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Abstract

The use of attention mechanisms in different applications of recurrent neural net-
works has yielded significantly higher accuracies, but their use in session-based
recommender systems is largely unexplored. In addition to increasing accuracy,
attention mechanisms also allow for easy visualization of which input items im-
pact the prediction of new outputs, which can lead to a better understanding
of how users act, their habits and which past items are important for predicting
future ones. In this project we explore different ways of including attention mech-
anisms in session-based recommender systems with hierarchical recurrent neural
networks to improve accuracy. Four experimental models have been developed
that apply attention mechanisms in different ways. These models have been
tested on two separate datasets. We show that the attention mechanisms used
in problems such as text translation and document classification yield a small
increase in accuracy in the recommender system problem, with a slightly higher
increase when combined with the use of a simple temporal attention mechanism.
While we have been unable to achieve the same accuracy improvements as at-
tention mechanisms have achieved in other problem domains, our improvements
together with attention weight visualizations suggest that a temporal attention
mechanism can work in recommender systems and that a more sophisticated
temporal attention mechanism could increase accuracy even more.
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Chapter 1

Introduction

In today’s online society, people can be overwhelmed by choice when browsing
websites such as YouTube, Spotify or Netflix. To combat this issue, these services
employ the use of recommender systems: systems that give users recommenda-
tions on what to do next. Recommender systems are well-researched, but little
attention has been paid to incorporating attention mechanisms into them. In
this chapter we explain the background and motivation for this project as well
as formulate a goal and some research questions that we aim to answer.

1.1 Background and Motivation

Early recommender systems such as collaborative filtering gave recommendations
by comparing the histories of users. When recommending for one user, the system
would find other users with similar histories and recommend things that those
users liked.

In recent years deep neural networks have become increasingly popular and
they have been applied to the recommender system problem as well. This has
some pros and cons. The pro of using deep neural networks in general is that they
can achieve higher accuracy by learning latent features that are hard to be manu-
ally engineered. Another pro is that with recurrent neural networks we can model
sequences of actions, meaning that we can make predictions based on previous
actions in a sequence. This is not possible with techniques such as collaborative
filtering. The main con of using deep neural networks is interpretability. Deep
neural networks in general are a very black-box type of system, meaning that
even though the input and output are known, the inner workings of the systems
aren’t very easy to interpret.

One problem area that has been explored by several researchers in the last

1



2 CHAPTER 1. INTRODUCTION

few years is session-based recommender systems. They model sequences of user
actions, split into sessions. The task is to predict the next action, given the earlier
actions of the session.

A recent breakthrough in many areas of application of recurrent neural net-
works is attention mechanisms. They allow you to focus on (attend to) different
parts of the input when predicting the output. This is done with a set of learn-
able weights, which can be used to create human interpretable visualizations of
the network.

One other aspect of recommender systems with recurrent neural networks
that has been mostly ignored is the temporal aspect of the problem. There is a
variable amount of time between actions and between sessions. This information
is likely to influence how important past actions are for predicting new ones, so
using this information could result in better predictions.

1.2 Goals and Research Questions

As mentioned in the previous section, there is still a lot of research to be done
in session-based recommender systems with recurrent neural networks. In par-
ticular, the use of attention mechanisms have been successful in other applica-
tions of recurrent neural networks with architectures very similar to that of the
session-based recommender system problem. For this project, we will research
the possibility of applying it here as well.

Goal Explore different ways that attention mechanisms can be applied to session-
based recommender systems for the task of increasing accuracy.

This can potentially be a really big task, so to narrow it down we will focus
on a hierarchical RNN based architecture for session-based recommendation as
described in Section 3.2. We will primarily focus on trying to apply attention
mechanisms in similar ways to what has been done in other applications of re-
current neural networks. The hierarchical architecture would then be the best
option as its architecture is the most similar to those.

Research question 1 Can attention mechanisms that have been developed for
other applications of recurrent neural networks be applied to hierarchical
session-based recommender systems?

The other unexplored area for this problem is the temporal aspect. Trying to
model time and time difference is a difficult task and an entirely different area of
research. However, it may be possible to improve recommendation accuracy by
utilizing the temporal aspect to create a simple attention mechanism.

Research question 2 How can the temporal aspect of recommender systems
be included in an attention mechanism to increase accuracy?
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1.3 Research Method

As our research will build on previous research, the first step in our methodology
is to read previously published papers on relevant topics. Then, based on the
research, we will create hypotheses and develop new solutions with respect to
our project goal. Finally, we will run experiments to gather results.

1.4 Thesis Structure

Chapter 2 gives an overview of the background theory that is necessary to un-
derstand the project. This information is given in a high level manner.

Chapter 3 digs a bit deeper into some of the State of the Art for attention
mechanisms and session-based recommender systems. It contains details of the
theory that will be applied to the experimental models.

Chapter 4 presents the baseline and experimental models as well as the theory
and ideas behind them.

Chapter 5 presents the experimental plan and setup. This chapter also present
the datasets used to train the models. It concludes with the results of the exper-
iments as well as a discussion of the results.

Chapter 6 concludes the project with an evaluation of the project as a whole
as well as a some possible directions for future research.
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Chapter 2

Background Theory

This project builds on a lot of theory and many concepts. This chapter will
introduce those in a high level manner so that the rest of the report can be
understood.

2.1 Artificial Neural Networks

An artificial neural network is a concept that tries to model the biological neural
network in the human brain. The human brain consists of many neurons that
are connected to each other through synapses. The neurons receive electrical
signals from other neurons and can in turn fire their own electrical signals to
other neurons again. These signals is what allows us humans to think.

An artificial neural network works much in the same way as its biological
counterpart. An ANN is built out of a set of layers, each layer containing nodes
(neurons) with weighted connections to the next layer of nodes. A simple ANN
will consist of three layers: The input layer, the hidden layer and the output
layer. This architecture is depicted in Figure 2.1. Each node in the hidden
layer receives one or more inputs from nodes in the input layer. These inputs
are summed using the weights of the connections between the input nodes and
the hidden nodes. This sum is passed through an activation function (typically
sigmoid, tanh or ReLU) to determine the output of the node. If the value is high
enough, the hidden node fires. If not, it doesn’t. These firings (or non-firings)
of hidden nodes are the inputs to the output nodes. The output nodes work
similarly to the hidden nodes, using a weighted sum of its inputs to determine
the final output. Advances in this field in recent years have made neural networks
become increasingly popular. However, they have some limitations such as being
unable to model sequences in a good way.

5



6 CHAPTER 2. BACKGROUND THEORY

From here on, artificial neural networks will be referred to simply as neural
networks.

Figure 2.1: A simple artificial neural network. The circles are nodes and the
arrows are weighted connections between the nodes.

2.2 Recurrent Neural Networks

While general neural networks are great at a lot of tasks, they are unable to
accurately model sequences. One such example is text translation. If you fed a
sequence of words into a feed-forward neural network, it would probably perform
badly at translating that text to a different language. The reason for this is that
the feed-forward network has no memory of the previous word it translated, so
at best it would manage a crude word-by-word translation. This becomes espe-
cially problematic when the source and target languages have different sentence
structures. What we need is a neural network that is able to remember what
came before and this is where recurrent neural networks come in.

Recurrent neural networks are different from feed-forward neural networks in
that they have a hidden state (this is different from hidden layers). For each new
input-data, the hidden state is updated to reflect what it has seen before. That
way, when it gets a new input it can look at both the input and the representation
of what has come before to make a prediction. This can be seen in Figure 2.2.

1Figure taken from http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Figure 2.2: Left: A recurrent neural network. Right: An unrolled recurrent neural
network. Here, xt is the input at each time step, ht is the hidden state/output
and A is the RNN cell, either a simple activation function such as sigmoid/tanh
or a more complex cell such as LSTM/GRU.1

A problem with this hidden state architecture is that it won’t be able to
accurately represent things that happened long in the past. Many problems,
such as text translation, have these long-term dependencies between inputs far
apart. Say you are trying to translate a sentence where two words that are
dependent on each other are twenty words apart. This means that twenty words
have modified the hidden state when you need the dependency between them. A
solution to this problem is LSTMs, Long Short Term Memory. These LSTM cells
are used in place of the normal nodes in the RNN. They work by having a cell
state that transfers information between cells in a sequence. The LSTM cell has
several gates that modify the cell state and they are able to learn which parts to
keep and which parts to modify. GRU (Gated Recurrent Unit) is another type
of cell that has been used to combat the long-term dependency problem. It was
introduced by Cho et al. [2014] and has been shown to be able to outperform
LSTMs in certain tasks [Hidasi et al., 2016]. It is a simplified version of the
LSTM where the cell state and hidden state have been combined into one.

The next hidden state, ht, is determined by a weighted sum of the previous
hidden state and the new state, nt.

2

ht = (1− zt)nt + ztht−1 (2.1)

The weights are decided by the update gate, zt.

zt = σ(Wizxt + biz +Whzht−1 + bhz) (2.2)

The new state is a combination of the new input and the previous hidden
state.

nt = tanh(Winxt + bin + rt(Whnht−1 + bhn)) (2.3)
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How much of the previous hidden state to keep is decided by the reset gate,
rt.

rt = σ(Wirxt + bir +Whrht−1 + bhr) (2.4)

In these equations, σ is the sigma function. All instances of W and b are
weight matrices and bias vectors respectively.

2.3 Session-Based Recommender Systems

As mentioned in Section 1.1, recommender systems are systems that give recom-
mendations on what to do next based on a user’s history. The simplest of these
is collaborative filtering where it is assumed that people with similar histories
have similar interests and give recommendations based on that. The problem
with this approach is that they don’t model sequences very well.

A solution to this problem is the use of recurrent neural networks. In the
same way that words are ordered in sequences, events such as video-viewings are
ordered in sequences. Thus, using the same techniques as when predicting the
next word in a text, you can use recurrent neural networks to predict future user
actions. As input, the system gets the user’s latest action. It then outputs a
likelihood for each possible action to be the next action in the sequence, based on
the previous actions in the sequence. This way, you can use information about
the user’s recent history to better recommend things that might interest them in
the future.

A newer concept in recommender systems is session-based recommendations.
These systems split actions into sessions, meaning that if two consecutive actions
are days apart, the first one won’t affect the second one. This has the positive
effect of more accurately modeling user behavior, but it also means that the
sequences used to predict new actions become shorter which can result in a drop
in accuracy. Some models that mitigate this problem are presented in Section
3.2.

2.4 Attention Mechanisms

In many problems in deep learning, the input can be split into smaller pieces.
Examples of this include text, speech and images. Text is comprised of sentences
which are comprised of words. Speech contains words and intonations. Images
can be divided into sub-images. When generating outputs for these kinds of

2There are some small variations on the GRU layer in different literature. The formulas
used here are taken from the official PyTorch 0.4.0 documentation as this is the framework that
was used in this project. https://pytorch.org/docs/0.4.0/nn.html#torch.nn.GRU
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problems it is often not optimal to look at the input as a a single indivisible
entity, but rather as something that is comprised of many parts.

When we humans look at a picture in order to get an impression of it, we don’t
just look at the entire thing and base our impression on that. Instead, we focus on
certain parts, one at a time. This is analogous to what attention mechanisms try
to do. Instead of looking at the entire input all the time, attention mechanisms
try to focus on (attend to) certain parts of the input at a time. In more technical
terms: When generating output, find out which parts of the input are relevant
for the next part of the output. Here, ”parts of the input” can for example refer
to elements in a sequence or features in an image.

Attention mechanisms are fairly new, but have already been used in many
different applications such as text translation [Bahdanau et al., 2016], image
caption generation [Vinyals et al., 2015], speech recognition [Chorowski et al.,
2015] and text summarization [Rush et al., 2015].

To explain the details of attention mechanisms and how they improve on
previous models, it is easiest to use an example. For this, we will use text
translation. Before attention mechanisms, text translation systems would pass
the input sentence through an RNN to produce a context vector. This context
vector is then used as the initial hidden state in another RNN to generate the
output sentence (see Figure 2.3). The problem with this model is that you must
be able to encode the entire input sentence into a single vector. This becomes
problematic, especially for long inputs [Bahdanau et al., 2016].

