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Abstract

This doctoral thesis consists of 6 separate research essays. The essays all use vari-

ous econometric modelling techniques to examine different aspects of the move

towards cleaner energy in Europe, from an economic point of view. In doing this,

this thesis makes contributions in two different fields. First, within the field of elec-

tricity price modelling. Every essay that is included in this thesis involves some

form of electricity price modelling. Most notable is the use of quantile regression

models. Here we develop a method where we look at the variations of the coef-

ficients themselves across different quantiles and time periods in order to identify

the main fundamental drivers behind extreme prices. Other modelling techniques

are also applied, where appropriate. Second, within the field of real options, where

we extend the literature by developing a real options model to choose between

two different locations for a transmission asset, as well as a real options model to

determine the economic value of investing in a large scale battery storage. These

are applications in technologies that tie directly into the role of dampening the

negative market effects caused by intermittent renewable energy.

In the first essay we develop a model using quantile regressions to examine the

effect of various price drivers on the price distribution in the UK electricity mar-

ket. Using this method, we are able to show how the sensitivity towards different

fundamental factors change across quantiles and time of day. We also demonstrate

how this framework can be used to perform a scenario analysis, by introducing

shocks to one fundamental variable at a time, ceteris paribus, we can model how

the price could be expected to react.

In the second essay we take the method we developed in the first paper and apply

it to the German electricity market. We specifically focus the analysis on the re-

newable energy sources, wind power and photovoltaic, in order to learn how the
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market reacts to the introduction of the new renewable energy sources. We find

some evidence that negative prices can be atrributed to the introduction of wind

power.

In the third essay we look more closely at the positive and negative price spikes

found in the German electricity market. We develop models to predict the prob-

ability of extreme price occurrences in the German day-ahead electricity market,

primarily in order to determine the effect the different fundamental variables have

on this probability. The main findings are that positive spikes are most closely

related to high demand, low supply and high prices the previous day. Negative

spikes, on the other hand, are related to low demand and high wind power produc-

tion levels.

The fourth essay aims to model the EPEX and Nord Pool electricity markets using

our quantile regression framework, in order to contrast and compare the effects

of the various price drivers between the two markets. This is motivated by the

plans to construct the NordLink cable, connecting the two markets. Our main

findings indicates that the two markets behave very differently. This supports the

hypothesis that connecting the two markets could both be economically viable and

also be beneficial in order to reduce the spikes and volatility in the German market

due to the differences in characteristics.

The fifth essay develops a real options model to evaluate two mutually exclusive

transmission cable projects. The two alternatives being considered are a cable con-

necting Norway and the UK and a cable connecting Norway and Germany. This

builds on the conclusions from essays 1-4, which together leads to a hypothesis

that such a transmission cable is beneficial.

In the sixth essay we develop a real options model to evaluate the profitability of

investing in a large scale battery bank. Having demonstrated the high volatility in

the EPEX in previous essays, this technology would be one way of mitigating that

problem while also potentially making a trading profit by buying low and selling

high. While our numbers specifically relate to a particular battery technology, the

same framework could also easily be applied to pump storage or similar projects.
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1. Introduction

The EU 2020 climate and energy package, enacted in legislation in 2009, sets three

key targets for a cleaner and greener energy production in the European Union by

2020.

1. A 20% cut in greenhouse gas emissions

2. 20% of EU energy production to come from renewable energy sources

3. A 20% improvement in energy efficiency

Each country within the EU has taken on binding annual targets, gradually ramping

up, so that the targets should be met by 2020.

In order to reach these climate goals set for 2020 and beyond, the European elec-

tricity markets have been rapidly transforming over the recent years, moving from

a mainly fossil-based production towards a cleaner energy-mix including techno-

logies such as wind, solar and hydro. Differences in climate, topology, available

natural resources and policy have led to different changes in the production mix in

different markets during the introduction of the new renewable technologies. Some

markets, such as the Nord Pool, has a large portion of their supply covered by hy-

dropower, an energy source that is easy to control and highly predictable. Other

markets, such as the German EPEX, rely heavily on intermittent energy sources

such as wind and photovoltaic. These energy sources are not controllable. Electric

power is only being produced when and where the wind is blowing or the sun is

shining. This may or may not occur at the same time as the demand for electri-

city is present. Because of these differences, one must assume that the challenges

facing the different markets regarding factors such as volatility, supply-security,

environmental concerns are different.

The purpose of this thesis is to investigate the consequences of the move towards

cleaner energy in Europe. In case we identify any negative consequences, we also
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2 Introduction

wish to look for possible solutions that can help mitigate these negative side ef-

fects. We will be investigating this phenomenon primarily through the lens of

econometric modelling. By creating statistical models for the price formation pro-

cess in several European electricity markets, we can isolate and investigate the

specific effect the renewable energy sources has on important variables such as

electricity price and price volatility. This will help us identify and quantify certain

negative externalities caused by transitioning to a renewable energy production.

Where significant problems are identified, we can also use econometric models to

estimate the economic viability of technology/infrastructure-based solutions that

could potentially help limit the negative effects. This leads to two main research

questions:

1. By modelling the electricity price formation in several European energy

markets, particularly by analyzing the fundamental factors and their role

in the price formation, can we identify some of the important challenges

introduced into these markets following the recent transition to renewable

energy?

2. Can we identify economically viable solutions that can help dampen the

negative impact of the introduction of renewable energy, possibly by looking

at how different markets can complement each other?

In doing this, this thesis makes contributions in two different fields. First, within

the field of electricity price modelling. Every essay that is included in this thesis in-

volves some form of electricity price modelling. Most notable is the use of quantile

regression models. Here we develop a method where we look at the variations of

the coefficients themselves across different quantiles and time periods in order to

identify the main fundamental drivers behind extreme prices. Other modelling

techniques are also applied, where appropriate. Second, within the field of real op-

tions, where we extend the literature by developing a real options model to choose

between two different locations for a transmission asset, as well as a real options

model to determine the economic value of investing in a large scale battery storage.

These are applications in technologies that tie directly into the role of dampening

the negative market effects caused by intermittent renewable energy.

1.1 Electricity price modelling

1.1.1 Litterature Review

The literature regarding modeling of electricity prices in various markets is extens-

ive. Much of the efforts of earlier work revolves around forecasting the future price

of electricity. Bunn and Karakatsani (2003) gives an overview of several methods
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used for forecasting electricity prices. Nogales et al. (2002) develop a dynamic

regression model and a transfer function model for accurate price forecasts in the

Spanish and the Californian electricity market. Torro (2007) further develops time

series modeling with an ARIMAX model to model weekly futures prices at the

Nord Pool market. Karakatsani and Bunn (2008a) critique Nogales et al. (2002),

among others, for limiting forecasting models to autoregressive effects and few

explanatory variables. They argue that such models are not appropriate for model-

ing complicated markets. To achieve good day-ahead forecasting performance for

electricity spot prices in the British market, they apply a time-varying parameter re-

gression model and a regime-switching model, including several explainatory vari-

ables. They conclude that the best predictive performance is obtained from models

involving market fundamentals, non-linearity, and time-varying coefficients.

Chen (2009) complements the research of Karakatsani and Bunn (2008a) by study-

ing the non-linear relationship between electricity prices and their fundamental

drivers in the British market. Acknowledging the limitations of regime-switching

models, Chen (2009) develops a structural finite mixture regression (SFMR) model.

Its forecasting performance outperforms regime-switching models and linear re-

gression models. The results also demonstrate that prices in different trading peri-

ods within a day are driven by different fundamental factors. Chen and Bunn

(2010) confirm these results using a logistic smooth transition regression (LSTR)

model for the British market.

Different modelling techniques have been applied in order to capture and model

the distribution of extreme price behaviour. Bunn et al. (2016) use a multifactor,

dynamic, quantile regression formulation and show how the price elasticities of

the fundamentals vary extensively across quantiles. However, the elastisities of

gas, coal and carbon prices exhibit no specific pattern across quantiles hence they

hardly have any influence on the peak price distribution. Thomas et al. (2011)

develop an autoregressive (AR) model to capture the effects of individual spikes

while controlling for seasonality in spot price returns in the Australian electricity

market. They conclude that incorporation of supply and demand information is

necessary to adequately capture negative prices. Christensen et al. (2012) extend

the research on AR models by looking at the prediction of spikes using an autore-

gressive conditional hazard (ACH) model on the Australian electricity market. As

a benchmark, the logit model is used, yielding similar results. Focusing on the

short-term forecasts of spike occurrences, Eichler et al. (2014) develop variations

of the dynamic binary response model, e.g. with regime-switching mechanisms,

proposed by Kauppi and Saikkonen (2008). The models have a superior fit on

the Australian market data and they suggest to replace the logistic function by

an asymmetric link function leading to significant improvements. Eichler et al.
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(2014) also extend the ACH model used in Christensen et al. (2012) by incorpor-

ating past price information with that improving the performance of the model.

Karakatsani and Bunn (2010) apply various statistical models to investigate the

relationship between fundamental drivers and electricity price volatility in the UK

market, which is a different piece of the puzzle for understanding extreme price

behaviour.

In the litterature, the focus has shifted from forecasting prices based on the entire

price distribution to isolating normal range prices from the price spikes. Byström

(2005) and Paraschiv et al. (2016) investigate the performance of Extreme Value

Theory (EVT) on accurately modeling and forecasting the extreme tails of elec-

tricity price distributions. Both studies conclude that EVT is a powerful tool for

this purpose. Lu et al. (2005), Zhao et al. (2007b) and Zhao et al. (2007a) model

normal and extreme prices separately to achieve more complete and robust mod-

els and more accurate forecasts. Zhao et al. (2007b) use a method based on data

mining by applying two algorithms to the data - support vector machine and prob-

ability classifier - to predict the spike occurrence. The results are highly accurate

and provide improved risk management practices related to extreme price predic-

tion, but provide limited economic insights. Higgs and Worthington (2008) study

the Australian spot electricity market, which exhibits frequent price spikes, and

employ three models to capture these effects; a stochastic, a mean-reverting and

a regime-switching part. The regime-switching model outperforms the other two

because the allowance of price spikes is better. A shortcoming of the model is

the unrealistic assumption of constant transition probabilities. Mount et al. (2006)

solves this issue by adjusting the regime-switching model by modeling the trans-

ition probabilities as a function of the load and/or the implicit reserve margin.

By modeling the volatile behaviour of the electricity prices in the Pennsylvania-

New Jersey-Maryland (PJM) Power Pool, they provide accurate spike predictions.

However, the model is dependent on precise reserve margin measurements, which

are not easily obtained.

Regime switching models are frequently used to model spike behaviour (Arvesen

et al. (2013), deJong and Huisman (2002), Keles et al. (2011), Weron et al. (2004),Weron

(2009), Weron and Misiorek (2005)). They allow the spot price to switch between

a base regime and higher/lower jump regimes. Paraschiv et al. (2015) propose

a regime-switching approach to simulate price paths and forecasts on the EPEX.

They extend the approach from Kovacevic and Paraschiv (2014) to include serial

dependencies and transition probability for spike clustering. Christensen et al.

(2009) perform a Poisson AR framework to identify spikes defined as threshold ex-

ceedances. Keles et al. (2011) consider positive price spikes and negative prices at

the EPEX by implementing a regime-switching model. All of the above-mentioned
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models focus mainly on positive spikes in markets dominated by conventional en-

ergy sources. Consequently, the models are not including the impact of renewable

energy production. Literature including the impact of renewable energy sources on

spikes and negative prices is limited. This particularly applies to negative prices,

which have become increasingly more common in latter years (Paraschiv et al.

(2014), Schneider (2011) and Keles et al. (2011)).

Huisman et al. (2013) investigate the effect of renewable energy sources on elec-

tricity prices indirectly by studying hydro power in the Nord Pool market. They

argue that theoretical and simulation studies show declining electricity prices when

introducing sustainable energy supply, but empirical studies supporting this result

are scarce. Paraschiv et al. (2014) investigate directly the influence of renewable

energy sources on the German electricity market. By analyzing the impact of wind

and photovoltaic on day-ahead spot prices at the EPEX, they conclude that the in-

troduction of renewable energy sources increase the extreme price behaviour and

influence the fuel mix for electricity production.

1.1.2 Quantile regression

In an economy heavily reliant on electricity, and where the market structure is be-

coming increasingly complex, considerable time and energy is devoted towards

understanding the electricity price formation. Electricity prices are characterized

by complicated non-linear relationships to fundamental variables (Chen and Bunn

(2010)), and the relationships are challenging to model. Bunn et al. (2016) intro-

duced quantile regression for modelling the electricity price. Whilst they demon-

strated the value of quantile models for Value-at-Risk forecasting, compared to the

benchmarks of GARCH and CAViAR methods, that study was a methodological

comparison and did not address in detail the distinctly different intraday charac-

teristics hour by hour of the price risk distribution. Yet it is well known that price

formation (and hence risk) varies systematically throughout the day with different

models generally being specified for peak, off-peak and mid-peak hours to reflect

the dynamics of load following and the various technologies setting the marginal

prices. With this in mind, it is an open question how the determinants of risk vary

on an intraday basis.

There is also a different strand of literature using quantile regressions to forecast

electricity prices, represented by works such as Nowotarski and Weron (2015) and

Maciejowska et al. (2016). Their approach differs from that of Bunn et al. in that

it uses quantile regression combine several point forecasting methods in order to

model a distribution over the individual point forecasts, creating a sort of ensemble

model. This is shown to produce more robust and accurate price forecasts, but it is

not designed to accurately model the underlying price distribution.
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For several agents in the energy market, such as consumers, suppliers, traders and

regulators, modelling the tails of price distributions is often more important than

formulating central expectations. Due to the sparseness of data in the tails and

the extreme sensitivity of the results to misspecification in the functional form of

the distribution, modelling can be difficult. Thus, robust parametric methods for

specifying predictive distributions (e.g. Guermat and Harris (2002b;a)), regime

switching models (eg. Dias and Ramos (2014), Arvesen et al. (2013)) as well

as semi-parametric formulations for estimating specific quantiles (e.g. Engle and

Manganelli (2004), Gerlach et al. (2011)), have characterized recent research.

Linear quantile regression was introduced by Koenker and Bassett Jr (1978), and

later described by Hao and Naiman (2007) and others. It offers a semi-parametric

formulation of the predictive distribution so that the quantiles of the distribution

can be estimated with distinct regressions. This makes it possible to estimate dif-

ferent coefficient values for the fundamental factors at different quantile levels.

As electricity prices are likely to have different sensitivities to fundamental vari-

ables across the price distribution, due to the non-linear properties of the merit

order curve, quantile regression is well suited for modelling the electricity prices.

Many different models have been developed to capture different price formation

processes for normal and extreme events. Karakatsani and Bunn (2008b) applied

a Markov regime-switching model, while Chen and Bunn (2010) used a smooth

transition logistic regression model.

With quantile regression we are able to model the quantiles directly, without any

assumptions about the distribution of the residuals. Electricity prices are character-

ized by high volatility, skewness, volatility clustering and large spikes. This highly

non-normal behavior of electricity prices makes a semi-parametric technique, such

as quantile regression, even more appealing. We are also able to investigate the re-

lationship between the dependent and independent variables across the entire dis-

tribution, and thus build up a more complete picture of how fundamental factors

affect the electricity price in various price ranges.

From a risk perspective we want to be able to estimate the tail dependencies ac-

curately and quantile regression works well for this purpose. Quantile regression

is closely related to value at risk in estimating the price at extreme quantiles. For

traders and risk managers it is thus a useful tool for assessing price risk and devel-

oping hedging strategies.

The quantile regression model is semi parametric, thus we do not make any as-

sumptions neither about the distribution of our data, nor about the residuals. Due

to the highly non-normal behavior of the electricity price, as well as time-varying

volatility, this is an advantage for our research. Significance testing of quantile
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regression is still very much in the exploratory stage, and no single approach has

yet gained widespread support. For further discussion, see Volgushev et al. (2013).

1.2 Summary of essays

1.2.1 Summary of essay 1 - Modeling the UK electricity price distributions
using quantile regression:

In this paper we develop fundamental quantile regression models for the UK elec-

tricity price in each trading period. Intraday properties of risk, as represented by

the predictive distribution rather than expected values, have previously not been

fully analyzed. The sample covers half hourly data from 2005 to 2012. From our

analysis we are able to show how the sensitivity towards different fundamental

factors changes across quantiles and time of day. In the UK the supply of electri-

city is to a large extent generated from coal and gas plants, thus the price of gas

and coal, as well as the carbon emission price, are included as fundamental factors

in our model. We also include the electricity price lagged by one day, as well as

demand and margin forecasts. We find that the sensitivities vary across the price

distribution. Our findings also suggest that the sensitivity to fundamental factors

exhibit intraday variation. We find that the sensitivity to gas relative to coal is

higher in high quantiles and lower in low quantiles, as well as some indications of

market power being exercised during peak hours. We have demonstrated a scen-

ario analysis based on the quantile regression models, showing how changes in the

values of the fundamentals influence the electricity price distribution.

Within the context of the dissertation, this paper serves as a methodological de-

velopment rather than an attempt to answer the research questions of the thesis

directly. The method we develop in this paper is something we use in several sub-

sequent papers in order to show the volatility effects of intermittent renewables in

the German electricity market.

The main contribution of this paper is developing a framework where we use

quantile regressions to examine the electricity intraday sensitivities of the elec-

tricity price to a number of price drivers across the whole price distribution.

1.2.2 Summary of essay 2 - Using quantile regression to analyze the effect
of renewables on EEX price formation:

This paper develops fundamental quantile regression models for the German elec-

tricity market. The main focus of this work is to analyze the impact of renewable

energies, wind and photovoltaic, on the formation of day-ahead electricity prices

for all trading periods in the EEX. We find that the renewable energy sources over-

all has a mild price dampening effect, and that the negative prices often attributed
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to wind power is a rare event that mainly occurs during night-time periods of un-

usually low price and demand.

This is a short conference paper in which we apply the methodology developed in

essay 1 to examine the renewable production in the German market, leading up to

the increased focus on this market in the remaining parts of the dissertation.

The main contribution of this paper is providing more insight into how the intro-

duction of new renewable energies is altering the behaviour of the price distribution

and increases the volatility.

1.2.3 Summary of essay 3 - Prediction of extreme price occurrences in the
German day-ahead electricity market:

Understanding the mechanisms that drive extreme negative and positive prices in

day-ahead electricity prices is crucial for managing risk and market design. In this

paper, we consider the problem of understanding how fundamental drivers impact

the probability of extreme price occurrences in the German day-ahead electricity

market. We develop models using fundamental variables to predict the probability

of extreme prices. The dynamics of negative prices and positive price spikes differ

greatly. Positive spikes are related to high demand, low supply, and high prices

the previous days, and mainly occur during the morning and afternoon peak hours.

Negative prices occur mainly during the night, and are closely related to low de-

mand combined with high wind production levels. Furthermore, we do a closer

analysis of how renewable energy sources, hereby photovoltaic and wind power,

impact the probability of negative prices and positive spikes. The models confirm

that extremely high and negative prices have different drivers, and that wind power

is particularly important in relation to negative price occurrences. The models cap-

ture the main drivers of both positive and negative extreme price occurrences, and

perform well with respect to accurately forecasting the probability with high levels

of confidence. Our results suggest that probability models are well suited to aid in

risk management for market participants in day-ahead electricity markets.

In the context of the thesis, this paper demonstrates how the German energy market

is experiencing large positive and negative spikes that are related to the introduc-

tion of renewable energy sources. The intermittent nature of wind- and solar-based

electricity generation makes it hard to match the supply and demand. The produc-

tion mix relies on a significant base load production coming from inflexible coal

power plants. There is not enough flexibility in the system to ramp the production

up or down in order to counteract the fluctuations from the renewables. This leads

to a fairly frequent worst case scenario of having to send power directly to the

ground, resulting in negative prices, or a shortage leading to a positive spike.
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The first contribution of this paper is estimating logit models for forecasting the

probability of an extreme price as a function of selected fundamental variables.

This analysis reveals which fundamental variables drive the probability of extreme

price occurrences and quantifies the impact on the probability of observing extreme

prices.

The second contribution of this paper is therefore a further exploration of how fore-

casts of photovoltaic and wind power production affect the probability of extreme

prices.

1.2.4 Summary of essay 4 - A Comparative Analysis of Price Drivers of Day-
Ahead Electricity Prices in EPEX and Nord Pool:

In this paper we analyze the fundamental drivers behind electricity spot prices in

Nord Pool and the German European Power Exchange (EPEX), and compare the

price formation dynamics in these two markets. The comparison is motivated by

the NordLink cable, which will connect Germany and Norway in 2020. It will ex-

ploit the differences in market characteristics, and is expected to reduce the price

spread and improve utilization of renewable energy sources. Our paper increases

the understanding of the market mechanisms, which is required by market parti-

cipants in order to adapt to the future changes.

Separate quantile regression models are estimated for each trading period to cap-

ture varying intraday properties of the electricity prices. We examine the price

formation dynamics across the entire distribution, and how it differs between Nord

Pool and EPEX.

The results show that the fundamental variables impact the two markets differently

and non-linearly throughout the trading day. Autoregressive effects are most in-

fluential in Nord Pool, together with demand and supply in the highest quantile.

Overall, most variables have a low price impact; this is likely due to the large

amount of flexible and stable hydro power which cancels out fluctuations in other

parameters. EPEX has a higher number of important price drivers across the price

distribution. Demand is the primary price determinant, while fossil fuel prices,

autoregressive effects, and wind power production also notably impact the price

formation. The energy mix characteristics are the likely reason for these differ-

ences, as EPEX is much more inflexible due to large-scale thermal production and

intermittent renewable energy.

In the greater context of the dissertation, this paper demonstrates empirically that

the two markets we analyze behave very differently. This leads us to a hypothesis

that connecting the two markets could potentially be beneficial in order to reduce

the volatility and spikes in the German market.
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This paper contributes to the research on fundamental electricity drivers in both

Nord Pool and EPEX, and provides a detailed analysis and comparison of the in-

traday price dynamics across the entire spot price distribution in these two markets.

1.2.5 Summary of essay 5 - Investment in Mutually Exclusive Transmission
Projects under Policy Uncertainty:

In this paper we evaluate mutually exclusive transmission projects under policy

and economic uncertainty. The alternatives being considered are transmission in-

vestment projects between Norway and Germany, and Norway and the UK. We

apply a real option valuation framework allowing the investor to choose the op-

timal time and location of the investment, and also how different conditions affect

the decision to invest in either of these two projects. The analysis shows that the

value of the option does not necessarily increase with volatility.

Within the context of the thesis, this paper demonstrates a framework for calcu-

lating the value of a transmission cable between the Nord Pool market and UK

or EPEX. This ties into essays 1-4 which together led to a hypothesis that such a

transmission asset would be beneficial also for the market stability and counteract-

ing the increased volatility in EPEX.

The main contribution of this paper is twofold. First, we apply real option analysis

to consider which geographical locations to connect via an underwater transmis-

sion cable. Second, our paper is one of the few to apply real option valuation to

transmission assets.

1.2.6 Summary of essay 6 - Investment in Electric Energy Storage Under
Uncertainty: A Real Options Approach:

In this paper we develop a real options approach to evaluate the profitability of

investing in a battery bank. The approach determines the optimal investment tim-

ing under conditions of uncertain future revenues and investment cost. It includes

time arbitrage of the spot price and profits by providing ancillary services. Current

studies of battery banks are limited, because they do not consider the uncertainty

and the possibility of operating in both markets at the same time. We confirm pre-

vious research in the sense that when a battery bank participates in the spot market

alone, the revenues are not sufficient to cover the initial investment cost. How-

ever, under the condition that the battery bank also can receive revenues from the

balancing market, both the net present value (NPV) and the real options value are

positive. The real options value is higher than the NPV, confirming the value of

flexible investment timing when both revenues and investment cost are uncertain.

In the context of the dissertation, a large scale battery storage facility would be
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able to counteract some of the issues we have detected in the EPEX market in

our fundamental models. The main problem there is that the intermittent nature

of wind in particular, and to some extent solar, makes it so that the supply of

electricity is often too high in periods of low demand and vice versa. Large scale

electricity storage would be able to capture the excess production in low demand

periods and deliver it to the market when the demand is higher rather than letting

electricity go to waste or having to sell it at very low prices. Furthermore, assuming

the existence of a transmission cable, as described in essay 4, the same framework

can be applied to a pump storage project.

