
Neural networks for sentiment analysis
in AsterixDB

Johan Morten Kristoffer Finckenhagen

Master of Science in Computer Science

Supervisor: Herindrasana Ramampiaro, IDI

Department of Computer Science

Submission date: July 2018

Norwegian University of Science and Technology

Summary

As data is generated at an ever increasing rate, and social media are getting larger and
more comprehensive than ever, the availability of these data and the possibility to analyze
them, is growing as well. The capability of storing large masses of data has become
trivialized over the years, and massive amount of information is stored every second. There
is competitiveness in being able to extract meaningful information from data that were
previously thought of as insignificant. Sentiment analysis is methods of retrieving an
authors attitude towards the topic discussed. Having knowledge about the sentiment of the
masses can be of significant market value, especially in i.e. knowing customers happiness
with a product or service provided. Other useful areas can be mining twitter and follow
opinions about the latest trends to develop new market strategies. Together with the late
success of deep learning, it poses great interest to observe how these practices can be
combined to analyze big data.

Previously the technique for processing natural language has been to create vocabular-
ies of arbitrary order to use for further processing, but by introducing multi-dimensional
vectors we can store semantic and syntactic information about words in a vector-space.
These vectors has proven incredibly good for natural language processing, and more so as
input format to deep learning algorithms as neural networks.

In this study several neural network models will be evaluated up against traditional
classification algorithms, measuring accuracy, on sentiment classification of twitter mes-
sages. Each model will be tested for prediction speed on big data using AsterixDB, a big
data management system support ingestion of streaming data. The results from this study
gives the best accuracy score 84,02%, and the fastest networks can handle an average of
about 10 000 tweets per second.

i

Sammendrag

Ettersom data blir produsert i stadig økende grad, og sosiale medier blir større og mer
omfattende enn noen gang er tilgangen til informasjon fra disse kildene, samt muligheten
for å analysere disse, også økt. Lagrinskapasitet har økt i tilgjengelighet og det lagres
enorme mengder data hvert sekund, og det er stor konkurranse i å trekke ut meningsfull
informasjon fra informasjon som tidligere ble sett på som verdiløs. Analyse av sentiment
er metoder for uthenting av fortfatters sentiment ovenfor et objekt det skrives om og kan
ha utrolig markedverdi i dagens marked, spesielt innenfor å måle kunders fornøydhet med
produkter og å analysere trender utifra f.eks twittermeldinger. Sammen med den seneste
suksessen ved dyp læring er det interessant og se hvordan disse kan kombineres for å
analysere store mengder data.

Fra tidligere har det vært vanlig å å lage arbitrære vokabular for å utføre diverse typer
prosessering av naturlig språk, men ved å integrere ord i flerdimensjonale vektorer kan vi
lagre semantisk informasjon i et vektorrom. Disse vektorene viser seg å gi ekstremt gode
resultater når det kommer til språkprosessering, spesielt som input til dype læringsalgorit-
mer som nevrale nettverk.

I denne undersøkelsen vil flere nevrale nettverksmodeller bli evaluert opp mot tradis-
jonelle klassifiseringsalgoritmer hva angår nøyaktighet ved analyse av twittermeldinger.
Nettverksmodellene testes i AsterixDB, et databasesystem som støtter analyse av
strømningsdata, og klassifiseringshastigheten til de ulike nettverkene blir målt opp mot
hverandre. Nøyaktighetsmålingene på twitterdata når opptil 84,02%, og de raskeste
nettverkene håndterer gjennomsnittlig rundt 10 000 tweets per sekund.

ii

Preface

The thesis is written by Johan Morten Kristoffer Finckenhagen as a final project for a mas-
ters degree in Computer Engineering at the Norwegian University of Science and Tech-
nology.

Acknowledgements

I want to thank my supervisor Heri Ramampiaro for continous help and feedback on the
project, as well as Thor Martin Abrahamsen for help regarding AsterixDB. Additionally
I want to thank Ian Maxon and Xikui Wang for fast responses and answers to questions
regarding AsterixDB.

iii

iv

Table of Contents

Summary i

Sammendrag ii

Preface iii

Acknowledgements iii

Table of Contents vi

List of Tables vii

List of Listings ix

List of Figures xi

Abbreviations xii

1 Introduction 1
1.1 Project background . 1
1.2 Project description and goal . 2
1.3 Approach . 2

1.3.1 Research Method . 2
1.3.2 Limitations . 3

1.4 Chapter outlines . 3

2 Background Theory 5
2.1 Data Representation . 5

2.1.1 Word2Vec . 5
2.2 Machine Learning . 6

2.2.1 Deep Learning . 7
2.2.2 Neural Networks . 7

v

2.2.3 Keras . 11
2.2.4 Tensorflow . 11
2.2.5 Deeplearning4j . 12

2.3 AsterixDB . 12
2.3.1 User Defined Functions . 13

2.4 Task and Domain . 13
2.4.1 Sentiment Analysis . 13
2.4.2 Twitter . 13

3 Survey 15
3.1 Related work . 15

3.1.1 Related Research . 15
3.1.2 Related Frameworks . 16

4 Theoretical Solution 19
4.1 The goals of the experiment . 19
4.2 Network Models . 19

4.2.1 The training data . 20
4.2.2 Training the network models . 20
4.2.3 Hyper parameters . 23
4.2.4 GPU or CPU for inference? . 23

4.3 The AsterixDB Feed ingestion pipeline 24
4.4 Testing the system . 26

4.4.1 The feed generator . 26
4.4.2 Setting up the AsterixDB cluster 26

5 Results 29
5.1 Training results . 29
5.2 Streaming results . 30

6 Evaluation and Discussion 35
6.1 Evaluation . 35
6.2 Discussion . 36

7 Conclusion and Future Work 37
7.1 Conclusion . 37
7.2 Future Work . 38

Bibliography 38

vi

List of Tables

2.1 The formulea and plot of the different activation functions. 11

4.1 AsterixDB cluster system specifications. 26
4.2 Feed generator system specifications. 26

5.1 Results from the Sentiment140 project. 29
5.2 CNN model summary. 30
5.3 Data acquired from the AsterixDB feeds. 30

vii

viii

List of Listings

4.1 A preview of the created vocabulary . 20
4.2 Sequence representation of the string ”this is a tweet”. Notice that ”a” is

left out, as the tokenizer does not carry on single characters. 21
4.3 Matrix representation of the embedding layer where l equals the length of

the word index, and m is the embedding size. 21
4.4 The query for initializing the feed in AsterixDB. 27
4.5 The dataformat of the tweets fed into the UDF and the output from the

UDF stored in AsterixDB. 27

ix

x

List of Figures

2.1 How the word embeddings are trained when using CBOW and Skip-gram. 6
2.2 The connections between nodes in a FCNN. 8
2.3 An overview of a CNN with two convolutional layers, one pooling layer,

a fully connected layer and a binary classifier. 9
2.4 A simple recurrent neural network unfolded. 9
2.5 The LSTM (left) and GRU (right) layer structure. 10
2.6 An overview of the AsterixDB system 13

4.1 The training procedure for the neural network models. 21
4.2 A simplified overview of the FCNN architecture. 22
4.3 A simplified overview of the CNN architecture. 22
4.4 A simplified overview of the parallel CNN architecture. 22
4.5 A simplified overview of the CNN-RNN architecture. 23
4.6 Performance of CPU and GPU on the larger CNN analyzing a total of 2.7

million tweets. 24
4.7 An overview of the AsterixDB feed ingestion pipeline. 25

5.1 Results from the FCNN with 64 neurons in the hidden layer. 31
5.2 Results from the FCNN with 256 neurons in the hidden layer. 31
5.3 Results from the CNN with 100 feature maps and a FC layer with 64 neurons. 32
5.4 Results from the CNN with 200 feature maps and a FC layer with 128

neurons. 32
5.5 Results from the parallel CNN network. 33
5.6 Results from the model combining convolutional and recurrent layers. . . 33

xi

Abbreviations

ADM = Asterix Data Model
AI = Artificial Intelligence
BD = Big Data
BDMS = Big Data Management System
CBOW = Continous Bag Of Words
CC = Cluster Controller
CFM = Central Feed Manager
CNN = Convolutional Neural Network
DAG = Directed Asyclic Graph
DL = Deep Learning
DM = Data Mining
DNN = Deep Neural Network
FC = Fully Connected
FCNN = Fully Connected Neural Network
FM = Feed Manger
GRU = Gated Recurrent Unit
LSTM = Long short term memory
ML = Machine Learning
NB = Naive Bayes
NC = Node Controller
NLP = Natural Language Processing
RNN = Recurrent Neural Network
SST = Stanford Sentiment Treebank
SVM = Support Vector Machine
TPS = Tweets Per Second
UDF = User Defined Function

xii

Chapter 1
Introduction

In this chapter the overall context of the project will be presented. It will include a de-
scription of the project, the background and goals of the project, and lastly there will be
an outline of the forthcoming chapters.

1.1 Project background
Over the last decade Big Data (BD) has come to be something that is generated from
everything around us, and data has gone from being static to something that is vital for all
businesses survival. Phones, tablets, watches and access cards, everything creates data that
is being mined and used by companies to personalize our perceptions and surroundings.
What advertisement we are being shown, and what we ultimately end up purchasing can
be heavily influenced by prosecutors sitting on information about our search history, where
we have been or what we have bought earlier.

