
Generating Blues Solos with Variational
Autoencoders

Eirik Katnosa Sandberg

Master of Science in Computer Science

Supervisor: Björn Gambäck, IDI

Department of Computer Science

Submission date: June 2018

Norwegian University of Science and Technology

Eirik Sandberg

Generating Blues Solos with Variational
Autoencoders

Master’s Thesis in Computer Science, Spring 2018

Data and Artificial Intelligence Group
Department of Computer Science
Faculty of Information Technology and Electrical Engineering
Norwegian University of Science and Technology

Abstract
This thesis describes the design and implementation of a variational autoencoder that
generates blues solos. The architecture of the variational autoencoder is capable of
capturing long-term dependencies in musical data, which is verified in experiments. A
dataset of MIDI solos was manually extracted from a corpus of MIDI songs in the genre
of blues and used to train a Long Short-Term Memory Recurrent Neural Network. Tools
for extracting musical information from MIDI files into a format that can be used for
training a network were designed, implemented, and verified. Results show that the
network is able to generate solos that have significant variations from the training data.
Some of the generated solos are capable of being mistaken for real solos, and a few
even outperform real solos in certain aspects. However, in most cases limitations on the
system that lead to losses in musical information, and a limited dataset, inhibits the
system’s ability to produce solos that are perceived as blues.

i

Sammendrag
Denne masteroppgaven beskriver design og implementasjon av en variational autonenco-
der som genererer blues soloer. Arkitekturen som er designet er i stand til å fange opp
langsiktige avhengigheter i musikkdata, som blir verifisert i eksperimenter. Nettverket
blir trent på et datasett bestående av MIDI soloer som er manuelt uthentet fra en samling
MIDI sanger i sjangeren blues. Verktøy for å hente ut musikalsk informasjon fra MIDI
filer og transformere informasjonen til format som kan bli brukt til å trene et nettverk
er designet, implementert, og verifisert gjennom eksperimenter. Vi finner at nettverket
er i stand til å generere soloer som varierer betydelig fra treningsdataen. Noen genererte
soloer er også i stand til å bli forvekslet med ekte soloer, og overgår de reelle soloene
i visse aspekter. Systemets begrensninger til å bruke all musikalsk informasjon i MIDI
filer, og begrensninger i treningsdataen, begrenser systemets evne til å generere soloer
som kan bli oppfattet som blues.

ii

Preface
This thesis is submitted to the Norwegian University of Science and Technology (NTNU)
as a part of the requirements for the degree of Master of Science in Computer Science.
The work on the thesis has been performed at the Department of Computer Science,
NTNU, Trondheim. The thesis was supervised by Professor Björn Gambäck, and co-
supervised by Dr. Marinos Koutsomichalis.

I would especially like to thank my supervisor Björn Gambäck for letting me take on
this project, and the effort and time he put into the whole process. I would also like
to thank my co-supervisor Marinos Koutsomichalis for his great feedback and thoughts
during this project.
I also want to thank Borgar Lie for his expertise in PyTorch during the implementation

process, and Magnus Sahlgren for his qualitative assessment of the solos generated.
Lastly, I want to thank all the people that participated in the survey.

Eirik Sandberg
Trondheim, 27th June 2018

iii

Contents
1. Introduction 1

1.1. Project goals and research questions . 1
1.2. Contributions . 2
1.3. Thesis structure . 2

2. Background Theory 5
2.1. Basic music theory . 5
2.2. Artificial Neural Networks . 7
2.3. Recurrent Neural Networks . 8
2.4. Variational Autoencoders . 10
2.5. Musical Instrument Digital Interface (MIDI) 11

2.5.1. MIDI general . 11
2.5.2. MIDI messages . 12
2.5.3. MIDI repositories . 12

2.6. Creativity . 13
2.7. Similarity measurements . 13

2.7.1. N-gram comparison . 14
2.7.2. Edit distance . 14

3. Related Work 15
3.1. Music composition using grammars . 15
3.2. Markov chains . 16
3.3. Evolutionary algorithms . 16
3.4. Music composition using deep neural networks 17

3.4.1. Feed forward networks and recurrent neural networks 17
3.4.2. Variational Auto Encoders . 18

4. Architecture 21
4.1. MIDI encoder . 21

4.1.1. Format of the neural network input 21
4.1.2. Quantization . 22

4.2. MIDI Decoder . 23
4.3. Training data . 24
4.4. Components of the variational autoencoder 25

4.4.1. Encoder . 25
4.4.2. Latent code . 25
4.4.3. Decoder . 26

v

Contents

4.5. Information flow in the variational autoencoder 27
4.5.1. Flow of training . 27
4.5.2. Flow of generating a solo . 27

5. Experiments and Results 31
5.1. New implementation of the Variational Autoencoder 31

5.1.1. Step 1: Verification of the encoder and decoder 32
5.1.2. Step 2: Verification of the latent code 33
5.1.3. Step 3: Verification of variational generation 33

5.2. Generation of solos . 34
5.2.1. Experiment 1: Variations on learning rate 34
5.2.2. Experiment 2: Variations on epochs 37
5.2.3. Experiment 3: Variation on size of training data 39
5.2.4. Experiment 4: Changing size of latent dimension 41

6. Evaluation 45
6.1. Survey . 45

6.1.1. Results of Q1 and Q2 . 46
6.1.2. Results Q3: Repetitiveness . 48
6.1.3. Results Q4: Interesting . 49
6.1.4. Results Q5: Originality . 50
6.1.5. Results Q6: Surprising . 51
6.1.6. Results Q7: Overall . 52
6.1.7. Overview over generated solos . 53

6.2. Qualitative assessment . 53

7. Discussion 55
7.1. Computational creativity . 55

7.1.1. Variation . 55
7.1.2. Originality . 57

7.2. Realism . 57
7.3. Goals . 58

7.3.1. G1: Develop the necessary tools to extract musical information
from MIDI and use it to train a network 59

7.3.2. G2: Develop a variational autoencoder that generates blues solos . 59
7.4. Answer to research questions . 60

7.4.1. R1: Can the generated solos from the system be mistaken for a
solo from a real song? . 60

7.4.2. R2: What factors have an effect on the networks ability to generate
solos that are more similar to its input? 60

8. Conclusion and Future Work 63
8.1. Conclusion . 63

vi

Contents

8.2. Limitations and future work . 63
8.2.1. Pitch bending and pitch velocity 64
8.2.2. Feeling . 64
8.2.3. Pause handling . 65
8.2.4. Repetitiveness . 65
8.2.5. Improve training data . 65

Bibliography 67

Appendices 71
A. Generated solos from Experiment 1 . 71
B. Generated solos from Experiment 2 . 77
C. Generated solos from Experiment 3 . 81
D. Generated solos from Experiment 4 . 86

vii

List of Figures
2.1. All tones found on the guitar fret . 5
2.2. Pentatonic scale in the key of A . 6
2.3. Blues minor pentatonic scale in the key of E 7
2.4. Reccurent Neural Network . 8
2.5. LSTM . 9
2.6. VAE parts . 10

4.1. Before and after quantizing . 23
4.2. Architecture of VAE . 26
4.3. Generate a solo from a sample . 29

5.1. Losses with different number of epochs; encoder and decoder only 32
5.2. Loss when recreating with last known z for 500 epochs 33
5.3. Losses of different learning rates . 35
5.4. E1: Input solos that contain the percentage of same pitches found in the

generated solo . 37
5.5. Losses with different epochs . 38
5.6. E2: Input solos that contain the percentage of same pitches found in the

generated solo . 39
5.7. Losses with different number of input solos 40
5.8. E3: Input solos that contain the percentage of same pitches found in the

generated solo . 41
5.9. Losses with different sizes of latent dimension 42
5.10. E4: Input solos that contain the percentage of same pitches found in the

generated solo . 43

6.1. S1: Average scores real and generated solos 47
6.2. S2: Repetitiveness of the generated solos 48
6.3. S3: How interesting the generated solos was perceived 49
6.4. S4: Originality of the generated solos . 50
6.5. S5: How surprising the generated solos were to the listeners 51
6.6. S6: How the generated solos were perceived overall 52

ix

List of Tables
5.1. Scrapple from the Apple recreated using encoder and decoder only 32
5.2. Scrapple from the Apple recreated using last known z 33
5.3. Random samples of z for generating variations on Scrapple From The Apple 33
5.4. E1: Similarities with different learning rates 36
5.5. E2: Similarities with models trained for different number of epochs 38
5.6. E3: Similarities with different number of input solos 40
5.7. E4: Similarities with different sizes of latent dimension 42

6.1. Results of Q1 and Q2 . 46
6.2. Overview of solos in the survey . 53

xi

1. Introduction
Computational creativity is a topic that has been explored for a long period of time, and
there are many examples where computers are used for creative tasks such as generating
images, poems, lyrics or music. Over the years, a vast amount of papers have been
presented that explore these areas using different methods and technologies as they
have become available. The digitalization of music has over the years not only made
it convenient to listen to music but also made the data available for analysis and other
usages, such as algorithmic music generation. With the power of Artificial Intelligence,
we can now use the data available to extract information to generate new versions of
songs based on the old songs. As computational power available to us has increased,
we are able to take advantage of the enormous amount of data available, and use deep
learning to solve different problems.

In this thesis, a system that is capable of interpreting musical data is introduced, which
takes advantage of deep learning to learn musical foundations and generate new solos. A
variational autoencoder is implemented for generating blues solos from a corpus of 382
blues solos. The term ‘blues’ in this thesis will be used according to what freemidi.org
considers as blues music, and all the songs they have put under the genre blues on their
website.

1.1. Project goals and research questions

In this section the main goals and the research questions for this thesis are presented.

G1: Develop the necessary tools to extract musical information from MIDI
and use it to train a network

Develop an encoder that reads MIDI files and transforms the relevant information to a
format that represents musical data, and that can be interpreted and used by a neural
network. This goal also includes formatting the data back to MIDI from the format that
can be interpreted by the neural network.

G2: Develop a variational autoencoder that generates blues solos

Variational autoencoders have been used for generating music before, but either on a
large corpus of millions of melodies or on a very small dataset. A goal of this thesis is
to design, develop and implement a variational autoencoder that can be trained on a
corpus of blues solos, and generate variations of its training data as well as variations of

1

1. Introduction

the same model using different samples from its latent distribution. The output should
not be identical to the solos in the training set but share some basic musical foundation.

R1: Can the generated solos from the system be mistaken for a solo from a
real song?

The input solos are solos in MIDI format from real songs. Can a generated solo from
the system, with an added backing track, be mistaken for a solo that is used as input to
the system by a group of people surveyed?

R2: What factors have an effect on the network’s ability to generate solos
that are more similar to its input?

Various factors affect the output of the network. Experiments on different properties
can reveal its impact on the system’s ability to imitate its training data.

1.2. Contributions
The main contributions from this Master’s Thesis are:

1. A proposed architecture for a variational autoencoder for capturing long-term de-
pendencies in musical data.

2. Design and implementation of a variational autoencoder that is capable of gener-
ating blues solos.

3. An extensive evaluation of how different parameters of the network affect the out-
put.

4. A quantitative evaluation of how the solos sound to people.

The code for the system designed in this thesis is available at:
https://github.com/eiriksandberg/NeuralMusic

The generated solos for this project is available at:
https://drive.google.com/drive/folders/1YnI23CIOpihE2ho7Ls7giQwUerNnkxRK?
usp=sharing

1.3. Thesis structure
The thesis is structured in the following way: Relevant background theory that will
enhance the reader’s understanding of the material in this thesis will be presented in
chapter 2. Next, a chapter on related work which describes similar work in melody
composition using computers, including different methods, algorithms and techniques
is presented. The architecture of the system is presented in chapter 4, followed by a

2

1.3. Thesis structure

chapter where the experiments conducted and the results are described and presented.
Next, the results are evaluated in chapter 6, before discussed in depth in chapter 7.
Lastly, a chapter which concludes the thesis and presents future work and limitations
for the system is presented.

3

2. Background Theory
In this chapter, the reader will be provided with the necessary background theory that
will enhance the understanding of the material discussed later in this thesis. The first
section gives a brief introduction to selected parts within music theory which will en-
hance the overall understanding of this thesis. Next, sections describing Artificial Neural
Networks and Recurrent Neural Networks with focus on Long-Short-Term-Memory net-
works are discussed, followed by a section on Variational Autoencoders. The section
that follows, explain details of Musical Instrument Digital Interface, followed by a short
section on creativity. The chapter is concluded with similarity measurements.

2.1. Basic music theory
This section describes basic music theory and provides the reader with necessary inform-
ation to get a better understanding of the rest of the thesis. The models found under
this section are based on guitar as the primary instrument, although the theory also
applies to other instruments as well.

Notes

Western music generally uses 12 distinct notes. Guitarists understand these notes with
respect to their positioning on the fretboard. These twelve notes are A, A#/Bb, B,
C, C#/Db, D, D#/Eb, E, F, F#/Gb, G, G#/Ab. A note denotes the pitch and the
duration of a sound, where the pitch allows ordering on a frequency-related scale. These
notes can be placed out on the fretboard over the different strings as shown in figure
2.1. Notes have different versions of themselves which are called octaves. An octave of
a note is a note that is played at half or double the frequency of itself. A guitar usually
has 22 or 24 frets, where the notes repeat themselves only an octave higher than shown
in figure 2.1 from the 12th fret. For this reason, we will only be showing figures of the
fretboard up to the 12th fret.

