evaluate a model.

For random predictions, the expected value of rank is 50%, and thus a model
resulting in rank > 50% is no better than random. To ease illustration, Saveski et
al. [30] introduces RA, calculated by converting the average percentile ranking as
followed:

RankingAccuracy =
50%− rank

50%
. (3.5)

RA thus is optimal at value 1 when percentile ranking is 0%.

27

Chapter 4

Methodology

The following chapter will describe the methodology, including the data sets, as
well as introducing our experiments. Experiment set up will be detailed in Chapter
5, while Chapter 6 presents and discuss the results.

4.1 Implementation

This section provides a brief, high-level description of our implementation and it’s
components.

4.1.1 Architecture

We aim to improve recommendations of news articles by performing predictions
which mainly relies on content, in order to deal with the news domains’ challenges
regarding sparsity and volatility. The process utilizes topic extraction and clus-
tering methods to build user models and embed new articles, and incorporates
ideas from related works (chapter 3). Figure 4.1 shows the implementation at a
conceptual level (components described below), and can be viewed as a pipeline
transforming unseen articles to user recommendations, aided by a corpora of known
articles and user interaction links. The filtering and cleaning of the corpora is left
out of the pipeline, but methods used can be found in section 5.1.2.

The models in the pipeline are trained on the known article base and it’s con-
nections to users. When unseen articles are presented to the system, they are
processed by these models and assigned to clusters, which are used when ranking
each article’s relevance for each user. The subset of articles considered relevant for
prediction could be defined as a times slot, like articles published within the last
48 hours, or by window size, like the 800 most recent articles. It could also be de-
cided by behaviour, such as increase in interest, specific tags, or another relevance
function.

29

Chapter 4. Methodology

Figure 4.1: Basic architecture for article recommendation.

4.1.2 Architecture Components

Each of the components in the architecture illustrated in figure 4.1 will now be
accounted for in turn.

Topic Extractor

After preprocessing, semantic analysis is used to construct models which can rep-
resent documents as proportions of abstract topics. The topic modeling step gen-
erates document labels which are more descriptive and less restrictive than labeled
categories. Categories are often very high-level and overarching, and even if mul-
tiple categories are employed for a single document, connections and nuances may
be lost. By employing topic modeling, the document topic labeling can be made
automatic and non-subjective, with flexible granularity. This allows for discovering
more complex topics, as well more composite topic document representations. The
topic models will generate t topics that can be used to infer document topic propor-
tions for an unseen document, which is consequently represented as a t-dimensional

30

4.2 Experiment Methodology

vector describing its topical content. It is these document vectors that are used to
represent the document in the system.

Clusterer

The clustering step augments the documents’ topical content by associating them
with the patterns of a group of similar documents. Inputting the document vectors
from the topic extractor, the clusterer allocates each document to the cluster which
best fits its topical content.

Due to the clustering model being fixed when the system is initialized, an up-
dater which allows for re-initialization of clusters is added to the architecture. An
updating process could make use of stored document vectors to train a new cluster-
ing, which would require updating user models accordingly. This can protect the
system from performance decline caused by situations such as one cluster becoming
overly dominant over time, or the originally trained model not being equipped to
handle new behavioural patterns.

User Modeler

In the user modeler, each user is appointed a representation based on their historical
association with the topical clusters outputtet by the clusterer, each assigned with
a membership strength. When new documents are read, changes will naturally
propagate through user models.

The component can easily be varied in complexity, by adding levels to the user
modeling. This can include normalizing user activity to accommodate for vary-
ing behavioural patterns, or using decay rates on cluster memberships to capture
interest drifts.

Predictor

The predictor combines user models and community strengths with features and
cluster assignments of documents, in order to provide a ranked list of recommen-
dations to users. This component also allows for some flexibility, in terms of com-
plexity. Examples include the choice of treating all documents in a cluster equally,
supporting exploration, or assigning documents with a cluster membership similar
to with user models.

4.2 Experiment Methodology

In the following section, methods used to execute the architecture are detailed.
The first two subsections presents the construction of user models through topic
extraction and clustering, using LDA and TopicVec respectively. This is followed
by a description of how user predictions are performed, and the evaluation of
recommendations.

31

Chapter 4. Methodology

4.2.1 User Modeling with LDA and Clustering

Generation of user models with LDA topic modeling and clustering is done in
three main steps. At first the most promising topic models generated by LDA
are selected, followed by representing documents as topic vectors utilizing these
models. The document vectors are then clustered, forming topical communities,
before users are connected to these communities based on their interaction history.

Before running LDA to extract the topics, a dictionary is generated from the
vocabulary. The dictionary contains tokens ids for each word and is used to convert
the preprocessed document vectors to multiple Bag-of-Words (BoW) consisting of
token ids and token counts. The BoWs are then used to train LDA models, as
described in 2.4.1, for a range of predefined numbers of topics. A topic modeling
with t topics and n documents, yields a t× n document topic matrix later is used
to derive topical clusters.

The clustering is done based on topic distances between the documents in the
document topic matrix, as defined by Wu et al. [74], explained in 3.1. Based on the
calculated distances, clustering of documents is done to detect topical communities.
Multiple distance based clustering methods are applicable for this task, but due to
the news domain’s dynamic and composite nature, it is preferable that the method
is scalable and able to handle irregular shapes and sizes of clusters. Being a fast,
general-purpose algorithm able to handle large portions of data, the k -Means is
one of the selected algorithms. However, it does have a few drawbacks, and do not
satisfy all convenient features, as described in 2.1. A complementing algorithm,
tackling some of these shortages, is the DBSCAN algorithm which neither requires
a predefined number of clusters or enforces convex, evenly sized clusters. The other
algorithm selected, Hierarchical Density-Based Spatial Clustering of Applications
with Noise (HDBSCAN) developed by Campello et al. [102], is an extension of
DBSCAN converting the traditional algorithm into a hierarchical algorithm.

Like the regular DBSCAN, the hierarchical version also starts by finding the
identifying core points and neighbours within a given radius. It produces a clus-
tering tree containing all DBSCAN partitions in a hierarchy, and then extracts a
flat clustering by maximizing the overall stability of the set of extracted clusters.
This can be viewed as the following optimization problem:

max
δ2,...,δκ

J =

κ∑
i=2

δiS(Ci) (4.1)

subject to

{
δi ∈ {0, 1}, i = 2, ..., κ∑
j∈Ih δj = 1,∀h ∈ L

(4.2)

where S(Ci) denotes the stability value of each cluster Ci, except root C1, and
where

δi

{
1 if Ci is included in the flat solution

0 otherwise
(4.3)

32

4.2 Experiment Methodology

for each cluster. L = {h | Ch is a leaf cluster } is the set of leaf cluster indices,
and Ih = {j | j 6= 1 and Cj is ascendant of Ch(h included)} is the set of indices
of all clusters on the path from Ch to C1 (root). The constraints prevent selection
of nested clusters on the same path. The full, detailed process of the optimization
can be viewed in [102].

After performing k -Means and HDBSCAN clustering, the best performing mod-
els are picked out based on Silhouette coefficient and C-H index (section 2.1), as
well as a qualitative evaluation in combination with these metrics. For a qualita-
tive evaluation and understanding, the clusterings are dimensionality reduced and
visualized in two and three dimensions, using Linear Discriminant Analysis, t-SNE
and PCA. These are then labeled with both cluster id’s and categories (and for the
reddit documents also subreddits) to see the overlap between them and potentially
different levels of granularity.

The best clusterings are used to create user models from a set of test users. For
each test user, a group of documents the user has interacted with is transformed to
topic vectors with selected topic models, and then assigned to clusters from selected
cluster models. Each user is then assigned topics and weights decided by how many
times the user has interacted in the cluster, and the general behaviour pattern of
the user and the cluster the document belongs to, as more closely described in the
user modeler component in previous section (4.1.2).

4.2.2 User Modeling with Topic Embedding

The TopicVec method using PSDVec for the base word embeddings, mentioned in
3.2 and detailed in [56] and [82], is used for generating the topic embeddings. The
main motivations behind this choice is the relatively high dimension of the word
embeddings, the expressive results of the topic embedding through topic vectors as
well as topic proportion vectors for each document, and the access to code made
available by the authors themselves1. Due to the domain similarity between texts
in Wikipedia and news mentioned earlier, the concerns voiced in [77] regarding
pre-training on a different dataset than the topics are trained in are not deemed
to be crucial. While [77] also criticizes the heuristic principle PSDVec is built on,
the ability to separately control, and update, the word embedding is preferable in
this case. Especially, the ability to add words and keep alignment of topics in [77]
is unsure and more difficult to test than with PSDVec and TopicVec.

In the following sections, the process of word and topic embeddings will be
detailed, as well as the updating scheme for word embeddings.

Word Embeddings

The word embeddings are generated using the method described in [56]. Mentioned
in Section 3.2, PSDVec is a generative word embedding method trained through
BCD, explained in 2.5.1, designed to accommodate for later use of latent factor
utilization such as topic detection, discussed further in the next section. The link-
ing function between two words in the resulting word embedding method, PDSVec,

1https://github.com/askerlee/topicvec

33

https://github.com/askerlee/topicvec

Chapter 4. Methodology

considers the linear correlation of the words, a residual nonlinear correlation and un-
igram priors. In the case where si and sj are independent, P (si, sj) = P (si)P (sj),
but with any correlation, P (si, sj) is given by a scaled factor from:

P (si, sj) = exp{v>sjvsj + asisj}P (si)P (sj) (4.4)

which denotes positive or negative correlation. Here, v>sjvsj captures the lin-
ear correlation between between si and sj . asisj is the bigram residual, in some
literature named a bias term, capturing the noisy interaction between the bigram
words.

By the model in [56], we apply Gaussian priors and Jelinek-Mercer Smoothing,
introduced in 2.3.2, in order to reduce tendencies of overfitting. This can be im-
portant in this use case, where the word embeddings will be used for texts within
all kinds of different topics, and potentially not on the same type of dataset that
the original word embeddings were generated with. Instead of smoothing the prob-
ability of reading a word in a current document by a factor of the word’s global
presence, we smooth the probability of reading a word in the current context of
another word by its global probability. This avoids many zero-probability bigrams,
which may skew the model too heavily to the training data.

After this, the learning objective of the PSDVec method is maximizing the
likelihood of the corpus given by p(D,V,A), where the probability of a specific
document is expressed in the generative manner described in 2.3.1 as:

p(di|V ,A) (4.5)

calculated by approximating information about the probabilities of co-occurrence
information, using a variant of a BCD training algorithm. In order to deal with the
scalability issues brought on by this choice, [56] works with a blockwise regression
algorithm that can use the sparsity of the weight matrices to its advantage.

The results of their work is 180 000 continuous word embeddings in a 500-
dimensional space which is competitive in most similarity task tests and used in
further work detailed below. The researchers in [56] have also provided these results
as a pretrained word embedding, which is used in their further work in [82] and
this project. The decision to use this smaller vocabulary, instead of for instance
Google’s 3 million word word2vec trained vocabulary with 300 dimensional vectors,
is due to the embedding update scheme. It is unreasonable to assume that a
word embedding trained 2 years ago will contain all news-relevant words, but if
using a 3 million word embedding vocabulary as a basis, the testing of addition of
new embeddings would be more difficult due to it being a rarer occurrence. The
advantage of the increased amount of dimensions and smaller size of embedding
vocabulary compared is the added opportunity and compatibility of testing for the
embedding updating scheme.

Topic Embeddings

The topic embeddings are generated by the TopicVec method summarized in 3.2.
As in LDA, due to the similar expectations of word-to-topic and topic-to-document

34

4.2 Experiment Methodology

relations, Dirichlet priors are used for regularizing the topic distribution. A learning
process trained by gradient descent is used to derive embeddings for topics, which
approximates underlying semantic centroids. The topics are created in the same
n-dimensional space as the word embeddings. These topics can then be used to
infer the topic distribution of new documents, whose topic proportion matrix will
be of size t, where t is the number of topics discovered in the corpus.

Figure 4.2: An illustration of the generative TopicVec model from [82].

A visual representation of the generative model is given in figure 4.2. The model
has more components than LDA, which are summarized in table A.1, explained in
the following and detailed in [56] and [82].

The shaded node of wc is the only observable variable, and the rest are be-
ing drawn from various distributions and trained to maximize a goal. The upper
containers V and A, along with the context words, represents the embeddings gen-
erated by PSDVec discussed in the last section, which is done before topic training.
In our case, this work is pretrained and will not need to be run for each topic
embedding instance.

The container T denotes the topics in document d, where each instance of tk
represents the kth candidate topic embeddings in the document. In the lower right
corner, the Dirichlet prior is applied to the inference approximation distribution
for document proportions, θd, used to approximate the topic proportions within a

35

Chapter 4. Methodology

document, φd. Each word wc has a topic assignment zc.

Given these variables drawn from varying distributions, training becomes a
matter of maximizing the data likelihood of the corpus, similar to the goal in
PSDVec but with more variables. The likelihood of a single document di is given
by:

p(di,Zi,φi|α,V,A,Ti) = p(φ|α)p(Zi|φ)p(di|V,A,Ti,Zi). (4.6)

with the variables seen in fogure 4.2. This is also a generative step, calculating
the probability of seen documents, along with label proportions for documents and
words, given the word embeddings and topics. For the full corpus, the likelihood
becomes:

p(D,A,V,Z,T,φ|α,γ,µ). (4.7)

The training objective is to discover the word-topic and document-topic distri-
butions, Z and φ , given the hyperparameters. As the method is heuristically split
into two steps, the variables V and A from Equation 4.7 are fixed by generating
optimal word embedding by PSDVec. This step is pre-run in our case. The second
stage finds the optimal topics from the full corpus, thereby fixing the variable T .
What is left, is then:

p(Z,φ|α,D,A,V,T). (4.8)

This inference of document and word distributions to topics is approximated,
as in many other instances includingLDA, due to the infeasibility of calculating
them precisely efficiently.

Interesting output is T and φ, topics described in 500-dimensional space from
the distribution of words and documents described in n-dimensional space describ-
ing the proportion within the document of the n topics discovered. It is these
n-dimensional vectors describing topical content in documents which is used when
clustering and prediction. Using these document representations, clustering is per-
formed in the same manner as described in section 5.2.1.

Updating Underlying Word Embeddings

The news recommendation field has the advantage of both generating large amounts
of textual data in itself, as well as often addressing the same events and topics in
a similar manner to massive amounts of data available in text corpora such as
Wikipedia. This provides opportunities for training solid word embeddings with
a large training corpus, but the word embeddings will naturally be dependant on
what is available in e.g. news corpora at the time of training. The nature of the
news field, where thousands of articles are published within a multitude of topics
each day and new events occur and terms are coined relatively often, is not nec-
essarily compatible with a static word embedding vocabulary based on data from
a year ago, even if it is based on a very large text base. At the same time, the
news field produces articles featuring information on most conceivable topics, and

36

4.2 Experiment Methodology

having a large word embedding vocabulary could prove important to facilitate find-
ing topics across many domains and subjects. The need for a relatively large and
diverse training corpora, to extract topical tendencies across most domains, further
increases the futility of a RS which needs to recalculate word embeddings, topic
embeddings and user models on an expanded corpus each time a new word of inter-
est is incorporated. Additionally, when topics are built on top of this embedding
vocabulary, they are dependent on the underlying word embedding vocabulary and
its consistency. Thus we are faced with the challenge of preserving the meaning
of topic embeddings through consistent word embeddings while adding new words
to the word embedding vocabulary in order to better capture topical structures in
the future.

As mentioned in Section 3.2.2, several efforts have been made within the field
of incrementally updating word embeddings as they are trained. Though these
attempts have been successful at times, the specifications of the methods does
not quite meet the requirement of updating word embeddings which are intended
serve as a base for topic embeddings. Most methods are created to allow for an
incremental training, which is mostly useful before the word embedding is taken
into use for topic embeddings in our case, as well as often adapting the entire model
closer to optimalization rather that just modify the one word embedding.

The effect of adapting the methods such as [90] and [91] to update embeddings
based on new words after initial training, would result in continuous changes to
parts of the word embeddings. This would inherently affect any topics represented
partly by any of the changed embeddings, and would require the potentially com-
putationally heavy task of updating all affected topic embeddings, consequently
including all user models based on the affected topics. The feasibility and outcome
of such a process is unknown and not within the scope of this thesis, but appears
to present the same challenges as merely rerunning the entire word embedding and
topic extraction in terms of computational work and need for updates that will
propagate across existing word embeddings, topic embeddings and user models.

In addition to this, the deletion case taken into consideration in [90] is less
important in the news recommendation field. One reason for not considering re-
moval of word embeddings after their creation, is that terms or topics declining in
interest is a less pressing matter. Unused words will likely not harm the quality
of a document embedding, while missing a word might result in a less descriptive
embedding. Words which are rarely or never used, may also just be a temporarily
uninteresting in the news domain before a topic of interest flares up again. In
addition to this, removing terms from the embedding vocabulary runs the poten-
tial risk of changing the meanings of older document topic descriptions the same
way that modifying the word embeddings of words used to represent the same
document would. If several key words are removed from the word embedding of
which a document representation was based on, a new issue of alignment is pre-
sented. Thus we want a word embedding vocabulary in which existing words retain
their historical positions, while news words are simply added based on the word
embeddings of their context words. By adding new interesting words in place of
rerunning the entire generation process, we also facilitate the original embeddings

37

Chapter 4. Methodology

maintaining their position in the n-dimensional space. This allows for topics gen-
erated, and user interests based on the word embeddings, to maintain their value
and meaning across time and adding of new words, making them remain valuable
for recommendations.

Noting the lack of existing word embedding models that allows for sporadic
addition to the vocabulary after training and is suited to support alignment of
topic embeddings across word embedding updates, we have chosen to implement
our own embedding vocabulary update scheme. This is a rudimentary method
employed in the short-term context of this research to highlight and take into
account the concern of news field vocabulary changes over time.

Having noted earlier in this thesis that some methods pertaining to word em-
beddings often use centroids as representative entities, we will test an extension
of the principle which the original word embeddings are based on, that words are
in their meaning defined by their context , to where a word is described by the
meaning of its context words’ embeddings. This essentially means giving a new
word an embedding value which in some manner averages the embeddings of its
context words, weighted by the number of co-occurrences or another appropriate
metric. It stands to reason that two semantically similar words with many identical
or similar context words will still be assigned similar embeddings by this method.
It is important to note that other word embedding qualities, such as the distance
between words representing similar relationships, may suffer in this process. We
make a crude assumption of these word embedding attributes being more important
in sentiment analysis and translation use cases than here.

The ability to add new words into the embedding space without updating or
modifying the original embeddings, is inherently dependant on the fact that em-
beddings in an embedding space are so far apart that adding an element will not
excessively disrupt its neighbourhood. In a binary 500-dimensional space, 2500,
approximately 3.27 × 10150, potential embeddings exist. Taking into account the
continuous nature of the embeddings used here, this number would be substan-
tially higher and the distances between word embeddings is expected to generally
be fairly large. If a new word embedding is based on sufficiently many different
words, it should thus not be placed so close to another word in the embedding space
that it will generate too much confusion or noise in terms of interpretation. An-
other important factor is that new word embeddings should share similar statistical
tendencies to the original word embeddings, in order to avoid shifting or running
an unnatural interference with any topical inferences done using the embeddings.
Considering the purpose of the embeddings, describing topic distribution of an ar-
ticle which presumably consists of a fair amount of words, one word should within
these limits not inhibit the process. The use of the topic proportions to discover
similarities between continuous vector representations of documents should also
dampen the consequence of one misplaces word in the embedding space, as it may
be more fault tolerant than for instance a binary classification tasks.

The conditions and parameters for adding new word embeddings have to be
considered and tweaked. Parameters will at the bare minimum include a thresh-
old of the number of word occurrences to be considered significant enough to be

38

4.2 Experiment Methodology

embedded, and a window size deciding the radius of surrounding words affecting
the new word embedding. We do not want the embeddings to be overly depen-
dant on a few words, especially in this context research where we are looking at
a smaller amount of documents and time frame, so all relevant context words will
contribute to the final embedding. An alternative is choosing some top N words of
co-occurrence after collecting word mentions in documents, or having a similarity
or count threshold as in the original training of PSDVec. Options for the occur-
rence threshold parameter can include being mentioned in a specified amount of
articles and across a certain time frame and, or simply a total occurrence count.
Some parameters may also be more lenient when the text corpus is known to be of
a consistently high quality, decreasing the possibility of noise mentions and known
wrongful additions (such as usernames of very active users in forums).

In a more long-term case, the pretrained base word embedding vocabulary
for this method would have to be sufficiently large, so that the amount of words
added post-training, is small compared to the amount of embeddings created in the
original data processing. In a live RS, this post-training data would be expected to
be a based on a relatively constant stream of new documents for topic generation
in a real-life application, and its properties would be expected to differ from some
of the characteristics in this research experiment.

Maintaining a reasonable word mention threshold for addition to the embedding
vocabulary is important in both cases, ensuring that there isn’t a multitude of word
embeddings used only a handful of times before they merely take up space in the
word embedding space while increasing the ratio between embeddings added post-
training and originally trained embeddings. At the same time, though words may
no longer be present in new documents, the information they contain about user
history may still be useful. Given a sufficiently large embedding space and vocab-
ulary, the embeddings should remain useful and keep their original characteristics
despite some updates.

When words are added after initial training, they will also need to be assigned to
an appropriate topic from the topic embeddings, in order for the word to be able
to contribute to future inference of document topic proportions. This may also
impact the required threshold, possibly demanding a higher threshold to ensure
enough documents for topical information, though intuitively one could expect
that sufficient context information to create a word embedding for the word should
be sufficient to discern some topical belongings as well.

For research purposes, and use within a limited time scope for training, this
threshold is less important, due to the limited amount of documents we will process
compared to a live RS running year-round, and we focus on the vocabulary update
in a shorter time space to discern feasibility of using such a method for this purpose
at all. Thus we will likely keep a lower threshold in experiments than what would
be natural in a system environment running over time.

4.2.3 User Prediction

After generating affinity user models for the test users based on the topical com-
munities, a set of hold out documents are predicted and ranked for these users.

39

Chapter 4. Methodology

The unseen documents are transformed to topic vectors and assigned clusters with
the selected models, before being scored and ranked for each user. Using the
trained cluster model, a user model is generated by classifying each document in
the user’s collection of documents. That is - by classifying all unique documents the
user either has published or commented on. The users memberships to each topi-
cal community is then decided by number of interactions within each community.
More precisely membership strength, ω, is given by

ωu,c = log(countu,c + 1) (4.9)

where countu,c is the number of unique document user u has interacted with in
cluster c (log normalized to avoid particularly active user accumulating too high
scores).

Each user-cluster membership can be seen in context of both the user’s be-
haviour and cluster tendencies. For instance, CF data typically exhibit large user
and item biases, systematically showing some users tending to give higher ratings
than other, and some items to overall receive higher ratings [101]. Translating
this to the news domain mainly relying on implicit feedback, it is reasonable to
assume that some users tend to be more active overall, and that some clusters
tend to have more user activity connected to its documents than others. A cluster
membership for a user with low overall activity, but showing special interest in
this cluster, and thus deviating from own habits, should then be strengthened by
a higher rate than a user tending to be very active in a large amount of clusters.
Likewise with clusters, where high activity is not very common. This also enables
ordering of documents within a cluster, as they initially are considered to be of
same relevance.

