

Beregning av generatorer ved modernisering av kraftverk

Aleksander Lundseng Ivar Vikan

Master of Science in Electric Power Engineering Oppgaven levert: Juni 2010 Hovedveileder: Arne Nysveen, ELKRAFT

Norges teknisk-naturvitenskapelige universitet Institutt for elkraftteknikk

Oppgavetekst

Oppgaven har sin bakgrunn i at Europa står foran en periode med oppgradering og modernisering av vannkraftgeneratorer. Dette er motivert ut fra alder, økonomi og endrede behov. Ved oppgradering /modernisering av vannkraftverk, er det flere muligheter. Disse skal kartlegges og analyseres med bakgrunn i spesifikke anlegg

Oppgaven er todelt. I første del skal et beregningsunderlag utarbeidet i tidligere prosjektoppgave implementeres i et beregningsprogram for generatorer. Programmet skal testes mot produserte maskiner og/eller andre beregningsprogram. Denne delen utføres i samarbeid med student Aleksander Lundseng. Andre del av oppgaven omhandler utarbeidelse og analyse av alternative generatorløsninger ved modernisering av vannkraftverk. Valg av anlegg og underlag for analysen utarbeides i samråd med Voith Hydro.

Oppgaven gitt: 20. januar 2010 Hovedveileder: Arne Nysveen, ELKRAFT

Oppgradering og Optimalisering av Vannkraftgeneratorer

Upgrade and Optimization of Hydro Power Generators

"Hvis vi hadde gjort alt det vi er i stand til å gjøre, ville vi blitt meget forbauset"

-Thomas Alva Edison-

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET NTNU

MASTEROPPGAVE

Kandidatens navn	: Aleksander Lundseng og Ivar Vikan
Fag	: ELKRAFTTEKNIKK
Oppgavens tittel (norsk)	: Beregning av generatorer ved modernisering av kraftverk
Oppgavens tittel (engelsk)	: Generator design for hydropower station upgrade

Oppgavens tekst:

Oppgaven har sin bakgrunn i at Europa står foran en periode med oppgradering og modernisering av vannkraftgeneratorer. Dette er motivert ut fra alder, økonomi og endrede behov. Ved oppgradering /modernisering av vannkraftverk, er det flere muligheter. Disse skal kartlegges og analyseres med bakgrunn i spesifikke anlegg

Oppgaven er todelt. I første del skal beregningsunderlaget utarbeidet i tidligere prosjektoppgave implementeres i et beregningsprogram for generatorer. Programmet skal testes mot produserte maskiner og/eller andre beregningsprogram. Andre del av oppgaven omhandler utarbeidelse og analyse av alternative generatorløsninger ved modernisering av vannkraftverk/pumpekraftverk. Valg av anlegg og underlag for analysen utarbeides i samråd med Voith Hydro.

Mer spesifikt vil oppgaven omhandle:

- Programmering av beregningsverktøyet basert på underlag fra prosjektarbeidet høsten 2009.
- Validere og eventuelt forbedre programmet ved sammenligning med konstruerte maskiner.
- Gjennomføre en teknisk analyse og mulighetsstudie ved oppgradering/modernisering av to ulike kraftverk. Valgte løsninger skal begrunnes:
 - Pumpekraftverk (hurtigløpende maskin)
 - Elvekraftverk (langsomtløpende maskin)

Videre detaljer avklares med veiledere i løpet av arbeidet.

Oppgaven gitt	: 20. januar 2010
Oppgaven revidert:	: 7. april 2010
Besvarelsen leveres innen	: 17. juni 2010
Besvarelsen levert	:
Utført ved (institusjon, bedrift)	: Inst. for elkraftteknikk/NTNU
Kandidatens veileder	:

Faglærer

: Professor Arne Nysveen

Trondheim, 7. april 2010 Arne Nysveen faglærer

Forord

enne prosjektrapporten er utarbeidet av studentene Aleksander Lundseng og Ivar Vikan i forbindelse med Masteroppgaven ved Norges Teknisk-Naturvitenskapelige Universitet (NTNU) våren 2010. Problemstillingen for oppgaven ble utarbeidet i samarbeid med Professor Arne Nysveen og Voith Hydro.

Under utarbeidelsen av denne prosjektrapporten har vi fått bidrag fra en rekke personer. Vi ønsker å rette en spesiell takk til vår faglærer Professor Arne Nysveen for råd og veiledning. Vi vil også takke Voith Hydro ved Øyvind Holm for hjelp til innsamling av nødvendige generatordata.

NTNU Trondheim

Juni 2010

Aleksander Lundseng

Ivar Vikan

Sammendrag og Konklusjon

Bakgrunnen for dette prosjektet er det økte behovet for rehabilitering og oppgradering av vannkraftgeneratorer både i Norge og i resten av Europa. Behovet er basert på den store usikkerheten med å fastslå gjenstående levetid for aldrende generatorer, samtidig som at konsekvensene ved et havari ofte vil være store. Kostnadene ved en rehabilitering vil normalt være betydelige lavere enn ved et eventuelt havari. I tillegg kan endret drift og kjøremønster stille nye krav til generatorene.

For å kunne gjennomføre beregninger i forbindelse med en rehabilitering eller oppgradering er det nødvendig med et beregningsprogram. Uten et slikt verktøy blir beregningsprosessene meget tidskrevende og uhåndterlige. Siden slike beregningsprogram ikke var tilgjengelige ble det nødvendig å utvikle et eget beregningsprogram. Programmet GenProg ble derfor utarbeidet med utgangspunkt i formelverket fra høstprosjektet [1]. GenProg er basert på et bredt teoretisk grunnlag og dekker de elektromagnetiske aspektene ved konstruksjon av en synkrongenerator.

For å kontrollere påliteligheten til GenProg ble resultatene fra programmet sammenlignet med testresultater fra produserte maskiner. Denne sammenligningen viser at beregningene fra GenProg stemmer godt med de oppgitte verdiene.

Det anbefales at før GenProg tas i bruk bør *Vedlegg 1 - Oppstartseksempel GenProg* og kapittel 3 - *Programforklaring* leses grundig. Dette for å øke forståelsen for hvordan programmet fungerer, og dermed sikre best mulige resultater fra beregningene.

Videre ble det gjennomført oppgraderinger av to maskiner fra 50- og 60-tallet. Maskin 1 er en motor/generator med 14 poler og en merkeeffekt på 14 MVA. Maskin 2 er en elvekraftgenerator med 44 poler og en merkeeffekt på 27 MVA. Det ble undersøkt forbedringspotensialet ved bytte av statorvikling, bytte av statorblikk, endring av spenning og sportall og ved å øke maskinens utnyttelsessiffer.

Resultatene viser at den største virkningsgradsøkningen kommer ved bytte av statorvikling og

statorblikk (se *Tabell 1*). For viklingen kommer forbedringen av mindre isolasjon og følgelig større kobberareal i sporet. For blikket er det hovedsakelig reduksjonen av de relative tapene som utgjør forbedringen, men også muligheten for å endre for eksempel tannbredde, sporhøyde og kjølekanalene øker forbedringsmulighetene. For maskinene som ble undersøkt i dette prosjektet ga en økning i spenning liten eller ingen gevinst. Det samme gjelder for sportall, dersom sportallet ikke økes sammen med spenningen.

Tabell 1 – De viktigste resultatene fra oppgraderingene. Alternativ 1: Bytte av statorvikling. Alternativ 2: Bytte av statorvikling og blikk. Alternativ 3: Bytte av statorvikling og blikk, og med fri spenning og sportall. Alternativ 4: Økning av maskinens utnyttelsessiffer.

	Virkningsgrader [%]	
	Maskin 1	Maskin 2
Opprinnelig	97,10	97,59
Alt. 1	97,26	97,71
Alt. 2	97,56	97,86
Alt. 3	97,56	97,91
Alt. 4	98,28	97,81

Dersom statorvikling og statorblikk byttes vil dette føre til en svært lite belastet maskin. Det anbefales at dersom generatorene oppgraderes bør muligheten for økning av ytelse undersøkes, selv om dette i mange tilfeller forutsetter bytte av feltvikling.