Figure 2.3: Text translation before attention mechanisms. The red part of the
network encodes the input sentence into a single context vector. The network
must then be able to generate the entire output sentence from this single vector.3

When using attention mechanisms, instead of using a single context vector for
the entire output sentence, we create a context vector for each word in the output
sentence. These context vectors are weighted sums of all the input states, taking
into account the last hidden state generated by the output RNN to determine
the weights. A more in-depth, mathematical explanation of this example is given
in Section 3.1.
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The power of attention mechanisms is that you no longer need to be able
to encode an entire sentence into a single vector. This not only helps with the
problem of long inputs, but having context vectors for each output word means
that the model can more easily use combinations of input words when forming
output words. This is especially helpful in text translation as a single word in
one language might be translated into several words in another language. A
visualization of the results of attention mechanisms in text translation can be
seen in figure 2.4.

Figure 2.4: English to French translation. How the attention mechanism chose
to focus on each word in the input sentence when predicting the target sentence
(taken from [Bahdanau et al., 2016]).

3Figure taken from http://www.wildml.com/2016/01/attention-and-memory-in-deep-
learning-and-nlp/



Chapter 3

State of the Art

The experimental models presented in this project build on a lot of research. To
help with the understanding of those models, this chapter gives a more in-depth
look at some of the most important research papers that helped create them.

3.1 Text Translation Using Encoder-Decoder Net-
works with Attention Mechanisms

The idea of encoder-decoder networks is to encode an input sequence into a
feature representation which can then be decoded into a target sequence [Cho
et al., 2014]. In the case of translation, you pass a sequence of words in the
source language into an RNN to encode it into a context vector. This context
vector is then used as the initial hidden state for the decoder network, which
will try to predict the translation of the input sentence in the target language.
However, it is hard to encode all the relevant information needed in a fixed-length
vector.

Bahdanau et al. [2016] tries to improve encoder-decoder translation by learn-
ing which parts of the source sentence are relevant for predicting words in the
target sentence. The idea is that instead of creating a single context vector to
predict the entire target sequence, you create a context vector for each word
in the target sequence. The hidden state si for the i-th element in the target
sequence is given by:

si = f(si−1, yi−1, ci). (3.1)

where yi−1 is the last target item and ci is the context vector for the i-th
decoder item.

11
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Each context vector is based on all hidden states in the encoder layer and the
last hidden state in the decoder layer. The context vector for the i-th element in
the target sequence is given by:

ci =

Tx∑
j=1

aijhj (3.2)

Here, hj is the output of the encoder RNN for the j-th element in the input
sequence and Tx is the length of the input sequence. αij is the attention weight
for the i-th decoder element and the j-th encoder element. The attention weight
tells us how important the j-th encoder element is for predicting the i-th decoder
element. αij is given by:

αij =
exp(eij)∑Tx

k=1 exp(eik)
(3.3)

where eij is given by:

eij = a(si−1, hj) (3.4)

eij is the attention energy of the j-th encoder element and i-th decoder element
and is a general model that scores how well the j-th encoder element matches the
i-th decoder element. Note that the formula for aij is simply the softmax function,
meaning that all the attention weights for each target item will sum up to 1.

This idea was further explored by Luong et al. [2015], who introduced several
scoring functions for computing the attention energies, as well as a model for local
attention where instead of receiving attention weights from all encoder nodes, you
would only consider some of them.

3.2 Session-Based Recommendations with RNNs

One of the first attempts at using RNNs for recommender systems was Hidasi
et al. [2016]. The idea is that the actions (video-viewings, songs listened to etc.)
performed by a user in a single session are related to each other. They propose
a model where a user’s actions are split into sessions. The sessions are lists of
IDs, each ID belonging to a certain action. Each ID in these sessions is then
embedded and passed through one or more GRU (Gated Recurrent Unit) layers
and finally a feed-forward layer which produces an n-dimensional output (n being
the number of available actions). This is shown in Figure 3.1 The model achieves
good results, but it suffers from not having an appropriate initial hidden state
(known as the cold start problem). The hidden state is initialized with zeros
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Figure 3.1: Architecture for session based recommendation (taken from [Hidasi
et al., 2016]).

and is reset whenever a session is finished, meaning that predictions early in the
session will be mostly random.

Ruocco et al. [2017] propose a hierarchical architecture where the first level
makes predictions identical to Hidasi et al. [2016] (Figure 3.1) and the second
level generates the initial hidden state. The second level does this using session
representations of the user’s most recent sessions. A session representations is
meant to represent what the user did in a given session. The paper proposes
two methods to create session representations: average pooling and last hidden
state. Average pooling creates an average sum of the embeddings of each event
in the session. Last hidden state simply uses the last hidden state from when the
session went through the first level RNN.

When predicting a new session for a user, the most recent session represen-
tations for that user are retrieved. The session representations are considered as
a sequence (from oldest to newest) and are passed through a GRU layer in the
second level RNN. Since each session representation is meant to represent the
user’s activity in a given session, the output of the inter-session GRU is meant
to represent everything the user has done recently. The output of the GRU is
then used as the initial hidden state when predicting the user’s next session. The
hierarchical architecture achieves overall higher accuracy and is a great help to
the cold start problem, meaning that accuracy early in the session is much higher.
The architecture of the hierarchical model can be seen in Figure 3.2.

The model of Ruocco et al. [2017] is very similar to the model of Cho et al.
[2014] for encoder-decoder text translation described in Section 3.1. If we imagine
the architecture as an encoder-decoder network, the most recent session represen-
tations become the inputs to the encoder, the encoder then generates an initial
hidden state for the decoder, which then generates recommendations for the user’s
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Figure 3.2: The hierarchical architecture from Ruocco et al. [2017] with average
pooling used to create session representations. The module labeled ”GRU layer”
is the second level RNN that creates the initial hidden states (taken from Ruocco
et al. [2017]).

next session.
Another version of the hierarchical session-based recommender system is [Quad-

rana et al., 2017]. It is in many ways similar to Ruocco et al. [2017], but it uses
the concept of session representations in a different way. Instead of creating and
storing representations of individual sessions, this paper has a single representa-
tion for each user. The user representation starts out as a zero vector and when
the system is done predicting a session for a user, that user’s representation is
updated using the session’s last hidden state. This can be seen in Figure 3.3.
The update is done using the following:

cm = GRUusr(sm, cm−1) (3.5)

where cm is the new user representation, sm is the session representation (last
hidden state) of the last session, cm−1 is the last user representation and GRUusr

is a GRU layer used to model the user activity across sessions. The hidden state
of the next session is then initialized as:

sm+1,0 = tanh(Winitcm + binit) (3.6)

where Winit and binit are learnable weights.

These hierarchical session based-recommender systems are able to achieve
higher accuracy by using the user’s past data. The drawback of this approach is
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Figure 3.3: The two-layer architecture from Quadrana et al. [2017]. Each session
prediction (top layer) updates the user-level representation. This is then used
as the initial hidden state for the next prediction (taken from Quadrana et al.
[2017]).

that they assume the user’s past data is available, which is not necessarily the
case [Tuan and Phuong, 2017]. Li et al. [2017] proposed a different architecture to
tackle the cold start problem. They propose a different way of creating an initial
hidden state where they have two encoders, a global encoder and a local encoder.
These encoders together create an attention mechanism where the system is able
to detect the main purpose of the session. When learning on a new session, the
global encoder is simply a GRU that the whole session is run through to produce
a final hidden state. This is to produce a session representation of the session, i.e.
it finds out what the main focus of the session was. Say the user was browsing an
online store and in a given session clicked on ten sweaters and a pair of shoes. It
is then likely that the focus of the session was on the sweaters (the shoes might
have been a miss-click). In mathematical terms, the session representation is
given by:

cgt = ht (3.7)

where t is the length of the session and ht is the hidden state of the global
encoder at time t. This is similar to the Last Hidden State method of creating
session representations in Ruocco et al. [2017]. The local encoder gets all the
hidden states of the session and creates a context vector in a very similar way to
Formula 3.2:

clt =

t∑
j=1

atjhj (3.8)
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where t is the length of the session, hj is the j-th hidden state of the local
encoder and atj is the j-th attention weight, given by:

αtj = v>σ(A1ht +A2hj) (3.9)

where v, A1 and A2 are learnable weights and σ is the sigmoid function.
Finally, cgt and clt are concatenated to create the final context vector ct.

Instead of using another RNN in the decoder, Li et al. [2017] use a bi-linear
similarity function to calculate the similarity between the embedding of each
candidate item and the context vector ct. The similarity function is given by:

Si = emb>i Bct (3.10)

where embi is the embedding of item i and B is a matrix of learnable weights.
Finally, the similarity scores of each item is put through a softmax function which
produces the final ranking of items.

In the works of Liu et al. [2016], they explore a different approach to sequen-
tial recommendation. They propose a model for RNN recommendation that is
context-aware. They mention two types of contexts: input contexts and transi-
tion contexts. Input contexts are all about what situation the user was in when
they made an action. For example, the user was at home and it was raining so
the user looked at umbrellas in an online store. The transition contexts consider
the time between actions. If the time between two actions is very long, they are
unlikely to be connected. To explain how these contexts are incorporated into
the recommender system, we must look at how hidden states are computed:

huk = f(rukMcuI,k
+ huk−1WcuT,k

) (3.11)

Here, huk is the hidden state of user u at time k, ruk is the input of user u at
time k, cuI.k is the input context for user u at time k and cuT,k is the transition
context for user u at time k. The important thing to notice is that the weight
matrices (M and W ) depend on the context. Instead of using a single M matrix
and a single W matrix, they use adaptive context-specific matrices. This way
they can better capture the context of the user’s actions. The paper doesn’t go
into much details on how the input contexts are specified, but it does mention
how the transition context is decided. The time interval between two events
is continuous so it would be impossible to learn a transition matrix for every
value. Therefore, they split the time differences into buckets. The state of the
art in session-based recommender systems have usually just ignored the temporal
aspects of the problem (i.e. the use of timestamps). This might not be optimal
as the non-uniform time differences between actions can have a big say in how
important past actions are for predicting future ones. Liu et al. [2016] is therefore
quite unique with its use of this largely unexplored area.
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While recurrent neural networks are great, one must not forget other ap-
proaches as well. Jannach and Ludewig [2017] show that a session-based k-
nearest-neighbors model achieves the same or better results as Hidasi et al. [2016].
It takes as input a user session and finds the k most similar past sessions. These
are found using a heuristic method to sample nearby neighbors, allowing it to
scale for large datasets. It calculates a score between each of these sessions and
the input session and uses these to give a score to new potential actions. Finally,
they propose a hybrid model of the k-nearest-neighbors approach and the model
of Hidasi et al. [2016]. This is shown to outperform either model by themselves.

3.3 Hierarchical Attention Mechanisms

In certain applications, researchers have experimented with more than one level
of attention mechanisms. Yang et al. [2016] proposed a hierarchical structure for
document classification. A document consists of sentences that consist of words.
The idea is the following: First, you embed each word. Then you pass the words of
a sentence through a word encoder. This word encoder then produces a sentence
representation of that sentence. After you have done this with every sentence in
the document, you go to the sentence encoder. The sentence encoder does the
same thing as the word encoder, except with sentence representations instead of
word embeddings. The sentence encoder produces a document representation.
This document representation can then be used for document classification.

Because words don’t contribute equally to the representation of a sentence (a
word like ”the” doesn’t really say anything about the contents of the sentence)
they use an attention mechanism to emphasize words that are important to the
meaning of the sentence. This is done similarly to Bahdanau et al. [2016], but
without any form of the last decoder hidden state. To clarify, this means that
the function in Formula 3.4 would depend only on hj .

In the same way that all words don’t contribute equally to a sentence, not
all sentences contribute equally to the contents of a document. Therefore, they
employ a second level of attention after the sentence encoder to emphasize the
important sentences in the document. The formulas for the sentence level atten-
tion are identical to the word level attention (using the sentence encoder hidden
states). The architecture of the hierarchical document classifier can be seen in
Figure 3.4.

Qin et al. [2017] uses a dual-stage attention mechanism for an RNN imple-
mentation of the Nonlinear autoregressive exogenous (NARX) model. To put it
simply, it predicts the next value of a time series based on the previous values
in the series and previous values in multiple driving series. That is, the input
consists of n driving series X = (x1, x2, ..., xn) where each driving series consists
of T time steps, xk = (xk1 , x

k
2 , ..., x

k
T ).
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Figure 3.4: The hierarchical architecture for document classification from Yang
et al. [2016]. It uses attention mechanisms to find which words are representative
of a sentence and which sentences are representative of a document. (taken from
Yang et al. [2016]).