To encapsulate these effects, inspired by [101], we denote the parameters δu and
δc as deviations of average for user u and average for cluster c from user’s initial
preference ωu,c. The score su,i is then:

su,i = ωu,c + δu + δc (4.10)

, where document i belongs to cluster c, and ωu,c (equation 4.9) is initial mem-
bership weight of user u in cluster c.

In addition to the user models described in the experiments, some naive models
were generated for comparison. For instance, a topical centroid model is tested by
creating user models from averaging all the topical document vectors the user has
interacted with, both for LDA and topic embedding. These unseen documents are
then ranked by calculating distances from the document’s topic vector to the user’s
topical centroid. Another simplistic model shows how the predictors compares
to the original manually chosen labels, by naively recommending an ordered list
of documents based on the original category distribution of the user’s document
collection. At last, a predictor is added, that simply predicts a randomly ranked
list, with the same ratio between expected and not expected documents.

In the experiment setup, users with a set number of known relevant docu-
ments are chosen for testing to ensure that relevant recommendations can be made.

40

4.2 Experiment Methodology

Adding these documents to the list of documents to score for each test users, guar-
antees a consistent potential for true positive hits. When selecting m additional
documents to predict for a user, each category is given a ratio ς and the user’s
category distribution should then be reflected in the predictions by predicting ς ·m
most recent documents in each of the categories, ordered randomly.

4.2.4 Evaluation

The lists of predictions are then evaluated using MAP and RA, as described in
2.2.3 and 3.5.2. The MAP values are calculated at the full ranked list, as well
as at different positions, denoted by @K. As RA is a metric based off of average
Percentile Ranking (PR), it is difficult to make a universally functioning calculation
at different positions. Cutting the list at top K and calculating average PR the
standard way will punish finding a group of relevant documents among top K more
than only finding the first in this group, and leaving the rest at lower ranks outside
of top K. This is not a problem in the full average PR where each document’s
position is guaranteed to be found and taken into account.

Several alternative ways are explored to address this issue, in order to obtain
metrics comparable to MAP. One alternative is calculating the average PR for the
first K relevant documents found. This is a solution which can be used with some
precautions in mind - if the first K-1 relevant elements are found at good ranks, but
the next Kth element is found at the bottom, the metric will not be able to capture
that this is better than K elements being found at mediocre positions. Another
alternative is cutting the list at top, but modifying the average PR calculation
by including the non-relevant elements to avoid punishing larger groups of correct
predictions. However, setting the PR of the non-relevant items requires a well
defined function, as intuitive functions such as setting PR= 1 or PR= 1/K yields
very unstable results. For these reasons, only the RA calculated from the average
PR of the full ranked list is used.

In order to see how the span of users’ interests affects the prediction, Gini
index is calculated for each user vector. This is originally a criterion to minimize
the probability of misclassification, but may also serve as a good indicator of the
diversity in a users interests as it considers how skewed or even a distribution is
across classes. Entropy is another impurity metric considered, but Gini is chosen
as it is less computationally demanding due to not using log function. The Gini
index is calculated by:

Gini = 1−
∑
j

p2
j (4.11)

where pj is the probability of class j and a perfectly classified Gini index is
zero.

By calculating this index and ordering the users by their Average Precision (AP)
and RA, one can see if trends related to interest range are present, like whether
users with a broad range of interests tend to be harder subjects for user predictions,
or whether the models are affected by this. The results are then compared to each

41

Chapter 4. Methodology

other and to other applicable predictors.
In cases where user click history is absent, other indicators of interests may

need to be used as replacement indicators, such as comments. When using these as
stand-in representations of reads, a binary value denoting whether an article was
read or not, based on whether a user commented it, might be the most appropriate
choice to mimic a real user-article history information collection. Evaluations need
to be seen in light of this, as users generally tend not to comment each article read,
and the subset of true positives and false negatives may increase compared to a
proper user read or click dataset.

42

Chapter 5

Experiments

In this chapter the setup for each experiment described in the previous chapter
will be described. It will first present the general prerequisites, including data,
preprocessing, tools and setup, as well as evaluation, presenting parameters and
details in each experiment.

5.1 Prerequisites

The following sections provides a description of the experiments done in the prepa-
ration of the described solution. This section will first introduce the data sets and
criteria for the data used in the experiments, as well as tools, setup and running
environments, before next section describes each experiment in detail.

5.1.1 Data

As observed, content and behaviour in the news domain differentiate from other
comparable domains on critical aspects, and recommendation is often more complex
than in many other RSs for a number of reasons [1]. As a result of this, this research
encompasses a combination of multiple data sets, supporting different requirements,
which will be presented in this section. The data sets should fulfill the following
requirements to reflect the domain:

• The data should be unstructured, as data in the news domain often is
inconsistent or incomplete, and hard to interpret because of this.

• Items should be text documents comparable to news articles, spanning
over a wide range of topics, and include id’s and time stamps.

• The data should contain history about user preferences, along with persis-
tent user ids and time stamps.

• User consumption history should refer to ids in item set.

43

Chapter 5. Experiments

• As predicting specific documents yields a very strict evaluation and qual-
itative evaluation needs to be taken into account, the data set should be
categorized to support evaluation.

• If multiple data sets are used, they must match with respect to time and
content.

• The data must be available and interpretable. Even how obvious it may
be, this is naturally crucial and despite data sets fulfilling all previous re-
quirements exist, it is not a matter of course that they are public or complete
due too privacy or pay walls.

In addition it could be interesting with more context about the users, such
as geographical area, age, gender and such. However, data sets for recommender
systems are few and often inadequate [7], and obtaining these features along with
persistent user ids beyond session history challenges privacy concerns and are often
transformed or held back.

Data Description

Due to lack of access to a data set alone fulfilling all the requirements, two data
sets were mainly used, complementing each other. One was used to cover user
interactions, and one for the categorized article documents. It should be noted
that they are both publicly collected and thus do not contain further background
information about sessions and interactions, than publicly visible comments and
posts. Each of them will now be presented briefly, and compared with other data
sets within the recommendation domain, displayed in table 5.1. Further details
and statistics will then be accounted for in chapter 6.

Comparison with Relevant Data Sets
Dataset Users Items Edges Density (%) Rating Scale
News Aggregatora NA 422 419 NA NA NA
20 Newsgroupsb NA ∼ 20000 NA NA NA
Reuters-21578c NA 21 578 NA NA NA
redditde 33 079 390 831 2 478 733 0.02 Comment Counts
Last.fmf 1,892 17,632 92,834 0.28 Play Counts
MovieLens 20Mg 138,493 27,278 20,000,263 0.52 [0.5-5]
a https://www.kaggle.com/uciml/news-aggregator-dataset
b http://qwone.com/∼jason/20Newsgroups/
c http://www.nltk.org/book/ch02.html
d https://files.pushshift.io/reddit/
e March-August 2014
f https://grouplens.org/datasets/hetrec-2011/
g https://grouplens.org/datasets/movielens/

Table 5.1: Comparison of data sets within recommendation systems.

reddit.com

reddit.com is a popular social content aggregation and discussion website where
users can submit content to topic centered forums called “subreddits”. The topics,

44

https://www.kaggle.com/uciml/news-aggregator-dataset
http://qwone.com/~jason/20Newsgroups/
http://www.nltk.org/book/ch02.html
https://files.pushshift.io/reddit/
https://grouplens.org/datasets/hetrec-2011/
https://grouplens.org/datasets/movielens/

5.1 Prerequisites

namely subreddits, ranges across a wide variety, from very general, like ”world
news”, to more specific, like specific versions of Python programming language.
The posted content may be in the form of text posts, images or links. Being a
dynamic, massive, content rich content platform constantly evolving, with a wide
range of users, gives reddit a good potential for analysis, but also leads to challenges
due to volatility and sparsity in the data set, as well as challenges in handling the
data considering the size. By aligning selected time slots for user interactions on
reddit.com and published news articles, the data will hopefully be as comparable
as possible, as same topics might be discussed. In table 5.1, one can see that the
data set is considerably more sparse than benchmarks data sets used for music
(Last.fm) and movie (MovieLens) recommendations, which is representative for
the news domain.

News Aggregator

Requiring a categorized news data set containing general categories, the well known
20 Newsgroups data set serves as a good candidate. However, due to reddit.com’s
relatively young age, a data set of more recent content is desired. This also applies
to the benchmark data set Reuters-21578. The News Aggregator data set [103]
contains categorized headlines for 422 937 news stories collected in a period of five
months during 2014 (March 10th - August 10th), making it possible to retrieve
rich subset from reddit.com data set from the same months with corresponding
categories (business, science and technology, entertainment, and health), which
mapping is displayed in table 6.3. In addition to convenience regarding comparison,
it does not rule out the opportunity to attempt to connect the data sets at a later
point.

5.1.2 Preprocessing

The used data sets have all been preprocessed in the same way, using basic methods
for data cleaning. This includes removing stopwords and punctations, performing
lemmatazation, and adding bigrams. Stopwords were removed using the widely
used Onix1 stopword list and more web and forum specific Galago23 stopword
list. In addition non-latin letters were removed and remaining were normalized
by removing umlauts and accents. One letter terms and terms solely consisting of
numbers were also removed. Infrequent words appearing in less than five documents
are also removed.

5.1.3 Tools and Setup

The programming language used in the project is Python, as this supports a vast
amount of libraries and tools for data analysis. To explore and transform the data

1http://www.lextek.com/manuals/onix/stopwords1.html
2https://sourceforge.net/p/lemur/galago/ci/default/tree/core/src/main/resources/stopwords/

rmstop
3https://sourceforge.net/p/lemur/galago/ci/default/tree/core/src/main/resources/stopwords/

forumstop

45

http://www.lextek.com/manuals/onix/stopwords1.html
https://sourceforge.net/p/lemur/galago/ci/default/tree/core/src/main/resources/stopwords/rmstop
https://sourceforge.net/p/lemur/galago/ci/default/tree/core/src/main/resources/stopwords/rmstop
https://sourceforge.net/p/lemur/galago/ci/default/tree/core/src/main/resources/stopwords/forumstop
https://sourceforge.net/p/lemur/galago/ci/default/tree/core/src/main/resources/stopwords/forumstop

Chapter 5. Experiments

we have used Pandas, which is a free Python library making the data easier to
work with by providing data structures and analysis tools of high performance4.
In addition Jupyter Notebook5 web application has served as a great resource in
exploring and wrangling the data. Visualisation has been done using Matplotlib6

and Seaborn7. Topic modeling was done with help from Gensim8 and clustering
using scikit-learn9 and scikit-learn-contrib10. The experiments was all run in op-
eration systems Ubuntu 16.04.* and macOS High Sierra, running on four different
Intel servers with 2x2 to 4x10 cores. Details can be found in table A.2 in appendix.

5.1.4 Evaluation

As the document base is very sparse, test users are not sampled completely at
random, but have to meet two requirements. An interaction γ(u, i) is present when
a user u has commented on or submitted post i, and the test users are required
to have interacted with at least n unique documents that can be trained on, as
well as m unique documents one can attempt to predict. Hence, each user to
perform user predictions for initially needs to have interacted with at least n+m
unique posts. Assuming daily recommendations and approximately 230 published
articles a day11, 230 is found to be a fair number of articles to consider relevant for
prediction. Using n = 20 and m = 30 as thresholds, 200 articles is then added to
the test set in addition to the 30, while 20 is being used to generate the user model.
Evaluation of metrics used in the processes will be presented next in description of
methods for each experiment.

5.2 Experiments

5.2.1 User Modeling with LDA and Clustering

The following experiment is executed using three different data sets. This is the
News Aggregator data set, as well as two versions of the reddit.com dataset to
supplement user interactions, as described (5.1.1). Two versions of the reddit.com
data set are used, where one considers only the posts’ titles as documents, and the
other one considers the posts’ titles and content together as documents. The data
sets will from now be referred to as Reddit Titles and Reddit Posts. The described
process is fully run for all three data sets, except for the prediction step for the
News Aggregator dataset, where support from Reddit data set’s interactions is
needed.

4https://pandas.pydata.org/
5http://jupyter.org/
6https://matplotlib.org/
7https://seaborn.pydata.org/index.html
8https://radimrehurek.com/gensim/
9http://scikit-learn.org

10http://contrib.scikit-learn.org
11https://www.theatlantic.com/technology/archive/2016/05/how-many-stories-do-newspapers-publish-per-day/

483845/

46

https://pandas.pydata.org/
http://jupyter.org/
https://matplotlib.org/
https://seaborn.pydata.org/index.html
https://radimrehurek.com/gensim/
http://scikit-learn.org
http://contrib.scikit-learn.org
https://www.theatlantic.com/technology/archive/2016/05/how-many-stories-do-newspapers-publish-per-day/483845/
https://www.theatlantic.com/technology/archive/2016/05/how-many-stories-do-newspapers-publish-per-day/483845/

5.2 Experiments

LDA is run grid searching parameter t (number of topics), in the range [0, 230]
with step size 10, in addition to t-values 4 and 5 to compare to the original category
partitioning. Each model is then evaluated on a held-out validation set by mea-
suring perplexity, bounds and coherence (section 2.4), from which a representative
selection of models is chosen.

The clustering is done using k -Means and HDBSCAN. k -Means is run both
with Kullback–Leibler (KL) divergence as distance metric, in addition to the more
common Euclidian distances, as each document is represented by a topic distribu-
tion generated by LDA and the former hence may be more suitable. The grid of
parameter values for k is [0, 100] with step size 10, and also here 4 and 5 to reflect
original partitioning of the News Aggregator dataset. Models are also trained for
k = t to observe if the clustering simply reproduced the topics and thus are re-
dundant. HDBSCAN’s primary parameter to effect the resulting clustering is the
minimum cluster size ρ, deciding the smallest size grouping to consider a cluster.
In addition minimum amount of samples, %, can be selected indicating how strict
the algorithm is when classifying noise. The grid of parameter values for both ρ
and % is {5, 10, 15}.

The best parameters are chosen based on Silhouette coefficient, C-H index (sec-
tion 2.1) and a qualitative evaluation, and the best clustering are used to create
user models. In addition, the clusterings are visualized in two and three dimensions
using the dimensionality reduction methods Linear Discriminant Analysis, t-SNE
and PCA. These are labeled with both cluster id and category (and for the Reddit
documents also subreddit) to see the overlap between them and potentially differ-
ent levels of granularity. The most informative visualizations is then presented in
the report.

5.2.2 Updating Word Embeddings

Some precursory experiments are run on top of the initial embedding of 180 000
words generated in [56]. In order to coarsely test the validity of adding new words
into an existing word embedding, we will look at a few qualitative and statistically
quantitative examples with words or terms which suddenly became a matter of
public interest after the snapshot of Wikipedia used to train word embeddings was
collected, and thus would be subject to the embedding adding process we have
mentioned. Estimating the times at which these topics, or search terms, became
of public interest online can be achieved by accessing the Google Trends engine12,
a search engine providing graphs of the interest levels for terms on the widely
used Google search engine13. This provides us with a relevant timeframe of Reddit
posts to process in order to discover relevant ones. In addition to this, the updating
scheme will be tested on the training corpus, by looking at changes in topic and
cluster quality before and after updating.

Due to the computational requirements of rerunning a full word embedding
process to see where a new word would have been placed relative to others, we opt

12https://trends.google.com/trends/
13https://www.google.com

47

https://trends.google.com/trends/
https://www.google.com

Chapter 5. Experiments

for comparing similarity statistics of the 180 000 words already embedded to those
of the new word added for the quantitative validation. This way, we can observe if
the new word embedding behaves somewhat similar to the original embeddings, as
well as giving us an option to compare its behaviour across model variables such as
window size. It is pivotal that the new embeddings does not appear to statistically
diverge from those trained traditionally. If new word embeddings appear to be
outliers compared to the original embeddings, not having many or any words in its
close neighbourhood, they may skew topics containing them in a direction which
removes topical coherence from its representation. Similarly, if most new word
embeddings tend to be too close to many of the words in the embedding vocabulary,
they may not provide any useful distinctions to topics and could simply be a source
of noise.

In addition to considering their statistical characteristics, we will visualize the
new embeddings in a low-dimensional space along with its closest words. This
allows us to quickly perform a sanity check of how relevant the embeddings’ closest
neighbours are. The variable parameters include a window size of which words
contained within it will contribute to the averaging word embedding value. A pure
quantitative consideration of what window size is suitable, and does not generate
excess data for processing compared to topical gain from added contextual data, is
not plausible. There is no ground truth of how the words embeddings should look
for optimal model performance (must be seen in context of its task), semantics
are often more of a qualitatively measurable element and running a new word
embedding for each time is not a possible solution. We will therefore aim to run a
few examples with qualitative evaluations based on concepts/terms that were not
commonly used at the time of the Wikipedia Snapshot used to create the word
embedding (March 2015).

When looking at different parameters, we consider the distance between the
resulting word embedding for the new word and words that are expected to be close,
as well as looking at the closest neighbours of the new word’s embedding. We want
the list of closest words to seem related to the new word embedding, as well as the
distance to related words to be small compared to an average distance to all words.
This behaviour is expected if enough of the context words influencing the new
word embedding are in fact related, and not overly divergent among themselves.
Duplicitous meanings/context is an issue in traditional word embedding training
as well.

The distance metric used for calculating embedding distances is cosine similar-
ity, giving us values between -1 and 1, where 1 indicates that two word embeddings
are identical with distance 0 and -1 indicates that two embeddings are complete
opposites.

5.2.3 User Modeling with Topic Embedding

Experiments are run using the TopicVec algorithm by adapting code made available
by the authors. TopicVec is run on top of the continuous word embeddings for 180
000 words in 500 dimensions on a Wikipedia snapshot dataset from March 2015,
pretrained in TopcVec’s predecessor [82]. With Wikipedia generating articles about

48

5.2 Experiments

places, people, events, science and everything inbetween in a relatively structured
manner, it seems a reasonable base for word embeddings being used for discussions
of real life events and information. The question of correctness of information on
Wikipedia is considered a non-issue in regards to the word embeddings based on
these characteristics, as the important factor is the context itself when generating
word embeddings.

In TopicVec, preprocessing includes removing words not present in the word
embedding vocabulary in addition to those who are classified as stopwords, due to
these words being considered to be very rare or to provide little to no discriminatory
information. Though this may be preferable in the case of their experiment, when
recommending articles or items, identifying the difference and likeness between
items is important and may require larger word embedding vocabulary than in
this case. As mentioned earlier, we would also have to assume that new words
may appear in many news documents that are being topic modeled, which can
be important enough to warrant being added to the word embedding in order to
improve future topic modeling.

The topic embedding user modeling is performed by running kmeans and HDB-
SCAN on the Reddit Posts data set described by varying numbers of topics. In
addition to this, some topic modeling and clustering is tested on the Newsaggre-
gator dataset, in order to compare tendencies. As with the LDA user models,
users are then represented as k-dimensional vectors, where k is the number of clus-
ters and each value represents the strength of cluster membership. When deciding
which trained models to use for user prediction, both the clustering metrics and a
qualitative assessment of the topics are taken into consideration.

5.2.4 User Prediction

As mentioned in 5.1.4, 230 documents are attempted predicted for each user, where
30 of these are known to be in the user’s interaction history. The ranked list is
MAP evaluated at position 3, 5, and 10, in addition to the full list and 30, being
the number of articles we wish to recommend. A ranked list sorted by RA is also
generated. The results from the different models are compared, as described in the
experiment methods. Documents classified as noise are not predicted.

49

Chapter 6

Results and Discussion

In the following chapter the research results of the thesis will be presented and
discussed. We will first, in section 6.1, have a look at some characteristics of the
preprocessed data utilized, before presenting and discussing the results of each of
the experiments building models in section 6.2 and 6.3, before presenting their
performance in prediction in section 6.4, and finally, summing up the results in
section 6.5.

6.1 Data Characteristics

Deeming it necessary to use alternative data sets to traditional news data sets due
to lack of sufficient persistent user history found in the real news data sets, it was
desirable that the alternative could mimic the behaviour and characteristics of a
traditional one. The following section will present and discuss characteristics found
in the used Reddit data set, comparing it to data sets of traditional news.

Some of the comparable key statistics are listed in table 6.1, and as can be
seen, the News Aggregator data set does not seem to deviate to much from the
Reddit data set. The most notable differences between the two, is the vocabulary
size and number of documents with less than five words. This may naturally
affect predictions, providing larger contexts and more specified items to train on.
Considering the relatively moderate increase in word count in Reddit compared
to News Aggregator compared to the large increase in vocabulary size, there is a
chance that many words in the Reddit data set are rarely used due to for instance
rare words or misspellings. Looking at 6.2, it becomes clear that all the data sets
have high percentages of words in their vocabulary which are used very rarely.
Across all three data sets, 60% of the words or more appear 10 times or less. This
trend of rarely mentioned words is especially strong in the Reddit data set, which
potenitally may cause noise.

51

Chapter 6. Results and Discussion

Spec. Reddit Posts Reddit Titles News Aggregator

Document
count

279 504 277 069 335 891

Avg. doc.
length

13.99 6.85 7.70

Median doc.
length

7 6 8

Min doc.
length

2 2 2

Max doc.
length

2 362 78 2 381

Total
word count

3 910 261 1 896 976 2 584 533

Total
vocab size

137 502 58 033 60 614

Documents
below 5

35 275 47 305 14 721

Documents
below 10

162 663 207 358 166 123

Table 6.1: Data set statistics for training set.

Training corpus Reddit Posts Reddit Titles News Aggregator
20th 4.0 4.0 5.0
40th 5.0 6.0 6.0
50th 6.0 7.0 8.0
60th 7.0 9.0 10.0
80th 14.0 19.0 22.0
90th 29.0 45.0 57.00

Table 6.2: Word count percentiles for all words in vocabulary in each data set.

Table 6.3 shows the distribution of documents in the Reddit and News Aggre-
gator data sets. Here, one can also observe the mapping between the labeling in
the data sets. Comparing the data sets, both sets have a distinctly larger portion of
the documents in the entertainment category, and smaller in the health and fitness
category. The business category is the second largest in the News Aggregator data
set, while being the third largest in the Reddit data set. Correspondingly, this
order is flipped for the science and technology data sets. This can stem from a
numerous different reasons, one being that business often may refer to technology
and vice versa, and another that there are simply more articles being published
about business than science and technology, and that science and technology being
a more popular discussion topic. Other potential reasons include a difference in
behaviour patterns in discussions within business related forums and in technology
and science related forums.

As can be seen, the ratios between the train and test sets are not consistent.
This is due to the size of the test set being decided by a requirement for a number
of users satisfying the activity threshold in terms of interaction history. It is desired

52

6.1 Data Characteristics

to obtain the largest possible subsets for users to be trained and tested on, and the
ratio is therefore not fixed. In this case, there is not known any notable causes of
this, but a ratio which do affect the models however, is the ratio between categories,
which will be discussed in the experiment results.

