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affected by the curve mimicking effect which will be discussed later.

Applying Recurrent Neural Networks for Multivariate Time Series Forecasting
of Volatile Financial Data [11] is also related to our study. This experiment com-
pares different types of machine learning including LSTM and GRU networks.
While their data set is much smaller than ours, 1615 records, they have many
more features that they use when training the model. They try to predict the
price of Bitcoin using 293 different features including data from other curren-
cies, Google Trends, and other trading data. The inclusion of all these features
is interesting because one of our main questions in our experiments is whether
one actually could loose precision by including irrelevant sensors in our data.

There is also another way this work is relevant for us. There are claims that
financial data generally is not predictable, and at least in the short to medium
term, no predictable patterns can be found in such data. What tends to happen
when trying to predict these data is that the best guess is the previous value,
and the prediction seems to be almost the same values, but lagging behind one
time step. This is not completely the same problem as with the prediction of
bugs, because they have a very clear exponential trend in the long term. Still,
we can see this effect in all the three methods with best score where they use
LSTM, GRU, and ARIMA with dynamic regression. This is also something that
can be seen in some of our results.

The data that is dealt with in this paper has some features that makes the
analysis particularly challenging. There do not seem to be any cycles or repeat-
ing patterns, and the only trend we see it that it is generally slowly increasing.
These observations suggests that forecasting is more complex than predicting
ECG (heartbeat activity), power consumption, or engine data like in [7]. Table
1 shows an overview of number of samples and time series in the experiments
in related work, compared to the data used in this paper. This is important
because more data can in many scenarios give better results. The types of in-
put to the models are different in related work compared to our experiments.
In [7] only univariate time series has been used as a feature. Bug prediction [8]
is using multiple features in their models, but they are variations of the same
data. Finally, [11] includes a lot of features, without knowing if they are related
or not. We know that our inputs are related to each other, and they come from
multiple data sources.
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Table 1: Size and number of time series in related studies

Data Set Samples|Number of Time Series
ECG-1[7 3750 3

ECG -2 [7 5400 2

Power demand [7] 35040 1

Space shuttle [7] 5000 1

Industrial data set [7] Unknown|Unknown

Bitcoin predicting set [11]{1615 293

Data set in this paper 190000 |1-24 (depending on experiment)

3 Problem Domain

All of the time series are sensor data fetched from an oil and gas platform
which collect data at regular intervals as long as they are running. They can
measure temperature, pressure, and whether valves are open, closed, or in a state
somewhere in between. The sensors are all related to each other in the context of
being mounted on equipment from the same system. We know that equipment in
this system went into a malfunctioning state, which makes it possible to evaluate
how well models can detect this anomaly.

The sensors have been collecting data for about five years, also during the
anomaly which happened in the middle of 2017. There are four types of sensors
that have been fetched: PT/PI (pressure), TT/TI (temperature), ESV (emer-
gency safety valve), and ZI (choke indicator). The ESV sensors measures how
much the emergency safety valve must be opened to release pressure from the
pipeline. The ZI sensor is mounted on the only valve that can be manually
adjusted in order to manipulate the flow of product through the system. This
makes it a very important sensor since adjustments performed on this valve will
backpropagate into the system, changing the values in the other sensors. Figure
1 shows where sensors are located in relation to each other in the production
pipeline. The sensors that are not shown in the figure are mounted on parts that
are connected to the production pipeline.

Pland Tl
EsV (Forecasted sensors) 2l PTand TT

Production pipeline ‘

ESV PTand TT

Pland TI Pland TI

Fig. 1: Sensor network - production pipeline
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In Figure 2 we can see the full plots of both the sensors that has been pre-
dicted in our experiments. The section marked with red is where the malfunc-
tioning happens, something that manifests itself by a huge drop in values in
both sensors. The section marked with green is where the operation is back to
normal, and also the values that was used for evaluation.
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Fig. 2: Plot of the sensors we are trying to predict

3.1 Data Set

The data set used consisted of CSV files from 24 different sensors all marked
with synchronized timestamps, so they all started and ended at the same time.
Exactly how many sensors of each type there is can be seen in Table 2. Most
sensors are sampling every minute and the data we use is the average of all the
available samples from every 10 minutes. This gives a total of 249,362 samples
over a period of almost five years.