It uses an encoder-decoder network where the inputs to the encoder at time t
is the t-th time step of each driving series. These values are first passed through
an attention mechanism that learns which driving series are relevant. After this,
the inputs are passed to the encoder. The encoder hidden states at each time
step is passed through another attention mechanism to select the relevant ones.
This all culminates in a context vector which is used to predict the next value in
the target time series.



Chapter 4

Architecture/Model

This chapter presents the models used in the project. The models consist of
one baseline model and four experimental models, each attempting to incorpo-
rate attention mechanisms into the hierarchical session-based recommendation
architecture.

4.1 Baseline Model

In order to evaluate the accuracy of the experimental models in a useful manner,
we need a baseline to compare against. This project is largely based on the work
of Ruocco et al. [2017] as described in Section 3.2. Therefore, the first part of
this project was to implement the model as described in the paper.

Each user has up to n session representations, Ru = (ru1 , r
u
2 , ..., r

u
n). From

here on, we will omit the user-notation to simplify the notation. These session
representations are passed though an RNN using GRU cells, ultimately producing
a final hidden state hn. Since each session representation is meant to represent
the user’s activity in a session, the output of the inter-session GRU is meant to
represent everything the user has done recently. hn is then used as the initial
hidden state of another RNN which takes as input a new session that it will try
to predict. Given a set of inputs X = (x1, x2, ..., xt), it produces output O =
(o1, o2, ..., ot) where each output is the predicted next action given all previous
actions in the session. The process of predicting a new session can be seen in
Figure 4.1.
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Figure 4.1: The baseline architecture. The pink area is the inter-session RNN
which generates an initial hidden state for the intra-session RNN based on the
user’s most recent session representations. The blue area then uses the initial
hidden state to predict the next action in the new session.

4.2 Experimental Models

This section will present the experimental models that have been developed
throughout the project. The purpose of this project is to try to incorporate at-
tention mechanisms in the hierarchical session-based recommender architecture,
so all these models have that in common.

4.2.1 Intra-Session Attention

The first attempt at incorporating attention mechanisms into the baseline archi-
tecture was to implement the attention mechanism described by Bahdanau et al.
[2016] in the intra-session part of the model. That is, the part that predicts the
new session. To reiterate, the paper by Bahdanau et al. [2016] improved the text
translation problem using an encoder-decoder network with an attention mech-
anism. As mentioned in Section 3.2, the architecture of the baseline model of
this project is very similar to Cho et al. [2014]. Bahdanau et al. [2016] has the
same architecture as Cho et al. [2014], but with the addition of the attention
mechanism. Because of this, it should be possible to implement a version of the
attention mechanism of Bahdanau et al. [2016] in the baseline architecture for
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hierarchical session-based recommendation.
The rationale behind this model is that to generate a long sequence of actions

from one initial hidden state is difficult to do accurately. Instead, the intra-session
RNN takes an extra input at each time step: a context vector. This context vector
uses the previous hidden state of the intra-session RNN to create a weighted sum
of the hidden states of the inter-session RNN. This way, the intra-session RNN
can focus on different session representations at each time step and over time will
learn which session representations are important for predicting the next action.
The i-th context vector is given by:

ci =

n∑
j=1

αijhj (4.1)

where hj is the hidden state generated by the j-th session representation in
the inter-session RNN. aij is an attention weight that says how important the
j-th session representation is for predicting the i-th action in the new session. aij
is given by:

αij =
exp(eij)∑n
k=1 exp(eik)

(4.2)

where eij is the attention energy of the j-th session representation and i-th
action in the new session. It is given by:

eij = a>tanh(Bhj + Csi−1) (4.3)

where a, B, and C are learnable weights and si−1 is the previous hidden state
of the intra-session RNN. This architecture can be seen in Figure 4.2.

Another way to calculate the attention energies was presented in Luong et al.
[2015]. Instead of summing the previous decoder hidden state and the encoder
hidden state, they are concatenated. This has the benefit of not losing any
information when summing the two embeddings. This is the method we used for
creating attention energies and is given by:

eij = a>tanh(B[hj ; si−1]) (4.4)

where [hj ; si−1] is the concatenation of the j-th encoder hidden state and the
previous decoder hidden state.

In the paper of Bahdanau et al. [2016], they use a bidirectional RNN in the
encoder (their equivalent of the inter-session RNN). In this case, each hidden
state in the inter-RNN would be a concatenation of the forward and backward
hidden state:

hk = [
←−
hk;
−→
hk] (4.5)
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where
←−
hk is the hidden state of the k-th session representation in the back-

wards RNN and
−→
hk is the hidden state of the k-th session representation in the

forward RNN. This can in some applications increase accuracy as an event late
in a sequence might affect events earlier in the sequence [Tan et al., 2016]. In our
case it did not lead to an increase in performance. Ruocco et al. [2017] also did
not use a bidirectional encoder.

Figure 4.2: The intra-session attention architecture. In addition to creating an
initial hidden state for the intra-session RNN, the hidden states of the inter-
session RNN are now also used to create a context vector for each node in the
intra-session RNN.

4.2.2 Inter-Session Attention

Something unique about the recommender system problem when it comes to ap-
plications of attention mechanisms is the temporal aspect of the problem. Many
problems are either timeless (such as generating text) or the time between events
is constant. In the recommendation problem, each event has a timestamp asso-
ciated with it and the time between events varies.
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The timestamp tells us what time of the day and which day of the week a
user performed an action. This information likely influences the user’s actions.
A user is probably more likely to listen to death metal on a Friday night than
on a Monday morning. In addition to this, the time between events and between
session representations matters. If two different session representations are 3
hours and 160 hours old then they will likely have different importance when it
comes to predicting a new session.

The attention mechanism in this section is simpler than the one in the previous
section. Instead of looking at how each session representation affects each action
in a new session, we use an attention mechanism to calculate how much each
session representation should affect the initial hidden state of the intra-RNN.
This can be seen in Figure 4.3.

Figure 4.3: The inter-session attention architecture.

We create an initial hidden state by calculating a weighted sum of the hidden
states of all the session representations.

hn =

n∑
j=1

αjhj (4.6)
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Here, aj is an attention weight that says how important the j-th session rep-
resentation is for predicting future sessions. In the previous model the attention
weights were dependent on the last hidden state of the intra-session RNN, but
we don’t use those here. Instead of calculating how important each session rep-
resentation is given the previous actions of a session, this will learn in a more
general/global way which session representations are important and thus should
be given a higher weight in the initial hidden state. The idea is then that the
system should be able to identify which embeddings matter for predicting future
actions and which ones do not. This idea is in many ways similar to [Yang et al.,
2016] which learns which words are important in classifying a sentence and which
sentences are important in classifying a document. aj is given by:

αj =
exp(ej)∑n
k=1 exp(ek)

(4.7)

where ej is the attention energy of the j-th session representation. It is given
by:

ej = a>tanh(Bf(hj ,∆tj , weekj)) (4.8)

where a and B are learnable weights. The function f depends on three pa-
rameters.

hj is simply the j-th hidden state of the inter-session RNN.
∆tj is the time difference between the j-th session representation and the new

session that we are trying to predict. This time difference is put into one of many
buckets, each one hour long. There are a total of 169 buckets, one for each hour of
a week (168 hours) and one for everything older than that. This is in many ways
similar to the transition context of Liu et al. [2016] mentioned in Section 3.2.
The time differences are then embedded so that they have the same dimension
as hj . The idea is that the system will learn how time differences affect how
much a given session representation should influence the initial hidden state. It
is natural to assume that more recent session representations should count more,
but that might not be universally true. Humans are creatures of habit, so maybe
sessions that happened 24 hours prior should have more influence than those that
happened 12 hours prior.

weekj is the time of the week when the j-th session representation started
(for example: Wednesday, 22:00). Just like ∆tj , the time of the week is put into
one of 168 buckets, one for each hour of the week. The value is then embedded.
The idea here is that the context of the week affects how a user acts. A user’s
habits might be different on a Monday at 14:00 vs. a Saturday at 02:00. It
is important that when training this attention mechanism that all users are in
the same timezone. Therefore, a dataset containing only users from the same
timezone will be used when testing the time of week attention mechanism.
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The latter two parameters might sound similar, but there is a difference be-
tween them. ∆tj tells us about the age of the session representation relative to
the new session we are trying to predict. weekj tells us about the time of the
week (regardless of the timestamp of the new session) the session took place.

The function f is then the concatenation of the hidden representations of
the three parameters, or a combination of any two, or any one. For example,
the attention energy formula for the inter-session attention mechanism using the
hidden state and delta-time attention variables (but not the week-time attention
variable) would look like the following:

ej = a>tanh(B[hj ; ∆tj ]) (4.9)

where [hj ; ∆tj ] is the concatenation of the hj and ∆tj variables.

4.2.3 Combined Inter-Session and Intra-Session Attention

Since we have two different attention mechanisms that work on different levels of
the architecture, the natural next step is to combine them. This model does just
that. It uses the inter-session attention mechanism to generate an initial hidden
state and the intra-session attention mechanism to predict the next action in the
new session. The goal is to see if joinly learning the two attention mechanisms
will improve the accuracy more than either one on their own.

4.2.4 Hierarchical Attention

Yang et al. [2016] created a model for document classification with attention
mechanisms in a hierarchical structure. They split a document into sentences
which are split into words. The words in a sentence form a sequence and are
passed through an RNN. The outputs are then used to create attention weights
and finally a sentence representation is created by a weighted average of the RNN
outputs. Once all the sentence representations have been created, they are passed
through an RRN and used to create attention weights to compute a document
representation as a weighted average of the sentence representations.

This model is in essence very similar to the model by Ruocco et al. [2017]. If
we imagine words as events, sentences as sessions, documents as users, we see that
the same model used by Yang et al. [2016] could also be used by a recommendation
model very similar to Ruocco et al. [2017]. The document representation used
for classification in Yang et al. [2016] is comparable to the initial hidden state
used for prediction in Ruocco et al. [2017].

The session representations in the recommendation model are comparable
to the sentence representations in the document classification model, but the
way they are created is different. The session representations are created one
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at a time as the model predicts new sessions. They are then stored away and
retrieved the next time that user is having one of their sessions predicted. To
make this more comparable to the document classification model (and to make
attention mechanisms possible) the recommendation model has to be modified.
Each time the model predicts a new session for a given user, the n most recent
previous sessions (not session representations) for that user are retrieved and used
to create session representations, whether that be average pooling, last hidden
state or attention mechanism.

Figure 4.4: Illustrated differences between the hierarchical model and the baseline
model. The top half is the baseline model and the bottom half is the hierarchical
model. Each box in the model is a separate GRU (however, when not using
attention mechanism the ”create session representations” box can also be average
pooling).

This difference might be subtle. Figure 4.4 illustrates the difference. In
addition to allowing attention mechanisms this new model also benefits from
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the fact that the events used to create session representations are re-embedded
each time they are used. This means that the embedding matrix is more easily
trained and training of the model doesn’t suffer from the fact that old session
representations have been created by an embedding matrix with weights that
might be very different from what they are now.

To create session representations in this new model, we retrieve the n latest
previous sessions for the user. These sessions are used to produce ri, the (n−i)-th
most recent session representation, in one of three methods: average pooling, last
hidden state, attention mechanism. This can be seen in Figure 4.5.

Figure 4.5: The three different ways of creating session representations in the
hierarchical model. si,j is the embedding of the j-th element of the i-th session.
ri is the session representation of the i-th session.

To formalize, using the average pooling method of creating session represen-



28 CHAPTER 4. ARCHITECTURE/MODEL

tations, the i-th session representation ri is given by

ri =
1

m

m∑
j=1

si,j (4.10)

where si,j is the embedding of the j-th element in the i-th session and m is
the length of the session.