Figure 2.1.: All tones found on the guitar fret

5

2. Background Theory

Musical key

Khan Academy defines a musical key as “A group of pitches based on a particular tonic,
and comprising a scale, regarded as forming the tonal basis of a piece or section of music”
[13]. An example of this is the first position in the minor pentatonic scale played in the
key of A. The same position applies also to different keys, but the root note will change
depending on the key in which the scale is played.

Figure 2.2.: Pentatonic scale in the key of A

Tempo

Khan Academy defines tempo as “the rate of speed of a musical work” [13]. Tempo is
measured in beats per minute (bpm). If a song has one beat every second, its tempo is
60 bpm.

Duration

A note or pause has a duration which is represented as a fraction. Normal values for
durations are 1

1 ,
1
2 ,

1
4 ,

1
8 ,

1
16 ,

1
32 . A

1
1 note is called a whole note and 1

2 , a half note, where
its duration is half the length of a whole note. 1

4 is called a quarter note, and its duration
is a quarter of a whole note, and so on.

Time Signature

Time is divided into various measurement’s e.g., hours, minutes and seconds. When
talking about music, however, we divide it into beats. The beat can be thought of as
the pulse of the music. The time signature is represented as a fraction, where the top
number states the number of beats to count, while the bottom number indicates what
kind of note to count, i.e., if the beats should be counted as quarter notes, 8th notes,
16th notes, and so on. A 4

4 time signature is found in most songs. Waltz has a well
known time signature of 3

4 , while it is not uncommon to find jazz with time signatures
5
4 or 7

4 [32].

Microtones

When talking about blues, and specifically guitar, microtones play a huge part. When
listening to artists such as B.B. King, Eric Clapton and John Mayer, microtones are

6

2.2. Artificial Neural Networks

heard all the time. When playing the guitar, a very common technique is to bend notes,
which means to bend the string on the fretboard to gradually increase the frequency of
the string, and hence change the pitch of the note. By bending the string, it is possible
to increase the pitch in a continuous interval, which means that it is possible to create
notes that are not discrete like an A or C#. These are called microtones.

Consonance and dissonance

Consonance is a measure of how pleasant an interval or a chord sounds, while dissonance
is the opposite.

Scales

A scale in music is a set of notes that are ordered by pitch. There exists a vast number
of scales, where some of the more common are the major scale, the major pentatonic
scale and the minor pentatonic scale.

The minor pentatonic scale

A very common scale found in most songs, but especially in blues, is the minor pentatonic
scale. The minor pentatonic scale contains 5 notes, hence pentatonic, and can be found
in figure 2.3 in the key of E. There are three colors in the figure that represent different
aspects of the scale. The red mark the key of the song which is E, the bright red are
notes that are in the scale, while the blue notes are ‘blues’ notes that are a part of the
blues minor pentatonic scale. The blues scale is very popular in blues music and contains
an additional note to the scale that is commonly heard in blues music, and in blues solos.

Figure 2.3.: Blues minor pentatonic scale in the key of E

2.2. Artificial Neural Networks

Artificial neural networks (ANN) are networks that take architectural inspiration from
the brain. The network’s behavior is to “learn" a particular task or to improve with time
when trained with examples. ANNs can be looked at as functions. The networks take
an input, process it, and produce an output based on the input. These networks can
be used for tasks such as image recognition, classification problems or problems linked
to computational creativity, among a vast number of other usages. There are many

7

2. Background Theory

different types of neural networks, but for this project, we will focus on recurrent neural
networks that are described in section 2.3.

2.3. Recurrent Neural Networks
Recurrent neural networks (RNN) are networks that process sequential data. Normal
feed forward networks work well for classifying problems, but do not have the feature
of remembering previous states. RNNs, however, are capable of handling this problem
[30]. Figure 2.4 shows how an RNN works by taking an input xt and outputing a value
ht. The information from the previous step is passed on to the next step. The repeating
module usually is a single layer with a simple structure, such as a tanh layer. The tanh
activation function, is used to determine the output of the neural network within values
between -1 to 1 and is given by equation 2.1.

f(x) = tanh(x) = 2
1 + e−2x − 1 (2.1)

However, traditional recurrent neural networks are not capable of long-term memory,
and remembering information that was fed into the network a while ago [31]. Fortunately,
this problem is something networks handle. [14, p. 367-415]

Figure 2.4.: Recurrent Neural Network. Taken from http://colah.github.io/posts/2015-
08-Understanding-LSTMs/ with permission from Cristopher Olah

Long Short-Term Memory (LSTM) are recurrent neural networks that remember
information for a long period of time. Similar to recurrent neural networks, LSTM
networks have a chain-like structure as seen in figure 2.4, but the repeating module is
different in an LSTM network compared to a regular RNN, which usually uses a single
layer with a tanh function or something similar. LSTM networks have four layers in the
repeating module, and the structure of a single LSTM cell can be found in figure 2.5
[31].
The top line in figure 2.5 is the cell state, and information can either be added to

or removed from the cell state through the gates in the cell. The first gate is called
the forget gate, which decides how much from the previous cell state that should be
remembered. A sigmoid function is applied to the gate, which outputs a value between
0 and 1. The sigmoid activation function can be found in equation 2.2.

8

2.3. Recurrent Neural Networks

σ(x) = 1
1 + e−x

(2.2)

If the value is zero, it means that everything should be forgotten, while if the value
is one, it means that everything should be remembered from the previous state. Next,
there are two parts. The first part is a sigmoid layer which is called the input gate layer.
This layer determines what values that should be updated, while the second layer, a
tanh layer, creates candidate values that could potentially be added to the state. The
next step is to actually perform everything discussed previously in this section: Forget
what needs to be forgotten and update the values with the candidate vectors multiplied
with how much update that is desired. The final step is to run a sigmoid layer, which
will decide what parts of the cell state to output. The cell state is put through a tanh
function and multiplied with the output from the sigmoid function to only output the
wanted parts. [31]. The equations that are computed are found below.

ft = σ(Wf · [ht−1, xt] + bf) Forget gate
it = σ(Wi · [ht−1, xt] + bi) Input gate
gt = tanh(WC · [ht−1, xt] + bC) Candidate values
Ct = ft · Ct−1 + it · gt Cell state
ot = σ(Wo · [ht−1, xt] + bo) Output gate
ht = ot · tanh(Ct) Hidden state

Figure 2.5.: LSTM. Taken from http://colah.github.io/posts/2015-08-Understanding-
LSTMs/ with permission from Cristopher Olah

9

2. Background Theory

2.4. Variational Autoencoders

Variational Autoencoders (VAE) are models that use Bayesian inference for generat-
ing data. The underlying probability distribution is modelled, sampled, and used for
generating new data.
A probabilistic model of this type has latent variables and/or parameters that have

intractable posterior distributions. Kingma et al. [20] proposed a solution called the
Variational Bayesian (VB) approach, which uses a reparameterization trick on the vari-
ational lower bound, which yields a differentiable unbiased estimator on the lower bound.
This estimator can be optimized using standard stochastic gradient descent techniques.

Figure 2.6.: VAE parts

A variational autoencoder consists of three parts, an encoder network, a Gaussian
distribution z, and the decoder network, as seen in figure 2.6. The encoder network is a
neural network which outputs the mean covariance, µz|x, and the diagonal covariance,∑
x|z. These values are used for sampling from the latent distribution, z. Latent in-

formation from the training data needs to be captured in order to describe features that
can be extracted from the input to the variational autoencoder. The latent distribution
needs to capture dependencies in the input data in order to be able to generate similar
data as the input. A VAE can generate data by sampling from N (0, I), where I is the
identity matrix [7].
If a VAE is trained on a set of images of human faces, things like the mouth, eyes and

nose will be typical features. By varying sampling values from the latent distribution,
the amount of a smile or the placement of the eyebrows can, for instance, be controlled in
the generated image. After sampling from z, one or more networks are used to transform
the data back to the original input dimension. This is done through the decoder network
[10].
To optimize the estimator, standard stochastic gradient descent techniques are per-

formed on the tractable terms. Equation 2.3 shows how to derive the differentiable terms
for the lower-bound estimator.

10

2.5. Musical Instrument Digital Interface (MIDI)

log pθ(x(i)) = Ez∼qφ(z|x(i))

[
log pθ(x(i))

]
(2.3)

= Ez

[
logpφ(x(i) | z)pφ(z)

pφ(z | x(i))

]

= Ez

[
logpφ(x(i) | z)pφ(z)

pφ(z | x(i))
qφ(z | x(i))
qφ(z | x(i))

]

= Ez

[
logpφ(x(i) | z)

]
−Ez

[
logqφ(z | x(i))

pφ(z)

]
+ Ez

[
logqφ(z | x(i))

qφ(z | x(i))

]
= Ez

[
log pθ(x(i) | z)

]
−DKL(qφ(z | x(i)) ‖ pθ(z))︸ ︷︷ ︸ +DKL(qφ(z | x(i)) ‖ pθ(z | x(i)))

Only the first two terms that are highlighted above are used for the estimator because
the last term is intractable. However, since the last term is a KL divergence [17], we
know that the term must be ≥ 0, and therefore we have a lower bound and can find the
values for θ and φ that maximize the lower bound [10].

After training, the encoder is simply removed from the VAE to generate new samples
of data. This is done by sampling values of z in N (0, I) and input these into the decoder.
By varying values for z, samples can be generated based on different features [7].

2.5. Musical Instrument Digital Interface (MIDI)

In the music industry in 1981, talk of a ‘universal’ digital communication system first
began. Competitors in the synthesizer industry started to worry that a lack of compat-
ibility between manufacturers would restrict the usage of synthesizers. The same year
a proposal of such was made, which was later further improved under a collaboration
between an American and a Japanese manufacturer. In 1982, the term MIDI (Musical
Instrument Digital Interface) first appeared in public, which is also the year it was first
used on an instrument [26]. MIDI is a leading industry music protocol for musical data
from MIDI controllers to computers and outputs music. MIDI is used every day by
various artists, professionals and amateurs on computers, smartphones and tablets all
around the world. MIDI controllers are controllers that support the MIDI protocol and
have some sort of interface that makes it possible to interact with the controller to
produce music. An example of this is a MIDI keyboard or a drum machine [25].

2.5.1. MIDI general

The MIDI protocol specifies that there are 128 possible pitches that can be played, which
means that a MIDI song can contain at most 128 unique pitches. A MIDI song consists
of one or more tracks that together make up a song. It is normal that one track is a
single instrument, but it is possible to change the instrument of a track at any given
time in the track. The timings in MIDI files are all centered around ticks and beats, and

11

2. Background Theory

the time attribute in MIDI messages is measured in ticks, which is the smallest unit of
time found in MIDI. Every MIDI song has a value called ticks per beat which is a factor
that determines how many ticks that are associated with a duration of a note. Different
MIDI songs can have different ticks per beat values. A note has a duration, but the
duration in ticks is related to the ticks per beat value. This means that a 16th note in
one song can have a different duration in ticks compared to a 16th note in a different
song. The ticks per beat standard value is 480.

2.5.2. MIDI messages

A MIDI file contains several tracks which each represents an instrument. Each track has
a series of MIDI-messages that contains information like tempo, type of instrument, what
pitches are being played, and so on. For this project, there are two types of messages
that are particularly relevant, the note_on and note_off messages. The message type
note_on describes what pitch should be played and its velocity. The message note_off
follows a note_on message to indicate that the pitch should not be played anymore.
Time is a very important component of MIDI messages. All MIDI messages have a time
value linked to them that indicates the time until the next message should be processed,
the unit of which is ticks.

There are also other messages in the MIDI protocol, two of which that are relevant
for this thesis, program_change and pitchwheel. program_change contains information
about what instrument the current track is. The instrument is identified with an integer
that maps to a specific instrument. The sound of the instrument varies based on the
program the MIDI file is opened with. pitchwheel is a message that follows a note_-
on message. It contains information on how much higher or lower the frequency of the
pitch in the note_on message should be altered. This message makes it possible to create
musical pieces with pitch bending, which in guitar terminology is called string bending,
and is further described in section 2.1. This type of message hardly occurs alone and is
often part of a group of consecutive MIDI messages. Pitch bending in practice is often
a continuous motion for a given duration, which requires a series of MIDI messages to
simulate bending of a guitar string over a period of time.

2.5.3. MIDI repositories

MIDI is often used in systems that generate chord progressions, melodies or percussion,
etc. It is a structured way of representing musical data. Different systems are trained
on different types of music, and there exist repositories based on genres, artists, TV-
shows and video games to mention a few. Given its popularity, there are a vast amount
of repositories online, where one can download MIDI files in different genres and by
different artists. Examples of such are freemidi.org and midiworld.com. In this thesis, the
repository of freemidi.org is used, and all songs from the blues section were downloaded.