Reddit Posts News Aggregator
Subreddit (Category) Train set Test set Category Train set Test set

Business 28 538 1 699

Business 92 216 23 086

Finance 5 146 212

Economics 4 520 1 013

Businessnews 152 52

Total Splits 38 356 2 976

Total Sum 41 332 115 302

Music 47 649 832

Entertainment 121 295 30 237

Movies 34 670 2 483

Television 10 192 810

Entertainment 5 119 459

Music news 674 51

Celebrities 651 51

Total Splits 98 955 4 686

Total Sum 103 641 151 532

Technology 38 015 3 792

Science and

Technology
86 269 21 472

Science 14 292 1 331

Everything

science
2 386 310

Tech 1 828 278

Tech news 889 164

Total Splits 57 410 5 875

Total Sum 63 285 107 741

Fitness 17 819 71

Health and

Fitness
36 111 9178

Health 13 205 956

Health care 2 083 105

Nutrition 1 040 0

Public health 202 22

Global health 98 20

Total Splits 34 447 1 174

Total Sum 35 621 45 289

Table 6.3: Data set category distributions.

53

Chapter 6. Results and Discussion

6.2 User Modeling with LDA and Clustering

The following section presents results from experiments described in section 5.2.1.
Where not provided, detailed metrics and results can be found in appendix. The
visualizations are done using Linear Discriminant Analysis and PCA only, as t-SNE
yielded very poor visualizations for these experiments (an example can be viewed
in figure A.1 in appendix). As mentioned, the experiments were run on the Reddit
Titles and Reddit Posts dataset.

6.2.1 Topic Modeling with LDA

The first part in the process of generating user models through LDA and clustering,
is representing documents through topics by selecting a proper topic model.

Selection of t-Parameter

Figure 6.1 shows a scatter plot of how number of topic affects the scores for the
Reddit Titles data set, and the same trend was observed for the two other data
sets. Note that the values are standardized and shifted to ease illustration, as the
three metrics are all positioned in different ranges. Initial perplexity values were
positive, while coherence and bound initially were negative. Striving for a positive
coherence and bound close to zero, these scores are better for lower numbers of
topics, while perplexity, striving for a lower score, yields better results for higher
numbers of topics.

A representative selection of models were then chosen to cluster. The selected
were models with 5, 15, 40, 80 and 100 topics, in addition to 4, being the number
of original categories. This covers each of the intervals between the intersections
until 100. More than 100 topics were not regarded as bounds and coherence scores
keep falling with increasing topic number, and perplexity does not improve either.
Full results can be viwed inn table A.3 in appendix.

Figure 6.1: Topic modeling on Reddit Titles data set.

54

6.2 User Modeling with LDA and Clustering

Table 6.4 shows top 10 most probable terms per topic generated by LDA mod-
els with four topics. If we assume that word co-occurence indicates semantic re-
latedness, well defined categories should be represented in the four topics, being
business, entertainment, science and technology, and health and fitness.
To avoid repetition in the table, terms of displayed bi-grams are removed if it has
appeared as a sub-term in a bi-gram shown earlier in the list, such as the terms
”hip”, ”hop”, and ”hip hop”. Some places only the sub-term is be present because
this has been a more probable term, like when people are mentioned more often
by last name. Experiments were also performed where bi-gram sub-terms were
removed from docs with discovered bi-grams in advance of the topic modeling, but
did not result in more meaningful topics (table A.4 in appendix), and a reason
may be the loss of connections between topic defining sub-terms, like losing the
connection between a document containing only the significant artist first name
”kanye” and a document containing his full name ”kanye west” once ”kanye west”
is defined as bi-gram.

Data Set Topic 1 Topic 2 Topic 3 Topic 4

Reddit Posts

business song watch weight
market rock movie start
health music online time
company movie service lb
check film free eat
internet video trailer workout
help love stream lift
home album tv help
app band google gym
technology indie hd try

Reddit Title

business movie rock hip hop
google watch song weight
service online music help
world indie video star
buy help album change
company music cover rap
android rock pop workout
mobile film loan time
top free alternative war
tv time live future

News Aggregator

market kim kardashian apple amazon
rate video price season
star gm microsoft ceo
china wed sale video
data ebola report bank
rise cancer game throne fire
profit samsung galaxy office time
war beyonce gas pay
fall miley cyrus buy deal
share jay court star

Table 6.4: Top 10 terms for LDA topic models with four topics.

From the extracted topics displayed in table 6.4, one can observe that the

55

Chapter 6. Results and Discussion

trained LDA models for mostly manage to extract meaningful topics, yet none of
the models succeeds to capture all of the four original categories. Taking into con-
sideration that the News Aggregator data set initially is divided into four categories
and consists of article headlines, which one could expect to have a higher demand
of being informative than titles of internet forum posts, it is surprising that LDA
does not extract more meaningful topics from this data set.

The reason for why LDA struggles extracting the four categories may stem from
different reasons. It could for instance be caused by too conservative or lenient
preprocessing, or it could simply be lack of meaningful, describing titles. Another
reason might be that the number of categories does not fully reflect the content in
terms of granularity. Hence, some articles in different categories might be partially
associated to same topics, like business and technology, and making them blend.
In addition one can see that some larger categories seem to have been divided into
finer, more precise partitions, like entertainment in music and movies. This is to
a greater extent also the tendency for 15 topics, which can be viewed in appendix
(table A.5, A.6, and A.7).

Table 6.5 shows the fifteen most significant topics from the LDA topic model
run on the Reddit Posts data set with 80 topics (results from the other data sets in
A.8 and A.9 in appendix). The topics are sorted by significance (read horizontally,
then vertically), with topic 69 as most significant and topic 45 as the 15th most
significant. Again, some topics appear as vague and blended, but as mentioned in
section 2.4, human judgement of the usefulness of a topic is a difficult task as a
consequence of bias and subjectivity. For instance, topic 26 and topic 11, being the
13th and 14th most significant topics, comes out as clearly related to health and
fitness, whereas topic 69, being the most significant, appears as less obvious.

56

6.2 User Modeling with LDA and Clustering

Reddit Posts
Topic 69 Topic 43 Topic 48 Topic 10 Topic 76
build boy gt electronic album
apps eye blood repair release
answer fall low door metal
wed rise event window god
person sex brain garage instrumental
fee forget stand jazz share
hide wait shoe microsoft son
volume australia foot freeze heavy
ca believe floor dubstep jay
pump sea budget itunes classical
Topic 73 Topic 38 Topic 27 Topic 60 Topic 15
la movie amaze name report
en stream title girl view
return hd spider kid risk
final free festival guide develop
commercial scene van surgery research
shop stop empire choice claim
map download imdb catch access
class watch movie pack expert funny
plus action sister drink bird
el hill tiny wish label
Topic 77 Topic 26 Topic 11 Topic 6 Topic 45
brand lose eat website app
email weight protein web mobile
touch lb diet design phone
lady calorie food source android
solo eat healthy content launch
south gain meal boost street
gun cut drink oil device
board pound weight loss block io
auto start shake field comedy
discount weigh chicken acid robot

Table 6.5: Top 10 terms for the fifteen most significant topics extracted with LDA topic
model run on Reddit Posts data set with 80 topics.

Document-Topic Matrix

After selecting topic models, document topic matrices were generated for each mod-
els. The following tables shows examples from the result on the Reddit Posts data
set with t = 15. Table 6.6 displays five documents in the document-topic matrix
generated using the LDA model, and the user-cluster matrix in table 6.7 shows five
user models generated by clustering k -Means (k = 4 and distance metric = KL)
done on the document-topic matrix. In addition table 6.7 shows the category and
subreddit distribution for each user’s document interactions in the test set which
the user models are based on.

57

Chapter 6. Results and Discussion

docid Topic 1 Topic 2 . . . Topic 14 Topic 15
D1 0.02 0.36 . . . 0.02 0.02
D2 0.00 0.00 . . . 0.00 0.08
D3 0.70 0.00 . . . 0.00 0.00
D4 0.01 0.01 . . . 0.45 0.01
D5 0.02 0.02 . . . 0.77 0.02

Table 6.6: Document-Topic matrix for t = 15.

User ID Cluster 1 Cluster 2 Cluster 3 Cluster 4 Categories Subreddits

U1 1.79 1.61 2.30 0.69 55 x ScienceTech
54 x technology
1 x tech

U2 0 1.79 1.1 1.39
12 x Entertainment
9 x ScienceTech

10 x television
9 x technology
2 x movies

U3 0 2.08 0.69 0 22 x ScienceTech
19 x science
3 x EverythingScience

U4 0.69 0 0 2.56
33 x Health
4 x Business

33 x Fitness
2 x finance
2 x Economics

U5 0.69 0 0.69 2.48 33 x Health 33 x Fitness

Table 6.7: User-Cluster matrix after LDA Topic modeling (t = 15) and k -Means clus-
tering (k = 4).

From the interactions in table 6.7 it seems reasonable that the users with user
id’s U3 and U4 are connected to different clusters, and that U4 also is connected
to same cluster as U5, while U3 is connected to U1 and U2. One can also observe
topics capturing a finer granularity of interests than the low granularity original
news categories from the News Aggregator data set. For instance, by looking at
the mapped subreddits for user U1 and U3, seemingly sharing the same news
preferences based on category, but yet having different user levels, one can observe
that at a lower level U1 is more interested in technology and U3 in science.

6.2.2 Clustering

We will now provide a closer description of the experiments performed to optimize
the clustering step producing user models, as presented previously.

k-Means

figure 6.2 (execution table A.10 and A.11) shows how the C-H index and Silhouette
coefficient are affected by number of topics and clusters. For k -Means with euclidian
distances the Silhouette coefficient performs marginally worse on higher k-values,
while for k -Means with KL divergence this difference is more significant. For both,
the C-H index is very unstable, and t does not influence as much as k, apart from
k -Means with euclidian distances, where the combination of low t’s and high k’s
yields worse Silhouette scores.

58

6.2 User Modeling with LDA and Clustering

Figure 6.2: Silhouette score and C-H index for k -Means (a)(b): Euclidian (c)(d):
Kullback-Leibler.

Picking the best models for k -Means is done by selecting the three models with
the best scores for C-H index and Silhouette coefficient, in addition to qualitative
evaluation with support from metrics and visualizations presented later. Where
equally good scores, the model is chosen by using the other metric as secondary
sorting. The chosen models can be viewed in table 6.8 and 6.9.

Data Set Distance t k Silhouette C-H
News Aggregator KL 5 4 -0.01 2.79
Reddit Title KL 15 4 -0.01 2.21
Reddit Euclidian 4 4 -0.01 2.05

Table 6.8: Top three k -Means models based on Silhouette Coefficient.

Data Set Distance t k Silhouette C-H
News Aggregator KL 5 4 -0.01 2.79
Reddit Title Euclidian 100 5 -0.03 2.58
Reddit Title KL 15 4 -0.01 2.21

Table 6.9: Top three k -Means models based on C-H index.

59

Chapter 6. Results and Discussion

In the tables one can see that the model trained on the News Aggregator data
set, using LDA topic modeling with t = 5 and clustering using k -Means with k = 4,
performs the best both when it comes to C-H index, having the single highest score,
and Silhouette coefficient, sharing the best score. Note that this model can not
be used for user modeling due to lack of user interactions with documents, but as
one of the reasons for including the Reddit Posts data sets is their relatedness and
comparability to the news domain, it is valuable to observe how the same methods
performs on this data set as well.

As one can observe, neither scores are remarkably high, and the best Silhouettes
scores are even negative and close to zero, indicating overlapping clusters. This can
also be observed in figure 6.3 (reduced by Linear Discriminant Analysis), next to
figure 6.4, where top 10 words for each cluster may be observed in a word cloud,
where words are sized by frequency and colors and labels corresponds to cluster.
The clusters do have some coherence, but some words are obvious intruders and
the clusters fail to capture the health and fitness category.

A reason for this performance may the too coarse granularity and that higher
values of t or k should have been chosen. This is also supported by the C-H index’
tendency to penalize high values of k, as seen in 2.1. Another cause may be that
the k -Means is more suitable for clusters of even size, which may not be the ground
truth. Taking the data sets’ distributions (table 6.3) into account, it may be that
the larger subreddits, music, movies, and to some extent technology, dominates the
clustering. The same trend follows for clusterings on the Reddit data sets, which
can be viewed more detailed in appendix (A.2 and A.3) for the second best model
based on Silhouette score (also having the third highest C-H index), being run
on 15 topics with 4 clusters. One could manipulate the data set and aid training
by balancing the sizes of the categories, but as the original news data set (News
Aggregator) also consists of unevenly sized categories and the goal is to see how
the method may aid in news recommendation, it is left unbalanced. The heavily
intertainment weighted clusters are not as evident in the second best model based
on C-H index (appendix A.4 and A.5), with 100 topics and the number of clusters
remaining low, at k = 5, but the model still seems to struggle finding k well-defined
topical clusters, which is also seen in the Silhouette coefficient.

60

6.2 User Modeling with LDA and Clustering

Figure 6.3: k -Means document cluster-
ing run with k=4 and KL distances on
documents with 5 topics from the News
Aggregator data set.

Figure 6.4: Word clouds for each clus-
ter in model from figure 6.3.

The last model from the selected top models, is the only one run on the Reddit
Posts data set where post content is included in the documents. It is run with
eucilidian distances, and like the rest, it favors lower number of clusters. Having
4 topics and 4 clusters it is interesting to see whether this reproduces the origi-
nal clusters, making this process redundant. Labeling the documents with their
mapped categories and subreddits in figure 6.7 and 6.8, neither seems to overlap
with discovered clusters observed in figure 6.5, indicating a potential of new insights
from topical clustering.

Even though k = 4 is among the best parameters overall, the last case seems
to be applicable to the previous models as well, as none reproduces the four cate-
gories. They do however form other categories, which is positive, as the goal is to
extract information spanning further than the information provided by the manu-
ally labeled categories. The word cloud for the last model, illustrated in figure 6.6,
shows four seemingly well defined topical clusters about movies (0), tech/business
(1), music (2), and fitness (3).

61

Chapter 6. Results and Discussion

Figure 6.5: k -Means clustering
run with 4 clusters and euclidian
distances on documents with 4 top-
ics from the Reddit Posts data set.

Figure 6.6: Word clouds for each
cluster in model from figure 6.5.

Figure 6.7: k -Means clustering
(category labeled) run with 4 clus-
ters and euclidian distances on doc-
uments with 4 topics from the Red-
dit Posts data set.

Figure 6.8: k -Means clustering
(subreddit labeled) run with 4 clus-
ters and euclidian distances on doc-
uments with 4 topics from the Red-
dit Posts data set.

62

6.2 User Modeling with LDA and Clustering

While observing several of the top models seemingly being able to extract un-
derstandable topics, and sometimes at a finer granularity level, they are often of
varying quality, and quantitative evaluation metrics is not an optimal evaluation
alone. As observed, the lower numbers of clusters tend to be favored, failing to
represent all clusters in one single model. To complement the models selected by
metrics, an additional model is therefore selected, based on a combination of well
(though not best) performing metrics, in addition to qualitative evaluation from
visualizations. The selected model is trained as follows:

Data Set Distance t k Silhouette C-H
Reddit Euclidian 5 10 -0.02 2.01

Table 6.10: Qualitatively chosen k -Means model.

Though not being among the best three given either C-H index or Silhouette co-
efficient, the clusters quality does not appear reduced from visualizations, displayed
with different labelings in figure 6.9, 6.10, and 6.11. As previously seen, large parts
of the categories and subreddits are mixed in the clustering, but a significant part
of the documents displayed in the upper right part of the figures appears to be
clustered together with documents from the original category or subreddit. This
is most clear in figure 6.10, where category 1, entertainment, in green have been
clustered together. This is not surprising considering the results from the other
models and category ratio in the data set. In the subreddit labeled clustering in
figure 6.11, label 4 and 5 corresponds to the subreddits Music and MusicNews,
while 13, 8, 9 and 20 (closer to the more vague blue area) represents the subreddits
movies, television, celebrities and entertainment. From this it may seem like the
clustering is able to retrieve a finer granularity of the news categories.

63

Chapter 6. Results and Discussion

Figure 6.9: k -Means clustering
run with 10 clusters and euclidian
distances on documents with 5 top-
ics from the Reddit Posts data set,
labeled with clusters.

Figure 6.10: k -Means clustering
run with 10 clusters and euclidian
distances on documents with 5 top-
ics from the Reddit Posts data set,
labeled with categories.

Figure 6.11: k -Means clustering
run with 10 clusters and euclidian
distances on documents with 5 top-
ics from the Reddit Posts data set,
labeled with subreddits.

64

6.2 User Modeling with LDA and Clustering

Table 6.11 shows the five most frequent terms in the training documents in each
of the clusters in figure 6.9). From these terms cluster 0, 9, 5, 8, and 1 seems to
be entertainment related, aligning well with the labels in the other two figures. 4
is a well defined business cluster, blending over to tech, which has been observed
to share traits earlier. 6 is not very well defined by its top five terms, but cluster
2 and 3 seem to be related to technology and fitness, though being very closely
positioned in the diagram. To conclude, the qualitatively selected model seem to
perform well, despite lower metric scores, and manages to capture more useful
topics in one single model.

Cluster 0 Cluster 1 Cluster 2 Cluster 3 Cluster 4

movie music google weight business

watch song apple start service

online rock mobile time health

free live android lift loan

video cover free workout market

Cluster 5 Cluster 6 Cluster 7 Cluster 8 Cluster 9

song help business movie movie

music movie service film rock

rock time technology tv film

album fitness google trailer watch

pop people market watch song

Table 6.11: Top 5 terms in the training data of k -Means model with 10 clusters and 5
topics.

HDBSCAN

Picking the best models for HDBSCAN was done in same manner as for k -Means,
selecting the three models with the best scores for C-H index and Silhouette coef-
ficient, in addition to a qualitative evaluation. The three best models given C-H
index and Silhouette coefficient can be viewed in table 6.12 and 6.13. (All results
in table A.12 in appendix.)

Data Set t s c Silhouette C-H
News Aggregator 15 5 5 -0.64 1.01
Reddit 15 5 5 -0.74 1
News Aggregator 15 5 10 -0.75 1.02

Table 6.12: Top three HDBSCAN models based on Silhouette Coefficient.

65

Chapter 6. Results and Discussion

Data Set t s c Silhouette C-H
Reddit Title 100 10 15 -0.98 6.19
Reddit Title 100 10 10 -0.97 4.39
Reddit Title 100 10 5 -0.96 3.82

Table 6.13: Top three HDBSCAN models based on C-H index.

In figure 6.12 results produced by the best model given C-H index is illustrated,
showing a sparse clustering with 1613 clusters. The sparse clustering is caused
by a seemingly conservative noise classification, classifying as much as 90.41% of
the documents as noise. Using the Gini index (experiment 4.2.3 in chapter 4)
to calculate the impurity in the user models give an average index of 0.35 for
the predicted documents and 0.73 for the noise classified documents, which may
indicate that the algorithm struggles to create clusters of documents with more
topics.

Figure 6.12: HDBSCAN model yielding the best C-H index, run on the Reddit Titles
data set with 100 topics, minimum sample size 10, and minimum cluster size 15.

The best model given Silhouette coefficient uses only 15 topics and also lower
values for s and c, which should make it less conservative regarding noise. The
ratio noise classified documents is slightly lower, but yet high at 72%. The lower
threshold for establishing clusters gives a pronounced increase in number of clusters,
resulting in as much as 9902 clusters. As a result the labeling is even denser than
in previous figure (6.12), and the figure is therefore not displayed. For the noise
classified documents, the average Gini index is 0.63, while being 0.54 for the rest.
However, despite apparently not being as affected by impurity in documents’ topic
mixtures as the previous one, the model still classifies too many documents as
noise, and not being able to recommend 72% is overly high.

As mentioned in 2.1, both methods’ performance are skewed to give higher
scores to k -Means, observable in the low Silhouette coefficient. For this reason

66

6.3 User Modeling with TopicVec and Clustering

also a qualitative evaluation of the clusterings was done visually. However, none
of the clusterings appear more well organised or gainful, and the two top scored
clusterings therefore remains chosen for later comparison.

6.3 User Modeling with TopicVec and Clustering

The experiments focusing on extracting user models through clustering of topic
embedded documents, is divided into two parts. In the first part, a novel method
for updating the underlying word embedding vocabulary is tested. Later, docu-
ments are clustered together based on their topic embedding features, derived from
TopicVec.

6.3.1 Updating Word Embeddings

As mentioned in section 5.2.2, the initial word embedding experiment tests the
general characteristics of word embeddings created by a centroid of their context
words in the embedding space, as a sanity check for further experiments. This is
done by extracting corpora from Reddit which is known to contain two words whose
origin or rise in popularity can be pinpointed to a specific time by search engine
statistics, ”Brexit” and ”Ransomware”. Various values for word count thresholds
and window sizes are tested for. While [104] suggests that 5 may be a more appro-
priate window size and perform better in a case similar to ours, though intended
for a classification task, [105] determines that this window size will produce word
embeddings that encapsulate more topical meanings. This may be redundant due
to the intention of eliciting latent topics from the embeddings at a later time. We
look at window sizes for both these cases, as well as some very high values. This
is in order to ascertain the effect larger window sizes will have, as this is a very
different training process than originally.

Statistics and Characteristics of Added Words

An example of statistical features is shown in 6.15. This table, along with Ap-
pendix tables A.13 and A.14, shows the statistics for the newly added embeddings
of ”Brexit” and ”Ransomware”. They show that the statistics for added word
embeddings appear stable across several choices of window sizes and word count
requirements, sometimes staying nearly unchanged across threshold changes, as
well as staying within the statistical values featured in the original vocabulary,
represented by minimum, maximum, average and median values for the statistical
features across 100 000 of the original embeddings in 6.14.

67

Chapter 6. Results and Discussion

Measure Min Max Average Median
Average

Similarity
-0.16790 0.16229 0.06189 0.07255

Minimum

Similarity
-0.45796 -0.11666 -0.21738 -0.21197

Maximum

Similarity
0.27516 0.98912 0.60351 0.59362

Positive

Similarities
14 531.00 166 491.00 130 262.55 146 981.00

Negative

Similarities
13 508.00 165 468.00 49 736.45 33 018.00

25th

Percentile
-0.24209 0.09119 0.00650 0.01623

Median

Similarity
-0.18813 0.16672 0.05585 0.06629

75th

Percentile
-0.11329 0.24849 0.11026 0.12042

Table 6.14: Word embeddings statistics for a sample of 100 000 words in the original
word embedding vocabulary.

Window Size 3 6 12 24
Average

Similarity
0.11686 0.12267 0.11868 0.11540

Minimum

Similarity
-0.37818 -0.39351 -0.38232 -0.38207

Maximum

Similarity
0.59561 0.60494 0.58683 0.58607

Positive

Similarities
152 624.00 154 805.00 155 499.00 154 663.00

Negative

Similarities
27 376.00 25 195.00 24 551.00 25 337.00

25th

Percentile
0.03684 0.04339 0.04307 0.04048

Median

Similarity
0.10915 0.11609 0.11243 0.10867

75th

Percentile
0.19104 0.19822 0.19098 0.18678

Table 6.15: Brexit embedding statistics across window sizes with count threshold=400.

As the embedding statistics appear quite stable across count thresholds, one
could potentially set threshold relatively low while still getting relevant results.
However, we note that when running the embedding on the ”Brexit” excerpt cor-
pus with a mention threshold of 50 mentions, specific user names of Reddit users
are embedded. This is highly disadvantageous and emphasizes the importance

68

6.3 User Modeling with TopicVec and Clustering

of sensible parameter values. While low thresholds may yield statistically similar
results, it also stands to reason that having slightly higher thresholds may give
better or more nuanced embeddings, especially for words with higher ambiguity
than ”Brexit” and ”Ransomware”.