As the capability of storing immense amounts of data has become feasible over the
last decade, new areas of data analysis have seen the light of day. Data Mining (DM) has
become a prevalent study withing computer science, and sheds light on what information
can be generated from existing data. Within this practice Machine Learning (ML) has
gotten a good foothold, and helps us extract useful information from otherwise fruitless
data. ML algorithms has the ability to train and learn from gathered data, and in turn
produce rules that helps us make educated estimations and predictions. They are able to
learn strong patterns used for classification in both text, images and other multimedia.
They provide a user friendliness in that they do not require feature extraction, but rather
teach themselves useful features.

There are already an abundance of readily available tools and techniques for ML and
DM, and one that has gotten a lot of consideration over the last couple of years is Deep
Learning (DL), more precisely Deep Neural Networks (DNN). Neural Networks (NN)
mimics our understanding of the human brain, and has proven to give extraordinary results
when applied to classification.

The study is based on a previous preliminary study on NNs used to process twitter

1

Chapter 1. Introduction

datastreams. The preliminary project used a framework called Deeplearning4j and per-
formed sentiment analysis on tweets using a Recurrent Neural Network (RNN) with Long
Short Term Memory (LSTM) layers. Deeplearning4j was, and still is the only DL frame-
work completely written in Java. In this study a transition to Keras with the Tensorflow
backend for building models has been made, and the Tensorflow Java API is used for
inference in AsterixDB. The reasoning behind this is explained in chapter 4.

1.2 Project description and goal
The main goal of this project it to perform a comparative study on the performance of dif-
ferent ML algorithms applied on streaming data. The main focus will be put on NN-based
algorithms, comparing their differences in term of speed performance and scalability. As
a case, the study will be done on sentiment analysis on a twitter-stream using AsterixDB
feeds.

Sentiment analysis has for a long time been performed using traditional classification al-
gorithms such as Naive Bayes (NB) and Support Vector Machines (SVM). These are in
general quite fast and not too computationally expensive. DNNs offer tools to incorporate
a larger part of the Natural Language Processing (NLP) research field into its architec-
ture, and are capable of learning more complex features than can be manufactured with
traditional classification algorithms. For simple classification tasks, simple, shallow and
efficient NNs can be crafted and perform incredibly well. But as more complex features
needs to be extracted, they also requires deeper and more computationally expensive net-
works.

With this in mind this study will take a look at different NNs used for sentiment anal-
ysis, and what each component of these networks brings to the table in terms of speed and
accuracy, as well as how similarities can be drawn between these components and tradi-
tional classification and NLP fundamentals. The study will try to answer the following
questions.

What are the different building blocks that make up a good neural network for sentiment
analysis, and what does each element add to performance and efficiency?

Are neural networks a good alternative to classic ML algorithms for sentiment analysis
when processing huge amounts of real-time data?

1.3 Approach

1.3.1 Research Method

The first parts of the study is review of relevant literature, taking a closer look at what is the
state-of-the art network models, and what results have been achieved in terms of sentiment
analysis. This part will also present alternative frameworks for datastreaming as well as
several DL frameworks. The latter part will present some standard DL architectures and

2

1.4 Chapter outlines

two models inspired by some of the research papers. There will be performed an analysis
of performance in regards to both accuracy and speed on each network.

1.3.2 Limitations
The models presented in the literature study are not specified in great detail, but in more
general terms regarding the architecture of the models. Thus, the models presented in the
latter part of this study will take inspiration from these models, but they do not necessarily
reflect the original models capabilities. The training and testing data are also different, and
making a direct comparison to the original findings is nonsensical. The results from this
study will be compared to results from other models on the same training and test data
in terms of accuracy. As for a measure of speed, only one other study has done similar
testing.

Due to hardware limitations the experiment in the latter part of the study is done on
a single computer simulating a small cluster, while the datastream is generated and sent
from another machine.

Twitter has since the dataset was gathered increased the maximum length of a tweet
from 140 to 280 characters, thus tweet lengths of 140 characters will be used for the
entirety of the experiment.

1.4 Chapter outlines
In chapter 2 a brief explanation of the concepts used in the project will be presented, as well
as an introduction to each of the technologies used to implement the system. A literature
study of similar frameworks and relevant research will be presented in chapter 3. Chapter
4 will outline the theoretical solution and how the experiments have been executed. The
results from the experiments will be presented in chapter 5, and chapter 6 will demonstrate
an evaluation and discussion around the results presented in chapter 5. Lastly, chapter 7
will conclude the thesis and present some future work.

3

Chapter 1. Introduction

4

Chapter 2
Background Theory

In the case of this study ML will be used to classify tweets, and therefore we need a good
data representation of words.

2.1 Data Representation
Data comes in several different formats, and one of the more prominent ones is textual
data. This form of sequential data is often conformed by a sequence of either words or
characters, and by analyzing these sequences much can be learned about their contents. We
can use ML on text data for a number of purposes, such as sentiment analysis, document
classification and to a degree question answering. As NNs do not comprehend text data,
there is need for a good data representation.

Vectorization is used in NLP as a means to represent sequential text data as real number
vectors. The simple way of doing this is through one-hot encoding, in which a vocabulary
is generated from the input data, and the vector representation of a word corresponds to the
length of the vocabulary. The index of the word in the vocabulary corresponds to where in
the vector there will be a 1, and the rest of the vector will be 0 valued. ”One hot encodings”
are sparse, hard coded vectors that consume a lot of memory as the vocabulary grows. A
way of reducing the dimensionality of the representation is by using dense, trained word
embeddings.

2.1.1 Word2Vec
Word2Vec is an implementation of a NN that learns word embeddings. The two layer NN
was developed by a team at Google led by Tomas Mikolov. Previously a popular approach
to statistical language modelling har been N-grams and Bag Of Words (BOW). N-gram
looks at the n adjacent word or tokens in a sentence to find the semantic context between
them. BOW collects all words in a document in a list, but does not keep memory of the
location of the words in relation to each other. BOW and n-grams can be combined to
Bag og n-grams as well, but some of the positional information is still lost. Word2Vec is

5

Chapter 2. Background Theory

a more complex language model than its predecessors and outperforms n-grams Mikolov
et al. (2013).

Word2Vec proposes two different models trained by either Continuous Bag of Words
(CBOW) or Skip-gram. The CBOW model is trained with a log-linear classifier using an
input of 8 words, or word embeddings. These 8 words are divided into 4 future and 4
history words, and the network is trained to predict the word between these groups of 4.
The skip-gram model is trained similarily, but while CBOW uses neighbouring words as
input, the skip-gram model uses the middle word to predict its neighbours as shown in
Figure 2.1.

Figure 2.1: How the word embeddings are trained when using CBOW and Skip-gram.

An interesting aspect of the Word2Vec model is how we can query the words in the
corpus and the different kinds of relationships we can find. Words that have similar seman-
tics e.g. different cities, will appear close to each other in the vector space and at the same
time have similar distances to words they are connected to e.g. the countries in which
they are located. This means that we can query a Word2Vec model and get results like
Oslo : Norway :: Stockholm : Sweden where ”:” is denoted as ”is to” and ”::” is denoted
as ”what”. We can then read the result of the query as ”Oslo is to Norway what Stock-
holm is to Sweden”. Using the offset between words in the vectorspace, the Word2Vec
model is able to discover more than just syntactic similarities, and it has been shown that
performing simple algebraic equations on vectors yield interesting results. The equation
vec(king)−vec(man)+vec(woman) = vec(queen) is an example of such an algebraic
operation.

2.2 Machine Learning
ML differs from traditional programming in that instead of providing rules and input data
to get an answer, the user provides answers and input data to generate rules, which can
subsequently be used to generate answers to new input data. In ML we train an algo-
rithm to find a structure in the training data from which rules to automate the task can
be generated. ML can be defined as ”searching for useful representations of some input
data, within a predefined space of possibilities, using guidance from a feedback signal”,
as stated in Chollet (2017). There are two different types of training; supervised and unsu-
pervised. When using supervised learning training datasets are given which has previously
been manually classified, and the algorithm are able to learn from the training data how to

6

2.2 Machine Learning

classify new data. In unsupervised training the algorithms will learn features in the data
and be able to separate data from each other into clusters. What defines these clusters are
on the other hand not always apparent. There are three prerequisites that need to be in
place to use ML. First we need to have a set of data points, secondly we need examples of
expected output and lastly a way to measure performance.

DL is subfield of ML, where the focus is on creating deep, layered ML algorithms,
where each successive layer outputs increasingly purified features.

2.2.1 Deep Learning
NN and Artificial Intelligence (AI) have for the last couple of years gotten a lot of attention
in the media, and are expanding fields of interest both academically and business related.
Self-driving cars, intelligent personal assistants like Siri and Alexa and chatbots are all
over the news. NNs plays an important role in many of these concepts, and makes an
effort to create an abstraction of how we believe the human brain makes decisions. NNs
consists of up to billions of connected processor nodes called neurons each having an
activation function that activates upon receiving the appropriate signal from other neurons
in the network. We divide NNs into two sub-categories, shallow and deep NNs. Shallow
networks have been around for along time, while DNNs date back to the 1960s. Shallow
networks are defined by having two or less layers, while DNNs has more.

To understand what decides a given network’s momentum, there is a necessity to un-
derstand the different architectures and concepts of the NNs. The next sections will give
a brief explanation of some of the core concepts used in the models presented later in this
study.