Table 2: Sensors fetched from the platform

Sensor Type |Unit of Measurement Number of Sensors
Pressure Psi 7
Temperature  |Degrees Celsius 7
ESV Value ranging from 0-1 of how open the valve is|9
Choke indicator|Percentage of how open the valve is 1

A method to detect patterns or checking the correlation of the data is by
inspecting the autocorrelation plot of the time series. This shows how correlated
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values are over all possible lags. Figure 3 shows the autocorrelation plots of Fig-
ure 2. A slowly decreasing linear curve means there is a strong autocorrelation.
For at least the first 10,000 time lags this seems to be the case for both time
series.

s
5
0.00 /\V\ A % 0.00
O T e R T §° ~ W
g
-0.25 3 025
—0.50 -0.50
-0.75 -0.75
-1.00 -1.00
o 50000 100000 150000 200000 o 50000 100000 150000 200000
Lag Lag
(a) Temperature autocorrelation (b) Pressure autocorrelation

Fig. 3: Autocorrelation of sensors

4 Time Series Analysis

This section presents theory that is relevant for our experiments.

4.1 LSTM

LSTM (long short-term memory) is a recurrent neural network first introduced
by Hochreiter and Schmidhuber in 1997 [3]. The purpose of the LSTM was to
handle the vanishing gradient problem of recurrent neural networks (RNN). Even
though RNNs are constructed to remember features over short time periods, this
information vanishes over time as new information is fed to the network. With
the introduction of LSTM, the network can remember up to 1000 steps back in
time [3]. The LSTM contains information in memory cells with gates deciding
what information to store and what information to output. Gers, Schmidhuber,
and Cummins, 2000 [2], introduced forget gates to the cells in order to reset the
state of the network. This is to prevent the network to eventually break down
because of its growing state. The forget gate removes the information that is not
needed anymore by the LSTM, leading to a better performing network. Out of
the recurrent neural network architectures, LSTM is the one that generally has
the best performance on machine learning related problems [4].
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4.2 Random Walks and Predictability

In financial theory a random walk is a non-stationary time series where each step
seems to be random step away from the previous value. This makes it seemingly
impossible to predict and that is the case of many types of financial data. When
a time series approximates a random walk, it is very hard to outperform a rule
that is just guessing the previous value [6, 12]. The reason that the previous
value is often a good guess, is because there is a correlation between earlier time
steps which means we know the next value will not be very far away from the
previous. Sometimes time series which is similar to random walk at short term,
can be proven to be predictable at longer periods [5].

This problem is relevant for our work because it is not only in financial data
this problem is seen. In the work done by Torres et al. [11] we can see this
pattern in all of their results, including the predictions which do not use deep
learning. Still, the previous guess rule may be outperformed when using other
correlated data. There may very well be many correlations with other available
data sources which makes us able to give better predictions than the previous
value guess, but this may require knowledge of the domain.

5 Experiments

The LSTM models were all trained to forecast two sensors: One temperature
sensor and one pressure sensor, located at the same place in the oil pipeline.
The different approaches for dividing sensors into multivariate time series to use
as an input in the LSTM is explained in the next section. These multivariate
inputs are compared against the univariate input of the sensor that is forecast.

5.1 Groups of Input

We divided the sensors in two different ways: First based on what type of sensor
it is, more specifically what the sensor is measuring, and the second on the
location of the sensor in the pipeline.

Grouped on Sensor Type As explained in Section 3, the data consisted of four
different types of sensors; pressure (PI/PT), temperature (TI/TT), emergency
safety valve (ESV), and a choke indicator (ZI). The choke indicator is a major
influencer of the operation in our scenario, and therefore included in all training
sets. All possible combinations of these three types has been used as input to
the LSTM and produced variable results. The different combinations are:

PI/PT + ZI

TI/TT + ZI

ESV + ZI

PI/PT + TI/TT + ZI
PI/PT + ESV + 71
TI/TT + ESV + ZI
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Grouped on Location Another way of grouping the time series is by its
location in the pipeline. Six different groupings have been tested:

Production line - Only sensors that is located in the pipeline that is trans-
porting the product.