The last hidden state method passes the session through a GRU and uses the
output (the last hidden state) as the session representation.

ri = GRU([si,1, si,2, ..., si,m]) (4.11)

The attention method uses a weighted average of the outputs of the GRU,
with the weights decided by an attention mechanism.

ei,j = a>tanh(Bhi,j) (4.12)

αi,j =
exp(ei,j)∑m
k=1 exp(ei,k)

(4.13)

ri =

m∑
j=1

αi,jhi,j (4.14)

where a is a vector of learnable weights, B is a matrix of learnable weights
and hi,j is the GRU output of the j-th timestep for the i-th session.

Now that we have the session representations, the next step is creating the
user representation. This is done using the exact same methods as for the session
representations. Using the average pooling method, the user representation u is
given by

u =
1

n

n∑
i=1

ri (4.15)

where ri is the i-th session representation and n is the total number of session
representations (up to a cap).

The last hidden state method passes the session representations, as a sequence
from oldest to newest, through a GRU and uses the output (the last hidden state)
as the user representation.

u = GRU([r1, r2, ..., rn]) (4.16)
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The attention method uses a weighted average of the outputs of the GRU,
with the weights decided by an attention mechanism.

ei = c>tanh(Dhi) (4.17)

αi =
exp(ei)∑n

k=1 exp(ek)
(4.18)

u =

n∑
i=1

αihi (4.19)

where c is a vector of learnable weights, D is a matrix of learnable weights
and hi is the GRU output of the i-th session representation. u is then used as the
initial hidden state when predicting the new session. This model is illustrated in
Figure 4.6.

The way the hierarchical model creates user representations is exactly the
same way as the inter-session attention mechanism creates its initial hidden state.
Because of this, we can concatenate the delta-t and week-t to the hidden state
when creating attention energies in the same way as in Formula 4.8. In fact,
the hierarchical attention model is a generalization of the inter-session attention
model. However, the inter-session model was conceived and tested first and some
of its parts were deemed unnecessary to carry over to the hierarchical model. To
be able to present the full results of the inter-session model, the models were
therefore presented separately.

4.3 Per-User Attention Weights

In Section 4.2, all the learnable weights of the attention mechanisms are global,
meaning that the same linear layers are used to create attention weights for all
the users. This might not be ideal, as different users can have different interests
or habits which can result in the attention mechanism becoming too general and
not being able to predict accurately for anyone.

This problem is in some ways similar to a problem faced in multilingual neural
machine translation. The weights that are effective at translating from language
A to language B might not be effective at translating from language C to lan-
guage D. Some authors have experimented with multilingual NMT with attention
mechanism and to tackle this problem they have set certain parts of the model
to be language specific such as the encoder and decoder [Firat et al., 2016], or
the attention layer and decoder [Dong et al., 2015].

We chose to experiment with per-user linear layers for computing attention
weights. This is not a new model, but rather a modification of the ones presented
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Figure 4.6: The layers of the hierarchical model. Green: The n most recent pre-
vious sessions for a user are used to create session representations. This is done
with one of three methods: Average pooling, last hidden state, attention mecha-
nism. Red: The session representations are used to create a user representation
using one of the same three methods as in green. Blue: The user representation
is used as initial hidden state to predict a new session.

in Section 4.2. For example, Formula 4.17 for the attention energies of user
representations in the hierarchical attention model can be modified to

ei = c>usrtanh(Dusrhi) (4.20)

Here, cusr and Dusr are still learnable weights, but they are specific to a
single user, meaning that these weights will only be used to predict/learn for
that specific user. Throughout the rest of the report, when we mention per-
user attention weights, we mean per-user linear layers for computing attention
weights.



Chapter 5

Experiments and Results

In this chapter we explain everything relating to the experiments. We present
the experimental plan in relation to the research questions. We then explain
everything related to the setup and configuration of the experiments in addition
to the datasets used for training. Finally we present the results and discuss some
of the more interesting findings.

5.1 Experimental Plan

This project has quite a few different experimental models. There is the intra-
session model, inter-session model, combined intra-session and inter-session model,
and the hierarchical model. The inter-session model can also be split up into any
permutation of the three different types of inter-session attention. In addition,
there is also the per-user attention weights.

The intra-session attention model will be tested to see if the attention mecha-
nism of encoder-decoder translation can be applied to recommender systems and
see similar results. This is in relation to our first research question.

In the inter-session attention, all permutations of the three attention mecha-
nisms will be tested to see if attention mechanisms can improve the generation
of initial hidden states. This is in relation to both research question, but with
special interest in the second one about temporal attention.

Some configurations from the inter-session attention will be combined with the
intra-session attention to see if the system performs better when jointly learning
both attention mechanisms. This is in relation to both research questions.

For the hierarchical model a new set of baselines will be tested that will
use the same methods (Average Pooling, Last Hidden State) used by the old
baselines. We will test the hierarchical model with attention mechanisms to see

31
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if this model outperforms the baseline of the hierarchical model and/or the other
attention mechanisms. This is again in relation to both research question.

Also in relation to both questions are the tests of per-user attention weights.
We want to see if the attention mechanisms will improve in accuracy if each
user has their own linear layers for computing attention weights. These tests
are somewhat slow as they require certain parts of the model to be done without
mini-batching. Thus, only some models will be tested using user-specific attention
mechanisms.

5.2 Datasets

Two datasets have been used for experimenting. The first dataset is from the
music website Last.fm. It contains tuples of user id, timestamp, artist name, song
name. Each tuple is a song the user has listened to. The second dataset is from
the social media/news aggregate website Reddit. It contains tuples of username,
subreddit, timestamp. Each tuple is one comment the user has made in the given
subreddit. Some statistics for the datasets can be seen in Table 5.1.

Dataset num items num users num sessions avg session length

Last.fm 94284 977 630774 8.1
Reddit 27452 18271 1135488 3.0

Last.fm CET 42665 265 144926 7.7

Table 5.1: Main dataset statistics

5.2.1 Last.fm

The Last.fm dataset does not use the concept of sessions. Therefore, this had to
be done manually. Ruocco et al. [2017] empirically set a time limit where, if two
consecutive events were further apart than the time limit, they would be split
into two separate sessions. The time limit for the Last.fm dataset was set to half
an hour (1800 seconds). This might seem long for two songs to be considered
part of the same session, but the reason for this is due to the next problem they
faced.

They also encountered a problem with the amount of unique songs in the
dataset. Using their proposed model with all the songs would not be possible as
it would require too much memory. Instead, they chose to simplify the dataset
by looking at individual artists instead of individual songs. The model predicts
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the next artist the user is going to listen to and the memory usage is reduced to
a manageable size. This way, the 1800 second time limit makes more sense.

5.2.2 Reddit

Similarly to the Last.fm dataset, the Reddit dataset also has no predefined ses-
sions. Therefore, we have to split them manually like for the Last.fm dataset.
However, the time limit shouldn’t necessarily be the same. The Reddit dataset
only records user comments, not all user activity. A user does a lot more than
just commenting. They browse subreddits to find interesting topics and they
read posts, all of which takes time. Therefore, it might be a long time between
comments. Accounting for this, Ruocco et al. [2017] set the time limit to be one
hour (3600 seconds). We used the same time limits for both datasets.

5.2.3 Last.fm CET

The week-time attention model requires the use of timestamps to determine what
time of the day and which day of the week a session started (for example: Wednes-
day at 22:00). Both datasets are from international websites that have users from
all over the world, but the timestamps are in UTC. This means that if a user
in Norway and a user in Canada performed an action at the same time their
timestamps would be identical, but their time of day would be different. This
would hinder the model in learning. Because of this, a new dataset was created
from the Last.fm dataset (which has country information on each user) to only
include the users that belong to the CET timezone. This timezone was chosen
as it was the one with the most users. As a result, the week-time model is only
tested on this dataset.

5.2.4 Filtered Datasets

While testing, we hypothesized that the accuracies achieved with attention mech-
anisms could be improved by filtering the datasets in certain ways. We looked
at two possible ideas. First, to limit the time from a user’s first session to their
last. Second, filtering users based on their average session length and session
count. With these datasets we want to see if they outperform the full datasets
and more importantly if they benefit more from attention mechanisms than the
full datasets.

Limited Time-Interval Datasets

Each user’s sessions are spread over a long timespan. For the Reddit dataset, the
average timespan between a user’s first session and their last is 265 days. For
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the Last.fm dataset, the same timespan is 535 days. Users’ interests and habits
change over time so limiting the time frame might make the datasets more learn-
able. Datasets were created where, for each user, we would only keep the events
that happened in the first x months of that user’s history. We experimented
with 1, 2 and 3 months. Statistics for the datasets can be seen in Table 5.2. The
reason that the smaller datasets have fewer users is because of a requirement that
each user has at least three sessions. So if a user had three sessions in the full
dataset, but one of those sessions is outside of the time interval, then that user
is dropped from the new dataset.

Dataset num items num users num sessions avg session length

lastfm-1-month 24816 893 32418 8.4
lastfm-2-months 33647 913 59814 8.3
lastfm-3-months 40105 924 90416 8.3
reddit-1-month 14789 11164 250320 3.7
reddit-2-month 18065 12745 430919 3.5
reddit-3-month 20102 13685 579545 3.4

Table 5.2: Statistics for the Limited Time-Interval datasets

User Statistics-Filtered Datasets

We computed two statistics for each user: How many sessions they have in total
and the average length of their sessions (shown in Figure 5.1). After this, we
computed the average of these two statistics for all users in each dataset. We
then created four user groupings: those with above average for both statistics,
below average for both statistics, higher than average session length and lower
than average session count, lower than average session length and higher than
average session count. Our main hypothesis was that the dataset containing
only users with higher than average in both statistics would perform better than
the full datasets. The users with lower than average in both statistics could
be considered ”noise” preventing the models from learning. Statistics for the
datasets can be seen in Table 5.3.

5.3 Experimental Setup

With the amount of data in the two (original) datasets, a GPU is required to
avoid having to train for days at a time. The experiments were carried out by
a machine provided by Telenor. The machine contains an Intel Xeon E5-2650
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(a) Last.fm (b) Reddit

Figure 5.1: The session counts and average session lengths for each user in each
dataset. The red lines denote the averages of each statistic.

Dataset num items num users num sessions avg session length

lastfm-removed-high-high 35147 311 86988 6.1
lastfm-removed-high-low 46969 180 218641 6.2
lastfm-removed-low-high 35133 309 69925 10.0
lastfm-removed-low-low 57433 177 255220 9.8

reddit-removed-high-high 13508 8139 190128 2.4
reddit-removed-high-low 18311 5306 559440 2.6
reddit-removed-low-high 6409 1881 55483 4.4
reddit-removed-low-low 15247 2945 330437 3.8

Table 5.3: Statistics for the Filtered datasets. ”lastfm-removed-high-low” means
the Last.fm dataset where all users with higher than average session length and/or
lower than average session count have been removed. Note that when presenting
results, we will omit the ”removed” part of the names of these datasets.

v4 CPU, two NVIDIA Tesla P100-PCIE 16GB GPUs and 64GB of RAM. The
processing power of the machine was split between 7+ students, each doing their
own experiments.

The datasets were split into 80%-20% train-test datasets where the first 80% of
each user’s actions were put in the training set and the remaining 20% were put in
the testing set. The training set is used to update weights with backpropagation
while the testing set is used to evaluate how well the system generalizes and to
record evaluation metrics.

The system uses the Adam optimizer and cross-entropy loss. Cross-entropy
loss was chosen because both the output of the system and the true labels are
probability distributions, so it makes sense to use cross-entropy. Dropout was
used as regularization.
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The hyperparameters are presented in Table 5.4. The hyperparameters used
for testing the filtered datasets are the same as the full datasets.

Dataset Reddit Last.fm Last.fm CET

Embedding size 50 100 100
Learning rate 0.001 0.001 0.001
Dropout rate 0.0 0.2 0.2

Max recent session representations 15 15 15
Mini-batch size 100 100 25

Number of GRU layers, intra-session level 1 1 1
Number of GRU layers, inter-session level 1 1 1

Type of session representations LHS AP AP

Table 5.4: Hyperparameters for each dataset when using attention mechanisms.
LHS stands for Last Hidden State and AP stands for Average Pooling.

To measure performance, two evaluation metrics were used, mean reciprocal
rank and recall@k. The reciprocal rank of a ranking of items is the multiplicative
inverse of the rank of the correct item (generally the first correct item, but in
this domain there is only one). The mean reciprocal rank is the mean of the
reciprocal rank of a collection of rankings.