The main contribution of this paper is a quantification of the value of investing in a

battery bank in a real options context.In addition, we use a state of the art MRS for

the spot price that captures the characteristics of the prices. We are also the first to

propose a MRS for the balancing price. Further, the approach for optimal hourly

dispatch of the battery bank includes participation in both the spot and balancing

market. Finally, the model takes into account the uncertainty of the investment

cost and the revenues by applying the real options framework.
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a b s t r a c t

In this paper we develop fundamental quantile regression models for the UK electricity price in each
trading period. Intraday properties of price risk, as represented by the predictive distribution rather than
expected values, have previously not been fully analyzed. The sample covers half hourly data from 2005
to 2012. From our analysis we are able to show how the sensitivity towards different fundamental factors
changes across quantiles and time of day. In the UK the supply of electricity is to a large extent generated
from coal and gas plants, thus the price of gas and coal, as well as the carbon emission price, are included
as fundamental factors in our model. We also include the electricity price lagged by one day, as well as
demand and margin forecasts. We find that the sensitivities vary across the price distribution. Our
findings also suggest that the sensitivity to fundamental factors exhibit intraday variation. We find that
the sensitivity to gas relative to coal is higher in high quantiles and lower in low quantiles, as well as
some indications of market power being exercised during peak hours. We have demonstrated a scenario
analysis based on the quantile regression models, showing how changes in the values of the funda-
mentals influence the electricity price distribution.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction and literature review

In an economy heavily reliant on electricity, and where the
market structure is becoming increasingly complex, considerable
time and energy is devoted towards understanding the electricity
price formation. Electricity prices are characterized by complicated
non-linear relationships to fundamental variables [4], and the re-
lationships are challenging to model. Bunn et al. [3] introduced
quantile regression for modeling the electricity price. Whilst they
demonstrated the value of quantile models for Value-at-Risk fore-
casting, compared to the benchmarks of GARCH and CAViAR
methods, that study was a methodological comparison and did not
address in detail the distinctly different intraday characteristics
hour by hour of the price risk distribution. Specifically, in that
study, only a single time series of prices at period 38 (GMT
18:30e19:00) was analyzed. Yet it is well known that price for-
mation (and hence risk) varies systematically throughout the day

with different models generally being specified for peak, off-peak
and mid-peak hours to reflect the dynamics of load following and
the various technologies setting the marginal prices. With this in
mind, it is an open question how the determinants of risk vary on
an intraday basis. In this study we address that question through
the application of multifactor, quantile regression on all 48 half
hourly prices from the GB market, across the range of quantiles
from 1% to 99%, estimated over the period 2005e2012. This rep-
resents a more complete analysis of the intraday price risks and
their separate drivers than has so far been undertaken.

For several agents in the energy market, such as consumers,
suppliers, traders and regulators, modeling the tails of price dis-
tributions is often more important than formulating central ex-
pectations. Due to the sparseness of data in the tails and the
extreme sensitivity of the results to misspecification in the func-
tional form of the distribution, modeling can be difficult. Thus,
robust parametric methods for specifying predictive distributions
(e.g. Refs. [8,9]), regime switching models (eg. Refs. [2,5]) as well as
semi-parametric formulations for estimating specific quantiles (e.g.
Refs. [6,7]), have characterized recent research.* Corresponding author.

E-mail address: lars.i.hagfors@iot.ntnu.no (L.I. Hagfors).
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Quantile regression, introduced by Koenker and Bassett [14];
offers a semi-parametric formulation of the predictive distribution
so that the quantiles of the distribution can be estimated with
distinct regressions. This makes it possible to estimate different
coefficient values for the fundamental factors at different quantile
levels. As electricity prices are likely to have different sensitivities
to fundamental variables across the price distribution, due to the
non-linear properties of the merit order curve, quantile regression
is well suited for modeling the electricity prices. Many different
models have been developed to capture different price formation
processes for normal and extreme events. Karakatsani and Bunn
[11] applied a Markov regime-switching model, while Chen and
Bunn [4] used a smooth transition logistic regression model.

With quantile regression we are able to model the quantiles
directly, without any assumptions about the distribution of the
residuals. Electricity prices are characterized by high volatility,
skewness, volatility clustering and large spikes. This highly non-
normal behavior of electricity prices makes a semi-parametric
technique, such as quantile regression, even more appealing.

By looking at each pre-defined trading period as an individual
market, we are able to reveal intraday variation in the price
sensitivity towards fundamental factors, as well as varying sensi-
tivities across the price distribution. We model the electricity price
as a function of the fundamental factors, resulting in a simple and
parsimonious model. The explanatory variables are the price of the
main input factors in production, gas and coal, the carbon emission
price, the lagged price as well as forecasts of demand and reserve
margin. By running separate models for each year, we find that the
sensitivities to the fundamental factors are stable over time,
implying that our model withstands time-varying structural
changes.

Further, we demonstrate a scenario analysis that market par-
ticipants can use as an example to plan for a range of scenarios
concerning the distribution of the price given different input ranges
for the fundamental variables. We can create a conditional distri-
bution of the electricity price by changing each fundamental factor,
ranging from its minimum to maximum value of our data set. This
enables us to detect the main risk drivers at different parts of the
day as well as at different parts of the price distribution. This in-
formation can be utilized by all market participants in order to
reduce risk and make better trading and bidding strategies.

This paper has the following structure: Section 2 presents the
background of the GB electricity market and Section 3 describes the
data set we use for our analysis. Section 4 contains a description of
the models we apply and the results are reported in Section 5. In
Section 6 you find our scenario analysis. In Section 7 we present our
conclusion.

2. Electricity market fundamentals

2.1. The GB electricity market

Since April 2005, under the BETTA (British Electricity Trading
and Transmission Arrangements), the electricity systems of En-
gland, Wales and Scotland have been integrated. The transmission
system is also linked to continental Europe through inter-
connectors to France and the Netherlands. Six major retail sup-
pliers, British Gas, SSE, Npower, Scottish Power, E.On and EDF, cover
most of the integrated generation market. However, different
suppliers operate at different times of the day, thus implying a less
competitive environment especially at times of scarcity. When
reservemargin is low, the competitionwill decrease and generators
with market power may create market prices substantially above
short-term marginal costs.

Electricity is a flow commodity and is sold and consumed
continuously and instantaneously. Traded products are therefore
defined and sold in the form of metered contracts for the constant
delivery of a certain amount of power over a specific period of time.
In GB the specified time period is half an hour, giving 48 periods
each day. Period 1 corresponds to GMT 00:00e00:30, period 2
corresponds to GMT 00:30e01:00 and so on, ending with period
48, corresponding to GMT 23:30e24:00. The APX (formerly UKPX)
is the spot market where power contracts are traded. Members
submit their bids electronically up to two days ahead of delivery,
and the market is cleared.

In the short run consumers are inelastic [12] and prices are thus
a function of demand, competition and costs. The electricity supply
curve is a merit order curve, where each plant's spot on the curve
represents the cost and capacity of the plant. The difference be-
tween costs is mainly due to technology and fuels used in pro-
duction. The plants with the lowest marginal costs, enter at the
lowest level of the curve. These are renewables and nuclear plants.
Coal fired plants follow, and together they cover base load, oper-
ating most of the time. At the right end of the curve, natural gas
enters through CCGT plants, which are fired up to cover peaks in
demand. CCGT plants are mostly powered using natural gas, but
they can also be fueled using coal and biomass, making them very
flexible.

2.2. Electricity price formation

We model the electricity price as a function of the fundamental
variables influencing the price.1,2 Naturally, the electricity price will
to a large extent depend on the price of the main fuels used in
production. In 2012 the electricity in Britain was generated from
coal (39%), gas (28%), nuclear (19%), renewables (11%) and other
sources (3%) [16]. Gas and coal are the two largest fuel sources and
are thus considered fundamental factors in our model. We have
chosen not to include renewables. The share was only 4% in 2005,
and even though it increased towards the end of our data set,
ending at 11% in 2012 [16], the share was still not sufficiently high
for it to have a large impact on prices in the whole timespanwe are
studying.3 Coal is the fuel that emits the most carbon, hence the
carbon emission price acts as an add-on to the coal price. For period
38 (GMT 18:30e19:00), Bunn et al. [3] found that the carbon
emission price did not significantly affect the electricity price. This
might, however, be different for other periods when coal comprises
a larger share of the fuels used in production. Further, we believe it
is still important to include the carbon emission price in the model,
because it is intended to affect the dynamics between coal and gas
based electricity generation.

The market clearing price is set at the level where demand
equals supply, thus demand has a crucial role in the price formation
process and should be a part of our model. Further, we include the
reserve margin forecast, as it reflects the level of scarcity in the
market. With inelastic demand the level of scarcity will be crucial

1 The explanatory variables used in this kind of model needs to be specifically
adapted to the market under investigation, as well as the period of the day that is
being modeled. If the input mix changes dramatically over time one should also
allow for time varying coefficients [17].

2 The model is built on observable variables for some fundamentals that might
influence the price formation. We acknowledge that there can be certain unob-
servable factors that we are unable to include in the model, and therefore we are
not able to fully explain the whole price formation.

3 The share of renewables, particularly wind, has increased significantly after
2012 in the UK. There is therefore a need to investigate specifically how the wind
production influences the energy price formation, similar to [10] who investigates
the influence on renewables on the price formation in the german energy market.
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for determining the price. We include the demand forecast and
reserve margin forecast made by the system operator. These fore-
casts are available the previous day and may be used by market
participants when submitting their bids. We expect the lagged
price, fuel prices and demand to have a positive effect on the
electricity price, whereas the margin level is expected to have a
negative effect. The sensitivity of the electricity price to each
fundamental variable, both across time and across quantiles, is
elaborated in the sections below.

2.2.1. Lagged price
High prices have a tendency to be followed with high prices [3].

Also, as prices approach marginal cost, we expect them to stabilize
at a certain level depending on the degree of market power in the
market. Market power can allow producers to keep prices high
enough to make a profit, but at the same time keep them suffi-
ciently low to prevent other producers, with technologies higher on
themerit order curve, to enter. Market power opens up possibilities
for repeated gaming [18], such as signaling between the producers
to keep prices above what can be explained by marginal costs. This
can be seen as a form of behavioral adaption and is reflected in a
high sensitivity to yesterday's price. Because high prices are asso-
ciated with situations with a strong degree of market power, we
expect to see sensitivity to lagged price increasing with higher
quantiles as well.

2.2.2. Gas price
We expect the sensitivity to changes in the gas price to be higher

in high demand periods, because gas is the main fuel used to cover
peak load (demand in excess of base load). Also, we expect elec-
tricity prices to bemore sensitive to changes in all fuel prices during
periods with high demand. This being because higher demand
gives producers greater capability to exercise market power, and
thus allow changes in fuel prices to be more directly reflected in
electricity prices. Sensitivity to the gas price should increase with
quantiles.

2.2.3. Coal price
Unlike gas, coal is mainly used to cover base load, and thus the

use of coal is relatively constant for the entire 24-h. However, as for
gas, we expect electricity prices to be more sensitive to changes in
all fuel prices during periods with high demand. This also means
that sensitivity to the coal price is not expected to increase across
quantiles in the same way as gas price sensitivity.

Because coal comprises a larger share in base load production
than gas, the electricity price should be more sensitive to changes
in coal price than gas price at low quantiles and in periods when
demand is low. Likewise, prices should be more sensitive to
changes in gas price than coal price for high quantiles and in pe-
riods when demand is high, since gas plants are fired up to cover
demand in excess of base load. We note that this to some extent is
determined by the relative price levels.

2.2.4. Carbon emission price
Because coal emits more carbon than gas when utilized in po-

wer production, the carbon emission fee will have a higher incre-
mental effect on the coal price compared to the gas price. The
intention is that in times when the coal price lies below the gas
price, the carbon emissions cost will rise to prevent substitution
from gas to coal. Therefore, we expect the variation in sensitivities
to carbon emission prices across periods and quantiles to follow the
same trend as sensitivity to the coal price. However, in our data the
carbon emissions price is very low, mainly due to too many issued
quotas, and thus it is unclear how it actually effects the electricity
price.

2.2.5. Demand forecast
We expect demand to have the largest effect on electricity prices

during the day and early evening, when the demand is higher and
the margin levels are lower. Hence, prices should also be more
sensitive to demand at higher quantiles. As the supply function is
convex, we expect this sensitivity to increase non-linearly with
higher quantiles. High prices are likely to coincide with lowmargin
levels, making the price very sensitive to changes in demand. Also,
an increase in demand above normal levels implies firing up
additional plants higher on the merit order curve, thus pushing
prices up.

2.2.6. Reserve margin forecast
A reduction in reserve margin will push prices upwards. We

expect prices to be more sensitive to margin levels in high demand
periods and for the higher quantiles for each period. These situa-
tions are likely to represent times of scarcity. Since demand is in-
elastic and producers have more capacity to exercise market power
at times of scarcity, changes in margin is expected to cause large
price changes.

3. Data

3.1. Variable description

Our data set spans from 22.04.2005 until 28.06.2012. Two
events make 2005 a natural starting point for our analysis. Firstly,
Scotland was included in the British wholesale electricity market
April 1, 2005. Secondly, the EU Emission Trading Scheme was
established on January 1, 2005, allowing carbon emission trading to
commence at the beginning of 2005. For electricity prices we have
data for the same period, although there are some observations
missing. For these periods we have interpolated linearly by taking
the average of the price the previous and next day, within the same
period. For fuel prices we have daily prices, weekends not included.
By the same principle as for electricity prices we have interpolated
using the prices quoted for Friday and Monday (Table 1).

Gas, coal and carbon emission prices are all lagged by one day in
the model. Demand forecasts and margin forecasts are both made
the previous day. This means that all variables used in the analysis
are known to the market before the power exchange closes for the
trading period concerned. This is done to ensure exogeneity of the
explanatory variables.

3.1.1. Power price
UKPX (now APX) is the day-ahead and on-the-day power ex-

change, allowing high frequency trading up to an hour before real
time. Every day consists of 48 periods of 30 min each. Prices are
quoted in £/MWh and represents the volume weighted prices for
each period as cleared on the exchange in the preceding 48 h.

3.1.2. Demand forecast
This forecast is made available the previous day by the System

Operator for each half-hourly trading period. It reflects available

Table 1
Data granularity of the explanatory variables in our model.

Variable Half-hourly Daily

Power prices X
Gas prices X
Coal prices X
Carbon emission prices X
Demand forecasts X
Reserve margin forecasts X
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market information and avoids the endogeneity issues concerning
simultaneity, which might be a problem when using actual de-
mand, since it is released the day before. The basis of which the
demand forecast is calculated, however, is not known to us. This
means that other endogeneity issues such as omitted variables and
measurement errors might still be a problem. However, because
demand is such an important price driver, we still choose to include
it in our model.

3.1.3. Reserve margin forecast
The System Operator makes forecasts of the available reserve

margin for each half-hourly trading period. This is defined as the
difference between the sum of the maximum available output ca-
pacities, as initially nominated by each generator prior to each
trading period, and the demand forecast described above.

3.1.4. Gas price
We use the daily UK natural gas spot price from the NBP (Na-

tional Balance Point). The price is quoted in £/MMBtu (MM British
Thermal Unit).

3.1.5. Coal price
We use the daily HWWI world index coal price. The price is

quoted in $/ton. We have translated it into £/ton, taking into ac-
count the $/£rate.

3.1.6. Carbon emission price
We use the EEX-EU carbon emissions allowance daily spot price.

The price is quoted inV/ton. We have translated it into £/ton, taking
into account the V/£rate.

3.2. Organization of data

In order to give an overview of the differences across periods in
our analysis we chose to divide the 48 periods into six groups each
describing a certain time of the day. This allows us to capture
similar features such as sensitivities to the different exogenous
variables and price characteristics for a specific time of the day, thus
providing relevant information to different market participants. A
representative period for each group has been chosen to present a
comparison of differences throughout the day. These are outlined in
Table 2 below.

We further define period 10 as the anti-peak, period 25 as the
day-peak and period 35 as the super-peak for each day. From
Table 3 we see that of all the periods, period 35 has the highest
average price of the day and exhibits the highest volatility, skew-
ness and kurtosis in our data set. Period 10 has the lowest average
price, and exhibits the lowest volatility, skewness and kurtosis.

3.3. The data series

Figs. 1e4 shows the evolution of the power prices, the spot
prices of gas, coal and carbon emission, as well as the day ahead
demand and reserve margin forecasts. Due to the large data set we

Table 2
We have chosen 6 periods; 10, 14, 19, 25, 35 and 43, each representing a certain time
period of the day, that we will focus on in our analysis.

Time of day Period Time period Representative period

Night 47e12 23.00e06.00 10 (04.30e05.00)
Early morning 13e15 06.00e07.30 14 (06.30e07.00)
Late morning 16e22 07.30e11.00 19 (09.00e09.30)
Afternoon 23e31 11.00e15.30 25 (12.00e12.30)
Early evening 32e38 15.30e19.00 35 (17.00e17.30)
Late evening 39e46 19.00e23.00 43 (21.00e21.30)

Table 3
Descriptive Statistics of the power price for period 10, 14, 19, 25, 35 and 43.

Period Mean Median Maximum Minimum Volatility Skewness Kurtosis

10 29.51 29.10 57.62 6.38 9.64 0.18 2.31
14 34.74 33.50 139.36 5.27 12.42 1.11 6.55
19 47.22 43.71 206.14 13.79 21.49 2.16 10.95
25 54.20 48.38 409.66 15.89 28.43 3.38 23.90
35 61.94 51.78 553.30 13.22 42.08 3.93 28.98
43 43.97 41.91 208.46 15.98 17.94 2.38 13.92

Fig. 1. The actual series of the power price for period 10, 14, 19, 25, 35 and 43 respectively. The data spans from 22.04.2005 to 28.06.2012.
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Fig. 2. The actual series of the daily UK natural gas spot price from the NBP (National Balance Point) (quoted in £/MMBtu), the daily HWWI world index coal price (translated into
£/ton) and the EEX-EU carbon emissions allowance daily spot price (translated into £/ton), respectively. The data spans from 22.04.2005 to 28.06.2012.

Fig. 3. The actual series of the UK national demand forecast from the system operator for period 10, 14, 19, 25, 35 and 43 respectively (quoted in MW). The data spans from
22.04.2005 to 28.06.2012.

Fig. 4. The actual series of the UK national forecast of reserve margin from the system operator for period 10, 14, 19, 25, 35 and 43 respectively (quoted in MW). The data spans from
22.04.2005 to 28.06.2012.

L.I. Hagfors et al. / Energy 102 (2016) 231e243 235



have chosen only to show the data series of the representative
periods for electricity prices, demand and margin forecasts. The
price series reveal typical spot electricity features such as spikes,
mean reversion, seasonality and high, time varying volatility. Fig. 1
also shows clear signs that the price dynamics vary between the
different time periods.

3.4. Descriptive statistics

In Table 3 we present a summary of descriptive statistics for the
representative periods, confirming what we observed in Fig. 1, that
is a high standard deviation and substantial skewness and kurtosis.
A more extensive analysis of the descriptive statistics for all 48
periods has also been performed. All skew coefficients are positive.
This effect is anticipated for electricity markets at that time and
reveals that extreme price outliers occur on the upside of the
average. Extreme prices are also common in electricity markets. We
also see that there is high correlation between the period's mean
price and the standard deviation, skewness and kurtosis levels. We
detect severe serial correlation in the data. However, it drops sub-
stantially from lag 1 to 2. For some periods we detect prominent
autocorrelation in lag 7.

As a benchmark we ran OLS regressions and performed various
residual tests, revealing that the residuals are non-normal, heter-
oscedastic, serial correlated and have ARCH-effects. Results for our
representative periods are summarized in Table 4. We also per-
formed an ADF test for stationarity in the series. The results are
reported in Tables 5 and 6. Electricity price and margin forecasts
appear stationary, so does the demand forecast for the most part.
We cannot, however, reject the unit root null hypothesis for gas,
coal and carbon emission prices.

4. Models

4.1. Linear quantile regression

Linear quantile regression was introduced by Koenker and
Bassett [14]; and seeks to compute a set of regression functions,
each corresponding to a different quantile of the conditional dis-
tribution of the price. The difference between quantile regression
and OLS is that while OLS estimates the regression coefficients so
that the regression line run through the average of the data set,
quantile regression lines will pass through different quantiles of the

distributions. For lower quantiles the majority of the data set will
lie above the quantile regression line. For higher quantiles the
majority of the data set will lie below the quantile regression line
[1]. The advantage of quantile regression is that we are able to
investigate the relationship between the dependent and indepen-
dent variables across the entire distribution, and thus build up a
more complete picture of how fundamental factors affect the
electricity price in various price ranges.

From a risk perspective we want to be able to estimate the tail
dependencies accurately and quantile regression works well for
this purpose. Quantile regression is closely related to value at risk in
estimating the price at extreme quantiles. For traders and risk
managers it is thus a useful tool for assessing price risk and
developing hedging strategies.

The quantile regression model is semi parametric, thus we do
not make any assumptions about the distribution of our data or
about the residuals. Due to the highly non-normal behavior of the
electricity price, as well as time-varying volatility, this is an
advantage for our research. Significance testing of quantile
regression is still very much in the exploratory stage, and no single
approach has yet gained widespread support. For further discus-
sion, see Ref. [19].

We let q ε (0,1) be quantile 1%, 5%, 10%, 25%, 50%, 75%, 90%, 95%,
99%. Our linear quantile regression model will then be given by:

Qq
�
lnPi;t

� ¼ a
q
i þ b

q
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q
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q
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where i ¼ 1,…,48.
Further we let Xi,t be the 6-dimensional vector, representing the

six independent variables in Section 3.1. We can then rewrite the
model as:
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Table 4
Test statistics from the Jarque Bera normality test, BreucheGodfrey LM test, White's
Heteroscedasticity test and ARCH LM test.

Period Jarque Bera test BreucheGodfrey test White's test ARCH LM test

10 7659.96*** 44.45*** 523.75*** 169.63***
14 13955.5*** 284.06*** 331.18*** 145.39***
19 1365.8*** 125.69*** 311.5*** 57.96***
25 517.69*** 31.8*** 431.75*** 107.04***
35 1278.07*** 46.55*** 402.16*** 61.02***
43 3451.77*** 55.39*** 63.72*** 63.72***

*** Indicates that we reject the respective null hypothesis at the 1% level.

Table 5
ADF test for stationarity in the power Price, the UK national demand forecast and the UK national margin forecast, for period 10, 14, 19, 25, 35 and 43. The data spans from
22.04.2005 to 28.06.2012. We have chosen 5 lags in the ADF test.

10 14 19 25 35 43

Price, t-ADF �3.446*** �4.217*** �6.855*** �8.558*** �8.858*** �4.983***
Demand, t-ADF �2.665* �4.197*** �7.227*** �5.149*** �3.270** �2.804*
Margin, t-ADF �6.234*** �5.758*** �7.458*** �5.892*** �6.241*** �5.644***

*, ** and *** Indicates that we reject the null hypothesis and find stationarity at the 10%, 5% and 1% level respectively.

Table 6
ADF test of the daily UK natural gas spot price, the daily HWWI world index coal
price (translated into £/ton) and the EEX-EU carbon emissions allowance daily spot
price (translated into £/ton). The data spans from 22.04.2005 to 28.06.2012. We have
chosen 5 lags in the ADF test.

Gas price Coal price Carbon emission price

t-ADF �2.284 �1.367 �2.24

*, ** and *** Indicates that we reject the null hypothesis and find stationarity at the
10%, 5% and 1% level respectively.

L.I. Hagfors et al. / Energy 102 (2016) 231e243236



We run the quantile regression in EViews, obtaining 432models
(48 � 9). The associated standard errors are obtained using the
Huber Sandwich method. This method is robust when the residuals
are heteroscedastic [13]. The use of natural logarithms implies that
our coefficients will be interpreted as elasticities, i.e. how sensitive
the electricity price is towards a change in the fundamental factors,
measured in relative terms.

5. Quantile regression results

In Table 7 we present the comprehensive quantile regression
results. We show the quantile regression results for the six repre-
sentative periods, with its associated pseudo R-squared [15].

In general, coefficients are significant, and we find that lagged
price, fuel prices and demand forecast have a positive effect on
electricity prices, while margin forecast has a negative effect. At
night, whenmarket activity is low, lagged price is by far the variable
in ourmodel that affect pricesmost. As activity increases during the
day, demand, margin and fuel prices affect the electricity price with
increased strength, while the lagged price affects electricity prices
less. Carbon emission prices have little or no effect on electricity
prices.

We use Pseudo R-square to measure the goodness-of-fit of the
model for each associated period and quantile. In general the
Pseudo R-square is quite stable over the whole 24 h, and at a level
ranging from 0.42 to 0.76. We note that the pseudo R-squares are
slightly higher for off-peak than peak periods. This suggests that

Table 7
Quantile regression results for period 10, 14, 19, 25, 35 and 43. Numbers in italic represent coefficients that are insignificant at a 5% level assuming a t-distribution. R-squared is
a [15] goodness-of-fit measure (pseudo R-squared).