Production line prior to the sensor that is predicted.

Four first sensors in the production line, without having the predicted sensor
as input.

All sensors in the system prior to the sensor that is predicted, including
sensors in other pipelines.

Only the ZI sensor in the input.

71 sensor and the sensor that is predicted

5.2 LSTM Configuration and Training Set

The LSTM network is implemented using Keras?. In all our predictions we split
the training data into sliding windows of size 50, where 49 of those values are
used to predict the 50th value: z411 = P([%t_48,%1—a7,...21—1, 2¢]), Where x;
is the time series value at timestamp t, which is the timestamp prior to the
predicted value. Since time series are sequential, stateful LSTM has been used.
This means that the internal state is not reset between batches, but rather after
each epoch. By keeping the same state throughout the whole epoch, you make
sure that the network can capture patterns in the data that are spanning over
multiple batches during training. The full model configuration can be found in
Table 3

Table 3: Hyperparameters of the LSTM network

Parameters Value

Epochs 20

Batch size 32

Window size 49

Activation Linear

Optimizer ADAM

Prediction size 1

Dense 50 neurons
LSTM layer 1 64 neurons
Dropout 0.2

LSTM layer 2 32 neurons

5.3 Evaluation of Models

To evaluate the performance of the models, two test sets were extracted from the
data set. One anomaly set that contains data prior and during the malfunction,

2 https://keras.io/
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and one test set that only contains normal operation. The purpose of the anomaly
set is to evaluate whether or not the models are able to forecast the anomalous
behaviour, whereas the test set is to evaluate the forecasting of normal behaviour.
For the test set, mean absolute error (MAE) and mean squared error (MSE) have
been used to evaluate the performance of the model. Using these metrics when
evaluating the anomaly set would not work, since a high error in the forecast
does not necessarily mean that it is a poor performing model. More specifically,
it can mean that the model expects normal behaviour and because of that has
a large prediction error when the anomaly occurs, leading to a high MAE and
MSE. By looking at the plots of the forecasts together with the actual values, it
can be possible to see if the model detected the anomaly.

Baseline We have chosen two baselines to compare the different sensor combi-
nations against. One is the forecast using only the predicted sensor’s history, and
the other is using all sensors. The single sensor is selected as a baseline since no
domain knowledge is needed to use it as an input, and therefore it can serve as a
comparison to the input combinations that utilizes the related sensors. Using all
sensors in the input serves also as a baseline since if this performs better than
the other combinations listed in 5.1, there will be no need for these groupings.
The evaluation of these models are found in Table 4

Table 4: Evaluation of baseline

‘Pressure ‘Temperature
Sensor ‘MAE MSE ‘MAE MSE

1.0650 10.9232(0.1373 0.7641
2.0502 15.1474|1.1456 2.0915

Single Sensor
All Sensors

Results show that using a single sensor as an input outperforms using all
sensors as an input with both pressure and temperature sensor. An explanation
for this might be that the model is having trouble finding the relevant features
to use when using all sensors as an input, making the forecasts less accurate.
This suggests that one should be careful when adding sensor data to the training
set just because one believes they are related.

Sensor Type The results of combining inputs on sensor type is presented in
Table 5
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Table 5: Evaluation of models grouped on sensor type

‘Pressure ‘Temperature
Sensor ‘MAE MSE ‘MAE MSE
PI/PT + ZI 1.4045 12.5816 |1.1839 2.6471
TI/TT + ZI 0.4828 10.4095|0.4294 1.3988
ESV + ZI 0.7817 11.3016 |0.7666 0.9526

PI/PT + TI/TT + ZI[0.9362 11.6685 |0.7690 1.9215
PI/PT + ESV + ZI |0.5228 10.9264 |1.4571 3.2336
TI/TT + ESV + ZI |1.3426 14.0528 |0.7944 1.4944