Innholds Forord	fortegnelse	vii	
Sammendra	ag og Konklusjon	ix	
1. Innled	Innledning		
2. Symbo	olliste		
3. Beregi	ningsprogrammet GenProg		
3.1. In	nputs		
3.1.1.	Required Values		
3.1.2.	Optional Values		
3.1.3.	Slot Dimensions		
3.1.4.	Pole Dimensions		
3.2. S	tatorberegninger		
3.2.1.	Diameter og Jernlengde		
3.2.2.	Valg av Sportall		
3.2.3.	Valg av Antall Parallelle Kretser		
3.2.4.	Valg av Antall Vindinger per Vikling		
3.2.5.	Valg av Spenning		
3.2.6.	Beregning av Sporet		
3.2.7.	Valg av Skrittlengde		
3.2.8.	Ytterdiameter		
3.2.9.	Beregning av Viklingsresistans		
3.3. R	Lotorberegninger		
3.3.1.	Beregning av Dempeviklingen		
3.3.2.	Ekvivalent Luftgap		
3.3.3.	Poldimensjoner		
3.3.4.	Magnetiske Beregninger		
3.3.5.	Ankerreaksjonsinduktanser		
3.3.6.	Lekkinduktanser		
3.3.7.	Magnetiseringsbehov		
3.3.8.	Feltviklingens Konstruksjon		
3.4. T	apsberegninger		
3.4.1.	Kobbertap		
3.4.2.	Jerntap		
3.4.3.	Magnetiseringstap		
3.4.4.	Tilleggstap		
3.4.5.	Lager og Viftetap		

	3.5.	Termiske Beregninger	
	3.5.	1. Beregning av Nødvendig Kjøleluft	
	3.5.	2. Beregning av Maskinens Varmeledningsmotstander	
	3.5.	3. Termisk Konduktansmatrise	
	3.5.	4. Varmestrømsmatrise	37
	3.5.	5. Termisk Resistansmatrise	
	3.5.	6. Friksjonsmatrise	37
	3.5.	7. Temperaturmatrise	37
	3.6.	Reaktanser og Tidskonstanter	
	3.6.	1. Transiente Reaktanser	
	3.6.	2. Transiente Tidskonstanter	
	3.7.	Mekaniske Beregninger	
	3.7.	1. Svingmoment	39
	3.7.	2. Total Maskinvekt	39
	3.8.	Outputs	39
4.	For	melverk	41
	4.1.	Inputs	41
	4.2.	Statorberegninger	42
	4.3.	Rotorberegninger	50
	4.4.	Tapsberegninger	62
	4.5.	Termiske beregninger	65
	4.6.	Induktanser og tidskonstanter	
	4.7.	Mekaniske beregninger	
	4.8.	Sluttresultat	72
5.	Rest	ultater Program	
6.	Орр	ogradering	
	6.1.	Bytte av Vikling	
	6.2.	Bytte av Statorblikk og Statorvikling	
	6.3.	Optimalisering ved Fri Spenning og Sportall	
	6.4.	Øke Ytelsen på Generatoren	
7.	Res	ultat Oppgradering	
	7.1.	Maskin 1	
	7.2.	Maskin 2	80
8.	Disi	kusjon Program	81
	8.1.	Maskin 1	82
	8.2.	Maskin 2	82

9.	Diskusjor	n Oppgradering	
ç	0.1. Mas	kin 1	
	9.1.1.	Opprinnelig Maskin	
	9.1.2.	Alternativ 1 - Bytte av Vikling	
	9.1.3.	Alternativ 2 - Bytte av Statorblikk og Vikling	
	9.1.4.	Alternativ 3 - Optimalisering med Fri Spenning og Sportall	
	9.1.5.	Alternativ 4 - Økt Ytelse	
ç	0.2. Mas	kin 2	
	9.2.1.	Opprinnelig Maskin	
	9.2.2.	Alternativ 1 - Bytte av Vikling	
	9.2.3.	Alternativ 2 - Bytte av Statorblikk og Statorvikling	
	9.2.4.	Alternativ 3 - Optimalisering med Fri Spenning og Sportall	
	9.2.5.	Alternativ 4 - Ny Generator	
10.	Konklu	sjon	
11.	Refera	nseliste	
12.	Vedleg	g	101
Ţ	Vedlegg 1	Oppstartseksempel for GenProg	
1	Vedlegg 2	Maskin 1 - Opprinnelige Inputverdier	
1	Vedlegg 3	Maskin 1 - Opprinnelige Outputverdier	107
1	Vedlegg 4	Maskin 1 – Inputverdier for Oppgraderingsalternativ 1	
1	Vedlegg 5	Maskin 1 - Outputverdier for Oppgraderingsalternativ 1	
1	Vedlegg 6	Maskin 1 – Inputverdier for Oppgraderingsalternativ 2	
1	Vedlegg 7	Maskin 1 - Outputverdier for Oppgraderingsalternativ 2	
1	Vedlegg 8	Maskin 1 – Inputverdier for Oppgraderingsalternativ 3	
1	Vedlegg 9	Maskin 1 - Outputverdier for Oppgraderingsalternativ 3	
Y	Vedlegg 10	Maskin 1 – Inputverdier for Oppgraderingsalternativ 4	
1	Vedlegg 11	Maskin 1 - Outputverdier for Oppgraderingsalternativ 4	
1	Vedlegg 12	Maskin 2 - Opprinnelige Inputverdier	
Ţ	Vedlegg 13	Maskin 2 - Opprinnelige Outputverdier	
Ţ	Vedlegg 14	Maskin 2 – Inputverdier for Oppgraderingsalternativ 1	141
Ţ	Vedlegg 15	Maskin 2 - Outputverdier for Oppgraderingsalternativ 1	
1	Vedlegg 16	Maskin 2 – Inputverdier for Oppgraderingsalternativ 2	
1	Vedlegg 17	Maskin 2 - Outputverdier for Oppgraderingsalternativ 2	
1	Vedlegg 18	Maskin 2 – Inputverdier for Oppgraderingsalternativ 3	
Ţ	Vedlegg 19	Maskin 2 - Outputverdier for Oppgraderingsalternativ 3	
Ţ	Vedlegg 20	Maskin 2 – Inputverdier for Oppgraderingsalternativ 4	

Vedlegg 21	Maskin 2 – Outputverdier for Oppgraderingsalternativ 4	161
Vedlegg 22	Isolasjonstykkelser for hovedisolasjon	165
Vedlegg 23	Datablad for generatorblikk M270-50A fra SURA	167

1. Innledning

ppgaven har sin bakgrunn i det økte behovet for rehabilitering og oppgradering av generatorene som ble satt i drift under de store vannkraftutbyggingene fra andre verdenskrig og frem til 1980. Behovet er basert på den store usikkerheten med å fastslå gjenstående levetid for generatoren, samtidig som at konsekvensene ved et havari ofte vil være store. Kostnadene ved en rehabilitering vil normalt være betydelige lavere enn ved et eventuelt havari.

For å kunne gjøre gode vurderinger for de forskjellige oppgraderingsalternativene var det nødvendig å sette seg dypt inn i generatorteorien. Den generelle teorien ble gjennomgått i høstprosjektet hvor hver enkelt del av generatorkonstruksjonen ble grundig forklart [1]. Et av resultatene fra dette høstprosjektet var et formelverk som skulle benyttes til å utarbeide et beregningsprogram for synkrongeneratorer. Formelverket har i dette prosjektet blitt videreutviklet for å være tilpasset ønsket beregningsprosedyre for beregningsprogrammet.

Formålene med denne Masteroppgaven er å lage et beregningsprogram basert på høstprosjektet, samt å sette seg inn i forskjellige oppgraderingsalternativ for en synkrongenerator. Vurderingene av oppgraderingsalternativene skal basere seg på generatorteorien og resultater fra beregningsprogrammet. For å kontrollere påliteligheten til programmet skal resultatene kontrolleres opp i mot tidligere konstruerte maskiner.

Oppgraderingsalternativene skal undersøkes for to eksisterende maskiner. En motor/generator fra et pumpekraftverk produsert på 1950-tallet med 14 poler og en merkeeffekt på 14 MVA (Maskin 1). I tillegg skal det undersøkes en saktegående generator med 44 poler og en merkeeffekt på 27 MVA (Maskin 2) som ble produsert på 1960-tallet.

Mye av arbeidet med denne rapporten er basert på høstprosjektet. Det anbefales derfor at leseren setter seg inn i den gjennomgåtte teorien i rapporten fra høstprosjektet.

2. Symbolliste

a	- Faktor for beregning av pollekkfluks
A_{cuD}	- Kobbertverrsnitt av en dempestav
A _{cus}	- Kobbertverrsnitt av en statorvikling
a _f	- Forhold mellom midlere og maks vindingslengde for feltviklingen
A_{f}	- Kobbertverrsnitt av en feltvinding
$A_{\mathrm{f}}n_{\mathrm{f}}$	- Totalt kobbertverrsnitt for en pol
\mathbf{A}_{\min}	- Minste kjøleluftareal
a _{th}	- Varmeoverføringskoeffisient
as	- Avstandene mellom de to ytterste dempestavene på en pol
As	- Ankerbelasting for stator
A's	- Estimert ankerbelastning ut i fra utnyttelsessiffer
A _{scm}	- Ankerbelastning for stator i centimeter
A' _{sð}	- Midlertidig ankerbelastning brukt til beregning av riktig utnyttelsessiffer
b _{cs}	- Bredden på en kjølekanal i stator
b _{cu}	- Total kobberbredde i et spor
b _{cuf}	- Kobberbredde for en feltvinding
b _{cus}	- Bredden av en delleder i statorviklingen
b _d	- Tannbredde
\mathbf{B}_{d}	- Maksimal flukstetthet i en tann
b _D	- Sporåpning for en dempestav
b _{dmax}	- Maksimal tannbredde
b_{dmin}	- Minimal tannbredde
B _{drmn}	- Minste tannindusjon
B _{drmx}	- Største tanninduksjon
B_{δ}	- Flukstetthet i luftgapet
b_{f}	- Indre bredde for feltvikling
bi	- Isolasjonstykkelse mellom feltvikling og polkjerne inkl. klaring
b_{if}	- Isolasjonstykkelse mellom hver feltvinding
b _{pk}	- Bredde av polkjerne
B _{pmx}	- Største polindusjon
b_{ps}	- Bredde av polsko
B _{dmx}	- Største tillatte tanninduksjon
b _u	- Sporbredde
b_u/b_d	- Forholdet mellom sporbredde og tannbredde
$b_{\rm v}$	- Bredden av en kjølekanal i stator
b _{ve}	- Ekvivalent bredde på kjølekanal
Bymx	- Største tillatte flukstetthet i statoråk
\mathbf{B}_{yr}	- Største flukstetthet i rotorring
B _{ys}	- Største flukstetthet i statoråk