12

2.6. Creativity

2.6. Creativity

There are many definitions of creativity, and perceptions of what creativity is. Howard
Gardner defines creativity as “the ability to solve problems, or to fashion products, that
are valued in one or more cultural or community settings” [12]. Bill Lucas stated in [21]
that “Creativity itself is notoriously difficult to define”, but still defined creativity as “a
state of mind in which all of our intelligences are working together. It involves seeing,
thinking and innovating”. In this thesis, Ken Robinson’s definition of creativity is used.
He defines creativity as

“Imaginative processes with outcomes that are original and of value” [34].

In the book Unlocking Creativity: Teaching Across the Curriculum [11], three processes
of creative evolutions are presented:

• Generation

• Variation

• Originality

Generation is to create, form or bring something into being. However, it is not sufficient
to create something and call it creativity, which leads us to the second process, variation.
The created work need to be somehow different than existing ones. It can not simply
be reproduction or a copy of existing work in order to be creative. Variation is an
exploratory process where the output adds to or is a variation of that which is given,
sometimes with success, others with failure. Originality can be looked upon as the effect
of surprise. The generated work with applied variation can result in something that
some perceive as “something that I have never heard or experienced”. Originality comes
in different degrees, which are individual, social or universal. Individual is originality
to a person’s previous thought, social is originality to a group’s previous thoughts, and
universal is originality in terms of all previous human experience [11].

2.7. Similarity measurements

Similarity between the generated data and the input data can be analyzed to see how
creative a system is, and a measure of similarity can help describe variations and origin-
ality. In [29], Müllensiefen and Frieler have experts listen to a number of different songs
with small variations, and rank the songs based on how similar they are to one another.
Next, they use different algorithmic approaches to measure the similarity between songs
and compare the results with the results from the experts. They find that for pitch
and interval measures, edit distance and N-gram give the best results compared to the
experts.

13

2. Background Theory

2.7.1. N-gram comparison

N-gram comparison is based on splitting a query sentence into overlapping substrings
of N characters or words in length, and then comparing it to some other string. The
N-gram similarity is given by equation 2.4.

Sim =
∑
samegram∑
allgram

(2.4)

If we have a query string, we can split that sentence into N-grams, and compare it to
a string which we also split in N-grams. The items that share at least one N-gram are
collected, and the items are ranked by the score based on the ratio of shared to unshared
N-grams between strings [1].

2.7.2. Edit distance

Edit distance or Levenshtein distance is a metric for measuring the difference between
two strings. It is the minimum number of single character edits required to change one
string into the other. There are three legal edit operations:

• Insertion

• Deletion

• Substitution

Insertion allows you to insert a character, Deletion allows you to delete a character,
while Substitution allows you to exchange one character for another.

14

3. Related Work

Generating music with algorithms has been a popular topic in the field of computer
science for a long time. This chapter will provide the reader with an overview of the more
popular applications for computational creativity in terms of musical melodies. First,
a section on melody composition using grammar is presented, followed by approaches
using Markov chains. Next, a section describing how evolutionary algorithms are used in
music generation is presented before a section on the same application using deep neural
networks. The neural network section is subdivided into two parts, one describing related
work with the use of feed forward networks and recurrent neural networks, and the other
describing related work linked to variational autoencoders.

3.1. Music composition using grammars

Terry Winograd applied techniques developed by Noam Chomsky from the field of lin-
guistics to music as early as 1968 [38]. Winograd explains that linguistics and music share
some similarities which allow us to express music with the same techniques as we have
previously expressed sentences in natural language. Natural language have grammars
that determine what words that can succeed the previous. Music, however, follows a set
of rules which determines what pitches that can succeed the previous. The foundation of
music theory can act as grammar, which will determine what “legal” pitch that should
succeed the previous. This is the foundation of music composition using grammars.
Jon McCormack [23] adapted string rewriting grammars based on L-Systems, which was
previously mainly used in biological systems and morphogenesis, and adapted this to
music composition. An L-system is a form of string rewriting grammar that is used
to provide a compact way to represent complex patterns. Keller et al. [18] proposed
a grammatical approach to music generation. They showed that by using probabilistic
grammars, they were able to assist a soloist through a software with the creation of jazz
solos over a chord progression. Probabilistic grammar adds probability to the grammar
which allows some control over the sequences chosen by the system. Higher probability
results in more “mainstream” sequences, while lower probabilities results in less com-
mon sequences. In addition, they showed promising results in generating an improvised
jazz solo real time using grammar. The musical compositions using grammars will give
correct predictions, and produce melodies and chord progressions which sound pleasing,
due to the rule-based implementation.

15

3. Related Work

3.2. Markov chains

Markov chains have been widely used in music composition due to the sequential depend-
encies music has, and were very popular at the beginning of algorithmic composition.
Moorer [27] used Markov chains already back in 1972 to generate short melody frag-
ments that captured some melodic characteristics, but they suffered from what Moorer
described as ‘sounding Alien-like’. More recently, Bell [2] created a system using Markov
chains in combination with evolutionary algorithms to choose next pitch, rhythm and
chord. He used Markov chains in order to choose the next pitch, which is a method for
determining the next state of a sequence solely based on its current state, and knowing
the whole history of the sequence. He used a genetic algorithm to find the set of Markov
chains that sounded more pleasing to the ear. Although the system did a good job at
composition, it lacked the organic nature of human-composed music. Music composi-
tion using Markov chains requires a deeper understanding of music theory that cannot
always be taken for granted and that may prove an important limitation of the system
in certain contexts.

3.3. Evolutionary algorithms

John. A. Biles is a name that is often mentioned when talking about computational
creativity and music generation using computers. Biles created GenJam [3] which is a
genetic algorithm-based model of a novice jazz-musician learning to improvise. GenJam
uses mappings from chords to scale to generate jazz solos. These are mappings that are
based on jazz music theory that map chords to a scale, and the notes that are found in
that scale. A human actor is responsible for fitting the system by typing one or more
‘g’ or ‘b’ depending on how good or bad the generated solo is perceived. Biles also
extended the system in 1998, enabling GenJam to listen to a real person playing, and
to respond to what was played [4]. More specifically, the system and the person played
four measures each, and while the human was playing, GenJam listened to what was
played, and based its next generated solo on what it had just heard. Biles’ work was one
of the motivations for this project, and his ability to generate trumpet solos in the style
of jazz is highly relevant for my thesis. However, where Biles generate solos for trumpet
in the genre of jazz, the present work aims to generate solos based around guitars in the
genre of blues.
Marques et al. [22] developed a system that took advantage of genetic algorithms

to search for a solution in a large search space. The system had a fully automated
fitness function, which means that there was no interaction between actors to determine
what sounded good or bad. The fitness function evaluated harmony, tone and melody.
Marques et al. concluded that they were able to generate short sequences of music that
sounded pleasing to the ear of the listeners during the experiments they conducted. The
paper by Marques et al. is relevant because of its independence from human interaction
to produce pleasing melodies. However, they claim that the generated melodies sound
pleasing to the listeners during the experiments, but fails to describe what they mean

16

3.4. Music composition using deep neural networks

by pleasing, who, and how many the listeners are.

3.4. Music composition using deep neural networks

The first neural networks were described already in 1943 by Warren McCulloch and
Walter Pitts [24]. However, the first successful implementation on a computer did not
take place until 1959 with the introduction of ADALINE and MADALINE [37]. Since
then, there have been major improvements in the field of neural networks and deep
learning. Music generation is a sequential problem where the next note is dependent
on the previous. The introduction of Recurrent Neural Networks, RNNs, described in
section 2.3, have the ability to remember previous states and were first introduced in
1985 by Rumelhart et al. [35].

3.4.1. Feed forward networks and recurrent neural networks

Michael Mozer implemented a recurrent autopredictive neural network which extracts
stylistic regularities from its training data in 1994 [28]. This network was trained on
Bach pieces and traditional European folk melodies, and was able to compose new pieces.
A problem with the system, named CONCERT, was that it failed to capture a global
coherence. CONCERT is a recurrent network that once trained and fed an initial start
pitch can generate pieces of its own, by predicting the next pitch based on the previous.
Several methods were explored to overcome the limitation of the lack of global structure,
but Mozer concluded that note-by-note prediction for music composition was doubtful.
Douglas Eck and Jürgen Schmidhuber [8] generated 12-bar blues pieces using an LSTM

network. The system can either generate melodies in a fixed note interval or chord
progressions based on training data from a corpus of 12-bar blues songs. The melody
generation presupposes that the chord progression does not change and remains the
same. The generated melody is described to have a “bluesy feeling”. This is the only
paper to my knowledge that tries to generate blues music using LSTM networks, which
is what this thesis is about.
Hadjeres and Briot [5] implemented a simple feed forward network that generates

melodies based on melodies learned from its input. The system was called MiniBach
and was later expanded into DeepBach [15], a more advanced architecture which is
specialized for Bach chorales. DeepBach combines two LSTM networks and two feed
forward networks to generate music. The architecture can also write music backwards,
taking notes from “the future” into account and composing the future note’s predecessor,
which also happens to be a technique used by Bach while composing music. Papers
that describe melody generation using neural networks, usually take advantage of RNN
networks and more recent papers almost exclusively use LSTM networks due to their
ability to remember previous states and capture long-term dependencies. This is a
critical factor when designing such systems, and is highly relevant for this thesis.
Brunner et al. [6] created a music theory aware chord based generator using LSTM

networks. The architecture consists of two LSTM networks where the first network pre-

17

3. Related Work

dicts a chord progression which is later fed into a second network to generate polyphonic
music. The system is able to capture long-term structure with the use of LSTM net-
works, and is also capturing musical theory in terms of chords that relate. The work of
Brunner et al. shows that it is possible to extract musical foundations out of training
data, which is very relevant to this thesis.

3.4.2. Variational Auto Encoders

In 2014 Kingma and Welling [20] showed how efficient learning can be achieved in prob-
abilistic models with continuous latent variables and intractable posterior distributions.
This made it possible to use stochastic gradient descent techniques to estimate the prob-
abilistic distribution. Variational autoencoders have increasingly been used for generat-
ive problems after this paper was published. Although a majority of problems that take
advantage of the generative properties of variational autoencoders are image related,
there is also some use of it in music.
Fabius et al. [9] implemented a variational autoencoder with stochastic gradient des-

cent techniques on music from video games represented through MIDI files. They im-
plemented what they called a Variational Recurrent Autoencoder (VRAE), which is an
RNN model based on a Variational Autoencoder. The VRAE allows mapping of time
sequences to a latent representation which enables efficient, large-scale unsupervised
variational learning of time sequences. For their experiments, they used 8 MIDI files
from well-known video game songs. They showed that it was possible to train their
VRAE with Stochastic Gradient Variational Bayes and how the different songs were
represented in the latent space. The use of VAEs in music generation is highly relevant
for this thesis. The paper by Fabius et al. gives a deeper insight into how different
pieces of music are represented in the latent dimension, but does not provide detailed
information on the implementation of the latent code.
Tikhonov et al. [36] created a similar system, but represented the data in a different

way. They used one-hot encoding to encode pitch, octave and duration. They also used
techniques from natural language processing by encoding the data in the same way as text
strings. Word-based generation of text strings results in an extensive multidimensionality
due to all the possible combinations of words that relate semantically and grammatically.
Instead, Tikhonov et al. used character-based generation, which generates letter-by-
letter rather than word-by-word, which significantly reduces the multidimensionality of
the state space. They used a 4-layer LSTM network for both encoder and decoder. The
system predicted the nk+1 note based on n1, ..., nk previous input. They failed to assess
the quality of the output due to the individual perception of what high-quality music is.
However, they described an architecture which allows control over the style of output
due to the latent distribution.
Hennig et al. [16] used a variational autoencoder to generate polyphonic music. In

addition, they used an LSTM network to capture the long-term dependencies to create
music. Hennig et al. introduced a variation to their VAE to control the key of the song
that they were generating, which they called a classifying VAE. The classifying VAE
included a classifier which was trained concurrently with the generative model to infer

18

3.4. Music composition using deep neural networks

the class of each data point. VAEs are not capable of having discrete latent variables
which makes it hard to infer the class (key) of the generated song, and by introducing
the classifier to the VAE, they were able to infer the discrete class by introducing a
continuous latent variable.
Roberts et al. [33] developed a recurrent variational autoencoder to reproduce short

musical sequences. Their system was developed with Tensorflow and they initially fo-
cused on developing a model for 2-bar tracks used for generating drum tracks and melod-
ies mainly used as backing tracks. The melody loops were represented as a sequence of
32 categorical variables taking one of 130 discrete states. 128 of these states repres-
ent one of 128 note-on pitches while the last two are rest and hold states. The drums
are represented as 32 categorical variables taking one of 512 discrete states, where the
states are combinations of all possible drum sounds, similar to word-based generation
discussed earlier in this section. After they successfully reconstructed the 2-bar pieces,
they switched focus to reproduce 32-bar lead melodies. The architecture of the vari-
ational autoencoder has an encoder, a latent distribution and two layers of decoders.
The encoder consists of a single-layered bi-directional LSTM network, where they use
half the output as µ and the other as σ which is used to parameterize a 512 dimension
multivariate Gaussian distribution with a diagonal covariance matrix used for z. The
decoder takes a z, which is passed through a linear layer the initialize a 2-layer LSTM
which outputs 16 embeddings. These embeddings are passed through another linear
layer to initialize another LSTM layer that produces individual 16th note events. Each
embedding is used as an input to the lower level LSTM network which each produces
individual 16th note events for 2 bars each. The 16 embeddings that each produce two
bars, are concatenated at the end to produce a 32 bar melody. Lastly, the 32-bar melody
generation are combined to generate bass- and lead melody tracks with the 2-bar loop
architecture to produce trios. The paper by Roberts et al. is the most relevant paper
for this thesis, and it has inspired a great deal of the implementation in the system
presented. Their system is implemented using Tensorflow, while the system presented
in this thesis is implemented using PyTorch. Roberts et al. does not go into implement-
ation details of their system but provides an overview of the system’s architecture. The
variational autoencoder they have implemented does generate 32-bar melodies, which is
very relevant and requires an architecture that is capable of capturing long-term depend-
encies. The blues solos for the system described in this thesis do not need to be 32-bars,
thus lighter requirements to the architecture’s ability to capture long-term dependencies
apply. This results in different implementations of the decoders.