Judging by the MAE and MSE of the different models, temperature in com-
bination with the choke indicator (TI/TT + ZI) provides the best result for the
pressure sensor. For the temperature sensor, temperature in combination with
the choke indicator also performs well, but has a slightly higher MSE than ESV
+ ZI. For the pressure sensor, all models performed better than the baseline that
is using all sensors in the input. The TI/TT + ZI combination also performed
better than the single sensor baseline in terms of both MAE and MSE. In terms
of MAE, ESV + ZI and PI/PT + ESV + ZI performed better than the single
sensor baseline. For the temperature sensor, the single sensor baseline outper-
forms all combinations. However, some of the combinations are better than the
all sensors baseline.

Location The results of combining inputs on location is presented in Table 6

Table 6: Evaluation of models grouped on location

‘Pressure ‘Temperature
Sensor [MAE MSE |MAE MSE
Production Line 2.0552 14.3792 |0.7265 1.3037
Production Line Prior [4.1138 26.3464 |0.5649 1.4831
First Four Sensors 4.7682 50.8215 [2.3357 12.5139
All Sensors Prior 1.5925 12.8522 [0.9920 1.8439
Only ZI 3.4458 45.9557 [1.6241 9.6958

71 and Predicted Sensor|1.4710 12.2280|0.0529 0.7374

Results show that these groupings generally are worse than grouping the
input on sensor type. The exception is the combination of ZI and the predicted
sensor as input. On the pressure sensor, it performs approximately the same
as the sensors that are grouped on sensor type. On the temperature sensor it
outperforms the single sensor baseline and has an improvement of 61 percent.
The worst performing models are First Four Sensors and Only ZI. This is because
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these two models does not include the predicted sensor in the input. Even though
they have poor prediction error, they potentially are the best models to use for
anomaly detection. Why that is the case will be covered in Section 6.

Plots We have included some plots where the predictions are concatenated
into a continuous graph. These are included to corroborate certain points in
the discussion. Figures 4 and 5 illustrate the prediction error difference for each
forecast on the anomaly for the TI/TT + ZI combination and the Only ZI
combination when forecasting the pressure sensor. Figures 6 and 7 show the
forecasts of the TI/TT + ZI combination and the Only ZI combination on a
typical spike in the test set of the pressure sensor.
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Fig.4: Temperature and ZI sensors - forecasting error
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Fig. 5: Only ZI sensor - forecasting error

214 — values
—— predictions

213 n
212

211

ZIOW
IUNSSUR S S

209

208
1.50038T 1.5004T 1.50042T  1.50044T  1.50046T
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Fig. 7: Predictions using only ZI, without predicted sensor as input

6 Discussion

Generally, the models have a better prediction accuracy on the temperature
sensor than the pressure sensor. The reason for this is may be that the pressure
sensor is more volatile and thus more difficult to predict. This also explains
why the MSE is generally a lot higher for the pressure predictions than for the
temperature predictions. MSE punishes large prediction errors, giving a volatile
sensor a higher MSE score than a non-volatile sensor if the frequency of the time
series fails to be captured by the LSTM. Most of the forecast will be based on the
previous value of the time series, giving a significant error for each forecast on
a volatile time series. In addition, including temperature sensors in the input is
better than pressure and emergency safety valve sensors. This is also most likely
because of the volatility of pressure and emergency safety valve sensors, making
it difficult for the model to find a pattern. Something that is common for the
bad performing models is that all predictions either are shifted above or beneath
the actual values through the entire time series. A reason for this might be that
among all the 24 different time series there are numerous spikes and there are
also areas with anomalous data, even in the sensors we are trying to predict.
The offset could be an attempt at compensating for these small periods with
suddenly very high loss. Extensive cleaning of the data might fix this problem,
but also there might not exist data on what actually happened during the spikes
and even if there was, identifying the parts and removing them would require
intricate domain knowledge and a lot of manual work.
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Ten out of twelve groupings includes the sensor that is forecast in its input
when training the model. This leads to forecasts that to a great extent is just
guessing the value of the last time step, like seen in Figure 6. This gives the
lowest loss, but still no real insight, which renders them less useful. Not even
during very anomalous behaviour does the prediction error shift significantly,
as seen in Figure 4. In order to avoid this, we excluded the predicted sensor
from the input, something that has not been tried in the other related work.
However, in order for this to give satisfactory results, the sensors in the input
have to be correlated with the predicted sensor. An example of this is the choke
indicator (ZI) that is the only valve in the system that is adjustable, which will
affect the values of the other sensors. When looking closely at Figure 7, we see
that the prediction using only the ZI sensor seems to be suffering from the same
problem, but because because predictions are based solely on the ZI sensor, the
network has actually learned a correlation instead of just mimicking the curve.
When looking at the difference in Figure 5, we can see that it is not the spike
that is an anomaly, but the elevated level of pressure after it. One could say the
given a certain ZI value, we usually see pressure values like the ones given in the
predictions. At the same time this seems to limit the models ability to predict
well on other areas because in the first half of the data set it basically predicts
the same value.