2.2.2 Neural Networks
NNs are built up by four main concepts. Firstly, different network layers that are stacked
on each other is what makes up the core model. The input data and labels are needed for a
network to train itself. A loss function measures the performance of the model and lastly
an optimizer tells the network how it should react to the loss function, and how training of
the network proceeds.

Fully Connected Neural Networks

The Fully Connected Neural Networks (FCNN) is the simplest form of a NN, with a num-
ber of fully connected (FC) hidden layers. Data fed to the input layer is sent to all nodes
in the successive layer, and output from all nodes are sent to every node in the next layer
until it finally arrives at the output layer. As every input is connected to every node in the
hidden layer, and every layer is FC to each consecutive layer, as input size increases these
networks become increasingly inefficient and computationally expensive.

Convolutional Networks

Convolutional Neural Networks (CNN) was pioneered by LeCun et al. (1998) and is im-
plemented by combining local receptive fields, shared weights and spacial subsampling.

7

Chapter 2. Background Theory

Figure 2.2: The connections between nodes in a FCNN.

Neurons uses local receptive fields to extract visual features which are subsequently fused
to create features of higher order. CNNs assume that inputs are n-dimensional tensors,
often images, or matrices consisting of word embeddings in the case of this study. As a
tensor is input into a CNN it is usually read as a tensor of 3 or 4 dimensions; batch size,
width, height and channels. Channels are used primarily for colour images, and is not nec-
essary in the case of this study. The receptive field, or filter size, of a neuron is connected
to a local region of the input, and there may be one or more neurons looking at the same
receptive field, thus finding different features for each field. Convolution layers are initial-
ized with several hyperparameters; the filter size, depth, stride and padding. The filter size
decides how big the receptive field of each neuron will be, the depth is how many filters
are applied, stride is how big steps are taken while sliding the filter and padding is whether
or not the input will be padded, as the convolution operation will eat from the input size as
shown in Figure 2.3

Just as with images convolutional layers can be used on NLP tasks such as sentiment
analysis. A one dimensional convolution uses filters of width equal to the input width
and a variable height given by hyperparameters. This gives one dimensional convolutional
layers the ability to extract features of n-grams, or sequences of n trailing words, and thus
be able to learn local patterns in a sequence of words in the same way two dimensional
convolutional layers can learn about features in an image given a neighbourhood of pixels.

Both FCNN and Convolutional Nueral Networks are what is called feedforward net-
works, which the topology is that of an Directed Asyclic Graph (DAG).

Max-Pooling Layer

Pooling layers are an often used technique in CNNs to reduce the spatial size of the output,
also known as downsampling. The most common usage is max pooling with a kernel size
of 2 and stride 2, which effectively removes 75% of all activations from the previous layer,
but there is also discussion around whether pooling layers are necessary, or if they should
be discarded in favor of higher stride values on some convolutional layers as suggested in
Springenberg et al. (2014).

8

2.2 Machine Learning

Figure 2.3: An overview of a CNN with two convolutional layers, one pooling layer, a fully con-
nected layer and a binary classifier.

Recurrent Neural Networks

RNNs differentiate themselves from other neural network configurations in that they look
at data sequentially, just like humans read sequentially. This specific ability makes RNNs
great for NLP tasks. RNNs work in timesteps, and at each timestep an input is processed
and produces an output that is sent as input to the next timestep, thus the input at the
next timestep is a concatenation of the output from the last timestep and the current input
as shown in Figure 2.4. Considering the two sentences ”I’m sad” and ”I’m not sad”,
by having information about what term that occurs prior to ”sad”, RNNs are capable
of seeing the difference in sentiment between these sentences. One problem with these
networks are, as Bengio et al. (1994) mentions, when the distance between two dependent
timesteps becomes long, the RNNs struggle to find them.

Figure 2.4: A simple recurrent neural network unfolded.

Long Short Term Memory and Gated Recurrent Units

To combat the difficulty of long-term dependency Hochreiter and Schmidhuber (1997)
introduced the Long Short Term Memory network. While the regular RNN consists of one
neural network layer, an LSTM layer incorporates 4 layers within repeating module, three

9

Chapter 2. Background Theory

sigmoid layers and a tanh layer as shown in Figure 2.5. The uppermost line in the layer,
called the conveyor belt, can easily transmit data down the network in a cell state, while
the sigmoid and tanh gates provides a way for the network to decide how much of the input
to let through. The leftmost sigmoid layer, the ”forget gate”, uses the previous output ht−1

and the input xt to decide how much of the conveyor belt shall be forgotten. The next
sigmoid and tahn layers, using a pointwise multiplication, decide what new information
should be added to the cell state, and it is added with a pointwise addition. The last part of
the LSTM decides what will be output from the layer at the current timestep.

The Gated Recurrent Unit (GRU), introduced by Cho et al. (2014), works in a similar
way as the LSTM network, though with a few key differences. The GRU simplifies the
module by combining the forget and update units, and removing the conveyor belt entirely.

Figure 2.5: The LSTM (left) and GRU (right) layer structure.

Activation Functions

Every node in a neural network has an activation function that computes the output of the
node. The simplest neuron, the perceptron has a simple step function that outputs either
1 or 0, while others usually have more intricate functions. Different activation functions
serve different purposes in neural networks. Three fundamental activations that see exten-
sive use in neural networks are the sigmoid, relu and tanh activation functions shown in
Table 2.1.

Loss functions

The training of neural networks comprises of several forward and backward passes. A
forward pass makes an inference from the given input and a backward pass computes the
gradients of the network using the chain rule. During the training stage a loss function uses
the deviation between the output from an inputs forward pass and the expected output to
calculate the loss of the given forward pass. There are several loss functions readily avail-
able. Mean Squared Error (MSE), Categorical Cross Entropy and Binary Cross Entropy
are the most used loss functions in today’s neural networks.

10

2.2 Machine Learning

Activation Function Plot

Sigmoid f(x) = 1
1+e−x

−1

1

ReLU f(x) =

{
0 : x < 0
x : x ≥ 0

−1

1

tanh f(x) = ex−e−x

ex+e−x
−1

1

Table 2.1: The formulea and plot of the different activation functions.

Optimizers

Optimizers decide how weights are updated during the backward passes, or backpropaga-
tion, of the training stage. Several great optimizers has been proposed over the last years,
all stemming from Gradient Descent. Gradient descent involves computation of the gradi-
ents between every layer in the network, and the way this is performed is by calculating the
derivative between nodes backwards in the layer, and moving slightly in the opposite di-
rection of the tangent. The step taken ”downhill” in the gradient is decided by the learning
rate of the optimizer.

2.2.3 Keras
Keras1, distributed under the MIT licence (https://opensource.org/licenses/MIT), is a deep-
learning library for python, initially developed as a research tool for scientists to easily
experiment and produce neural network models. Since then it has become the preferred
community choice as it provides a high level API that produce a user-friendly, modular
DL experience. It supports implementation of both CNNs and RNNs, and a plethora of
different activation functions, convenience layers and techniques for optimization and reg-
ularization. Keras does not concern itself with the low-level operations on tensors, instead
it is supported by three different backends, Google Tensorflow, Theano and Microsoft
CNTK.

2.2.4 Tensorflow
Tensorflow2 is the second interface and implementation for expressing and executing ML
algorithms released by Google following DistBelief, the outcome of early works on The
Google Brain project. Tensorflow grant a powerful tensor library for dealing with datarep-
resentation, as well as training and inference algorithms for deep neural networks. It is a

1https://keras.io/
2https://www.tensorflow.org/

11

Chapter 2. Background Theory

system developed with usability and flexibility in mind, as well as being high performance
for usage in deployment.

2.2.5 Deeplearning4j
Deeplearning4j3 is an open source project and toolkit for DL in Scala and Java. It is
mainly being developed by a company called Skymind. It offers several tools for DL, more
notably the components Deeplearning4j and ND4j, which will be used in this project. The
Deeplearning4j component supplies everything needed for setting up a neural network and
ND4j supplies a mathematical library for processing matrix data.

2.3 AsterixDB
AsterixDB4 is a Big Data Management System (BDMS) developed by faculty, staff and
students at UC Irvine and UC Riverside. The development was initiated in 2009, and the
first open source release dates back to 2013. Since then it is continuously being worked
on as part of the Apache Software Foundation (2018). AsterixDB aims to provide a rich
feature set that will distinguish it from the abundance of BD platforms that have emerged
over the last decade, and one of the major features is that it is a parallel database system,
that provide functionality both for anlaysis and storage of data. The idea behind AsterixDB
is to provide a system that support ingestion, indexation and management of, while also
providing tools for querying and analyzing, huge amounts of semi-structured data. An
overview of the AsterixDB system can be seen in Figure 2.6

AsterixDB comes shipped with a flexible data model called the Asterix Data Model
(ADM), which builds on and expands the traditional JSON-format with e.g. spacial and
timely formats, which are common in todays BDMS. To store data in AsterixDB a Data-
verse must first be created, which serves as what would defined as a database in relational
database management systems (RDBMS). Datasets are collections of datatype instances
within a dataverse, and each datatype must be defined as either open or closed. Open
datatypes has some attributes decided ”a priori”, while additional attributes can be added.
Closed datatypes on the other hand have a strict set of attributes that can not be altered.
To support this AsterixDB has developed its own SQL-like query language called SQL++
which support data ingestion among other extra features not available in regular SQL.