С	- Utnyttelsessiffer
C_2	- Midlertidig utnyttelsessiffer for beregning av riktig utnyttelsessiffer
$C_{2\delta}$	- Midlertidig utnyttelsessiffer for beregning av riktig utnyttelsessiffer
C _m	- Faktor for beregning av luftfriksjonstap
C _{m2}	- Faktor for beregning av luftfriksjonstap
c _p	- Spesifikk varmekapasitet for kjøleluft
Cosφ	- Effektfaktor
- 2.	
D^2I	- Faktor for beregning av diameter og lengde
D⁴l	- Faktor for beregning av diameter og lengde
$\mathrm{D_{f}}$	- Gjennomsnittlig diameter for feltviklingen
D _i	- Indre statordiameter, luftgapsdiameter
d _{icu}	- Dellederisolasjon for statorvikling
d_{ij}	- Jordisolasjon/hovedisolasjon for statorviklingen
d_{iw}	- Vindingsisolasjon for statorvikling (hvis formspole, vanligvis=0)
D _{ps}	- Diameter gjennom midten av polskoen
Dr	- Rotorringen midlere diameter
D _{ri}	- Ytre diameter på aksling
d_{rs}	- Bredde på røbelseparator
D _{ry}	- Rotorringens ytre diameter
dT_{mx}	- Største tillatte temperaturstinging for statorvikling
D_y	- Ytre statordiameter
E.	- Relativ magnetisering
E:	- Relativ indusert spenning
E ₁ Fff	- Virkningsorad
En	- Del av indusert a-akse spenning
ΞŲ	Der av maasere q anse spenning
f	- Frekvens
Fa	- Drivende amperevindinger for ankerreasion
Fδ	- Amperevindingsbehov for luftgap
Feold	- Variabel for bruk av "gammelt" blikk
Fa	- Geometrisk faktor for beregning av viskøse og sentrifugale krefter for
- 8	kjøleluft i luftgap
f_i	- Faktor som beskriver forhold mellom netto og brutto jernlengde
f_{sp}	- Faktor for temperaturberegning
f_w	- Estimert gjennomsnittlig viklingsfaktor
F_{w}	- Største felles faktor i forholdet antall spor/antall poler

g	- Gjennomsnittlig faseforskyvning mellom to staver i et spor
G	- Termisk konduktansmatrise
G_{add}	- Tilleggsvekt p.g.a. aksling, støttestruktur, tilleggsdeler, etc
GD^2	- Svingmoment
$\mathrm{GD}^2_{\mathrm{add}}$	- Tillegg i svingmoment p.g.a. nav, bremsering, ventilatorer, etc
GD ² _{flywheel}	- Svingmoment for svinghjul
GD_{p}^{2}	- Svingmoment for polene med feltvikling
GD_{r}^{2}	- Svingmoment for rotorring
G_{f}	- Vekt av feltvikling
G _{flywheel}	- Vekt av svinghjul
G_{pk}	- Vekt av polkjerne
G_{pkpm}	- Vekt av polkjerne per meter
G_{ps}	- Vekt av polsko
G _{pspm}	- Vekt av polsko per meter
Gr	- Vekt av rotor
G_{sw}	- Vekt av statorvikling
G _{tot}	- Total vekt
h _{cu}	- Total kobberhøyde i et spor
h _{cuf}	- Høyden av en felvinding
h _{cus}	- Høyden på en delleder i statorviklingen
H _{drmn}	- Minimum feltstyrke i polkjerne
H _{drmx}	- Maksimal feltstyrke i polkjerne
h _{ds}	- Høyde mellom sporkile og luftgap
h_{f}	- Høyden på feltvikling
h _{gls}	- Høyden på glidestrimmel
h _{kr}	- Høyde på feltkrave
h _m	- Høyde på mellomstrimmel
h _{pk}	- Høyde på polkjerne
h _{ps}	- Høyde på polsko
h _{pt}	- Høyde på poltann
h _s	- Høyde av spor
h _{spk}	- Høyde på sporkile
h _{stav}	- Høyden av en stav
h _{yr}	- Høyde av rotorring
h _{ys}	- Høyde av rotoråk
Ic	- Stavstrøm
I _{Dtot}	- Strøm i dempestav
I_{f}	- Feltstrøm
In	- Statorstrøm
I'n	- Midlertidig strøm

k	- Faktor for beregning av dempestavens resistans referert til stator
k _C	- Carter's koeffisient for luftgapet
k _{Ckj}	- Carter's koeffisient for kjølekanal
k _{Cr}	- Carter's koeffisient for rotorspor
k _{Cs}	- Carter's koeffisient for statorspor
k _d	- Fordelingsfaktor
k _f	- Omregningsfaktor
k _{Fe}	- Jernfyllfaktor
k _{Fed}	- Faktor for å hensyn til metning i tann
k _{Fev}	- Faktor for å hensyn til metning i åk
k _o	- Faktor for beregning av feltviklingens relative lekkreaktans
k ₁	- Faktor som tar hensyn til at drivende amperevindinger øker lineært fra
1	bunnen av polen
k _L	- Skin-effect faktor for beregning av sporlekkinduktans
k _m	- Forholdet mellom maksimal luftgapinduksjon i tomgang og midlere
	induksjon
k _{mek}	- Overflatekonstant som forteller hvor ujevn overflaten er
k _{mf}	- Reduksjonsfaktor for pollekkfluks
K _{mx}	- Resistansfaktor fr øverste delleder i et spor
k _p	- Skrittforkortningsfaktor
k _{pw}	- Faktor for beregning av luftfriksjonstap
k _a	- Faktor for beregning av ankerreaksjonsreaktansen i q-aksen
K _{ra}	- Resistansfaktor for statorvikling
K _{rad}	- Resistansfaktor for vikling i spor
K _{rao}	- Resistansfaktor for overstav
K _{rau}	- Resistansfaktor for understav
k _{sq}	- Vridningsfaktoren (skewing)
k _{vw}	- Faktor for beregning av lagertap og viftetap
k _w	- Viklingsfaktor
k _{wsv}	- Harmonisk viklingsfaktor
1'	- Ekvivalent jernlengde
l_{av}	- Gjennomsnittlig viklingslengde for én statorvikling (to staver)
l _b	- Brutto jernlengde
L _d	- Tannlekkinduktans
L'D	- Dempeviklingens lekkreaktans referert til stator
L' _{Dd}	- Dempeviklingens lekkreaktans i d-akse referert til stator
L' _{Dq}	- Dempeviklingens lekkreaktans i q-akse referert til stator
L _{dt}	- Transient d-akse induktans
L _{dtt}	- Subtransient d-akse induktans
L_{δ}	- Luftgaplekkinduktans
$L_{\delta v}$	- Luftgaplekkinduktans for v. harmoniske
Le	- Tykkelse av endeplate
lew	- Gjennomsnittlig aksial lengde av endeviklingen

L_{fmd}	- Gjennomsnittlig lengde av en feltvinding
L _{fmx}	- Maksimal lengde av en feltvinding
L _{fp}	- Indre lengde av en feltvikling
l _{fs}	- Lengde av en fasevikling
$L_{f\sigma}$	- Feltviklingens lekkinduktans
L _{ma}	- Ankerreaksjonsinduktansen
L_{md}	- Ankerreaksjonsinduktansen i d-aksen
L_{mq}	- Ankerreaksjonsinduktansen i q-aksen
l _n	- Netto jernlengde
L _{qtt}	- Subtransient q-akse induktans
l _{rac}	- Lengde av vikling i spor
l _{rr}	- Lengde av rotorring
l _{th}	- Termisk konduktivitet
l _{spolh}	- Lengden av ett spolehode
L _{sq}	- Vridningslekkinduktansen (skew leakage inductance)
L _σ	- Total lekkinduktans
Lu	- Sporlekkinduktans
L_{w}	- Spolehodelekkinduktans
m	- Antall faser
m _{ds}	- Massen til statortenner
m _{Fe}	- Total masse til statorblikk (uten tenner)
Μ	- Nødvendig treghetsmoment
M_2	- Maskinens treghetsmoment
n _{dl}	- Antall delledere per stav
n _{dlh}	- Antall delledere i høyden per vinding
n _{dlp}	- Antall delledere i parallell per vinding
N_{Ds}	- Antall dempestaver per pol
n_{f}	- Vindinger for en feltvikling
N _p	- Antall poler
n _r	- Ruseturtall
n _s	- Nominelt turtall
N_s	- Antall vindinger per fase
N_{sp}	- Antall statorspor over en rotorpol
Nu	- Nusselt nummer
n _v	- Antall kjølekanaler
$N_{\rm w}$	- Antall forskjellige spenningsvektorer for en basevikling
OB _{ra}	- Aktuell overflatebelastning for rotorviklingen
OB _{rt}	- Tillatt overflatebelastning for rotorviklingen
OB _{sa}	- Aktuell overflatebelastning for statorviklingen
OB _{st}	- Tillatt overflatebelastning for statorviklingen
	5 5