The results on the financial data predictions [11] is not directly comparable
because their range of values in the time series is much larger than ours, which
gives a higher loss. Like in our plots, we still see that the predictions seems to
be approximating random walk forecasts which makes the predictions lagging
one time step behind. The similarity is not as clear in their LSTM predictions,
and we can think of two possible explanations that might cause this: One is
that they might not have enough data to make the model realize there are no
patterns, where we have about 100 times more data which might be enough for
that. The other possible explanation is that their other features is causing LSTM
to predict this way because of actual learned patterns.

The first explanation might also be applicable to the bug prediction series (8],
which is similar to our single sensor predictions because they only use historical
data from one source to predict.

In [7], the LSTM is able to learn the highly temporal patterns in the time
series they are forecasting. Since the time series used in this paper does not
seem to have any obvious patterns, it difficult to say if their models would have
detected the anomalies in our data.

7 Conclusion

In this paper, we have experimented with how different combinations of inputs
to an LSTM network affects the forecasts. Most models ended up mimicking the
time series that was predicted by guessing the previous value. Still, the different
combinations of input produced different results which means the groupings had
an impact on the predictions. Some of the combinations had lower prediction
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error than the single sensor baseline, but there were also combinations that
performed significantly worse. This suggests that domain knowledge can impact
the results of the forecasts. However, since some of the results worsened the
predictions, and because the all sensors baseline was one of the bad performing
models, one should not uncritically include everything that can be related.

Our experiments also indicates that when using next-value forecasts for
anomaly detection, one should verify that the model is not just mimicking pre-
vious values because that will give no real indication of anomalous behaviour.
This use case is really where domain knowledge can give much better results.
By only feeding data that is known to be correlated with the help of domain
knowledge, we have demonstrated that we can tell whether a spike or elevation
actually is expected or not. Finding the correct features to include can be very
cumbersome and it can lead to both positive and negative impact, it all depends
on how related the features are. Also, lower loss does not necessarily result in a
more useful model.

7.1 Future Work

In order to avoid the mimicking of time series, training the model to predict the
difference from the value in the previous time step instead of the actual value
itself, might reveal if the time series is possible to forecast or not. Also, trying to
forecast multiple time steps ahead in time can also avoid the one lag issue. This
can be done by including the forecast from the previous time step as an input
to the forecast of the next time step. By forecasting multiple time steps ahead,
the forecasts will become less accurate, but it can give an indication of how far
ahead in time the model can foresee, and also provide better applicability of the
model.
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Appendix

Autoencoder Experiment

As a side experiment, we have investigated how an autoencoder performs on the sensor
time series used in the LSTM experiments. According to [21], autoencoder is the only
identified deep learning based method for anomaly detection in videos and video can be

seen as a multivariate time series with very many dimensions.