When embedding ransomware, additional words such as ”Cyberattack” and
”Wannacry” are also embedded at some of the thresholds. Coinciding so often in
a subset of documents specified to contain ”Ransomware” that they achieve most
of the thresholds tested for, these words naturally achieve a very high similarity
to the ”Ransomware” embedding. This is however natural, as ”Ransomware” is
considered a cyberattack and Wannacry is an instance of a cyberattack of the ran-
somware type. Consequently, they would likely be embedded close to each other
even if trained in the original process, and we do not restrict the experiment to only
embed the chosen words, as this would create an unrealistic environment. This is
also the reason why the maximum similarity for ”Ransomware” varies from 0.63 to
0.96, sometimes Wannacry is added to the vocabulary before ”Ransomware”, and
consequently takes part in deciding position of the word, and sometimes ”Ran-
somware” is embedded first. This level of randomness is acceptable in this ex-
periment, and allowing a word to be embedded as early as possible to contribute
to other embeddings by adding them to the vocabulary is convenient here. If it
is problematic to do so in other cases, batch updates would be equally simple to
implement.

Any further quantitative evaluation is not sensible, as one word may be more
fitting to achieve a high maximum similarity, if a synonym is present in the em-
bedding vocabulary, and another may be more fitting to achieve a low maximum
similarity, if it has few related words in the vocabulary. These types of examples
can be made for each of the statistical features. Noting the intuitive quality of
some of the most important features for word embeddings, we thus choose to visu-
alize the embedding for the newly added word in a reduced dimensional space, to
consider the neighbouring words in relation to the embedded word.

In figure 6.13, the embedding space is reduced to 2 dimensions so that we
can visualize the 30 closest words to the new embedding ”Ransomware” in the
embedding space, when updating with window size 3 and count threshold 500. We
see that many of its nearest neighbours are indeed words we would expect to be
related to a virus attack, such as the hacking methods ”phishing” and ”ddos”,
and the virus software related ”malware”. We also see many acronyms within the
fields of network protocols, computer science and information security mentioned.
This is not unexpected, and appears to replicate the original word embedding
characteristic of similar words, where words with similar meanings are very close
and the area surrounding a word will be related to similar subjects. Looking at
A.6, the increase from threshold = 500 to threshold = 1000 appears to have little
impract.

In figure 6.14, we can see the same dimensionality reduced presentation of the 30
closest words to the new word embedding of ”Brexit”, with window size 3 and count
threshold 500. The surrounding words are expected to be related to themes such as
politics, the UK, immigration and voting. Though some of the words observed in

69

Chapter 6. Results and Discussion

Figure 6.13: Visualisation of 30 closest words to Ransomware after dimension reduction,
with parameters window size = 3 and threshold = 500.

Figure 6.14: Vizualisation of 30 closest words to Brexit after dimension reduction, with
parameters window size = 3 and threshold = 500.

the figure are easy to see fit into these themes, many more than with ”Ransomware”
are less apparent. Some of the words are also neither obvious nor unnatural to see in
this context, such as ”sceptics” and ”islamophobic”, as the debate around ”Brexit”
was polarized and touched on topics such as racism. Thus, the placement may be
appropriate, but is clearly less obvious than for ”Ransomware”. This does not have

70

6.3 User Modeling with TopicVec and Clustering

to be an indication of deviating behaviour, as many words will vary in quality and
ambiguity in the original training process as well, but does warrant caution.

A window size of 3 is chosen for further experiments, to capture more direct
context since the word embedding is aiming to discover the word meaning itself,
and later topic embeddings will cover the discovery of topical connections. This also
coincides with the window size run on the original PSDVec, which is an advantage
when building on this.

In the original word embedding by PSDVec, choosing the 180 000 most frequent
words from the chosen Wikipedia Corpus of ∼ 2 billion words leads to a word count
cutoff just above 7000. When running these experiments, a significantly lower
threshold for being added is chosen, both due to a smaller corpus and because we
want to make sure words are added so we can see if there is any effects.

Word Embedding Updates on Experiment Data Sets

In table 6.16, we see that a high number of unique words are not included within the
vocabulary, which is not too surprising after observing the word count percentiles
in table 6.1. This can be caused by a combination of reasons, such as frequent
use of slang in online forums, which can be underrepresented in the vocabulary,
and misspellings. For instance, one word with count equal to 1 in the Reddit
vocabulary is ”weight” misspelled as ”wieght”. The percentage of words with a
substantial occurrence count is also quite low. This too can indicate tendencies such
as one-off spelling mistakes, or just very specific terms. Many words which are not
contained in the original vocabulary with high counts in the data set, are bigrams
of words that do exist in the vocabulary, and may lead to little information gain, a
mere consolidation of current word embeddings, or noise in the vocabulary. Some
bigrams could however provide new information, through adding new meaning or
relations between words within the vocabulary.

The News Aggregator data set has a larger corpus than Reddit data set, as
well as higher word counts. At a first glance, it appears that many of the high
count support words in both Reddit and Newsaggregrator are composite bigrams
consisting of combinations of words which are in the vocabulary, such as references
to the movie ”Captain America” represented as ”captainamerica”.

Having observed the stability of statistical properties across thresholds and
window sizes, we set the threshold to 500 word counts before being added to the
embedding, in order to ensure that words are added. In addition to this threshold,
we require at least 1000 of the context words to be in the vocabulary. This addi-
tional threshold is necessary due to the frequency at which words are not present in
the vocabulary, leading to the risk of embedding a word without sufficient context
to make a semantic meaningful embedding. The reason for choosing this method
instead of removing words out of vocabulary and force a word window from only
the relevant words, is that this would counteract the semantic consequences of the
chosen window size, by introducing words that in true context would be further
away from the focus word. With these parameters, the number of words added is
listed in 6.17

The 30 words added when running this updating scheme, along with their top

71

Chapter 6. Results and Discussion

Training Corpus Reddit Posts Reddit Titles News Aggregator

Word count

out of vocab
1 120 422 96 995 611 235

Unique words

out of vocab
110 498 5 521 45 688

Word count percentiles for words not in Vocabulary
20th 4 4 4

40th 5 5 6

60th 6 7 8

80th 11 20 13

90th 17 33 22

95th 28 92 37

99th 81 144 122

99.5th 125 235 200

99.8th 221 396 358

99.9th 330 453 479

99.95th 520 857 654

99.99th 952 1 098 1789

Table 6.16: Support count percentiles for words outside of original vocabulary.

5 closest words, can be found in A.15. A qualitative evaluation indicates that
words are embedded in a contextually sensible manner. The 57 words added when
running on the Newsaggregation data set is listed in A.16.

Data set # Words added
Reddit 30

Newsaggregator 57

Table 6.17: Number of words added when updating embeddings with word mention
threshold = 500 and context word threshold = 1000.

Most words added are bigrams in both cases, many composite of words which
are already in the vocabulary, such as ”Kardashian” and ”Kanye” which may only
consolidate their position and connection to each other. Some additions however,
such as ”climate change”, are adding meaning beyond their separate words which
are likely not to be excessively correlated in the original embedding. There are also
non-bigram words which are added, such as ”heartbleed”, a reference to a security
vulnerability in a cryptography library1. The statistics for the words added in both
experiment data sets can be found in A.17. We can see that the statistics are still
within expected values.

The following section presents some experiments on the effect of these updated
on the topic embeddings, after introducing the model and initial runs.

1http://heartbleed.com/

72

http://heartbleed.com/

6.3 User Modeling with TopicVec and Clustering

6.3.2 Derived Topics

While TopicVec supports category-wise training, where a set number of topics can
be elicited from each defined category in the data set when spesicific categories
are pre-defined, we opt for the non-category based training to better imitate the
realistic setting of news recommendation. Category labels may be erroneous or
too generalizing, especially in online forum environments such as reddit.com, and
the most important goal of the topic embeddings is not to perform well in the
classification task in our case. Also, with the uneven distribution of categories in
the training set, forcing TopicVec to discover the same amount of topics in each may
lead to illogical or non-informative topics. Finally, as we are not aiming to use the
model generated for classification tasks, but rather discover common topics across
the labeled categories, attempting to train within them seems counter intuitive.
Embedding methods often do qualitative evaluation, or test for sentiment and
classification tasks, but this is not our main focus. Choices for the number of topics,
t, are chosen to be comparable to LDA and provide a sufficient span to observe
trends. This is because of the topic embedding setup being less specialized for
tasks producing metrics such as perplexity. All TopicVec runs use the parameters
described in 6.18.

Parameter Value
Dimensions N 500
Max iterations 300

Dirichlet parameter
for topics α1

0.1

Initial learning
rate δ

0.1

Table 6.18: Parameters for TopicVec.

Looking at the output topics and percentages of words connected to them from
TopicVec with t=5 in 6.19, 4 fairly large topics can be seen. Though this matches
with the number of predefined Reddit categories in the data set, we see that both
Topic 2 and Topic 4 would intuitively belong in an ”Entertainment” category,
while it seems that ”Business” and ”Technology” from the original labels have
been merged into one topic. This is not too surprising, as the entertainment cat-
egory is shown to encompass over 40% of the training set documents in 6.3 and
the model will likely deem modeling these topics well important in order to max-
imize the corpus likelihood training goal. The last topic, Topic 1, is less clear. It
contains several geographic references, and may be related to geography. Topic 1
has significantly less words represented in the corpus than the others. While the
two Entertainment topics combined have ∼ 57% of the vocabulary words associ-
ated with them, the health and fitness topic, Topic 5, has ∼ 31% and the merged
business and technology topic has ∼ 21%, Topic 1 has less than 1% of the words
associated with it.

The top 10 words for the 10 largest topics for t’s 15, 40, 80 is described in

73

Chapter 6. Results and Discussion

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5

0.9% 23.4% 21.00% 23.8% 30.9%

th movie business song lift

jersey watch google rock workout

national film service music gym

world trailer market band muscle

south star online pop squat

north tv company indie body

century review app hiphop eat

cup episode loan hop exercise

st scene technology video start

city character mobile cover fat

Table 6.19: Top 10 terms and total percentage of words associated with topics found by
TopicVec with t=5 on Reddit Posts.

A.18, A.19 and A.20. As the number of topics found increases, the percentage
of words associated with each topic naturally decreases. Some topics still appear
quite clear for these runs as well, but we can see that more topic mixes show up
and that several topics become more specific. Doing a qualitative evaluation of the
extracted topics, t = 40 appears to provide the clearest topics, with t = 15 having
some strange mixtures in for instance Topic 8 and t = 80 generating confusing
mixtures in for instance Topic 64.

With t=80, many topics have a very low percentage of words which holds alloted
to them, down to 0-0.1%. This doesn’t have to mean they’re poor topics, but
they are often very specific and may have less support in the corpus due to rarer
occurrences. An example of such a topic, which is clearly about ancient Egypt
and customs, is shown in 6.20. This appears to be a well-defined topic, but will
be present in the corpus very infrequently compared to for instance music-related
topics. While these smaller topics derived when we have higher values for t may be
good topics, the skewed size of word-topic percentages in the corpus may affect the
clusters created. With a smaller number of clusters or high thresholds for cluster
sizes, documents with high proportions of small support topics may be forced into
clusters which they have little in common with in kmeans or become noise points in
HDBSCAN. If the number of clusters is large however, it becomes more likely that
documents with high proportions of these very specific topics may generate very
small clusters together. This is not necessarily as problematic, since the intention
is not to create rich clusters from which we can elicit many items to recommend,
but to recommend new articles that are being connected to the cluster at a later
time.

Considering the fact that the training set is derived from categorized data within
a few topics, common words and topics related to these four main categories are
likely to dominate the topic modeling both in amount and when it comes to the
word-topic allocation. This skewedness of words connected with large topics can
mean that documents which contain mainly small, or rare, topics will struggle in

74

6.3 User Modeling with TopicVec and Clustering

Topic 36

0.1%

egyptian

ancient

pazar

burroughs

matteo

pyramid

famous

tomb

orthodox

ambani

Table 6.20: An example of a topic with low word allocation count.

this specific training environment. There is also a risk of some common words
being associated strongly with the most common topics, leading documents which
are not related to the specific topic to get a slight topic proportion. This will likely
mostly be an issue in very short documents, where other words do not have the
opportunity to counteract this tendency. While very short documents is a frequent
issue in this testing environment, it is likely less of an issue with full-length articles,
though still present.

In 6.21, we can see that performance on the categorization task TopicVec was
originally trained on, improves with higher values for t. The macro average will be
most important in this case, because of a few larger categories dominating the data
set. Macro average does not aggregate all evaluation results equally, but calculates
performance within each category in order to avoid deceiving classification results
which favours a dominating cluster. We see that the macro average generally
achieves slightly lower values, which can indicate that some categories have poorer
classification performance than others. This is likely the smaller category groups.

A finer granularity of topics can be better for the classification task, but for
each increase in topic numbers, a dimension increase incurs for all user models.
Training and inference will also be more demanding when increasing the number
of topics. Thus, the optimalization of the classification task cannot be our main
goal. Especially for the Reddit data set, where users may easily post unmoderated
content which is not directly connected to the given category, leading to mislabeling.
This leads to difficulties in evaluating the topic embeddings for the purpose set for
this thesis.

Topics Derived from Updated Word Embeddings

With the limited time frame and corpus in our testing environment, as well as
the set thresholds and known word count percentiles, changes in word embeddings
were relative minor and any significant variations in topic quality derived from the

75

Chapter 6. Results and Discussion

Topic # 5 15 40 80

Iterations for

best run
64 109 213 234

Train precision

micro average

Recall: 0.693

F1: 0.693

Accuracy: 0.693

Recall: 0.734

F1:0.734

Accuracy:0.734

Recall: 0.790

F1: 0.790

Accuracy:

Recall: 0.804

F1: 0.804

Accuracy:0.804

Train Precision

macro average

Recall: 0.555

F1: 0.536

Accuracy:0.693

Recall: 0.620

F1: 0.619

Accuracy:0.734

Recall: 0.718

F1: 0.737

Accuracy: 0.790

Recall: 0.739

F1: 0.757

Accuracy:0.804

Test Precision

micro average

Recall: 0.742

F1: 0.742

Accuracy:0.742

Recall: 0.790

F1:0.790

Accuracy: 0.790

Recall: 0.839

F1: 0.839

Accuracy:0.839

Recall: 0.847

F1: 0.847

Accuracy: 0.847

Test Precision

macro average

Recall: 0.612

F1: 0.592

Accuracy: 0.742

Recall: 0.683

F1: 0.685

Accuracy:0.734

Recall: 0.786

F1: 0.797

Accuracy:0.839

Recall: 0.793

F1: 0.804

Accuracy:0.847

Table 6.21: Performance on classification task for topic embeddings across different
numbers of topics on original word embeddings.

updated vocabulary is not expected. Especially since many of the words added are
combinations of words which already did contribute to topic embeddings.

Looking at table A.21, the results are very similary with some minor improve-
ment in performance on the classification task when running on the updated em-
beddings.The number of iterations performed in training, varies between fewer and
more than the original results. With the non-deterministic nature of the TopicVec
algorithm, it is difficult to reason whether these minor improvements are a result
of the updated word embeddings or just a different initiation and inference pro-
cess. Even if this is the case, with the previously mentioned tendency for new
words added to be combinations of previously existing words, the addition may
only have aided in consolidating already existing information instead of providing
new insights.

Topics Derived from News Aggregator

Comparing the topics derived from the News Aggregator data set for five topics in
6.22 to the Reddit data set in 6.19, it appears like both have split Entertainment
into two seperate topics. For Reddit, this becomes music and movies, while News
Aggregator appears to have divided it into celebreties, and movie and films. A
surprising result is the similarity of the smallest topic, Topic 1 in both tables. This
may indicate that while the topic qualitatively seems strange, it is useful in the
context of both data sets. An important difference is the News Aggregator data set
managing to find two seperate topics for business and technology, namely Topic 4
and Topic 5. The business topic, Topic 4, appears related to economy and stocks,
but also contains some words related to health. This could be a reflection of the
News Aggregator data set containing more overlapping terms and interests between

76

6.3 User Modeling with TopicVec and Clustering

these categories, such as pharmaceutical companies’ stock price development, and
that the behavioural patterns and types of subtopics discussed in the casual forum
setting deviates too much from the characteristics of formal articles written on the
topic to compare the two.

Also for larger values of t, the topics discovered from News Aggregator appear
more well-defined than those derived from Reddit, based on a qualitative consid-
eration, as can be seen in Appendix A.22 and A.23. This can be an indication of
less noisy data in the News Aggregator data set.

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5
0.9% 21.3% 20.1% 32.0% 25.7%

county kardashian movie rate google
church kim game stock apple

th kanye throne rise samsung
north miley film ebola microsoft
school cyrus star recall galaxy
city bieber season gas facebook

south beyonce trailer price buy
university justin review risk android

time wed dy health million
st award watch china ceo

Table 6.22: Top 10 words associated with TopicVec topics found with t=5 on the News
Aggregator data set.

6.3.3 Topic Embedding Clustering

As with LDA, the topic embedded documents are clustered with a variety of param-
eters with k-Means and HDBSCAN. Values for k and t are decided with comparison
to the LDA model and the perceived quality of the topic embeddings. Results follow
in this section.

k-Means on Reddit Posts Data Set

A collection of all k -Means results can be found in A.24. In figure 6.15 and 6.16, we
see 3-dimensional plots of five clusters created with five topics embeddings and with
the original category labels, respectively. It becomes apparent that the clustering
is not replicating the original categories, but defining its own document relations.
Seeing the distribution of documents across clusters for t = 5 and k = 5 in 6.23,
and these plots, it appears that the purple cluster with label 4 is heavily dominant
within this clustering. This cluster has 256 650 of the 292 270 total documents,
compared to the largest true category label which has 98 955. The tendency is
confirmed across several k ’s for several numbers of topics in A.7 and A.25. This
can indicate that while topic dimensions change, the topics elicited combined with
the vector attributes creates similar relationships between documents, or that some
topics is overly dominating in the dataset.

77

Chapter 6. Results and Discussion

Figure 6.15: 3-dimensional visu-
alization of k-Means clustering for
5 topic embeddings with 5 clusters
from the Reddit Posts data set, re-
duced with PCA.

Figure 6.16: 3-dimensional visual-
ization of the Reddit Posts category
labels, reduced by PCA.

Figure 6.17: Word cloud for the
largest cluster clustering topic em-
beddings with 5 topics into 5 clus-
ters.

Figure 6.18: Word cloud for the
largest cluster when clustering topic
embeddings with 40 topics into 5
clusters.

t Size of clusters
5 256 650 17 844 3 795 575 72
15 256 930 17 617 3 770 554 65
40 256 803 17 776 3 741 551 65

Table 6.23: Cluster sizes for k = 5 with k-Means on Reddit Posts with TopicVec, across
values for t.

In addition to sharing similar cluster sizes and shapes, t = 5 and t = 40 with
five clusters share some most frequent words within the clusters, observed in 6.17
and 6.18. These word clouds corresponds to the most common words within each
cluster scaled in size by frequency and with the colour mapping to the colour of
the cluster in their respective clustering plot in the reduced space.

78

6.3 User Modeling with TopicVec and Clustering

Figure 6.19: k -Means clustering run with
40 clusters on documents with 5 topic em-
beddings from the Reddit Posts data set, re-
duced with pca.

Figure 6.20: k -Means clustering
run with 40 clusters on documents
with 40 topic embeddings from the
Reddit Posts data set, reduced with
pca.

The leftmost cluster in 6.15 and A.7 appears to have a lot larger distances be-
tween documents than the other clusters, but it is important to remember that the
dimensions have been reduced and may not provide an entirely realistic view of
document distributions. The other clusters also appear to be grouped closely to-
gether. This could be a contributing factor in the drastically declining performance
of cluster metrics for higher values of k.

When looking at t = 5 and k = 5, a natural question becomes whether the
clustering is merely clustering together documents containing one topic, possibly
diminishing the possibility of gaining information about composite patterns. Look-
ing at the training set documents represented by five topics from embedding, the
average gini index for all documents is 0.72. In the sense of purity, this deviates
from the optimal value of 0, and it is thus unlikely that all the clusters generated are
merely a reflection of pure topics. If this had been the case, interesting documents
could probably be more directly inferred without much impact on quality.

Further experiments shows that higher values for k, as expected, reduces the size
of the dominant cluster. In combination with higher values for k, higher numbers
of topics tend to have higher maximum size values for clusters than lower values
for k. This can be seen in A.28.

When looking at high values of k, such as in 6.19 and 6.20, we see that the
document points which appeared to be somewhat misplaced in the right half of the
plot have been assigned to their own, smaller clusters. These clusters appear to be
very small, but will likely achieve relatively high metric values, due to being very
well-seperated from the other documents. The remaining clusters, collected on the
left side of the plot, may achieve higher cohesion values and low seperation values
based on the visual representation in these plots.

The evaluation metrics for the clusterings is the Silhouette coefficient an C-H-
index, as in LDA. The metrics achieve better values than expected. This could
be because of the large amount of very short texts, which may be achieving too

79

Chapter 6. Results and Discussion

Data set Distance t k Silhouette C-H
Reddit Euclidean 5 3 0.87 231 858.39
Reddit Euclidean 5 4 0.83 231 858.39
Reddit Euclidean 5 5 0.77 231 858.39
Reddit Euclidean 5 40 0.28 141 592.09
Reddit Euclidean 40 5 0.73 141 552.61
Reddit Euclidean 40 40 0.20 45 341.13

Table 6.24: TopicVec Reddit Posts k -Means runs selected for prediction.

high similarities. This could also have an impact on the drastic cluster metric
performance decline for high values of k.

In general, small values for both k and t provide the best clusters in terms of
evaluation metrics. The decrease in evaluation metric values for the same value of
k across different values for t is the most significant for t <10, and is otherwise
small. Increasing the k has a significantly larger impact on the evaluation metrics,
but it is important to keep in mind that the C-H−index penalizes higher values for
k.

The plots on the previous pages can indicate that many documents are close
to each other in the embedding space, and this could lead to poor separation in
clusterings with higher k values. It is possible that the Silhouette coefficient is
penalizing higher values for k due to this, as it is separating documents which are
relatively close to each other into different clusters.

A relatively drastic drop in the Silhouette coefficient happens across all values
for t at number of clusters k > 10. The C-H-index also normally makes a larger
dive between 5 to 10 and 10 to 20, than between other measured points. As an
indicator that the Reddit data set prefers few clusters, this could be a reflection of
the limited number of topics present in the corpus, but this cannot be an answer
in itself, because Silhouette and C-H values continue to increase even for k values
lower than the number of coarsest category labels.