Data ingestion in AsterixDB is done through the feed adapter, which creates a connec-
tion to the feed, receives, parses and translates data to the ADM. Additionally AsterixDB
performs pre-processing of the data, e.g. adding/removing attributes, data analysis or fea-
ture extraction. The feed is initalized with a policy, which can be either of the following;
Basic, Spill, Discard, Throttle or Elastic. The Basic policy stores overflow in its buffer
memory, Spill flushes overflow to disk for later processing, Discard discards the overflow
and processes only the data it has capacity to. Throttle randomly filters out records ar-
riving in the stream while Elastic scales the system accordingingly, so it will be capable
of receiving the arriving records. The feed ingestion pipeline will be explained in greater
detail later in the thesis.

3https://deeplearning4j.org/
4https://asterixdb.apache.org/

12

2.4 Task and Domain

Figure 2.6: An overview of the AsterixDB system

2.3.1 User Defined Functions
As part of the pre-processing of data coming in through the feed adapter, AsterixDB sup-
ports what is called User Defined Functions (UDF). AsterixDB supplies some predefined
UDFs, but users are also able to create their own UDFs in Java and install them on their As-
terixDB instance. As a feed is initialized a chosen function may be applied to all incoming
data, specifying the input and output format of each data element. This gives AsterixDB a
great and versatile tool for data analysis, which will be utilized in this project.

2.4 Task and Domain

2.4.1 Sentiment Analysis
Sentiment analysis, also known as opinion mining, denotes the process of extracting an
authors sentiment towards the subject of a given text, and is one of the most common text
classification tools.

Businesses are eager to learn what the consumers joint sentiment towards their prod-
uct, or more so what the sentiment towards competing products are. A shift in sentiment
towards certain products or services can be an indication of a change in trends, and having
knowledge about trends can in return make a company adaptable and able to come up with
new strategies for tackling this shift.

2.4.2 Twitter
Twitter5 has over the recent years marked its position as one of the largest Social Media
Platforms with over 330 million active users daily Inc. (2017). It is a social network where

5https://about.twitter.com/

13

Chapter 2. Background Theory

users are able to post ”tweets”, which are messages of a maximum length of 280 charac-
ters (as of 7. November 2017). Tweets are grouped into topics by the use of hashtags,
i.e. #BigData, and thus tweets can easily be sorted into different categories for further
processing. One of the main challenges with analyzing tweets are the varying language
and structure, use of slang and abbreviations not often used in other literature.

14

Chapter 3
Survey

3.1 Related work
Significant traction in 2012 has instigated several breakthroughs in sentiment analysis us-
ing DNNs, pushing the boundaries of what is state-of-the-art. With a high focus on in-
creasing the accuracy of the networks, little to none research has been done concerning
the time-efficiency of NNs and while accuracy is of great importance, when handling
streaming data, time is also an important factor. The following sections will explore state
of the art NNs, frameworks for sentiment analysis, as well as explore some of the latest
data stream processing tools.

3.1.1 Related Research
Sentiment Analysis and Neural Networks

There has been done thorough research on how to efficiently speed up the training phase of
NNs, but little to none research on how well they perform while predicting with focus on
speed. The reasoning behind this is a huge focus on accuracy, and making the best possible
prediction. When classifying streaming data on the other hand, speed becomes a concern
as well, and is an important factor when creating appropriate models. This chapter will
give insight into some of the state of art models for sentiment analysis and how well they
perform, as well as look at how well some different backends perform against each other.
After several years of being the state of art, and community choice of classification tools,
several frameoworks and libraries for NNs has emerged. Along with Keras, Tensorflow
and Deeplearning4j, frameworks like PyTorch1, Caffe22 and Microsoft Cognitive Toolkit
(CNTK) 3 are eminent choices. Exploring the many available tools and deciding what
to use can be difficult, and there can be prominent differences in performance on various

1https://pytorch.org/
2https://caffe2.ai/
3https://www.microsoft.com/en-us/cognitive-toolkit/

15

Chapter 3. Survey

tasks. Kovalev et al. (2016) has done a thorough comparison between several de facto
frameworks on FCNN, and recorded result both on accuracy, training time, prediction
time and size of the source code, coming to the conclusion that Theano with Keras are
ranked on top, followed by Tensorflow, and ranking Deeplearning4j on bottom.

As both CNN and RNN models have proven significant usefulness Ouyang et al.
(2015) proposes a model consisting of 3 convolutional layers, dropout layers, max-pooling
and normalization layers, followed by the last FC fine grained classification layer, classi-
fying texts into 5 different categories (very negative, negative, neutral, positive and very
positive). The word embeddings used are pretrained embeddings from Word2Vec. The
performance outclasses several well known neural nets, as well as classic classification
methods as NB and SVM. dos Santos and Gatti (2014) proposes a network using not only
word embeddings, but also character embeddings, using convolutional layers to extract
character to sentence level features. This Character to Sentence Convolutional Neural
Network (CharSCNN) slightly outperforms the Sentence Convolutional Neural Network
(SCNN) they compare it to, as well as the SVM, NB and RNN classifications proposed by
Socher et al. Similar to the SCNN solution implemented by Cicero, Kim (2014) proposes
several CNN networks based on word embeddings, both with randomized, static, non-
static and multi-channeled word embeddings. On the Stanford Sentiment Treebank with
binary classification, the multi-channel network provides outstanding results compared to
other state of art classification models. Both Wang et al. (2016a) and Wang et al. (2016b)
incorporates a model combining convolutional layers with LSTM and GRU layers getting
state of art result on the ”Rotten Tomatoes” Movie Review dataset and Stanford Sentiment
Treebank (SST) dataset.

3.1.2 Related Frameworks
Deep learning

Just in the last couple of years, several toolkits and frameworks for computing artificial
NNs have emerged, most of them still in their early stages and undergoing continuous
development. One of the earlier implementations of DL frameworks, Theano4, developed
by the Montreal Institute of Learning Algorithms, and while being discontinued since
late 2017, has been an inspiration to the development of Tensorflow, and is offered as a
backend possibility in Keras. Also worthy a mention is Torch5 and Caffe6, which are well
performing frameworks, but lack community support and active development. Torch also
has the downside of being programmed in Lua, a language that has seen less use in recent
years, thus the community support is limited.

One of the main competitors to Keras and Tensorflow, PyTorch, has become one of
the community choices over the years and is often observed in high ranking entries on
Kaggle7 leaderboards. It provides a strong tensor library just like Tensorflow, and an easy
to use python API like Keras. PyTorch supports dynamic computational graphs as op-
posed to static graphs provided by Tensorflow. Braun (2018) provides a study of PyTorch

4http://deeplearning.net/software/theano/
5http://torch.ch/
6http://caffe.berkeleyvision.org/
7https://www.kaggle.com/

16

3.1 Related work

performance on LSTM networks while comparing to both Tensorflow and Keras showing
similar performance as the Tensorflow backend both GPU and CPU.

Caffe2, built as an improvement by Facebook on the former Caffe framework, and pro-
vides multi-GPU support and is aimed to be used in industrial-strength applications, while
PyTorch, similar to Keras and Tensorflow, excels at providing great tools for research
and expermentation with more advanced NN models. Caffe2 also provides functionality
for exporting all models in pure C++, giving the user the ability to deploy models with-
out python. These models can thus also be used with Java with additional software e.g.
JavaCPP8.

Microsoft offers an open source DL solution for commercial-grade application in their
CNTK. It supports python, C and C++, while also offering a stand-alone tool supplied
with its own language, BrainScript.

Apache MXNet9 is another outstanding framework, supported by both Microsoft and
Amazon. It offers API for JavaScript, R, Go, Python and C++, being one of the most
accessible frameworks in terms of programming languages. Together Microsoft and Ama-
zon have launched an interface for MXNet called Gluon10 that simplifies building and
prototyping NNs, much like how Keras works with the Tensorflow backend.

Big Data Streams

BD is rapidly and asynchronously generated, and often involves unbounded data of various
dimensions. These kinds of datasets is unfitted for the traditional relational databases and
DM frameworks designed to handle homogenous data. The traditional way of DM, where
data is loaded as a whole into main memory and processed, either on one machine or on
small simple clusters, proposes problems as the amount of data becomes overwhelmingly
large, and keeping it all in-memory at once becomes an impossibility. To counter this ob-
stacle several elastic and virtualized cloud based frameworks for dataprocessing has been
implemented, moving from the store-then-process paradigm to ad-hoc queries processing
streaming data in real-time.

In recent years the state-of-the-art systems for processing datastreams has been imple-
mentations of softwares stacks, folding complementing frameworks into a merged BDMS.
One of the community choices for this type of setup is Apache Spark11 and Apache Cas-
sandra12, where Apache Spark handles streams in near-real-time by processing batches
with small window sizes, and Apache Cassandra handles the persistent storage.