Р	- Maskinens nominelle aktive effekt
р	- Antall polpar
P ₁₀	- Spesifikke jerntap ved 1.0 Tesla
P _{add}	- Tilleggstap
P _{cusac}	- AC-tap i stator
P _{cusdc}	- DC-tap i stator
P_{Fe}	- Jerntap
P _{Fed}	- Jerntap i tenner
P _{Fev}	- Jerntap i åk
P _{fw}	- Lager og viftetap
P _{magn}	- Magnetiseringstap
p _{nr}	- Antall parallelle kretser
P _{qth}	- Tap for beregning av nødvendig kjøleluftmengde
Pr	- Rotortap
P _{re}	- Rotortap i endevikling
P _{rfl}	- Rotortap i nominell drift
P _{rl}	- Rotortap i luftgap
P _{rnl}	- Rotortap i tomgang
$P_{\rho w}$	- Luftfriksjonstap
$P_{\rho w 1}$	- Luftfriksjonstap i luftgap
$P_{\rho w2}$	- Luftfriksjonstap i endeviklingsområdene
P _{tot}	- Totale tap
Pwarming	- Tap for beregning av nødvendig kjøleluftmengde
q	- Antall spor per pol og fase
$q_{\rm m}$	- Antall forskjellige spenningsvektorer per fase
Q_{min}	- Minste antall spor i sporfil
Q _{max}	- Største antall spor i sporfil
Q _s	- Antall spor
q_{th}	- Kjøleluftmengde
_	
R _{ac}	- AC-resistans
R _{aco}	- AC-resistans for overstav
R _{acu}	- AC-resistans for understav
R _{dc}	- DC-resistans
R _{dc20}	- DC-resistans ved 20 °C
R _{dcprm}	- DC-resistans per meter
R _e	- Reynoldsnummer
R_{f}	- Resistans for feltviklingen
R _{f20}	- Resistans for feltviklingen ved 20 °C
$R_{lr\delta}$	- Reynoldsnummer for rotorende
$R_{ls\delta}$	- Reynoldsnummer for rotoroverflate
R_{mD}	- Dempeviklingens resistans referert til stator
R _{mf}	- Feltviklingens resistans referert til stator

R _4	- Termisk resistans for kiøleluften (kiøleluftens evne til å oppta energi)
r r	- Polbueradius
R ,	- Feltviklingens resistans
	- Referanseverdi for resistans
R _{ref}	- Termisk varmeledningsmotstand
R _{th}	- Termisk varmeredningsmotstand
S	- Skewing
S_d	- Minste areal av en statortann
S_D	- Tillatt strømtetthet i dempestavene
$\mathbf{S}_{\mathbf{f}}$	- Strømtettheten i feltviklingen
S_n	- Nominell tilsynelatende effekt
S_s	- Strømtettheten i statorviklingen
S_u	- Statorsporets areal
T _a	- Taylornummer
T _{am}	- Modifisert Taylornummer
T _{dt}	- Transient d-akse tidskonstant
T _{dt0}	- Transient d-akse tidskonstant for <i>open circuit</i>
T _{dtt}	- Subtransient d-akse tidskonstant
T _{dtt0}	- Subtransient d-akse tidskonstant for open circuit
Temp	- Temperaturmatrise
thc	- Termisk ledningsevne for den elektriske isolasjonen
THF	- Telephone Harmonic Factor
t _{nr}	- Antall vindinger per vikling
T _p	- Temperaturmatrise
T _{qtt}	- Subtransient q-akse tidskonstant
T _{qtt0}	- Subtransient q-akse tidskonstant for open circuit
U _{md}	- Magnetisk spenningsfall i statortennene
Umdr	- Magnetisk spenningsfall i rotorpol
Umõ	- Magnetisk spenningsfall i luftgap
Umtot	- Totalt magnetisk spenningsfall
Umur	- Magnetisk spenningsfall i rotorring
Umvs	- Magnetisk spenningsfall i statoråk
U.,	- Nominell spenning
U _{turn}	- Spenning per vinding i statoren
\mathbf{V}_{f}	- Magnetiseringsspenning
VI _d	- Vinkelen til d-akse strømmen
Vi	- Kjøleluftens hastighet bak statorstavene
V _{im}	- Maksimal hastighet på kjøleluften
V _{mid}	- Midlere lufthastighet i kjølekanalen
V _{mx}	- Maksimal tillatte spenning
V _{nmx}	- Maksimal tillatte motroterende spenning

V _{pl}	- Kjøleluftens hastighet i polluken
Vr	- Periferihastighet ved rusing
$\mathbf{v}_{\mathbf{y}}$	- Luftens hastighet i kjølekanalene ved ytre diameter
W _{ew}	- Midlere spoleskritt for spolehodet

X _{adw}	- Midlertidig ankerreaksjonsreaktans
X _d	- Synkronreaktansen i d-aksen
X_{d1}	- Største tillatte transiente reaktans i d-akse
X _{d2}	- Minste tillatte subtransiente reaktans i d-akse
X _{dt}	- Transiente reaktans i d-akse
X _{dtt}	- Subtransiente reaktans i d-akse
X _{dw}	- Midlertidig synkronreaktans
X_{f}	- Feltviklingens lekkreaktans
X_{lw}	- Midlertidig lekkreaktans
X _{ma}	- Ankerreaksjonsreaktans
X _{md}	- Ankerreaksjonsreaktans i d-akse
X _{mq}	- Ankerreaksjonsreaktans i q-akse
Xσ	- Lekkreaktansen
X_q	- Synkronreaktansen i q-aksen
X _{qtt}	- Subtransiente reaktans i q-akse
у	- Spoleskritt
УQ	- Relativt spoleskritt
Zt	- Antall delledere i høyden i ett spor

$\alpha_{\rm r}$	- Relativ polbue
α_{Kra}	- Faktor for beregning av R _{ac}
β	- Empirisk konstant for beregning av GD ²
β_2	- Vinkel mellom statorstrøm og g-akse
γ	- Faktor for å bestemme minimum luftgap
γ_2	- Halv vinkel mellom to nabopoler i mekaniske grader
γ _{cu}	- Massetetthet for kobber
γea γ _{Fe}	- Massetetthet for jern
8	- Skrittforkortning i antall spor
δ_0	- Minste luftgap
δ_{0e}	- Minste ekvivalente luftgap
δ2	- Lastvinkel
δ_{de}	- Ekvivalent luftgap for d-akse
δ_{def}	- Ekvivalent luftgap for d-akse inkludert magnetisk spenningsfall i jern
δ _{me}	- Midlere ekvivalent luftgap
δ _{mx}	- Maksimalt reelt luftgap
δ_{qe}	- Ekvivalent luftgap for q-akse
δ_{qef}	- Ekvivalent luftgap for q-akse inkludert magnetisk spenningsfall i jern
ζ	- Faktor for beregning av R_{ac}
ζd	- Faktor for beregning av tidskonstant i d-akse
ζα	- Faktor for beregning av tidskonstant i d-akse
$\Theta_{\rm mn}$	- Totalt magnetiseringsbehov
Θ_{σ}	- Drivende amperevindinger for pollekkfluks
λ_{air}	- Termisk konduktivitet for kjøleluften
λ_d	- Permeansfaktor for en tann
Λ_{Ds}	- Permeansfaktor for en dempestav
λ_{lew}	- Permeansfaktor for spolehodet
$\Lambda_{ m pk}$	- Permeans mellom polkjernene for to nærliggende poler
Λ' _{pk}	- Permeans mellom polkjernene for to nærliggende poler, tatt hensyn til
-	at forslynget fluks stiger med avstanden fra bunnen av polen
$\Lambda_{ m ps}$	- Permeans mellom polskoene for to nærliggende poler
Λ_{σ}	- Total permeans mellom to nærliggende poler
λ_u	- Permeansfaktor for et spor
$\lambda_{ m w}$	- Permeansfaktor for spolehodet
μ_0	- Permeabiliteten til vakuum
μ_{air}	- Viskositeten til luft ved 40 °C
μ_{rpk}	- Relativ permeabilitet til polkjernen
μ_{ryr}	- Relativ permeabilitet til rotorringen
ξ	- Redusert lederhøyde
ρ_{20}	- Resistiviteten for kobber ved 20 °C
ρ ₇₅	- Resistiviteten for kobber ved 75 °C
$ ho_{th}$	- Tettheten til luft ved 40 °C
σ_{cu75}	- Konduktansen til kobber ved 75 °C
$\sigma_{ m f}$	- Faktor for beregning av reaktanser

$ au_{md}$	- Midlere avstand mellom to nærliggende polkjerner
$ au_{mn}$	- Minste avstand mellom to nærliggende polkjerner
$ au_{mx}$	- Største avstand mellom to nærliggende polkjerner
$ au_{ m p}$	- Poldeling i meter
$ au_{\mathrm{pr}}$	- Polbuebredde
$ au_{ps}$	- Poldeling i antall spor
$ au_{pt}$	- Avstand mellom poltennene til to nærliggende poler
$\tau_{\rm r}$	- Spordeling for dempeviklingen
$ au_{\mathrm{u}}$	- Spordeling i meter
$ au_{ukj}$	- Bredden av en kjølekanal og en blikkpakke
$ au_{yr}$	- Midlere buelengde rotorringen mellom to nabopoler
$ au_{ys}$	- Lengden på fluksveien i åket
ϕ_2	- Faseforskyvning ved nominell drift
φ _{cu}	- Faktor for beregning av Rac
φ'ξ	- Funksjon av ξ
Φ_{d}	- Maksimal fluks gjennom en statortann
$\Phi_{\rm m}$	- Maksimal fluks gjennom en poldeling
Φ_{σ}	- Pollekkfluks
$\Phi_{\sigma ps}$	- Lekkfluksen over polskoen
Ψ_{cu}	- Faktor for beregning av Rac
ψ'ξ	- Funksjon av ξ
ω	- Vinkelhastigheten, elektrisk
ω_{m}	- Vinkelhastigheten, mekanisk

3. Beregningsprogrammet GenProg

ette kapitelet tar for seg oppbygningen av konstruksjonsprogrammet GenProg. GenProg er basert på MatLab og Excel. Programmet deles inn i flere mindre programdeler som vist i *Figur 1*. Oppbygningen av hver programdel vil bli forklart for å gi en bedre oversikt over strukturen i programmet.