1% 5% 10% 25% 50% 75% 90% 95% 99%

Period 10
const �5.278 �3.333 �2.261 �0.771 0.198 0.375 1.009 0.874 �0.456
lprice 0.981 0.836 0.861 0.840 0.798 0.724 0.599 0.479 0.307
gasprice 0.037 0.076 0.066 0.080 0.092 0.125 0.190 0.243 0.321
coalprice 0.174 0.159 0.102 0.089 0.097 0.109 0.140 0.169 0.209
carbon �0.015 �0.001 0.002 0.001 0.003 0.005 0.003 0.005 0.011
demand 0.316 0.278 0.187 0.100 0.055 0.079 0.105 0.175 0.403
margin 0.094 �0.009 0.001 �0.044 �0.083 �0.113 �0.192 �0.238 �0.319
R-squared 0.611 0.682 0.718 0.749 0.752 0.716 0.659 0.627 0.571
Period 14
const �5.788 �1.636 �0.572 0.729 1.246 1.039 1.704 1.799 4.141
lprice 0.281 0.346 0.440 0.508 0.545 0.497 0.404 0.348 0.220
gasprice 0.322 0.278 0.239 0.222 0.215 0.259 0.288 0.333 0.450
coalprice 0.401 0.339 0.267 0.228 0.198 0.205 0.233 0.246 0.229
carbon 0.012 0.015 0.019 0.018 0.017 0.014 0.012 0.012 0.016
demand 0.654 0.348 0.262 0.172 0.142 0.201 0.241 0.300 0.291
margin �0.175 �0.239 �0.239 �0.269 �0.281 �0.317 �0.408 �0.476 �0.682
R-squared 0.580 0.637 0.671 0.684 0.677 0.641 0.611 0.596 0.565
Period 19
const 1.513 1.520 1.325 0.722 1.197 1.634 2.819 3.821 5.110
lprice 0.181 0.216 0.226 0.303 0.350 0.406 0.414 0.403 0.399
gasprice 0.329 0.334 0.360 0.354 0.365 0.378 0.374 0.382 0.486
coalprice 0.436 0.405 0.360 0.321 0.268 0.237 0.242 0.212 0.156
carbon 0.020 0.022 0.027 0.021 0.014 0.009 0.004 0.003 �0.023
demand 0.092 0.110 0.145 0.205 0.204 0.230 0.244 0.217 0.217
margin �0.295 �0.310 �0.319 �0.325 �0.361 �0.436 �0.565 �0.617 �0.743
R-squared 0.596 0.616 0.608 0.583 0.549 0.528 0.545 0.542 0.505
Period 25
const 2.738 4.386 4.480 4.773 4.408 5.504 5.664 5.240 4.822
lprice 0.210 0.214 0.252 0.305 0.422 0.464 0.451 0.506 0.506
gasprice 0.270 0.292 0.311 0.330 0.314 0.324 0.311 0.258 0.152
coalprice 0.397 0.403 0.353 0.289 0.221 0.201 0.214 0.181 0.265
carbon 0.030 0.028 0.025 0.017 0.008 0.001 0.002 �0.002 �0.007
demand �0.023 �0.147 �0.149 �0.143 �0.090 �0.078 0.060 0.159 0.291
margin �0.269 �0.308 �0.310 �0.336 �0.353 �0.476 �0.627 �0.669 �0.746
R-squared 0.538 0.518 0.494 0.449 0.421 0.431 0.470 0.489 0.530
Period 35
const �1.795 �2.174 �2.038 �1.611 0.276 1.776 2.846 4.122 2.781
lprice 0.216 0.268 0.288 0.372 0.467 0.528 0.492 0.455 0.471
gasprice 0.346 0.318 0.336 0.329 0.306 0.281 0.324 0.318 0.201
coalprice 0.349 0.301 0.270 0.224 0.189 0.162 0.159 0.166 0.176
carbon 0.023 0.028 0.021 0.009 0.003 �0.006 �0.016 �0.011 0.006
demand 0.385 0.391 0.400 0.373 0.270 0.227 0.292 0.286 0.565
margin �0.253 �0.202 �0.220 �0.236 �0.321 �0.420 �0.590 �0.695 �0.810
R-squared 0.624 0.597 0.577 0.569 0.556 0.560 0.573 0.577 0.561
Period 43
const 1.450 1.514 2.184 1.806 1.606 2.118 2.861 4.241 9.207
lprice 0.364 0.449 0.490 0.597 0.684 0.762 0.795 0.827 1.006
gasprice 0.247 0.194 0.204 0.168 0.155 0.129 0.116 0.130 0.082
coalprice 0.340 0.297 0.257 0.195 0.131 0.078 0.059 0.017 �0.031
carbon 0.029 0.024 0.021 0.013 0.005 0.000 �0.002 �0.005 �0.007
demand �0.047 �0.019 �0.051 �0.008 0.014 0.000 0.002 �0.041 �0.286
margin �0.128 �0.148 �0.182 �0.182 �0.178 �0.205 �0.276 �0.362 �0.616
R-squared 0.660 0.692 0.695 0.682 0.665 0.637 0.633 0.620 0.589
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during times of scarcity, electricity spot prices are not completely
determined by fundamental factors, but partly influenced by the
exertion of market power by producers.

5.1. Lagged price

For the trading periods from the late morning until midnight
(period 16e48), sensitivity is generally increasing with higher
quantiles, as we expected. However, for the periods with the lowest
activity, during the second half of the night (period 7e12), sensi-
tivities are instead decreasing with higher quantiles. For the first
half of the night and the early morning (period 1e6 and 13e15),
sensitivities are larger for the middle quantiles. These are all pe-
riods with moderate demand. For the periods with the least de-
mand, in the second half of the night, the lowest quantiles probably
represent prices very close to marginal cost and behavioral adap-
tion might thus explain why these prices are similar to the ones
observed on the previous day. During the night, demand is neither
high nor low, and under such circumstances it seems reasonable
that the middle quantiles, representing “normal” prices, will be
consistent with the corresponding prices the day before (Fig. 5).

5.2. Gas price

For nearly all periods, sensitivity is higher for periods with high
demand than for periods with low demand. The highest

sensitivities are found during the day and early evening, while the
lowest sensitivities are found during the night and late evening.
This is according to expectations.

During the night, early morning and first half of the late
morning (period 1e19), sensitivities are generally increasing with
higher quantiles. From period 12 to 13, whenwe approach daytime,
the coefficient makes a positive jump, larger for the lowest quan-
tiles. This underlines the fact that prices are muchmore sensitive to
changes in gas price when demand is high. In the second half of the
late morning, afternoon and early evening (period 20 to 38), co-
efficients are more equal across quantiles (except the 95% and 99%
quantile), with most coefficients within the 0.25e0.35 range. To-
wards the end of this period, the coefficients start to decrease with
higher quantiles, a trend that continues for the rest of the day
(Fig. 6).

5.3. Coal price

As expected, sensitivity is higher for periods with high demand
than for periods with low demand. The highest sensitivities are
found during the day and evening, while the lowest sensitivities are
found during the night. However, we can see that the variation is
smaller than for gas. This is according to expectations, because coal
mainly is used for base load production.

In the late morning, afternoon, early evening and late evening
(period 15e46) the coefficient is higher for low quantiles than high

Fig. 5. The graphs show the development in the lagged price coefficient value associated with each quantile, across all 48 periods, found from quantile regression.

Fig. 6. The graphs show the development in the gas price coefficient value associated with each quantile, across all 48 periods, found from quantile regression.
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quantiles. During several evening periods, the coefficients are so
small that they even are insignificant for the 95% and 99% quantiles.
At night, sensitivities are generally highest for the extreme quan-
tiles. The reason for the increased sensitivity at high quantiles
might be that during nighttime few gas plants are operating and
thus coal plants will cover peaks in demand caused by e.g. extreme
weather. High prices during the night will therefore be very sen-
sitive to changes in the coal price (Fig. 7).

5.4. Carbon emission price

As suspected, the carbon emission price has little effect on
electricity prices. The coefficient is generally close to zero and often
insignificant. It is worth noticing that the carbon price was equal to
zero for quite some time in our data set.

The carbon emissions price does, however, tend to follow the
sensitivity pattern of coal. It is generally increasing with higher
quantiles during the night, and decreasing with higher quantiles
during the day and evening. During the night the coefficient is
mainly insignificant for low quantiles, while during the day and
night it is often insignificant for high quantiles (Fig. 8).

5.5. Demand forecast

Looking at the results for the night, early morning and late
morning (period 45e22) as well as the early evening (period

31e38) we observe that sensitivities for the middle quantiles
generally are higher when the period's demand level is higher. For
the extreme quantiles there is greater variation (Fig. 9).

In the late morning (period 15e22), the sensitivity is slightly
increasing with quantiles. In the night and early morning (period
45e14) as well as tge early evening (period 31e38) sensitivities are
generally highest for the extreme quantiles. The difference across
quantiles is clearly largest during the night.

We also notice some slightly negative coefficients around the
beginning of the afternoon and the beginning of the late evening
(periods 23 and 39). This is when the demand is dropping and
marginal technologies may be reluctant to be called off. Hence their
offers become more competitive. With higher demand and more
expensive plant being called, this effect is likely to be more
pronounced.

5.6. Reserve margin forecast

Margin levels affect the price according to expectations, with
sensitivity increasing in periods with higher demand and with
higher quantiles. During the periods of night with the lowest de-
mand levels (period 7e12), the coefficient gets so low that margin
forecast has an insignificant effect on prices for the 1%e10%
quantiles. During peak hour periods, the effects from reserve
margin get higher (in absolute terms) with higher quantiles
(Fig. 10).

Fig. 7. The graphs show the development in the coal price coefficient value associated with each quantile, across all 48 periods, found from quantile regression.

Fig. 8. The graphs show the development in the carbon emission price coefficient value associated with each quantile, across all 48 periods, found from quantile regression.
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5.7. A comparison of sensitivities to the prices of gas and coal

Looking at Fig. 11 we clearly see that the coal coefficient
generally is larger than the gas coefficient at low quantiles, whilst
the opposite is the case at high quantiles. This is according to
expectations.

The coal price affects the electricity price more for the 5%
quantile as compared to the median, while the gas price has more
effect for the 95% quantile as compared to the median. This in-
dicates that producers are generally more vulnerable to coal price
volatility, while consumers are more exposed to gas price volatility.
Not surprisingly, electricity price is more sensitive to demand and
margin forecasts at the 95% quantile than at the 5% quantile.

6. Scenario analysis based on the quantile regression model

In this section we present an example that demonstrates how
the models can be used to perform a scenario analysis, showing the
effect of changes in the fundamental variables on the electricity
price distribution. Starting with a base scenario, we can introduce
shocks to one or more fundamental variable and obtain the
resulting price distribution.

Our base scenario was formed by applying the values of the
fundamental variables from the last day of our data set, 28.06.2012,
to the associated quantile regressionmodels for period 10,14,19, 25,
35 and 43. The actual values on this date are reported in Table 8. By

looking at ranges of values for the fundamentals, we are able to
construct scenarios of distributions for the electricity price. In our
examplewe investigate the effect of shocks of varyingmagnitude to
the reservemargin forecast. In a similarway,we can also analyze the
effects on the price distribution from changing other fundamental
variables, individually or jointly. Hence we can directly investigate
howa change in one ormore of the independent variables affect the
different value at risk estimates for the different time periods.

6.1. Scenario analysis example e reserve margin forecast

We applied a set of margin forecasts ranging from 1500 MW to
40925 MW, which is equal to the minimum and maximum margin
forecasts in our data set. The results can be seen in Fig. 12. For all
periods and parts of the distribution, a decrease in reserve margin
will lead to an increase in the electricity price. However, the effect
on the electricity price is rapidly decreasing with higher levels of
reserve margins. As soon as the reserve margin reaches a threshold
level the effect converges for all quantiles and approach zero. Once
there is enough supply in the market to cover the demand, having
an excess of production capacity in reserve has little or no effect on
the market price. On the other hand, if margin levels fall below the
threshold, prices will respond to this by increasing exponentially as
the margin levels drop further. Changes in margin below the
threshold affect the electricity prices more than any other funda-
mental variable. This implies that both producers and buyers

Fig. 9. The graphs show the development in the demand forecast coefficient value associated with each quantile, across all 48 periods, found from quantile regression.

Fig. 10. The graphs show the development in the reserve margin forecast coefficient value associated with each quantile, across all 48 periods, found from quantile regression.
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should monitor the threshold level carefully, and take into account
whether margin levels are expected to fall below or rise above it
when placing their bids. The threshold level is different for each
period and quantile. During nighttime (period 10 and 43) the effect
is small and almost equal to zero for levels of reserve margin above
1500 MW. During daytime the effect on the price of changes in
reservemargin is larger. For lowmargin levels the conditional price
distribution has a long right tail. The thresholds levels are higher

during day than night, and increasing with higher quantiles during
daytime. Market participants should pay close attention when
margin levels drop below 20000 MW. Above this level effects on
the price will be minor. With the extreme impacts of forecasted
scarcity on the electricity price, producers will have incentives to
under-report the production capacity of their plants. This un-
derlines the importance of strong regulation and surveillance of the
reporting procedures.

Fig. 11. The graphs show the development in the gas price coefficient value relative to the coal price coefficient value across quantiles for period 10, 14, 19, 25, 35 and 43, found from
quantile regression.

Table 8
Base scenario. Actual value of each fundamental variable on 28.06.2012.

Period Gas (�1) Coal (�1) Carbon emission (�1) Price (�1) Demand forecast Margin forecast

Period 10 54.363 77.197 6.318 30.100 25161.000 26442.000
Period 14 54.363 77.197 6.318 32.570 30296.000 22005.000
Period 19 54.363 77.197 6.318 41.100 39454.000 13392.000
Period 25 54.363 77.197 6.318 48.250 41094.000 12068.000
Period 35 54.363 77.197 6.318 55.200 40874.000 11812.000
Period 43 54.363 77.197 6.318 48.260 34956.000 18260.000
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7. Conclusions

Using quantile regression, we have characterized the non-linear
effects of fundamental factors on the wholesale electricity price for
each delivery period in the UK electricity market. The complex
market dynamics were confirmed as we found that the sensitivity

to the different factors vary substantially both across the day and
across the price distribution. We have paid special attention to the
tails, both in our regression analysis and in the scenario analysis.

We demonstrated how lagged prices, prices of gas, coal and
carbon, and forecasts of demand and reserve margin influence the
price distribution in each of the 48 periods in rather intuitive ways.

Fig. 12. Scenario analysis of the power electricity price for period 10, 14, 19, 25, 35 and 43, when the reserve margin forecast varies from 1500 MW to 40925 MW. The base scenario
is calculated by applying data from the last day of the data set, 28.06.2012, to the different quantile regression models. The reserve margin forecast on 28.06.2012 was 26442 MW,
22005 MW, 13392 MW, 12068 MW, 11812 MW and 18260 MW for period 10, 14, 19, 25, 35 and 43, respectively.
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In general, we find positive elasticities for the underlying fuel
commodities. It was revealed how the sensitivity to gas relative to
coal is increasing with the demand level throughout the day. We
found, that for our data set, carbon emission prices generally had no
significant effect on electricity prices. The sensitivity to changes in
demand is generally positive, but the way its impact on prices de-
velops over quantiles varies with the time of day. The elasticity of
reserve margin is negative, with increased impact on higher
quantiles and in periods with high demand. We confirm the posi-
tive sensitivity to lagged price and how it is decreasing with the
demand level. We found that the model explained more of the
variation in electricity prices, as measured by the adjusted R-
squared, in off-peak than in peak periods. This is likely because
periods with lowmargin allow producers to exercise market power
more effectively, pushing prices above what is explained by the
fundamental variables included in our model.

By performing an example scenario analysis, we have demon-
strated how scenario analysis can be used to illustrate the actual
magnitude changes in the fundamental variables have on the
electricity price distribution. The effect of previous prices, as
captured by the lagged price, represents the main risk factor for
producers, in terms of large price drops. Additionally, producers
face risk if the price of the fuel used in production increases, and
they cannot recover the extra cost through a sufficient increase in
the electricity price. The main risk drivers for buyers and con-
sumers are a high lagged price and low levels of reserve margin. In
general, the main risk is carried by the consumer side.

We believe that our findings have important implications for
market participants in both the spot and financial electricity mar-
ket. Our paper provides a deeper understanding of the price for-
mation process and reveals insight on the main risk drivers. Based
on this market participants can fine tune their bids and reduce their
exposure to risk. An advantage of quantile regression is that it is
easy to apply compared to alternatives such as regime switching
models or CaViaR based models. This gives it a widespread appeal,
and increase the probability that it will be implemented by market
participants.

The next natural step is to do forecasts based on this model and
test its forecasting ability. Further research can extend the quantile
regression analysis to include more explanatory variables. Our
model can then serve as a point of reference. Renewables have over
the time span of our data set become a much more influential fuel

source, and will have a natural place in future electricity market
modelling, when the share of electricity produced from renewables
has stabilized at a sufficient level. For some periods the model
might benefit from including lag 7 of the endogenous variable in
order to capture weekday effects. Also, a proxy for market power
could be included for the peak periods. By comparing the goodness-
of-fit and forecasting performance to our model, one can evaluate
whether these modifications are successful.
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Using quantile regression to analyze the effect of renewables on
EEX price formation
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Abstract. This paper develops fundamental quantile regression models for the German electricity market. The
main focus of this work is to analyze the impact of renewable energies, wind and photovoltaic, on the formation of
day-ahead electricity prices for all trading periods in the EEX.We find that the renewable energy sources overall
has a mild price dampening effect, and that the negative prices often attributed to wind power is a rare event that
mainly occurs during nighttime periods of unusually low price and demand.

1 Introduction and literature review

Price dynamics for electricity markets has become
increasingly complex as deregulation, market integration,
and changes in input mix have taken place in different
regions around the world. Electricity markets are charac-
terized by mean reversion, seasonality, time varying
volatility, jumps, positive skewness, high kurtosis and a
complex relation to fundaments as the supply curve is
convex and highly non-linear while the demand curve is
almost in-elastic. Another complicating factor is that the
input mix for power production might change over
time (e.g. using more renewables), hence changing the
dynamics for a given market over time. Considerable
efforts have been performed from practitioners and
academics trying to understand the price formation in
different markets.

For consumers, suppliers, risk managers, traders and
regulators concerned with market surveillance, modeling
and forecasting the tails of the power price distributions is
crucial when assessing risk. Risk in this context is usually
measured by Value at Risk (VaR) or Expected Tail Loss
(ETL) using information of the return/price distribution.
At the same time, one is also interested in finding out how
the different risk factors (supply and demand variables)
influence different parts of the price distribution. The aim of
this paper is to establish a model that enables us to perform
such analysis.

In this paper, we analyze the impact of renewable
energies, wind and photovoltaic, on the formation of day-
ahead electricity prices for different hours for the German
(EEX) market using quantile regression. More specifically,
we quantify the non-linear relationship between the
renewables (and other supply/demand variables) on prices

at different hours. E.g. we can study how wind production
influences the 5% price quantiles at hour 3. The effect of
a given variable will vary whether prices are high or low
and whether we look at off-peak versus on-peak hours.
According to our knowledge, no such study has been
performed yet for the German market.

Our study is based on selected references investigating
empirically how supply and demand variables influence the
electricity price formation in different markets. In the Nord
Pool market, references [1] and [2] study how Nord Pool
market prices relates to water reservoir levels (in Nord
Pool, hydro power is the dominant supply source). The
estimation technique is non-linear regression capturing
the shape of the convex supply curve. They argue that the
marginal cost of hydro production varies depending on
reservoir levels that determine hydro production capacity.
The results show that higher reservoir levels, more hydro
capacity, lead to significant lower power prices. They
conclude that an increase in low marginal costs renewable
power supply reduces the power prices and in the paper
they demonstrate the numerical effects.

For the UK market, early studies by reference [3]
applied a Markov regime-switching model, while reference
[4] used a smooth transition logistic regression model
investigating how fundamentals influence different periods
of the day. Both studies give valuable insight into how
sensitivities vary over time and parts of the day. Reference
[5] introduced quantile regression for modeling the UK
electricity price. By analyzing the period 38, they
demonstrate how gas, coal, carbon prices, forecasts of
demand and supply influence the electricity prices in a non-
linear way. They also demonstrated how the model could be
used for Value-at-Risk forecasting, where this fundamental
quantile regression model performed used as good as
complex GARCH and CAViAR methods, although their
approach was simpler to implement. Reference [5] does not
address the distinctly different intraday characteristics* e-mail: Lars.i.Hagfors@iot.ntnu.no
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hour by hour of the price risk distribution though. Yet it is
well known that price formation (and hence risk) varies
systematically throughout the day with different models
generally being specified for peak, off-peak and mid-peak
hours to reflect the dynamics of load following and the
various technologies setting the marginal prices. With this
in mind, reference [6] investigates all 48 half hourly prices
from the UK market, across the range of quantiles from 1%
to 99%, estimated over the period 2005–2012. This paper
also demonstrates the usage of scenario analysis where one
can investigate how a change in one of the independent
variables (e.g. forecast of demand) influences a specific
period price quantile.

Regarding fundamental price models for the German
market, [7] is a central reference. They find that the
sensitivities of day-ahead electricity spot prices to the
fundamental variables coal, gas, oil, and renewable
energies, vary over time using a state space framework.
They observe a continuous price adaption process of
electricity prices to market fundamentals. Overall, the
results show the importance of linking electricity spot prices
to their fundamentals and suggest that purely stochastic
models can be a too simplistic assumption. Since the input
mix in Germany has changed over the last years, the paper
also highlights the importance of a model allowing for time-
varying sensitivities to fundamentals. They also show how
the increase in the infeed from renewable energies, wind and
PV, led to a partial decrease in electricity day-ahead prices
in Germany. This effect is noticeable for afternoon, evening
and night hours in case of wind, and for noon peak hours, in
case of PV. Furthermore, the inclusion of renewable
energies improves considerably the explanatory power of
the model. Additionally, renewable energies substitute the
use in production of traditional fuels situated to the right of
the merit order curve. In particular, the sensitivity of
electricity prices to gas decreases over time. This fact
becomes more visible for peak hours, due to the increase in
the PV infeed.

Our paper is a combination of the quantile regression
approach described in [5] and [6] applied on the dataset
given in [7]. Since the German market has a different input
mix than the UK market, we cannot simply transfer results
from one study to another. Our aim is to investigate non-
linear relationship between fundamentals (particular wind
and solar production) and prices and detect how the price
distribution (hence risk) is influenced by the various drivers
in the German market.

The paper is organized as follows. In Section 2, we offer a
brief overview of the data and descriptive statistics.
Section 3 describes the quantile regression models applied,
and Section 4 discusses the preliminary results from these
models. Finally, in Section Section 5 we conclude.

2 Data

The data used to estimate our model spans from January 1,
2010 toMay 31, 2014 and consists of hourly data for most of
the EEX specific market data and fundamentals and daily
data for the main fuel sources. A brief overview of the

variables used in the model is presented in Table 1.We refer
to [7] for a more detailed description and discussion of the
relevance of each variable.

3 Model

The model used for our analysis is a quantile regression
model [8,9]. This method allows us to investigate the
relationship between the dependent and independent
variables across the entire distribution, and provides us
with a tool to get a better picture of how the fundamental
factors affect the price in different quantiles.

The model is specified using levels, not natural
logarithms. It is specifically set up this way to show how
the relative impact of the fundamental factors in the model
change across time and quantiles, with a particular interest
for the lower extreme prices which some times reach
negative numbers.

Letting q∈ (0,1) represent the different quantiles, 1%,
5%, 10%, 25%, 50%, 75%, 90%, 95% 99%, our linear
quantile regression model will then be given by:

QqðPi;tÞ ¼ aq
i þ bq

i;1 Pi;t�1 þ bq
i;2 AVG SPOT

þ bq
i;3 SPOT VOLþ bq

i;4 COALt�1 þ bq
i;5 OILt�1

þ bq
i;6 EUAt�1 þ bq

i;7 EXWINDt þ bq
i;8 EX PV t

þ bq
i;9 Zi EX PPAt þ bq

i;10 EXDEMANDt

þ bq
i;11 DEMANDt;

where
i= 1, . . . , 24 represents the 24 time periods throughout
the day.
Zi= 1 for hours 7, . . . , 21 and 0 for the remaining hours.

We let Xi,t be the 11-dimensional vector of independent
variables. We can then rewrite the model as:

QqðPi;tjXi;tÞ ¼ aq
i þ bq

iXi;t:

We find the q quantile regression coefficients for period i,
aiq and biq, as the solution to the following minimization
problem:

min
a
q
i
;b
q
i

XT
t¼1

ðQ� 1Pi;t�a
q
i
þXi;tb

q
i
ÞðPi;t � ðaq

i þXi;tb
q
i ÞÞ;

where

1Pi;t�a
q
i
þXi;tb

q
i
¼ 1 if Pi;t � aq

i þXi;tb
q
i

0 otherwise

�
:

The quantile regressions are estimated using STATA,
using the sqreg command. A total of 216 (9� 24) models
have been estimated. This method estimates all the
quantiles for any given hour simultaneously, generating a
variance–covariance matrix that allows for meaningful
comparisons of coefficients across quantiles. Standard
errors are obtained via bootstrapping.
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4 Results

4.1 PV infeed

As shown in Figure 1, the coefficients for PV are found to be
significant in the model for all but one extreme quantile.
Overall, we observe that PV lowers the electricity market

price. This is in line with the literature [7]. We observe a
higher marginal effect of PV on the prices in higher
quantiles. In the evening peak there is also, in absolute
value, a higher marginal effect by PV on the market prices.
Here we observe, to a larger extent, that the marginal effect
in absolute terms increases with quantiles. Overall, PV
reduces the chance of extreme spikes at EEX.

Fig. 1. Graphical representation of the coefficients for PV infeed for various quantiles, as well as the P-values for these coefficients.

Table 1. Brief overview of the data used in for the model. Refer to [7] for a full description.

Variable, units Description Data source

Lagged spot price, EUR/
MWh

Market clearing price for the same hour of the
last relevant delivery day

European Energy Exchange:
http://www.eex.com

Average lagged spot
price, EUR/MWh

Average market clearing price across all 24 h of
the last relevant delivery day

European Energy Exchange:
http://www.eex.com

Spot price volatility,
EUR/MWh

Standard deviation of market clearing prices for
the same hour on the last five relevant delivery
days

European Energy Exchange:
http://www.eex.com

Coal price, EUR/
12 000 t

Latest available price (daily auctioned) of the
front-month Amsterdam–Rotterdam–Antwerp
(ARA) futures contract before the electricity
price auction takes place

Bloomberg, Ticker: GTHDAHD
Index

Oil price, EUR/bbl Last price of the active ICE Brent Crude
futures contract on the day before the
electricity auction takes place

Bloomberg, Ticker: COA Comdty

Price for EUA, EUR
0.01/EUA 1000 t CO2

Latest available price of the EEX Carbon Index
(Carbix), daily auctioned at 10:30 am

European Energy Exchange:
http://www.eex.com

Expected wind and PV
infeed, MWh

Sum of expected infeed of wind electricity into
the grid, published by German transmission
system operators in the late afternoon following
the electricity price auction

Transmission system operators:
http://www.50Hertz.com, http://
www.amprion.de, http://www.
transnetbw.de, http://www.
tennestto.de

Expected power plant
availability, MWh

Ex ante expected power plant availability for
electricity production (voluntary publication)
on the delivery day (daily granularity),
published daily at 10:00 am.