B.1 Background

An autoencoder [39] is a specific type of neural network where the goal is to teach the
network the key features of some data and represent it in a less dimensional space, and
then reproduce the original data from that representation. These tasks are handled by the
encoder and decoder parts respectively. Figure B.1 shows the architecture of an autoen-
coder where in the encoder each layer has fewer neurons than the last and vice versa in
the decoder part. The input and the output must have the same dimensions. A commonly
used variation of the autoencoder is the denoising autoencoder, used in [44, 28]. Instead of
using normal data input, noise is added to the input data while still using the clean version
of the data for training. The idea is that this should force the autoencoder to learn more

appropriate features.
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Figure B.1: Autoencoder architecture

B.2 Related Work

In this section we present the related work we found where autoencoders were used. One
of them is used for anomaly detecting in multivariate time series much like we are doing,
while other one is used for anomaly detection in video. Because video can be seen as a

very high dimensional time series, it is still relevant for our work.

B.2.1 Anomaly Detection using Autoencoders with Nonlinear Dimen-
sionality Reduction

In the article from [40] both an denoising autoencoder and a normal autoencoder is used
to identify anomalies in addition to two versions of PCA. They tested their approaches on
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both real data from satellites and artificial data created from a Lorenz system simulation.
They do not specify the architecture of their autoencoder, but they say that their datasets
from satellite A and satellite B contains 17 and 106 sensors respectively. It is reasonable
to assume this denotes the number of neurons in both their input and output layers. They
do not specify the mean values of the recreation error over the normal data, but from
the graphs it seems to be somewhere between 0.5 and 1.0 for the normal autoencoder on
satellite A and around 0.5 on satellite B. We will later use these values to compare to
our own results. On data from satelite A, the normal autoencoder performed as bad as
linear PCA on the normal data, but the error were still higher on the anomalous data. The
denoising autoencoder on the other hand, had much lower error on the normal data while
having the same high error on the anomalous data. Kernal PCA had somewhat higher error
on normal data, but the lowest of all on the anomalous data. On satellite B, all approaches
had similar error when comparing the recreation of normal data against anomalous data
that they were indistinguishable from each other. The normal autoencoder and linear PCA

had a small elevation on the anomalous data.

B.2.2 Learning Deep Representations of Appearance and Motion for
Anomalous Event Detection

In the the work from [46], they use use fully unsupervised techniques to identify anoma-
lies in video surveillance. They use two separate denoising autoencoders for encoding
raw image pixels and motion representation. The outputs of these are merged into one
representation. Like in our windowed approach they also reduce the number of neurons
by half until they reached the bottleneck layer with the fewest neurons. Both in the image
and motion representation they use sliding windows to include contextual data over a time
span. After this they use a support vector machine (SVM) to classify patches of the im-
ages into categories which are combined to give the final score. Given the methods they
picked out to compare their results to, they seem to get promising results. Even though the
autoencoder parts of their architecture are comparable to our, the metrics they provide can

not in any way be compared to our results.

B.3 Experiments

The following experiments have been conducted with the use of an autoencoder:
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e Regeneration whole state using all sensors at one timestamp

e Window regeneration using a sequence of 100 for a single sensor

B.3.1 Predicting the Full State of Operation

Since we used a collection of sensors we know are in proximity, all the values from sensors
at a certain time can be thought of as the current state of operation in that system. We make
the assumption that most of the operation in our dataset is what can be considered normal
operation. If that is true, a regeneration which deviates from the input data will happen
when the model receives a state that deviates from most of the data it has been trained on.

This technique regenerates values from every input of the network, meaning that the error
of regeneration does not apply for only one sensor, but rather all sensors that are fed into
the model. If we use a LSTM network we can choose the sensor it is predicting, but for
the autoencoder it will be punished equally for prediction faults in all output sensors. At
the same time we can see the error for all sensors from only one trained model, and might

be able to tell which of all the 24 sensors that in behaving anomalous.

We think it very important that noise is not added to the input of this model because then it
might be able to recreate a normal state from input where one sensor show anomalous val-
ues. Especially things like adding salt and pepper noise, which is done by setting random

values to 0, could have the exactly opposite effects of what we want.

B.3.2 Windowed Single Sensor

Using a sequence of values from one sensor and running it through an autoencoder requires
no knowledge of the domain. It may only tell us whether some time interval of operation
from one specific sensor is something similar to what is seen in the training data. Sliding

window with a size of 100 values is the input data for this autoencoder.