Fremgangsmåten som blir brukt i dette programmet er én av flere mulige metoder for konstruksjon av synkronmaskiner. Denne fremgangsmåten ble valgt fordi den ble vurdert som mest hensiktsmessig og på grunn av kildetilgangen for denne konstruksjonsmetoden. Beregningene som blir gjennomført av programmet er basert på formelverket i kapittel 4. Forklaringene vil inneholde fremgangsmåte og oppbygging av programmet. Det blir ikke gått i detalj i hver enkelt beregning, da dette blir gjennomgått i kapittel 4.

Figur 1 - Flytdiagram for GenProg

3.1. Inputs

GenProg er bygd opp slik at parametrene som MatLab bruker til beregningene leses inn fra en Excel-fil. Filen består av fire tabeller der verdier for generatoren blir skrevet inn. De fire tabellene er:

- Required Values
- Optional Values
- Slot Dimensions
- Pole Dimensions

3.1.1. Required Values

I denne tabellen skal verdier som programmet **må** ha for å kunne gjøre beregninger på generatoren leses inn. Det eneste unntaket er treghetsmomentet, M, fordi denne verdien i noen tilfeller ikke er kjent. Hvis denne verdien settes lik null, vil programmet finne et fornuftig treghetsmoment for maskinen. Denne bør kun benyttes som et utgangspunkt for å komme i gang med beregningene. Ellers fylles tabellen ut med verdier som oppfyller de krav som ønskes for maskinen.

3.1.2. Optional Values

Etter at GenProg har gjennomført en beregning basert på de satte verdiene i tabellen *Required Values* i Input-filen, vil de beregnede generatorparametrene bli skrevet ut til en tilsvarende Output-fil. De resultatene fra Output-filen som virker fornuftig og skal brukes videre i maskinkonstruksjonen kan skrives inn i tabellen *Optional Values*. Hvis noen av verdiene i denne tabellen er kjent kan disse fylles inn før beregningen starter. Verdier som skrives inn (ikke er satt til null) blir da fastsatt men kan endres, om ønskelig, senere i konstruksjonen.

3.1.3. Slot Dimensions

I denne tabellen kan det fylles inn ønskelige verdier for statorsporene på generatoren. Programmet er utarbeidet slik at **alle** eller **ingen** verdier i denne tabellen settes. Det er variabelen h_s som brukes som betingelse for verdiene som er satt skal brukes i beregningen. Hvis ingen av verdiene for sporet er kjent, kan verdiene fra Output-filen brukes som utgangspunkt. Det er viktig å kontrollere at alle variablene som settes inn er korrekte siden dette ikke blir kontrollert i programmet.

3.1.4. Pole Dimensions

I denne tabellen kan det fylles inn ønskelige verdier for rotorpolen. Her er det mulig å sette variablene enkeltvis. De verdiene som ikke brukes skal settes lik null. Det er også her viktig å kontrollere at alle verdiene som fylles inn er riktig.

3.2. Statorberegninger

I denne programbiten vil nødvendige beregninger for statoren gjennomføres. Statorberegningene består i hovedsak av:

- Valg av diameter og jernlengde
- Valg av sportall
- Valg av antall parallelle kretser
- Valg av antall vindinger per vikling
- Valg av spenning
- Beregning av sporet
- Valg av skrittlengde
- Beregning av ytterdiameter
- Beregning av viklingsresistans

Hvis programmet kjøres når sportall, antall parallelle kretser, antall vindinger per vikling og skrittlengden ikke er valgt, må disse verdiene bestemmes og skrives inn i kommandovinduet i "MatLab" før beregningene fortsetter. Programmet gir beskjed dersom disse verdiene skal skrives inn.

3.2.1. Diameter og Jernlengde

De viktigste parametrene som blir beregnet i denne programbiten er:

- Utnyttelsessifferet
- Svingmomentet
- Indre statordiameter
- Brutto jernlengde

Indre diameter og brutto jernlengde er viktige parametere som brukes i videre beregninger av både stator og rotor.

3.2.2. Valg av Sportall

Hvis sportall ikke er satt i tabellen *Optional Values* i input-filen vil programmet beregne mulige sportall for forskjellige antall parallelle kretser for den aktuelle maskinen. Sportallene som blir beregnet av programmet blir lagt i en egen excel-fil, *sporfil.xls*. Brukeren kan da gå inn i filen for å finne ønsket sportall. I kommandovinduet i MatLab vil det komme spørsmål om hvor mange spor som er ønsket. Dette må skrives inn før beregningen forsetter.

3.2.3. Valg av Antall Parallelle Kretser

Etter at antall spor er valgt må antall parallelle kretser for maskinen velges. Hvilke antall parallelle kretser som er aktuelle for valgt sportall kan leses ut i fra *sporfil.xls*. Det vil også her komme spørsmål i kommandovinduet om hvor mange parallelle kretser som er ønsket. Dette må skrives inn før beregningen forsetter.

3.2.4. Valg av Antall Vindinger per Vikling

For å øke spenningen i generatoren kan det i være aktuelt å velge flere vindinger per vikling. Dette må bestemmes og skrives inn i kommandovinduet før beregningen kan fortsette.

3.2.5. Valg av Spenning

Ut i fra satte verdier fra *Optional Values* og statorberegningene vil programmet beregne en "fornuftig" spenning for generatoren.

3.2.6. Beregning av Sporet

Dersom sporet ikke settes vil programmet beregne dimensjoner på sporet og delledere samt tykkelse på isolasjon ut i fra antall spor, strømtetthet i stator, spenning og forholdet b_u/b_d . Dersom det benyttes formspole vil programmet velge kun én delleder i bredden.

3.2.7. Valg av Skrittlengde

Når verdiene over er valgt kan skrittlengden for viklingen (spoleskrittet) velges. Denne velges ut fra poldeling i antall spor og ønsket relativt spoleskritt. Poldelig i antall spor blir oppgitt i MatLab-vinduet før spoleskrittet skal skrives inn.

3.2.8. Ytterdiameter

Ut i fra den ønskede flukstettheten for åket som er satt i input-filen, vil den nødvendige høyden på åket og ytterdiameter for generatoren bli beregnet.

3.2.9. Beregning av Viklingsresistans

De viktigste parametrene som blir beregnet i denne programbiten er:

- DC-resistans
- Resistansfaktorer for viklingen
- AC-resistans

For at DC-resistansen skal beregnes korrekt er det viktig at lengden på viklingen blir korrekt. Hvis viklingslenden ikke er ført inn i tabellen, *Optional Values*, blir viklingslengden beregnet empirisk ut i fra maskinens lengde, diameter og spoleskritt. Erfaring viser også at det er fornuftig å legge til ca. 6 % [11] på DC-resistansen på grunn av høyere resistans i forbindelser. Programmet beregner også egne resistansfaktorer for hele viklingen, kun sporet og for øverste delleder i sporet. I tillegg er kobberarealet redusert med 2 % [11] på grunn av avrundede hjørner på delledere.

3.3. Rotorberegninger

Her skal alle beregninger for rotoren utføres. Rotorberegningene er delt inn i følgende programbiter:

- Beregning av dempevikling
- Ekvivalent luftgap
- Poldimensjoner
- Magnetiske beregninger
- Ankerreaksjonsinduktanser
- Lekkinduktanser
- Magnetiseringsbehov
- Feltviklingens konstruksjon

3.3.1. Beregning av Dempeviklingen

De viktigste parametrene som blir beregnet i denne programbiten er:

- Spordelingen for rotorsporene
- Antall dempestaver
- Total strøm per dempestav
- Kobberareal per dempestav

Grunnen til at dette er det første som beregnes for rotoren er at spordelingen for rotoren må være kjent før ekvivalent luftgap beregnes.

3.3.2. Ekvivalent Luftgap

De viktigste parametrene som blir beregnet i denne programbiten er:

- Carterskoeffisient for statorspor
- Carterskoeffisient for rotorspor
- Ekvivalent luftgap

I tillegg blir sporåpningen for dempeviklingen bestemt. Denne er som utganspunkt satt til 3mm [11].
3.3.3. Poldimensjoner

De viktigste parametrene som blir beregnet i denne programbiten er:

- Bredden på polskoen
- Bredden på polkjernen
- Foreløpig høyde på polkjernen
- Midlere ekvivalent luftgap

Høyden av polkjernen må beregnes fra en empirisk formel (se formel (4.3.9)). Dette kommer av at for å beregne denne eksakt må maskinens magnetiseringsbehov være kjent. Denne formelen er i programmet justert med erfaringstall. Polskohøyden over senter av polen blir satt til 5 cm [11].