European Energy Exchange and
transmission system operators:
ftp://infoproducts.eex.com

Expected demand, MWh Demand forecast for the relevant hour on the
delivery day as modeled in [X]

Own data, German Weather
Service: http://www.dwd.de

Lagged demand, MWh Sum of total vertical system load and actual
wind infeed for the same hour on the last
relevant delivery day

Transmission system operators:
http://www.50Hertz.com, http://
www.amprion.de, http://www.
transnetbw.de, http://www.
tennestto.de

L.I. Hagfors et al.: Renew. Energy Environ. Sustain. 1, 32 (2016) 3



4.2 Wind infeed

As shown in Figure 2, the coefficients for wind infeed is
found to be significant in the model for all but a few cases of
extreme quantiles in certain hours. According to historical
price data from the EEX, negative prices occur mainly
during the night hours. According to the literature, this is to
a large extent caused by high wind infeed. This occurs
because a large excess of electricity is produced night, when
the demand is very low. For very low quantiles, often
corresponding to where the negative price spikes are found,
the marginal effect of wind is more powerful. Overall, we
observe that wind decreases the electricity prices. During
the night hours in particular, we observe that the marginal
effects decrease in absolute values with the quantiles.

5 Conclusions

Using quantile regression, we have characterized the non-
linear effects of fundamental factors on the wholesale
electricity price for each delivery period in the EEX. We
confirm the complex market dynamics by demonstrating
that the different factors vary substantially both across the
trading periods and across the price distribution.

Even though this is just a preliminary study, we find
clear indications that the renewable energy sources have a
price dampening effect on the EEX. However, the negative
spikes often attributed to wind production seems to be a
rare event happening in low demand periods and not
something that affects a large trading volume.
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Abstract

In this paper we analyze the fundamental drivers behind electricity spot prices in Nord Pool and the German

European Power Exchange (EPEX), and compare the price formation dynamics in these two markets. The

comparison is motivated by the NordLink cable which will connect Germany and Norway in 2020. It will

exploit the differences in market characteristics, and is expected to reduce the price spread and improve

utilization of renewable energy sources. Our paper increases the understanding of the market mechanisms,

which is required by market participants in order to adapt to the future changes.

Separate quantile regression models are estimated for each trading period to capture varying intraday

properties of the electricity prices. We examine the price formation dynamics across the entire distribution,

and how it differs between Nord Pool and EPEX. The results show that the fundamental variables impact

the two markets differently and non-linearly throughout the trading day. Autoregressive effects are most

influential in Nord Pool, together with demand and supply in the highest quantile. Overall, most variables

have a low price impact; this is likely due to the large amount of flexible and stable hydro power which can-

cels out fluctuations in other parameters. EPEX has a higher number of important price drivers across the

price distribution. Demand is the primary price determinant, while fossil fuel prices, autoregressive effects,

and wind power production also notably impact the price formation. The energy mix characteristics are the

likely reason for these differences, as EPEX is much more inflexible due to large-scale thermal production

and intermittent renewable energy.



1 Introduction

The two day-ahead electricity markets, Nord Pool and EPEX, are to be connected for the first time in 2020

when the NordLink cable between Norway and Germany starts operating. In this context it is important

to compare the day-ahead electricity price formation between the Nord Pool spot market and the German

spot market, EPEX, in order to better understand how future price formation might change. The Nordic

power production is strongly dominated by hydro power, a highly flexible and predictable energy source.

Germany’s power production is dominated by large-scale inflexible thermal energy, such as nuclear and

coal, with a fairly large and swiftly growing share of intermittent wind and photovoltaic power.

Connecting two markets with complimentary characteristics is expected to be beneficial for market par-

ticipants on both sides. For instance, when EPEX wind production is very high, the excess energy can be

exported to Nord Pool to cover demand, hence storing hydro power for later use (Mauritzen (2013)). Op-

positely, when wind production is low in Germany, Nordic hydro producers can increase production and

export to EPEX, preventing prices from spiking, as has been observed in the recent past. Overall, the in-

terconnection is expected to reduce the price spread between the two markets. A thorough understanding

of the present market situation and how it will be impacted by the changes is important for many market

participants, as the interconnection is likely to impact the price dynamics.

The objective of our analysis is to study how different exogenous variables, e.g., demand, wind power,

and fuel prices, impact the price formation. The price dynamics is compared based on fundamental vari-

ables in order to understand the similarities and the differences between the two markets. We analyze the

spot price distribution in both EPEX and Nord Pool using linear quantile regressions. Linear quantile re-

gression is sufficiently powerful to facilitate a comparative study, as our purpose is not to forecast prices or

examine which model provides the best results methodologically, but to compare the dynamics. Further-

more, it allows us to model each quantile of the distribution separately, providing insight into the dynamics

of the price formation across the whole distribution. Each trading period is modeled separately to assess

how the impact varies throughout the trading day. Low, intermediate, and high quantiles of the price distri-

butions are modeled to capture the non-linear impact of each fundamental variable.

In order to meet the European climate and environmental targets, large increases in renewable energy

and improved interconnections are needed. Germany plans to eliminate all nuclear power production by

2022, and thus requires large increases in new energy capacity. These changes are slowly modifying the

fundamental structure of the market. Our analysis is therefore relevant for assessing and comparing the

market dynamics of EPEX and Nord Pool. According to Statnett, the main grid operator in Norway, the

NordLink cable is found to be profitable and to have positive impacts on security of supply and intermittency

issues caused by renewable energy (Statnett (2013)). Both markets have been analyzed separately (Hagfors

et al. (2016b), Paraschiv et al. (2014), Huisman et al. (2013) and Huisman et al. (2015)), but a comparative

analysis of the price drivers as presented here does not, according to our knowledge, exist in literature.

Our results clearly show that the price formation dynamics in EPEX and Nord Pool are different, and



that the fundamental variables have highly non-linear effects in various quantiles and times of day. With

its less flexible energy mix, EPEX has a high number of relevant price drivers. The most influential factors

are the balance between production and consumption, followed by fuel prices and autoregressive effects.

Wind and volatility mainly impact the tails of the price distribution. The price formation dynamics in Nord

Pool are dominated by autoregressive effects, while other factors tend to be influential only in the tails. The

sensitivities of fossil fuel prices and wind power production are lower than in EPEX, which makes sense

considering the differences in energy mix. The flexible hydro production balances fluctuations in other

factors, thus limiting the price impact when prices are in the normal range.

The remainder of this paper is structured as follows. In Section 2 an overview of existing literature on use

of fundamental models on electricity prices and previous market comparisons is presented. Next, Section 3

presents market descriptions of the German EPEX market and Nord Pool, a comparison of energy mixes, and

a discussion on expected future changes. Section 4 discusses choice of data and its statistical properties, and

includes an analysis of correlations between EPEX and Nord Pool. Linear quantile regression and modeling

choices are presented in Section 5. The impact of each fundamental variable is analyzed and compared in

Section 6; the price drivers are examined throughout the entire trading day and price distribution. Finally,

the conclusion of the comparative analysis is presented in Section 7, as well as recommendations for further

work.

2 Literature Review

Our paper can be placed in the context of two main research areas: (i) fundamental modeling of electric-

ity prices, and (ii) interactions and comparisons between different electricity markets. Understanding the

electricity price formation and modelling it with high accuracy has been a popular topic in the literature for

years. Identifying the drivers behind electricity prices and their individual impact is required to be able to

understand the relationship between fundamental variables, such as demand and supply, and consequently

prices.

The literature regarding fundamental modeling of electricity prices in various markets is extensive. No-

gales et al. (2002) develop a dynamic regression model and a transfer function model for accurate price

forecasts in the Spanish and the Californian electricity market. Torro (2007) further develops time series

modeling with an ARIMAX model to model weekly futures prices at the Nord Pool market. Karakatsani and

Bunn (2008) critique Nogales et al. (2002), among others, for limiting forecasting models to autoregressive

effects and few explanatory variables. They argue that such models are not appropriate for modeling compli-

cated markets. To achieve good day-ahead forecasting performance for electricity spot prices in the British

market, they apply a time-varying parameter regression model and a regime-switching model, including

several explainatory variables. They conclude that the best predictive performance is obtained from models

involving market fundamentals, non-linearity, and time-varying coefficients.

Chen (2009) complements the research of Karakatsani and Bunn (2008) by studying the non-linear rela-



tionship between electricity prices and their fundamental drivers in the British market. Acknowledging the

limitations of regime-switching models, Chen (2009) develops a structural finite mixture regression (SFMR)

model. Its forecasting performance outperforms regime-switching models and linear regression models.

The results also demonstrate that prices in different trading periods within a day are driven by different fun-

damental factors. Chen and Bunn (2010) confirm these results using a logistic smooth transition regression

(LSTR) model for the British market.

Intraday properties of fundamental spot price drivers are also investigated by Bunn et al. (2016) and

Hagfors et al. (2016a). They apply fundamental quantile regression models to model electricity prices in the

British market. They show that the sensitivities to fundamental factors varies across quantiles and the time

of the day as well as across the price distribution.

Literature covering quantile regression models for Nord Pool is scarce. Lundby and Uppheim (2011)

use quantile regressions for Value at Risk (VaR) forecasting of the spot price in Nord Pool. Weron et al.

(2004) apply a mean reverting jump diffusion model to capture the main characteristics of the spot price.

Vehviläinen and Pyykkönen (2005) model the impact on the spot price, by presenting a model suited for

mid-term analysis using a combination of three models of consumption, generation and marginal water

value.

Huisman et al. (2013) and Huisman et al. (2015) investigate how the increase of low marginal cost renew-

able energy supply impacts the electricity prices in Nord Pool. Both papers conclude that higher reservoir

levels lead to lower electricity prices and Huisman et al. (2015) show how the impact of supply and demand

factors on the prices differ as reservoir levels changes. Paraschiv et al. (2014) continue the examination

of renewable energy sources (wind and photovoltaic) on electricity prices by studying the EPEX day-ahead

prices in Germany. Using a state space model, they find that renewable energy increases extreme price fluc-

tuations, and that the price sensitivity differs for each variable in each trading period. These results are

confirmed and is extended by Hagfors et al. (2016b). Hagfors et al. (2016b) run quantile regression models

to investigate the influence of fundamental drivers, especially the impact of wind and photovoltaic power,

on the EPEX day-ahead electricity price distribution.

Nicolosi and Fürsch (2009) study the consequences for the conventional generation capacity mix in Ger-

many, considering the growing share of renewable energy. They find that more intermittent energy increases

the volatility of the residual demand. The higher residual demand volatility in turn increases the volatility

of the electricity price. Ketterer (2014) also examines the impact of wind on German electricity prices. His

results show that the price level is reduced due to wind power generation, while the volatility increases.

Some literature comparing the design, bidding process, or transmission management of electricity mar-

kets also exists (Imran and Kockar (2014), Ela et al. (2014), and de Menezes and Houllier (2016)). However,

literature comparing fundamental electricity drivers of different electricity markets as comprehensively as

this paper does not, to our knowledge, exist. Thus, this paper contributes to the research on fundamen-

tal electricity drivers in both Nord Pool and EPEX, and provides a detailed analysis and comparison of the

intraday price dynamics across the entire spot price distribution.



3 Market Description and Analysis

3.1 Electricity Markets

EPEX and Nord Pool are similar in the sense that both are transparent, liberalized and competitive electricity

spot markets, and have an increasing share of renewable energy sources. The introduction of near zero

marginal cost renewable power, in the form of wind and photovoltaic power, has changed the merit order

curve, which is a ranking of available energy sources based on ascending price per MWh. When producing,

renewable energy substitutes the traditional base load technologies, which results in lower power prices, as

cheaper plants become the price setters. This has been observed in Germany in later years; prices have even

become negative when high levels of wind power generation coincide with low demand (Paraschiv et al.

(2014)).

Renewable energy poses a challenge to power markets, as the intermittency strongly impacts traditional

producers and increases the need for flexible capacity to ensure security of supply (Kilic and Baute (2014)

and Forrest and MacGill (2013)). An example of an energy source fulfilling these requirements are hydro

reservoirs, such as those found in Norway and Sweden.

3.1.1 EPEX

The expansion of renewable production has been strongly incentivized by the German government. This has

resulted in wind and photovoltaic power production increasing rapidly, reaching 19.2% of total power pro-

duction in 2015, as seen in Table 1. The most significant regulatory change to achieve this was the Renewable

Energy Act (EEG) from 2000, which guaranteed producers of renewable energy a minimum compensation

per produced kWh. The latest significant regulatory change, the Equalization Mechanism Ordinance (Aus-

glMechV), significantly changed the market mechanisms of trading renewable energy. It obliged TSOs to sell

EEG-electricity on the day-ahead market, starting 1st of January 2010.

The overall target of the EEG is to achieve 35% renewable energy production in 2035, and 80% in 2050

(Gullberg et al. (2014)). In addition, the German government has decided that nuclear energy is to be phased

out by 2022, while transitioning to a low-carbon energy system. Consequently, continued encouragement to

develop renewable energy is necessary to cover the German energy demand. Average spot prices have been

reduced due to the increased renewable capacity (Hagfors et al. (2016b), Schneider and Schneider (2010),

and Paraschiv et al. (2014)), but Fanone et al. (2013) argue that the feed-in tariffs exceed the reduction in

power prices, causing a negative net effect for consumers.

3.1.2 Nord Pool

Nord Pool Spot AS is one of the the largest power exchange in Europe, and has a large share of hydro produc-

tion, as shown in Table 1. Wind power production has steadily increased in recent years, and has reached a

share of 8.9% in 2015. Increased renewable energy production in Norway and Sweden is facilitated through
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a joint market for tradable green electricity certificates introduced in 2012. The aim is to ensure 26.4 TWh of

new renewable production by 2020. Producers of clean, renewable energy are issued tradeable certificates.

Conventional producers are required to buy these in proportion to their electricity sales. In this way an ad-

ditional income for renewable producers is ensured. The price of certificates is not fixed, but determined in

the open market.

3.2 Energy Mix Comparison

Table 1: Energy mix (2015). Source: EPEX (Energiebilanzen (2015)), Nord Pool (Data provided by ENTSO-E
(2015)). Total renewables includes hydro, wind, PV, biomass, and incineration.

Fossil Nuclear Wind PV Hydro Other Total renewables

EPEX 51.8% 14.1% 13.3% 5.9% 3.0% 11.8% 29.9%

Nord Pool 10.5% 18.4% 8.9% 0.2% 55.9 % 6.1% 70.8%

Nord Pool and EPEX are fundamentally different markets; Nord Pool is largely based on stable and flexible

hydro production, while Germany relies heavily on less flexible thermal energy and intermittent renewable

energy. The different market structures are also highlighted by the share of total renewable energy; Nord

Pool has 70.8%, versus 29.9% found in EPEX. These differences in energy mixes are likely to have a large

impact on the price formation and intraday price patterns.

The share of hydro power production varies according to water inflow each year, but constitutes approx-

imately 56% of power production in Nord Pool (Statnett (2013)). As a consequence, the share of fossil and

nuclear power in the Nord Pool energy mix is only 28.9%, drastically lower than the 65.9% found in EPEX.

The higher share of large-scale thermal energy in Germany partially explains the higher number of nega-

tive price occurrences. The costs of shutting down/reducing thermal power production exceed the losses

of operating at low/negative prices which typically occur with high levels of low-cost renewable production.

According to Keles et al. (2011), utilities are willing to accept -€120/MWh or lower to get rid of excess electric-

ity produced, as energy storage is not a viable option with current technologies. Hydro power producers in

Nord Pool can more easily adjust the production to handle variability in the power in-feed from renewable

energy sources, preventing the prices from fluctuating excessively. The variable cost of hydro production

is the opportunity cost of producing today versus delaying production, when the price expectation may be

higher or lower. Increasing production is thus only beneficial to hydro producers if the price today exceeds

the expected benefit at a later time.

Intermittency caused by renewable energy can be absorbed by hydro reservoirs, as discussed by Mau-

ritzen (2013), Green and Vasilakos (2010), and Gullberg et al. (2014). The reservoirs can be utilized as storage

by using renewable energy when it is very cheap to pump water back into the reservoirs, allowing for future

use when it is scarce. Hydro reservoirs can also function as storage by producing less when cheap renewable

energy is available. Li (2015) shows that the growth of wind power in Nord Pool has lowered the spot price
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volatility, because of the interaction with hydro resources and strong transmission lines. In contrast, Ketterer

(2014) shows that the increase in wind power production has increased price volatility in EPEX. Conclusively,

recent developments in Nord Pool and Germany have impacted the volatility of day-ahead prices differently.

The phasing out of stable nuclear power plants in Germany is likely to further increase the price volatility, as

the share of intermittent renewable energy increases.

Clearly, flexibility is valuable in systems with a large share of intermittent renewable energy. However,

sufficient transfer capacity between the areas with large intermittent production and hydro-rich areas is

necessary to alleviate the adverse impacts from intermittency.

3.3 Future Developments

The energy mix is expected to change further in near future in both markets. Germany is transitioning to-

wards less large-scale nuclear and carbon-emitting coal energy, while expanding renewable energy produc-

tion. The Nordic countries are also focused on increasing the amount of wind energy, thus moving towards

an even lower-carbon system.

To accommodate the ambitious goals set by Germany, it is necessary to develop more renewable en-

ergy plants while handling the variability issues arising. Security of supply is ensured by having sufficient

flexible reserves, which can be addressed through different measures. As discussed by Gullberg et al. (2014)

and Jacobsen and Zvingilaite (2010), there are several options to achieve this; installing more peak load plant

capacity, enhance energy storage, or improve interconnections between areas. Strong interconnections pro-

mote more stable prices and an increasingly competitive market that further limits opportunities to exercise

market power when supply is scarce (Li (2015)).

The NordLink cable is expected to facilitate better use of resources on both sides, as improved trans-

mission reduces adverse effects of renewable energy production (Jacobsen and Zvingilaite (2010)). Security

of supply will be improved, while utilization of renewable energy production is enhanced as predictability

improves. Market participants will benefit from importing/exporting by exploiting the price spread between

Nord Pool and EPEX. In dry years, the interconnection is likely to improve the handling of energy shortages

and lead to lower consumer prices in Nord Pool. For EPEX, an interconnection improves load balancing

and reduces volatility thus lower extreme price occurrences, as well as expanding the power trading mar-

ket. However, to fully utilize the benefits, the transmission grid between north and south Germany must

be strengthened. The transmission capacity of 1400 MW is unlikely to equalize the prices in Nord Pool and

EPEX; Statnett (2013) claims there will be congestions and relatively large price differences most of the time.



4 Data Analysis

4.1 Choice of Data

4.1.1 Choice of Price Data

We analyse hourly day-ahead spot prices in the German EPEX and in Nord Pool between 4th of January

2010 and 31st of May 2014. Significant regulatory changes were effective in Germany from early 2010, as

discussed in Section 3.1.1. The regulatory changes altered the market mechanisms and reduced the volatility

of electricity prices as a consequence, as shown by Ketterer (2014). As discussed in Section 3.2, the energy

mix has changed in recent years, primarily in the form of more wind and photovoltaic power, and an ongoing

reduction of nuclear power in Germany. We therefore consider data pre-2010 not to be representative for the

current state of these day-ahead electricity markets for comparative purposes.

Electricity prices differ considerably from those of other assets because they are seasonal, exhibit volatil-

ity clustering and mean-reversion, as well as occasional observations of extremely high/low prices. Unlike

most other asset prices, electricity day-ahead prices are often stationary, as confirmed by the results of an

augmented Dickey Fuller (ADF) test with 7 lags. Based on test statistics of -36.27 for EPEX and -16.17 for

NordPool, both price series are stationary at 1% significance level. The Ljung-Box Q-statistics with 7 lags

included confirm the expectation of auto-correlation in the day-ahead spot prices. Each trading period has

its own unique set of fundamental price drivers, as confirmed by Chen and Bunn (2010). Hence each trad-

ing period is treated as a separate time series in the modeling, yielding 1609 data points for every period.

This is done to capture the different intraday characteristics exhibited by electricity prices, and to facilitate

a comparison of price drivers in two fundamentally different markets throughout the trading day.

4.1.2 Choice of Fundamental Variables

The fundamental variables chosen to model the spot price in EPEX are given in Table 4, and variables used

to model the Nord Pool spot price are given in Table 5. Fuel and CO2 prices are equal in both markets, as

these commodities are traded on common Northern European markets. The first and seventh lag of the

spot prices are used to capture recent trends and weekly patterns commonly observed in power markets;

typically, electricity prices tend to be lower during weekends. Volatility is considered a relevant variable to

explain the price formation, as it is well known that electricity prices exhibit volatility clustering and cor-

respondingly erratic behavior. Volatility is, for both markets, computed from an exponentially weighted

moving average on the residuals of a seven-lag OLS-regression. The parameter lambda is set to 0.94, a value

we consider resonable to smoothly capture recent market movements. The demand forecast for EPEX is

modeled according to the approach described in Paraschiv et al. (2014). Each trading period is modeled

separately while accounting for time of year and weekday, so that the demand variable captures the intra-

day seasonality pattern of electricity prices. Demand data used in Nord Pool is based on realized load, not

forecasts. This is mainly related to data availability, as demand forecast data for Nord Pool was unavailable
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Table 2: Descriptive statistics of realized and forecasted demand in Nord Pool. Due to data availability we
use values for 2013-14. Source: Nord Pool

Mean Std. Error Median Excess Kurtosis Skew Range Min Max

Demand 45803 68.38 44750 -0.56 0.34 44498 27275 71773
Forecast 45964 68.55 44952 -0.60 0.33 44322 27766 72088

until November 2011. Based on results presented in Table 2, the characteristics of forecasted and realized

demand are nearly identical in years 2013/14; the descriptive statistics are very similar, and the correlation

is 0.996. Only excess kurtosis somewhat differs, as it is slightly less for the forecast, implying its distribution

is a bit more havy-tailed than the realized demand. The correlations with the spot price in this period are

nearly equal; 0.419 with realized demand, and 0.414 with forecasted demand. We therefore choose to treat

realized demand as interchangeable with forecasted demand for the Nord Pool market for the purpose of

this analysis. Forecasts for wind, photovoltaic and power plant availability (PPA) are available for Germany,

while similar data is not available for the entire sample period for Nord Pool. Note that the PPA forecast

is based on voluntary submission by producers and is therefore not complete; however, a large majority of

relevant companies report their forecasts and the data is thus a good approximation for the entire market

(Paraschiv et al. (2014)). In Nord Pool, we choose to use realized total production as the supply variable, due

to data availability. As seen in Table 3, the descriptive statistics of forecasted and realized supply are very

similar, and the correlation between the series is 0.994. For wind we use true wind production, as forecasts

are unavailable for the modeled time period. Given a high correlation of 0.969 between forecasted and real-

ized wind production, we find this approximation to be reasonable. Electricity certificate prices and hydro

reservoir levels are only included in the models used for the Nord Pool spot price, as these variables are only

found in this market.

Table 3: Descriptive statistics of realized and forecasted supply in Nord Pool. Due to data availability we use
values for 2013-14. Source: Nord Pool

Mean Std. Error Median Excess Kurtosis Skew Range Min Max

Production 45849 73.45 44584 -0.49 0.36 49973 24120 74093

Forecast 45064 73.10 43842 -0.47 0.38 46169 25170 71339
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4.2 Descriptive Statistics of Prices

The descriptive statistics of the spot prices are presented in Table 6. We first note that Nord Pool has the

highest maximum price of €300.03/MWh compared with €210/MWh in EPEX, but that the German prices

have a larger price range due to negative prices - implying thicker tails. Although the Nord Pool price range

is shifted to the right, the mean price is €1.90 lower than in EPEX, implying that very high prices in Nord Pool

are less frequent. The median in EPEX slightly exceeds the mean, also indicating there is a higher chance

of observing prices in the upper tail. This is somewhat contradicted by the negative skewness of -1.02, as it

implies a higher probability of observing prices in the lower end of the distribution. Statistically, the Nord

Pool spot price mainly differs from the EPEX price in that the skewness is positive, and that the mean exceeds

the median. The implication is that the probability of observing prices in the upper part of the distribution is

higher in Nord Pool. Further, it implies that EPEX prices are more likely to be extremely high or low, which is

supported by a higher mean and thicker left tail. The high positive excess kurtosis, large standard deviation

and high Jarque-Bera test-statistic confirm that the price distributions are highly non-normal and thick-

tailed in both markets. Further, we note that both price series clearly exhibit occasional spikes and volatility

clustering, as seen in Figure 1.

Table 6: Descriptive statistics of EPEX and Nord Pool spot prices.

Mean Median Maximum Mininimum Std. Dev. Skew Ex. Kurtosis Jarque-Bera

EPEX 42.94 43.07 210.00 -221.99 15.52 -1.02 16.44 441492
Nord Pool 41.04 38.61 300.03 1.38 15.85 1.72 12.91 287786

(a) Overview of EPEX spot price over time.