19

4. Architecture
This chapter describes the architecture of the variational autoencoder implemented, as
well as other components used for generating solos. The MIDI encoder is described first,
followed by a description of the MIDI decoder. Next, a section on the training data is
provided before the architecture of the variational autoencoder is explained along with
each of its components.

4.1. MIDI encoder
When implementing the MIDI encoder, several objectives need to be achieved in order
to successfully have the neural network interpret music from the MIDI file:

O1. A neural network needs to interpret the format of the encoded MIDI file.

O2. A solo can have chords, which are multiple pitches being played at the same time.

O3. Pitches can be held for a longer period of time.

O4. Training data needs to be quantized to account for imprecisions from the artists.

4.1.1. Format of the neural network input

The MIDI-protocol specifies that there are 128 possible pitches that can be played. The
architecture of the MIDI encoder incorporates 128 fields, one for each pitch, and two
special fields in addition to this. This way of representing the MIDI files for training
a neural network is taken from Roberts et al. [33]. The two additional fields represent
special cases where the first one is indicating a pause state, while the other is indicating
a hold state. If the pause field’s value is set to 1, it means that no pitches should be
played or held at that timestep. If the hold state is set to 1, it means that one or more
pitches should be held for an additional timestep. In addition to the hold state to be
set to 1, the pitches that should be held also need to be set to 1. A solo track is divided
into 16th notes, which means that one timestep is equal to one 16th note in the track.
For each timestep in the solo, i.e., one 16th note, the row number that equals the pitch
number is set to 1 in the encoded matrix. An example of this is if pitch 50 is played,
the value at row number 49 is set to 1 (index in matrix starts at 0). All other rows are
set to 0. The result will be a matrix with 130 rows, where one of the row’s value is set
to 1, while the rest of the row’s values are set to 0. If a chord is played, all the pitches
that are present in that chord are set to have value 1 for that timestep. The format
of the encoded MIDI-file is a 130 × n matrix where the 128 pitches and 2 additional

21

4. Architecture

fields are rows indicating one timestep, and n is the length of the solo in 16th notes. By
introducing the format discussed above, objective O1, O2 and O3 found in the list in
section 4.1 are handled. The MIDI encoder was implemented in Python using MIDO, a
framework for working with MIDI files in Python. NumPy and Pandas were also used
as well as several other libraries and packages. The format of the encoding is specified
in the matrix below, where each column represents a timestep.

P1,1 P2,1 . . . Pn,1
P1,2 P2,2 . . . Pn,2
P1,3 P2,3 . . . Pn,3
...

...
...

...
P1,128 P2,128 . . . Pn,128
Pause Pause Pause Pause
Hold Hold Hold Hold


4.1.2. Quantization

Before the blues solos can be encoded to the format discussed in section 4.1.1, imprecise
timings from the artists need to be removed with quantization. The reason for this is
that imprecise timings need to be eliminated in order for the preprocessing to properly
divide the solos into 16th notes. Most of the solos that are used for training are recorded
by people and are therefore not completely accurate in terms of the timing of hitting a
note. Figure 4.1 illustrates how the timing of notes are corrected before preprocessed
and divided into 16th notes.
Every solo has a ticks per beat value which will impact the MIDI message times. Some

MIDI solos have smaller values for the MIDI message times, that need to be handled
in order to quantize the solos. This is directly linked to the ticks per beat value. The
standard time interval between two 16th notes expressed in MIDI time is 120. This
means that one 16th note’s duration is 120 when the ticks per beat value is set to
standard. However, this varies from solo to solo and needs to be taken into account
before the tracks are quantized. Equation 4.1 below calculates the MIDI time for a 1

16
note.

factor = 120× tpbsolo
tpbstandard

(4.1)

Now, only a simple modulo operation is needed to find out if the note needs to be
quantized. This is done with the following equation, 4.2

rest = tMIDImessage mod factor (4.2)

This modulo operation discovers if the note is struck too early or too late, or held for
too long or too short. Based on the result, the note is corrected to perfect 16th notes, by
cutting or adding the rest time necessary to achieve perfect timings. This step handles
objective O4 listed in section 4.1.

22

4.2. MIDI Decoder

Figure 4.1.: Before and after quantizing

The training data has been cleaned manually to ensure high quality of the data. This
choice eliminated a track selection step that was previously implemented in the system.
The track selection algorithm analyzed each MIDI-track in a MIDI file and determined
if the track was going to be used for training. However, when the cleaning of the dataset
was done manually, the need for the track selection algorithm disappeared, because the
action is performed simultaneously as the dataset is cleaned. After the solo has been
encoded into the proper format, it gets written to a text file and saved. These text files
are later read by the variational autoencoder as input.

4.2. MIDI Decoder
The data generated from the neural network is not directly readable and needs to be
decoded back to a MIDI file so it can be inspected and listened to. When recreating
the MIDI file, it only recreates the note_on and note_off messages because information
like pitch bend, change in tempo, or program change was intentionally left out of the
implementation. The output from the VAE is a n × 130 matrix, where n equals a
timestep, which represents a 1

16 note. For each n in the matrix, the following steps are
performed:

1. Check if state is hold or pause state. If so, extend the MIDI time messages for the
relevant pitch. This is either a note_on or note_off message.

2. If the note is not a hold or pause note, add the note to a list that keeps track
of notes that are not yet ended. The list contains an overview over notes whose
duration is longer than the current timestep. This is a necessary implementation
detail, which makes it possible to append note_off messages in future timesteps.

3. End notes that are finished. If a note has ended, we need to append a note_off
message to the MIDI message list.

The instrument is by default set to program 27, which is a jazz guitar, but this has
no impact on the actual output other than the instrument that will be set as default

23

4. Architecture

when opening the file in a program that can read MIDI files. After the entire output
produced by the neural network is processed, and MIDI-messages have been generated,
the framework, MIDO is used to generate the MIDI file. The framework takes in a list
of MIDI messages and generates a MIDI file based on the messages the list contains.
The result is a complete MIDI file that can be listened to when opened in a program
that reads MIDI files. The same frameworks, libraries and packages as used in the MIDI
encoder are also used for the MIDI decoder.

4.3. Training data

The training data is a dataset from freemidi.org. The songs selected are all songs found
under the ‘blues’ section on the website. It contains artists such as Chuck Berry, Alicia
Keys, Adele, Bob Dylan, B. B. King, Bee Gees, Eric Clapton, George Ezra, Jimi Hendrix,
Stevie Ray Vaughan, Rod Stewart, Tom Jones, Gary Moore and Tina Turner, to men-
tion a few. There are many different artists from different decades that play different
styles of music in this dataset. The music spans over decades, where artists such as
Muddy Waters, Chuck Berry and B. B. King started their active careers in the 40s, to
artists such as Adele and George Ezra that released their first albums in 2008 and 2014,
respectively. The dataset is a collection of songs that are not necessarily considered blues
by all people, and thus, it are very varied.

import.io was used to generate download URLs for all songs found under the blues
section. The songs in a respective genre shares parts of the same URL, which made
it possible to create a regular expression to extract the parts of the URL which are
dynamic. import.io provided tools to generate the download URLs to all of the songs,
which were later downloaded in batches. Efforts to extract the guitar and bass tracks
only from the MIDI files were made, but the selected tracks contained much noise in the
form of being non-:solo tracks, as well as excluding most guitar solos because the guitar
solo tracks were encoded in a different instrument than a guitar instrument in MIDI.
Detecting what could be a solo in a MIDI song is also a very hard task because there are
no rules to what a solo is. A MIDI song contains many different tracks with different
instruments that are not always the correct instrument played in the actual song, e.g.
a guitar track can be encoded as a synth instrument. In addition, it is very hard to
detect a guitar solo with an algorithm, because many none-solo tracks share the same
similarities as solo tracks. Efforts were made to create a rule-based system that could
find the tracks which contained solos, with rules such as:

• Eliminate tracks with MIDI instruments that are not guitar or synth tracks

• Compare number of pitches played

• Compare number of pitches played over a given time to detect faster playing and
more frequent pitch changes.

24

4.4. Components of the variational autoencoder

After spending some time trying to create such an algorithm, the work was stopped due
to unsatisfactory results and an evaluation of time needed to create such a complicated
algorithm. The final decision was to clean the dataset manually, ensuring high-quality
training data. Each MIDI song was opened in Logic Pro and manually checked for guitar
solos. If a guitar solo was found, the solo track was exported as a new MIDI file. A
maximal solo length of 256 steps, which is the same as 16 bars, were allowed during
training in this implementation. Therefore, if a solo exceeds 16 bars in length, the solo
was sliced and exported as multiple separate MIDI tracks. Some of the songs from the
dataset did not contain solos and are therefore not a part of the final dataset. The
final dataset contains 382 solos from the MIDI songs. Extracting solos manually is a
time-consuming task, so not all songs in the downloaded repository were used. However,
songs from the corpus were mixed randomly to get a variation from all of the artists
represented.

4.4. Components of the variational autoencoder
This section describes the different components of the variational autoencoder. The dif-
ferent components are the encoder, the latent code and two decoders, one upper-level
decoder and one lower-level decoder. The architecture is inspired and shares similarit-
ies with the architecture of the VAE developed by Roberts et al. [33], but the system
designed for this thesis does not use embeddings and differs significantly in all compon-
ents of the VAE. The architecture in [33] is designed to generate both 2-bar loops and
32-bar melodies, while this system is designed to generate blues solos of various lengths.
The VAE was implemented using PyTorch, which is a framework for implementing deep
neural networks in Python with support for GPU acceleration. The architecture of the
VAE can be found in figure 4.2.

4.4.1. Encoder

The full blues solo with size sololength × 130 is input to a linear layer. The output of
the linear layer is a lower dimensional sololength× 64 matrix, which is used to initialize
a single-layered LSTM network. The output size of the LSTM network equals its input
size, and the output from the network is returned and used to compute µz|x and

∑
x|z.

4.4.2. Latent code

The latent distribution, z, is a Gaussian distribution with a latent dimension of 30. The
latent dimensions need to be smaller than the input and output dimensions due to the
detection and selection of features. The dimension of 30 was chosen based on readings
[9][33][36], code examples and experiments, which confirmed that the architecture worked
with the chosen latent dimension. z is of size sololength × 30 which means that the z
depends on the length of the solo. Longer solos will have fewer training samples that
optimize the latter timesteps of the z, because solos of shorter length are unable to train
the dimensions of the latent code that has more timesteps than itself. µz|x and

∑
x|z are

25

4. Architecture

Figure 4.2.: Architecture of VAE

calculated from the output of the encoder, where the reparameterization trick described
by Kingma and Welling in [20] is applied.

4.4.3. Decoder

There are two decoders, one upper-level decoder and one lower-level decoder. The upper-
level decoder takes a z as input which initializes a linear layer with input dimension of
sololength×30 and outputs a sololength×64 dimensional matrix, matching the hidden
size. The output from the linear layer is used to initialize a single-layered LSTM network
which input size equals its output size.
The lower-level decoder takes three variables as input: The previous pitch distribution

output by the lower-level decoder, zt, and the hidden state from the previous LSTM out-
put. The initial hidden state of the lower-level decoder is initialized by the hidden state
from the upper-level decoder’s LSTM network to preserve the long-term dependencies.
By adding an additional decoder which takes a full sample from the latent code, and
using that as input to a LSTM network, the long-term dependencies of the system were
increased significantly. The lower-level decoder first concatenates the previous output

26

4.5. Information flow in the variational autoencoder

from the lower-level decoder and zt. This sololength × 160 matrix is used as input to
another single-layered LSTM network whose output initializes a linear network. The
output of the LSTM network is of size sololength × 64. The linear layer outputs a
1× 130 matrix, which is a distribution of probabilities for the different pitches.

4.5. Information flow in the variational autoencoder

This section describes the flow of the variational autoencoder during training, as well as
when generating a solo.