MRR =
1

|Q|

|Q|∑
i=1

1

ranki
(5.1)

where Q is a set of rankings and ranki is the ranking of the correct item.
Recall measures the proportion of instances where the correct item was included
in the ranking. This is combined with a minimum rank that the item must be
at or above. For example, Recall@10 measures the proportion of items that were
ranked in the top 10 of probabilities of being correct.

Recall@k =
1

|Q|

|Q|∑
i=1

{
1 if ranki ≤ k
0 otherwise

(5.2)

These evaluations were performed on every item in the testing set, resulting
in the scores presented in Section 5.4.
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5.4 Experimental Results

This section will present the results for the different experimental models. Ruocco
et al. [2017] uses the last hidden state method of creating session representations
for the Reddit dataset and average pooling for the Last.fm dataset. Tests have
shown that these are also the optimal methods to use when using attention mech-
anisms. Therefore, whenever results are presented for a specific dataset, the type
of session representation is as such.

The number of permutations of models, model configurations and datasets
is very high. Therefore, to avoid this chapter being nothing but tables, only
the most relevant results will be presented. Also, in the interest of time and
computing power available, only the most promising models/datasets have been
tested with more than one RNG seed. Each metric is presented in the form of
”mean ± standard deviation”. If the standard deviation is not present, only
one run was done of that test. If the standard deviation is present, the results
are over five runs. The result of each run are based on the best epoch for the
Recall@20 metric for that run.

5.4.1 Intra-Session Attention

The intra-session attention was an attempt at using the encoder-decoder text
translation with attention architecture of Bahdanau et al. [2016] in a recom-
mender system setting. The results can be seen in Table 5.5.

MRR@5 MRR@10 MRR@20 R@5 R@10 R@20
Baseline 0.3208± 0.0012 0.3324± 0.0011 0.3383± 0.001 0.4466± 0.001 0.5336± 0.0011 0.6172± 0.0019

Attention
0.3211± 0.001 0.3327± 0.001 0.3385± 0.001 0.4459± 0.0011 0.5324± 0.001 0.6159± 0.0012
(+0.1%) (+0.1%) (+0.1%) (-0.2%) (-0.2%) (-0.2%)

(a) Reddit dataset
MRR@5 MRR@10 MRR@20 R@5 R@10 R@20

Baseline 0.0934± 0.0001 0.1011± 0.0001 0.1062± 0.0001 0.1492± 0.0001 0.2072± 0.0003 0.2823± 0.0003

Attention
0.0905± 0.0004 0.0981± 0.0004 0.1032± 0.0004 0.1444± 0.0007 0.2017± 0.0006 0.2762± 0.0007
(-3.1%) (-3.0%) (-2.8%) (-3.2%) (-2.7%) (-2.2%)

(b) Last.fm dataset

Table 5.5: Intra-session attention experimental results.

As can be seen, the baseline outperforms the attention mechanism for both
datasets. One reason for this might be that the assumption that text translation
and recommender systems are similar is not actually true. There is much more
structure in the grammar of a language than in a sequence of YouTube videos so
maybe simply applying the same attention mechanism won’t be as effective.

Another reason might be because session representations are one level of ab-
straction away from the actual actions of a user. What we mean by this is that
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Figure 5.2: Attention weights for the intra-session attention mechanism with the
Last.fm dataset. The leftmost column shows the top prediction for each time
step. The other columns contain one session representation each. The actions in
each session are displayed at the top while the weights below say how much that
session representation was weighted when predicting the action on the left.

we are trying to predict single actions by using representations of sequences of
actions. In contrast, in the translation example the inputs are words and the
outputs are words. Because of this the session representations might not lend
themselves to being used for predicting single actions.

While training the network, attention weights were recorded. An example of
the intra-session attention weights for the Last.fm dataset can be seen in Figure
5.2. In the vast majority of cases, the intra-session attention mechanism simply
prioritizes the more recent sessions over older ones. However, there is one notable
observation worth discussing.

Even though it is the most recent session, the left-most session representation
is weighted significantly lower than several of the older ones. It can be seen in
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several examples that short sessions, in particular those with only two actions,
are weighted significantly lower than longer ones. This is not universally true,
but it seems to hold more often than not.

It seems that shorter sessions are heavily penalized. One might think that
this is because session representations are created in a way that makes the values
of the representation have higher magnitude when there are more actions in
the session. However, the Last.fm session representations are created using the
average pooling method so the length of the session shouldn’t matter. More
intra-session attention weights can be seen in Appendix 1 and 2.

5.4.2 Inter-Session Attention

The inter-session attention mechanism had three different types of attention that
could be used separately or combined to create the initial hidden state for a new
session. The hidden attention is based on the hidden state of the inter-session
RNN. The delta-t attention is based on the time difference between session repre-
sentations and the new session. The week time attention tries to learn if sessions
at certain points of the week are more important than others. Because the week
time attention requires a different dataset, the results for that attention mecha-
nism is shown in a table separate from the others. The non-week-time attention
results are shown in Table 5.6 and the results for the week-time attention are
shown in Table 5.7.

MRR@5 MRR@10 MRR@20 R@5 R@10 R@20
Baseline 0.3208± 0.0012 0.3324± 0.0011 0.3383± 0.001 0.4466± 0.001 0.5336± 0.0011 0.6172± 0.0019

Hidden
0.319± 0.0024 0.3309± 0.0022 0.3368± 0.0022 0.4471± 0.0018 0.5365± 0.0013 0.6209± 0.0014
(-0.6%) (-0.5%) (-0.4%) (+0.1%) (+0.5%) (+0.6%)

Delta-t
0.3188± 0.0016 0.3306± 0.0015 0.3365± 0.0014 0.4455± 0.0011 0.5337± 0.0005 0.6182± 0.0006
(-0.6%) (-0.5%) (-0.5%) (-0.2%) (0.0%) (+0.2%)

Hidden+Delta-t
0.3194± 0.0031 0.3313± 0.0029 0.3373± 0.0028 0.4481± 0.0021 0.5374± 0.001 0.6227± 0.0011
(-0.4%) (-0.3%) (-0.3%) (+0.3%) (+0.7%) (+0.9%)

(a) Reddit dataset
MRR@5 MRR@10 MRR@20 R@5 R@10 R@20

Baseline 0.0934± 0.0001 0.1011± 0.0001 0.1062± 0.0001 0.1492± 0.0001 0.2072± 0.0003 0.2823± 0.0003

Hidden
0.0942± 0.0002 0.1018± 0.0003 0.107± 0.0003 0.1502± 0.0003 0.2083± 0.0004 0.2836± 0.0005
(+0.9%) (+0.7%) (+0.8%) (+0.7%) (+0.5%) (+0.5%)

Delta-t
0.0938± 0.0003 0.1015± 0.0003 0.1067± 0.0003 0.1497± 0.0004 0.2079± 0.0006 0.2832± 0.0006
(+0.4%) (+0.4%) (+0.5%) (+0.3%) (+0.3%) (+0.3%)

Hidden+Delta-t
0.094± 0.0007 0.1018± 0.0007 0.107± 0.0006 0.1502± 0.0007 0.2089± 0.0003 0.2849± 0.0005
(+0.6%) (+0.7%) (+0.8%) (+0.7%) (+0.8%) (+0.9%)

(b) Last.fm dataset

Table 5.6: Inter-session attention experimental results.

The results for the non-week-time attention mechanisms show that all atten-
tion mechanisms outperform the baseline and that the hidden + delta-t model
has the highest accuracy. In addition to these results, we have also visualized
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some attention weights from various models. One of these is the hidden atten-
tion model for the Reddit dataset. These visualizations can be seen in Figure
5.3. Additional visualizations of the inter-session hidden attention mechanism
with Last.fm can be seen in Appendix 3.

(a)

(b)

(c)

Figure 5.3: Attention weights for the hidden inter-session attention mechanism
using the Reddit dataset. The top row shows the session representations, one
for each column. The bottom row shows the attention weight for each session
representation.

One of the first things we can see in Figure 5.3a is that there is a gradual
decline in weights from left to right (most recent session to older ones). Similarly
to the intra-session model, this model seems to also prioritize more recent sessions.
However, this is not the only pattern we observe.

In Figure 5.3b we can see that even though newer sessions are prioritized,
older sessions can gain a higher weight with the right content. This can be seen
even more clearly in Figure 5.3c, though it is not immediately clear what causes
a session representation to get a higher weight. These session representations
are created using the last hidden state method, meaning that how the different
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actions in a session combine into a session representation is more complicated
than when using average pooling. For instance, two sessions (funny, AskReddit)
and (AskReddit, funny) will have different session representations and thus might
have wildly different attention weights.

In Section 4.2.2, we hypothesized that two events that are separated by a
24-multiple of hours (24 hours, 48 hours etc.) are more related than those that
are not. In Figure 5.4, we can see some attention weights from a run of delta-t
attention on the Reddit dataset.

(a) (b) (c)

(d) (e)

Figure 5.4: Attention weights for the delta-t inter-session attention mechanism
using the Reddit dataset. The left column in each figure is the delta-t, the
number of hours from that session to the new one we’re trying to predict. The
right column is the weight the attention mechanism assigned to that session.

Recall that the delta-time is sorted into buckets, each one hour long, for a
total of 168 buckets and a final one for everything older than 168 hours. That is
why all the attention weights for sessions more than 168 hours old are the same.

In Figure 5.4a, we can see that the event that is roughly 6 days ago (142
hours) is more relevant than the one that is a bit less than 4 days ago (89 hours).
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This could suggest that there is some merit to the theory, but this is definitely
not always the case. In Figure 5.4b we see that the session 103 hours ago is
much higher weighted than the one 91 hours ago even though it is not near a
24-multiple of hours. Figure 5.4c shows the 24-hour property again. Here, 74
and 90 are higher weighted than their neighbors, but they are still very small in
magnitude. They pale in comparison to the most recent sessions.

That is perhaps the most obvious observation one can make from these atten-
tion weights. While there may or may not be a correlation between a 24-multiple
hour difference between sessions and the attention weights, there is definitely a
correlation between how recent a session is and its attention weight. It can most
easily be seen in Figure 5.4d that very recent sessions are extremely important
when suggesting newer ones. Every session that is at least 20 hours old is prac-
tically ignored because the two most recent are so dominant. This could suggest
that the empirically selected time that decides whether two events are part of the
same session is suboptimal. It could also mean that we need a better model for
time differences between sessions than the one hour bucket system.

Figure 5.4e does not follow any of these patterns, but has an interesting
pattern nonetheless. In this one, the most recent session is over three days old
so the sessions aren’t dominated by a few recent ones. Although there are some
variations in the attention weights, it seems to suggest that when there are no
very recent sessions, all session representations should count roughly equally.

In conclusion, there might be a small difference between sessions that land on
the 24 multiple number of hours away from a new session, but by far the most
important sessions are those that are very recent.

The week-time attention results suffer from only being tested on one small
dataset. As can be seen in Table 5.7, all the models have a higher Recall@20
than the baseline, but this difference is very small.

MRR@5 MRR@10 MRR@20 R@5 R@10 R@20
Baseline 0.1004 0.1076 0.1123 0.1568 0.2119 0.2793

Week-t
0.0994 0.1067 0.1115 0.1561 0.2114 0.2806
(-1.0%) (-0.8%) (-0.7%) (-0.4%) (-0.2%) (+0.5%)

Hidden + Week-t
0.1005 0.1078 0.1125 0.157 0.2124 0.2804
(+0.1%) (+0.2%) (+0.2%) (+0.1%) (+0.2%) (+0.4%)

Delta-t + Week-t
0.1001 0.1074 0.1121 0.1563 0.2112 0.2798
(-0.3%) (-0.2%) (-0.2%) (-0.3%) (-0.3%) (+0.2%)

Hidden+Delta-t+Week-t
0.1012 0.1085 0.1132 0.1567 0.2118 0.281
(+0.8%) (+0.8%) (+0.8%) (-0.1%) (-0.0%) (+0.6%)

Table 5.7: Inter-session attention experimental results with the Last.fm CET
dataset.