(b) Overview of Nord Pool spot price over time.

Figure 1: Plots of both price series over time.
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Table 7: Descriptive statistics of fundamental variables in EPEX.

Demand PPA Wind PV Coal Gas Oil CO2 Vol

Mean 54850 55146 5297 2514 71.23 23.21 74.17 9.35 8.63
Median 54852 55535 3894 93 70.69 24.00 75.73 7.76 7.33
Maximum 79884 64169 26256 24525 99.02 39.50 83.78 16.84 134.53
Minimum 29201 40016 229 0 51.49 11.15 61.03 2.48 1.78
Standard Dev. 10082 4894 4432 4280 11.6 4.1 4.8 4.3 5.8
Skew -0.05 -0.27 1.52 2.04 0.24 -0.63 -0.72 0.28 6.23
Excess Kurtosis -1.04 -0.77 2.30 3.75 -1.08 0.88 -0.35 -1.48 82.04
Jarque-Bera 1776 1426 23299 49469 2220 3804 3537 4008 11031893

Table 8: Descriptive statistics of fundamental variables in Nord Pool.

Demand Supply Wind Reservoir Coal Gas Oil CO2 El.cert Vol

Mean 45468 45264 1171 69.97 71.23 23.21 74.17 9.35 23.40 3.76
Median 44282 44191 915 73.84 70.69 24.00 75.73 7.76 23.37 2.56
Maximum 71773 74093 4494 109.61 99.02 39.50 83.78 16.84 42.85 79.48
Minimum 22245 23011 1 19.94 51.49 11.15 61.03 2.48 1.19 0.28
Standard Dev. 9400 9636 951 25.10 11.59 4.13 4.78 4.33 4.06 4.32
Skew 0.34 0.30 0.89 -0.26 0.24 -0.63 -0.72 0.28 0.25 5.80
Excess Kurtosis -0.63 -0.51 -0.02 -1.10 0.88 -0.35 -1.08 -1.48 1.24 57.30
Jarque-Bera 1371 990 5045 2364 2220 3804 3537 4008 2854 5473298

The characteristics of estimated volatility of both price series are presented in Tables 7 and 8. The average

volatility in EPEX is €8.63/MWh, more than twice as high as in Nord Pool (€3.76/MWh), and likely to increase

even further as discussed in Section 3.2. This strengthens the implication that the tails of the EPEX prices

are thicker compared with Nord Pool.

The correlations between day-ahead price and its own lags are shown in Table 9 for both markets. The

correlations in Nord Pool are much higher, but the weekday-effect (lag 7) is stronger in EPEX relative to the

other correlations. The correlation with the seventh lag exceeds the correlation with the other lagged prices,

except the first lag. The high correlations in Nord Pool are supported by the lower volatility, as it indicates

that prices are likely to be similar on a day-to-day basis. Further, high correlation is supported by the lower

price range in Nord Pool.

From the price plots in Figure 1, we note that the Nord Pool price is always positive, unlike in Germany

where there are negative price observations. As seen from Table 10, most negative prices occur during night,

and the minimum and average negative prices during night are much more extreme than those observed

during day, when average demand is higher. Further, from Figure 3 we note that negative EPEX prices tend

to occur when wind power production is at its highest - Paraschiv et al. (2014) and Hagfors et al. (2016b)

show this happens mainly during night.

4.3 Descriptive Statistics of Fundamental Variables

Descriptive statistics of all variables are presented in Tables 7 (EPEX) and 8 (Nord Pool). We first note that

demand in EPEX varies notably more than PPA, as the range and standard deviation is less for the latter. In
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Table 9: Auto-correlation between prices in EPEX and Nord Pool.

Lag 1 Lag 2 Lag 3 Lag 4 Lag 5 Lag 6 Lag 7

EPEX Spot Price 0.69 0.52 0.48 0.46 0.47 0.58 0.68
Nord Pool Spot Price 0.92 0.86 0.83 0.82 0.81 0.83 0.84

Table 10: Overview of characteristics of negative prices in German EPEX.

Trading period Number of Negative Prices Average Negative Price Minimum Price

1 7 -35.5 -149.9
2 16 -30.5 -200.0
3 20 -34.8 -222.0
4 20 -38.8 -221.9
5 13 -46.6 -199.9
6 13 -38.7 -199.0
7 22 -30.4 -199.9
8 13 -22.2 -156.9
9 5 -1.4 -6.0
10 2 -1.4 -2.8
11 3 -1.9 -5.7
12 2 -4.2 -8.3
13 4 -2.7 -9.9
14 5 -19.8 -59.5
15 10 -24.6 -100.0
16 11 -17.6 -100.0
17 6 -15.3 -46.9
24 5 -30.4 -91.0

Nord Pool, demand and supply have quite similar statistical properties. The range is slightly shifted towards

higher values for supply, indicating excess supply is more likely than very high demand. Demand and supply

parameters are slightly positively skewed in Nord Pool, indicating higher levels are slightly more likely to

occur - the opposite is true for EPEX. The more volatile EPEX demand/supply relationship supports the

higher volatility of German electricity spot prices as previously discussed. Excess kurtosis is negative in both

markets; the distributions are quite flat with relatively thin tails, meaning these variables mostly are stable.

The correlation between demand and supply is very high (0.97) in Nord Pool. A plausible explanation for

this is the low elasticity of demand - and thus required supply. The supply side in Nord Pool is dominated

by flexible hydro power, so that supply is able to adjust to demand; hence, high demand is followed by

higher supply levels. Correlation between demand and PPA in Germany is much lower at 0.34, indicating

that high demand levels are less likely to coincide with high levels of supply. One possible explanation is that

intermittent renewable energy strongly affects the balance between supply and demand by either increasing

or decreasing supply relative to demand.

It is also very interesting to look at the relationship between the standard deviation of demand and

PPA/supply in EPEX/Nord Pool; for Nord Pool, the standard deviation is approximately the same for de-

mand and supply. In EPEX, however, demand varies much more than PPA, even though the mean values are

similar. This may be due to the extensive share of large scale thermal energy in EPEX. Large-scale thermal

plants are unable to vary the output swiftly due to physical and financial constraints, resulting in very low
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volatility of supply relative to demand. The relatively high correlation of 0.66 between demand and spot

prices in EPEX confirms that high prices are more likely when demand is high, and oppositely for low de-

mand. This correlation is lower in Nord Pool at 0.45, which may be explained by fewer situations where

scarcity pricing is necessary due to available and relatively low cost supply in cases of high demand.

Wind is negatively correlated with the spot prices in both markets, with a correlation of -0.33 with EPEX

and -0.14 with NP. This is as anticipated, as wind is expected to lower day-ahead prices. The correlation

is more negative in EPEX, which corresponds well with the higher share of wind in EPEX (Table 1). The

correlations between CO2 and gas, and oil are all quite high (CO2 and gas: -0.64, CO2 and oil: -0.67, oil

and gas: 0.71) - not surprising, as these commodities are closely linked. CO2 has a relatively high, positive

correlation with coal (0.56), while the correlation with gas is negative. The high correlations strongly imply

that multicollinearity is present, a phenomenon which adversely affects the modeling; this issue is further

discussed in Chapters 5 and 6.

Overall, the correlations indicate that the markets behave quite similarly in some aspects; demand, coal,

and environmental costs are positively correlated with the spot price, as expected.

4.4 Correlation of Variables Across Markets

Figure 2: Correlations between hourly spot prices in EPEX and Nord Pool.

The correlations between hourly spot prices in EPEX and Nord Pool are shown in Figure 2. Considering

how the spot prices and fundamental variables compare is relevant for understanding the market dynamics.

We first note that the spot price correlation varies between 0.30 to 0.53, with the highest correlations in peak

load periods. Thus, prices are more similar across the markets when demand is at its highest. During night,

in off-peak periods, the correlations are lower. Generally, the correlations are not very high, implying the

interconnection will be operated at full transfer capacity a large share of the time due to the price spread

(Statnett (2013)). The weak correlation of 0.27 between the volatility series suggests that volatile periods

are unlikely to coincide, and that extreme prices are unlikely to occur simultaneously, hence increasing the

stabilization benefits of connecting the markets.

Interestingly, demand (0.67), supply (0.67), and wind power (0.65) exhibit much stronger correlations

across markets than the spot prices and volatilities. This implies similar consumption and production pat-

terns that result in different price impacts due to the different market structures and production technolo-

gies (Table 1). However, as noted, the price correlations are at their highest when peak demand typically

14



(a) EPEX.

(b) Nord Pool.

Figure 3: Scatter plots of wind power production versus spot price.

occurs and peak load plants are more likely to be required in both markets. EPEX has a large share of ther-

mal power, which is harder to adjust according to fluctuations in the load. Nord Pool production is easily

adjusted to match demand, as discussed in the previous section. This is in line with the higher price volatility

in EPEX, and the less flexible production.

5 Methodology

5.1 Linear Quantile Regression

We will employ different quantile regression models for Nord Pool and EPEX due to different fundamental

variables. For Nord Pool the regression model is given by:

Qq (lnPi ,t ) =α
q
i +β

q
i ,1lnPi ,t−1 +β

q
i ,2lnPi ,t−7 +β

q
i ,3lnDE M AN Di ,t +β

q
i ,4lnSU PPLYi ,t

+β
q
i ,5lnW I N Di ,t +β

q
i ,6lnRES.LEV ELSt +β

q
i ,7lnG ASt−1 +β

q
i ,8lnOI Lt−1

+β
q
i ,9lnCO ALt−1 +β

q
i ,10lnCO2t−1 +β

q
i ,11lnEL.C ERTt−1 +β

q
i ,12lnV OL AT I LI T Yi ,t



while the regression model for EPEX will be:

Qq (lnPi ,t ) =α
q
i +β

q
i ,1lnPi ,t−1 +β

q
i ,2lnPi ,t−7 +β

q
i ,3lnE X .DE M AN Di ,t +β

q
i ,4lnE X .W I N Di ,t

+β
q
i ,5lnE X .PVi ,t +β

q
i ,6lnE X .PPAt +β

q
i ,7lnCO ALt−1 +β

q
i ,8lnG ASt−1 +β

q
i ,9lnOI Lt−1

+β
q
i ,10lnCO2t−1 +β

q
i ,11lnV OL AT I LI T Yi ,t

where q ∈ [0,1] is the 5%, 25%, 50%, 75% and 95% quantile. The log spot price of each day, lnPi ,t , is the

dependent variable on Xi ,t , which is the vector of explanatory variables, where i represents the 24 time peri-

ods throughout the day, and t represents the trading day. The constant for each quantile q is represented by

α
q
i and the regression coefficients are represented by β

q
i . αq

i and β
q
i are found by the following optimization

min
α

q
i ,βq

i

T∑
t=1

(q −1lnPi ,t≤α
q
i +Xi ,tβ

q
i

)(lnPi ,t − (αq
i +Xi ,tβ

q
i )),

where

1lnPi ,t≤α
q
i +Xi ,tβ

q
i
=

⎧⎪⎨
⎪⎩

1, if lnPi ,t ≤α
q
i +Xi ,tβ

q
i ,

0, otherwise.

Thus the models can be rewritten as:

Qq (lnPi ,t |Xi ,t ) =α
q
i +Xi ,tβ

q
i ,

with the respective vector of explanatory variables for each market. 1

5.2 Transformation of Negative Prices

Use of logarithmic price series has the benefit of yielding coefficients that can be interpreted as elasticities.

This facilitates comparison across factors and markets. For the German EPEX prices, this is not straight-

forward, as there are negative price observations for most of the trading periods (Table 10). To account

for negative prices and facilitate a logarithmic transformation, an option is to truncate the negative prices

by setting them to a low positive value. This is corresponding to the approach taken by Forrest and MacGill

(2013) when modeling the Australian NEM. The benefit of this approach is that the price series become more

or less directly comparable, and trading periods with no negative prices are not affected, i.e., trading period

18-23. However, estimating lower quantiles in trading periods with a higher number of negative price oc-

currences is problematic. The results will be highly distorted if very low prices are treated as outliers. Some

trading periods have up to 20 negative prices, approximately 1.5% of total observations (Table 10). Particu-

larly the trading periods in the middle of the night have very low average negative prices; truncating these

hours may cause a substantial loss of information. Thus, another option to handle negative prices is to shift

all the prices, such that all values become positive and can be logarithmically transformed. This approach

1The sqreg function in STATA has been used to estimate the quantile regression models. This estimates all the quantiles for a
given hour simultaneously, and standard errors are obtained by bootstrapping
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achieves less distortion in lower quantiles, but complicates the interpretation of the estimated coefficients

as they cannot be interpreted as elasticities.

To minimize the adverse effects, we choose to use both methods according to which quantiles are being

modeled. Upper quantiles for EPEX will not be noticeably impacted by truncating the lowest prices to a low

positive value. Lower quantiles, on the other hand, will be distorted as a large amount of the data points

would be artificially removed. Therefore, it is more reasonable to shift this data. With this reasoning, quan-

tiles up to and including 25% are modeled using shifted EPEX prices. €223.37/MWh is added to each data

point, ensuring the lowest EPEX price equals the lowest Nord Pool spot price of €1.38/MWh (Table 6). Quan-

tiles above 25% are modeled using truncated data, minimizing the adverse effects. The data is truncated

such that prices below €1/MWh are set to €1/MWh. The Nord Pool prices have not been altered, as there are

no negative prices in the series.

5.3 Transformation of Coefficient Estimates from Shifted Data

Directly interpreting the coefficients as elasticities from the lower quantile regressions in EPEX is not possi-

ble, nor are the estimates comparable with the higher quantiles. Therefore, to achieve comparable quantile

curves, elasticity estimates for EPEX for quantiles 5% and 25% are backed out from the shifted coefficient

estimates. First, the average value of each input variable is calculated for each trading period. A spot price

estimate is computed from these average values and the coefficients estimated from shifted data, before in-

crementing a specific variable by +1% and calculating a new price estimate. The percentage change for the

price estimates is taken as the elasticity of that specific variable; all variables and both quantile 5% and 25%

in EPEX are handled in this manner.

To ensure that the backed out approach yields adequate results, the approach was applied on the Nord

Pool price data for comparison. A selection of the results is shown in Figure 4. It is assumed that these re-

sults are transferable to the EPEX data set, and that it behaves similarly. The degree of similarity is high,

particularly when the significances are high, such as for the first lag (Figure 4a). The backed out elastici-

ties tend to deviate primarily when the significances are low, such as for supply shown in Figure 4b. The

backed out elasticities tend to be shifted on the y-axis relative to the true estimates. Further, we note that

the quantile curves obtained from true data are slightly smoother, especially for the 5% quantile. Based on

these results, we argue that backed out EPEX elasticities based on average values of input data provides an

adequate foundation for a comparative analysis.

5.4 Transformation of Explanatory Variables

To facilitate a comparison of the coefficient estimates of explanatory variables, the input variables must be

on logarithmic form. All factors other than EPEX spot prices and photovoltaic forecasts are always larger

than zero and logarithmically transformable. The photovoltaic forecasts series naturally include a large

number of zero forecasts, thus we chose to set all values below 1 MWh to the value of 1, achieving a mini-

mum logarithmic value of zero. There were 988 data points with forecasted production above 0 and below
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(a) Lag 1. (b) Supply.

Figure 4: Backed out and true coefficient estimates of lag 1, lag 7, and supply in Nord Pool.

1 MWh. It is reasonable to assume that solar in-feed below 1 MWh is practically zero production. All other

variables were positive and directly transformed to logarithmic values for both markets. To obtain daily hy-

dro reservoir estimates from weekly data, linear interpolation was used, assuming that the hydro usage is

approximately linear within a single week.

5.5 Multicollinearity

As noted in Section 4.3, the correlations between gas, oil, and CO2 prices are very high - all are above 0.64.

These variables are highly linearly correlated, and should not be simultaneously included in the modeling to

ensure the results are properly interpretable. To account for this, we remove the correlated variables when

estimating the impact of each variable. For instance, when estimating the quantile curves of gas price in

EPEX and Nord Pool, regressions excluding oil and CO2 prices are estimated to capture the impact of the gas

price. Further, the correlation between coal and CO2 is quite high at 0.56. Testing indicated that the model

results were less robust when both were included simultaneously; thus, quantile curves for coal are modeled

excluding CO2, and vice versa when estimating CO2 curves.

When modelling all the other variables, all variables are used in the regressions. This is not detrimental

to the analysis, as it focuses on how the estimated coefficients - and thus the impact on price formation -

varies throughout the trading day. In these cases the values of the linearly correlated variables do not matter.

6 Results and Discussion

6.1 Quantile Regression Results

The results for each fundamental variable will be separately discussed and compared in the following sec-

tions. Photovoltaic forecasts, hydro reservoir levels, and prices of green electricity certificates are only

present in one of the markets, and cannot be compared across markets. They are included in the models

for their respective markets for robustness, but will not be analyzed and discussed in detail. To examine the

drivers throughout the entire price distribution, results for quantiles 5%, 25%, 50%, 75%, and 95% are pre-

sented. The models used to estimate coefficients for analysing the linearly correlated prices of oil, gas, CO2

and coal differ from the other models, as discussed in Section 5.5. When analyzing the results, consideration



of the significance of each variable is necessary, thus the p-values from the regression results are presented

and evaluated. Note that a lack of significance indicates that a particular fundamental factor is not found

statistically relevant for the price formation in a given trading period and quantile.

As discussed in Section 5.2, the 5% and 25% quantile regressions for EPEX are estimated on shifted price

data. The elasticities for these two quantiles have been backed out from the regression results, using the

approach described in Section 5.3. This is done to achieve comparable elasticities for all estimated quantiles.

The Nord Pool elasticities are all estimated on unaltered data.

6.2 Lagged Prices

(a) Lag 1, EPEX. (b) Lag 1, Nord Pool.

(c) Lag 7, EPEX. (d) Lag 7, Nord Pool.

Figure 5: Coefficient estimates of lag 1 and lag 7 throughout the trading day.

The coefficient estimates of the first and seventh lagged prices are presented in Figure 5. The significances

of both lags are shown in Figure 6; lag 1 is practically always significant, with few exceptions in EPEX. The

estimated coefficients for lag 1 tend to be highest during night, and lowest in the late morning for both

markets and all quantiles. In contrast, the elasticities of the seventh lag are low during night compared to

day, particularly in Nord Pool. The results imply that yesterday’s price is a more important price driver in

trading periods with predictable low average demand relative to higher-demand trading periods.

The coefficient magnitudes of lag 1 are mostly larger than those of lag 7 in Nord Pool. The highest lag 1

coefficient is 1.22% in trading period 2, compared with 0.38% for lag 7 in trading period 7, both in quantile

5% in Nord Pool. This corresponds with the discussion in 4.2, where the auto-correlation between spot price

and lag 1 (0.92) is found to be noticeably higher than the correlation between spot price and lag 7 (0.84).

Further, we note from 5a and 5b that the coefficient magnitudes of lag 1 decrease with higher quantiles,
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implying that other factors drive very high prices in both markets. In EPEX, this is particularly evident in the

early morning. The seventh lag tends to be most influential when people and industry are more active, thus

capturing the difference between a working day and a weekend.

Lag 1 and lag 7 in EPEX have relatively similar impacts on the spot price throughout the trading day,

with some exceptions during night when the impact of the first lag is higher. This is as expected, since the

correlations with the spot price for both variables are almost equal (Table 9). Therefore, the day-ahead and

the weekday-effect have approximately the same influence in EPEX. Oppositely, the lag 1 magnitudes are

larger than those of lag 7 in Nord Pool, thus the day-ahead effect is more pronounced relative to the weekday

effect. These results show that the weekly consumption patterns are relatively more important to the price

formation in EPEX than in Nord Pool. The higher volatility exhibited by the EPEX spot prices, as discussed in

Section 4.2, likely explains the lesser importance of price lags as price drivers. Nord Pool prices are generally

much more stable, and it is thus reasonable that the price of the next trading day are more similar to recent

prices.

(a) Lag 1, EPEX. (b) Lag 1, Nord Pool.

(c) Lag 7, EPEX. (d) Lag 7, Nord Pool.

Figure 6: Significance of lag 1 and lag 7 coefficients throughout the trading day.

6.3 Price Volatility

From the discussion in 4.2 we know that the price range and price volatility in EPEX is much higher than in

Nord Pool, suggesting the tails of the price distribution in EPEX are thicker. From the significances shown in

Figure 8 we observe that volatility in Nord Pool is significant in all quantiles except 50%. In EPEX, the 25%

and 50% quantiles are the least significant quantiles. The tails are highly significant throughout the trading

day, except quantile 95% during night. This confirms that volatility is a more important driver in the tails of

the price distributions. Considering that electricity prices exhibit volatility clustering, it is not unanticipated
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that high volatility further increases high prices or reduces already low prices.

The coefficients for both markets are shown in Figure 7. In general, the quantile curves are quite simi-

larly shaped in each market, with similar positive magnitudes in the two highest quantiles. These volatility

curves closely follow the average daily demand, with small peaks around noon and early evening, and the

magnitudes are lowest during night. This implies that price volatility is closely related to demand when

prices are high. The elasticities are at their highest in the 95% quantile in trading period 9 in both markets;

0.14% in EPEX, and 0.15% in Nord Pool. Although significant, price volatility is not the primary price driver

behind high prices, as the elasticities are low.

The price impact of volatility is negative in the low quantiles for both markets, where the magnitudes of

the lowest quantile are noticeably larger in EPEX than in Nord Pool. This suggests that the price reducing

impact is at its strongest when unpredictable wind production leads to negative prices in EPEX. The 50%

quantile also has significant negative coefficients in EPEX during night, implying that when prices are on

expected levels and average demand is low, higher volatility tends to decrease spot prices. The negative

price impact of volatility in Nord Pool is quite similar throughout the trading day, but slightly stronger during

day. The effect in the 5% quantile is notably lower than the 25% quantile, confirming that volatility is most

influential in the tails in both markets.

(a) EPEX. (b) Nord Pool.

Figure 7: Coefficient estimates of price volatility throughout the trading day.

(a) EPEX. (b) Nord Pool.

Figure 8: Significance of price volatility coefficients throughout the trading day.
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6.4 Demand

(a) EPEX. (b) Nord Pool.

Figure 9: Coefficient estimates of demand throughout the trading day.

(a) EPEX. (b) Nord Pool.

Figure 10: Significance of demand coefficients throughout the trading day.

The coefficient estimates of demand are shown in Figure 9, and significances are depicted in Figure 10. We

initially note that demand is always influential in EPEX. The significances vary greatly in Nord Pool, and are

only notably high for the 95% quantile. These results are supported by the correlations between spot prices

and demand discussed in Section 4.4; the correlation in EPEX of 0.66 by far exceeds that of 0.45 in Nord

Pool. Further, Nord Pool is a less volatile market; the large amount of hydro provides flexibility in the power

system, as discussed in Section 3.2. Therefore, fluctuations in demand are only influential in parts of the

spot price distribution.

The upper quantile volatility coefficient curves follow the average demand curves. Thus, the dynamics

behind the highest prices are closely related to both average demand levels and price volatility in both mar-

kets. As expected from the significances and correlations, the magnitudes of demand coefficients in EPEX,

shown in Figure 9a, exceed those of Nord Pool, confirming demand is a more important price driver for all

quantiles in EPEX. The influence of demand is at its highest during very early morning and late afternoon in

both markets, but the Nord Pool elasticities tend to peak 2-3 trading periods after those in EPEX.

A major difference between the two markets is that the coefficient magnitudes decrease with higher

quantiles in EPEX, while they increase with higher quantiles in Nord Pool. The 5% quantile coefficients in
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EPEX are notably higher than the other quantiles, with a peak value of 2.99% in trading period 3. The highest

Nord Pool elasticity is 1.38%, found during trading period 6 in the 95% quantile. The demand elasticities for

both markets are at their highest when average demand is low. Changes in demand are most influential in

off-peak periods. This may be due to market participants not anticipating changes in lower-demand trading

periods, so that unexpected changes induce higher price impact than otherwise expected.

The importance of demand in higher quantiles in Nord Pool can be explained by several factors. The

flexibility provided by the hydro reservoirs enables demand fluctuations to be covered without utilizing more

expensive peak-load plants. However, when demand is very high, more expensive peak load plants will

be switched on and become price setters, thus increasing the spot price. Although Nord Pool is a highly

competitive market with many producers, situations with power scarcity may allow producers with available

capacity to exercise market power and set prices above the marginal cost, further increasing prices in the

highest quantiles.

6.5 Supply Parameters

6.5.1 PPA/Supply

The estimated coefficients for the supply parameter in EPEX and Nord Pool are presented in Figure 11, and

the significances are found in Figure 12. Note that the variables used to represent supply in EPEX and Nord

Pool are differently defined, as discussed in Section 4.1.2. The supply parameter is more significant in EPEX

than in Nord Pool, likely due to the differences in energy mixes discussed in Section 3.2, as most German

producers have limited ability to adjust the production if desired.

As expected, PPA coefficients are negative, confirming that increasing supply reduces the spot price. The

coefficients magnitudes in EPEX decrease with higher quantiles, hence PPA is most influential when prices

are either in the low or expected range. PPA tends to be most influential in off-peak periods, and the lowest

elasticity of -1.83% is found in quantile 5% in trading period 4. Inflexible large scale thermal load is typically

used to cover most of the demand in these trading periods, and a relatively strong price-reducing impact is

anticipated as production cannot be swiftly and cost-efficiently adjusted following load fluctuations. The

lesser importance of PPA in upper quantiles indicates that increasing expected supply levels are unable to

entirely prevent spot prices from reaching very high levels, as these prices are likely to have other primary

determinants.