Another choice proposed by Grover and Carey (2015) which they used for comparison
with AsterixDB regarding scalability and fault-tolerance is Apache Storm13 with Mon-
goDB14. Apache Storm is a real-time stream processing engine, that uses spouts and bolts
as datasources and operators respectively, and MongoDB provides resilient storage in the
form of key-value stores. Storm has also seen extensive use at Twitter for processing

8https://github.com/bytedeco/Javacpp
9https://mxnet.apache.org/

10https://gluon.mxnet.io/
11https://spark.apache.org/
12http://cassandra.apache.org/
13http://storm.apache.org/
14https://www.mongodb.com/

17

Chapter 3. Survey

tweets after the acquisition in 2011, and open-sourcing in 2012 Toshniwal et al. (2014).
The extensive use and need for increasingly fast stream processing has led to the devel-
opment of Twitter Heron15, which provides Storm compatibility and improvements on
latency, throughput and CPU core usage Kulkarni et al. (2015).

Apache Flink16 is also one of the newer platforms introduced in recent years and
quickly got traction, being used by large scale companies as Uber, Zalando and Alibaba17.
Flink provides both streaming and batch processing tools, and supports connections to
several other frameworks as Kafka, ElasticSearch, HDFS, Amazon Kinesis Stream and
Cassandra18.

One of the main drawbacks of many of these implementations is the glued topology
consisting of different layers of frameworks. This is where AsterixDB is different, as it
provides one system for both handling streams and persisting data.

15https://apache.github.io/incubator-heron/
16https://flink.apache.org/
17https://flink.apache.org/poweredby.html
18https://ci.apache.org/projects/flink/flink-docs-master/dev/connectors/

18

Chapter 4
Theoretical Solution

The system implemented provides tools for training and testing NNs offline using word
embeddings and a series of different model proposals. The models will be installed and
used in AsterixDB UDFs to classify tweets arriving through AsterixDB feed adapter. The
following chapter will present the models, thoroughly explain the AsterixDB feed inges-
tion pipeline, as well as how the experiment has been carried out. The tool used for
modelling the NN in this experiment is Keras, as it is easy to set up, use and provides a
great and userfriendly API for experimentation. More importantly it runs on the Tensor-
flow backend, which in turn provides a Java API, so the models can be used for inference
in the AsterixDB UDF. The study provided by Kovalev et al. (2016) on different frame-
work speed also provides reasoning behind the switch to Tensorflow, as it outperformed
Deeplearning4j on every front.

4.1 The goals of the experiment
The aim of the experiment is to document whether or not NNs are applicable to perform
sentiment analysis on huge amounts of data arriving from a continuous datastream. The
experiment will serve as a proof of concept on how well these algorithms scale when used
in conjunction with AsterixDB as UDFs. There will be put effort into creating models that
are fast, as well as accurate. The architecture of each model will be presented, and the
experiments conducted will give an implication of how the different components of each
model affect performance.

4.2 Network Models
In this study several NN models are presented and measured up against each other, and
while accuracy is not the main focus, it is taken into account. Some general purpose
models will be proposed, as well as some models inspired by the papers presented in
chapter 3. The training of the network is performed in Keras with a Tensorflow backend,

19

Chapter 4. Theoretical Solution

and the models are exported and imported in the UDF with the Tensorflow Java API.

4.2.1 The training data
The training data used in this study is a collection of 1 600 000 tweets gathered by students
at Stanford University as a research project called Sentiment1401, presented in Go et al.
(2009). The dataset is available as a .csv file with tweets labeled as 1 or 0, 1 translating
to positive and 0 to negative. Tweets have been collected by querying the twitter API for
tweets that contain positive or negative emoticons, and the emoticons act as a noisy label
for determining the sentiment of the tweet. Every tweet containing both positive and nega-
tive emoticons are pruned, as they are considered neutral along with non-emoticon tweets.
The tweets stored in the dataset have had their emoticons removed as to give pure textual
input for training. One feature that makes the Sentiment140 project a great tool is auto-
mated aspect of gathering training data and performing sentiment classification through
distant supervision. The study also proposes several forms of text preprocessing needed to
achieve high classification accuracy. Lastly the study also provides some accuracy mea-
sures for sentiment analysis using some traditional classification algorithms.

4.2.2 Training the network models
Before we start training the models the dataset needs to be properly cleaned up. A Data-
Cleaner processes all data by removing URLs, transforming everything to lowercase and
remove punctuation. A tokenizer creates tokens from every tweet in the training set, while
simultaneously creating a word index that carries information about the l most occurring
terms as shown in Listing 4.1. Every tweet is then assembled into a sequence of integers
equivalent to their position in the word index and padded with zeroes to match the set
length of input n into the networks Listing 4.2. Figure 4.1 shows pipeline for the training
of the models.

{
"to" : 1,
"the" : 2,
...
"ybca" : 99999,
"polska" : 100000

}

Listing 4.1: A preview of the created vocabulary

An inspection of the training data shows that the average tweet consists of 11,7 words,
and that 99,9% of all the tweets in the dataset has 28 words or less. The longest tweet
in the corpus is 40 words long. The NNs proposed later will need an input of fixed size,
hence an upper limit to the size of each individual tweet must be set. Setting a maximum
length of 40 words makes sure that almost every new tweet will have all its words included

1http://help.sentiment140.com/

20

4.2 Network Models

when performing sentiment analysis. Having 99,9% of all tweets have the tweet as a
whole included seems justifiable as well, and will make each network lighter and improve
performance in relation to speed.

”this is a tweet” :
[
0 0 0 . . . 0 24 8 217

]
Listing 4.2: Sequence representation of the string ”this is a tweet”. Notice that ”a” is left out, as the
tokenizer does not carry on single characters.

An approached called k-fold was used to split the dataset into training, validation and
test sets respectively, thus having a training set of 1 568 000 tweets, validation of 16 000
tweets and a test set of 16 000 tweets. Similar for all models are the use of word embed-
dings provided by Word2Vec. Several word2vec models has been tested for training. Two
100-dimensional models trained on the Sentiment140 data with CBOW and skip-gram re-
spectively has been tested. The second model is a 200 dimensional concatenation of the
previous two, thus giving a combination of CBOW and skip-gram. The last word2vec
model is the pre-trained Google News 300-dimenstional vectors2. As each model is cre-
ated, the first layer, the embedding layer, uses the word index to create the word embed-
dings by taking the numerical value for each term and pairing it with the corresponding
word embedding from the pre-trained Word2Vec model, see Listing 4.3.

1 :
[
x1 x2 x3 . . . xm

]
2 :

[
x1 x2 x3 . . . xm

]
...

l :
[
x1 x2 x3 . . . xm

]
Listing 4.3: Matrix representation of the embedding layer where l equals the length of the
word index, and m is the embedding size.

For every model several hyper-parameters have been tested to find the model that gives
the best result, or with hyper-parameters that are mentioned in the relevant literature. The
loss function for every model is binary crossentropy as there is only binary classification
conducted in this study. Kingma and Ba (2014) explores the differences in the most pop-
ular optimizers, stating that Adam is the most versatile, and gives overall good results on
varied classification problems. The Adam optimizer will be used for all models presented
in this study.

Figure 4.1: The training procedure for the neural network models.

2https://code.google.com/archive/p/word2vec/

21

Chapter 4. Theoretical Solution

FCNN

The first proposed network is a FCNN. It consists of an embedding layer, followed by a
flattening layer and a FC layer. Second to last is a dropout layer to reduce overfitting, and
lastly a 1 neuron FC classification layer using a sigmoid activation. This model will serve
as a point of reference regarding speed, and several versions of the model will be tested
with different hyper-parameters to see how it affects the performance regarding speed
efficiency. A simplified version of this model can be seen in Figure 4.2.

Figure 4.2: A simplified overview of the FCNN architecture.

CNN

The first proposed CNN network implements only one convolutional layer following the
embedding layer. The convolutional layer is initialized with a window size of 3, and the
feature maps are forwarded to a max over time pooling layer that reduce the number of
activations and transforms the 2D tensor output from the convolutional layer to 1D tensor
which is input to the FC layer. The FC layer is in the same manner as in the FCNN model
followed by a dropout layer to reduce overfitting. The last layer is a sigmoid classifier.
The full model can be seen in Figure 4.3.

Figure 4.3: A simplified overview of the CNN architecture.

Parallel CNN

A parallel CNN model is proposed, where several convolutional layers with different filter
size are concatenated before being forwarded to the FC layer. The filter sizes used in
the model is 3, 4 and 5 as proposed by Kim (2014) in his non-static model. Each of the
parallel convolutional layers are followed by a max-over-time pooling which reduces the
dimensionality. This topology gives the network the ability to extract features in a way
similar to trigrams, 4-grams and 5-grams and use the resulting concatenation of features
as input to a FC layer, an addition to Kim Yoons proposed model. As with the other
models, the FC layer is followed by a dropout layer and a sigmoid classifier with a l2-
norm regularization with value 3.

Figure 4.4: A simplified overview of the parallel CNN architecture.

22

4.2 Network Models

CNN-RNN

The last model is proposed by Wang et al. (2016b) and uses a recurrent layer instead of a
FC layer as the penultimate layer of the model. The model uses a GRU with 100 outputs,
the best scoring model from the paper on binary classification. Preceding the GRU layer
is two parallel convolutional layers with filter size of 4 and 5.

Figure 4.5: A simplified overview of the CNN-RNN architecture.

4.2.3 Hyper parameters
One of the downsides of using NNs is often their complexity, and that they are com-
putationally expensive. The choice of hyper-parameters pay an important role when the
efficiency of both training and inference are concerned. A FCNN with an input size of 45,
and an embedding size of 300, produces a flattened input of size 13 500. With a FC layer
of size 256 the total number of weights in the network amounts to 3 456 256. Reducing the
input and embedding size on the other hand will minimize the network. For comparison
a FCNN with input and embedding size of 28 and 100 respectively, will have a total of
665 856. A further reduction in the size of the FC layer to 128 neurons will reduce the
amount of weights to 332 928. As input and layer size increases, the FCNN struggles with
an overload of parameters, thus the prediction efficiency will also drop drastically.