4.5.1. Flow of training

The system is first trained with a various number of blues solos from songs that free-
midi.org categorizes as blues. The preprocessed text files, that are described in 4.1, are
read to numpy arrays and given to a dataloader, which is used for machine learning
tasks in Python. Each of the solos is then sequentially used for training in a various
number of epochs. First, the solo is fed into the encoder which is described in 4.4.1, and
its output is used to sample from the from the latent code, z. After sampling z, it is
used as input for the upper-level decoder described in 4.4.3, where the returned hidden
state is used as the initial hidden state for the lower level decoder. Next, one probability
distribution over pitches is generated at a time by using zt, the hidden state, and the
previous output. In the first iteration, the previous output is a 1× 130 zero matrix, and
the hidden state is the returned hidden state from the upper-level decoder. The decoder
is generating one probability distribution over pitches at a time and is therefore run a
number of times equal to the length of the solo. After the decoder has returned a 1×130
matrix, at each timestep the returned matrix is concatenated with the previous output
for as many timesteps as the solo has. Every time the decoder returns a 1× 130 matrix,
the mean squared error between the output of the decoder and the current state, statet,
is calculated using the mean squared error definition given in equation 4.3

ln = (xn + yn)2 (4.3)

After the whole solo has been decoded, the loss is returned and the latent loss is cal-
culated. The total loss is calculated by adding the mean squared error together with
the latent loss before we back propagate. The models are trained with the Adam optim-
izer [19] which is an algorithm for first-order gradient-based optimization of stochastic
objective functions, based on adaptive estimates of lower-order moments.

4.5.2. Flow of generating a solo

After training is completed, a random sample is generated, and the sample is decoded
the same way as during training. The sample from z goes first through the upper-level
decoder, and the hidden state it outputs, is used to initialize the lower-level decoder.
The sample has a state for each timestep, and for each timestep, that is to be generated,

27

4. Architecture

staten from the sample is used as input to the lower level decoder. One probability
distribution of pitches is generated at a time. The output of the decoder is a probability
distribution over the pitches that are most likely to be played. After the first probability
distribution of pitches is generated, it is used as input to the next decoding iteration
along with the last LSTM cell’s hidden state, and the sample staten+1. This is done
repeatedly until the complete solo is generated. The whole process is illustrated in figure
4.3. After all the timesteps have been successfully decoded, the concatenated output is
iterated over, and the pitches that have the highest probability are selected with a few
exceptions:

• A hold state cannot be chosen if there is no previous pitch, i.e., the first note to
be generated cannot be a hold note.

• There is a max limit for how long a note can be held, which is 16 timesteps. If the
pitch exceeds this limit, the next pitch will be a note_on pitch.

The purpose of the second point in the list above is to get variation in the generated
solo and prevent extremely long notes, which are not interesting to listen to. After all
the pitches have been chosen, the song is translated to a format the MIDO framework
can convert to MIDI files using the MIDI decoder described in section 4.2.

28

4.5. Information flow in the variational autoencoder

Figure 4.3.: Generate a solo from a sample

29

5. Experiments and Results
In this chapter, the experiments conducted are presented with the results. First, a total
of three experiments for verifying the VAE are conducted, followed by experiments for
generating solos and the results. Multiple solos from different models are generated over
four different experiments where different values for different parameters are used. The
system is evaluated through a user study and a qualitative assessment in chapter 6, and
the results will be discussed further in chapter 7.

The initial implementation of the VAE was developed without systematic testing, and
to verify that the network was working properly, a clean dataset was needed. Jazz music
is a popular genre to experiment with within the field of computational creativity, and
there is a good selection of MIDI jazz songs available. A dataset containing 20 lead
melodies in the genre of jazz from the artists Art Pepper, Charlie Parker, Benny Carter
and Chet Baker was used for verification. The network was trained on these 20 lead
melodies for 100 epochs with a learning rate of 0.01 and produced a solo which shared
similarities with the input.
However, when further inspecting the results, it became clear that the first imple-

mentation of the encoder and decoder results in big information losses that cause the
autoencoder to randomly select pitches. In addition, an error with the latent code was
found. To verify the errors, the VAE was trained on one jazz melody to see if it could re-
produce the melody. The result was a recurrence of a single 16th note played throughout
the duration of the melody, which confirms that the VAE did not work as expected.

5.1. New implementation of the Variational Autoencoder

During testing of the second version of the VAE, achieving success at each of the following
three subgoals was critical in order to verify that the VAE is working properly:

1. Implement an encoder and decoder that successfully recreates a single solo without
the latent code.

2. Implement the latent code and use a sample of z that is known to work (i.e., the
last generated z while training).

3. Sample a random z and see if it produces an output very similar to the input.

31

5. Experiments and Results

5.1.1. Step 1: Verification of the encoder and decoder

The encoder and lower-level decoder was implemented as described in section 4.4.1 and
4.4.3. The dataset in this experiment consisted of three melodies. One was a melody
that contained one pitch played multiple times to ensure that the right pitch was chosen
by the system, the second an arpeggio played over 8 bars, and the third eight bars of
Charlie Parker’s, Scrapple From The Apple. The first two melodies were merely used for
training to quickly assess if the encoder and decoder worked. The system using only the
encoder and decoder successfully recreated both the single-note melody and the arpeggio
solo with a 100 % accuracy. However, these songs lacked the complicated patterns and
dependencies that are found in real songs. An attempt to see if the system successfully
manages to recreate Scrapple From The Apple which has a lot more variation in it, and
24 unique pitches, using a learning rate of 0.01 for the Adam optimizer was tried. The
results are presented in table 5.1.

Epochs Accuracy Unique pitches
500 67.86 % 14
1000 71.43 % 21

Table 5.1.: Scrapple from the Apple recreated using encoder and decoder only

(a) Loss with 500 epochs (b) Loss with 1000 epochs

Figure 5.1.: Losses with different number of epochs; encoder and decoder only

The melody is perfectly recreated at the beginning, but the system gradually intro-
duces some errors when time passes. The conclusion of this experiment is that the
system fails to capture long-term-dependencies, which call for an increase in the com-
plexity of the system. This led to the addition of the upper-level decoder, which idea
and inspiration came from Roberts et al. [33].

32

5.1. New implementation of the Variational Autoencoder

5.1.2. Step 2: Verification of the latent code

The latent code was implemented as described in section 4.4.2, and the upper-level
decoder was also added to capture long-term dependencies. To test the latent code, the
system was trained on Charlie Parker’s, Scrapple From The Apple for 500 epochs with
a learning rate of 0.01 using the Adam optimizer. On the last epoch of training, the
current z was used as a sample to see if the decoder’s output would be near identical to
the original melody. The results were very accurate, and can be found in table 5.2.

Epochs Accuracy Unique pitches
500 96.42 % 24

Table 5.2.: Scrapple from the Apple recreated using last known z

Figure 5.2.: Loss when recreating with last known z for 500 epochs

5.1.3. Step 3: Verification of variational generation

Training on only one melody for 400 epochs results in overfitting where one can expect
similar output regardless of the values we choose for z. Three random samples of z were
used to generate three different variations of the melodies. The results of the experiment
can be found in table 5.3.

Generated solo Accuracy Unique pitches
1 75.89 % 19
2 69.64 % 15
3 64.28 % 17

Table 5.3.: Random samples of z for generating variations on Scrapple From The Apple

Looking at the results, we can see that the random sampling of z generates variations
of the same melody. They are similar but have variations when sampling different values

33

5. Experiments and Results

for z. This shows that the architecture for the variational autoencoder works, and
successfully recreates melodies with variations.

5.2. Generation of solos

In this section the experiments conducted and the results will be presented. A series of
experiments with different parameters and input was conducted to observe the behavior
of the system. A total of 382 solos from what freemidi.org considers as blues were used
during these experiments. There are many different parameters that need to be set for
training a network and tweaking the VAE. The most important parameters are:

• Learning rate
• Dimensions of the latent code
• Number of epochs
• Number of input solos

For all of the experiments presented in the following sections, a model is trained with
various values for the parameters mentioned above. In addition, three random samples
from the latent code are sampled, resulting in three separate solos from each model. This
allows for choosing between multiple solos, and to see variations of the same model. How-
ever, only one of the generated solos from each model is shown in the results, whichever
yields the best results in terms of similarity to training data, variation, and consonance.
All of the experiments were run on a GPU for increased performance.

For all of the experiments, pauses were removed from the training data. A high
percentage of the training data contains a significant amount of pauses, which makes
the system generate solos that contain too many pauses. In the most extreme cases, it
produced solos that were entirely pauses. To avoid this, all pauses from the training
data is removed in order to produce solos that only contain notes and sound more like
a real solo.

5.2.1. Experiment 1: Variations on learning rate

The variational autoencoder was trained on 382 solos with different learning rates to see
how the learning rate affected the system. Comparisons between the training data and
the generated solos in terms of similarity using N-gram comparison and edit distance
are presented for each generated solo. In addition, a comparison of variations between
the training data and the generated solos is presented. The batch size was set to 1, and
the LSTM networks in the encoder, upper- and lower-level decoder was set to be single-
layered networks, as described in chapter 4. The system was trained for 100 epochs with
a learning rate decay of lr× e−0.01 per epoch. The learning rate decay value was chosen
with trial and error and enhanced the results of the generated solo. The generated solos
for this experiment can be found in appendix A

34

5.2. Generation of solos

Figure 5.3.: Losses of different learning rates

In figure 5.3, the loss during training is shown. The loss after 100 epochs is lowest
when training with a learning rate of 0.001 and 0.003. The highest loss after 100 epochs
is with a learning rate of 0.01. Figure 5.3 also shows spikes in the loss that are most
visible when training with a learning rate of 0.01, 0.008, and 0.005. This phenomenon
will be further discussed in chapter 7.

Similarity

The generated solo was compared to each and every input solo. For each solo, the N-
gram similarity and the edit-distance were calculated. The solos were converted to string
format where the pitches played at a timestep are enclosed in brackets.

Format of string: [pt1 , pt2 . . . ptn]t0 + [pt1 , pt2 . . . ptn]t1 · · ·+ [pt1 , pt2 ...ptn]ti

An example of such a string is if playing pitch 38 and 39 at timestep 1 and 2, respectively,
it will generate the string: [38][39]. If pitch 39 is replaced with a hold state of pitch
38, the string would be: [38][38, 129]. In the N-gram comparisons, N was set to 3. The
results are shown in table 5.4.

35

5. Experiments and Results

Parameter LR = 0.01 LR = 0.008 LR = 0.005 LR = 0.003 LR = 0.001
Average N-gram score 0.108 0.082 0.200 0.127 0.188
Best N-gram score 0.470 0.271 0.436 0.391 0.411

Average edit distance 866.6 851.7 841.0 872.9 834.2
Best edit distance 440 409 284 256 331
Unique pitches 7 7 9 6 12

Table 5.4.: E1: Similarities with different learning rates

The average N-gram score is highest when using a learning rate of 0.005, and the
same solo’s average edit-distance is the second lowest. It also has the smallest best
edit-distance, which means that it requires the least number of modifiable actions to
be identical to an input solo. The solo generated with a learning rate of 0.001 has a
very similar average N-gram score, and also has the lowest average edit-distance. The
solo with the lowest average N-gram score is trained with a learning rate of 0.008, and
also has the lowest best N-gram score compared to the input solos. The generated
solo with learning rate 0.003, scores low on average and best N-gram compared to the
other generated solos. It also has the highest average edit-distance, but the lowest best
edit-distance.

Pitch variation

In figure 5.4, the results in terms of pitch variations compared to the training data are
presented. The figure shows how many percent of the unique pitches in the input solos
that are also found in the generated solo. The graph shows how many solos from the
input data that contain the respective percentage of unique pitches in the generated
solo.

36

5.2. Generation of solos

Figure 5.4.: E1: Input solos that contain the percentage of same pitches found in the
generated solo

The graph in figure 5.4 shows that the learning rate of the system has an impact on
the pitch variation. When using a learning rate of 0.001, a significantly larger number
of input solos share more of the same pitches with the generated solos. However, the
number of unique pitches found in the generated solo trained with a learning rate of
0.001, is also bigger than the rest of the solos, which will increase the probability of
having a bigger percentage of the same pitches found in the input solos. The generated
solo with a learning rate of 0.005 has more variation in pitches compared to the solo
generated with a learning rate of 0.001, but has less variation than the others. The rest
of the solos follows a very similar distribution of pitch variation.

5.2.2. Experiment 2: Variations on epochs

A series of experiments was conducted, training models for a different number of epochs.
For this experiment, four different models were trained for 50, 100, 150 and 200 epochs,
respectively. The purpose of this experiment is to see how the different number of epochs
affect the generated solos. A learning rate of 0.005 was chosen for this experiment, with
a decay of lr × e−0.01. The latent dimension was set to 30, and the hidden size to 64.
The generated solos for this experiment can be found in appendix B.

37

5. Experiments and Results

Figure 5.5.: Losses with different epochs

Figure 5.5 shows the loss when training a different number of epochs. The loss after
200 epochs is very similar to the loss after 150 epochs. The figure shows that the loss is
highest when training for 50 epochs. The graph also shows that the loss has significant
spikes when trained for 100, 150 and 200 epochs.

Similarity

The similarity between the training data and the generated solos is assessed in this
section. It is measured the same way as in 5.2.1. The results are presented in table 5.5.