Nearly all elasticities in Nord Pool are negative, with few exceptions for the three lowest quantiles. There

are some positive and significant estimates in the 5% quantile, particularly during night and early morning.

The coefficients are mostly insignificant for all quantiles, except the 95% quantile during the first half of

the day and 5% during night/noon. This implies that supply in Nord Pool is most influential in the tails

of the price distribution. The highest negative elasticity of -1.12% is found for the 95% quantile in trading

period 6. Supply is generally found to have a price-dampening effect in Nord Pool for upper quantiles,

particularly for off-peak periods. Unlike EPEX, the supply elasticities become more negative with higher
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quantiles, strongly implying that supply is more price-dampening for higher prices. This may be due to the

flexibility offered by hydro reservoirs, as production can be swiftly ramped up when spot prices and profits

are higher - consequently increasing the market supply and lowering the spot price.

(a) EPEX. (b) Nord Pool.

Figure 11: Coefficient estimates of PPA/supply throughout the trading day.

(a) EPEX. (b) Nord Pool.

Figure 12: Significance of PPA/supply coefficients throughout the trading day.

6.5.2 Wind Power Production

(a) EPEX. (b) Nord Pool.

Figure 13: Coefficient estimates of wind power production throughout the trading day.

The coefficients for wind power production for all quantiles are shown in Figure 13. Unsurprisingly, the es-

timated coefficients are all negative. Consequently wind production reduces electricity spot prices, as the
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introduction of low marginal cost wind power substitutes more expensive power plants. The magnitudes

of the coefficients are noticeably higher in EPEX than Nord Pool, which is reasonable considering the larger

share of wind power in EPEX than in Nord Pool; 13.3% compared with 8.9% (Table 1). This is further sup-

ported by the more negative correlation between wind power and spot price in EPEX, as discussed in Section

4.3.

As seen from the significance plots in Figure 14, wind is practically always significant in both markets.

Exceptions are some trading periods in the 5% and 95% quantiles in Nord Pool. However, the elasticities in

Nord Pool are very low for all quantiles, hence wind is not a dominant price driver. In EPEX, the influence

of wind is at its highest during night and early morning, when the average demand is at its lowest and wind

likely constitutes a large share of the production. The elasticities decrease in magnitude towards higher

quantiles, confirming that wind is most influential in the lower tail. This is further supported by Figure 3,

from which it is clear that low spot prices tend to occur when wind power production is high. Overall, wind

is an important electricity price driver in EPEX, and is particularly important in the formation of low spot

prices.

(a) EPEX. (b) Nord Pool.

Figure 14: Significance of wind power production coefficients throughout the trading day.

6.6 Fuel Prices

The results for the different fuel parameters are presented here. Note that each model for coal, oil and gas

is estimated excluding the highly correlated variables, to isolate the impact of each respective fundamental

variable.

6.6.1 Coal

As depicted in Figure 16, coal prices are highly significant in EPEX, and less significant in the lower tail in

Nord Pool. From Figure 15, we note that the estimated coefficients are positive when significant in both

markets, confirming that higher coal prices increase the electricity prices. An exception is found in the

5% quantile in Nord Pool, where the elasticities during night are negative and significant. The coal price

coefficients in EPEX are noticeably higher than those in Nord Pool, indicating coal price is a more important

driver behind electricity prices in Germany. This is according to expectations due to the higher share of coal

in the German power system, as discussed in Section 3.2.
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(a) EPEX. (b) Nord Pool.

Figure 15: Coefficient estimates of coal prices throughout the trading day.

(a) EPEX. (b) Nord Pool.

Figure 16: Significance of coal price coefficients throughout the trading day.

In EPEX, the coal price is most influential in the upper quantiles during night, as it is often the price

setter in these trading periods. During day the dynamics are different in EPEX; the lower tail coefficients are

most influential. High demand levels cannot be covered by base load alone, yielding coal less relevant in the

highest quantiles during day. Base load covers a larger share of demand when electricity prices are close to

or below expected levels, as the results indicate. Thus, coal is an important determinant behind lower prices

in trading periods when demand is at medium to high levels.

The two lowest quantile curves in EPEX are quite similar magnitude-wise, and peak during day; note that the

5% quantile is mostly insignificant during night and early morning. This strongly indicates that spot prices

in the lowest quantiles are driven by other factors - such as wind power. In Nord Pool, the lower quantiles

are mostly insignificant, implying that coal is not an important driver behind low prices. An exception is

the 5% quantile during night, when coefficient values are negative. This is unanticipated, but may be due to

higher coal prices shifting production towards lower marginal-cost technologies, such as large-scale nuclear

or hydro production. The upper quantiles are more significant, and have positive coefficients which increase

with higher quantiles. Like in EPEX, the coal price coefficient magnitudes for Nord Pool are at their highest

during night in the 95% quantile. At those times when hydro is less able to meet demand, for instance during

dry years, coal price becomes more important and leads to higher nightly spot prices.
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6.6.2 Gas

The gas price coefficients for all trading periods and quantiles are presented in Figure 17, with significances

shown in Figure 18. The significances vary throughout the trading day and tend to increase with higher

quantiles, particularly in Nord Pool. Gas is slightly more significant in EPEX, which is reasonable considering

the larger share of thermal energy and lack of flexible hydro to cover peak load.

The upper quantiles are the most significant in Nord Pool, however, the coefficient magnitudes are neg-

ligible, hence gas is not an important price driver in Nord Pool. In EPEX, the impact of gas price varies across

different quantiles. The 5% and 25% quantiles are significant during night, with high positive magnitudes

for the 5% quantile. The 5% quantile elasticity peaks at 1.11% in trading period 4. The high coefficient values

for low quantiles during night are unexpected, as gas is not commonly used to cover load during off-peak

hours when prices are low. The explanation may be that a sudden drop in low marginal cost wind power

production necessitates the use of gas, thus increasing the price.

(a) EPEX. (b) Nord Pool.

Figure 17: Coefficient estimates of gas price throughout the trading day.

(a) EPEX. (b) Nord Pool.

Figure 18: Significance of gas price coefficients throughout the trading day.

Interestingly, the coefficients become negative and significant for the three lowest quantiles in EPEX

in the middle of the day, simultaneously as photovoltaic average production levels peak. The negative co-

efficients are possibly due to substitution; low marginal cost photovoltaic power replaces more expensive

peak load plants, and spot prices are lowered. Oppositely, the 95% quantile has significant and positive
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coefficients in these trading periods. This is likely due to gas covering demand when low marginal cost pho-

tovoltaic production is lacking, thus increasing the upper tail prices. Gas price coefficients are positive and

significant for quantiles 75% and 95% in the early evening when demand is at its highest, as anticipated.

Large scale thermal plants and renewable energy sources are unable to cover peak demand, and gas power

plants are used, consequently increasing the prices. This effect increases with higher quantiles, as the 95%

quantile estimates are well above those of the 75% quantile.

6.6.3 Oil

The coefficient estimates for the oil price are given in Figure 19, with corresponding significances given in

Figure 20. In Nord Pool, quantile 5% is insignificant throughout the trading day, closely followed by the

25% quantile. The insignificance illustrates that when prices are already low, oil does not affect the price

formation, which is expected as oil-fueled plants are used mainly to cover peak demand. The significance

of the remaining quantiles in Nord Pool is unexpected as the share of oil in this market is negligible. The

significances in EPEX vary greatly, but are highest for all quantiles in the middle of the day and in the evening

for the two highest quantiles.

(a) EPEX. (b) Nord Pool.

Figure 19: Coefficient estimates of oil price throughout the trading day.

(a) EPEX. (b) Nord Pool.

Figure 20: Significance of oil price coefficients throughout the trading day.

In Nord Pool, the quantile estimates are negative and particularly low during morning for the 95% quan-
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tile; the elasticity is -0.66% in trading period 7. The negative coefficient estimates decrease towards zero for

lower quantiles. The negative coefficients are unexpected, as for the gas price discussed previously. A possi-

ble explanation is that high electricity prices during night motivate hydro producers to ramp up production

to cover demand, thus lowering the highest prices and reducing the need for fossil fueled peak load plants.

Overall, the sensitivities to oil price are very low, thus oil is not an important price driver in Nord Pool.

The highest elasticities in EPEX are found in quantiles 5% and 95%. Similar to the gas price, the 5% quan-

tile has a strong positive impact during night; this may be due to a sudden lack of wind power necessitating

the use of peak load plants to meet demand. According to Paraschiv et al. (2014), oil is rarely used for power

production in Germany and is primarily related to coal transportation. This may explain the positive price

impact in off-peak periods, when coal dominates the power production. In the afternoon, all quantiles but

95% are significant and negative. As for gas, this is likely related to cheaper low marginal cost photovoltaic

power substituting the peak load plants. The results found in the peak periods are according to expectations;

the two highest quantiles have a notably positive elasticities, as oil is more likely to be the price setter.

6.7 CO2 Emission Cost

When assessing the sensitivities to the cost of CO2 presented in Figure 21, it is important to note that this

cost is primarily related to coal, as it emits the largest amounts of CO2. Hence, it is as expected that the

estimated quantile curves for CO2 are similarly shaped to those of coal. This is also true for the significance

curves shown in Figure 22. Note that the CO2 quantiles have the opposite shape compared to gas/oil curves,

as expensive carbon allowances shift some production from coal to gas/oil which emit less CO2.

The lower quantile CO2 elasticities are highest during day in EPEX, as for the coal price. During night,

the highest quantile curve has the largest positive coefficients, while the lowest quantile is most negative.

Further note that the magnitudes of CO2 elasticities are less than those of coal. This implies that the cost

of carbon amplifies the price impact of coal throughout the price distribution. Keep in mind that the 5%

quantile elasticities in EPEX are backed out as described in Section 5.3, thus the high magnitudes may be

exaggerated. Considering that a 1% increment in the CO2-price is less in absolute value than a similar change

in the coal price, we conclude the sensitivity to carbon emission costs is low in EPEX.

(a) EPEX. (b) Nord Pool.

Figure 21: Coefficient estimates of CO2 price throughout the trading day.
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(a) EPEX. (b) Nord Pool.

Figure 22: Significance of CO2 price coefficients throughout the trading day.

Low coefficient values in Nord Pool are as anticipated, considering the low share of fossil fuels. However,

as seen in Figure 22b, the coefficients are mostly significant except quantiles 5% and 25%. From Figure 21b

we conclude there is a small positive sensitivity to emission costs. The CO2 price is most influential in the

95% quantile, with coefficients nearly as high as those in EPEX during night. The implication is that fossil

fuels are used primarily when prices are high for each trading period. This is further confirmed by the low

significance of the lower quantile curves. Carbon emission costs are not a main price driver in Nord Pool,

but rather accentuate the impact of fossil fuels, particularly coal. The cost of CO2 is notably more influential

in EPEX due to the considerably larger share of thermal energy.

7 Conclusion

In this paper we analyze the electricity spot price distribution in EPEX and Nord Pool using quantile regres-

sions. We analyze and compare how different fundamental variables non-linearly influence the different

price quantiles throughout the trading day in each market. This is motivated by the upcoming market inte-

gration due to the NordLink cable, which will connect Norway and Germany in 2020. The impact from each

variable varies throughout the trading day and across the price distribution. Clearly, electricity markets are

complex as the relations between fundamental variables and day-ahead prices are highly non-linear across

several dimensions.

Autoregressive effects are the most important price drivers in Nord Pool; the first lagged price is the most

influential variable and is thus the best price predictor. The seventh lag has notably lower coefficients, but

is also a highly influential variable in Nord Pool. The first lag is most influential in off-peak periods and

lower tail, while the seventh lag is most relevant in trading periods with higher demand. In EPEX, lagged

prices are less important relative to other variables, but the impact of the first lag slightly exceeds that of the

seventh lag. The intraday price dynamics are similar to Nord Pool: the first lag is most influential during

off-peak, while the seventh lag is more relevant when demand is higher. The volatility of the prices explains

the differences in relevance of autoregressive effects. Nord Pool day-ahead prices are much more stable, and

it is reasonable that lagged prices are better price determinants. The price impact of the volatility variable



is very similar in both markets: it is highly significant in both tails and tends to make prices deviate further

from the expected value.

Demand has a particularly large impact in EPEX, as the elasticities are high for all quantiles. Supply in

EPEX - expressed through voluntarily reported power plant availability - has a price lowering influence for

the entire price distribution. Both the demand and supply parameters in EPEX tend to have lower absolute

elasticities with increasing quantiles, implying that the highest prices are driven by other factors. The dy-

namics are completely opposite in Nord Pool; both demand and supply are only influential in the highest

quantile, implying that prices in the normal range are barely influenced by these variables. The differences

in impact from changes in demand and supply are related to the energy sources used; the flexibility provided

by hydro in Nord Pool smoothly balances load fluctuations. The results support this, as hydro reservoir levels

were found to be primarily influential in the tails of the prices.

The lower and upper tails in EPEX have quite different dynamics; some variables are relevant in only one

tail, while others influence both tails. In addition to demand and supply strongly impacting the lower tail,

wind power production has a notably strong influence - particularly during night when negative prices are

known to occur. The fossil fuel prices are important in both tails, but with very different impacts. Coal is

most important during day for lower quantiles, while it is most relevant for upper quantiles during night.

Gas and oil are similar to each other; the quantile plots have positive peaks during night and early evening,

and a slight negative dip in the middle of the day. These dips are unexpected, but are plausibly explained by

low cost photovoltaic power substituting the fossil fuels, resulting in lower prices. Both gas and oil are used

to cover peak load, hence the positive impact on prices in the highest quantiles in peak demand periods is

according to expectations. The irrelevance of both oil and gas in Nord Pool is as anticipated, as the share of

fossil fuels is quite low. Coal has a small significant impact, and exhibits similar dynamics as in EPEX during

night; the elasticities are positive and increasing with higher quantiles. This is likely due to coal covering

the base load and becoming the price setter for the highest prices in off-peak periods. As CO2 quantile

curves closely follow those of coal, the impact is quite similar in both EPEX and Nord Pool. In addition to

emphasizing the price impact of coal, an increase in cost of CO2 also encourages shifting to fuel sources

emitting less carbon.

Overall, the analysis of the impact of fundamental variables confirms that the price formation dynam-

ics differ greatly in these two markets. Nord Pool spot prices are primarily driven by autoregressive effects,

while other variables, such as demand, are influential only in some quantiles. It appears that much of the

potential price impact from fundamental variables is balanced by the large hydro reservoirs. EPEX has a

higher number of relevant price drivers compared to Nord Pool. This is likely explained by the structure of

the German power market, which consists of large scale thermal power in combination with unpredictable

renewable energy sources, resulting in a much less flexible system. Consequently, changes in the balance

between production and consumption, or fuel prices, have stronger impacts on the electricity price forma-

tion.

A thorough understanding of dynamics in these two markets is important for market participants. Pro-
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ducers benefit from the insights given by this analysis, as it supports investment planning in these markets,

and assists in developing hedging strategies. Further, it is valuable for TSOs, as it improves future grid op-

eration and development, as well as investors considering entering or expanding their presence in these

markets. Connecting two markets is most beneficial if there are differences in prices and price dynamics,

which is clearly the case for Nord Pool and EPEX, as shown in our analysis. Market participants in both EPEX

and Nord Pool will mutually benefit and increase trading profits. Further, intermittency issues in Germany

are offset and security of supply is enhanced.
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In this paper we evaluate mutually exclusive transmission projects under policy and
economic uncertainty. The alternatives being considered are transmission investment
projects between Norway and Germany, and Norway and the UK. We apply a real option
valuation framework allowing the investor to choose the optimal time and location of the
investment, and also how different conditions affect the decision to invest in either of
these two projects. The analysis shows that the value of the option does not necessarily
increase with volatility.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

The European Union (EU) has committed to a binding
goal for all member states of fifteen percent cross-border
transmission capacity by the end of 2030. In this paper we
aim to analyse the profitability and optimal investment
timing of additional transmission capacity between coun-
tries when uncertainty is taken into account. This is done
using real option valuation with the option to invest in one
of two mutually exclusive projects; either building an in-
terconnector from Norway to Germany or from Norway to
the United Kingdom (UK).

The main contribution of this paper is twofold. First, we
apply real option analysis to consider which country to
connect to. In the real options literature there are several
papers considering mutually exclusive investment projects
(Childs et al., 1996; Dixit, 1993; Décamps et al., 2006), but
they do not consider the option of choosing between dif-
ferent locations. Second, our paper is one of the few to
apply real option valuation to transmission assets. We
draw inspiration from the paper of Fleten et al. (2011), who

analyse the option to invest in an interconnector, where
the aim is to choose the optimal capacity of the cable. In
this paper we focus on the application of real options
when choosing between mutually exclusive projects under
policy and economic uncertainty.

The two policy schemes we focus on are the EU emis-
sion trading system (ETS) and capacity markets. We find
that capacity markets have no impact regarding project
choice, but it does influence the option value. A reform to
the EU ETS, necessarily increasing CO2 emission prices, can
increase the option value, leading to an increased spread
between the Norwegian and German/UK electricity prices.
The differences in production mix between the German
and the UK market also makes a tightened EU ETS have a
different effect on the two markets. The effects of the
policy schemes are included in the model through the
revenues from the two cables. We model the revenues as
uncertain and fluctuating over time.

We further investigate the benefits of looking at the
option to invest in one of the two locations. Other papers
have developed models for choosing the optimal entering
strategy into a new market. Gilroy and Lukas (2006) con-
sidered the option of choosing between two different
market entry strategies. They emphasise the value of
considering the option to invest as mutually exclusive
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choice between different locations. By doing so, the value
of the option increases and it helps practitioners obtain an
optimal investment strategy.

The valuation methodology builds on Rubinstein
(1994), and takes into account the yearly revenue streams
for two potential projects, ramping restrictions and capa-
city markets. One important finding is the effect of un-
certainty on the option value. The result shows that the
option value does not necessarily increase when the vo-
latility increases, unlike what we commonly find in real
option valuations.

The rest of this paper is organised as follows: In Section
2 we present characteristics and trends in the electricity
market, together with a brief description of the Norwe-
gian, German and the UK electricity market. Section 3
discusses the main policy related uncertainties in the
electricity market and how these uncertainties might af-
fect the electricity price. Section 4 introduces and explains
the two factor real option model. Section 5 presents the
data set and describes the main findings. In Section 6 we
perform a sensitivity analysis of the real option model and
conclude in Section 7.

2. The electricity market

In the Norwegian production system hydropower pro-
duces over 98% of the total generated electricity. Only a
small fraction of the system is thermal generation emitting
CO2. Norway utilizes a market based support scheme es-
tablished to promote new electricity production based on
renewable energy sources, the Norwegian–Swedish elec-
tricity certificate market. The increased portion of new
renewable generation is expected to increase the surplus
in the Nordic system. The electricity price in Norway is low
compared to other countries in Europe, as hydropower is
the price setter in most hours.

In the United Kingdom, 36% of the total generated
electricity was generated from coal, 28% from natural gas,
21% from nuclear and 17% from renewables in 2013 (De-
partment of Energy and Climate Change, 2015). The gov-
ernment is also investing in a new nuclear power plant,
Hinkley Point C, to secure supply as most of UKs existing
nuclear stations are due to close before 2023. A capacity
market will be introduced in December 2014 to create
incentive to invest in new generation. The UK chose to
introduce a price floor of 18 d/tCO2 for all market partici-
pants to give an incentive to invest in low-carbon power
generation.1

In Germany, 48% of the total generation was generated
from coal, 28% from renewables, 17% from nuclear and 6%
from natural gas in 2013. Germany actually has a target of
consuming 80% of its total electricity consumption from
renewables by 2050. To this end, Germany has introduced
a feed-in-tariff aimed to accelerate investments in re-
newable energy by providing a fee above the retail

electricity price. This is a part of the Energiewende in
Germany, the transition of the power sector from nuclear
and coal to renewables.

The financial crisis has stalled investments in new
generation capacity and reduced demand for electricity.
This in combination with increased deployment of wind
and solar generation, the evolution in the costs of gas and
coal, and the low carbon price have resulted in reduced
wholesale electricity prices in Germany (European Com-
mission, 2015).

3. Policy uncertainty

The European Union introduced the EU2050 target to
make the transition to a competitive low-carbon society by
2050. As a consequence of the framework, the energy
markets have experienced extensive changes during the
last decades, creating an uncertain environment for in-
vestors. This paper focuses on what we consider the two
main sources of policy uncertainty in EU during the next
45 years; the future of the EU ETS and the possible in-
troduction of capacity remuneration mechanisms. The EU
ETS was implemented to reach the 2050 target of 80%
emission reduction compared to 1990 levels (European
Council, 2014). Today it is not incentivising much emission
reductions due to the low carbon price. If it fails to increase
the incentive to invest in green technology, it is expected
that it will be reformed or replaced with another type of
scheme. In addition, several countries have either im-
plemented capacity markets or are considering it because
they are concerned for their security of supply.

3.1. EU emission trading system

The EU ETS was started in 2005 and is the largest cap-
and-trade scheme in the world. An absolute quantity limit
(or cap) on CO2 emissions is placed on 12000 emitting
facilities located in the EU. This constitutes 45% of the total
carbon emissions in the EU. These facilities must measure
and report their CO2 emissions and subsequently surren-
der an allowance for every ton of CO2 they emit during
annual compliance periods.

The carbon price fell from almost 30 €/tCO2 in mid-
2008 to less than 5 €/tCO2 in mid-2013 as there was a
surplus of 2 billion allowances in 2013. The surplus has
primarily been built up as a reaction to the financial crisis.
It led to a reduction of industrial production, emissions,
and thus the demand for allowances. The supply of al-
lowances for 2008–2020, which is based on a much better
outlook for the economy, is fixed. This has led to a low
carbon price, which weakens the incentive for emission-
saving investments.2

The short-run effect of an increase in CO2-prices in EU
ETS is an increased electricity price. However, long term
effects depend on investment reactions, which in turn is
highly dependent on governmental policies. The future

1 Carbon price floor: reform and other technical amendments published
by the British government https://www.gov.uk/government/uploads/sys
tem/uploads/attachment_data/file/293849/TIIN_6002_7047_carbon_
price_floor_and_other_technical_amendments.pdf.

2 The web page of European Commission on EU ETS http://ec.europa.
eu/clima/policies/ets/reform/index_en.htm

I. Bakke et al. / Journal of Commodity Markets 3 (2016) 54–69 55



energy mix is uncertain, and thus the impact on spreads
are uncertain.

For the valuation of an interconnector it is interesting
how the EU ETS will influence the revenues through the
electricity price spread between the two countries. The
Norwegian system is dominated by hydropower, while
both the UK and the German system are dominated by
thermal generation. This implies that the carbon price will
have a greater effect on the prices in the UK and Germany.
There are hours where the Danish coal-plants are the price
setters in the Norwegian market. However, hydropower is
the price setter in most hours, due to existing bottlenecks
in the grid. In these hours, the spread between the elec-
tricity prices will increase with a higher carbon price since
there is no carbon emission from hydropower.

3.2. Capacity remuneration mechanisms

In energy-only markets the producers of electricity are
paid based on the MWh delivered to the consumers. The
question is whether some kind of capacity market should
be implemented in addition to the energy-only market to
contribute to the security of supply. It is designed to give
incentives for investment in new generation, ensuring that
existing generation does not get shut down and to increase
the demand-side response, making demand more price
elastic. Several EU-members have already implemented
different types of capacity mechanisms, including Greece,
Ireland, Italy, Portugal, Spain, Sweden and the UK.

The capacity market in the UK has committed to let
interconnectors participate in its auctions from 2015 on.3

For the cable revenues this means that the new inter-
connectors can bid into the auctions and receive revenues
from this market. Thus there is less policy uncertainty
here.

A report published by the German Advisory Council on
the Environment (SRU) highlights a strategic reserve as a
better option than a capacity market to secure supply, due
to a smaller intervention in the market.4 However, the
Council does not rule out capacity market as a necessity to
ensure security of supply in the medium term. In October
2014, The Ministry of Economic Affairs and Energy in
Germany published its Green Paper on the future devel-
opment of the German electricity market. The paper con-
siders two approaches for the long-term development of
the electricity market: an optimised energy-only market or
capacity market alongside the energy-only market.5

It is uncertain how the electricity price will be affected
by the capacity market. The general price level can

decrease if the capacity market creates an incentive in the
energy-only market to invest in capacity with lower mar-
ginal cost than the current price setter in off-peak hours.
The resulting change in the wholesale price is dependent
on the steepness of the merit order curve and how much
new capacity is added in. More capacity in the market also
reduces the market power of incumbents since the com-
panies can to a smaller extent profit from price spikes by
withholding capacity (Cramton and Ockenfels, 2012). Ca-
pacity markets can also be designed to only pay a fixed
capacity payment to peak plants. The incentives for in-
vestments in base load and mid merit capacity can be re-
duced, resulting in lower peak prices and higher mid-
merit prices.

According to Cramton and Ockenfels (2012), by getting
costs recovered in two markets, the generation companies
reduce their risk premium in the spot market. Therefore, a
capacity market can lower the electricity price in the spot
market by reducing the risk premium. The Department of
Energy and Climate Change (DECC) has performed an as-
sessment of the capacity market in the UK, which confirms
that the general level of the wholesale price decreases. At
the same time, it is difficult to predict the effect a capacity
market has on the electricity price, due to the lack of
empirical data.