CNN on the other hand has a lot less parameters due to the trait of parameter sharing,
but the convolution operation is on the other hand more costly. The CNN models also
incorporate a FC layer at the end, and after the convolution operation the input to the FC
layer is considerably smaller in size. A CNN with 100 featuremaps, a FC layer of 256,
input size 45 and embedding size of 300 has a total of 116 213 weights.

In this study several variants of the FCNN and CNN will be tested to determine what
parts of the NNs makes it slower or faster. To answer the question on what parts of the
neural networks affect the time efficiency, the FCNN and CNN will be tested with different
sizes of each layer to see how it affects the inference speed. For all experiments the input
size will be 28.

4.2.4 GPU or CPU for inference?
GPUs has shown to be a major benefit to DNNs over the last year, and especially when
it comes to training CNNs. Chetlur et al. (2014) reports increases in both backward and
forward propagation of CNNs when using GPU rather than CPU, and an overall speedup of
30%. The test done in the study were done on networks with 5 consecutive convolutional
layers, which are more that what is tested here. A test was performed on a stream of 1500
tweets per second for 180 seconds, thus a total of 2,7 million tweets on the largest CNN
model presented previously. From the result shown in Figure 4.6 it is evident that the

23

Chapter 4. Theoretical Solution

network running on CPU is actually faster than the one running on GPU, thus the rest of
the experiments will be performed on CPU as well.

0 200 400 600 800
0

1 · 106

2 · 106

3 · 106

Time

Tw
ee

ts

CPU vs GPU

CPU
GPU

Figure 4.6: Performance of CPU and GPU on the larger CNN analyzing a total of 2.7 million tweets.

4.3 The AsterixDB Feed ingestion pipeline
To establish connections to data sources, AsterixDB has implemented feed adaptors, har-
boring functionality to ingest, parse and translate data from source to storable ADM
records. Feed adaptors operate in two different modes, either push or pull, depending
on whether the intention is to establish a connection in one request to receive data contin-
uously, or to send a request each time one wishes to receive data respectively. As a feed is
initialized, there is a possibility to specify the inclusion of a UDF, which can be written in
SQL++ of defined through Java. Simpler functions, similar to those known from SQL can
be defined in SQL++, while more elaborate functions will need to be implemented in Java
and installed as AsterixDB libraries, then used in SQL++. As well as applying a UDF, one
of several ingestion policies must be chosen, deciding how the feed adaptor will handle
potential bottlenecks and failures. As the feed is initialized it is translated to a hyracks job,
and a dataflow referred to as a feed ingestion pipeline is generated. A big part of the feed
ingestion pipeline is comprised of a hyracks data operator, which is responsible for execut-
ing custom logic on partitions of data, and create partitioned output. This output is made
available for the consuming operator instances after repartitioning in the Data Connectors.
Along the pipeline several feed joints may be located along the pipeline and helps route
the data along several simultaneous paths. Feed joints are usually placed at the output of
an operator producing records, or at the output of a preprocessing compute operator.

The feed ingestion pipeline is a three stage workflow, including the intake, compute
and store stages. The intake stage involves the establishment of a feed adaptor and initial-
izing the datatransfer and transformation into ADM records. If supplied, the preprocessing
functions are applied to data during the compute stage, and subsequently presisted during
the store stage. Each stage is assigned a specific data operator, known as the intake, com-
pute and store operator.

24

4.3 The AsterixDB Feed ingestion pipeline

An AsterixDB cluster is made up from a manager node and several worker nodes.
The Central Feed Manager (CFM) is responsible for scheduling as well as tracking load
distribution across the cluster, and is hosted by the manager node. The worker nodes
hosts Feed Managers (FM) that send periodic reports to the CFM with vital information
such as CPU usage. For each pipeline a certain degree of parallelism must be chosen
through some cardinality or location contraint. For the intake operpator the constraints
are regulated by the feed adaptor, while the contraints for the store is predermined by the
nodegroup associated with the target dataset. The amount of parallelism for the compute
operator is on the other hand determined by the rate of data arrival and complexity of the
UDF.

Figure 4.7: An overview of the AsterixDB feed ingestion pipeline.

As the rate of arrival increases or the UDF function gets more complex a need for
excessive amounts of resources may arise, thus creating a back-pressure which in turn
might lead to a complete lock of the data flow. In the case of a high rate of arrival Aster-
ixDB tackles this problem by preventing back-pressure at the originating operator, secur-
ing the rest of the pipeline from being affected. As back-pressure evolves at an operator a
MetaFeed operator, wrapped around the core operator, makes sure records are buffered in
memory while also tracking the rate of arrival and rate of processing done by the core op-
erator. Congestion caused by UDF complexity is transmitted from the MetaFeed operator,
through the local FM, to the CFM which can re-structure the pipeline to accommodate the
need for more processing power at the compute stage.

The MetaFeed operator is also responsible for handling software failures, and as the
core operator is operating in a sandbox-like environment failures are handled by the
MetaFeed operator copying the incoming data feed frame, slicing away the record causing
and error, and re-feed the core operator with the augmented data frame.

Hardware failures are handled differently. Each node in the cluster periodically sends a
heartbeat to the CFM telling it that it is alive, and thus the CFM can detect dead nodes. As
soon as a failure is detected all nodes in the feed pipeline are notified and their FMs make
sure their output buffers are saved before they terminates themselves. Intake operators
spill or buffer their inputs so they are not forwarded down the pipeline. Consequently,

25

Chapter 4. Theoretical Solution

each operator assumes a hand-off stage, where all stored states are retrieved and sent to a
new identical feed ingestion pipeline. The failed node is substituted by the CFM, which
has an overview of each nodes load distribution. Store node failures are handled by an
early termination of the given feed, and uses a log based recovery to restore itself and
re-join the cluster

4.4 Testing the system
This section will serve as a review of how the experiments have been carried out in prac-
tice. The system will be tested on a machine with the specifications shown in Table 4.1.

AsterixDB local cluster
Processor 3.5 GHz Intel Core i7 QuadCore
Memory 16 GB 1600 MHz DDR3
Graphics GeForce GTX 1060 6GB

Table 4.1: AsterixDB cluster system specifications.

4.4.1 The feed generator
For testing purposes a feed generator has been implemented in Python to serve as a twitter
feed, generating a specific amount of tweets per second. The generator is set to connect to
a given IP address and port number, and will continuously push tweets to the socket at the
given rate until a certain threshold is met. If the AsterixDB feed ingestion queue is full and
can no longer receive tweets, the tweet generator will halt its stream, and continue as soon
as there is room in the queue. The threshold for the tweet generator is set 180 seconds.
The feed generator will be running on the machine shown in Table 4.2.

Macbook Pro Retina 2015
Processor 2,7 GHz Intel Core i5
Memory 8 GB 1867 MHz DDR3
Graphics Intel Iris Graphics 6100 1536 MB

Table 4.2: Feed generator system specifications.

4.4.2 Setting up the AsterixDB cluster
As an AsterixDB cluster is deployed it is comprised of a Master Node and severeal Worker
Nodes. The master node runs a service called Cluster Controller (CC), while the worker
nodes run services known as Node Controllers (NC). The CC manages the workload and
distributes the work among the other nodes as well as itself.

AsterixDB supports deployment of several nodes to a single working machine, as they
are logical concepts rather than individual machines running AsterixDB. In this study we
will deploy 2, 4 and 8 nodes to a single machine, as the processor has 4 cores and 8 threads.

26

4.4 Testing the system

The query for starting an ingestion feed is shown in Listing 4.4. First a dataverse called
feed for our incoming feed is created. As to minimize storage over several tests the feed,
dataset and types are dropped before being created again. The feed is set up to listen for
incoming data of datatype TextType and is connected to the dataset TweetDataset, using
the getSentiment function in the compute stage of the feed pipeline. As the query is exe-
cuted AsterixDB compiles the query written in SQL++ to an algebraic Hyracks executable
program.

CREATE DATAVERSE feed
USE feed;
DROP FEED SocketFeed IF EXISTS;
DROP DATASET TweetDataset IF EXISTS;
DROP TYPE TextType IF EXISTS;
CREATE TYPE TextType AS open { text: string };
CREATE DATASET TweetDataset(TextType) PRIMARY KEY text;
CREATE FEED SocketFeed USING socket_adapter (

("sockets"="127.0.0.1:10001"),
("address-type"="IP"),
("type-name"="TextType"),
("format"="adm")

);
CONNECT FEED SocketFeed TO DATASET TweetDataset
APPLY FUNCTION classlib#getSentiment USING POLICY Basic;
START FEED SocketFeed;

Listing 4.4: The query for initializing the feed in AsterixDB.

As the tweets arrive in the feed they will be processed by the installed getSentiment
function applied to the stream in the AsterixDB query shown above. As a tweet is ingested
into the function, it will be tokenized by a method called textToSequence which processes
the tweet in the same way as done in training. Each tweet will subsequently be evaluated by
the NN, and an inference will be computed by the network. The output of the getSentiment
function is an ADM shown in Listing 4.5.

input = {text: "this is a tweet text"}

output = {text: "this is a tweet text",
sentiment: "positive"}

Listing 4.5: The dataformat of the tweets fed into the UDF and the output from the UDF stored in
AsterixDB.