This is the problem of only having one small dataset, it is hard to know if
a model really is outperforming the baseline or not. Luckily, we have attention
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(a) (b)

Figure 5.5: Attention weights for the week-time inter-session attention mechanism
using the Last.fm dataset. The left column shows the time of the week rounded
to the nearest hour for each session. The right column is the weight the attention
mechanism assigned to that session.

weight visualizations here as well and in Figure 5.5 they show a very clear picture.
All the attention weights are pretty much uniform, suggesting that the attention
mechanism is unable to learn a real connection between the time of the week that
a session started and the importance of that session. This pattern holds true for
all sets of week-time attention weights we have looked at.

5.4.3 Combined Inter-Session and Intra-Session Attention

The combined attention mechanism was an experiment to see if the intra-session
and inter-session attention mechanisms could be improved by combining them.
We performed one test per dataset. For the Reddit dataset we combined the intra
attention with the inter hidden attention. For the Last.fm dataset we combined
the intra attention with the inter hidden + delta-t attention. Lastly we tested
with the Last.fm CET dataset by combining the intra attention with all three
inter attentions. The results for the combined attention mechanism can be seen
in Table 5.8.

It seems that for both the Reddit and Last.fm datasets, the results from the
combined attention are somewhere between the intra attention and the corre-
sponding inter attention. This suggests that the combination of the intra and
inter attention mechanisms is no greater than the sum of its parts. The inter
attention, which performed well, pulls it up and the intra attention, which per-
formed poorly, pulls it down. In the end, the combined attention lies somewhere
in between.

Not only does the ability to jointly learn attention weights not seem to help
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increase accuracy, but more importantly, the combined attention performs worse
than their respective baselines.

MRR@5 MRR@10 MRR@20 R@5 R@10 R@20
Baseline 0.3208± 0.0012 0.3324± 0.0011 0.3383± 0.001 0.4466± 0.001 0.5336± 0.0011 0.6172± 0.0019

Intra
0.3211± 0.001 0.3327± 0.001 0.3385± 0.001 0.4459± 0.0011 0.5324± 0.001 0.6159± 0.0012
(+0.1%) (+0.1%) (+0.1%) (-0.2%) (-0.2%) (-0.2%)

Hidden
0.319± 0.0024 0.3309± 0.0022 0.3368± 0.0022 0.4471± 0.0018 0.5365± 0.0013 0.6209± 0.0014
(-0.6%) (-0.5%) (-0.4%) (+0.1%) (+0.5%) (+0.6%)

Intra+Hidden
0.3194 0.3312 0.337 0.4454 0.533 0.6168
(-0.4%) (-0.4%) (-0.4%) (-0.3%) (-0.1%) (-0.1%)

(a) Reddit dataset
MRR@5 MRR@10 MRR@20 R@5 R@10 R@20

Baseline 0.0934± 0.0001 0.1011± 0.0001 0.1062± 0.0001 0.1492± 0.0001 0.2072± 0.0003 0.2823± 0.0003

Intra
0.0905± 0.0004 0.0981± 0.0004 0.1032± 0.0004 0.1444± 0.0007 0.2017± 0.0006 0.2762± 0.0007
(-3.1%) (-3.0%) (-2.8%) (-3.2%) (-2.7%) (-2.2%)

Hidden+Delta-t
0.094± 0.0007 0.1018± 0.0007 0.107± 0.0006 0.1502± 0.0007 0.2089± 0.0003 0.2849± 0.0005
(+0.6%) (+0.7%) (+0.8%) (+0.7%) (+0.8%) (+0.9%)

Intra+Hidden+Delta-t
0.0902 0.0978 0.1029 0.1446 0.202 0.2767
(-3.4%) (-3.3%) (-3.1%) (-3.1%) (-2.5%) (-2.0%)

(b) Last.fm dataset
MRR@5 MRR@10 MRR@20 R@5 R@10 R@20

Baseline 0.1004 0.1076 0.1123 0.1568 0.2119 0.2793

Hidden+Delta-t+Week-t
0.1012 0.1085 0.1132 0.1567 0.2118 0.281
(+0.8%) (+0.8%) (+0.8%) (-0.1%) (-0.0%) (+0.6%)

Intra+Hidden+Delta-t+Week-t
0.0952 0.1024 0.107 0.1491 0.203 0.2712
(-5.2%) (-4.8%) (-4.7%) (-4.9%) (-4.2%) (-2.9%)

(c) Last.fm CET dataset

Table 5.8: Combined attention experimental results. The top entry in each table
is the baseline and the bottom entry is the combined attention. The intra atten-
tion and inter attention results are shown for reference (the intra attention results
for the Last.fm CET dataset is missing as the dataset was created specifically for
testing the Week-t inter attention mechanism).

Note that this model was made and tested before the hierarchical model was
implemented. While an intra + hierarchical combined attention is possible, it was
decided to be a non-priority as the aforementioned tests showed no improvement
when combining attention mechanisms.

5.4.4 Hierarchical Attention

As mentioned in the experimental plan, we want to test two things in the hier-
archical model. First, if the hierarchical model without attention outperforms
the baseline without attention. Second, if the hierarchical model with attention
outperforms the hierarchical model without attention.

The results are presented in Table 5.9. The hierarchical model without at-
tention outperforms the baseline model quite significantly. This is expected as
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MRR@5 MRR@10 MRR@20 R@5 R@10 R@20
Baseline 0.3208± 0.0012 0.3324± 0.0011 0.3383± 0.001 0.4466± 0.001 0.5336± 0.0011 0.6172± 0.0019

Hierarchical (no attn)
0.3339± 0.0013 0.3452± 0.0012 0.3508± 0.0012 0.4609± 0.0013 0.5453± 0.001 0.6255± 0.0013
(+4.1%) (+3.9%) (+3.7%) (+3.2%) (+2.2%) (+1.3%)

Hierarchical (attention)
0.3291± 0.002 0.3405± 0.0019 0.3462± 0.0019 0.4563± 0.0006 0.5413± 0.001 0.6227± 0.0011
(+2.6%) (+2.4%) (+2.3%) (+2.2%) (+1.4%) (+0.9%)

Hierarchical (delta-t attention)
0.3246± 0.0027 0.3363± 0.0026 0.3421± 0.0026 0.4567± 0.0017 0.5443± 0.0008 0.6262± 0.0007
(+1.2%) (+1.2%) (+1.1%) (+2.3%) (+2.0%) (+1.5%)

(a) Reddit dataset
MRR@5 MRR@10 MRR@20 R@5 R@10 R@20

Baseline 0.0934± 0.0001 0.1011± 0.0001 0.1062± 0.0001 0.1492± 0.0001 0.2072± 0.0003 0.2823± 0.0003

Hierarchical (no attn)
0.0946± 0.0002 0.1024± 0.0002 0.1076± 0.0002 0.1514± 0.0004 0.2109± 0.0003 0.2876± 0.0005
(+1.3%) (+1.3%) (+1.3%) (+1.5%) (+1.8%) (+1.9%)

Hierarchical (attention)
0.0925± 0.0004 0.1002± 0.0004 0.1054± 0.0004 0.1473± 0.0005 0.2056± 0.0005 0.2811± 0.0005
(-1.0%) (-0.9%) (-0.8%) (-1.3%) (-0.8%) (-0.4%)

(b) Last.fm dataset

Table 5.9: Hierarchical attention experimental results.

the hierarchical model is not storing and retrieving session representations, but
is instead creating them each time they are needed. This means that the session
representations are no longer based on old weights in the embedding matrix or
the intra-session GRU. The new session representations are more representative
of the events they consist of.

In the results for the hierarchical model with attention we see some interesting
results. The Reddit dataset performs quite well compared to the baseline, about
on par with the hidden + delta-t inter attention. However, when comparing to
the hierarchical model without attention it actually performs worse. The Last.fm
dataset performs even worse, with an accuracy lower than that of the baseline.

The reason for the bad accuracy with Last.fm is likely due to the way session
representations are created when using the hierarchical attention mechanism.
Recall that there are two ways to create session representations: last hidden state
and average pooling. In all our experiments so far, Reddit has used the last hidden
state method while Last.fm has used the average pooling method as this has
shown to give the best results. However, in order to have an attention mechanism
when creating session representations, the last hidden state method has to be
used. This means that the Last.fm dataset has to use the worst performing of
the two methods and its accuracy suffers as a result.

As mentioned in Section 4.2.4, the hierarchical model can also use the tem-
poral attention mechanisms of the inter-session model when creating user repre-
sentations. Because the Last.fm dataset performed poorly with this model we
decided to focus on the Reddit dataset. We also chose to skip the week-t at-
tention mechanism as it did not improve the inter-session attention model. In
Table 5.9, the model labeled Hierarchical (delta-t attention) is equivalent to the
inter-session hidden + delta-t attention, but with the addition of the extra layer
of attention mechanism when creating session representations introduced by the
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hierarchical model. This model finally beats the hierarchical model without at-
tention. This is also the highest (percentage-wise) increase in accuracy that we
have seen from augmenting an attention mechanism with a temporal component.

The hierarchical model brings a new level of attention and with it some new
attention weight visualizations. When creating session representations the model
will try to learn which events are more important than others and weight them
accordingly. Some attention weights can be seen in Figure 5.6.

(a) (b) (c)

Figure 5.6: Attention weights for the hierarchical attention mechanism on the
session representation level using the Last.fm dataset. The left column shows
all the events of a single session. The right column is the weight the attention
mechanism assigned to that event. In Figure (c) the third column is the amount
of subscribers for that subreddit as of 06.06.18.

It seems that, in contrast to most of the other attention mechanism visual-
izations we have looked at, these attention weights aren’t simply ordered by age.
We can see that in Figure 5.6a the attention weights are all over the place. This
makes sense as the time between each single event is very short. Figure 5.6b
shows a session that almost exclusively alternates between Radiohead and Mod-
eselektor. In this case we see that the Modelselektor events are always weighted
higher than the Radiohead event right before. This seems to show that there is
some prioritization of artists going on.

It seems that some items have consistently higher weights than others. These
items, however are often somewhat unpopular so the sample size is quite small.
On the flipside, some of the most popular subreddits such as AskReddit and
funny seem to be consistently lowly weighted. Figure 5.6c shows an interesting
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example of this. In it we have sorted the events by the attention weights and next
to each event is the subscriber count of the given subreddit. What we can see is
that smaller subreddits tend to be weighted higher than more popular ones.

This isn’t a perfect fit of course, but remember that the attention weights are
based on GRU outputs so the attention weights are based on not only the current
item (the item to the left of the weight), but also all other items earlier in the
session. This makes it a bit harder to interpret what’s going on. A few examples
of attention weights given to the AskReddit subreddit is shown in Appendix 5.

5.4.5 Filtered Datasets

As mentioned in the beginning of this chapter, there are two things we want to
know when using these datasets. First, will they outperform the full datasets.
Second, will they benefit more from attention mechanisms than the full datasets.
This section features 14 different datasets so to look at each of them with every
attention mechanism would be madness. Instead we will present the baselines
for all of the datasets, then we will show the results for the best Last.fm dataset
and the best Reddit dataset with some attention mechanisms as well.

Limited Time-Interval Datasets

We wanted to see if limiting the time interval in which we look at user history
would help predictions. The baseline results can be seen in Table 5.10.

MRR@5 MRR@10 MRR@20 R@5 R@10 R@20
Full dataset 0.3208± 0.0012 0.3324± 0.0011 0.3383± 0.001 0.4466± 0.001 0.5336± 0.0011 0.6172± 0.0019

1 Month
0.347 0.3588 0.3645 0.4756 0.5638 0.645
(+8.2%) (+7.9%) (+7.7%) (+6.5%) (+5.7%) (+4.5%)

2 Month
0.3468 0.3588 0.3646 0.4791 0.5685 0.6508
(+8.1%) (+7.9%) (+7.8%) (+7.3%) (+6.5%) (+5.4%)

3 Month
0.3416 0.3534 0.3591 0.4736 0.5619 0.6437
(+6.5%) (+6.3%) (+6.1%) (+6.0%) (+5.3%) (+4.3%)

(a) Reddit dataset
MRR@5 MRR@10 MRR@20 R@5 R@10 R@20

Full dataset 0.0934± 0.0001 0.1011± 0.0001 0.1062± 0.0001 0.1492± 0.0001 0.2072± 0.0003 0.2823± 0.0003

1 Month
0.101 0.1081 0.1127 0.1553 0.2092 0.2766
(+8.1%) (+6.9%) (+6.1%) (+4.1%) (+1.0%) (-2.0%)

2 Month
0.1033 0.111 0.1159 0.1638 0.2217 0.2934
(+10.6%) (+9.8%) (+9.1%) (+9.8%) (+7.0%) (+3.9%)

3 Month
0.1065 0.1146 0.1199 0.1682 0.2294 0.3058
(+14.0%) (+13.4%) (+12.9%) (+12.7%) (+10.7%) (+8.3%)

(b) Last.fm dataset

Table 5.10: Baseline results for the limited time-interval datasets.