The congestion rent (interconnector revenue) is equal
to the hour-by-hour price difference between the two
markets. We consider an asymmetric capacity market, i.e.
a capacity market is only implemented in one market. We
will refer to the market that introduces the capacity mar-
ket, as market A, and the other market, as market B. In this
paper Germany and the UK are market A since UK is im-
plementing a capacity market and Germany is considering
it due to the constrained capacity situation in the two
markets. Norway is market B because it is not considering
implementing a capacity market. We will therefore as-
sume that the capacity situation is more constrained in
market A, implying higher peak load prices.

A capacity market can lead to lower peak prices in
market A. If the peak prices are still higher in market A
than in market B, A will continue to import from B in peak
hours, so there will not be an immediate impact on traded
volumes between the two markets. The effect on the
congestion rent is dependent on how much the peak pri-
ces in market B decrease with peak prices in market A. We
believe the peak prices will be reduced further in A than in
B. This is dependent on the correlation between the two
markets. It is not likely that the peak prices are reduced
with the same amount, because this requires perfect cor-
relation. This suggests reduced congestion rent. If the ca-
pacity market lowers the peak price in market A to the
level where some peak prices in B are at the same level as
in A, the capacity of the cable is not fully utilised and the
trade volume is altered. As a consequence the congestion
revenue will be reduced. At the same time, the inter-
connector will also get revenues in the capacity market,
which compensates for the reduction in the congestion
revenue.

Another result of introducing a capacity market in
market A, could be that the overall market price decreases.
If the market price is sufficiently lowered it will change the

3 State aid: Commission authorises UK Capacity Market electricity
generation scheme, press release by European Commission July 2014
http://europa.eu/rapid/press-release_IP-14-865_en.htm

4 Shaping the Electricity Market of the Future – Key Recommendations
published by German Advisory Council on the Environment in November
2013 http://www.umweltrat.de/SharedDocs/Downloads/EN/02_Special_
Reports/2012_2016/2013_11_Special_Report_Electricity_Market_KfE.pdf?
__blob¼publicationFile.

5 Ein Strommarkt für die Energiewende published by Ministry of Eco-
nomic Affairs and Energy in October 2013 http://www.bmwi.de/BMWi/
Redaktion/PDF/G/gruenbuch-gesamt,property¼pdf,bereich¼bmwi2012,
sprache¼de,rwb¼true.pdf.
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trade patterns so that market B imports more than before,
shifting the overall market price downwards. An analysis
published by the European Commission suggests that the
congestion rent is reduced in peak hours and increased in
low load hours.6 Therefore it is difficult to determine in
advance the total effect on the revenue.

4. Modelling the investment option

To model the investment decision a real options model
has been developed. The characteristics of the investment
decision will be explained in Section 4.1. The technical
consideration is stated in Section 4.2 and the historical
data used for the sensitivity analysis is introduced in
Section 4.3. All these subsections are used to provide a
better understanding of the modelling which follows in
Section 4.4. Finally, the numerical implementation is ex-
plained in Section 4.5.

4.1. Characteristics of the investment decision

In the following paragraphs we will go through the
main assumptions to provide a better understanding of the
model in Section 4.4

Assumption 1. The market is perfectly competitive. This
means that all market participants are price takers, that
they do not have the market power to change the prices.
This is a common assumption when considering invest-
ments in the electricity market (Fabbri et al., 2005; Yuce-
kaya, 2013).

Assumption 2. The two investment projects are mutually
exclusive; the decision to make one investment prevents
making the other investment. We make this assumption
based on technical limitations in the Norwegian electricity
market. Statnett estimates that the maximum load in
Norway could be as high as 25 000 MW and the produc-
tion capacity is 28 000 MW.7 In 2020, the total exchange
capacity of the interconnectors in Norway will be equal to
5400 MWwith the two already planned cables being built.
These values indicate that there will be situations in the
future when there will not be enough capacity to meet
demand and at the same time export maximum capacity
on the cables. These situations will decrease the profit-
ability of the cables, by reducing the number of hours the
cable can export maximum capacity. By introducing one
more interconnector the situation will be even more
strained and the number of hours with reduced capacity
will increase. We therefore conclude that there is enough
capacity in the Norwegian system to build one more cable,
but that it will not be profitable to build two more cables.

Assumption 3. A new cable will at the earliest be built in

2020. Therefore, we set t¼0 equal to year 2020. One of the
reasons for this is that to own and/or run an inter-
connector in Norway, Statnett must obtain a license from
the Norwegian Ministry for Petroleum and Energy (OED).
The process of applying for a license usually takes several
years. This highlights the importance of looking ahead
when considering investments in new interconnectors.

Assumption 4. The option has a lifespan of 10 years, fol-
lowing Schwartz (1997, p. 969). After 10 years, the option
is worthless. One justification is that competing projects
that would destroy our option will take a long time to
develop. A cable from a different country in the Nordpool-
area, such as Sweden, would reduce the option value
greatly, due to a decreased spread between prices in the
Nordic area and continental Europe.

4.2. Technical considerations

Statnett is the only company in Norway which holds a
license to own transmission assets which can be used for
import and export of electrical energy (Energiloven 4–2).
Reliable cost parameters for their projects have been made
available to us. The costs used in this analysis are given in
Table 1. All the values is quoted in million Norwegian NOK.
Except for two parameters discussed in the following
paragraph, these are identical to the numbers provided to
us by Statnett, inflated to 2020 numbers assuming an an-
nual discount rate of 4%.

We have chosen to change the two parameters “con-
gestion rate from other interconnectors” and “net cost of
domestic grid reinforcement”. The reason is rooted in two
assumptions: (1) the investment is taking place in 2020 or
later and (2) the investment is made after two new in-
terconnectors are installed. In this investment decision, we
are looking at the case where the two cables are assumed
to be operating. With the two new cables installed, the
total capacity on the interconnectors are doubled com-
pared to the current situation. Therefore, we conclude that
the losses in congestion revenues are doubled from Stat-
nett's estimate. The investment and total annual costs are
presented in Table 2. Figures have been converted from
NOK to EUR using an exchange rate (EUR / NOK) of 8.

The second change from Statnett's estimate is a de-
crease of the net cost of domestic grid reinforcements.
Statnett is planning to invest 20–30 billion NOK in the
transmission grid, independent of new interconnectors,
the next decade.8 Most of these reinforcements are ex-
pected to be in place before 2020. Therefore, we assume
that there is less need for domestic grid reinforcements for
the next cable.

The technical parameters for the cable are assumed to
be identical for both cables. We use a capacity of 1400 MW,
an availability of 99% and a lifetime of 40 years. We chose
to use the same capacity, availability and lifetime of the
cable as Statnett employed in the studies for the NordLink
and NSN cable. We assume that capacity, lifetime and
availability are constant.

6 Capacity mechanisms in individual markets within the IEM published
by the European Commission in February 2013 http://ec.europa.eu/en
ergy/gas_electricity/consultations/doc/20130207_generation_adequacy_
study.pdf

7 Estimated maximum production in Norway 2012 published by Stat-
nett in 2011.

8 Investment plan in Norwegian transmission grid published by Stat-
nett in 2014.
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Ramping is defined as the change in power flow from
one time unit to the next. A continuous ramping project
has been installed on the new interconnector to Denmark,
Skagerak 4, to improve the frequency quality on the intra
hour imbalance. With continuous ramping, the power flow
can change with a rate of 1000 MW/h. If this project is
proven successful, Statnett will implement continuous
ramping on all their new interconnectors including NSN
and Nordlink (Statnett, 2013). We assume that continuous
ramping will be introduced before 2020, and therefore the
ramping is set to 1000 MW/h.

4.3. Market data

The market data is hourly historical spot prices from
2003 to 2013 from Norway (Nordpool spot), Germany
(EPEX) and the UK (APX). The parameters; start revenues,
correlation, drift rate and volatility are based on this data.
For the Norwegian spot price the area price in the south
Norway (NO2) region is chosen as the interconnectors
which we consider will be connected to this region.

The spot prices of electricity change from hour to hour
due to change in demand. Fig. 1 shows the spot prices of
electricity in the three countries in an average week in
February 2013. The figure illustrates that the Norwegian
spot price on average is the lowest, and does not have the
same spikes in average price as the two other annual spot
prices. One can see that the price spread between Norway
and the two other countries are high during the day and
small at night.

Our findings from the historical data confirm that the
Norwegian electricity prices tend to be less volatile then
the two others prices. The Norwegian price also experi-
ences less price spikes than the other two. One of the
reasons for this is that the Norwegian generation assets
can easily and without cost be regulated up and down to
meet demand (see Section 2). The revenues from an in-
terconnector are based on the price spread between two
connected markets. Even though a country might have
larger electricity prices than another market, it does not
necessarily make it more profitable than the other market.
The important parameters are how many hours the prices
are different (i.e. the spread option is different from zero)
and the absolute price difference between prices in these
hours. The historical interconnector revenues are based on
market data of the different spot prices, considering
ramping and availability. Since 2010, the price spread be-
tween the UK and Norway has grown, making it more
profitable to invest in the interconnector to UK. Before
2009, the German interconnector was equally profitable.

4.4. A model for valuing the two factor investment option

A transmission line gives the owner the right to
transport electricity from one point to another. The value
of such a line is the same as the value of the option on the
spread between end point prices. Let Pa and Pb be the price
of a unit of power at the endpoints, a and b, of the trans-
mission line. Let Ki be the maximum capacity the line can
transport at a given time and KiRES

denote the capacity al-
location in the reserve market. The hourly revenue of the
transmission line is therefore given by:

= | − |( − ) + ( ) ≥R P P K K P K K K, wherei b a i i reserve i i it RES RES RES

Table 1
Cost parameters for transmission capacity.

Type of cost Germany UK

Annual costs
Congestion revenues from other

interconnectors
�447 �477

Maintenance costs �26 �33
Transit costs �11 �39
System operating cost �164 �164
Transmissions losses in the domestic grid �132 �79

Investments costs
Investment cost in cable and station �8422 �9146
Net cost of domestic grid reinforcements �2369 �829

Table 2
Technical parameters for transmission capacity.

Cost Germany (Mill. EUR) UK (Mill. EUR)

Investment cost 1348 1247
Total annual cost 1930 1953

Fig. 1. The historical spot price in the three countries in an average week in February 2013.
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The capacity, Ki, that can be transported on the line can
change form hour to hour due to ramping restrictions. Ki is
determined by the present state of the electricity price and
the maximum capacity of the cable (Kmax):
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The transmission revenues, R1 and R2, are given in an-
nual revenues. We calculate them by summing up the
hourly revenues (Ri):

∑=
=

R Rannual
i

Hours in a year

i
1

The two potential cable investments have different
expected payoffs. The reason for this can partly be ex-
plained by different endpoint prices and capacity market
design/existence. We will therefore get two different an-
nual revenues, where R1 is defined as the revenue of the
first cable and R2 the revenue of the second cable.

For computational tractability, the payoff between the
price difference in the Norwegian and German (UK) mar-
ket, i.e R1 (R2) is modelled as a geometric Brownian mo-
tion. Our argument for this is two-fold. First, revenues will
be non-negative. Second, we are trying to capture the
long-term dynamics of the present value of the revenues,
so the relevant empirical basis is limited to, e.g. ten ob-
servations of annual revenues. In this case, a simple model
is preferable. For this paper we assume that the two rev-
enue streams follow two distinct GBM processes:

α σ= + ( )dR R dt R dz , 21 1 1 1 1 1

α σ= + ( )dR R dt R dz , 32 2 2 2 2 2

where α1 and α2 are the instantaneous drift rates, s1 and
s2 are the volatility rates, and dz1 and dz2 are the incre-
ments of two correlated Wiener processes. All of the
parameters are assumed to be known and constant. We
impose the following relationship δ μ α= − , where δ > 0.
Further we assume that uncertainty exists, so σ > 0 and
that the investor are risk neutral μ = r . The dependence
between the two uncertain variables is described by the
instantaneous covariance term, given by:

ρσ σ ρ( ) = ≤dR dR R R dtCov , , where 1.1 2 1 2 1 2

We want to find an expression for the option value of
the investment decision. Let ( )F R R,1 2 be the option value of
the best of two mutually exclusive underlying assets. In
this case this is two cables. We further assume that the
transmission investment can be totally spanned and re-
plicated by other traded assets in the market. Therefore,

we obtain the following PDE using a contingent claim
analysis:
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We set out to determine the boundary between in-
vesting in one of the two projects and waiting. The fol-
lowing conditions have to apply:

When both asset values are zero, the value of the op-
tion to invest is zero.

( ) = ( )F 0, 0 0 5

When one of the asset values are zero, the value of F is
reduced to an American call option, C, on a single under-
lying asset.

( ) = ( ) ( )F R F R, 0 61 1

( ) = ( ) ( )F R F R0, 72 2

Due to the correlation, the variables R1 and R2 are not
independent. When finding an optimal investment strat-
egy we have to consider the two start revenues in relation
to each other. We define ( )⁎R R1 2 to be the exercise boundary
of the first cable as a function of the second cable. Like-
wise, ( )⁎R R2 1 is the exercise boundary of the second cable as
a function of revenues of the first cable.

It is financially obvious that an option on two assets
will always be more valuable than an option on just one of
the assets (Dixit and Pindyck, 1994). Therefore

( ) ≥ ( )F R R F R,1 2 1 and ( ) ≥ ( )F R R F R1, 2 2 have to hold. Let C1
and C2 be the sum of the initial investment cost of the
cable plus the present value of operation and maintenance
costs. The costs are assumed to be irreversible. In addition
to the hourly spot price revenues, owning a transmission
line can entail the owner to additional revenues from a
capacity market. We let CM denote the annual revenue for
participating in a capacity market given a capacity price
(Rk). The following conditions have to apply:

( )( ) = + ( ) − > ( )
⁎ ⁎F R R R R CM R C R R, , for . 8aK1 2 2 1 1 1 2

( )( ) = + ( ) − < ( )
⁎ ⁎F R R R R CM R C R R, , for . 8bK1 2 1 2 2 1 2

4.5. Numerical implementation

Due to the complexity of the PDE in Section 4.4,9 we
must solve the equations numerically. Several researchers
have developed numerical techniques for pricing multi-
assets options, including Landskroner and Raviv (2008),
Boyle et al. (1989) and Broadie and Detemple (1997). Ru-
binstein (1994) values options with two underlying assets
by approximating continuous bivariate normal density
functions as a discrete bivariate binomial density. This
approach is called “binomial pyramids”.

The pyramid is expanding each time step with +2i 1

9 The analytical approach of guessing a solution does not work in our
case, since we lack an initial guess which can solve the PDE on general
form.
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distinct nodes and the total number of nodes in a tree is
equal to ( + )N1 2 at the last time step. Where N is the total
number of time steps and i, is referring to a specific time
step. The two underlying assets are assumed to have a risk-
neutral joint lognormal distribution. The riskless interest
rate is used as the discount rate and both underlying assets
are expected to appreciate at the same riskless rate.

Rubinstein's (1994) multiplicative bivariate binomial
model defines the possible states for the two assets. The
first asset return is assumed to be either u or d, with equal
probability. The second asset return is dependent on the
first assets step and can be in one of for states; A, B, C or D.
The time steps are based on the log transformed size of the
underlying asset. In our model we are using log trans-
formed revenues ( = ( ))Y Rlogi i to calculate the time step.
The risk neutral approach to option pricing gives us the
return on the first asset, u and d, to be defined by:

= = ≡ ( )μ σ μ σ+ +u e d e h t nand , where / . 9h h h h1 1 1 1

Here μ δ σ= ( − ) −ri i i
1
2

2, where μi is the logarithmic
mean of the underlying assets. The lifetime of the option
[ ]T0, is divided into n equal time intervals of length h. The
risk free rate is r and δi continuous dividend yield of the
underlying asset.

When we invest in an asset we do not only get the
revenues from that year, but all the revenues over the
lifetime of the asset. We therefore need to calculate the
expected present value of the revenue stream at each
node. If Ri(t) is the revenue at a specific time with start
value Ri, the expected present value of the revenues, from
time t to the lifetime of the cable, T2, can be calculated
knowing that the underlying asset follows a geometric
Brownian motion:

⎛
⎝⎜

⎞
⎠⎟α

[ ( )] =
−

−
∈ [ ]

( )

α−( − )

E R t R
e
r

t T
1

, for 0,
10

i i

r T2

The n time intervals are denoted by i, where
= …i n0, 1, , . The underlying revenue of asset 1 at each

node is set equal to −R u dj i j
1 , where = …j i0, 1, , is the

number of up movements of underlying asset 1. For our
cable, the revenues therefore are:
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If the return of the first asset is u, the return of the
second asset is A or B with equal probability, depending on
the correlation, ρ, between the two assets. Then if the
return of the first asset is d, the return of the second asset
is C or D. If the first move is (u,A) the second move can be
(u,A), (u,B), (d,C) or (d,D). Multiplying these two moves
together, the total return over the first two moves is either
( )u A,2 2 , ( )u AB,2 , (ud,AC), or (ud,AD), with equal probability

× =
1
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16
. The mathematical formulation for the four

possible steps are defined by:
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These definitions of (u,d) and ( )A B C D, , , can be used to

construct the appropriate size of the moves in a square
binomial pyramid. To build the lattice for each state vari-
able recombine the condition AD¼BC is imposed (Land-
skroner and Raviv, 2008). Starting at the end of the pyr-
amid, the value of the option can be estimated at each
node. Working backwards through the pyramid, 4 nodes
are discounted into 1 at each move, using the same
probability for each node.

For any node ( )i j k, , the lattice evolves to four nodes,
( + )i R u R A1, ,1 2 , ( + )i R u R B1, ,1 2 , ( + )i R d R C1, ,1 2 and
( + )i R d R D1, ,1 2 . Where R A2 , R B2 , R C2 and R D2 are the values
of the underlying asset 2 in the different nodes. The value
of asset 2 in each node, at any time period i and with j up
moves of asset 1, is set equal to:
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where R2 is the start value of asset 2, μ2 is the logarithmic
means of the underlying assets 2 and ρ is the correlation
between the two assets. The total value of the revenue
stream for asset 2 with a lifespan of T2 years is:
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The assets can potentially participate in capacity mar-
kets. Therefore, there is a possibility of receiving a revenue
stream for participation in such a market. We define CMi to
be the total revenues received by participating in a capa-
city market. cmi is the yearly revenues received from the
government for participating in a capacity market. CMi is
defined by the sum of all capacity revenues received over
the lifetime of the cable:

∑=
( )=

CM cm
15

i
i

years

i
1

The intrinsic value is the maximum value of the two
assets minus the costs. For our call option, the intrinsic
value of best of asset R1 and R2 is given by:

( ) ( )( ) = ( + − + − ) 16F R R R CM C R CM C, Max 0, Max ,
total total1 2 1 1 1 2 2 2

where R1total
and R2total

total are the total revenue received
by the cable investment over the lifetime of the invest-
ment. CM1 and CM2 is the revenues from participating in
capacity markets, and C1 and C2 the total investment and
maintenance cost of the investment. When the values of
the two assets are given at any node, the value of the
option at each node can be calculated by starting at ma-
turity where the value is known with certainty and
working backwards by discounting four nodes into one
node at each move. The value of the investment at ma-
turity, i¼T, is:

( )( ) ( )= + − + − 17

F

Max Max R CM C R CM C0, ,

T j k

totalT j k totalT j k

, ,

1 , , 1 1 2 , , 2 2

At maturity there is no possibility of waiting, which
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means that the option value at maturity is equal to the
maximum of zero and the intrinsic value. The value can
never be lower than zero due to the fixed boundary
conditions.

The value of the option is given by ( )F 0 , which is the
value of the option in year 0. It is found by working
backwards through the pyramid and finding the option
value at every node. This is done by taking the maximum
of the intrinsic value and the value of waiting. If the option
has a positive value in year 0, the project has a potential
for making a profit. The option value at every node is:

(
)( ) ( )

= ( + + + )

+ − + −

−
+ + + + + + + +

18

F e F F F F

R CM C R CM C

Max 0.25

, Max ,

i j k
rh

i j k i j k i j k i j k

totali j k totali j k

, , 1, , 1, , 1 1, 1, 1, 1, 1

1 , , 1 1 2 , , 2 2

The first argument in the outer bracket is the value of
waiting while the second argument is the value of in-
vesting. By using this equation we find the value of the
option.

5. Application

5.1. Estimation of parameters

The parameters are estimated based on historical
market data, technical reports published by Statnett and
other public sources of information. The method and as-
sumptions applied to estimate the parameters are given in
the following paragraphs.

The annual revenues are a function of the difference in
the electricity prices between the interconnected regions
and the technical parameters of the cable. The intraday
characteristics of the electricity price are captured by
modelling the electricity price with a time resolution of
one hour. The difference in the electricity prices between
the interconnected regions were found by using the Phelix
price from the European Power Exchange (EPEX) SPOT, the
UKPX price on the Amsterdam Power Exchange (APX) and
NO2 (south norway) price from Nordpool. We have used
data from 2003 to 2013 to calculate the correlation be-
tween the two revenue streams, ρ, and discounted the
2013 revenues with the risk adjusted rate to get the rev-
enues for the two cables in 2020 (year 0), R1 and R2, re-
spectively. The risk adjusted rate is chosen based on NOU
2012:16 (Norway's public reports). NOU 2012:16 re-
commends to use a risk adjusted rate of 4% for an eco-
nomic analysis of a public investment with a lifetime of
40 years.10

The participants in a capacity market are committed to
deliver energy when needed or they will face penalties.
This fear of not being able to meet their obligations affects
the amount of capacity the interconnector owner bid in
the auction. The price difference between the two regions
that are interconnected determines the direction of the
power flow. This means that Statnett cannot guarantee the

capacity they bid in the auction, if the price in the UK is
higher than the price in Norway at that time. We therefore
assume Statnett will bid only 900 MW of the cables ca-
pacity in the auctions to reduce the risk of facing penalties.
The total revenue from the capacity market in UK, CM2, is
calculated based on a capacity price of d30 kW/year.

The expected growth rate (α) for the cable revenues has
a positive value. They were calculated based on the fol-
lowing inflation values: UK 2.56 percent, Germany 1.51
percent, Norway 2.13 percent.11 The growth rate (α) is set
to be half the inflation. Borovkova et al. (2012) argued that
the assumption that a commodity, in our case the cable
revenues, will experience a positive growth forever is
unrealistic. If the growth rate is set higher than inflation it
means that the revenues will grow to an infinite size over
infinite time. The Ragnar Frisch Centre for Economic Re-
search found that the electricity price difference between
Norway and Germany will increase to approximately 10 €/
MWh in 2030, which implies a positive growth rate of the
cable revenues.12 We therefore choose to set the expected
growth rates between zero and the inflation rate in the
two countries. This is consistent with Fleten et al. (2011)
which also chose a positive growth rate on the cable rev-
enues between Germany and Norway.

The volatility parameters of the revenue processes have
been set based on (i) analysis of the time series of hy-
pothetical revenues 2003–2013, and (ii) on a qualitative
judgement of the relevant uncertainties that affect future
price spreads. A GARCH analysis reveals that historical
revenues have about the same level of variance. However,
our discussions in Section 3 on the policy related issues
concluded that revenues of the cable to Germany are ex-
posed to higher policy related uncertainty than revenues
of the cable to the UK, and therefore have higher volatility.
The main reason is that the UK has implemented a capa-
city market and set a floor on the CO2 price, while Ger-
many is debating how to ensure security of supply and has
not taken any measures to (unilaterally) increase the CO2

emission price.
Based on these findings, the analysis uses the following

parameters given in Table 3. The estimation of the in-
vestments costs, C1 and C2, are described in Section 4.2.

5.2. Results

We have evaluated the real option of investing in one of
two mutually exclusive transmission projects. The value of
the option to invest is 6531 million Euro. The value of the
investment option with different start revenues is illu-
strated in Fig. 2, keeping one starting revenue fixed, we
change the value of the other across a relevant range. In
both Figs. 2 a and b, the value of the option increases with
higher starting values. The reason for this is that the costs
are held constant and revenues increases. This leads to a
higher expected value and therefore a higher option value.
Kay et al. (2009) observed the same result when they

10 Samfunnskonomiske analyser published by the Ministry of Finance
in Norway in 2012 http://www.regjeringen.no/nb/dep/fin/dok/nouer/
2012/nou-2012-16/6/7.html?id¼700896

11 Source: Inflation.eu.
12 Simulations using the LIBEMOD model within the CELECT project

report published by Ragnar Frisch Centre for Economic Research in 2009.
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valued Bermudan options on multiple assets.
The option has zero value when both start revenues are

close to zero (see Fig. 2b). In this case, the expected rev-
enues from the cable investment are so small that none of
the projects would ever break even. In other words, the
initial investment cost would be higher than the potential
gain from any of the two expected revenue streams. Before
the start revenues reach the threshold value where the
investment cost and the potential gain are equal, the op-
tion value is equal to zero.

Fig. 2 also illustrates that the option has a positive value
when one of the start revenues is equal to zero. In the
mathematical model (see Eqs. (6) and (7)), we presented
the boundary condition that the value of the option can be
positive even though one of the start revenues is equal to
zero. As the figure here shows, this boundary condition is
satisfied for both cables. The option value is also increas-
ing, when the start revenue of the cable that has an

positive option value increases.
The value of our investment option is higher than both

of the individual projects Statnett estimated (Statnett,
2013). In Statnett's analysis, they viewed the investment
decision as a net present value of a single project. We
analyse the investment decision as a real option analysis of
two mutually exclusive projects. This increases the option
value.