3.3.4. Magnetiske Beregninger

De viktigste parametrene som blir beregnet i denne programbiten er:

- Magnetisk spenningsfall for luftgapet
- Magnetisk spenningsfall for statortennene
- Magnetisk spenningsfall for åket
- Magnetisk spenningsfall for rotorpolen
- Magnetisk spenningsfall for rotorring
- Totalt magnetisk spenningsfall for maskinen

For å beregne det magnetiske spenningsfallet i de forskjellige maskindelene må feltstyrken gjennom hele delen, samt lengden på fluksveien gjennom maskindelen, beregnes. Dersom feltstyrken endrer seg gjennom maskindelen kan det være hensiktsmessig å integrere feltstyrken over fluksveien. For å gjøre dette benyttes et eget program kalt *Int.m* som må ligge i samme meppe som *GenProg.m*. Det er lagt inn metningskurver for rotor- og statorblikk for å ta hensyn til metning i maskinen.

3.3.5. Ankerreaksjonsinduktanser

De viktigste parametrene som blir beregnet i denne programbiten er:

- Ankerreaksjonens induktans og reaktans i d-aksen
- Ankerreaksjonens induktans og reaktans i q-aksen

Grunnen til at ankerreaksjonsreaktansen blir beregnet her og ikke i programdelen *Reaktanser og tidskonstanter* er at ankerreaksjonsreaktansen må være kjent for at maskinens totale magnetiseringsbehov skal kunne beregnes.

3.3.6. Lekkinduktanser

De viktigste parametrene som blir beregnet i denne programbiten er:

- Luftgapslekkinduktansen
- Sporlekkinduktansen
- Tannlekkinduktansen
- Spolehodelekkinduktansen
- Vridningslekkinduktansen (skewing)
- Maskinens totale lekkinduktans

Som for ankerreaksjonsreaktansen trengs også lekkinduktansen for å finne maskinens totale magnetiseringsbehov.

3.3.7. Magnetiseringsbehov

De viktigste parametrene som blir beregnet i denne programbiten er:

- Relativ magnetisering
- Relativ indusert spenning
- Maskinens totale magnetiseringsbehov

Når magnetiseringsbehovet er beregnet kan man dimensjonere feltviklingen og finne en ny høyde på polkjernen.

3.3.8. Feltviklingens Konstruksjon

De viktigste parametrene som blir beregnet i denne programbiten er:

- Feltviklingens bredde
- Feltviklingens høyde
- Ny polkjernehøyde
- Høyden av en feltvinding
- Arealet av en feltvinding
- Gjennomsnittlig lengde av feltviklingen

- Nødvendig magnetiseringsstrøm
- Polklaring

Etter at ny polkjernehøyde er beregnet må denne sammenlignes med tidligere antatte verdi. Dersom avviket er for stort må beregningene gjennomføres på nytt med den nye polkjernehøyden.

3.4. Tapsberegninger

I denne delen av programmet blir tapene beregnet. Tapene består av følgende deler:

- Kobbertap
- Jerntap
- Magnetiseringstap
- Tilleggstap
- Lager og Viftetap

3.4.1. Kobbertap

I følge IEC 34-1 [5] skal kobbertapene beregnes ved 75°C. For å få korrekte kobbertap er det viktig at resistansen for viklingen blir korrekt beregnet.

3.4.2. Jerntap

Jerntapene blir beregnet ut i fra egenskapene til generatorens blikk. Hvis ikke noe annet er spesifisert i *Optional Values*, blir blikket SURA M270-50A brukt (se vedlegg 23). I tabellen *Optional Values* er det også mulig å legge inn blikk med spesifisert tap, i W/kg, ved 1 Tesla. I tillegg kan det benyttes en "typisk" metningskuve fra 60-tallet ved å sette FeOld=1 i *Optional Values*.

3.4.3. Magnetiseringstap

Disse tapene er beregnet empirisk til 7 % [17] av kobbertapene i rotor ved nominell drift.

3.4.4. Tilleggstap

For en synkrongenerator er tilleggstapene vanligvis i område 0,1 til 0,2 % [2] av levert effekt. I programmet er den satt til 0,15 % av levert effekt. Tilleggstapene består av:

- Strøtap i statorkonstruksjon
- Strøtap i endeplater
- Strøtap i spolehodene
- Strøtap i polhatten
- Børstetap

3.4.5. Lager og Viftetap

Beregning av lagertap og viftetap er vanskelig å beskrive med et generelt uttrykk. Lagertapene er i avhengig av turtall, opplagringstype, lagerdiameter og antall lager på akslingen, noe som varierer fra maskin til maskin. Viftetapene er avhengige av kjøleluftmengde og hvordan kjølekretsen er konstruert. Disse tapene må derfor undersøkes i hvert enkelt tilfelle. Lager og viftetapene blir derfor beregnet empirisk.

3.5. Termiske Beregninger

For å kunne konstruere en maskin er det viktig å vite hva temperaturene i maskinen vil bli. De termiske beregningene er delt inn i følgende programbiter:

- Beregning av nødvendig kjøleluft
- Beregning av maskinens varmeledningsmotstander
- Maskinens konduktansmatrise
- Varmestrømsmatrise
- Termisk resistansmatrise
- Friksjonsmatrise
- Temperaturmatrise

3.5.1. Beregning av Nødvendig Kjøleluft

For å beregne nødvendig kjøleluft benytter programmet en iterasjonssløyfe som øker kjøleluftmengden til alle maskintemperaturene er innenfor tillatte temperaturstigning. Kjøleluftmengden kan også settes i *Optional Values*.

3.5.2. Beregning av Maskinens Varmeledningsmotstander

Her beregnes alle varmeledningsmotstandene i maskinens termiske ekvivalentkrets. Usikkerhetsmomentet i disse beregningene er ofte overgangstallene til luft, samt beregning av Taylornummer.

3.5.3. Termisk Konduktansmatrise

Med utgangspunkt i maskinens termiske ekvivalentkrets settes det opp en termisk konduktansmatrise. Denne matrisen beskriver det termiske nettverket for maskinen.

3.5.4. Varmestrømsmatrise

Tapene i maskinen som må ledes ut gjennom maskinens termiske ekvivalentkrets betraktes som varmestrømmer, og plasseres i en matrise ut fra hvilken node varmestrømmen kommer inn i.

3.5.5. Termisk Resistansmatrise

Denne resistansmatrisen tilhører den ytre kretsen (kjøleluften). Resistansene representerer kjøleluftens evne til å oppta energi (varme fra omgivelsene).

3.5.6. Friksjonsmatrise

Denne matrisen bestemmer i hvilke noder friksjonstapene skal inkluderes.

3.5.7. Temperaturmatrise

Temperaturmatrisen inneholder temperaturene i nodene i den termiske ekvivalentkretsen. Noen av disse temperaturene representerer de reelle temperaturer i maskinen og er oppgitt i Output-filen.

3.6. Reaktanser og Tidskonstanter

Her blir maskinens transiente reaktanser og tidskonstanter beregnet. Denne programdelen er delt inn i følgende programbiter:

- Transiente reaktanser
- Transiente tidskonstanter

3.6.1. Transiente Reaktanser

De viktigste parametrene som blir beregnet i denne programbiten er:

- Feltviklingens resistans
- Feltviklingens relative lekkreaktans
- Transiente reaktanser
- Transiente induktanser

Induktansverdiene for feltvikling og dempevikling må refereres over til statoren før de transiente reaktansene kan beregnes.

3.6.2. Transiente Tidskonstanter

De viktigste parametrene som blir beregnet i denne programbiten er:

- Dempeviklingens resistans
- Dempeviklingens lekkinduktans
- Transiente tidskonstanter

Her må resistansverdiene for feltvikling og dempevikling refereres til stator før tidskonstantene kan beregnes.

3.7. Mekaniske Beregninger

Det har ikke blitt lagt stor vekt på mekaniske beregninger i dette prosjektet. De mekaniske beregningene er delt inn i følgende programbiter:

- Svingmoment
- Total maskinvekt

3.7.1. Svingmoment

De viktigste parametrene som blir beregnet i denne programbiten er:

- Svingmoment for poler og feltviklinger
- Svingmoment til rotorring
- Tillegg for nav, bremsering, ventilatorer, svinghjul og støttestrukturer.
- Maskinens totale svingmoment

Usikkerheten i beregningene ligger hovedsakelig i rotorringen og tilleggene.

3.7.2. Total Maskinvekt

De viktigste parametrene som blir beregnet i denne programbiten er:

- Vekt av polkjernene
- Vekt av feltvikling
- Vekt av statorvikling
- Tilleggsvekt
- Maskinens totale vekt

Her blir totalvekten justert empirisk for å beregne vekt av det som ikke inngår direkte i den elektromagnetiske konstruksjonen. Dette omfatter innkapsling, rammeverk og tilsvarende.

3.8.Outputs

I denne programdelen blir alle nødvendige parametre fra maskinberegningen skrevet ut til et Excel-ark med navnet *Output.xls*. Det er viktig at malen til denne filen er lagret i samme mappe som *GenProg.m* for at forklaringene til utskriften skal komme med.

4. Formelverk

I dette kapittelet vil formelverket som er grunnlaget for GenProg gjennomgås. Det er tatt utgangspunkt i formelverket fra *Beregning av Vannkraftgeneratorer* [1]. Det ble under utarbeidelsen av GenProg gjort en rekke forbedringer i det opprinnelige formelverket.