It is very clear that the time-filtered datasets outperform the full datasets.
This makes sense as a user’s interests change over time, so trying to learn the
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user’s entire history makes things more difficult. In fact, it hurts the accuracy of
the model. The only time-filtered dataset that does not outperform the baseline
is the Last.fm 1 month dataset. This can likely be attributed to the fact that the
dataset is so small that it cannot achieve the same accuracy as the full dataset.

While these are interesting results, what we are most interested in is whether
applying attention mechanisms to these datasets will increase accuracy more than
with the full datasets. The temporal attention mechanism in particular is very
interesting in this case as all the events happen over a shorter time period. Table
5.11 shows the results for the Reddit 2 month and Last.fm 3 month datasets for
some attention mechanisms.

MRR@5 MRR@10 MRR@20 R@5 R@10 R@20
2 month baseline 0.3468 0.3588 0.3646 0.4791 0.5685 0.6508

Intra attention
0.3457 0.3571 0.3628 0.474 0.5596 0.6405
(-0.3%) (-0.5%) (-0.5%) (-1.1%) (-1.6%) (-1.6%)

Hidden+Delta-t attention
0.3457 0.3579 0.3637 0.4836 0.5742 0.6569
(-0.3%) (-0.3%) (-0.2%) (+0.9%) (+1.0%) (+0.9%)

Hierarchical attention
0.3475 0.3589 0.3644 0.4767 0.562 0.6417
(+0.2%) (0.0%) (-0.1%) (-0.5%) (-1.1%) (-1.4%)

(a) Reddit 2 month dataset
MRR@5 MRR@10 MRR@20 R@5 R@10 R@20

3 month baseline 0.1065 0.1146 0.1199 0.1682 0.2294 0.3058

Intra attention
0.1028 0.1109 0.1161 0.1649 0.2263 0.302
(-3.5%) (-3.2%) (-3.2%) (-2.0%) (-1.4%) (-1.2%)

Hidden+Delta-t attention
0.1071 0.1151 0.1204 0.1704 0.231 0.3076
(+0.6%) (+0.4%) (+0.4%) (+1.3%) (+0.7%) (+0.6%)

Hierarchical attention
0.1061 0.1142 0.1193 0.1667 0.2279 0.3024
(-0.4%) (-0.3%) (-0.5%) (-0.9%) (-0.7%) (-1.1%)

(b) Last.fm 3 month dataset

Table 5.11: Attention results for the limited time-interval datasets.

While the limited time-interval baselines are clearly better than the old base-
lines in terms of accuracy, the attention mechanisms show much of the same story
as with the full datasets. As before, the intra attention mechanism is the worst of
the bunch. The hidden + delta-t attention mechanism performs percentage-wise
about the same as for the full dataset. As for the hierarchical attention it seems
that Last.fm 3 month performs about the same as the hierarchical attention with
the full dataset, but Reddit 2 month performs much worse. Our hope was that
the temporal attention mechanism in particular would see improvement when we
only used sessions in a small time interval, but it seems that the limited time-
interval datasets do not benefit more from the temporal attention mechanism
than the full datasets.
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User Statistics-Filtered Datasets

Our main theory with these datasets was that the datasets containing only users
with above average session count and above average session length would perform
better. This is because we filter out the users with only a few sessions that
contribute nothing but noise. The only users left are those with long sessions
and many of them. Alas, it didn’t help. Table 5.12 shows the baseline results
for the filtered datasets. A reason that we see a decrease in accuracy might be
because there isn’t enough data to train on. As can be seen with the Last.fm
1 month dataset above, smaller datasets tend to perform worse than the larger
ones. If you have even less data, you might run into the exact opposite problem,
as can be seen in the results for Reddit high-low. This result in particular is
remarkable, but not reliable as the dataset used is incredibly small.

MRR@5 MRR@10 MRR@20 R@5 R@10 R@20
Baseline 0.3208± 0.0012 0.3324± 0.0011 0.3383± 0.001 0.4466± 0.001 0.5336± 0.0011 0.6172± 0.0019

High-High
0.3459 0.3544 0.3588 0.4414 0.5054 0.5697
(+7.8%) (+6.6%) (+6.1%) (-1.2%) (-5.3%) (-7.7%)

High-Low
0.2832 0.2946 0.3006 0.4065 0.4918 0.5781
(-11.7%) (-11.4%) (-11.1%) (-9.0%) (-7.8%) (-6.3%)

Low-High
0.485 0.4948 0.4993 0.6114 0.6841 0.7485
(+51.2%) (+48.9%) (+47.6%) (+36.9%) (+28.2%) (+21.3%)

Low-Low
0.2868 0.3004 0.3069 0.4244 0.5261 0.6198
(-10.6%) (-9.6%) (-9.3%) (-5.0%) (-1.4%) (+0.4%)

(a) Reddit dataset
MRR@5 MRR@10 MRR@20 R@5 R@10 R@20

Baseline 0.0934± 0.0001 0.1011± 0.0001 0.1062± 0.0001 0.1492± 0.0001 0.2072± 0.0003 0.2823± 0.0003

High-High
0.1193 0.125 0.1288 0.1659 0.2095 0.2645
(+27.7%) (+23.6%) (+21.3%) (+11.2%) (+1.1%) (-6.3%)

High-Low
0.1061 0.1131 0.1177 0.1599 0.2134 0.2807
(+13.6%) (+11.9%) (+10.8%) (+7.2%) (+3.0%) (-0.6%)

Low-High
0.0739 0.0806 0.0855 0.1206 0.1721 0.2427
(-20.9%) (-20.3%) (-19.5%) (-19.2%) (-16.9%) (-14.0%)

Low-Low
0.0791 0.0865 0.0917 0.1311 0.1874 0.2628
(-15.3%) (-14.4%) (-13.7%) (-12.1%) (-9.6%) (-6.9%)

(b) Last.fm dataset

Table 5.12: Baseline results for the statistics filtered datasets. ”high-low” means
that the dataset has removed all users with above average session length and/or
below average session count. Note that the Reddit low-high dataset is very small
so the increase in accuracy should be ignored.

For the attention mechanisms we present the results for the Reddit low-low
and Last.fm high-low datasets using the same attention mechanisms as for the
time-limited datasets. The results are shown in Table 5.13. Testing the filtered
datasets with the intra attention mechanism, we see mostly what we saw with
intra attention on the full datasets and the time-limited datasets; the baseline
outperforming the attention mechanism. The one exception to this (not shown
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in table) is the Reddit high-high dataset (Reddit where all users with higher
than average session length and/or higher than average session count have been
removed). In this dataset, each metric in the intra attention mechanism is equal
to or slightly greater than their baseline counterparts. This, while interesting, is
ultimately pointless as the baseline results for this dataset is much worse than
the full dataset. The results for hidden + delta-t and hierarchical attention are
similar as those for the time-limited datasets.

The fact that these datasets, both time-limited and statistics-filtered, didn’t
increase attention accuracy might be a sign that it is not the data itself that
doesn’t fit well with attention mechanism, but rather the problem domain. It
seems that even if your dataset only consists of ”ideal” users, the attention mech-
anism is unable to improve accuracy any more than the full datasets.

MRR@5 MRR@10 MRR@20 R@5 R@10 R@20
Low-low baseline 0.2868 0.3004 0.3069 0.4244 0.5261 0.6198

Intra attention
0.2867 0.2998 0.3063 0.4233 0.5208 0.6137
(-0.0%) (-0.2%) (-0.2%) (-0.3%) (-1.0%) (-1.0%)

Hidden+Delta-t attention
0.2879 0.3021 0.3086 0.4305 0.5366 0.6292
(+0.4%) (+0.6%) (+0.6%) (+1.4%) (+2.0%) (+1.5%)

Hierarchical attention
0.2822 0.2948 0.3012 0.4155 0.5101 0.6012
(-1.6%) (-1.9%) (-1.9%) (-2.1%) (-3.0%) (-3.0%)

(a) Reddit low-low dataset
MRR@5 MRR@10 MRR@20 R@5 R@10 R@20

High-low baseline 0.1061 0.1131 0.1177 0.1599 0.2134 0.2807

Intra attention
0.1004 0.1073 0.1119 0.1513 0.2033 0.2705
(-5.4%) (-5.1%) (-4.9%) (-5.4%) (-4.7%) (-3.6%)

Hidden+Delta-t attention
0.1053 0.1124 0.1171 0.1591 0.2133 0.2812
(-0.8%) (-0.6%) (-0.5%) (-0.5%) (-0.0%) (+0.2%)

Hierarchical attention
0.1019 0.109 0.1138 0.1538 0.2078 0.2774
(-4.0%) (-3.6%) (-3.3%) (-3.8%) (-2.6%) (-1.2%)

(b) Last.fm high-low dataset

Table 5.13: Attention results for the statistics filtered datasets.

5.4.6 Per-User Attention Weights

When testing per-user attention weights we encountered several problems. Firstly
the fact that it is incredibly slow to train. This is because in PyTorch, at least
as far as we could figure out, there is no way to pass each item in a mini-batch
through a different linear layer while still keeping the benefits of parallelization.
Therefore, the parts of the model that calculated attention weights had to be
done one by one.

The more serious problem was the amount of linear layers we needed in total
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for the model, especially for the Reddit dataset. The attention mechanism uses
two linear layers. The hierarchical model has two levels of attention. If using
per-user attention weights, that’s four linear layers per user. Multiply that by
18271 users (Reddit) and you have 73084 linear layers in a single model, which
PyTorch does not appreciate. This resulted in the training slowing down over
time.

Ways to work around these issues with per-user attention weights is discussed
in Section 6.4, but for now we decided instead to test the per-user attention
weights on some of the smaller datasets that we had created earlier. We tested
the per-user attention weights on the Last.fm 3 month dataset as this was the
best performing dataset as well as the Reddit low-low dataset as this dataset
performed decently while having a manageable amount of users. The results
are in Table 5.14. Even the Reddit low-low dataset couldn’t handle the intra
attention model with per-user attention weights so that result is missing.

MRR@5 MRR@10 MRR@20 R@5 R@10 R@20
Low-low baseline 0.2868 0.3004 0.3069 0.4244 0.5261 0.6198

Global hidden+delta-t
0.2879 0.3021 0.3086 0.4305 0.5366 0.6292
(+0.4%) (+0.6%) (+0.6%) (+1.4%) (+2.0%) (+1.5%)

Per-user hidden+delta-t
0.2791 0.2926 0.299 0.4173 0.5179 0.6099
(-2.7%) (-2.6%) (-2.6%) (-1.7%) (-1.6%) (-1.6%)

Global hierarchical
0.2822 0.2948 0.3012 0.4155 0.5101 0.6012
(-1.6%) (-1.9%) (-1.9%) (-2.1%) (-3.0%) (-3.0%)

Per-user hierarchical
0.2753 0.2879 0.294 0.4063 0.5007 0.5885
(-4.0%) (-4.2%) (-4.2%) (-4.3%) (-4.8%) (-5.1%)

(a) Reddit low-low dataset
MRR@5 MRR@10 MRR@20 R@5 R@10 R@20

3 month baseline 0.1065 0.1146 0.1199 0.1682 0.2294 0.3058

Global intra
0.1028 0.1109 0.1161 0.1649 0.2263 0.302
(-3.5%) (-3.2%) (-3.2%) (-2.0%) (-1.4%) (-1.2%)

Per-user intra
0.0993 0.1073 0.1124 0.1585 0.219 0.2941
(-6.8%) (-6.4%) (-6.3%) (-5.8%) (-4.5%) (-3.8%)

Global hidden+delta-t
0.1071 0.1151 0.1204 0.1704 0.231 0.3076
(+0.6%) (+0.4%) (+0.4%) (+1.3%) (+0.7%) (+0.6%)

Per-user hidden+delta-t
0.1048 0.1129 0.1182 0.1664 0.2282 0.3038
(-1.6%) (-1.5%) (-1.4%) (-1.1%) (-0.5%) (-0.7%)

Global hierarchical
0.1061 0.1142 0.1193 0.1667 0.2279 0.3024
(-0.4%) (-0.3%) (-0.5%) (-0.9%) (-0.7%) (-1.1%)

Per-user hierarchical
0.1059 0.1144 0.1198 0.1681 0.2324 0.3109
(-0.6%) (-0.2%) (-0.1%) (-0.1%) (+1.3%) (+1.7%)

(b) Last.fm 3 month dataset

Table 5.14: Per-user attention weights experimental results. Global means global
attention weights. Per-user means per-user attention weights.