B.3.3 Autoencoder Training Configuration

Tables B.1 and B.2 shows the type of layers, number of units in each layer, and the ac-
tivation function of the full state experiment and the window experiment. The training
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hyperparameters for the autoencoder is shown in Table B.3.

Table B.1: Autoenoder: Full state

Layer Units Activation
Dense 24 RelLU
Dense 15 RelLU
Dense 5 RelLU
Dense 15 RelLU
Dense 24 Sigmoid

Table B.2: Autoencoder: Window

Layer Units Activation
Dense 100 ReLLU
Dense 50 RelLU
Dense 15 RelLU
Dense 50 RelLU
Dense 100 Sigmoid

Table B.3: Training hyperparameters

Parameter Value

Epochs 100
Optimizer  SGD
Loss MSE

B.4 Results

The results for the autoencoder is presented in Table B.4.

The MAE and MSE are measured by using built in functions in Keras, and unlike the
LSTM network they are measured on the 10,000 values after the training set ends. Con-
cretely the MAE means that on average there is a 2.5% deviation between recreated data
and real data. As mentioned before our hope is that when trying to recreate data from
anomalous parts of the dataset this will be harder to recreate and thus give higher error.
The MAE and MSE are measured over all sensors so this means that one sensor can have
a very high error while the others have smaller error.
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Table B.4: Normalized MAE and MSE from the next 10000 steps after the training set

Model MSE MAE
State regeneration 0.0013 | 0.0254
Windows (Temperature) | 0.0010 | 0.0295
Windows (Pressure) 0.0010 | 0.0297

B.5 Discussion

B.5.1 Full State Generation

For the full state generation autoencoder to be useful we need it to indicate which sen-
sors are behaving most unusual at any given time. We think that since the whole state is
compressed to be represented by 5 neurons in the middle layer, it might lose the ability to
detect if a single sensor among the 24 sensors is behaving abnormal. This could manifest
itself as a disturbance among recreation of other sensors. Our hypothesis was that if a
small part of the state was too different from the training data, we would see large error in

multiple sensors.

In Figure B.2 all the sensors except the faulty ESV is plotted. A plot of full state generation
including the ESV sensors can be seen in Appendix C. The plot shows the difference of
the recreated sensor values and the real input values on the whole set of unseen data. There
are some spikes in the beginning, and after these it seems like almost all sensors start to
behave a bit more suspicious. After the known anomaly it seems like some sensors are
going back to normal, while at least three have elevated levels of recreation error. One
can also see that a long time before the incident, after the third spike, all sensors have
somewhat increased error which could indicate that there is something wrong with the

system.

According to this plot the whole last part of the operation is in a relatively unknown state.
This includes our whole test set used in the results for the LSTM section. There seems
to be even higher error than during the anomaly, even though this section is considered
normal operation of the system.
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Figure B.2: Regeneration of state

Regeneration of the Pressure and Temperature Sensor

Figures B.3 and B.4 show the plots of the reconstruction error and the reconstructed values
of the pressure sensor and temperature sensor that is predicted. When looking at the green
graph in both figures, the models seem to have large reconstruction errors every time the
actual value spikes significantly. Another thing to notice is how the reconstruction values
are lower than the actual values for a period after the spikes that are prior to the known
anomaly. For the spikes after the anomaly a decreasing trend prior to the spikes can be
seen in B.4, while the reconstruction is more unstable for the whole period in B.3. Since
each output is only based on the input from one time step, the model is not affected by the
spike of values that has occurred before. This suggests that there is some other subset of
sensors which are affected by the spike, since the temperature sensor goes straight back to

normal operation after it.

What Happens after the Drop?

We wanted to find out why the reconstruction of the pressure and temperature sensor is
slowly increasing rather than immediately going back to normal operation, like the actual
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Figure B.3: All sensors autoencoder plot - pressure

values after the spike occurring approximately at 1.4925T. A possible reason for this might
be that there are other sensors that are causing this. We plotted a zoomed in version of the
spike in Figure B.4 which can be seen in Figure B.5. In addition, plots of all other sensors
separated into to plots of for the PI/PT and TI/TT sensors in Figure B.6, and the ESV
sensors in Figure B.7. All values were normalized to be between zero and one so they can

be plotted in the same figure.