I det oppgraderte formelverket er det tatt i bruk flere kilder og et bredere teoretisk grunnlag for å sikre et mer pålitelig resultat. Formelverket er godt egnet som grunnlag for å utvikle et beregningsprogram for synkrongeneratorer i størrelsesorden 10 - 50 MVA. Gjennom utarbeidelsen av GenProg har formelverket blitt kontrollert og verifisert med reelle verdier fra konstruerte maskiner.

Dette kapittelet inneholder begrenset med teori, og er ment som et rent formelverk. For utfyllende teori henvises det til *Beregning av Vannkraftgenerator* [1] og øvrige kilder (se referanseliste).

4.1. Inputs

For å kunne konstruere en generator må følgende maskinparametere være gitt før konstruksjonen starter:

- Aktiv effekt, P
- Cos φ
- Spenning, U (kan være gitt)
- Krav til treghetsmoment
- Mekanisk turtall, n (eller antall poler, Np)
- Frekvens, f
- Krav til synkronreaktanser
- Temperaturkrav

4.2. Statorberegninger

4.2.1. Diameter og jernlengde [1][9][11]

Først bestemmes utnyttelsesfaktoren som erfaringsmessig er gitt som

$$C = \frac{S[KVA]}{D_i^2 \cdot l_b \cdot n}$$
(4.2.1)

$$C = 0,02 \cdot S \cdot [MVA] + 5,6$$
(4.2.2)

der

- D_i er luftgapdiameter

- l_b er brutto jernlengde

Utnyttelsesfaktoren er basert på erfaring og brukes til å bestemme et utgangspunkt for luftgapdiameter og brutto lengde. Utnyttelesesfaktoren brukes også til å beregne produktet D^2l .

$$D^2 l = \frac{KVA}{C \cdot n_s} \tag{4.2.3}$$

Svingmomentet GD^2 for en rotor er gitt som

$$GD^2 = \beta \cdot D_i^4 \cdot l_b \tag{4.2.4}$$

der

 β er en konstant som forteller om massetettheten i rotor (om den er sylindrisk eller massiv). Dette har en tendens til å forandre seg med poltallet og er erfaringsmessig gitt som

$$\beta = -0,03 \cdot Np + 2,9 \tag{4.2.5}$$

For a oppfylle krav til svingmasse kan GD^2 beregnes som

$$GD^{2} = 2 \cdot 10^{3} \cdot \frac{P[kW]}{n_{s}^{2}} \quad [t \cdot m^{2}]$$
(4.2.6)

Ved høyt turtall og liten diameter kan uttrykket over gi for høy GD^2 . Da blir det nødvendig å krympe maskinen og ha et svinghjul for å få en optimal konstruksjon.

Det blir da mulig å beregne $D_i^4 \cdot l_b$ fra ligning (4.2.4), (4.2.5) og (4.2.6)

Et utgangspunkt for diameteren og brutto jernlengde kan da beregnes som

$$D_{i} = \sqrt{\frac{D_{i}^{4} \cdot l_{b}}{D_{i}^{2} \cdot l_{b}}}$$

$$l_{b} = \frac{D_{i}^{2} \cdot l_{b}}{D_{i}^{2}}$$

$$(4.2.7)$$

$$(4.2.8)$$

Hvis sentrifugalkreftene blir for store vil det føre til at den mekaniske konstruksjonen blir vanskelig. For å unngå dette bør den ikke periferihastigheten på yttersiden av rotor, V_r , ikke overstiger 150 m/s.

$$V_r = \pi \cdot D_i \cdot \frac{n_r}{60} \tag{4.2.9}$$

der

n_r er ruseturtallet til generatoren [o/min]. _

4.2.2. Valg av vikling og sportall [1][2][11]

Når antall spor i stator skal velges, er det viktig at det blir likt antall spor per fase for at maskinen skal være i balanse.

$$\frac{Q_s}{2 \cdot m}$$
 og $\frac{Q_s}{p_{nr}}$ er et heltall (4.2.10)

der

- Q_s er antall statorspor

- p_{nr} er antall parallelle kretser

Viklingsbalansen kan videre undersøkes ved å se på antall spor pr. pol.

$$\frac{Q_s}{Np} = \frac{F_W \cdot N_W}{F_W \cdot D_W} \tag{4.2.11}$$

der

- F_W er største felles nevner for brøken _
- N_W er antall forskjellige spenningsvektorer over D_W poler

Spordelingen, τ_u , for maskinen kan bestemmes som

$$\tau_u = \frac{\pi \cdot D}{Q_s} \tag{4.2.12}$$

Poldelingen, τ_p , kan også bestemmes

$$\tau_p = \frac{\pi \cdot D}{2 \cdot p} \tag{4.2.13}$$

Etter at spordelingen er bestemt kan det antas et utgangspunkt for sporbredde og tannbredde. Forholdet b_u/b_d ligger vanligvis i området 0,55 til 0,75.

4.2.3. Valg av spenning og ankerbelastning [1][11]

Ut i fra utnyttelsessifferet er det mulig å finne en estimert ankerbelastning, A'_s .

$$A'_{s} = \frac{C \cdot 60 \cdot k_{m} \cdot 10}{\pi^{2} \cdot k_{f} \cdot f_{w} \cdot \frac{f_{j}}{1 + b_{u}/b_{d}} \cdot B_{t}} \quad [At / cm]$$

$$(4.2.14)$$

der

-
$$k_f$$
 er konstant lik $\frac{\pi}{2\sqrt{2}} \approx 1,11$

- k_m er forholdet mellom maksimal og midlere flukstetthet og er lik $\frac{\pi}{2}$

- f_w er viklingsfaktor (gjennomsnittlig rundt 0,925)
- f_i er netto jernlengde (vanligvis rundt 0,8-0,85)

Fra ankerbelastningen kan strømmen i en stav bestemmes.

$$I_c = \frac{A'_s \cdot \tau_u}{2} \tag{4.2.15}$$

Når et utgangspunkt for strømmen i en stav er estimert må antall parallelle kretser bestemmes for å beregne hva spenningen på generatoren blir. Når dette er valgt kan spenningen beregnes som

$$U_n = \frac{S_n}{I \cdot p_{nr} \cdot \sqrt{3}} \tag{4.2.16}$$

4.2.4. Oppbygning av sporet [1][11]

Når sporbredden, b_u , og strømmen er bestemt kan resten av dimensjonene for sporet bestemmes. Målet er å få mest mulig kobber i sporet for å redusere resistansen i viklingen mest mulig. Hvilke verdier som må bestemmes er vist i *Figur 2*. Siden sporbredden er bestemt er det sporhøyden som må varieres for å få nok plass i sporet. Det er i hovedsak temperaturen som er begrensningen for sporet. Tillatt overflatebelastning for sporet kan beregnes empirisk som

$$W/cm^2 = (0,135 - 0,003 \cdot U) \cdot (1 + 0,02(\Delta T - 60))$$
 (4.2.17)

der

- U er spenning i kV

- ΔT er tillatt temperaturstigning

Etter at dimensjonene på sporet er bestemt kan den aktuelle overflatebelastningen beregnes som (antar at det ikke er strømfortrengning):

$$W/_{Cm^2} = \frac{2,1\cdot 10^{-6}\cdot I_n^2}{A_{Cu,s}(b_u+h_s-h_k)}$$
 (4.2.18)

der

$$A_{Cus} = 0.98 \cdot b_{delleder} \cdot h_{delleder} \cdot n_{delledere} \ [cm^2]$$
(4.2.19)

Strømtettheten i stator bør kontrolleres for å unngå at den blir for høy. For en luftkjølt maskin ligger den vanligvis mellom 2 [A/mm²] og 4,5 [A/mm²].

Figur 2 - Viser utsnitt av et spor med tolagsvikling hvor det er brukt røbelstav, [1]

4.2.5. Beregning av Ytre Diameter og Jernlengder [1][2][6][8][11][14][15]

I dette avsnittet skal ytre diameter på statoren og netto og brutto jernlengde bestemmes. Først skal fordelingsfaktoren beregnes. For en generator med 60° fasebelte og

$$k_{d} = \frac{\sin\frac{\pi}{6}}{q'\sin\frac{\pi}{q'\cdot 6}}$$
(4.2.20)

der q' er antall forskjellige spenningsvektorer per fase og kan beregnes som

$$q' = \frac{Q_s}{m \cdot F_W} \tag{4.2.21}$$

For å redusere harmoniske komponenter i fluksen og for å redusere viklingslengden legges viklingen ut med forkortet skritt (y/y_Q bør ligge mellom 0,8 og 0,85 for å redusere 5.- og 7. harmoniske mest mulig). Skrittforkortningsfaktoren kan beregnes som

$$k_{p} = \sin\left(\frac{y}{y_{Q}}\frac{\pi}{2}\right) = \sin\left(\frac{W}{\tau_{p}}\frac{\pi}{2}\right)$$
(4.2.22)

Hvis *q* velges som et helt tall er det nødvendig å skråstille sporene for å redusere sporharmonisk fluks. Dette reduserer den totale fluksen gjennom maskinen. Skewingfaktoren (faktor for skråstilling) kan beregnes som. *s* bør velges til 1. spor for å redusere mest mulig av den harmoniske fluksen

$$k_{sqv} = \frac{\sin\left(\frac{s}{\tau_{ps}}\frac{\pi}{2}\right)}{\frac{s}{\tau_{ps}}\frac{\pi}{2}}$$
(4.2.23)

der τ_{ps} er poldelingen i antall spor

Den totale viklingsfaktoren blir da lik

$$k_w = k_d \cdot k_p \cdot k_{sq} \tag{4.2.24}$$

Effektivverdien til den grunnharmoniske fluksen kan beregnes som

$$e = N_s \cdot k_w \frac{d\hat{\Phi}_m}{dt} \Longrightarrow$$
(4.2.25)

$$\hat{\Phi}_m = \frac{U_n}{4 \cdot k_f \cdot k_w \cdot f \cdot N_s} \tag{4.2.26}$$

der

- N er antall vindinger i serie per fase
- f er frekvensen til fluksen

Antar en flukstetthet i luftgapet, $\hat{B}_{\delta} = 0.9 T$

For en synkronmaskin der polen er formet for å produsere en sinusformet flukstetthet i luftgapet kan luftgapet beregnes empirisk som

$$\delta \ge \gamma \cdot \tau_p \cdot \frac{A_a}{\hat{B}_{\delta}} = \gamma \cdot \tau_p \cdot \frac{A'_s}{\hat{B}_{\delta}}$$
(4.2.27)

der $\gamma = 4 \cdot 10^{-7}$

Ekvivalent netto jernlengde kan da beregnes som

$$l' = l - n_v \cdot b_{ve} + 2\delta \tag{4.2.28}$$

der

- n_v er antall kjølekanaler
- bve er ekvivalent bredde på luftgapet
- $n_v = l/0,048$, antar bredde på blikkpakke pluss kjølekanal lik 48 mm og n_v rundes av til nærmeste heltall.