While low values for t and k are preferred by the clustering metrics, one would
intuitively expect clusters with higher values of k to find more composite and nu-
anced clusters. Also noting the indication that the metrics may mostly be penal-
izing splitting similar clusters, and that t = 40 provided qualitatively good topics,
we choose a a variety of t and k values to consider for prediction, presented in 6.24.

k-Means after Updating Word Embedding

Looking at 6.25 compared to previous results for Reddit Posts clustering without
word embedding updates, there are not enough changes in the clusterings created by
the updated embedding vocabulary to indicate more than a arbitrary difference in
clustering quality due to the non-deterministic, random factors involved of the topic
training and the slight solidification of corpus by adding a few more words. This
may also be influenced by the fact that most the words are added in the category of
entertainment, within celebrities and movies, which is already a very large portion
of the documents and may have little impact on their topics. The updating thus

80

6.3 User Modeling with TopicVec and Clustering

appears not to be useful enough at the scale and within the short time span of
the data set collection in this experiment to warrant much further consideration.
Further experiments could be conducted to determine effects over longer periods of
time, where more entirely new terms are likely to be added. In these experiments,
additional functionality would be required to allocate the words added after initial
training to the most relevant of the existing topics. Otherwise, the new words would
not be allowed to impact the topics discovered. These tendencies are confirmed
with the News Aggregator dataset in A.27, after updating the vocabulary by 57
new embeddings only one of the clusterings change metric values.

k
Silhouette
Coefficient

C-H Index

3 0.87 242 312.22
4 0.83 247 502.69
5 0.77 241 087.22
10 0.66 196 067.67
20 0.34 172 221.59
30 0.32 158 656.79
40 0.29 150 328.36
50 0.25 142 076.72
70 0.24 131 058.79
80 0.22 126 364.71
100 0.22 117 076.49

Table 6.25: k -Means on Reddit Posts with t=5, after word embedding is updated by 31
words.

k-Means on News Aggregator Data Set

A few experiments were run on the News Aggregator data set as well, in order
to see how Reddit Posts compared to a data set more modeled on real-life news.
Looking at A.26 and A.27, News Aggregator maintains more realistic values for
Silhouette coefficients and C-H-value maintains, as well as favouring k equal to the
predefined number of categories in the run for t = 5. This could be an indication
of the News Aggregator data set being less noisy in terms of the categories, as they
appear more easily defined. Other than this, the News Aggregator clusters also
appear to strongly favour low values for both t and k.

t Size of clusters
5 113 103 85 595 77 915 59 268 3
40 131 694 104 636 78 820 20 731 3

Table 6.26: Cluster sizes for k = 4 with k-Means on on News Aggregator with TopicVec,
across values for t

Seeing the size of the clusters in 6.26, we see that the clusterings still prefer
some very large clusters and some excessively small, but there is also a much

81

Chapter 6. Results and Discussion

better balance between cluster sizes than with Reddit Posts data. Looking at the
3-dimensional visualization of the clustering in 6.21, the choice of the cluster of size
3 across values for k and t seems like a natural result of the three outliers at the
left of the figure which composes the cluster with label 1.

Figure 6.21: News Aggregator documents represented by 5 topics, divided into 4 clusters
by k -Means.

HDBSCAN on Reddit Post Data Set

An excerpt of some of the best HSBSCAN results running on topic embedded doc-
uments for topic numbers 5 and 40, can be seen in 6.27 and further results can
be found in A.29. General trends show that, as expected, smaller values for min-
imum clusters creates more clusters and higher restrictions on minimum samples
requires leads to more outliers. One strange thing is the C-H-index having some
better values for runs where the number of clusters is higher, though the Silhou-
ette coefficient drops between the same runs. An increase in topics also leads to
severe decrease in number of clusters and increase in outliers for the same running
parameters.

HBSCAN did not however not perform well, especially for the intended use case.
It generally creates many clusters with very few members and the excessive amount
of outliers would negatively impact the clusterer’s ability to make useful predictions,
as most documents the user has interacted with before is likely to be contained in
the outliers. With k-Mmeans allowing for clusters of size 1, we test for very low
values of min samples and cluster size. Though the lower values for minimum
samples and cluster sizes somewhat improves the Silhouette coefficient, the C-
H-index is lower than some other combinations, probably due to the algorithm
creating very many clusters which is penalized by this metric. There is still a good
40% of the documents are being labeled as noise. Taking this into consideration,

82

6.4 Prediction Results

the HDBSCAN is not evaluated further in the context of topic embeddings.

t s c Silhouette CH # Clusters # Outliers
5 1 5 -0.35 8.89 17 924 121 005
5 1 10 -0.52 14.02 5 549 146 961
5 10 20 -0.70 13.53 301 194 718
5 15 20 -0.69 15.09 233 201 502
5 20 20 -0.69 13.9 206 207 558
40 1 5 -0.84 1.01 7 615 212 970
40 5 10 -0.97 0.99 744 259 144

Table 6.27: Best HDBSCAN results on Reddit Posts data set with topic embeddings.
Min samples is denoted by s and min cluster size by c.

6.4 Prediction Results

A comparison of the prediction results are illustrated in figure 6.22, followed by
details about each model in table 6.28.

Figure 6.22: Prediction results. Details in table A.30 in appendix.

As can be seen, all models utilizing topic modeling, either through TopicVec or
LDA, performs better than random predictions, and predictions using the original
coarse categories. Looking at the MAP values, the two naive models are closely fol-
lowed by one of the predictors utilizing k -Means in combination with LDA, namely
LDA+KMEANS2. This is one of the models chosen quantitatively, being among the
three best performing with respect to C-H index and Silhouette Coefficient. Despite

83

Chapter 6. Results and Discussion

Model t Cluster Parameters Training Set

LDA1 4 NA Reddit

LDA2 15 NA Reddit Title

LDA+HDBSCAN1 100 s=10, c=15 Reddit Title

LDA+HDBSCAN2 15 s=5, c=5 Reddit

LDA+KMEANS1 4 k=4, distance=euclidian Reddit

LDA+KMEANS2 15 k=4, distance=KL Reddit Title

LDA+KMEANS3 100 k=5, distance=euclidian Reddit Title

LDA+KMEANS4 5 k=10, distance=euclidian Reddit

TV 5 NA Reddit

TV+KMEANS1 5 k=3 Reddit

TV+KMEANS2 5 k=4 Reddit

ORIGINAL 15 NA Reddit Title

RANDOM 15 NA Reddit Title

Table 6.28: Description of compared models displayed in figure 6.22.

this, it is outperformed by qualitatively chosen LDA+KMEANS4, as well as other
models with either or both of worse Silhouette and C-H score. In table 6.28 one
can see that the model is the only model using KL divergence rather than Euclid-
ian distances in the training and prediction, which may indicate that KL distances
between documents might not be representative, propagating in non-representative
user models and clusterings. This could also explain some of the experiment re-
sults presented earlier (A.2 and A.3), where the entertainment category generated
by the same model seems to partially or fully leak into all categories.

Many of the other models have a notable better precision when only the upper
parts of the ranked lists (top 3, 4, 10, and 30), but when evaluating performance on
the full list, most of them have excessive drop in performance. This is especially evi-
dent in the four rightmost, LDA+HDBSCAN2, LDA+HDBSCAN1, LDA+KMEANS3,
and TV+KMEANS1, dropping at MAP@TOTAL and RA. As mentioned earlier,
it is important to be aware that precision alone is not a optimal metric for this
case, and as MAP only sums over correct predictions, the scores may be decep-
tive. Thus, the RA metric and supplementary methods with promising qualitative
characteristics are considered in order to gain more insight about the results.

Figure 6.23 illustrates where relevant documents most frequently are positioned
in the rankings. In the model one can observe that all four models previously
referred to shares a rather similar pattern, with a centre of gravity below the
50th percentile. One can also observe that very few documents are recommended
within the 30th percentile apart from in the very top, causing the evenly high
values observed in figure 6.22. It is important to note that both models utilizing
HDBSCAN was proven to classify exceedingly large portions of the documents as
noise, as seen in 6.2.2, making them useless in a real scenario as many articles will
fall outside of the recommendation scope. Nonetheless they are included in the
evaluation in order to get some notion of their potential.

84

6.4 Prediction Results

Figure 6.23: Heat maps for where in the list the expected documents are positioned
in the ranking. Darker color indicates higher occurence of expected documents at this
position.

The dense centres of documents observed in the discussed models are somewhat
present in several other models’ rankings as well. To get a better understanding
of this, an aggregation of document clusters is illustrated in figure 6.24. The
diagram shows an aggregated ranking for LDA+KMEANS2, where all user rankings
of documents are aggregated on each position. Documents of Cluster 1 is in general
ranked low, but the predictor manages to rank a great portion of the relevant
documents from the other clusters towards the upper positions, but fails near top
40. The documents predicted in this area does however seem to be of the clusters
mostly favored, but as the threshold around 40 seems to be a general trend, it may
be an indicator that around 40 key documents in these clusters dominates and are
too highly scored by the preference function. Another indicator of the preference
function being too discriminative is the smaller Cluster 1 being neglected.

85

Chapter 6. Results and Discussion

Figure 6.24: Aggregated documents, denoted by cluster, in the ranked lists for
LDA+KMEANS2.

The remaining six models performs significantly better than the rest at RA, and
also have a decent MAP performance, despite lower values due to more documents
found in the upper part of the ranking, illustrated in the heat map (figure 6.23).
TV+KMEANS2, LDA+KMEANS4, and LDA+KMEANS1 all manages to position
the relevant documents higher up in the ranking, however, looking at the heat
maps and the overall MAP and RA, they are outperformed by the purely topic
based models, LDA1, LDA2 and TV. As these predictors are based on user models
solely built by averaging topic vectors in each users document collections, it is
interesting to see how number of topics affects the user models and predictions.
Figure 6.25 shows the Gini indices and trend lines for user models, ordered by the
users’ AP and RA. Being placed far right in the figures indicates that the user has
lower average precision score, and thus are more difficult to make good predictions
for. The trend for both predictors is that the users with broader range of interests
topically is harder to make good recommendations for.

86

6.4 Prediction Results

F
ig
u
re

6
.2
5
:

G
in

i
in

d
ic

es
a
n
d

fo
r

u
se

r
m

o
d
el

s
o
rd

er
ed

b
y

M
A

P
a
n
d

R
A

fo
r

(a
)(

b
)

T
V

w
it

h
5

to
p
ic

s
(c

)(
d
)

L
D

A
1

w
it

h
4

to
p
ic

s.
(S

o
m

e
li
n
es

a
re

ov
er

la
p
p
in

g
a
s

a
re

su
lt

o
f

sa
m

e
d
o
cu

m
en

ts
fo

u
n
d

a
t

th
e

p
o
si

ti
o
n
s.

)

87

Chapter 6. Results and Discussion

Still, no general combination of topic extraction and clustering stands out as
a obvious choice, as both algorithms and topic extractions methods yield vary-
ing results depending on parameters. Though, on specific parameters some of
them do seem promising. As just discussed, the purely topic based models do
have potential, but there are also well performing models incorporating clustering.
LDA+KMEANS4 and LDA+KMEANS1 both have an acceptable performance, and
might have the advantage of recommending a broader range of relevant documents
to supporting exploration, although this might affect the scores negatively as con-
firmation or revoke of false positives and negatives is inapplicable. However, tuning
the parameters must be done cautiously, as the ones resulting in best predictions
not may be representative for the general selection process. LDA+KMEANS4 was
one of the models filtered out based on C-H and Silhouette coefficient, but picked
manually from qualitative evaluation, indicating need for more sophisticated ways
to evaluate the clusterings quantitatively.

The two best performing TopicVec models with respect to MAP and RA are
presented in 6.22. The two models are very different, with TV+KMEANS1 achieving
a high value for MAP with 5 topics and k equal to 3 and the TV+KMEANS2
achieving a relatively high value for RA with 40 topics and 40 clusters. The first
model was chosen due to its best performing clustering metrics. Though in line
with the clustering metrics, it is somewhat surprising that k=3 performs the best
as it is below the expected number of found categories, as well as the number of
well-defined topics found with 5 topic embeddings (4).

The second topic embedding model, TV+KMEANS2, achieved bad cluster met-
rics values, but was chosen despite of this, due to the qualitative attributes of the
TopicVec model at t = 40 and to assure sufficient span of values k to observe
trends in clusterings. Looking at 6.23, the topic embedding models also display
the behavioural tendency of high MAP values indicating a few good predictions
early in the list, while the bulk of relevant documents are placed in the lower half
of the recommendation list. Despite gaining considerably worse metrics for both
clustering and MAP during prediction, the TV+KMEANS2 qualitatively appears
superior. The model has a significantly larger portion of the relevant documents
presented in the first half of the recommendation list. As with several other models
seen in 6.23, TV+KMEANS2 has an area between the low percentile and ∼ 10− 15
percentile which appears to have considerably less relevant recommendations.

Looking at some additional prediction results from topic embedding models,
found in A.31, a general pattern of increasing k’s leading to decrease in MAP and
increase in RA can be observed. This could be an indicator of higher values for
k providing better user models, as intuitively expected, and that the clustering
metrics are merely favouring clusters which does not facilitate more nuanced user
models.

6.5 Discussion Summary

This chapter has presented and compared experiment results in detail, introducing
findings, challenges, and subjects for improvement. We have employed traditional,

88

6.5 Discussion Summary

scalable clustering methods for detection of topical communities on documents
modeled by traditional LDA and topic embedding, in order to provide nuanced
user models for improvement of recommendations, especially for newly introduced
items.

One of the main objectives, and challenges, throughout the experiments has
been optimizing unsupervised training models across different sub-goals to meet
the prediction end goal. Parameter choices become difficult, as available metrics
may not provide a correct picture of the quality of the results when moving forward
to the next step, or appear contradicting. One challenge observed, is eliciting the
best topical clusters for the explicit purpose of user recommendation. And in turn,
the learning objectives for topic embeddings and topic modeling may not provide
the optimal results for the purpose of clustering either, especially for topic embed-
ding which is traditionally tested on tasks such as classification. The alignment of
goals across technologies in the different steps may be complicated, and discerning
the optimal solutions for the next step while relying on unsupervised training can
be difficult. When using traditional topic modeling, selections of lower-quality com-
munities sometimes yielded better prediction results, highlighting that community
detection can prioritize qualities which are not appropriate or optimal for predic-
tion. This was also observed when using topic embedding, where some models
with qualitatively chosen topic embeddings combined with lower-performing clus-
terings yielded prediction results that are preferable in a news recommendation
case, compared to models with more optimal clustering metrics.

Other challenges emphasized during the experiments, are the variety of diffi-
culties faced concerning data set limitations. Preserving the imbalanced category
distribution to better mirror the real news domain seemingly has negative effects
on some of the clusterings where the large entertainment category dominates, and
smaller categories, like health, are sometimes not represented. At the same time,
we see that the topic modeling manages to split these large categories into sub-
categories, and undersampling larger categories to obtain balance in the data set
introduces the risk of weakening or removing such subcategories. Performance
changes in relation to the number of topics elicited were not consistent across the
topic modeling methods either, indicating that optimal training sets may vary in
size and category distribution, making it difficult to make such adaptions.

Observations were also made comparing the language in the official news domain
to internet forums’ less formal nature. Despite discussing the same topics and
having forum specific stop words removed, some notable deviations were found,
which may lead to extra noise in the data. We see that despite the News Aggregator
data set being larger than the Reddit data sets, the latter has almost twice as
many unique and total words outside of the word embedding vocabulary than the
first many with very low support count. While some may be specific terms just
not contained in the original word embedding, many are likely slang terms and
misspellings not captured in the forum stop word removal. These are words that
will not be of use in the topic embedding, and many will likely become noise in
LDA too. Reddit also has many very short texts and very frequent use of words
such as ”help” and ”thanks” in posts of people asking questions etc, becoming a

89

Chapter 6. Results and Discussion

dominant feature here while being less relevant for the news domain. In addition,
the appearance threshold for infrequent terms to be removed is set to 5, which may
cause removal of significant specialized key terms.

Despite only the Reddit data sets being available for predictions, some overly
deviating results were found between data sets before this step. The clustering
results for Reddit and News Aggregator data sets when using topic embedding had
vastly different metrics compared to the variation when using traditional topic mod-
eling. A mentioned earlier, the Reddit data sets yielding higher clustering values
than the News Aggregator data set does not need to indicate that the predictions
made on the latter would be of poorer quality. In fact, it could be a consequence
of so many words being lost in the preprocessing step of removing words out of the
vocabulary, resulting in even shorter documents, that documents become harder to
differenciate. This highlights the need for further experiments on the method, and
potentially the methods would perform better on a real news data set considering
NLP and content quality.

Nevertheless these challenges propagating into the previously discussed opti-
mization problems, some of the methods do seem be able to generate useful models,
which can be seen from the prediction results. The results show that exploiting
semantic analysis to dimensionality reduce vocabulary to topics improves the cold
item prediction process significantly, even though further dimensionality reduction
through topical community detection did not make as much improvement with
given data. As seen, this may stem in a numerous reason. One not discussed, but
mentioned briefly, is the preference function which may be too discriminative. A
customized decay rate or time slice could be added to reduce the effect of accumu-
lation of common clusters, strengthening rare clusters which are currently being
suppressed. Additionally, a function to aid useful recommendations for users show-
ing interest in only small clusters (rarely having new objects for recommendation)
should be considered. Further, as discussed in section 3.4, this require a sophisti-
cated method, whereas methods to merely disfavor older instances is not sufficient,
and even low or no decay rate provide better prediction abilities at times. While
initial experiments on updating word embeddings while maintaining alignment of
topics embedded in the same space, were not successful enough to warrant further
research in the context of this thesis, the subject could justify additional inves-
tigation. This could allow for alignment considerations and incremental updates
within the scope of the topic embedder.

Furthermore the results must be seen in light of the data set deviating from
a real news recommendation scenario, both language wise and in terms of other
features, such as users’ read history, reading context, and background information
about users, like age and gender. Data sets with these kind of features are, as
discussed earlier, often difficult to obtain for a numerous reasons, such as privacy
and strategy. Additionaly, these features may even for private news providers be
difficult to obtain, especially due to demand for user consent as a result of privacy
regulations, such as General Data Protection Regulation (GDPR)2. Demanding
users to leave feedback is, as seen, in general a challenge, and assumptions made in

2https://gdpr-info.eu/

90

https://gdpr-info.eu/

6.5 Discussion Summary

the Reddit data sets differs from a real news domain by being based on comments
rather than users’ read history. This may result in more precise positive implicit
feedback in the Reddit data set, as a comment is more likely a stronger indication
of interest than visiting an article. On the other hand, the Reddit data sets lacks
the interest shown through clicks, and absence of activity might be punished too
hard, strengthened even more by new categories on Reddit being more difficult to
explore than in a regular news domain. Furthermore, evaluation in recommender
systems generally suffers from false negatives on items with absence of interaction,
which is especially relevant in the news domain due to it’s sparsity.

These differences are challenges that might affect the predictors in a real news
domain. Unfortunately, the prediction process was not tested on the News Aggre-
gator data set lacking user history, but traits of the deviations could be observed
in the sub processes, where different parameters were preferred for the different
data sets. The model is thus generally very dependant on the training set, as it
sets the basis for where future documents may be placed. This does however not
implicate that a predictor purely trained on news article would perform worse, and
an interesting improvement could be to attempt to connect the headlines in the
News Aggregator data to posts on Reddit to obtain user interactions. This and
other subjects for improvements will be further discussed in the final chapter next.

91

Chapter 7

Conclusion

This thesis addresses the problem of making useful predictions in the volatile and
sparse news domain by utilizing dimensionality reduction through semantic anal-
ysis, community detection, and user modeling, in order to overcome the lack of
sufficient user feedback. A pipeline of processes conducting these reductions has
been implemented, where detection of topical communities and generation of user
models has been constructed from both topic embedding and topic modeling. The
developed predictor models were applied in the user prediction phase, and results
have been compared and discussed. The following chapter will summarize the
contributions of this research by answering the introductory objectives listed and
presented in detail in section 1.3, before finally summing up the key challenges and
discuss suggestions to further work.

7.1 Research Contributions

The results discussed in chapter 6 indicate a notable gain from performing semantic
based dimensionality reduction in the prediction process. However, deviations and
limitations related to the data set are also observed, which might lead to deceptive
results in terms of the models’ quality and potential in the news domain. Despite
being inadequate to draw final conclusions about the models capability and per-
formance in a real news domain, the research gives useful insights on general key
problems in cold item recommendation, a topic of significant relevance in the news
domain. How the research meets the research objectives, will not be accounted for
in turn.

In answer to the first question, we have found that representation of documents
through semantic analysis can improve recommendations, being able to retrieve
topics of a finer granularity than the manually labeled, traditional news categories.
We have looked at how two different generative models that allows multiple labels
per article performs this task, namely generative topic modeling through LDA and
generative embeddings through TopicVec. When extracting item information, it
is important to generate a model which efficiently can infer identically formatted

93

Chapter 7. Conclusion

information for items introduced at a later time, for comparison purposes. These
models provide this on textual items through detecting common patterns in train-
ing, and applying them to unseen data to label them accordingly. This helps
alleviate the cold item-side issue, through item enriching at introduction time.

To deal with the sparsity issue, encompassed in the second research question,
dimensionality reduction is essential not only to reduce documents compositions of
abstract, semantic topics, but also to represent these in topical communities and
user models. By employing topic modeling, each document is given a set-length
vector which can be controlled by parameters. This allows documents to be rep-
resented in a meaningful manner, while avoiding excessively large representations
such as word count vectors. This way, documents can more efficiently be compared
to each other, making the clustering more efficient through dimensionality reduc-
tion, as well as making the clusters based on rich topical information. When adding
clustering, users are able to be described as a set-length vector representing their
activity in each community, allowing composite topical interests to be presented.
Using these clusters as a manner of representing users, significantly reduces their
size from traditional n-lenght vectors, where n is the size of the item vocabulary.
This has further positive effect on the efficiency, also encompassed in the second
research question.

In relation to the third research question, we use community detection in order
to represent more complex user interests. By topic modeling documents with the
generative LDA and TopicVec, we gain the ability to infer a new document’s topics
and attributes at introduction time. This aids in getting enough item informa-
tion to recommend items that would otherwise be considered cold through lack of
user history or descriptive labels. This is shown by predicting user interests for
items without user history attached to them. By grouping a number of documents
together, we also gain information about the collective tendencies in the cluster.
This is noted in the increase of performance when clustering compared to a simpler
pairing of documents which match a users average interests.

7.2 Further Work

As discussed in chapter 6, there are several challenges that could be addressed in
continuation of this work. In this section we will discuss interesting oppotunities
and possible improvements, and how important parts of the framework may be
modified and optimised.

One of the largest potential for improvements lie in the data set. The optimal
solution would be collecting sufficient articles and persistent user read history from
a publishing house over time to perform large-scale training and testing. This would
allow for more accurate training of the models, as well as providing an environment
for testing topic embedding alignment through word embedding updates. These
types of data sets are however difficult to come by, especially with GDPR leading
to companies enforcing stricter data collection and sharing policies.

If the lack of news domain data sets containing all article and user information
needed to perform further research persists, more domain specific subset selection

94

7.2 Further Work

and preprocessing should be employed to better simulate a real news setting. This
could include, in the case of the Reddit data set, doing more research into which
subreddits or sub-data sets which could have more appropriate user behaviour.
For preprocessing, removing specific words or documents which displays very dis-
tinct forum behavioural patterns could help. Actions such as this requires domain
knowledge within both news and forums, in order to approximate a news setting
without loosing information or substance contained in the original data set. Addi-
tionally, utilizing time stamps to test the models in a more realistic timeline would
an important step in evaluating its application in the news domain. This could be
done by sorting the data into training and testing sets by date, training on data
collected before a set date, and simulate a real-time publishing pace and sequence
when testing. This would also put higher weight on the importance of efficiency
and optimization of the methods.