Parameter 50 epochs 100 epochs 150 epochs 200 epochs
Average N-gram score 0.078 0.200 0.108 0.049
Best N-gram score 0.314 0.436 0.323 0.139

Average edit distance 893.5 841.1 846.4 958.0
Best edit distance 425 284 363 467
Unique pitches 7 9 6 5

Table 5.5.: E2: Similarities with models trained for different number of epochs

The results show that the generated solo when trained for 100 epochs scores higher
than the other generated solos in terms of similarity to the training data. The average
N-gram score is almost twice as high as the generated solo which is trained for 150 epochs
and gives the second highest results. This indicates that the system resembles its input

38

5.2. Generation of solos

best when trained for 100 epochs. It also produces solos that have more unique pitches
than the others. The solo generated when trained for 200 epochs scores lower in terms
of similarity, and has the least amount of unique pitches.

Pitch variation

The measures of pitch variation is the same as presented in section 5.2.1. The results of
pitch variation is shown in figure 5.6.

Figure 5.6.: E2: Input solos that contain the percentage of same pitches found in the
generated solo

Looking at the graphs in figure 5.6, it shows that the solo generated from the model
that is trained for 100 epochs share more of the same pitches with the training data
compared to the rest. The solo that is trained for 50 epochs have more input solos that
share a higher percentage of the same pitches than the solos trained for 150 and 200
epochs. The graph of 200 epochs shows that it shares few common pitches with most
of the solos in the training data. However, the generated solo also contains very few
pitches, which explains why it also has few pitches in common with the training data.

5.2.3. Experiment 3: Variation on size of training data

A series of experiments was conducted using a smaller dataset in order to see how a
smaller number of input solos affected the generated solos. Different numbers of input
solos were chosen for this experiment, and four different models were trained with 10,
30, 50 and 100 randomly selected solos from the complete dataset. A learning rate of
0.005 was chosen for this experiment, with a decay of lr × e−0.01. The latent dimension

39

5. Experiments and Results

was set to 30, and the hidden size to 64. The generated solos from this experiment can
be found in appendix C.

Figure 5.7.: Losses with different number of input solos

Figure 5.7 show the losses during training when the system is trained with a different
number of input solos. The loss is lowest when the system is trained with 30 solos,
followed by 10, 50 and 100 solos, respectively.

Similarity

The similarity in this experiment was measured the same way as described in 5.2.1. The
results are presented in table 5.6.

Parameter 10 solos 30 solos 50 solos 100 solos
Average N-gram score 0.120 0.151 0.176 0.129
Best N-gram score 0.287 0.271 0.276 0.214

Average edit distance 945.3 848.9 824.4 732.96
Best edit distance 434 450 358 302
Unique pitches 12 10 8 6

Table 5.6.: E3: Similarities with different number of input solos

The N-gram measurements are increasing up towards 50 solos, but decrease when the
system is trained on 100 solos. The edit distance improves with the number of solos used

40

5.2. Generation of solos

as training data, but the number of unique pitches found in the solos is also decreasing
with the number of solos input to the system.

Pitch variation

The measures of pitch variation is the same as presented in section 5.2.1. The results of
pitch variation are shown in figure 5.8.

Figure 5.8.: E3: Input solos that contain the percentage of same pitches found in the
generated solo

The graph shows that the solos generated perform very similar in terms of pitch
variation compared to the training data. The majority of input solos share about 20 - 40
% of the pitches present in themselves with pitches present in the generated solos. The
graphs are also following similar patterns, which indicates that there is a difference in
pitches in the input solos and the generated solos. This means that the generated solos
do not only use pitches from a single solo. The exception is the solo generated with 30
input solos, which has one input solo that shares 70 - 80 % of the same pitches as the
generated solo, and one solo that shares 60 - 70 % of the same pitches.

5.2.4. Experiment 4: Changing size of latent dimension

Variation on the size of the latent dimension should affect the generated solos, and the
ability the system has to detect features. Three different models where different latent
dimensions of 15, 30 and 45 was chosen for this experiment. The architecture of the
latent code is more thoroughly described in section 4.4.2. A learning rate of 0.005 was
chosen for this experiment, with a decay of lr× e−0.01. The latent dimension was set to
30, and the hidden size to 64. The generated solos are found in appendix D.

41

5. Experiments and Results

Figure 5.9.: Losses with different sizes of latent dimension

Figure 5.9 shows the loss when different sizes of the latent dimension are used. The
loss after 100 epochs is lowest when trained with a latent dimension of size 15. Models
with latent dimensions of size 30 and 45 have the same loss after 100 epochs. This figure
shows that a latent dimension of size 15 and 30 also produces spikes in the loss.

Similarity

The results of similarity between the training data and the generated solos are presented
in this section. For explanations of the terms presented in table 5.7, see section 5.2.1.

Parameter Dim = 15 Dim = 30 Dim = 45
Average N-gram score 0.125 0.200 0.126
Best N-gram score 0.290 0.436 0.335

Average edit distance 831.8 841.0 831.8
Best edit distance 318 284 337
Unique pitches 9 9 5

Table 5.7.: E4: Similarities with different sizes of latent dimension

Table 5.7 shows that the similarity between the training data and output data is
almost identical when using 15 or 45 as dimension for the latent code. The average
edit distance is identical. Latent dimension of size 30 scores highest in similarity, which

42

5.2. Generation of solos

indicates that this configuration captures features from the training data better than
the other configurations.

Pitch variation

The measures of pitch variation are the same as presented in section 5.2.1. The results
of pitch variation is found in figure 5.10.

Figure 5.10.: E4: Input solos that contain the percentage of same pitches found in the
generated solo

The graphs in figure 5.10 show that the solos generated from the model with a latent
dimension of size 15 and 30 have very similar distributions of pitch variation compared
to the input. However, the system with a latent dimension of size 30 generates a solo
that share a higher percentage of the same pitches as the input solos. The solo generated
with a latent dimension of 45, has fewer pitches in common with the training data, but
it also has the lowest number of unique pitches of the generated solos.

43

6. Evaluation
In this chapter, a survey of the generated solos and the results is presented. The chapter
is concluded with a qualitative assessment of some of the generated solos.

6.1. Survey

The purpose of the experiment is to observe how the solos sound to human ears and
to measure how good a group of people perceives different aspects of the solos. The
group consisted of 14 people which mainly identified themselves as hobby artists or
music enthusiasts. They were asked to listen to 16 solos where some are generated by
the system, and some are real solos from real songs used as training data for the system.
9 of these solos were generated by the system, while 7 were randomly selected solos from
the training set. Backing tracks were added to all of the solos to provide context, and
consisted of a guitar track that played a chord progression over the solo and a simple
drum beat. The chord progressions played in the background were customized to each
and every solo, to ensure that the backing tracks were in the same key as the solo, but
kept very basic to minimize the influence the backing track may have on the solos. The
chord progressions were played with a clean guitar MIDI instrument in 1

2 notes or 1
4

notes. For the drum tracks, notes were either 1
4 notes or 1

8 notes, and variations on
hi-hats were added as well. Some solos have a drum track with open hi-hat, some with
closed and others with ride cymbal. The evaluation was presented online where the
people that evaluated the solos were provided with a link where they could listen to the
solos and then answer questions about them. The same questions were asked for all 16
solos. The group had to answer the following questions:

Q1: Do you think the solo is generated by the AI?

Q2: What genre do you think the solo is?

Q3: How repetitive do you think the solo is?

Q4: How interesting do you think the solo is?

Q5: How original do you think the solo is?

Q6: How surprising was the solo?

Q7: How ‘good’ do you think the solo is?

45

6. Evaluation

6.1.1. Results of Q1 and Q2

Table 6.1 shows the results of Q1 and Q2. It shows how many people that thought
the respective solos were generated, real, or was unable to tell. It also shows the genre
the majority perceived the respective solos to be. The real solos are marked grey in the
table, while the generated are white.

Solo Generated Real Unable to tell Genre
1 5 8 1 Pop
2 8 3 3 Rock
3 8 4 2 Rock
4 3 8 2 Pop
5 4 8 2 Blues
6 13 1 0 Rock
7 3 9 2 Pop
8 12 0 2 Rock/blues
9 10 0 4 Pop/rock
10 2 11 1 Blues
11 2 9 3 Rock
12 10 4 0 Rock
13 12 1 1 Rock
14 2 7 5 Pop/rock/blues
15 7 3 3 Rock
16 12 1 1 Rock

Table 6.1.: Results of Q1 and Q2

In figure 6.1 the average scores of Q2 -Q7 on all real and generated solos are presented.
The scores of the real solos will act as a baseline for the generated solos. In the following
figures, the scores of each generated solo are shown, and a baseline is presented in
the same figure. The baseline is the average score of the real solos in the respective
measurement. In addition, the scores of the extremities of the real solos are shown.

46

6.1. Survey

Figure 6.1.: S1: Average scores real and generated solos

47

6. Evaluation

6.1.2. Results Q3: Repetitiveness

Q3 was how repetitive the listeners perceived the generated solos, and the results are
presented in figure 6.2. The orange line marks the score of the real solo that was most
repetitive, while the grey line marks the score of the real solo that was least repetitive.
The red line indicates the baseline, which is taken to be the average value for the real
solos.

Figure 6.2.: S2: Repetitiveness of the generated solos

All of the generated solos are perceived more repetitive than all the real solos. A
few of the solos are approaching the baseline, while the rest are perceived vastly more
repetitive than the real solos. Solo 3, 12 and 15 is very close the same score as the
lowest scoring real solo, which indicates that the participants of the survey perceived
these solos almost as repetitive as some of the real solos.

48

6.1. Survey

6.1.3. Results Q4: Interesting

Figure 6.3 shows how interesting the solos were perceived to be by the listeners. The
orange line marks the score of the real solo that was most interesting according to the
participants of the survey, while the grey line marks the score of the real solo that was
least interesting. The red line indicates the baseline , which is taken to be the average
value for the real solos.

Figure 6.3.: S3: How interesting the generated solos was perceived

Solo 12 and 15 are very close to being as interesting as the lowest scoring real solo.
Solos 2, 3 and 6 perform very similar and scored slightly lower than solos 12 and 15. The
solos that got lower scores in terms of repetition are also perceived as more interesting
to the listeners.

49

6. Evaluation

6.1.4. Results Q5: Originality

Figure 6.4 shows how original the solos were perceived to be by the listeners. The orange
line marks the score of the real solo that was most original according to the participants
of the survey, while the grey line marks the score of the real solo that was least original.
The red line indicates the baseline, which is taken to be the average value for the real
solos.

Figure 6.4.: S4: Originality of the generated solos

Solo 12 and 15 are also doing well in terms of originality. Solo 12 outperforms the
lowest scoring real solo, while solo 15 scores the same as the lowest scoring real solo.
Both are very close to the baseline, which indicates that the participants of the survey
think of these solos as being as original as the training data. Solo 3 and 6 also scores
relatively high in this measure, and both are approaching the score of the real solo that
is considered least original. The rest of the solos are outperformed by the real solos.

50

6.1. Survey

6.1.5. Results Q6: Surprising

Figure 6.5 shows how surprising the solos were perceived to be by the listeners. The
orange line marks the score of the real solo that was most surprising, while the grey line
marks the score of the real solo that was least surprising. The red line indicates the
baseline, which is taken to be the average value for the real solos.

Figure 6.5.: S5: How surprising the generated solos were to the listeners

The scores in this measure are almost identical to the scores of originality, which can
indicate that the questions are strongly correlated. Solo 12 and 15 both outperform the
least surprising real solo, and both are very close to the baseline. Solo 3 and 6 scores
similar, and both are close to the lowest scoring real solo.

51

6. Evaluation

6.1.6. Results Q7: Overall

Figure 6.6 shows how ‘good’ the listeners perceived the solo overall. The orange line
marks the score of the real solo that was considered the best overall, while the grey
line marks the score of the real solo that was considered the worst overall. The red line
indicates the baseline, which is taken to be the average value for the real solos.

Figure 6.6.: S6: How the generated solos were perceived overall

Overall, solo 12 and 15 scores the best, but are closely followed by solo 2, 3 and 6.
Looking at figure 6.6, we can see that the generated solos are generally perceived to
sound worse than the real solos. However, solo 12 and 15 nearly score the same as the
lowest scoring real solo, closely followed by solo 3, 6 and 2. The rest of the solos score
significantly worse.

52

6.2. Qualitative assessment

6.1.7. Overview over generated solos

The generated solos used in this survey are mostly the same as the ones in experiments
1-4 in the previous section, with the exception of one generated solo which was generated
earlier. An overview over the solos are found in table 6.2, which includes the parameters
of the solos, as well as what experiment in section 5.2 they were a part of.

Solo # in survey Experiment LR Epochs Number of input solos Lat dim
2 1 0.01 100 382 30
3 1 0.005 100 382 30
6 3 0.005 100 30 30
8 3 0.005 100 100 30
9 4 0.005 100 382 45
12 - 0.005 100 382 30
13 3 0.005 100 10 30
15 1 0.001 100 382 30
16 2 0.005 50 382 30

Table 6.2.: Overview of solos in the survey

6.2. Qualitative assessment
In this section, a qualitative assessment of the solos is presented. The solos are assessed
by Magnus Sahlgren, a computer linguist and guitarist at the Swedish Institute of Com-
puter Science. Sahlgren was the lead guitarist of the band Lake of Tears, and has also
played in bands such as Dismember and Celeborn. 6 solos were sent to him to get a
deeper more qualitative assessment on the solos generated.

His comments on the solos are the following:

• The solos are easily playable, by using a guitar technique called tapping. Tapping
is a technique where the player is using both hands on the neck of the guitar and
taps with the hand which usually is used for strumming on the fretboard to play
a note.