All in all the results are very bad. The only instance where per-user attention
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weights outperformed global attention weights was the hierarchical model with
Last.fm 3 month. We can see that Last.fm 3 month outperformed Reddit low-
low (percentage-wise) for both the hidden + delta-t attention as well as the
hierarchical attention. The reason for this is likely the same reason as to why
per-user attention weights performed so badly overall. There is simply not enough
data per user to train the model. Looking at Table 5.2 and Table 5.3, we can
find the average number of events per user in the two datasets discussed in this
section. We find that users in the Reddit low-low dataset have an average of 426
events and users in the Last.fm dataset have an average of 812 events. Users in
Last.fm 3 month have almost twice the events of the users in Reddit low-low.
More data means more accuracy, but judging by the results we still need much
more. This approach should in theory give higher accuracy, but in practice it is
failing.



Chapter 6

Evaluation and Conclusion

In this chapter we summarize the results and the achievements of the project as a
whole. We also present some possible paths to take this work further. Whenever
accuracies are mentioned in this chapter we are referring to the Recall@20 metric.

6.1 Evaluation

The inter-session attention performed better than the baseline with the hidden
+ delta-t attention being the best with a +0.9% increase in accuracy in both
datasets. A lot of the attention weights favored more recent sessions. This was
seen in the intra-session model as well as the inter-session hidden and delta-
t models. One visualization of the delta-t attention showed that very recent
session representations (less than five hours old) seem to be very highly weighted.
As mentioned in the previous chapter, this could mean that the time difference
required for two events to be considered to be part of different sessions might be
suboptimal. It could also suggest that the way we model the delta-t by putting the
time difference in one hour buckets is too simple. A different approach could be
to not have the time difference of each bucket grow linearly (one hour each), but
instead grow quadratically (recent buckets are more granular and later buckets
cover larger timespans). We also saw that if there were no very recent sessions
then the session representations were weighted more equally, which would also fit
into the quadratic delta-t bucket model.

The intra-session attention performed worse than baseline for both full datasets
and equally bad for the smaller datasets and per-user attention weights. It is hard
to see whether the intra-session attention prioritized certain events or not. This
is because the attention mechanism is based on session representations. They are
one level of abstraction away from the events themselves and so it is hard to see

53
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which single items in the session representations are more important. We do see,
however, that some of the session representations have high weights even when
they’re not the most recent so their contents must matter.

The inter-session week-t attention with the Last.fm CET dataset achieved a
+0.6% increase over its baseline which, while better than baseline, fails to improve
more than the hidden + delta-t attention did on the full dataset. It is also very
clear from the attention weights that it learns little in its current implementation.
This could suggest that there is no connection between time of week and user
habits or it could suggest that the model is too simple. As stated in Section 1.2,
temporal modeling is an entirely different area of research so expecting results
with something as naive as this simple implementation can’t be expected.

In the combined attention we saw that combining the intra and inter attention
mechanisms did not increase accuracy more than they did on their own. One
attention mechanism brings the accuracy up, the other brings it down. We can
see a similar pattern with the inter-session hidden attention and delta-t attention.
They individually increased accuracy by a bit, and together they increased it
more.

The hierarchical baseline model achieved accuracy increases of +1.3% and
+1.9% in the Reddit and Last.fm datasets respectively. As mentioned in the last
chapter, this is likely due to the fact that each session representation is recreated
every time it is needed. This means that the embeddings of events used to cre-
ate the session representations are up to date with the latest weight changes in
the embedding matrix and not based on old values. The hierarchical attention
mechanism did not perform as well as we had hoped with +0.9% for Reddit and
−0.4% for Last.fm. In particular the Last.fm hierarchical attention mechanism
performed worse than the (original, non-hierarchical) baseline, but as discussed
previously, this is likely due to having to use the last hidden state method of
creating session representations. The hierarchical delta-t attention did improve
the accuracy for Reddit with an increase of +1.5% over the baseline, beating the
hierarchical model without attention. Judging by the attention weight visualiza-
tions it seems that some items tend to more highly weighted than others. The
more popular subreddits are consistently weighted lowly. Therefore, generally, a
subreddit will have more impact on a session representation if it has a smaller
subscriber count.

The limited-time interval datasets showed some great results in their base-
lines. While both datasets have large accuracy increases with the time-limited
datasets we see that Last.fm 3 month is the clear winner with a +8.3% increase
over its baseline while Reddit 2 month has a +5.4% increase. The reason Last.fm
3 months sees a much larger accuracy increase than the Reddit 2 month dataset
might be because a user’s music taste changes faster than their interests in spe-
cific subreddits. Looking at it more globally, the music taste of the Last.fm
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userbase will change over time as new songs are released, but while the Reddit
userbase might discover new subreddits over time, they will still visit the older
more established ones.

The statistics-filtered datasets did not perform as well as the limited-time
interval datasets. We hypothesized that the datasets that removed all users
with below average session length or below average session count would perform
better. While this was the best performing dataset for Last.fm, the improvement
was modest.

With both the time-filtered datasets and the statistics-filtered datasets we
wanted to see if we could create an ”ideal” dataset that was well suited for
attention mechanisms. However, it seems that not having an ideal dataset is not
the problem as these did not improve the accuracy of the attention mechanisms
any more than with the full datasets.

With per-user attention weights we saw that the datasets do not have enough
data on each user to be able to properly train its weights. We also saw that the
model struggles on large datasets due to the amount of training needed.

6.2 Discussion

All in all the highest accuracy for Last.fm was achieved by Last.fm 3 month
with hierarchical per-user attention. For Reddit, the highest was Reddit 2 month
with hidden + delta-t attention. For the full datasets the highest accuracy was
achieved by the inter-session hidden + delta-t attention for Last.fm and the
hierarchical delta-t attention for Reddit.

While the highest accuracies were achieved by filtered datasets, the filtered
datasets did not achieve their primary objective of being more suited for atten-
tion mechanisms. They achieved higher accuracies, but the relative increases in
accuracy with attention mechanism did not increase versus the full datasets.

Therefore, it is not the datasets that are the problem. Bahdanau et al. [2016]
has received a lot of praise for introducing attention mechanisms in text transla-
tion and others have followed in their footsteps by applying attention mechanisms
to other problem areas as well. It is then natural that we should attempt the
same methods with recommender systems. However, while the overall architec-
ture of the hierarchical session-based recommender system introduced by Ruocco
et al. [2017] is very similar to that of Bahdanau et al. [2016], the problem domains
are not. Language has a very strict grammar and many rules. This means that
after one word you can often very easily guess the next one. However, nobody
will stop you from listening to Adele right after listening to Kanye West. The
recommender system ”grammar” is a lot more free flowing. Because of this it is
harder to know which parts of the input are important for predicting which parts



56 CHAPTER 6. EVALUATION AND CONCLUSION

of the output, which is the essence of the attention mechanism of Bahdanau et al.
[2016].

There is also the issue of the abstraction between single events and session
representations that we mentioned earlier. Bahdanau et al. [2016] translated
words into words. Simple. We’re trying to ”translate” session representations
into single events.

Despite these issues we have shown that the attention mechanisms based solely
on hidden state do see a small increase in accuracy. We have also shown with
the inter-session hidden + delta-t attention that a temporal attention mechanism
can slightly increase accuracy. The attention weight visualizations also show clear
patterns, which means we might just need a more sophisticated way of modeling
the temporal aspect to see a more significant increase in accuracy.

Per-user attention weights has a laundry list of problems and clearly need
more work, but should in theory be able to increase accuracy further. A method
to fix these issues is described in Section 6.4.

6.3 Contributions

Our goal was to explore different ways that attention mechanisms can be
applied to session based recommender systems for the task of increasing accuracy.

In particular, our first research question asked if attention mechanisms that
have been developed for other applications of recurrent neural networks can be
applied to hierarchical session-based recommender systems. We have shown that
an attention mechanism based solely on the hidden stated of the encoder and
decoder can be applied to recommender systems as well, but only with modest
results.

We have also shown that we can achieve somewhat better results by aug-
menting these attention mechanisms with a temporal component. This relates to
our second research question about whether the temporal aspect of recommender
systems can be included in an attention mechanism to increase accuracy.

In addition, we have through visualizations of attention weights shown that
the attention mechanisms do learn certain patterns, so it is definitely possible that
other attention mechanisms can be applied to see greater results in the future.

6.4 Future Work

The model that consistently performed best was the inter-session temporal at-
tention (hidden + delta-t). We used a very simple way of modeling the time
between sessions by just putting the time differences into buckets of one hour
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each. A more sophisticated model, such as scaling the time-difference between
sessions quadratically instead of linearly or modeling the Delta-t someway differ-
ent altogether would likely perform better.

While per-user attention weights might be promising in theory, they won’t see
any practical application in their current form. Instead of each user getting their
own attention weight matrices, the users should be clustered. This could either
be done based on their interests or by some other metric. This should also be
done as a pre-training step. The benefit of clustering is two-fold. Firstly we avoid
the issue of having a model with way too many linear layers in it. This is not only
a problem because it causes issues with certain deep learning frameworks, but
also because many users won’t have enough data to properly train their weights
anyways. The other benefit of this is that it allows us to parallelize the parts that
were previously un-parallelizable by only including users from the same cluster
in any given mini-batch. Clustering users would also allow us to experiment with
per-cluster encoders and/or decoders as described in Section 4.3.
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1 Intra-Session Attention Weights for Last.fm

Figure 1: Another example of the Last.fm intra-session attention mechanism
prioritizing long sessions.
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Figure 2: Another example of the Last.fm intra-session attention mechanism
showing that more recent sessions are prioritized as well as the de-prioritization
of sessions of length 2.
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2 Intra-Session Attention Weights for Reddit

Figure 3: An example of the Reddit intra-session attention mechanism. This
one shows more recent sessions being prioritized. It does not de-prioritize short
sessions.
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3 Inter-Session Hidden Attention Weights for Last.fm

(a)

(b)

Figure 4: Attention weights for the hidden inter-session attention mechanism us-
ing the Last.fm dataset. These show similar patterns as the intra-session Last.fm,
with short sessions being de-prioritized. The sixth session from the right in Fig-
ure (b) seems to be heavily de-prioritized even though it is very long, but this is
an exception to the rule.
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4 Inter-Session Delta-t Attention Weights for Last.fm

(a) (b) (c)

Figure 5: Attention weights for the delta-t inter-session attention mechanism
using the Last.fm dataset. This shows similar patterns to the same attention
weights for the Reddit dataset, with more recent sessions being heavily prioritized.
When there are no recent sessions, the attention weights spread more evenly.
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5 Session Representation Attention Weights for
Reddit

(a) (b) (c) (d)

Figure 6: Attention weights for the hierarchical attention when creating session
representations. Shown here are several examples of the attention weights for
sessions containing the subreddit AskReddit. In figures (a) and (b) AskReddit
has a very small weight and larger weights are given to smaller subreddits. For
reference, AskReddit has as of 07.06.18 roughly 19,346,000 subscribers while Tin-
der has 967,000 subscribers and keto has 647,000 subscribers. It does not always
have a low weight however. In Figure (c) you can see that the weight is close to
that of pics, which has roughly the same number of subscribers as AskReddit.
Sometimes, AskReddit will also get a higher weight than smaller subreddits such
as in Figure (d) (nfl has 778,000 subscribers), but this is uncommon.
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