When looking at the changes in temperature and pressure in Figure B.6 it is hard to find
any significant difference that could cause the effect we are seeing in the plot in Figure
B.5. It might be that the values do change after the incident but that they are hidden in the
normalization. Some of the sensors have a few data points that are either much bigger or
smaller than the rest which causes the rest of the plot to be squashed into a small range
in the plot. These values could be because of malfunction in the sensors, but we do not
know that for sure. The model can still be very sensitive to small changes in these sensors
because of the bias of the neuron can adjust the threshold from where the neuron starts to
activate. At the same time the neurons in the autoencoder do not work like the ones in the
LSTM so they cannot be explained by gates that are opened during the drop because as

mentioned, there is no notion of time is this model.
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Figure B.4: All sensors autoencoder plot - temperature

So we see that there is no sensor which seems to be causing the drop alone. Some of them
spend some time before getting back to normal values after the drop, specifically two ESV
sensors, but they also have linearly decreasing values prior to the spike which is not visible
in the regeneration. This may indicate that they do not impact the model when their values
are decreasing, but do impact it when increasing, or are not impacting the model at all. In
other words, the values of the sensors do not give a clear indication for this observation,

something that we hoped for them to do.

B.5.2 Windowed Generation

Using an autoencoder to regenerate windows of values from single sensors did not yield
the results we hoped for. All the generated data had a relatively large constant offset from
the actual values. Like when predicting when using faulty input in the LSTM, the plotted
results from this experiment showed a very clear repeated pattern throughout the whole
set of unseen data. The almost exactly same pattern was repeated every 100th timestep,
only changing starting point and amplitude according to previous values. In Figure B.8
we can the see plot of the original data, the regenerated data and the difference from the
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Figure B.5: Prediction of temperature sensor

windowed autoencoder on the unseen data. Like in the other plots that are forecasting six
time steps, we only used every 100th batch of values and merged them together. While
the error peaks higher during the data for the known anomaly, we still wanted to see some
more nuances in the regenerated data elsewhere.

B.5.3 Comparison to Related Work

When trying to compare this to the results from the related work where they used autoen-
coders on satellite sensors [40] we found a number of challenges. One of them is that their
plots do not use normalized data while our measures do. They do not provide the average
results over their test and anomaly sets and they do not clearly show their max values so
it is not possible to do a rough calculation of the percentage of their error. There are also
some differences between the neural networks used in our experiments and in their. They
use sigmoid activation functions in their hidden layers, while we use ReLU. Also they use
a linear activation in the output layer because they do scale input which implies the output
label is not scaled, unlike in our experiments where input is normalized between 0 and 1.
They use an linear activation in the output layers since their output values are not scaled,
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Figure B.6: Temperature and pressure sensors

while we use sigmoid.

In the experiments with satellite data they use denoising autoenders by using salt and
pepper noise on the input. This means that they some amount of the input to zero without
changing the output values. This makes the model learn to recreate the denoised values
from noisy values. In our case we think this could have had opposite effect. We want
to be able to know when one or more sensors is behaving abnormal, but a denoising is
trained to ignore it. If anything we think that training the autoencoder to be sensitive for
any abnormalities could give better indication of anomalies. This would probably requires
a much cleaner dataset and making sure that all the input sensors are correct.
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Figure B.8: One windowed sensor autoencoder plot
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Appendix

Extra plots
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Figure C.1: Full state generation including ESV sensors
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Figure C.2: First four sensors - pressure - one time step
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Figure C.3: First four sensors - pressure - six time steps
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Figure C.5: ESV + ZI - pressure - 1 hour - one time step
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Figure C.7: PT/PI - temperature - 1 hour - one time step
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Figure C.9: PT/PI + TT/TI - temperature - 1 hour - one time step
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Figure C.10: TT/TI + ESV - temperature - 1 hour - one time step
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Figure C.11: Prior sensors - pressure - 1 hour - one time step
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