• Sahlgren thought the solos were repetitive and often used octaves. It is for playing
these octaves the tapping technique could be used. He is not sure if these solos
qualify as blues, but rather a form of jazz.

• Qualitatively, he does not think the solos are very good, and he thinks that the
solos sound like someone who just discovered tapping, but did not learn to play
yet.

He thinks the solo from Experiment 3 which is trained on 30 solos was interesting. He
thinks it sounds like the AI is playing something "wrong" in this solo, which made him
wonder about the training data. The solo uses the Neapolitan scale in the key of E.

53

7. Discussion
In this chapter, the results of the experiments are discussed. First, the creativity of the
system is discussed in terms of variation and originality, followed by a section on how
realistic the solos are. Next, the goals of the thesis are discussed, before the chapter is
concluded with answers to research questions.

7.1. Computational creativity
When evaluating how creative a system is, the three processes that define creativity
discussed in section 2.6 are used. The three processes are:

• Generation

• Variation

• Originality

However, no further detail on the generation part of will be discussed in the evaluation,
because the process is about bringing something into being, which is true for all of the
experiments when the system successfully generated solos in every experiment.

7.1.1. Variation

The system does generate solos that have variation from the input data, and it is able to
generate variations of itself, in terms of generating variants of a solo with different sample
values from the latent distribution from the same model. The output of the system is
highly affected by the different parameters in the VAE, and the results show that the right
values and combinations of the parameters produce solos that share some similarities
with the training data. The learning rate of the system impacts the loss during training,
and we can see from experiment 1 that the solo with the lowest loss, do not generate the
solo most similar to the input data as one could expect. There can be multiple reasons
for this, but an obvious one is that only three random samples from the latent distribu-
tion were extracted. This leaves large parts of the latent space unexplored, and it may
be that the right sample from the latent distribution would generate a solo that is more
similar to the output. Overfitting can also be an explanation for this problem. From
experiment 2, we see that when increasing the number of epochs, the solos generated
have fewer unique pitches. Based on this, it is likely that the system learns to prefer only
a small selection of pitches, which are played more often throughout the solo than other
pitches. This will lead to solos with little variation and repetitive patterns with very

55

7. Discussion

few unique pitches, which may also lead to low scores in the similarity measurements.

Solo 12 and 15 scored highest in the overall measurement in the survey. Although solo
12 was not in either of the experiments in section 5.2, the model the solo is generated
from is trained with the same parameters as one of the solos in experiment 1, and the
results show these solos also scored highest in terms to similarity to the training data.
This is logical because the training data is extracted solos from real songs. If the system
generates solos that are similar to real solos, it is sensible that they will sound good to
the human ear as well.

Comparisons between results from the survey and results in pitch variation show
that there is a correlation between how many pitches the training data share with the
generated solos and how good the generated solos sound to people. The results in pitch
variation from experiment 1 show that the generated solos from the system when trained
with a learning rate of 0.01, 0.005 and 0.001, had a higher percentage of real solos from
the training data that share more unique pitches with the generated solos than the other
two learning rates. The results from the survey reveal that the same solos also sound
better to the people surveyed. When inspecting the solos that scored low in the survey,
the same solos also have a high pitch variation from the training data, which supports
the assertion that the more similar the solos are to the training data, the better they
sound to the human ear.

The N-gram comparison measures similarity on a scale of 0 to 1, where a score of
1 means that the two strings are identical. Considering that the highest average N-
gram score was 0.2, it would be interesting to see if it is possible to generate a solo
that had a higher N-gram comparison score and see if the output solo scored higher
in the survey. However, an increase in the N-gram score may result in a loss in cre-
ativity and lead to solos that are too similar to the training data. One could think
that the number of solos used for training theoretically would affect the N-gram score
positively, because with fewer solos, there is less variation in the training data, and
therefore it should be easier for the system to learn. However, looking at the results
of experiment 3, we can see that this is not the case. In fact, the N-gram score in-
creases when the number of input solos are increased. There can be various reasons
for this. The input solos were chosen randomly, and it may be that the 10 input solos
chosen as input varied significantly, and were in different keys and styles. If we look at
the training losses from the different experiments, we can see that the solos that scored
highest in terms of similarity also had a somewhat high loss compared to the other solos.

The variational autoencoder does generate solos with significant variation when sample
different values for z. Looking at the results from section 5.1, we see that the VAE is
able to produce variations of the same solo when trained on only one solo. During the
solo generation experiments, three random samples from z were taken, and a solo was
generated for each sample where all had some variation from each other. The amount

56

7.2. Realism

of variation between the solos varies on a sample by sample basis.

7.1.2. Originality

Originality needs to have an effect of surprise, and it comes in three different degrees,
which are individual, social and universal. Given that the system is trained with solos
from real songs, one might expect to get somewhat similar sounding solos, which makes
it unlikely to produce solos of universal originality. Based on the fact that a large part of
the people that participated in the survey categorized themselves as ‘music enthusiasts’,
it might be possible to trigger some sort of social originality if they are inexperienced
to blues, but due to the number of people that participated, it can only be categorized
as individual originality. It is hard to measure originality because what people perceive
as originality is individual. However, an attempt to measure it from the participants of
the survey was made. The results in originality show that one solo outperformed a solo
from the real dataset, while another scored the same as the real solo that was considered
least original. This shows that the system is able to generate solos that perform better
than a real solos in terms of originality. The same two solos are also very close to the
baseline and are considered to have an average originality, with scores around 3 out
of 5. This indicates that these solos are considered to be somewhat original, and as
original as the training data surveyed. Originality is hard to measure in a quantitative
survey, but based on the results, people seem to think that there is some originality
to some of the generated solos and that some are as original as the training data. As
previously mentioned, originality is ‘the effect of surprise’. When asked how surprising
the generated solos sounded, the participants of the survey responded almost identical
as they did in originality measurement.

7.2. Realism

From the results of the survey, we see that the system is able to generate solos that
perform close to the real solos. In some of the aspects, the generated solos outperform
the real. In terms of repetitiveness and how interesting the solos are perceived, the real
solos outperform the generated. However, some of the generated solos score very close
to the lowest scoring real solo in both measures. This indicates that the participants of
the survey think some of the generated solos are almost as interesting, and have nearly
the same amount of repetition as some real solos. Looking at originality and surprise, we
can see that the system generates solos that in certain cases may even outperform a real
solo. In addition, some of the solos in these measurements also approach the baseline.
This indicates that participants of the survey not only think that these generated solos
are more original than the lowest scoring real solo, but they also perform close to the
average score of all real solos.

The generated solos are generated with different models and parameters, which leads
to some sounding better than others. The results from table 6.1 show that there is some

57

7. Discussion

disagreement about which solos that are generated and which that are not. There is
some confusion regarding the generated solos 2, 3 and 15 on whether they are generated
or not, which shows that the system is capable of generating solos that can be mistaken
for real solos. However, the majority of the participants were correct on every single solo,
which shows that people generally can distinguish the generated solos from the real ones.

The survey revealed that there might be some limitations to the dataset. As previously
mentioned, there are many different artists from different decades that are represented
in the training data, which might not be what the participants associate with blues.
When looking at table 6.1, it becomes clear that the participants did not consider the
training data as blues. The backing tracks added to the solos likely affected these results
as well. Simple chord progressions of four chords are often found in pop and rock music,
while blues often has other more characterizing chord progressions like 12-bar blues or
8-bar blues. Even though only seven solos from the training data were surveyed, it is
an indication that what freemidi.org considers blues, is not what the participants of the
survey consider blues. Only two of seven solos from the training set have fallen in the
category of blues.

Some of the generated solos do score near the baseline in most measurements and may
outperform a real solo in terms of originality and how surprising the solo is perceived.
This shows that with the right configuration of the VAE, the system is able to produce
solos that may perform as good as real solos in some areas, and can cause confusion of
the reality of the solo.

The qualitative assessment indicates that the solos are not qualitatively considered
very good in the ears of a musician. However, the solos are playable on a real guitar
using a common guitar technique called tapping. Similar to the participants of the
survey, Sahlgren was not sure if he would call the output blues, but he considered
the solos to be rather more like jazz. One of the solos did invoke some sort of feeling of
surprise for Sahlgren, where he perceived the AI to play "wrong", which may be perceived
as creativity from the system’s perspective.

7.3. Goals

In this section, the goals of this thesis that were presented in the introduction are
discussed. These goals are:

G1: Develop the necessary tools to extract musical information from MIDI and use it
to train a network

G2: Develop a variational autoencoder that generates blues solos

58

7.3. Goals

7.3.1. G1: Develop the necessary tools to extract musical information
from MIDI and use it to train a network

The system is able to successfully read a MIDI file and encode it into a format that
can be used as input to the network. The format of the musical representation for the
neural network was implemented the same way as in [33], where they also successfully
generate melodies with a variational autoencoder. When taking the encoded MIDI file,
and feeding it into the MIDI decoder, the system successfully recreates the MIDI file
to its original state with a 100 % accuracy. Looking at the experiment where the VAE
is verified, we can see that the MIDI file is successfully formatted to a format that the
system is able to interpret, and that can be used to train the network to recreate a
melody with high accuracy. However, the MIDI encoder does not extract all musical
information found in the MIDI file. Information like pitch bending and pitch velocity is
not encoded into the neural network format, which limits the system’s ability to capture
all features of a solo. Even so, the MIDI encoder’s ability to encode such information
was intentionally left out of the system, due to the complexity such features introduce
and is left for future work.

7.3.2. G2: Develop a variational autoencoder that generates blues
solos

The results show that the design of the architecture is capable of capturing features from
training data, and successfully generate solos that have variation from the training data.
The experiment of verifying the VAE proved that the system is capable of learning long-
term dependencies from training data and recreate a solo with high accuracy. In the
same experiment, we can also see that the system generates variations of the training
data, based on different values for z, which verifies that the implementation of the
latent distribution was successful. The training loss of the experiments revealed some
interesting information. The training data consists of many different artists that play
music in different styles, which impacts the loss during training. The network is trained
with a batch size of 1 and backpropagates for every solo. This has an impact on the
gradient descent when solos that are very different are trained after each other and could
cause sudden increases in the loss. If the batch size were to be increased, the loss would
be an average over all the solos in the batch, which would decrease the spikes in the loss,
as we can clearly see happen in figure 5.5. If we sample from the latent distribution and
generate a solo from the VAE at a time where we have one of these spikes in contrast to
right before or after, the output could turn out significantly different. This affects the
stability of the system and should be addressed in future work.
The survey revealed that the system is able to generate solos that perform similarly

to some real solos. This indicates that the latent code of the VAE learns features from
the training data, which enables the system to generate solos that to the participants of
the survey sound similar to the real solos. However, the survey also revealed that the
training data itself was not considered blues by the participants, and one can not expect
the output to be considered as blues if the training data is not considered as blues. The

59

7. Discussion

system also has its limitations in terms of being unable to handle important features of
blues music. Pitch bending and microtones have a huge influence on blues music, and
this system does not consider such features. Blues solos generally contain a great deal
of pitch bending, and there are common patterns in solos that are played repeatedly
where one or more pitches played in the pattern are pitch bent. When listening to the
output, one can hear such patterns occuring in the generated solos, but when the pitch
bending is removed, all that is left is something that sounds very repetitive, and the
system fails to incorporate the bluesy feeling in the generated patterns. Solos that are
played by humans do not have perfect timings, which adds a certain feel to a solo. When
quantizing the data, imperfections from the dataset get removed, which leads to solos
that have perfect timings. When doing so, a feature that would make the solos seem
more realistic and human vanishes. Lastly, the system does not consider pauses, which
again leads to losses in features from the training data. The initial implementation did
include pauses, but there was no penalty or control over the pitch prediction, which led
the system to generate solos that had an undesirable amount of pause notes.

7.4. Answer to research questions
In the following subsections answers to the research questions discussed in chapter 1 are
given.

7.4.1. R1: Can the generated solos from the system be mistaken for a
solo from a real song?

The quality of the solos generated by the system differs greatly. Solos are generated
from models with different parameters and configurations in the different experiments,
which as discussed earlier results in solos of different quality. The quality of the solo will
influence the likelihood it has to be mistaken for a real solo, and the survey revealed
that people generally can tell if a solo is generated or not. However, when looking at
solo 2, 3 and 15 in table 6.1, almost half of the people asked are wrong, or say they are
unable to tell if the solo is generated by the AI or not. This shows that the generated
solos can be mistaken for a real solo.

7.4.2. R2: What factors have an effect on the networks ability to
generate solos that are more similar to its input?

As discussed earlier, experiments have shown that different values of different parameters
have an impact of the system’s ability to generate solos that are similar to the input
data. However, when inspecting the results, it becomes clear that most factors impact
the systems ability to produce similar data. In experiment 1-4, the results show that
the chosen learning rate, number of epochs, size of training data, and the size of the
latent dimension all affect the systems ability to generate solos more similar to the
training data. Values of different parameters need to be chosen carefully in order for
the system to best imitate the training data. The architecture of the system will also

60

7.4. Answer to research questions

heavily impact its ability to produce similar output. As shown during verification of the
VAE, when introducing the second decoder to the system, its ability to handle long-term
dependencies increased.