The time aspect is also important in terms of evolution of communities and
interests. Indeed, identifying short term and long term interests could be helpful,
and some important challenges when dealing with long term interests is related to
drift of concepts and alignment issues. Over time the words identifying topics, and
hence communities may change, and when updating models, they need to be able to
be aligned. This is also important in terms of new words in the vocabulary. While
the updating of word embeddings to ensure alignment with topic embedding did
not provide promising results in this experiment setting, it may warrant further
research in long-term systems to discern whether there is a need for updates to
maintain usability, and how the new words eventually would be associated with
topics.

While this thesis has focused on the needs for articles to be recommendable
at system introduction time, it is also important to determine when it becomes
outdated for further recommendations. Handling news specific behavioural pat-
terns is difficult, but recognizing different types of articles through manual tags,
content or user behavioural patterns surrounding it, could assist in making better
recommendations based on more item-specific information. Discovering not only
topics, but also different types of articles such as interviews, traffic warnings and
breaking news, may assist in determining the rate at which an article’s interest
level is decaying at.

95

Comparison with Relevant Data Sets
Dataset Users Items Edges Density (%) Rating Scale
News Aggregator NA 422 419 NA NA
20 Newsgroups NA ∼ 20 000 NA NA
Reuters21578 NA 21 578 NA NA
reddit 33 079 390 831 2 478 733 0.02 Comment Counts
Last.fm 1 892 17 632 92 834 0.28 Play Counts
MovieLens 20M 138 493 27 278 20 000 263 0.52 [0.5-5]

Acronyms

AP Average Precision. 41, 86

BCD Block Coordinate Descent. 18, 33, 34

BoW Bag-of-Words. 32

C-H Calinski-Harabasz. 9, 33, 47, 58–60, 63, 65, 66, 80, 82, 83, 89

CB Content Based. 11, 25

CF Collaborative Filtering. 11, 25, 40

DBSCAN Density-Based Spatial Clustering of Applications with Noise. 8, 32

DL Deep Learning. 16, 17

GDPR General Data Protection Regulation. 91, 94

HDBSCAN Hierarchical Density-Based Spatial Clustering of Applications with
Noise. 32, 33, 46, 65, 66, 83, 85, 122

IDI Department of Computer Science. ii

IR Information Retrieval. 9, 11, 24

KL Kullback–Leibler. 46, 84

LCE Local Collective Embedding. 26, 27

LDA Latent Dirichlet Allocation. 5, 14, 15, 22, 23, 31, 32, 36, 40, 46, 54–57, 60,
73, 77, 80, 83, 89, 90, 93, 111–117

MAP Mean Average Precision. 12, 41, 49, 83, 85, 86, 88, 89

MF Matrix Factorization. 19, 22

99

ML Machine Learning. 13, 14

MRR Mean Reciprocal Rank. 13

NLP Natural Language Processing. 13, 14, 16, 19, 23, 91

NMF Nonnegative Matrix Factorization. 20

NN Neural Network. 16, 17

NNMA Nonnegative Matrix Approximation. 20

NTNU Norwegian University of Technology and Science. ii, 4

PCA Principal Component Analysis. 20, 33, 47, 54, 78

PR Percentile Ranking. 41

RA Ranking Accuracy. 27, 41, 49, 85, 86, 88, 89

RS Recommender System. 1, 4, 9–12, 26, 28, 37, 39, 43

SVD Singular Value Decomposition. 19, 22

t-SNE t-Distributed Stochastic Neighbor Embedding. 19, 33, 47, 54, 109

100

Bibliography

[1] Özlem Özgöbek, Jon Atle Gulla, and Riza Cenk Erdur. A survey on chal-
lenges and methods in news recommendation. In WEBIST (2), pages 278–
285, 2014.

[2] William Yardley and Richard Pérez-Peña. Seattle post-intelligencer shifts to
web only, Mar 2009.

[3] Pew Research Center. State of the news media 2016, Jun 2016.

[4] Robert Seamans and Feng Zhu. Responses to entry in multi-sided markets:
The impact of craigslist on local newspapers. Manage. Sci., 60(2):476–493,
February 2014.

[5] J. Ben Schafer, Joseph Konstan, and John Riedl. Recommender systems
in e-commerce. In Proceedings of the 1st ACM Conference on Electronic
Commerce, EC ’99, pages 158–166, New York, NY, USA, 1999. ACM.

[6] Gediminas Adomavicius and Alexander Tuzhilin. Toward the next generation
of recommender systems: A survey of the state-of-the-art and possible exten-
sions. IEEE transactions on knowledge and data engineering, 17(6):734–749,
2005.

[7] Jon Atle Gulla, Lemei Zhang, Peng Liu, Özlem Özgöbek, and Xiaomeng
Su. The adressa dataset for news recommendation. In Proceedings of the
International Conference on Web Intelligence, pages 1042–1048. ACM, 2017.

[8] Jiawei Han, Micheline Kamber, and Jian Pei. Data mining: concepts and
techniques (the morgan kaufmann series in data management systems). Mor-
gan Kaufmann, 2000.

[9] M Girvan. Girvan, m. & newman, m. e. j. community structure in social and
biological networks. proc. natl acad. sci. usa 99, 7821-7826. Proceedings of
the National Academy of Sciences of the United States of America, 99:7821,
2002.

[10] Bisma S Khan and Muaz A Niazi. Network community detection: A review
and visual survey. arXiv preprint arXiv:1708.00977, 2017.

101

[11] John A Hartigan. Clustering algorithms. 1975.

[12] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. A density-
based algorithm for discovering clusters in large spatial databases with noise.
In Kdd, volume 96, pages 226–231, 1996.

[13] Richard C Dubes. Cluster analysis and related issues. In Handbook of pattern
recognition and computer vision, pages 3–32. World Scientific, 1999.

[14] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. Unsupervised learn-
ing. In The elements of statistical learning, pages 485–585. Springer, 2009.

[15] Yanchi Liu, Zhongmou Li, Hui Xiong, Xuedong Gao, and Junjie Wu. Under-
standing of internal clustering validation measures. In Data Mining (ICDM),
2010 IEEE 10th International Conference on, pages 911–916. IEEE, 2010.

[16] Peter J Rousseeuw. Silhouettes: a graphical aid to the interpretation and
validation of cluster analysis. Journal of computational and applied mathe-
matics, 20:53–65, 1987.

[17] Ujjwal Maulik and Sanghamitra Bandyopadhyay. Performance evaluation
of some clustering algorithms and validity indices. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 24(12):1650–1654, 2002.

[18] Xujuan Zhou, Yue Xu, Yuefeng Li, Audun Josang, and Clive Cox. The
state-of-the-art in personalized recommender systems for social networking.
Artificial Intelligence Review, 37(2):119–132, Feb 2012.

[19] Xuehua Shen, Bin Tan, and ChengXiang Zhai. Implicit user modeling for
personalized search. In Proceedings of the 14th ACM International Confer-
ence on Information and Knowledge Management, CIKM ’05, pages 824–831,
New York, NY, USA, 2005. ACM.

[20] Peter Brusilovsky. Adaptive hypermedia. User Modeling and User-Adapted
Interaction, 11(1):87–110, Mar 2001.

[21] D. N. Chin. User modeling in uc, the unix consultant. SIGCHI Bull.,
17(4):24–28, April 1986.

[22] Douglas W. Oard and Jinmook Kim. Implicit feedback for recommendation
systems. 1998.

[23] Jonathan L. Herlocker, Joseph A. Konstan, Loren G. Terveen, and John T
Riedl. Evaluating collaborative filtering recommender systems. 2004.

[24] Masahiro Morita and Yoichi Shinoda. Information filtering based on user
behavior analysis and best match text retrieval. 1994.

[25] Florian Mueller and Andrea Lockerd. Cheese: tracking mouse movement
activity on websites, a tool for user modeling. 2001.

102

[26] F.O. Isinkaye, Y.O. Folajimi, and B.A. Ojokoh. Recommendation systems:
Principles, methods and evaluation. Egyptian Informatics Journal, 16(3):261
– 273, 2015.

[27] Robin Burke. Hybrid recommender systems: Survey and experiments. User
Modeling and User-Adapted Interaction, 12(4):331–370, Nov 2002.

[28] Michael J. Pazzani and Daniel Billsus. Content-Based Recommendation Sys-
tems, pages 325–341. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.

[29] Yifan Hu, Yehuda Koren, and Chris Volinsky. Collaborative filtering for
implicit feedback datasets. In Data Mining, 2008. ICDM’08. Eighth IEEE
International Conference on, pages 263–272. Ieee, 2008.

[30] Martin Saveski and Amin Mantrach. Item cold-start recommendations: learn-
ing local collective embeddings. In Proceedings of the 8th ACM Conference
on Recommender systems, pages 89–96. ACM, 2014.

[31] Diego Saez-Trumper, Daniele Quercia, and Jon Crowcroft. Ads and the city:
considering geographic distance goes a long way. In Proceedings of the sixth
ACM conference on Recommender systems, pages 187–194. ACM, 2012.

[32] Chowdhury Gobinda G. Natural language processing. Annual Review of
Information Science and Technology, 37(1):51–89.

[33] Jose Bernardo, M J Bayarri, J O Berger, A P Dawid, David Heckerman,
A F M Smith, Mike West, Christopher M Bishop, and Julia Lasserre. Gen-
erative or discriminative? getting the best of both worlds. 8:3–24, 01 2007.

[34] Tony Jebara and Alex P Pentland. Discriminative, generative and imitative
learning. PhD thesis, PhD thesis, Media laboratory, MIT, 2001.

[35] Kristina Toutanova. Competitive generative models with structure learning
for nlp classification tasks. In Proceedings of the 2006 Conference on Empir-
ical Methods in Natural Language Processing, pages 576–584. Association for
Computational Linguistics, 2006.

[36] Stanley F Chen and Joshua Goodman. An empirical study of smoothing
techniques for language modeling. Computer Speech & Language, 13(4):359–
394, 1999.

[37] Chengxiang Zhai and John Lafferty. A study of smoothing methods for
language models applied to ad hoc information retrieval. SIGIR Forum,
51(2):268–276, August 2017.

[38] David M. Blei. Probabilistic topic models. Commun. ACM, 55(4):77–84,
April 2012.

[39] Matus Telgarsky. Dirichlet draws are sparse with high probability. CoRR,
abs/1301.4917, 2013.

103

[40] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent dirichlet allo-
cation. J. Mach. Learn. Res., 3:993–1022, March 2003.

[41] Andrew Gelman. Prior Distribution, volume 3, pages 1634–1637. John Wiley
& Sons, Ltd, 2002.

[42] James M Dickey. Multiple hypergeometric functions: Probabilistic interpre-
tations and statistical uses. Journal of the American Statistical Association,
78(383):628–637, 1983.

[43] Jonathan Chang, Sean Gerrish, Chong Wang, Jordan L Boyd-Graber, and
David M Blei. Reading tea leaves: How humans interpret topic models. In
Advances in neural information processing systems, pages 288–296, 2009.

[44] Keith Stevens, Philip Kegelmeyer, David Andrzejewski, and David Buttler.
Exploring topic coherence over many models and many topics. In Proceedings
of the 2012 Joint Conference on Empirical Methods in Natural Language
Processing and Computational Natural Language Learning, pages 952–961.
Association for Computational Linguistics, 2012.

[45] Xitong Yang. Understanding the variational lower bound. 2017.

[46] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature,
521:436–444, 2015.

[47] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the
importance of initialization and momentum in deep learning. In International
conference on machine learning, pages 1139–1147, 2013.

[48] Maciej A. Mazurowski, Piotr A. Habas, Jacek M. Zurada, Joseph Y. Lo,
Jay A. Baker, and Georgia D. Tourassi. Training neural network classifiers for
medical decision making: The effects of imbalanced datasets on classification
performance. Neural Networks, 21(2):427 – 436, 2008. Advances in Neural
Networks Research: IJCNN ’07.

[49] J. Leonard and M.A. Kramer. Improvement of the backpropagation algorithm
for training neural networks. Computers & Chemical Engineering, 14(3):337
– 341, 1990.

[50] Ref. 106, p. 276-291.

[51] E. Barnard. Optimization for training neural nets. IEEE Transactions on
Neural Networks, 3(2):232–240, Mar 1992.

[52] Paul Tseng. Convergence of a block coordinate descent method for nondif-
ferentiable minimization. Journal of optimization theory and applications,
109(3):475–494, 2001.

[53] Ref. 106, p. 401.

[54] Ref. 106, p. 426.

104

[55] Ref. 106, p. 476-477.

[56] Shaohua Li, Jun Zhu, and Chunyan Miao. A generative word embedding
model and its low rank positive semidefinite solution. CoRR, abs/1508.03826,
2015.

[57] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne.
Journal of machine learning research, 9(Nov):2579–2605, 2008.

[58] Alan Julian Izenman. Linear discriminant analysis. In Modern multivariate
statistical techniques, pages 237–280. Springer, 2013.

[59] Svante Wold, Kim Esbensen, and Paul Geladi. Principal component analysis.
Chemometrics and intelligent laboratory systems, 2(1-3):37–52, 1987.

[60] Suvrit Sra and Inderjit S Dhillon. Generalized nonnegative matrix approxi-
mations with bregman divergences. In Advances in neural information pro-
cessing systems, pages 283–290, 2006.

[61] Jaewon Yang and Jure Leskovec. Community-affiliation graph model for
overlapping network community detection. In Data Mining (ICDM), 2012
IEEE 12th International Conference on, pages 1170–1175. IEEE, 2012.

[62] Hongyi Zhang, Irwin King, and Michael R Lyu. Incorporating implicit link
preference into overlapping community detection. In AAAI, pages 396–402,
2015.

[63] Jaegul Choo, Changhyun Lee, Chandan K Reddy, and Haesun Park. Utopian:
User-driven topic modeling based on interactive nonnegative matrix factoriza-
tion. IEEE transactions on visualization and computer graphics, 19(12):1992–
2001, 2013.

[64] Quanquan Gu, Jie Zhou, and Chris Ding. Collaborative filtering: Weighted
nonnegative matrix factorization incorporating user and item graphs. In
Proceedings of the 2010 SIAM International Conference on Data Mining,
pages 199–210. SIAM, 2010.

[65] Melissa Ailem, Aghiles Salah, and Mohamed Nadif. Non-negative matrix fac-
torization meets word embedding. In Proceedings of the 40th International
ACM SIGIR Conference on Research and Development in Information Re-
trieval, pages 1081–1084. ACM, 2017.

[66] Daniel D Lee and H Sebastian Seung. Learning the parts of objects by non-
negative matrix factorization. Nature, 401(6755):788, 1999.

[67] Liu Xin, E Haihong, Junde Song, Meina Song, and Junjie Tong. Book recom-
mendation based on community detection. In Joint International Conference
on Pervasive Computing and the Networked World, pages 364–373. Springer,
2013.

105

[68] Yuan Wen, Yun Liu, Zhen-Jiang Zhang, Fei Xiong, and Wei Cao. Compare
two community-based personalized information recommendation algorithms.
Physica A: Statistical Mechanics and its Applications, 398:199–209, 2014.

[69] Haoyuan Feng, Jin Tian, Harry Jiannan Wang, and Minqiang Li. Person-
alized recommendations based on time-weighted overlapping community de-
tection. Information & Management, 52(7):789–800, 2015.

[70] Guy Shani, Amnon Meisles, Yan Gleyzer, Lior Rokach, and David Ben-
Shimon. A stereotypes-based hybrid recommender system for media items.
2007.

[71] Haoyuan Feng, Jin Tian, Harry Jiannan Wang, and Minqiang Li. Person-
alized recommendations based on time-weighted overlapping community de-
tection. 2015.

[72] Kan Zhang, Zichao Zhang, Kaigui Bian, Jin Xu, and Jie Gao. A personalized
next-song recommendation system using community detection and markov
model. In Data Science in Cyberspace (DSC), 2017 IEEE Second Interna-
tional Conference on, pages 118–123. IEEE, 2017.

[73] Xin Li, Jun Yan, Weiguo Fan, Ning Liu, Shuicheng Yan, and Zheng Chen.
An online blog reading system by topic clustering and personalized ranking.
ACM Transactions on Internet Technology (TOIT), 9(3):9, 2009.

[74] Yonghui Wu, Yuxin Ding, Xiaolong Wang, and Jun Xu. A comparative
study of topic models for topic clustering of chinese web news. In Computer
Science and Information Technology (ICCSIT), 2010 3rd IEEE International
Conference on, volume 5, pages 236–240. IEEE, 2010.

[75] S. Hui and Z. Dechao. A weighted topical document embedding based clus-
tering method for news text. In 2016 IEEE Information Technology, Net-
working, Electronic and Automation Control Conference, pages 1060–1065,
May 2016.

[76] Guangxu Xun, Yaliang Li, Wayne Xin Zhao, Jing Gao, and Aidong Zhang. A
correlated topic model using word embeddings. In Proceedings of the 26th In-
ternational Joint Conference on Artificial Intelligence, IJCAI’17, pages 4207–
4213. AAAI Press, 2017.

[77] Guangxu Xun, Yaliang Li, Jing Gao, and Aidong Zhang. Collaboratively
improving topic discovery and word embeddings by coordinating global and
local contexts. In Proceedings of the 23rd ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, KDD ’17, pages 535–543,
New York, NY, USA, 2017. ACM.

[78] Junxian He, Zhiting Hu, Taylor Berg-Kirkpatrick, Ying Huang, and Eric P.
Xing. Efficient correlated topic modeling with topic embedding. CoRR,
abs/1707.00206, 2017.

106

[79] Quoc Le and Tomas Mikolov. Distributed representations of sentences and
documents. In International Conference on Machine Learning, pages 1188–
1196, 2014.

[80] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient esti-
mation of word representations in vector space. CoRR, abs/1301.3781, 2013.

[81] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean.
Distributed representations of words and phrases and their compositionality.
CoRR, abs/1310.4546, 2013.

[82] Shaohua Li, Tat-Seng Chua, Jun Zhu, and Chunyan Miao. Generative topic
embedding: a continuous representation of documents (extended version with
proofs). CoRR, abs/1606.02979, 2016.

[83] Dat Quoc Nguyen, Richard Billingsley, Lan Du, and Mark Johnson. Improv-
ing topic models with latent feature word representations. Transactions of
the Association for Computational Linguistics, 3:299–313, 2015.

[84] Rajarshi Das, Manzil Zaheer, and Chris Dyer. Gaussian lda for topic models
with word embeddings. In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Volume 1: Long Papers), vol-
ume 1, pages 795–804, 2015.

[85] Yang Liu, Zhiyuan Liu, Tat-Seng Chua, and Maosong Sun. Topical word
embeddings. In AAAI, pages 2418–2424, 2015.

[86] Makbule Gulcin Ozsoy. From word embeddings to item recommendation.
CoRR, abs/1601.01356, 2016.

[87] Flavian Vasile, Elena Smirnova, and Alexis Conneau. Meta-prod2vec -
product embeddings using side-information for recommendation. CoRR,
abs/1607.07326, 2016.

[88] Cataldo Musto, Giovanni Semeraro, Marco de Gemmis, and Pasquale Lops.
Learning word embeddings from wikipedia for content-based recommender
systems. In Nicola Ferro, Fabio Crestani, Marie-Francine Moens, Fabrizio
Mothe, Josiane Gianmaria Silvello, editors, Advances in Information Re-
trieval, pages 729–734, Cham, 2016. Springer International Publishing.

[89] Robinson Meyer. How many stories do newspapers publish per day?, May
2016.

[90] Olga Kouropteva, Oleg Okun, and Matti Pietikäinen. Incremental locally
linear embedding. Pattern Recognition, 38(10):1764 – 1767, 2005.

[91] D. Zhao and L. Yang. Incremental isometric embedding of high-dimensional
data using connected neighborhood graphs. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 31(1):86–98, Jan 2009.

107

[92] Elaine Rich. User modeling via stereotypes*. Cognitive Science, 3(4):329–354,
1979.

[93] Béatrice Lamche, Enrico Pollok, Wolfgang Wörndl, and Georg Groh. Eval-
uation the effectiveness of stereotype user models for recomenndations on
mobile devices. 2014.

[94] Duyu Tang, Bing Qin, Ting Liu, and Yuekui Yang. User modeling with neural
network for review rating prediction. In IJCAI, pages 1340–1346, 2015.

[95] Hongzhi Yin, Bin Cui, Ling Chen, Zhiting Hu, and Xiaofang Zhou. Dynamic
user modeling in social media systems. ACM Transactions on Information
Systems (TOIS), 33(3):10, 2015.

[96] Titipat Achakulvisut, Daniel E. Acuna, Tulakan Ruangrong, and Konrad
Kording. Science concierge: A fast content-based recommendation system
for scientific publications. PLOS ONE, 11(7):1–11, 07 2016.

[97] Chong Wang and David M. Blei. Collaborative topic modeling for recom-
mending scientific articles. In Proceedings of the 17th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, KDD ’11,
pages 448–456, New York, NY, USA, 2011. ACM.

[98] Hao Wang, Naiyan Wang, and Dit-Yan Yeung. Collaborative deep learning
for recommender systems. In Proceedings of the 21th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, KDD ’15,
pages 1235–1244, New York, NY, USA, 2015. ACM.

[99] Alexey Tsymbal. The problem of concept drift: definitions and related work.
2004.

[100] Yi Ding and Xue Li. Time weight collaborative filtering. In Proceedings
of the 14th ACM International Conference on Information and Knowledge
Management, CIKM ’05, pages 485–492, New York, NY, USA, 2005. ACM.

[101] Yehuda Koren. Collaborative filtering with temporal dynamics. Commun.
ACM, 53(4):89–97, April 2010.

[102] Ricardo JGB Campello, Davoud Moulavi, and Jörg Sander. Density-based
clustering based on hierarchical density estimates. In Pacific-Asia conference
on knowledge discovery and data mining, pages 160–172. Springer, 2013.

[103] Moshe Lichman. Uci machine learning repository
[http://archive.ics.uci.edu/ml], 2013. Irvine, CA: University of Califor-
nia, School of Information and Computer Science.

[104] Xiao Yang, Craig MacDonald, and Iadh Ounis. Using word embeddings in
twitter election classification. CoRR, abs/1606.07006, 2016.

[105] Omer Levy and Yoav Goldberg. Dependency-based word embeddings. In
ACL, 2014.

108

[106] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep
learning, volume 1. MIT press Cambridge, 2016.

109

Appendix

Figure A.1: An example of a typical t-SNE visualization. The following shows the
K-Means clustering with 4 clusters and 4 topics, which can also be seen figure 6.5.

111

Topic Embedding Components

The Dirichlet prior, applied to the document-topic mixing proportions
using the principle that one document normally incorporates a few topics [82]

.

The distribution parameter for inference
approximation of the mixing proportions.

A topic embedding contained in doc d.

Topic assignment for the focus word c in document d.

Each of the context words from w0 : wc−1 influencing the current
focus word wc, also presented in the word embedding model from [56].

The current context word, the only constantly observable variable.

Word Embedding Specific components

Embedding magnitude penalty coefficient [82].

Empirical bigram probabilities [82].

Word embedding of word si from the embedding vocabulary
trained by the method in [56].

The bigram residual of word si and sj, sometimes referred to as a bias term.
It captures noisy and non-linear interaction between the bigram words [56].

Table A.1: Description of TopicVec components.