27

Chapter 4. Theoretical Solution

28

Chapter 5
Results

In this chapter the results from training and running the twitter stream into the AsterixDB
feed ingestion pipeline are presented. Every test was done 5 times and the average is
displayed in the following graphs.

5.1 Training results
The results from Go et al. (2009) are used as a reference point to see how well the models
are performing. Sentiment140 was tested with several combinations of features and with
three different algorithms. The algorithms tested was NB, Max Entropy and SVM. The
results are shown in Figure 5.1

Features NB MaxEnt SVM
Unigram 81,3% 80,5% 82,2%

Unigram + Bigram 82,7% 83,0% 81,6%

Table 5.1: Results from the Sentiment140 project.

As the training set is huge in size, the models presented in the previous chapter was
trained for a total of 10 epochs each. A callback method keeps track of the validation accu-
racy for each epoch and saves the best performing model to file. Each network was trained
with the 4 different Word2Vec embedding explained earlier, and the 200 dimensional con-
catination of CBOW and Skip-gram vectors outperformed the 100 dimensional vectors of
both CBOW and skip-gram trained vectors, as well as the 300 dimensional Googel News
Vectors.

For the FCNN and the CNN several models were trained with different hyperparame-
ters getting diffrent result. The FCNN with 64 neurons in the hidden layer got a test ac-
curacy of 81,44%, while with 128 and 256, the accuracy increased to 81,64% and 82,00%
respectively. For the CNN a combination of 100 convolution filters and a FC layer with
64 neurons were tested, producing a test accuracy of 83,22%, while the model with 200

29

Chapter 5. Results

filters and a 128 neuron FC layer scored a test accuracy of 83,27%.
The hyperparamters for the parallel CNN and the CNN-RNN were kept as close to

the original studies as possible, except for the addition of a penultimate FC layer with
64 neurons in the paralell CNN which increased test accuracy from 83,05% to 83,71%.
The CNN-RNN proposed by Wang et al. (2016b) had less information about the hyperpa-
rameters applied to the model, but both the LSTM and GRU model were tested with 100
convolution filters and 128 as the output size from the LSTM and GRU layer. Just as in
the study, the GRU implementation acquired the best test accuracy of 84,02%, the best
scoring model in this study. An overview of the accuracy scores can be seen in Table 5.2.

Model Accuracy
Small FCNN 81,44%
Large FCNN 82,00%
Small CNN 83,22%
Large CNN 83,27%

Parallel CNN 83,71%
CNN-RNN 84,02%

Table 5.2: CNN model summary.

5.2 Streaming results
In Figure 5.1-5.6 the results from running the query on the various models are presented.
For each model some initial test were done to find a reasonable amount of tweets per
second to push from the stream generator. Each model has been tested 5 times on each
cluster size, and the results shown are the averages. Lastly Table 5.3 shown an overview
of each models total tweets classified, the finish time of each model and the increase in
tweets per second when increasing the cluster size to either 4 or 8 nodes.

Model Total Tweets Finish Time TPS increase2 nodes 4 nodes 8 nodes
small FCNN 2 700 000 280s 210s 204s 37,25%
large FCNN 900 000 338s 314s 318s 7,62%
small CNN 1 800 000 322s 256s 210s 53,33%
large CNN 1 260 000 332s 258s 252s 31,75%
Parallel CNN 720 000 374s 262s 300s 42,75%
CNN-RNN 360 000 418s 304s 242s 72,82%

Table 5.3: Data acquired from the AsterixDB feeds.

30

5.2 Streaming results

0 50 100 150 200 250 300
0

5,000

10,000

15,000

Time

Tw
ee

ts
pe

rs
ec

on
d

FCNN with 64 neurons

2 Nodes
4 Nodes
8 Nodes

TPS

Figure 5.1: Results from the
FCNN with 64 neurons in
the hidden layer.

0 50 100 150 200 250 300 350
0

2,000

4,000

6,000

Time

Tw
ee

ts
pe

rs
ec

on
d

FCNN with 256 neurons

2 Nodes
4 Nodes
8 Nodes

TPS

Figure 5.2: Results from
the FCNN with 256 neu-
rons in the hidden layer.

31

Chapter 5. Results

0 100 200 300 400
0

2,000

4,000

6,000

8,000

10,000

12,000

Time

Tw
ee

ts
pe

rs
ec

on
d

CNN with 100 feature maps

2 Nodes
4 Nodes
8 Nodes

TPS

Figure 5.3: Results from
the CNN with 100 feature
maps and a FC layer with
64 neurons.

0 50 100 150 200 250 300 350
0

2,000

4,000

6,000

8,000

10,000

Time

Tw
ee

ts
pe

rs
ec

on
d

CNN with 200 feature maps

2 Nodes
4 Nodes
8 Nodes

TPS

Figure 5.4: Results from
the CNN with 200 feature
maps and a FC layer with
128 neurons.

32

5.2 Streaming results

0 100 200 300 400
0

1,000

2,000

3,000

4,000

5,000

Time

Tw
ee

ts
pe

rs
ec

on
d

Parallel CNN

2 Nodes
4 Nodes
8 Nodes

TPS

Figure 5.5: Results from
the parallel CNN network.

0 100 200 300 400
0

1,000

2,000

3,000

Time

Tw
ee

ts
pe

rs
ec

on
d

CNN-RNN

2 Nodes
4 Nodes
8 Nodes

TPS

Figure 5.6: Results from the
model combining convolu-
tional and recurrent layers.

33

Chapter 5. Results

34

Chapter 6
Evaluation and Discussion

In this chapter an evaluation and discussion around the previous results will be presented.

6.1 Evaluation
The accuracy measures presented in the last chapter clearly outperforms the results pro-
vided in the literature from Sentiment140. The CNN-RNN presented in this study in-
creases the best gained accuracy from the Max Entropy classification algorithm by 1,02%,
a significant increase. Both the CNN and parallel CNN outperformed the best of the tradi-
tional algorithms as well.

Interestingly the larger FCNN has significantly better accuracy than the smaller FCNN,
with an increase of 0,56%. Meanwhile the larger CNN barely increases the accuracy from
the smaller, presenting an increase of only 0,05%.

Each model has been tested on a simulation of a cluster with 2, 4 and 8 nodes, as to
give an estimation as to whether these models will scale or not. For the smaller FCNN the
time it took to process the entirety of the stream was reduced from 280 to 204 seconds, an
improvement in tweets per second from 9643 to 13 235, or roughly 37,25%. Meanwhile
the larger FCNN shows almost no improvement in terms of speed by increasing the amount
of nodes, increasing the TPS by only 7,62%. The larger FCNN also had a marginally larger
increase in TPS when using 4 nodes than 8.

Both the small and large CNNs show improvement from adding more nodes to the
virtual cluster, and increase their tweets per second from 5590 to 8571 for the smaller CNN
and from 3795 to 5000 respectively. This gives an overall increase in TPS by 53,33% for
the small model and 31,75% for the larger.

Likewise there is a similar increase on the parallel CNN increasing the tweets per sec-
ond from 1925 to 2748, an increase of 42,75% when increasing the cluster to 4 nodes. The
8 node cluster on the other hand showed a smaller improvement of only 24,68%. Mean-
while, the CNN-RNN model is the model showing the best improvement from increasing
the cluster size, starting at 861 TPS on a 2 node cluster, and ending on 1488 TPS on the 8
node cluster, posing an increase in TPS of 72,82%.

35

Chapter 6. Evaluation and Discussion

By evaluating the statistics generated from running the different networks, several
models are showing clear signs of scalability. A closer inspection of the statistics of each
NC, shows clearly that the CC evenly distributes the workload among the NCs, indepen-
dent on the cluster size.

6.2 Discussion
This study had as a goal to see how well different NNs performed on the classification
task of sentiment analysis compared to traditional methods. By taking full advantage of
the powerful word embedding, results outperforming all of the traditional classification
methods were achieved by some of the networks. The lightest networks struggled with
getting a high accuracy, but displayed competitiveness towards the simplest classification
algorithms such as NB.

Furthermore the goal was to achieve a competitive accuracy in response to what have
been achieved with the traditional algorithms, and there is probably more work that can be
applied to reaching even higher accuracy with the NNs. There are endless combinations of
hyperparameters that can be tested, and since the dataset was big, the only regularization
applied was dropout layers. Different variations of regularization, such as batch normal-
ization and constraints on the layers might prove to generalize the models more, reduce
overfitting and result in even higher accuracy measures.

The CNN shows better improvement than the FCNN when creating slightly more com-
plex models with added feature layers and neurons in the hidden layers. The convolution
and pooling layers used in succession reduce the dimensionality of the data propagating
through the network, and thus creates network capable of managing a higher throughput.

An interesting finding among the results is how the larger FCNN with a hidden layer
size of 256 neurons barely improves when increasing the cluster size, as shown in Figure
5.2. Every other model has a significant increase in TPS. This might have to do with
the amount of weights, and consequently the amount of floating point operations taking
place. Inspecting the amount of processing power used while running the stream, the larger
FCNN struggled with utilizing the full potential of the CPU regardless of the cluster size.
As for the other networks, the CPU usage was usually recorded at 45-75% on the 2 node
cluster, and increased to 100% utilization on the 4 and 8 node clusters.