61

8. Conclusion and Future Work
In this chapter, the conclusion of the thesis is presented along with future work. The
future work section addresses limitations of the system that should be improved in the
future.

8.1. Conclusion

A variational autoencoder that generates solos based on solos from real songs was imple-
mented. Software for extracting, and encode musical data from MIDI files to a format
that can be interpreted and used as input to a neural network, as well as a decoder to
turn the encoded data back to MIDI were successfully developed. The architecture of
the VAE has proven able to capture long-term dependencies in solos, and successfully
generate solos that differ from the input. In terms of generating solos in the style of
blues, the system has its limitations. Mainly because the survey uncovered that for the
most part, the training data is not considered blues. A more consistent training set that
is considered blues, and with less variation, is needed in order for the system to generate
solos that are also considered as blues. In addition, core elements of blues such as pitch
bending, velocity and pauses are removed from the training data. The implementation
of these features would most likely improve the system’s ability to generate blues solos
vastly. The generated solos vary significantly from the training data, and an interest-
ing observation is that the solos that got higher scores in terms of its similarity to the
training data, generally sounded better to the people that listened to the solos. The
results from the survey also revealed that some of the generated solos are approaching
the baseline, and may even outperform some real solos in certain aspects. This shows
that the system is able to produce solos that are considered by some people to be as
‘good’ as some of the real solos. Some of the generated solos are also close to the baseline
in terms of originality, and are considered to be somewhat original. With the generation
of a solo, variation from the training data, and the output being thought of as somewhat
original, Robinson’s three processes of creativity are fulfilled. Based on this definition
of creativity, the system can generate solos that are creative.

8.2. Limitations and future work

The system itself is verified, and the experiments show that it works as expected. How-
ever, the spikes in the loss during training reveal that the stability of the system has
room for improvement. These spikes could cause a significant difference in the output if

63

8. Conclusion and Future Work

a solo is generated at a time where such a spike occurs. This problem could be addressed
by increasing the batch size as previously discussed. While this issue could have a great
impact on the output of the solos, other limitations that directly affect the system’s
ability to produce better blues solos should, in my opinion, be addressed first. The most
significant limitations are:

L1: The system is unable to process string bending and pitch velocity in MIDI files.

L2: By quantizing the data, we remove human feeling which is an important aspects
of blues solos.

L3: It lacks functionality to handle pauses in solos.

L4: It should have some restrictions on repetitiveness.

L5: The training data is mostly not considered blues by the people surveyed.

Possible future work for this system, is to address these limitations, which would
improve the realism of the system, and quality of the generated solos.

8.2.1. Pitch bending and pitch velocity

This definitely is the most significant feature which would increase the realism of the
solos generated. String bending and microtones are a big part of blues, and when
removed, a great deal of musical data is also lost. String bending is encoded as a series
of MIDI-messages where each MIDI message contains information of how much a current
pitch should increase or decrease its frequency. When a series of these messages are sent
sequentially after each other, it sounds like a smooth increase in pitch, just like when
bending a string on a guitar. However, it is hard to encode this data into the neural
network because the values of the pitch increase are continuous, and would result in
millions of combinations as input dimension. A solution could be to have different states
of pitch bending, where there are small discrete values possible for pitch bending, e.g., a
semitone or a whole tone bending. After the network has predicted a pitch that should
be bent, it could be added a series of MIDI-messages that handle pitch bending after the
note_on message has been appended to the MIDI-messages list. This would increase the
complexity of both the MIDI encoder and decoder vastly and is therefore left as future
work.

8.2.2. Feeling

This can be solved by adding a random factor to the time component in the MIDI
decoder. However, this is a quick fix that will not learn from the input data and detect
common off patterns in solos. With off patterns, we mean patterns of imperfect timings
that occur regularly. This should be looked further into in order to increase the feeling
and realism of the generated blues solos.

64

8.2. Limitations and future work

8.2.3. Pause handling

To handle the pause problem, the pauses were simply removed from the training data
before training the system. This should be improved in the future so that the system
can generate solos that can predict pauses. As of now, none of the solos generated have
any pauses in them. Many blues solos contain a significant amount of pauses, and when
we remove pauses from the training data, we also remove some core elements from the
blues solos.

8.2.4. Repetitiveness

Many of the generated solos contain a great deal of repetition, which could make the
solos sound uninteresting at times. However, repetition is a core element of a solo, but
it is important that it does not get overwhelmingly much. Future work of the system
should be to address this issue. This could be solved by introducing a type of penalty
which penalizes the prediction of the same pitch n number of times after each other.

8.2.5. Improve training data

The survey revealed that most of the training data was not considered as blues to the
participants. This clearly affects the system’s ability to generate solos in the genre of
blues. Time should be spent finding more sophisticated ways to make sure that the
training data really is blues. At the very least, the current dataset should be classified
in sub-genres with respect to time of release.

65

Bibliography
[1] Poulter Albert. ngram 3.3.2. [Online] Available: https://pypi.org/project/

ngram/, 2018. Accessed 11/06/18.

[2] Chip Bell. Algorithmic music composition using dynamic markov chains and genetic
algorithms. Journal of Computing Sciences in Colleges, 27(2):99–107, 2011.

[3] John A Biles. Genjam: A genetic algorithm for generating jazz solos. In ICMC,
volume 94, pages 131–137, 1994.

[4] John A Biles. Interactive genjam: Integrating real-time performance with a genetic
algorithm. In ICMC, 1998.

[5] Jean-Pierre Briot, Gaëtan Hadjeres, and François Pachet. Deep learning techniques
for music generation-a survey. arXiv preprint arXiv:1709.01620, 2017.

[6] Gino Brunner, Yuyi Wang, Roger Wattenhofer, and Jonas Wiesendanger. Jambot:
Music theory aware chord based generation of polyphonic music with lstms. arXiv
preprint arXiv:1711.07682, 2017.

[7] Carl Doersch. Tutorial on variational autoencoders. arXiv preprint
arXiv:1606.05908, 2016.

[8] Douglas Eck and Juergen Schmidhuber. A first look at music composition using lstm
recurrent neural networks. Istituto Dalle Molle Di Studi Sull Intelligenza Artificiale,
103, 2002.

[9] Otto Fabius and Joost R van Amersfoort. Variational recurrent auto-encoders.
arXiv preprint arXiv:1412.6581, 2014.

[10] Serena Yeung Fei-Fei Li, Justin Johnson. Generative models. [Online] Available:
https://www.youtube.com/watch?v=5WoItGTWV54, 2018. Accessed 15/01/18.

[11] Robert Fisher. What is creativity. Unlocking creativity: Teaching across the cur-
riculum, pages 6–20, 2004.

[12] Howard Gardner. Fostering diversity through personalized education: Implications
of a new understanding of human intelligence. Prospects, 27(3):346–363, 1997.

[13] Khan Academy Gerard Schwarz. Music basics. [Online] Available:
https://www.khanacademy.org/humanities/music/music-basics2/notes-
rhythm/a/glossary-of-musical-terms, 2018. Accessed 19/06/18.

67

Bibliography

[14] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,
2016. http://www.deeplearningbook.org.

[15] Gaëtan Hadjeres and François Pachet. Deepbach: a steerable model for bach chor-
ales generation. arXiv preprint arXiv:1612.01010, 2016.

[16] Jay A Hennig, Akash Umakantha, and Ryan C Williamson. A classifying vari-
ational autoencoder with application to polyphonic music generation. arXiv pre-
print arXiv:1711.07050, 2017.

[17] John R Hershey and Peder A Olsen. Approximating the kullback leibler divergence
between gaussian mixture models. In Acoustics, Speech and Signal Processing, 2007.
ICASSP 2007. IEEE International Conference on, volume 4, pages IV–317. IEEE,
2007.

[18] Robert M Keller and David R Morrison. A grammatical approach to automatic im-
provisation. In Proceedings, Fourth Sound and Music Conference, Lefkada, Greece,
July., 2007.

[19] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[20] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv
preprint arXiv:1312.6114, 2013.

[21] Bill Lucas. Creative teaching, teaching creativity and creative learning. Creativity
in education, pages 35–44, 2001.

[22] M Marques, V Oliveira, S Vieira, and AC Rosa. Music composition using genetic
evolutionary algorithms. In Evolutionary Computation, 2000. Proceedings of the
2000 Congress on, volume 1, pages 714–719. IEEE, 2000.

[23] Jon McCormack. Grammar based music composition. Complex systems, 96:321–
336, 1996.

[24] Warren S McCulloch and Walter Pitts. A logical calculus of the ideas immanent in
nervous activity. The bulletin of mathematical biophysics, 5(4):115–133, 1943.

[25] midi.org. Front page. [Online] Available: https://www.midi.org. Accessed 05-03-
2018.

[26] midi.org. Midi history:chapter 6-midi is born 1980-1983. [Online] Avail-
able: https://www.midi.org/articles/midi-history-chapter-6-midi-is-
born-1980-1983. Accessed 22-03-2018.

[27] James Anderson Moorer. Music and computer composition. Communications of
the ACM, 15(2):104–113, 1972.

68

Bibliography

[28] Michael C Mozer. Neural network music composition by prediction: Exploring
the benefits of psychoacoustic constraints and multi-scale processing. Connection
Science, 6(2-3):247–280, 1994.

[29] Daniel Müllensiefen, Klaus Frieler, et al. Cognitive adequacy in the measurement
of melodic similarity: Algorithmic vs. human judgments. Computing in Musicology,
13(2003):147–176, 2004.

[30] Andrew Ng. Logistic regression as a neural network. [Online] Available: https://
www.coursera.org/learn/neural-networks-deep-learning/lecture/Z8j0R/,
2018. Accessed 10/01/18.

[31] Christopher Olah. Understanding lstm networks. [Online] Available: http:
//colah.github.io/posts/2015-08-Understanding-LSTMs/, 2018. Accessed
06/03/18.

[32] Dolmetsch Organisation. Time signatures and meter. [Online] Available: https:
//www.dolmetsch.com/theoryintro.htm, 2018. Accessed 22/06/18.

[33] Adam Roberts, Jesse Engel, and Douglas Eck, editors. Hierarchical Variational
Autoencoders for Music, 2017.

[34] Ken Robinson. Out of our minds: Learning to be creative. John Wiley & Sons,
2011.

[35] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning internal
representations by error propagation. Technical report, California Univ San Diego
La Jolla Inst for Cognitive Science, 1985.

[36] Alexey Tikhonov and Ivan P Yamshchikov. Music generation with variational re-
current autoencoder supported by history. arXiv preprint arXiv:1705.05458, 2017.

[37] Bernard Widrow and Michael A Lehr. 30 years of adaptive neural networks: per-
ceptron, madaline, and backpropagation. Proceedings of the IEEE, 78(9):1415–1442,
1990.

[38] Terry Winograd. Linguistics and the computer analysis of tonal harmony. Journal
of Music Theory, 12(1):2–49, 1968.

69

Appendices
A. Generated solos from Experiment 1

71

Appendices

A.1. Generated solo with learning rate of 0.01

Figure 1.: Generated solo with 0.01 as learning rate

72

A. Generated solos from Experiment 1

A.2. Generated solo with learning rate of 0.008

Figure 2.: Generated solo with 0.008 as learning rate

73

Appendices

A.3. Generated solo with learning rate of 0.005

Figure 3.: Generated solo with 0.005 as learning rate

74

A. Generated solos from Experiment 1

A.4. Generated solo with learning rate of 0.003

Figure 4.: Generated solo with 0.003 as learning rate

75

Appendices

A.5. Generated solo with learning rate of 0.001

Figure 5.: Generated solo with 0.001 as learning rate

76

B. Generated solos from Experiment 2

B. Generated solos from Experiment 2
Note that the solo generated with 100 epochs is the same as in A.3.

77

Appendices

B.1. Generated solo when trained for 50 epochs

Figure 6.: Generated solo when trained for 50 epochs

78

B. Generated solos from Experiment 2

B.2. Generated solo when trained for 150 epochs

Figure 7.: Generated solo when trained for 150 epochs

79

Appendices

B.3. Generated solo when trained for 200 epochs

Figure 8.: Generated solo when trained for 200 epochs

80

C. Generated solos from Experiment 3

C. Generated solos from Experiment 3

81

Appendices

C.1. Generated solo when trained with 10 input solos

Figure 9.: Generated solo when trained with 10 input solos

82

C. Generated solos from Experiment 3

C.2. Generated solo when trained with 30 input solos

Figure 10.: Generated solo when trained with 30 input solos

83

Appendices

C.3. Generated solo when trained with 50 input solos

Figure 11.: Generated solo when trained with 50 input solos

84

C. Generated solos from Experiment 3

C.4. Generated solo when trained with 100 input solos

Figure 12.: Generated solo when trained with 100 input solos

85

Appendices

D. Generated solos from Experiment 4
Note that the solo generated with a latent dimension of size 30 is the same as in A.3.

86

D. Generated solos from Experiment 4

D.1. Generated solo when trained with latent dimension of size 15

Figure 13.: Generated solo when trained with a latent dimension of size 15

87

Appendices

D.2. Generated solo when trained with latent dimension of size 45

Figure 14.: Generated solo when trained with a latent dimension of size 45

88