Table 4 shows that the value of the option increases
with higher start revenues for project 1. It illustrates that
the option to invest depends on both projects after the
start revenue hits a threshold limit (Rt). Here, the thresh-
old limit is the value of R1 that makes it optimal to wait
instead of immediately investing in project 2. From the
table it is possible to see that it is between 176 and 300,
because this is where the option value starts to change
with R1. This confirms the results of Geltner et al. (1996),
that an option on mutually exclusive projects has a higher
value compared to the situation of a net present value
approach of two independent projects. The reason for this
is that the investment option has flexibility of choosing
which project to invest in at what time. This flexibility has
a value when the start revenues has hit a threshold value
(Rt).

5.2.1. The effect of time
Fig. 3a shows a two dimensional early exercise

boundary for non-negative values of R1 and R2. The figure
consists of three different regions, which indicates the
optimal investment strategy between waiting and ex-
ercising the option. The blue region illustrates where it is
optimal to immediately invest in the cable to Germany and
the grey region is where it is optimal to immediately in-
vest in the cable to UK. The white region is where it is
optimal to wait. If we are in the waiting region we will
invest the first time the revenue hits either of the invest-
ment thresholds.

Point A in Fig. 3a, which represent =R 1761 and
=R 3802 , is located in the grey region. The location of the

point tells us that the optimal investment strategy is to

Table 3
Parameter for real option valuation of the investment project.

Notation Parameter Value

R1 Revenue from cable 1 in year 0 380 Mill. EUR
R2 Revenue from cable 2 in year 0 176 Mill. EUR
CM2 Revenue from capacity market project 1 0 Mill. EUR

CM2 Revenue from capacity market project 2 914 Mill. EUR
C1 Investment cost project 1 3280 Mill. EUR
C2 Investment cost project 2 3200 Mill. EUR
r Risk-free rate of return 4%
αR1

Drift rate of revenue 1 0.9%

αR2
Drift rate of revenue 2 1.2 %

σR1 Volatility of revenue 1 17%

σR2 Volatility of revenue 2 14%

ρ Correlation between revenue 1 and 2 0.7
δR1 Dividend of revenue 1 3.1%

δR2 Dividend of revenue 2 2.8%

T Lifetime of the option 10 years
T2 Lifetime of cable 40 years
ex1 Exchange rate (d/€) 1.1
ex2 Exchange rate (€/NOK) 8

Fig. 2. The value of the option to invest when one R is kept constant and the other is changing.
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invest in the cable to UK in 2020. To change this optimal
investment strategy, the intersection point between the
two revenues has to be in another region. Point C illus-
trates a situation where it would be optimal to build the
cable to Germany. From the figure one can see that the
starting values of the revenue R1 has to be above
350 million euro to consider building the cable to Ger-
many. In point B the optimal investment strategy would be
to wait till the revenues hit one of the two threshold
boundaries.

When both R1 and R2 get close to zero, it is optimal to
wait. The intuition behind the shape of the curve at these
values can be developed as follows. When R goes to zero,
the value of the option decreases. When the total value of
the revenues of the projects is smaller than the investment
costs, it would never be optimal to exercise the option.
This is why we observe the waiting region close to origin.
The waiting region increases as both revenues goes to in-
finity. Geltner et al. (1996) got the same shape for their
exercise region. The reason behind an increased waiting
region as R goes to infinity is that both projects are so in
the money that both would be optimal. In such a situation
it is optimal to wait, since the value of waiting is more
valuable than the intrinsic value of either of the two pro-
jects. By applying financial theory, we would argue that in
such a situation you can invest in either of the two projects
because either way the intrinsic value is infinitely large.

Fig. 3b shows the three dimensional exercise boundary
obtained for the investment option. The region above the
surface is the waiting region and the area below the

surface is the immediate exercise region. The shape is
consistent with what we would expect, also for larger
values of revenue stream. The surface continues linearly
with no additional curvature other than located around
the strike price. Kay et al. (2009) obtained the same shape
for their multi assets call option. For small values of yearly
revenues (R), it is never be optimal to exercise the option.
This is illustrated by the curved surface having a value
equal to zero.

5.2.2. The effect of volatility
Dixit and Pindyck (1994) observe that the option value

and investment threshold increase with volatility for a
case with one asset. Geltner et al. (1996) observed the
same effect when looking at a two-asset case, when in-
creasing the volatility of one of the assets and keeping the
other constant. In our case, this is true to a certain extent.
This can be observed by looking at Fig. 4a and b, where the
value of the option increases with volatility for inter-
mediate values of volatility (on the x-axis) for the dashed,
green and red line. The exception is for the light blue line
in both graphs, that first decreases and then increases with
volatility.

In Fig. 4a, the value of the red, green and blue lines are
constant with respect to the change in s1 until they reach a
threshold value of s1. The value of the option is constant
because we exercise the option immediately. This means
that the volatility does not affect the option value. When
we reach the threshold value of s1, it is optimal to wait so
the value of the option depends on s1. The light blue line is
not constant as s1 changes, because it is optimal to wait for
all values of s1.

Fig. 4a illustrates that the entire curve shifts downward
when the s2 is changed from 0 to 0.15 to 0.3. It then shifts
upwards when s2 is increased to 0.6. The same is the case
for Fig. 4b, except that it starts to shift upwards sooner.
This is not consistent with the characteristic feature of the
Black–Scholes theory, that the sensitivity of the option
price with respect to the underlying assets volatility is
always positive, i.e. the option value can only increase if

Table 4
Value of investment option for different values of R1.

Startprice Option value (Mill. EUR)

R1¼0, R2¼380 6531
R1¼176, R2¼380 6531
R1¼300, R2¼380 6586
R1¼400, R2¼380 7389

Fig. 3. The exercise boundary of the option on the two cable investment projects. (For interpretation of the references to color in this figure caption, the
reader is referred to the web version of this paper.)
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the volatility increases. It is clear from the figures that the
option value does not necessarily increase with volatility
for basket options, both from the downward shift of the
curves and from the light blue line that first decreases and
then increases with the volatility. Permana et al. (2007)
argued that this does not contradict the Black–Scholes
theory. They reasoned that by increasing one of the vola-
tilities it can lead to a lower variability of the spread,
which ultimately drives down the option value. This refers
to a spread option, but our results show that it also applies
for other basket options.

By increasing both volatilities, the waiting region is
extended. Geltner et al. (1996) observed the same effect,
that when both volatilities increase both exercise regions
are reduced. This makes sense, since a greater volatility
implies a greater potential gain from waiting to see which
of the projects that is most profitable.

If we keep the volatility of one of the cables constant
and increase the other, the exercise regions for both cables
shrink, though to a lesser extent for the cable with con-
stant volatility. Geltner et al. (1996) noticed the same. It
makes sense that the change in volatility of one cable also
affects the other cable. When we increase the volatility of
cable 1, it implies a greater gain fromwaiting to see if cable
1 become sufficiently more valuable than cable 2. This
reduces the exercise region of cable 2.

5.2.3. The effect of dividend yield
In real option theory a high dividend rate increases the

cost of waiting. The reason for this is that by choosing not
to invest immediately the option holder foregoes potential
revenue that it would have received by investing im-
mediately. The size of the forgone revenue is determined
by the dividend rate. The only time the investor is willing
to forego revenues, is when the value of waiting is higher
than the loss of revenues. The dividend therefore gives an
incentive to invest earlier. It increases the cost of waiting
for more information and thereby reduces the start rev-
enues of R1 and R2 which makes it optimal to invest. Dixit

and Pindyck (1994) also showed that a high dividend rate
reduces the value of the option to invest. In Fig. 5 we keep
one of the dividend rates constant and change the other,
and see how this affects the value of the option.

Fig. 5b shows that the value of the option to invest
decreases with the dividend rate. If the dividend rate (δ)
would have been zero, a call option on an investment
would always be held to maturity and never exercised
prematurely (Dixit and Pindyck, 1994). The reason for this
is that there is no cost of keeping the option alive. This is
likely the reason for the odd shape in Fig. 5b, because the
dividend rate is so close to zero. This causes the option
value to increase and at the same time the dividend in-
creases in the interval δ( < < )0 0.052 . We therefore impose
a constraint that δ1 and δ2 has to be greater than 0.005%.

In the case where δ → ∞, the value of the option will be
very small because the opportunity cost of waiting is large.
In these cases, the only option is to invest now or never, and
the standard net present value rule applies. The fact that the
value goes to zero as the dividend increases is the reason
why the curve in Fig. 5b decreased for larger values of δ2.

Another important finding of the two asset case is il-
lustrated in Fig. 5a. When one option is highly in the
money, project 2, the dividend rate of project 1 has no
effect on the option value. The value of the option does
only depend on the dividend rate for project 2. This is il-
lustrated with lower option value as the divided rates in-
creases. The reason for this is that the optimal investment
strategy is to exercise immediately in project 2, and the
intrinsic value of project 2 is independent of project 1's
dividend rate.

6. Sensitivity analyses

We performed a sensitivity analysis by estimating the
effect the parameters have on the investment decision. In
this section, the different scenarios will be explained in
Section 6.1. In Section 6.2 we analyse the effect of the

Fig. 4. The value of the option to invest when one s is kept constant and the other is changing. (For interpretation of the references to color in this figure
caption, the reader is referred to the web version of this paper.)
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parameters changes on the option value and optimal in-
vestment strategy.

6.1. Scenarios – The effect of parameter changes

The uncertainties in the electricity market are many
and can change overnight. In this paper we have chosen to
focus on long-term policy uncertainty that will affect the
revenues from the cable in the long run (see Section 3). We
have considered the uncertainties by taking them into
account when deciding the parameters of the revenue
streams (see Section 5.1). In this section we look directly at
the two main policy uncertainties by creating four future
scenarios, where we change the parameters. The scenarios
have either low or high CO2 price and in two of the sce-
narios a capacity market is implemented in Germany. We
have chosen to use four scenarios: “Current Situation”,
“Low Carbon Society”, “Green Growth” and “Stagnation”.

6.1.1. Scenario 1: Current Situation
The “Current Situation” scenario is based on the current

market data and present policy schemes. In this scenario,
we assume that Germany has not implemented a capacity
market. The energy mix in Germany and the UK are dif-
ferent, with a large portion of gas in the UK electricity
production. The gas plants are the price setter in UK, while
coal determines the price in the Germany. The price of
carbon emission is low and it has little effect on the set-
tlement price in the electricity market (see Section 3.1).

In this scenario Germany has a growing portion of re-
newable energy in its energy mix and there are un-
certainties regarding how the authorities will address the
issue of security of supply. The policy uncertainties in the
German market are therefore assumed to be higher than
the UK market (see Section 5.1).

6.1.2. Scenario 2: Low Carbon Society
In the scenario “Low Carbon Society” a tightening of the

EU ETS is causing a green shift in consumption and gen-
eration, without impacting other policy schemes. The price

of carbon is increasing, resulting in increasing electricity
prices, as the cost of pollution is put on consumers (see
Section 3.1). As mentioned in Section 3.1, an increase in the
CO2 price will most likely result in increased spread be-
tween the revenue streams of the cables, because the price
will increase more in Germany and the UK than in Norway.
When the CO2 price continues to rise this will result in a
higher drift rate for both cables. We believe the increase in
the drift rate will be higher for the cable to Germany based
on coal being the price setter in the German market, and
gas being the price setter in the UK market.

The policy uncertainties are reduced compared to sce-
nario “Current Situation” in both countries due to the in-
crease in the price of carbon. This gives an investor a clear
signal that the EU is willing to increase cost of carbon to
meet their EU2050 targets. However, there is still un-
certainty regarding security of supply in Germany.

6.1.3. Scenario 3: Green Growth
In the scenario “Green Growth” the high share of re-

newable generation is forcing Germany to implement a
capacity market to ensure security of supply and the CO2

price is increasing. The increasing CO2 price has a greater
effect on the electricity price than the price reduction from
the increased share of renewables, resulting in a net in-
crease in electricity prices. This change is higher than the
change in the Norwegian prices. The electricity prices in
UK are also increasing more than the Norwegian prices
due to the increasing carbon price. As in the “Low Carbon
Society” scenario, the drift rate is higher for Germany than
for UK (see Section 6.1.2).

In this scenario market participants know how the
authorities will handle the problem associated with se-
curity of supply and global warming. Therefore, the policy
uncertainty is reduced in both countries. One of the main
arguments why the cable to Germany has a higher vola-
tility than the one to UK was the possible introduction of a
capacity market in Germany (see Section 5.1). Since Ger-
many has chosen to introduce a capacity market in this
scenario, the volatility in the German market decreases.

Fig. 5. The value of the option to invest when one s is kept constant and the other is changing. (For interpretation of the references to color in this figure
caption, the reader is referred to the web version of this paper.)
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However, the volatility in Germany will still be higher than
the volatility of the UK due to the uncertainty in the feed-
in-tariff and how this will effect the portion of renewables
in the energy mix (see Section 2).

6.1.4. Scenario 4: Stagnation
In future scenario “Stagnation”, a high share of re-

newables has forced Germany to implement a capacity
market, as in the “Green Growth” scenario (see Section
6.1.3). Implementation of the capacity market results in
lower uncertainty in the market. The price of carbon
emission is low, so it has small effect on the electricity
price and the merit order curve. The EU ETS scheme is still
struggling with the problem of efficiently reducing the cap
due to a surplus of certificates. We assume that the EU has
not managed to meet their EU2020 targets, and there are
uncertainties on what the future carbon emission scheme
will look like. Investors are therefore postponing invest-
ments in generation, which makes the electricity price
uncertain.

The only change compared to the “Current Situation”
scenario, is the reduction in the volatility of the cable to
Germany, due to the introduction of the capacity market.
However, the volatility is larger than in scenario “Green
Growth”, because the market participants do not know
how the governments will tackle the problem of global
warming.

6.2. Result of the valuation with different scenarios

The parameters for the different scenarios used in the
rest of this analysis is given in Table 5. The volatilities (s),
dividend rates (δ), growth rates (α) and revenues from the
capacity markets (CM) change in the different scenarios.
The impact of scenarios on the investment decision are
analysed in this subsection. The value of the option to
invest for each scenario is given in Table 6.

From Table 6 “Low Carbon Society” and “Green
Growth” are the most profitable. This is because they have
higher growth rates (lower dividend rates) compared to
the two others. As the dividend rate is lowered the op-
portunity cost of delaying investment is decreasing and
therefore the option value of waiting is increasing.

The option values of the “Current Situation” and
“Stagnation” scenarios are equal when using the base case
starting revenues =R 1761 and =R 3802 . The same is the
case for “Low Carbon Society” and “Green Growth”, even
though the volatility are different. The reason for this is
that the option value is based on the tradeoff between
immediately exercising and waiting. When the optimal
decision is to invest immediately, the volatility has no
impact on value. The optimal investment strategy is
therefore to immediately exercise the option and build the
cable to UK.

The option values to invest do not change due to a
capacity market in Germany i.e. the value is independent
of whether Germany has a capacity market or not. The
reason for this is that we consider a mutually exclusive
project, where one of the projects is more in the money
than the other. The additional cash flows in one project
(i.e. implementation of the capacity market in Germany),

in this scenario do not change the value of the option
because they are not large enough to surpass or get close
to the profitability of the other project. However, if we
instead reduced the revenues from the capacity market in
the UK, the option value would decrease.

The start revenues are an important factor determining
the value of the option. Table 6 shows the value of the
option to invest given various start revenues for project
1 and project 2 (R1 and R2). The first row of the table
contains the base revenues used throughout this paper. By
looking at the table, one can see that lowered start rev-
enue results in a lower option value. When the start rev-
enues are doubled (i.e. changed from 200 to 400 mill Euro)
the option value almost triples its value. This result leads
to the conclusion that there is no linear relationship be-
tween the option price and the start revenue.

In this sensitivity analysis we have chosen to model a
higher CO2 price as an increase in revenues. When the
revenue increases it will cause the option value to in-
crease. The CO2 price and option value should therefore
have a positive correlation. Further, if investors expect that
the CO2 price will increase it will create an incentive for
waiting instead of immediately exercising the option. This
can be illustrated by considering the scenario “Low Carbon
Society”with increased yearly revenues. If R1 and R2 would
increase to 250 and 400 mill. €/year, the optimal strategy
would be to wait (see Fig. 6b).

The option values obtained by changing start revenues
also shows that when the difference between the start
revenues reaches a certain limit, the value of the option
only depends on one of the projects. In these situations,
the effect of the other project is neglectable since the value
of this project is significantly less than the value of the
other project. This explains why the option value does not
decreases when the start revenues of R1 goes from 176 to 0
(see Table 6).

The effect of the capacity market on the option value
can be analysed by comparing the option values of the
“Current Situation” when switching the start revenues of
the two projects. Table 6 shows that the option value de-
creases, even though the start values are the same, just
switched. In this situation the optimal investment strategy
would be to wait (see Fig. 3a). The reason for the drop in
option value is caused by the effect that the capacity
market only adds an extra value to the UK investment
projects. When this project gets less in the money than the
German project, the option value for holding both projects
decreases since the German market does not have any
added revenue from a capacity market.

The timing of investment is also an important factor
when determining the value of an option. From the “Cur-
rent Scenario”, which is the same case as we analysed in
Section 5, we saw that the option value was equal to the
value of immediately exercising the option. Fig. 6 shows
the exercise boundaries for the four scenarios. The blue
and grey colors regions illustrate where it is optimal to
immediately invest in project 1 and project 2. The white
region is the waiting region i.e. the region where it is op-
timal to delay the investment.

For all scenarios in Fig. 6, given the revenues from the
cable in year 2020 (see Table 3), it will always be optimal to
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invest in the cable to UK in year 2020. It is never optimal to
wait for more information, because the dividends forgone
by waiting are higher than what we gain from waiting.
However, the start revenue for UK is based on revenues
from 2013. This year, the revenues were high compared to
the rest of the years in the data set. The reason for this was a
high gas price and that the inflow to the Norwegian hydro
system was large, which resulted in an increased spread
between the electricity prices in the two countries. If the
confidence interval for the start revenues is set to 80%, it
would not be optimal to immediately exercise in all sce-
narios, i.e. for scenario “Current Situation” and “Low Carbon
Society” it would now be optimal to wait.

From “Current Situation” to “Low Carbon Society”, the
drift rate increases while the volatility decreases. A de-
crease in volatility makes it less valuable to wait, so one
would expect that the waiting region decreased (Tan and
Vetzal, 1995). The opposite is expected when the drift rate
increases, because it is possible to gain more from waiting
with the higher expected growth rate and with the de-
creased cost of waiting you are also more willing to wait
(Geltner et al., 1996). From Fig. 6a and b, we observe that
the waiting region increases. However, one can observe
that the blue exercise region increases and the grey de-
creases. One can observe that the significantly higher
change in drift rate for cable 1 compared to cable 2 de-
creases the exercise region more for cable 2 than cable 1.
This shows that an increase in drift rate of one asset has a
bigger impact on the waiting region of the other asset than
its own waiting region. In other words, we are now more
willing to wait and see if the revenue of cable 1 increases
compared to those of cable 2.

The parameters of “Green Growth” differs from those in
the “Low Carbon Society” scenario, only by lower volatility
and the launch of a capacity market in Germany (see
Sections 6.1.2 and 6.1.3). From Fig. 6b and c, we observe

that the waiting region has shrunk, and that both exercise
regions have increased. Though, the blue region has in-
creased more than the grey. This was anticipated due to
the decrease in uncertainty of cable 1, that will affect both
regions, but to a greater extent the blue region (see Section
5.2.2). The intuition behind this is that the investment
decision is less risky, and it would give an incentive to
invest in one of the two projects earlier compared to a case
with higher volatility. Also, the added revenue from the
capacity market will make us more willing to invest in
cable 1.

The effect of changing volatility (s) can also be illu-
strated by comparing the “Current Situation” scenario with
“Stagnation”. From “Current Situation” to “Stagnation” (see
Fig. 6a and d) the only difference is the decreased volatility
of cable 2 and the introduction of a capacity market in
market 1 (see Sections 6.1.1 and 6.1.4). What can be ob-
served is that the waiting region is significantly reduced
and that the first possible start value for exercise is re-
duced for both cables, though, significantly more for cable
1. Fig. 6d also shows that the decrease in volatility has a
larger impact on the exercise region than that of the ca-
pacity market. The financial implication of these findings
are that market participants will experience less un-
certainty and can gain only a small value of waiting for
more information. This causes the waiting region to de-
crease, making it more attractive for investors to invest
early (see Section 5.2.2).

We have also tried to remove the capacity market in
the UK by setting =CM 02 , and it is still optimal to build
the cable to UK in 2020. By including the capacity market
in the UK, the option to invest in cable 2 only gets further
in the money. This also results in increased start revenue
for the interconnector to Germany, causing the waiting
region to increase. What this result implies is that the ef-
fect of a capacity market on the investment decision de-
pends on the difference in value between the two mu-
tually exclusive projects. We have also seen that if one
project is more profitable than the other, (i.e. it would
never be optimal to invest in the other) an introduction of
a capacity market in the less profitable market has little
impact on the option value. This is the same result as in
Table 6. From this we conclude that a capacity market
alone will have no impact on which cable the investor
chooses to invest in, given that the value gained from
participating in this market is small compared to the total
value received by the annual revenue streams. The capa-
city market will only affect how valuable it is to invest in

Table 5
Parameters for the real options valuation with different scenarios.

Parameter Scenario 1 Scenario 2 Scenario 3 Scenario 4 Unit

C1 0 0 588 588 Mill. EUR
αR1

0.9 2.5 2.5 0.9 %

αR2
1.2 1.5 1.5 1.2 %

σR1 30 25 20 23 %

σR2 20 15 15 20 %

δ1 3.1 1.5 1.5 3.1 %
δ2 2.8 2.5 2.5 2.8 %

Table 6
Value of investment option with different start revenues (million €).

Start revenues Current
Sit.
(Mill.)

Low Car-
bon Soc.
(Mill.)

Green
Growth
(Mill.)

Stagnation
(Mill.)

=R 1761 , =R 3802 6531 6996 6996 6531

=R 01 , =R 3802 6531 6996 6996 6531

= =R R380, 1761 2 5478 8210 8718 6019

= =R R200, 2001 2 2798 3801 3821 2728

= =R R400, 4001 2 7694 9779 9700 7507
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the chosen cable.

7. Conclusion

This paper analyses the option to invest in one to two
mutually exclusive interconnectors, by using real option
valuation. The investment alternatives under considera-
tion are an interconnector from Norway to either Germany
or the UK. The real option approach considers both the
timing and location of the investment. The timing of the
investment is extensively covered in the literature. How-
ever, the flexibility of choosing between different locations
as mutually exclusive projects has not been considered in
any papers of our knowledge. When considering location
we argue the importance of looking at the differences in
the policy schemes between the two locations. In this
paper we consider the risk from the EU ETS and a possible
introduction of capacity markets.

This paper contributes to the real option literature by
considering investments in mutually exclusive

transmission assets. To this day, there are few research
papers considering investments in electrical transmission
assets. One of the explanations is that transmission com-
panies have for a long time been considered a monopoly.
With the changing market structure transmission compa-
nies pay more attention to their costs and ROI. Transmis-
sion investments are generally characterised by high initial
sunk cost and uncertain revenue streams. Therefore, con-
sidering the investment as a real option can add value by
creating flexibility to postpone investment.

The result of our analysis is that it is optimal to im-
mediately exercise the option to build the cable to UK. The
interconnector project to UK dominates the alternative of
investing to Germany in all future scenarios considered in
this paper. We conclude that holding the option to invest
in mutually exclusive projects only has a value when the
difference between project values is small. If one of the
projects are considerably more in the money than the
other, the parameters of the other project has no major
impact determining the option value. In such situations,
the option value can be modelled as a call option.

Fig. 6. Exercise boundaries for the scenarios. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of
this paper.)
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Our model gives an important finding regarding the
effect of volatility on the option value. The finding in-
dicates that the option value does not necessarily increase
when the volatility increases. This has already been shown
in the literature, but not for the type of option considered
in this paper. The result therefore contributes to a deeper
understanding of the relationship between volatility and
the value of a basket option.

An additional finding is how the growth rate affects the
exercise boundary. The results show that if one of the
growth rates is kept constant and the other is changed, the
exercise regions of both cables are affected, though to a
higher extent for the cable with the constant growth rate. To
our knowledge, this has not been discovered in other articles
and is an important contribution to the real option literature.

The effects of several uncertainties, including political
uncertainties, on the investment decision are two fold. An
increase in the CO2 price, due to EU ETS, will result in an
increased spread between the electricity prices. This will
increase the value of the option, but also postpone invest-
ment, because the investors face higher uncertainty. Our
results also conclude that a capacity market alone will have
no impact on which interconnector we choose to invest in.

We find that for the given estimate of the cable start
revenues, the optimal value is equal to the intrinsic value
of the cable to UK. In other words, the value of the option
is equal to the net present value. We would argue that the
value of using a real option approach is that it confirms
that the option to invest in the cable to UK in 2020 is the
optimal investment strategy. A general net present value
approach would only conclude that the investment is
profitable, not at what time to invest. The value of the real
option approach is also evident when the uncertainty in-
creases and results in a recommendation to postpone in-
vestment beyond the net present value break-even price
because of price uncertainty. We would argue that even
though our result does not contradict a net present value
approach, a real option analysis has value when con-
sidering an analysis of two mutually exclusive projects.
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