Every network apart from the larger FCNN follows a similar curvature of the TPS over
time. Each network is initially able to process a reasonably high amount of TPS, which is
also increased by the cluster size for most models. Over time each model experiences a
decrease in the TPS it is capable of processing, eventually stagnating at a certain amount.

36

Chapter 7
Conclusion and Future Work

This chapter will the conclude the presented study, and present potential future work.

7.1 Conclusion

The aim of the study was to establish whether or not a number of different NN models
could be competitive with traditional classification algorithms on the task of detecting
sentiment within twitter messages. The study proposed 6 different neural networks. The
first two layers were two FCNN with 64 and 256 neurons in the hidden layer respectively.
Additionally two CNN networks were proposed. The first CNN included a convolutional
layer of 100 feature maps followed by a FC layer with 64 neurons, and the second 200
feature maps and a FC layer of size 128. The penultimate model was inspired by one
of the articles presented in the related research section in chapter 3, and introduces three
parallel convolutional layers extracting features in a similar way as n-grams does in tradi-
tional computational linguistics. The last model proposed is also inspired by the previous
research, and incorporates parallel convolutional layers, followed by a consecutive GRU
layer. The models were compared to models proposed by a study from Stanford University
in terms of accuracy, and 4 out of 6 models had improved accuracy. This confirms the that
NN are indeed competitive in the area of sentiment analysis. The two FCNN models were
the only models not increasing accuracy over any of the models proposed by the previous
study.

The second part of the study sat out to explore how well the different models performed
on streaming data. Several great stream processing engines exists, but AsterixDB is still
the only framework providing stream handling as well as persistent storage, and thus,
AsterixDB was chosen for this project. AsterixDB supports UDFs which lets the user
define functions written in Java, that are applied to the streaming data. The results, showed
in Figure 5.1-5.6, proved that several of the models are sustainable for larger amounts of
data. Further testing the networks on local clusters of different sizes show that most of the
models are scalable as well.

37

7.2 Future Work
The natural next step for this kind of experiment is to test the models on an actual cluster
and not a simulated one running on a single machine. As the machine running the cluster
reached its maximum processing capability reasonably fast as the cluster size increased,
the results from the larger cluster are not necessarily representable for a real cluster.

38

Bibliography

Apache Software Foundation, 2018. Apache software foundation.
URL https://www.apache.org/

Bengio, Y., Simard, P., Frasconi, P., Mar. 1994. Learning long-term dependencies with
gradient descent is difficult. Trans. Neur. Netw. 5 (2), 157–166.
URL http://dx.doi.org/10.1109/72.279181

Braun, S., Jun. 2018. LSTM Benchmarks for Deep Learning Frameworks. ArXiv e-prints.

Chetlur, S., Woolley, C., Vandermersch, P., Cohen, J., Tran, J., Catanzaro, B., Shelhamer,
E., 2014. cudnn: Efficient primitives for deep learning. arXiv preprint arXiv:1410.0759.

Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H.,
Bengio, Y., Jun. 2014. Learning Phrase Representations using RNN Encoder-Decoder
for Statistical Machine Translation. ArXiv e-prints.

Chollet, F., 2017. Deep Learning with Python, 1st Edition. Manning Publications Co.,
Greenwich, CT, USA.

dos Santos, C., Gatti, M., August 2014. Deep convolutional neural networks for sentiment
analysis of short texts. In: Proceedings of COLING 2014, the 25th International Con-
ference on Computational Linguistics: Technical Papers. Dublin City University and
Association for Computational Linguistics, Dublin, Ireland, pp. 69–78.
URL http://www.aclweb.org/anthology/C14-1008

Go, A., Bhayani, R., Huang, L., 2009. Twitter sentiment classification using distant super-
vision. CS224N Project Report, Stanford 1 (12).

Grover, R., Carey, M. J., 2015. Data ingestion in asterixdb. In: EDBT. pp. 605–616.

Hochreiter, S., Schmidhuber, J., 1997. Long short-term memory. Neural computation 9 (8),
1735–1780.

Inc., T., 2017. Selected company metrics and financials.
URL http://files.shareholder.com/downloads/AMDA-2F526X/

39

https://www.apache.org/
http://dx.doi.org/10.1109/72.279181
http://www.aclweb.org/anthology/C14-1008
http://files.shareholder.com/downloads/AMDA-2F526X/5678890017x0x961126/1C3B5760-08BC-4637-ABA1-A9423C80F1F4/Q317_Selected_Company_Metrics_and_Financials.pdf
http://files.shareholder.com/downloads/AMDA-2F526X/5678890017x0x961126/1C3B5760-08BC-4637-ABA1-A9423C80F1F4/Q317_Selected_Company_Metrics_and_Financials.pdf

5678890017x0x961126/1C3B5760-08BC-4637-ABA1-A9423C80F1F4/
Q317_Selected_Company_Metrics_and_Financials.pdf

Kim, Y., 2014. Convolutional neural networks for sentence classification. CoRR
abs/1408.5882.
URL http://arxiv.org/abs/1408.5882

Kingma, D. P., Ba, J., Dec. 2014. Adam: A Method for Stochastic Optimization. ArXiv
e-prints.

Kovalev, V., Kalinovsky, A., Kovalev, S., 2016. Deep learning with theano, torch, caffe,
tensorflow, and deeplearning4j: Which one is the best in speed and accuracy?

Kulkarni, S., Bhagat, N., Fu, M., Kedigehalli, V., Kellogg, C., Mittal, S., Patel, J. M., Ra-
masamy, K., Taneja, S., 2015. Twitter heron: Stream processing at scale. In: Proceed-
ings of the 2015 ACM SIGMOD International Conference on Management of Data.
ACM, pp. 239–250.

LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., November 1998. Gradient-based learning
applied to document recognition. Proceedings of the IEEE 86 (11), 2278–2324.

Mikolov, T., Chen, K., Corrado, G., Dean, J., 2013. Efficient estimation of word represen-
tations in vector space. CoRR abs/1301.3781.
URL http://arxiv.org/abs/1301.3781

Ouyang, X., Zhou, P., Li, C. H., Liu, L., Oct 2015. Sentiment analysis using convolutional
neural network. In: 2015 IEEE International Conference on Computer and Information
Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and
Secure Computing; Pervasive Intelligence and Computing. pp. 2359–2364.

Springenberg, J. T., Dosovitskiy, A., Brox, T., Riedmiller, M., Dec. 2014. Striving for
Simplicity: The All Convolutional Net. ArXiv e-prints.

Toshniwal, A., Taneja, S., Shukla, A., Ramasamy, K., Patel, J. M., Kulkarni, S., Jack-
son, J., Gade, K., Fu, M., Donham, J., Bhagat, N., Mittal, S., Ryaboy, D., 2014.
Storm@twitter. In: Proceedings of the 2014 ACM SIGMOD International Conference
on Management of Data. SIGMOD ’14. ACM, New York, NY, USA, pp. 147–156.
URL http://doi.acm.org/10.1145/2588555.2595641

Wang, J., Yu, L.-C., Lai, K. R., Zhang, X., 2016a. Dimensional sentiment analysis using a
regional cnn-lstm model. In: Proceedings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Papers). Vol. 2. pp. 225–230.

Wang, X., Jiang, W., Luo, Z., 2016b. Combination of convolutional and recurrent neu-
ral network for sentiment analysis of short texts. In: Proceedings of COLING 2016,
the 26th International Conference on Computational Linguistics: Technical Papers. pp.
2428–2437.

40

http://files.shareholder.com/downloads/AMDA-2F526X/5678890017x0x961126/1C3B5760-08BC-4637-ABA1-A9423C80F1F4/Q317_Selected_Company_Metrics_and_Financials.pdf
http://files.shareholder.com/downloads/AMDA-2F526X/5678890017x0x961126/1C3B5760-08BC-4637-ABA1-A9423C80F1F4/Q317_Selected_Company_Metrics_and_Financials.pdf
http://files.shareholder.com/downloads/AMDA-2F526X/5678890017x0x961126/1C3B5760-08BC-4637-ABA1-A9423C80F1F4/Q317_Selected_Company_Metrics_and_Financials.pdf
http://arxiv.org/abs/1408.5882
http://arxiv.org/abs/1301.3781
http://doi.acm.org/10.1145/2588555.2595641

	Summary
	Sammendrag
	Preface
	Acknowledgements
	Table of Contents
	List of Tables
	List of Listings
	List of Figures
	Abbreviations
	Introduction
	Project background
	Project description and goal
	Approach
	Research Method
	Limitations

	Chapter outlines

	Background Theory
	Data Representation
	Word2Vec

	Machine Learning
	Deep Learning
	Neural Networks
	Keras
	Tensorflow
	Deeplearning4j

	AsterixDB
	User Defined Functions

	Task and Domain
	Sentiment Analysis
	Twitter

	Survey
	Related work
	Related Research
	Related Frameworks

	Theoretical Solution
	The goals of the experiment
	Network Models
	The training data
	Training the network models
	Hyper parameters
	GPU or CPU for inference?

	The AsterixDB Feed ingestion pipeline
	Testing the system
	The feed generator
	Setting up the AsterixDB cluster

	Results
	Training results
	Streaming results

	Evaluation and Discussion
	Evaluation
	Discussion

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