Spec.
Server

1 2 3 4 5

OS
Ubuntu

16.04.4 LTS
Ubuntu

16.04.3 LTS
Ubuntu

16.04.3 LTS
Ubuntu

16.04.3 LTS
macOS High
Sierra10.13.3

CPU

Intel(R)
Xenon(R)

CPU E5-2640
v4@2.40GHz

Intel(R)
Core(TM)

i7-4470
CPU@340GHz

Intel(R)
Core(TM)
i5-3317U

CPU@1.70GHz

Intel(R)
Core(TM)

i7-4470
CPU@340GHz

Intel(R)
Core(TM)
i5-5257U

CPU@2.70GHz

Cores 4x10 2x4 2x2 2x4 2x2

Memory ∼132GB ∼16GB ∼8GB ∼16GB ∼8GB

Table A.2: Runtime Environments.

112

t
Perplexity Bounds Topic Coherence

Reddit

Post

Reddit

Title

News

Aggregator

Reddit

Post

Reddit

Title

News

Aggregator

Reddit

Post

Reddit

Title

News

Aggregator

4 2.15E-03 2.12E-03 3.00E-03 -3.53E+06 -3.54E+06 -4.22E+06 -4.28 -4.83 -7.3

5 2.05E-03 2.02E-03 2.92E-03 -3.56E+06 -3.57E+06 -4.24E+06 -4.12 -4.12 -7.31

10 1.85E-03 9.90E-04 1.31E-03 -3.62E+06 -4.74E+06 -6.18E+06 -5.38 -5.69 -7.31

15 1.71E-03 1.74E-03 2.74E-03 -3.67E+06 -3.66E+06 -4.28E+06 -5.85 -6.86 -7.9

20 1.61E-03 8.68E-04 1.26E-03 -3.70E+06 -4.83E+06 -6.21E+06 -6.42 -7.16 -8.7

30 1.48E-03 1.49E-03 2.54E-03 -3.75E+06 -3.75E+06 -4.34E+06 -7.26 -7.14 -8.62

40 1.39E-03 7.30E-04 1.19E-03 -3.78E+06 -4.95E+06 -6.26E+06 -8.09 -8.15 -9.36

50 1.34E-03 7.00E-04 1.16E-03 -3.81E+06 -4.98E+06 -6.29E+06 -8.51 -8.33 -9.71

60 1.32E-03 6.76E-04 1.16E-03 -3.82E+06 -5.00E+06 -6.29E+06 -9.56 -9.5 -9.75

70 1.27E-03 6.49E-04 1.14E-03 -3.84E+06 -5.03E+06 -6.31E+06 -10.01 -9.91 -10.52

80 3.89E-05 4.00E-05 5.42E-04 -5.84E+06 -5.83E+06 -5.47E+06 -10.56 -10.93 -11.07

90 4.03E-06 2.34E-08 1.72E-07 -7.15E+06 -1.20E+07 -1.45E+07 -11.22 -10.83 -11.52

100 2.06E-06 2.07E-06 5.94E-05 -7.54E+06 -7.53E+06 -7.07E+06 -11.66 -11.76 -11.98

110 1.04E-06 2.10E-09 2.29E-08 -7.93E+06 -1.37E+07 -1.64E+07 -11.94 -12.13 -11.97

120 5.36E-07 6.41E-10 8.32E-09 -8.31E+06 -1.45E+07 -1.73E+07 -12.31 -12.6 -12.03

130 2.72E-07 1.94E-10 3.00E-09 -8.70E+06 -1.53E+07 -1.83E+07 -12.92 -12.68 -12.51

140 1.39E-07 5.74E-11 1.09E-09 -9.09E+06 -1.62E+07 -1.92E+07 -13.42 -13.25 -12.66

150 7.14E-08 1.75E-11 4.00E-10 -9.47E+06 -1.70E+07 -2.01E+07 -13.72 -13.5 -12.84

160 3.64E-08 5.14E-12 1.43E-10 -9.86E+06 -1.78E+07 -2.11E+07 -13.79 -13.47 -13.25

170 1.86E-08 1.57E-12 5.28E-11 -1.02E+07 -1.86E+07 -2.20E+07 -13.72 -14.02 -13.12

180 9.50E-09 4.71E-13 1.89E-11 -1.06E+07 -1.95E+07 -2.30E+07 -14.24 -13.88 -13.37

190 4.81E-09 1.41E-13 6.88E-12 -1.10E+07 -2.03E+07 -2.39E+07 -14.45 -14.23 -13.54

200 2.47E-09 4.25E-14 2.48E-12 -1.14E+07 -2.11E+07 -2.49E+07 -14.55 -14.38 -13.85

210 1.25E-09 1.29E-14 9.03E-13 -1.18E+07 -2.19E+07 -2.58E+07 -14.99 -14.52 -14.08

220 6.45E-10 3.86E-15 3.24E-13 -1.22E+07 -2.27E+07 -2.68E+07 -14.83 -14.75 -14.24

230 3.27E-10 1.16E-15 1.17E-13 -1.26E+07 -2.36E+07 -2.77E+07 -15.03 -14.86 -14.3

Table A.3: LDA topic modeling results

113

Data Set Topic 1 Topic 2 Topic 3 Topic 4

Reddit Posts

rock thank movie watch

music help online film

electronic question video song

hip hop try free india

world lose weight review cover

live start hip hop movie

star war month company play

love time release live

indie rock body hd band

alternative eat service rock

Reddit Title

trailer cover online movie

film hip hop review electronic

technology rock time watch

movie metal video start

internet friend buy download

home game throne service tv

time love pop star war

data cut help hd

video music house india

help episode business story

News Aggregator

justin bieber microsoft game throne kim kardashian

lindsay lohan report samsung galaxy miley cyrus

video award google glass kanye west

selena gomez china time star war

samsung galaxy apple company help

gm recall confirm woman captain america

american idol rise feature box office

fan bank death report

deal list facebook video

kim kardashian increase april dance star

Table A.4: Top 10 terms for LDA topic models with four topics where sub-terms in
discovered bi-grams are not kept in documents.

114

Reddit Posts
Topic 1 Topic 2 Topic 3 Topic 4 Topic 5
eat music market service business
weight rock heart google technology
lose song pain company product
fat album news watch android
body band repair season free
cut indie deeper episode system
time video disease business apple
diet pop cause sale phone
calorie listen garage door internet iphone
gain play update change benefit
Topic 6 Topic 7 Topic 8 Topic 9 Topic 10
scientist help post hiphop watch
life guy thread rap trailer
brain look top godzilla stream
science thank online metal hd
cell start link monster live
time people jam game throne download
human try jersey west movie online
researcher fitness list post amaze
child idea tv green spider
discover gym comment star online free
Topic 11 Topic 12 Topic 13 Topic 14 Topic 15
lift house loan movie cosmos
squat official remix film design
workout world cash watch website
lb mobile credit song film
set video air time th
weight care street scene development
exercise bank medium love oscar
start window wall favorite real
routine winter social character gt
bench captain america car remember oddysey

Table A.5: Top 10 terms extracted with LDA topic model run on Reddit Posts data set
with 15 topics.

115

Reddit Title
Topic 1 Topic 2 Topic 3 Topic 4 Topic 5
workout tv hd song train
lift phone movie online love facebook
change garage door real rock scientist
look service online free house system
book window film cover build
routine age song music video cell
climate michael winter pop apple
freeze door repair captain america rise life
drink amazon box official time
time series free download acoustic create
Topic 6 Topic 7 Topic 8 Topic 9 Topic 10
lose hip hop health movie diet
car rap fitness favorite question
star war squat help film weight loss
episode android body time solar
find app care guy break
self market fat awesome cut
service io tip theme song
drive business home playlist obat
customer form check exercise song eat
city beat weight robot clean
Topic 11 Topic 12 Topic 13 Topic 14 Topic 15
trailer advice amaze game business
loan world future pop service
internet team metal album company
cash heart day indie rock design
official trade past live website
short cover release review credit
neutrality cheap song folk development
wall food glass punk free
financial girl spider country godzilla
true stock pop alternative solution

Table A.6: Top 10 terms extracted with LDA topic models run on reddit data set with
15 topics.

116

News Aggregator
Topic 1 Topic 2 Topic 3 Topic 4 Topic 5
stock season game throne apple facebook
rate voice court samsung galaxy future
market tesla box launch day
data fire tv iphone internet
dollar bachelorette justin bieber android user
feed finale dance miley cyrus past
euro surface season htc health
miss spider office release watch
gain walk home google chris
ecb time video smartphone celebrate
Topic 6 Topic 7 Topic 8 Topic 9 Topic 10
google woman microsoft cancer kim kardashian
meet drug deal report wed
story fda mobile mar video
mother lindsay lohan tax test kanye west
white risk window record earth
io fcc billion climate change music
app neutrality china obama photo
late trailer mers ebay cover
harry heart roll top discover
gay link russia american idol marry
Topic 11 Topic 12 Topic 13 Topic 14 Topic 15
movie bank oil apple sale
amazon ebola rise beyonce heartbleed
buy xbox profit beat car
google outbreak fall jay ban
award share challenge job month
service captain america age cut google glass
review target china space stock
star war moon drop run million
stream update alibaba attack bug
drive george dy buy march

Table A.7: Top 10 terms extracted with LDA topic models run on News Aggregator
data set with 15 topics.

117

Reddit Titles
Topic 65 Topic 49 Topic 14 Topic 36 Topic 76
electronic apple workout people guy
list director lift blue bad
remix screen mobile bank exercise
title direct phone shoot get
cloud billion version key credit
pick marvel uk strong theater
host government co feedback protect
march difference paper smoke help
bölüm choice apps virus manage
drum standard decide bird publish
Topic 34 Topic 78 Topic 71 Topic 69 Topic 7
gym muscle world rock scene
million gain power indie product
design bench cheap band social
website press team pop medium
web develop jersey album go
die smartphone energy folk security
drop growth solar song disney
return fuck produce share week
voice kid national love studio
beautiful process oil mean solution
Topic 8 Topic 48 Topic 39 Topic 21 Topic 27
favorite music break price find
post video hour financial app
jam weight cause dream news
summer lose lb charge android
soul listen blood sun launch
song loss fun offer update
time space patent dog hate
leak fall effective teach store
barbell official equipment core io
spend vote beginner decision genre

Table A.8: Top 10 terms for then 15 most significant topics extracted with LDA topic
model run on reddit title data set with 80 topics.

118

News Aggregator
Topic 57 Topic 20 Topic 59 Topic 39 Topic 65
record game death lead office
break season voice smartphone box
reach throne continue online age
fast finale happy tweet girl
hollywood recap williams support baby
level kill pharrell store biggest
dy episode moment amazon transformer
researcher spoiler video image pregnant
reduce network west propose human
rooney harris weather forget hack
Topic 19 Topic 22 Topic 79 Topic 70 Topic 74
family bieber price april watch
bachelorette justin sale house dog
htc love rise quarter texas
steal selena home white bear
andi gomez profit six scene
france view earn kick watchdog
pm late fall marriage hike
ape secret gas johnson highlight
learn reason street field trailer
prevent prince jump nd video
Topic 54 Topic 26 Topic 55 Topic 56 Topic 43
feed charge car review tech
move acquire drive movie ipo
tesla surge ecb future alibaba
model social europe day file
improve medium trial lg boost
yellen meteor policy past mark
word acquisition oscar ready scientist
toyota shower self perform local
worry check community hope bnp
shock directv draghi performance guilty

Table A.9: Top 10 terms for then 15 most significant topics extracted with LDA topic
model run on News Aggregator data set with 80 topics.

119

Table A.10: K-Means with Euclidian distance. (Displayed below.)

Parameters Reddit Posts Reddit Title News Aggregator
topics k Silhouette C-H Silhouette C-H Silhouette C-H
4 4 -0.01 2.05 -0.01 0.28 3.92 -0.03
4 5 -0.01 1.02 -0.01 0.62 4.90 -0.03
4 10 -0.02 0.83 -0.03 0.77 9.80 -0.04
4 20 -0.05 0.77 -0.05 0.94 19.60 -0.07
4 30 -0.06 0.76 -0.06 0.71 29.40 -0.08
4 40 -0.08 0.76 -0.08 0.82 39.20 -0.10
4 50 -0.09 0.71 -0.09 0.82 -0.08 0.78
4 60 -0.10 0.69 -0.10 0.73 58.80 -0.12
4 70 -0.12 0.75 -0.12 0.91 68.60 -0.14
4 80 -0.14 0.82 -0.14 0.92 78.40 -0.16
4 90 -0.14 1.05 -0.15 0.91 88.20 -0.16
4 100 -0.17 1.07 -0.16 0.95 98.00 -0.19
5 5 -0.01 1.29 -0.02 0.95 4.90 -0.03
5 10 -0.02 2.01 -0.04 0.60 9.80 -0.04
5 20 -0.04 1.34 -0.06 0.60 19.60 -0.06
5 30 -0.05 1.00 -0.09 0.90 29.40 -0.07
5 40 -0.08 1.10 -0.08 0.89 39.20 -0.10
5 50 -0.07 0.87 -0.14 0.91 49.00 -0.09
5 60 -0.10 0.92 -0.11 0.86 58.80 -0.12
5 70 -0.11 0.92 -0.17 0.69 68.60 -0.13
5 80 -0.11 0.98 -0.19 0.9 78.40 -0.13
5 90 -0.14 0.88 -0.14 0.7 88.20 -0.16
5 100 -0.13 1.02 -0.22 0.73 98.00 -0.15
15 5 -0.01 0.42 -0.02 0.3 4.90 -0.03
15 10 -0.02 0.33 -0.04 1.92 9.80 -0.04
15 20 -0.03 0.68 -0.07 1.25 -0.04 1.18
15 30 -0.04 0.72 -0.09 1.33 -0.07 1.14
15 40 -0.07 0.77 -0.08 1.62 -0.15 1.28
15 50 -0.07 0.68 -0.13 1.22 -0.16 1.16
15 60 -0.09 0.95 -0.1 1.31 -0.1 1.17
15 70 -0.09 1.06 -0.16 1.00 -0.08 1.05
15 80 -0.09 0.97 -0.17 1.22 -0.1 1.19
15 90 -0.12 1.20 -0.13 1.11 -0.13 1.13
15 100 -0.10 0.90 -0.19 1.11 -0.19 1.19
40 5 -0.01 0.88 -0.02 0.36 -0.03 1.79
40 10 -0.03 0.71 -0.04 1.2 -0.04 1.52
40 20 -0.04 1.28 -0.07 0.93 -0.06 1.43
40 30 -0.05 0.79 -0.09 0.76 -0.08 1.16
40 40 -0.07 0.88 -0.07 0.98 -0.07 1.36
40 50 -0.07 1 -0.14 0.84 -0.12 1.47
40 60 -0.09 0.95 -0.11 0.93 -0.10 1.44
40 70 -0.09 0.97 -0.17 1.18 -0.15 1.37
40 80 -0.1 1.18 -0.2 0.92 -0.18 1.36
40 90 -0.13 1.1 -0.15 0.92 -0.13 1.56
40 100 -0.13 1.05 -0.22 0.94 -0.20 1.32
80 5 -0.02 0.84 -0.03 0.38 -0.03 1.28
80 10 -0.03 0.59 -0.05 0.8 -0.06 2.08
80 20 -0.04 1.3 -0.07 1.21 -0.08 1.03
80 30 -0.05 1.03 -0.11 0.84 -0.10 1.02
80 40 -0.08 0.95 -0.09 0.87 -0.08 1.34

Continued on next page

120

Table A.10 – continued from previous page

Parameters Reddit Posts Reddit Title News Aggregator
80 50 -0.08 0.84 -0.14 0.69 -0.13 1.17
80 60 -0.10 0.97 -0.11 0.94 -0.10 1.21
80 70 -0.10 1.13 -0.18 0.93 -0.15 0.94
80 80 -0.10 0.97 -0.20 0.74 -0.17 1.04
80 90 -0.13 0.92 -0.15 0.76 -0.13 1.09
80 100 -0.13 1.05 -0.25 0.92 -0.19 1.09
100 5 -0.02 1.58 -0.03 2.58 -0.03 0.99
100 10 -0.03 1.47 -0.06 0.82 -0.05 1.79
100 20 -0.04 2.01 -0.08 0.73 -0.08 1.10
100 30 -0.06 1.05 -0.11 0.59 -0.09 0.87
100 40 -0.08 1.10 -0.08 0.81 -0.08 1.04
100 50 -0.08 0.96 -0.15 0.97 -0.13 1.00
100 60 -0.10 0.97 -0.1 1.12 -0.10 1.22
100 70 -0.09 0.89 -0.18 0.98 -0.16 1.12
100 80 -0.09 0.85 -0.19 1.15 -0.17 0.94
100 90 -0.14 0.81 -0.14 1.06 -0.13 1.05
100 100 -0.12 0.80 -0.22 0.93 -0.19 1.01

Table A.11: k -Means with KL Divergence. (Displayed below.)

Parameters Reddit Posts Reddit Title News Aggregator
topics k Silhouette C-H Silhouette C-H Silhouette C-H
4 4 -0.01 0.08 -0.03 0.72 -0.01 0.83
4 5 -0.07 0.07 -0.03 0.58 -0.01 1.37
4 10 -0.04 0.92 -0.15 0.59 -0.11 1.32
4 20 -0.23 0.76 -0.11 1.00 -0.12 2.02
4 30 -0.42 1.03 -0.06 0.41 -0.14 1.22
4 40 -0.30 0.99 -0.29 1.07 -0.22 1.13
4 50 -0.12 0.43 -0.26 0.68 -0.14 0.89
4 60 -0.39 1.00 -0.41 0.62 -0.37 0.89
4 70 -0.36 1.24 -0.25 0.79 -0.19 1.35
4 80 -0.36 0.87 -0.41 0.85 -0.38 1.08
4 90 -0.31 0.32 -0.31 1.12 -0.38 0.85
4 100 -0.43 0.94 -0.35 0.83 -0.29 1.15
5 4 -0.01 2.03 -0.01 1.46 -0.01 2.79
5 5 -0.01 1.28 -0.01 0.73 -0.01 1.85
5 10 -0.18 1.41 -0.06 1.37 -0.12 1.24
5 20 -0.13 0.78 -0.25 0.82 -0.19 1.26
5 30 -0.28 1.29 -0.24 0.71 -0.41 0.98
5 40 -0.42 1.21 -0.43 0.89 -0.48 1.03
5 50 -0.55 0.9 -0.2 0.85 -0.47 0.94
5 60 -0.51 1.00 -0.56 0.79 -0.29 1.06
5 70 -0.52 0.89 -0.71 0.87 -0.47 1.23
5 80 -0.44 0.73 -0.47 1.01 -0.74 1.02
5 90 -0.57 1.00 -0.64 0.67 -0.57 1.13
5 100 -0.52 0.99 -0.62 1.09 -0.43 1.11
15 4 -0.01 2.04 -0.01 2.21 -0.01 1.1
15 5 -0.01 0.39 -0.01 1.65 -0.01 1.14
15 10 -0.03 0.8 -0.03 1.90 -0.02 2.10
15 20 -0.11 0.68 -0.07 1.26 -0.04 0.68
15 30 -0.12 0.98 -0.12 0.88 -0.21 1.32

Continued on next page

121

Table A.11 – continued from previous page

Parameters Reddit Posts Reddit Title News Aggregator
15 40 -0.22 1.02 -0.29 1.7 -0.44 1.00
15 50 -0.5 1.12 -0.43 1.37 -0.4 0.99
15 60 -0.61 1.16 -0.4 1.03 -0.52 1.07
15 70 -0.65 0.91 -0.57 1.18 -0.5 0.79
15 80 -0.66 0.85 -0.63 0.96 -0.67 1.40
15 90 -0.65 0.87 -0.67 0.98 -0.71 1.13
15 100 -0.71 0.73 -0.67 0.98 -0.77 1.08
40 4 -0.01 0.52 -0.01 0.4 -0.01 0.15
40 5 -0.01 0.72 -0.01 1.18 -0.01 0.59
40 10 -0.02 0.88 -0.03 0.58 -0.03 1.81
40 20 -0.04 1.38 -0.05 0.93 -0.05 1.43
40 30 -0.06 1.04 -0.08 1.24 -0.07 0.89
40 40 -0.08 0.94 -0.11 1.54 -0.09 1.21
40 50 -0.17 1.09 -0.11 0.65 -0.12 1.38
40 60 -0.14 0.98 -0.14 1.21 -0.14 0.76
40 70 -0.15 0.91 -0.15 0.89 -0.18 1.38
40 80 -0.19 1.2 -0.27 0.70 -0.18 1.31
40 90 -0.32 0.87 -0.23 0.77 -0.28 0.98
40 100 -0.41 0.91 -0.43 0.87 -0.44 1.38
80 4 -0.01 1.98 0.09 1.98 -0.04 0.54
80 5 -0.01 0.34 0.09 0.32 -0.01 0.34
80 10 -0.02 1.61 0.08 1.61 -0.01 0.44
80 20 -0.04 0.56 0.06 0.55 -0.02 1.50
80 30 -0.06 1.57 0.04 1.57 -0.05 0.98
80 40 -0.07 0.79 0.03 0.78 -0.07 0.99
80 50 -0.09 0.83 0.01 0.82 -0.08 0.87
80 60 -0.11 0.91 -0.01 0.90 -0.09 0.97
80 70 -0.12 0.88 -0.02 0.87 -0.11 1.21
80 80 -0.15 1.09 -0.05 1.08 -0.13 1.23
80 90 -0.19 1.24 -0.09 1.23 -0.15 1.09
80 100 -0.17 1.16 -0.07 1.15 -0.16 1.03
100 4 -0.01 0.27 0.09 0.25 -0.01 0.83
100 5 -0.01 1.78 0.09 1.78 -0.01 0.94
100 10 -0.02 0.48 0.08 0.46 -0.02 1.00
100 20 -0.04 0.73 0.06 0.72 -0.04 1.00
100 30 -0.06 1.22 0.04 1.21 -0.06 1.1
100 40 -0.07 0.79 0.03 0.78 -0.07 1.28
100 50 -0.08 1.23 0.02 1.22 -0.08 0.81
100 60 -0.1 1.00 0.00 0.99 -0.09 0.71
100 70 -0.12 1.15 -0.02 1.14 -0.1 1.11
100 80 -0.12 0.89 -0.02 0.88 -0.12 1.12
100 90 -0.14 1.36 -0.04 1.35 -0.15 1.17
100 100 -0.16 0.96 -0.06 0.95 -0.14 1.03

122

Figure A.2: k -Means clustering
run with k=4 and KL distances on
documents with 15 topics from the
Reddit Titles data set.

Figure A.3: Word clouds for each
cluster in model from figure A.2.

Figure A.4: k -Means clustering
run with 5 clusters and euclidian
distances on documents with 100
topics from the Reddit Titles data
set.

Figure A.5: Word clouds for each
cluster in model from figure A.4.

123

Table A.12: HDBSCAN. (Displayed below.)

Parameters Reddit Posts Reddit Title News Aggregator
t s c Silhouette C-H Silhouette C-H Silhouette C-H
4 5 5 -0.76 1.02 -0.85 1.00 -0.72 1.02
4 5 10 -0.85 1.00 -0.93 1.00 -0.82 1.02
4 5 15 -0.9 0.96 -0.96 1.00 -0.87 1.04
4 10 5 -0.88 1.01 -0.93 0.96 -0.86 1.05
4 10 10 -0.9 1.00 -0.95 0.96 -0.88 1.05
4 10 15 -0.93 1.01 -0.97 0.98 -0.91 1.05
5 5 5 -0.74 0.98 -0.89 0.98 -0.69 1.01
5 5 10 -0.83 0.99 -0.95 0.97 -0.79 1.02
5 5 15 -0.89 0.96 -0.98 0.96 -0.87 1.05
5 10 5 -0.86 0.99 -0.95 0.98 -0.82 1.01
5 10 10 -0.89 0.99 -0.97 0.96 -0.85 1.02
5 10 15 -0.92 0.99 -0.98 0.95 -0.91 1.03
15 5 5 -0.74 1.00 -0.88 1.00 -0.64 1.01
15 5 10 -0.83 1.00 -0.94 0.99 -0.75 1.02
15 5 15 -0.89 0.98 -0.97 1.01 -0.85 1.01
15 10 5 -0.86 1.01 -0.95 1.00 -0.81 1.03
15 10 10 -0.88 1.00 -0.96 1.00 -0.83 1.02
15 10 15 -0.91 1.00 -0.98 1.00 -0.88 1.01
40 5 5 -0.84 0.99 -0.91 0.98 -0.83 0.98
40 5 10 -0.9 0.99 -0.97 0.96 -0.89 0.97
40 5 15 -0.93 0.98 -0.98 0.91 -0.93 0.99
40 10 5 -0.92 0.99 -0.97 0.95 -0.92 0.97
40 10 10 -0.93 0.98 -0.98 0.96 -0.93 0.98
40 10 15 -0.94 0.97 -0.98 0.89 -0.95 1.03
80 5 5 -0.85 1.04 -0.91 1.04 -0.83 1.02
80 5 10 -0.91 1.05 -0.96 1.06 -0.9 0.97
80 5 15 -0.94 1.03 -0.98 1.11 -0.93 0.96
80 10 5 -0.92 1.01 -0.96 1.31 -0.92 0.97
80 10 10 -0.93 1.01 -0.97 1.34 -0.94 0.98
80 10 15 -0.95 1.03 -0.98 1.45 -0.96 1.00
100 5 5 -0.86 1.13 -0.91 1.87 -0.82 1.11
100 5 10 -0.91 1.05 -0.96 1.91 -0.89 1.05
100 5 15 -0.95 1.08 -0.98 2.22 -0.93 1.03
100 10 5 -0.92 1.37 -0.96 3.82 -0.91 1.20
100 10 10 -0.94 1.31 -0.97 4.39 -0.93 1.17
100 10 15 -0.96 1.3 -0.98 6.19 -0.95 1.18

124

Threshold
Window

Size

Average

Similarity

Minimum

Similarity

Maximum

Similarity
Median

Positive

similarities

Negative

Similarities

100

3 0.11687 -0.37818 0.59561 0.10915 152 625.00 27 376.00

6 0.12267 -0.39351 0.60494 0.11609 154 806.00 25 195.00

12 0.11868 -0.38232 0.65753 0.11243 155 450.00 24 551.00

24 0.11540 -0.38207 0.70625 0.10867 154 664.00 25 337.00

300

3 0.11686 -0.37818 0.59561 0.10915 152 624.00 27 276.00

6 0.12267 -0.39351 0.60494 0.11609 154 805.00 25 195.00

12 0.11868 -0.38232 0.58683 0.11243 155 449.00 24 551.00

24 0.11540 -0.38207 0.58607 0.10867 154 663.00 25 337.00

400

3 0.11686 -0.37818 0.59561 0.10915 152 624.00 27 376.00

6 0.12267 -0.39351 0.60494 0.11609 154 805.00 25 195.00

12 0.11868 -0.38232 0.58683 0.11243 155 499.00 24 551.00

24 0.11540 -0.38207 0.58607 0.10867 154 663.00 25 337.00

Table A.13: Brexit embedding statisticsacross window sizes and threshold

Threshold
Window

Size

Average

Similarity

Minimum

Similarity

Maximum

Similarity
Median

Positive

Similarities

Negative

Similarities

100

3 0.11993 -0.33085 0.91757 0.11591 156 578.00 23 425.00

6 0.11685 -0.32295 0.94184 0.10977 155 839.00 24 164.00

12 0.10902 -0.29563 0.96905 0.10151 155 461.00 24 542.00

24 0.11093 -0.30915 0.97441 0.10270 155 349.00 24 609.00

300

3 0.11973 -0.33063 0.63630 0.11561 156 452.00 23 548.00

6 0.11689 -0.32386 0.64181 0.10971 155 690.00 24 310.00

12 0.10906 -0.29618 0.67332 0.10149 155 386.00 24 614.00

24 0.11093 -0.30964 0.67557 0.10267 155 349.00 24 651.00

400

3 0.11973 -0.33063 0.63630 0.11561 156 452.00 23 548.00

6 0.11689 -0.32386 0.64181 0.10971 155 690.00 24 310.00

12 0.10906 -0.29618 0.67332 0.10149 155 386.00 24 614.00

24 0.11093 -0.30964 0.67557 0.10267 155 349.00 24 651.00

1000

3 0.09530 -0.37711 0.96551 0.08265 138 289.00 41 712.00

6 0.10056 -0.36964 0.98063 0.08879 144 934.00 35 067.00

12 0.09784 -0.33292 0.98927 0.08770 148 732.00 31 269.00

1200

3 0.09529 -0.37711 0.69213 0.08265 138 288.00 41 712.00

6 0.10055 -0.36964 0.67135 0.08879 144 933.00 35 067.00

12 0.09783 -0.33292 0.69721 0.08770 148 731.00 31 269.00

1500

3 0.10511 -0.35231 0.68865 0.09433 145 468.00 34 352.0

6 0.10649 -0.35487 0.66798 0.09573 148 865.00 31 135.00

12 0.10177 -0.32320 0.69332 0.09229 151 253.00 28 747.00

Table A.14: Ransomware embedding statistics across window sizes and thresholds.

125

Word
Position

#1 #2 #3 #4 #5

americawinter movie newsarama grindhouse killzone scifi

amazespider amaze spider newsarama homestar tmnt

alternativerock rock alternative indie punk pop

altrock rock alt punk indie pop

bodyfat weight bodyweight fat human’s swimmer’s

captainamerica movie comicbook newsarama grindhouse homefront

dayfuture past future recapping scariest movie

deadlifts squat dumbbells deadlift lifter flexing

formcheck deadlift dumbbells watch squat tweak

futurepast past movie recapping gametrailers featurettes

heyguy thank please your how’s want

gamethrone throne baldurs lufia laharl kahless

garagedoor repair repairs maintenance repairing repaired

imgur closeup doorknob image pics door’s

indierock rock indie punk pop grunge

megashare movie online movies video gamezebo

movieonline online streaming hd video niconico

moviewatch online watch video datapiff gamezebo

musicvideo video music videos soundtrack youtube

obat *indonesian
or malaysian

untuk hati dalam malam cinta

pushup dumbbell flexing workout workouts swimmer’s

samsunggalaxy glaxy samsung smartphone touchwiz nokia

socialmedium medium smes ecommerce leverages icts

srilanka pakistan bangladesh karachi pakistan’s lahore

starwar movie homefront trancers sequel flyboys

subreddit want anyone’s tweak thats please

watchmovie movie online movies video datpiff

weightlift workout workouts dumbbells treadmill leashes

weightloss loss weight cachexia dieting glycemic

youtu boombox whammy shorties animatic revved

Table A.15: The 30 words added to the word embedding for Reddit topics with new
embeddings 5 closest words.

126

Figure A.6: Visualisation of 30 closest words to Ransomware after dimension reduction,
with parameters window size = 3 and threshold = 1000.

Data set Reddit
News-

aggregator

Average
Similarity

0.08582 0.09064

Minimum
Similarity

-0.27153 -0.25728

Maximum
Similarity

0.69697 0.73680

Positive
Similarities

140 526.47 138 391.24

Negative
Similarities

39 473.53 41 608.76

Median
Similarity

0.07847 0.08430

Table A.17: Mean statistics for word embeddings added to vocabulary per dataset.

127

allergan gasprice lindsaylohan sethrogen
amazespider gmrecall malaysiaairline starwar
americanidol georgeclooney meteorshower stephencolbert
angelinajolie googleglass michaeljackson supremecourt
beyoncejay guardiangalaxy milakunis surfacepro

captainamerica gwynethpaltrow mileycyrus throneseason
chrisbrown heartbleed mortgagerate titanfall

climatechange heartbleedbug moviereview walkdead
dancestar homesale paulwalker wallstreet
dayfuture justinbieber robinthicke windowphone

ebolaoutbreak kanyewest rolfharris wrenscott
futurepast kardashiankanye rollstone zacefron
galaxynote kimkardashian samsunggalaxy
galaxytab khloe seasonepisode

gamethrone khloekardashian selenagomez

Table A.16: Words added when updating embedding vocabulary with the Newsaggre-
gator dataset at threshold = 500 with window size 3.

Figure A.7: k -Means clustering run with 5 clusters on documents with 40 topic embed-
dings from the reddit data set, reduced with pca.

128

Topic 6 Topic 13 Topic 15 Topic 14 Topic 11
10.0% 9.1% 8.9% 8.5% 8.3%

amp hip movie amaze rock

fat hop amp movie cover

eat pop watch start movie

weight song hd squat time

help rap apple music song

treatment trailer video train squat

protein indie phone watch gym

diet punk iphone amp watch

people workout car song video

free music film weight love

Topic 9 Topic 4 Topic 12 Topic 8 Topic 2
7.5% 7.0% 6.8% 6.2% 6.1%

movie amp rock movie mobile

tv song help watch alternative

song google hop film music

music movie eat business online

rock watch hip time internet

film weight hiphop weight service

time online song human market

favorite stream fat online free

google free try help company

hiphop lb feel design weight

Table A.18: Top 10 terms and total percentage of words associated with topics found
by TopicVec with t = 15 on Reddit Posts.

129

Topic 16 Topic 19 Topic 36 Topic 33 Topic 34
7.5% 6.5% 6.0% 5.6% 5.5%

amaze watch weight online hiphop

cover movie gain free hop

spider star strength google hip

rock cast body app rap

metal oscar lose mobile amp

tv film muscle stream electronic

pop michael lift service video

folk actor bulk software dj

dark episode cut download phone

beautiful fan start amazon rapper

Topic 14 Topic 13 Topic 40 Topic 3 Topic 21
4.5% 4.0% 3.9% 3.7% 3.4%

movie eat workout start protein

film fat cardio exercise calorie

character food fitness feel diet

star meal routine time creatine

actor diet gym run vitamin

episode chicken exercise routine supplement

director drink bodybuilding hour disease

imdb breakfast yoga month intake

series snack crossfit try nutrition

war meat run sleep whey

Table A.19: Top 10 terms and total percentage of words associated with topics found
by TopicVec with t = 40 on Reddit Posts.

130

Topic 7 Topic 74 Topic 64 Topic 2 Topic 26
4.2% 2.7% 2.5% 2.5% 2.1%

movie asam workout squat movie

tv cover watch punk review

hd song netflix hip film

online tweet stream hop remix

rock cancer leak edm girl

video feel sore hiphop teenage

amp people movie deadlift boy

official amp chernobyl rock turtle

download help telemarketing garage trailer

watch woman time daft shakey

Topic 77 Topic 70 Topic 30 Topic 9 Topic 54
2.1% 2.1% 2.0% 1.8% 1.7%

ft workout amaze weight rock

watch photo buy muscle amp

lift support help loss love

amaze hotmail system bodyweight song

rise maah eat repair feat

movie xperia computer body rap

wind program learn lift hiphop

squat dumbbell electronic cardio bad

gym chromecast jenis squat video

workout gmail sev lb que

Table A.20: Top 10 terms and total percentage of words associated with topics found
by TopicVec with t = 80 on Reddit Posts.

Topic # First run 5 Second run 5 First run 40 Second run 40

Iterations best run 65 70 194 229

Train precision

micro average

Recall: 0.697

F1: 0.697

Accuracy: 0.697

Recall: 0.695

F1:0.695

Accuracy: 0.695

Recall: 0.791

F1: 0.791

Accuracy: 0.791

Recall: 0.796

F1:0.796

Accuracy: 0.796

Train precision

macro average

Recall: 0.556

F1: 0.542

Accuracy: 0.697

Recall:0.640

F1:0.568

Accuracy: 0.695

Recall: 0.772

F1: 0.741

Accuracy: 0.791

Recall: 0.727

F1: 0.745

Accuracy: 0.796

Test precision

micro average

Recall: 0.749

F1: 0.749

Accuracy: 0.749

Recall:0.749

F1:0.749

Accuracy:0.749

Recall: 0.873

F1: 0.873

Accuracy: 0.873

Recall: 0.847

F1: 0.847

Accuracy: 0.847

Test precision

macro average

Recall: 0.624

F1: 0.609

Accuracy: 0.749

Recall: 0.682

F1:0.641

Accuracy:0.749

Recall: 0.780

F1: 0.791

Accuracy: 0.837

Recall: 0.795

F1: 0.805

Accuracy: 0.847

Table A.21: Performance on classification task for topic embeddings after word embed-
dings are updated from training corpus.

131

Topic 14 Topic 9 Topic 6 Topic 5 Topic 10
17.1% 12.6% 10.0% 9.5% 7.8%

kardashian billion price google amaze

kim million stock microsoft yellen

kanye buy dollar apple spider

miley share ecb android batman

cyrus growth market samsung superman

beyonce deal gain update harry

bieber sale rate iphone potter

justin gm inflation smartphone sequel

wed bank euro ipad comic

jay china tax htc rowling

Topic 2 Topic 8 Topic 3 Topic 13 Topic 7
6.8% 5.5% 5.5% 5.2% 4.8%

galaxy dy blood launch drug

apple episode trueblood malaysia cancer

ceo season moon plane fda

samsung throne ice court food

phone game cinco airline alzheimer

facebook star water mh treat

amazon vii white china autism

guardian war grey flight brain

review trailer red supreme alcohol

comcast mother mayo search treatment

Table A.22: Top 10 terms and total percentage of words associated with topics found
by TopicVec with t = 15 on News Aggragator.

132

Topic 30 Topic 11 Topic 16 Topic 23 Topic 12
9.7% 6.2% 6.1% 5.9% 4.6%

star bachelorette rate oil million

actor andi ebola stock deal

movie yellen risk gm billion

jolie coachella growth price bn

clooney gosling percent obamacare ipo

colbert dorfman cancer iraq stock

angelina ryan increase crude pay

george potter report market trade

rogen rowling rise gas bnp

tv emma unemployment recall price

Topic 7 Topic 19 Topic 13 Topic 17 Topic 6
4.1% 3.7% 3.4% 3.1% 3.0%

apple euro beyonce amazon season

google mortage cyrus xbox boxoffice

facebook ecb miley microsoft box

android eurozone bieber netflix record

twitter dollar jay buy recap

app bank justin prime office

phone rate tour stream captain

microsoft argentina selena service episode

ipad loan gomez ebay finale

io bln kanye console america

Table A.23: Top 10 terms and total percentage of words associated with topics found
by TopicVec with t = 40 on News Aggragator.

133

t k Silhouette C-H t k Silhouette C-H

5

3 0.87 237 264.19

15

3 0.86 184 865.84

4 0.83 239 977.27 4 0.81 175 075.25

5 0.77 231 858.39 5 0.74 160 303.42

10 0.65 185 237.88 10 0.61 112 603.29

20 0.32 161 965.16 15 0.30 91 126.27

30 0.28 152 548.54 20 0.28 79 904.75

40 0.28 141 592.09 30 0.24 68 037.84

50 0.28 133 461.41 50 0.20 55 333.80

70 0.24 122 592.47 70 0.17 49 255.04

80 0.24 119 454.71 80 0.17 46 625.36

100 0.23 111 254.96 100 0.16 42 347.04

t k Silhouette C-H t k Silhouette C-H

40

3 0.85 168 564.12

80

- - -

4 0.80 156 643.46 4 0.80 153 553.99

5 0.73 141 552.61 5 0.73 138 291.22

10 0.61 94 716.06 10 0.61 93 684.04

20 0.26 64 058.61 20 0.21 63 135.86

30 0.24 52 402.56 30 0.21 52 435.05

40 0.20 45 341.13 40 0.21 45 868.97

50 0.22 40 812.43 50 0.19 41 674.59

70 0.16 35 241.63 70 0.19 36 112.17

80 0.16 33 396.93 80 0.14 33 869.38

100 0.14 29 775.43 100 0.14 30 208.40

Table A.24: TopicVec clustering results for k -Means on Reddit Posts documents across
several values for k and t.

t=5 243 943 23 494 7 784 2 240 714 486 161 68 42 4

t=15 243 329 23 617 8 041 2 347 769 522 172 66 43 3

t=40 243 616 23 747 7 880 2 224 745 459 159 59 43 4

Table A.25: TopicVec cluster sizes for RedditPosts with k = 10 across topic embeddings.

134

t=5
k

Silhouette
Coefficient

C-H Index

3 0.32 348 858.11
4 0.29 311 166.90
5 0.28 283 059.56
10 0.25 254 901.03
20 0.21 207 029.35
30 0.20 178 462.07
40 0.19 158 844.15

Table A.26: TopicVec clustering results for k -Means with t=5 with News Aggregator
data set.

k No update Updated
Silhouette C-H Silhouette C-H

3 0.18 161 058.74 0.18 165 756.60
4 0.20 136 176.86 0.20 136 176.86
5 0.15 118 221.88 0.15 118 221.88
10 0.17 87 688.45 0.17 87 688.45
20 0.14 62 281.25 0.14 62 281.25
30 0.14 51 585.87 0.14 51 585.87
40 0.13 43 871.92 0.13 43 871.92

Table A.27: TopicVec clustering results for k -Means with t=40 on News Aggregator
data set, before and after updating the embedding vocabulary.

135

k=30 k=50
t=5 t=15 t=40 t=5 5=15 t=40

123 897 129 575 150 720 67 022 96 814 124 992
56 063 47 559 65 638 48 149 47 793 43 614
43 664 38 083 28 710 39 006 29 284 35 747
18 689 28 675 10 408 33 205 21 847 21 491
10 655 10 204 7 866 25 993 20 407 15 666
6 196 8 319 4 359 16 646 15 001 10 599
4 100 4 293 3 030 13 277 11 438 4 537
3 951 3 564 2 404 6 532 7 172 3 819
3 638 2 294 1 460 5 099 5 803 3 729
2 437 1 384 1 314 4 526 4 106 2 331
1 460 1 334 893 3 233 3 859 2 205
1 049 1 326 531 3000 2 565 1 418
777 546 451 2 844 2 390 1 274
729 495 326 1 482 1 456 1 166
407 445 232 1 465 1 414 1 153
370 249 148 1 214 1 151 786
183 213 125 998 1 020 578
178 95 115 901 882 565
168 77 49 700 826 530
103 54 40 699 766 503
72 45 33 534 759 398
39 29 25 346 370 349
31 21 22 332 284 254
24 16 13 320 265 231
21 11 11 276 204 192
14 10 4 201 163 163
10 8 4 194 153 110
6 7 2 145 118 90
4 3 2 118 99 87
1 2 1 105 96 87

81 75 41
58 69 41
55 55 29
31 46 28
30 45 28
27 39 23
19 23 17
13 15 16
13 13 11
10 10 8
7 9 7
7 8 6
6 6 4
5 6 4
4 4 2
3 2 2
2 2 2
1 2 1
1 1 1
1 1 1

Table A.28: Sorted sizes of clusters when clustering with k -Means on TopicVec docu-
ments, across values for t and k.

136

Topics Min samples Min cluster size Silhouette CH # Clusters # Outliers

5 1 5 -0.35 8.89 17 924 121 005

5 1 10 -0.52 14.02 5 549 146 961

5 1 15 -0.59 15.33 2 588 145 155

5 5 5 -0.70 4.17 4 990 212 488

5 5 10 -0.72 5.89 1 888 209 811

5 10 5 -0.75 5.45 1 539 210 383

5 10 10 -0.73 10.34 745 209 563

5 10 15 -0.71 11.6 450 197 306

5 10 20 -0.70 13.53 301 194 718

5 15 10 -0.72 9.33 435 202 701

5 15 15 -0.71 11.27 326 202 728

5 15 20 -0.69 15.09 233 201 502

5 20 10 -0.71 10.06 295 207 385

5 20 15 -0.70 12.68 234 206 919

5 20 20 -0.69 13.9 206 207 558

40 1 2 -0.52 1.00 52 669 134 215

40 1 5 -0.84 1.01 7 615 212 970

40 1 15 -0.96 1.02 927 243 249

40 5 10 0.97 0.99 744 259 144

Table A.29: TopicVec clustering results with HDBSCAN on Reddit Posts dataset across
topics and parameters.

Predictor MAP@3 MAP@5 MAP@10 MAP@30 MAP@TOTAL RA
LDA1 0.47 0.50 0.47 0.40 0.35 0.53
LDA2 0.48 0.50 0.48 0.41 0.30 0.35
LDA+HDBSCAN1 0.81 0.81 0.81 0.81 0.13 -0.28
LDA+HDBSCAN2 0.73 0.73 0.73 0.70 0.14 -0.18
LDA+KMEANS1 0.71 0.70 0.64 0.55 0.22 0.34
LDA+KMEANS2 0.33 0.34 0.33 0.30 0.14 0.00
LDA+KMEANS3 0.83 0.83 0.83 0.83 0.12 -0.28
LDA+KMEANS4 0.63 0.64 0.61 0.45 0.30 0.46
TV 0.57 0.57 0.54 0.46 0.38 0.52
TV+KMEANS1 0.87 0.86 0.87 0.87 0.13 0.64
TV+KMEANS2 0.41 0.41 0.40 0.32 0.20 0.22
ORIGINAL 0.22 0.25 0.26 0.22 0.15 0.01
RANDOM 0.24 0.27 0.28 0.23 0.15 0.00

Table A.30: Results from models selected for comparison after predicting documents to
users.

137

t k MAP@3 MAP@5 MAP@10 MAP@30 MAP@TOTAL RA
5 4 0.82 0.82 0.82 0.81 0.13 -0.27
5 5 0.73 0.73 0.74 0.72 0.13 -0.27
5 10 0.65 0.65 0.64 0.62 0.13 -0.17
5 40 0.22 0.22 0.22 0.20 0.13 -0.10
40 5 0.72 0.72 0.72 0.70 0.13 -0.23

Table A.31: TopicVec prediction evaluation results for models not selected for compar-
ison.

138

	Summary
	Summary in Norwegian
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Background and Motivation
	Research Context
	Research Questions
	Contributions
	Report Structure

	Theoretical Background
	Clustering
	User Modeling and User Behaviour Prediction
	Natural Language Processing
	Topic Modeling
	Deep Learning
	Dimensionality Reduction

	Related Works
	Topic Clustering
	Topic Embedding
	User Models in Recommendations
	User and Content Dynamicity
	Sparsity in Recommender Systems

	Methodology
	Implementation
	Experiment Methodology

	Experiments
	Prerequisites
	Experiments

	Results and Discussion
	Data Characteristics
	User Modeling with LDA and Clustering
	User Modeling with TopicVec and Clustering
	Prediction Results
	Discussion Summary

	Conclusion
	Research Contributions
	Further Work

	Bibliography
	Appendix