Den ekvivalente bredden av kjølekanalen når det er tatt hensyn til Carterskoeffisienten blir

$$b_{ve} = k_{c,kj} \cdot b_v = \frac{\tau_{u,kj}}{\tau_{u,kj} - \frac{b_v/\delta}{5 + b_v/\delta} \cdot b_v} \cdot b_v$$
(4.2.29)

der

- b_v er bredde på kjølekanal
- $\tau_{u,ki}$ er bredde på blikkpakke pluss kjølekanal

Beregner den reelle maksimale flukstettheten i luftgapet

$$\hat{B}_{\delta} = \frac{\pi \cdot \hat{\Phi}_m \cdot f_w}{2 \cdot l' \cdot \tau_p} \tag{4.2.30}$$

Sammenlign denne med tidligere antatt verdi.

Netto reell jernlengde, l_n , blir da

$$l_n = l - n_v \cdot b_v \tag{4.2.31}$$

Den totale lengden på stator kan beregnes som

$$l = l_n + l_{kj \circ lekanal} = l_n + n_v \cdot b_v \tag{4.2.32}$$

For å beregne høyden på statoråket må det først bestemmes en ønsket flukstetthet for åket, B_y , i tomgang.

Høyden på åket, h_y , kan da bestemmes som

$$h_y = \frac{\hat{\Phi}_m}{2 \cdot 0.95 \cdot l_n \cdot B_y} \tag{4.2.33}$$

Ytre diameter på åket, D_{y_i} blir da

$$D_{y} = D + 2(h_{s} + h_{a})$$
(4.2.34)

Etter at innholdet i sporet er bestemt kan resistansen til viklingen beregnes som:

$$R = R_{ac} + R_{dc}$$
(4.2.35)
$$R_{dc} = \rho_{75} \cdot \frac{l_{av}}{A_{cu}}$$
(4.2.36)

der

- l_{av} er lengden på faseviklingen
- A_{cu} er kobberarealet

 R_{ac} for den delen av viklingen som ligger i sporet kan beregnes som

$$K_{rad} = f_{icu} + \frac{(2 \cdot t_{nr} \cdot n_{dlh})^2 - 1}{3} \cdot p_{sicu}$$
(4.2.37)

$$R_{ac} = R_{dc,spolehode} + R_{dc,spor} \cdot K_{rad}$$
(4.2.38)

$$K_{ra} = \frac{R_{ac}}{R_{dc}} \tag{4.2.39}$$

der

$$ficu = zeta \cdot \frac{\sinh \cdot (2 * zeta) + \sin \cdot (2 * zeta)}{(\cosh \cdot (zeta) + \sin \cdot (zeta))}$$
$$psicu = 2 \cdot zeta \cdot \frac{\sinh \cdot (zeta) - \sin \cdot (zeta)}{(\cosh \cdot (zeta) + \sin \cdot (zeta))}$$

$$- zeta = \sqrt{\pi^2 \cdot f \cdot 4 \cdot 10^{-7} (\frac{1}{\rho_{75}}) \cdot \frac{b_{cu}}{b_u}} \cdot h_{cus}$$

- n_{dlh} er antall delledere i høyden i sporet
- $\rho_{75}=2,165\cdot10^{-8}$
- b_{cu} er total kobberbredde i sporet
- b_u er sporbredde
- h_{cus} er dellederhøyden

Husk å ta hensyn til eventuelle parallelle kretser ved beregning av resistans.

4.3. Rotorberegninger

Beregninger av dempeviklingen [1][2][11][18] 4.3.1.

Velger minimum 6 dempestaver per pol. Ut fra dette velges $\tau_r = (0, 82 - 0, 88)\tau_s$ eller $\tau_r = 1,15\tau_s$ for å redusere sporharmoniske komponenter. Areal per dempestav beregnes ut fra $A_r = 0, 2 \cdot A_s$ og $S_D = 3A / mm^2$. Dersom det tas hensyn til at dempeviklingens bredde ikke er lik polbredden, blir maksimal strøm per dempestav:

$$I_{D,tot} = \frac{0, 2 \cdot A_s \cdot 0, 7 \cdot \tau_p \cdot (1 - 2 / (ND_s + 2))}{ND_s}$$
(4.3.1)

Nødvendig tverrsnitt blir da

$$A_{cu,D} = \frac{I_{D,tot}}{S_D} \tag{4.3.2}$$

Ekvivalent luftgap [1][2] 4.3.2.

Nå kan Carterskoeffisienten for rotorsporene beregnes til

$$k_{Cr} = \frac{\tau_r}{\tau_r - \frac{b_D / \delta}{5 + b_D / \delta} \cdot b_D}$$
(4.3.3)

Carterskoeffisienten for statorsporene blir

$$k_{Cs} = \frac{\tau_u}{\tau_u - \frac{b_1 / \delta}{5 + b_1 / \delta} \cdot b_1}$$
(4.3.4)

Total Carterskoeffisient blir da

$$k_{C} = k_{Cr} + k_{Cs} \tag{4.3.5}$$

og ekvivalent luftgap kan finnes fra følgende formel:

$$\delta_e = \delta_{0e} = k_C \cdot \delta \tag{4.3.6}$$

4.3.3. Poldimensjoner [1][2][11][18]

Velger så polskoform til enbuet polsko der polbredden $\tau_{pr} = 0, 7 \cdot \tau_p$ og radiusen $r_r = 0, 7 \cdot r_s = 0, 7 \cdot D/2$. Som utgangspunkt settes høyde på polskoen og poltannen til henholdsvis $h_{ps} = 5 \ cm$ og $h_{pt} = 2,8 \ cm$. Bredden på polkjernen settes foreløpig til $b_{pk} = 1, 8 \cdot h_a$, og polskobredden beregnes ut fra

$$b_{ps} = 2 \cdot \alpha_r \cdot D_i / 2 \cdot \sin(\tau_{pr} / (2 \cdot \alpha_r \cdot D_i / 2))$$
(4.3.7)

Beregner midlere luftgap ut fra følgende formel:

$$\delta_{me} = \delta_e + \frac{1}{3}(\delta_{\max} - \delta_e) = \delta_e \left[1 + \frac{1}{3} \left(\frac{\delta_{\max}}{\delta_e} - 1 \right) \right]$$
(4.3.8)

For enbuet polsko regnes $\delta_{\max} / \delta_{\min} = \delta_{\max} / \delta_e = 1,5$. Høyden av polkjernen i centimeter finnes foreløpig fra empiriske betraktninger til

$$h_{pk} = 2 \cdot 1, 2 + \sqrt{\frac{2, 1 \cdot 10^{-6} \cdot 0,935}{\left(0,22+0,0055 \cdot \frac{\pi Dn}{60}\right) \left[1+0,016(\Delta T-60)\right] \cdot 5, 1}} \cdot \frac{1, 1 \cdot 2 \cdot \hat{B}_{\delta} \cdot 1, 9}{\pi \mu_0} \delta_{0e}$$
(4.3.9)

I programmet har dette uttrykket blitt justert empirisk.

4.3.4. Magnetiske beregninger [1][2][9][11][15][18]

Videre skal alle de magnetiske spenningsfallene for maskinen beregnes. Først beregnes spenningsfallet over luftgapet.

$$U_{m,\delta} = \frac{\hat{B}_{\delta}}{\mu_0} \cdot \delta_{0e} \tag{4.3.10}$$

Magnetisk spenningsfall for en statortann kan finnes som

$$U_{m,d} = \int_{0}^{h_d} H(B_d) \cdot dl$$
 (4.3.11)

der BH-karakteristikken til blikket må oppgis på formen H(B). Begynner med å finne Maksimal flukstetthet i tannen, tannens miste og største areal, samt tannfluksen.

$$\hat{B}_d = \frac{l_b \tau_u}{S_d} \hat{B}_\delta \cdot 0,99 \tag{4.3.12}$$

$$S_d = k_{Fe}(l - n_v b_v) b_d$$
(4.3.13)

$$S_{u} = l'\tau_{u} - k_{Fe}(l - n_{v}b_{v})b_{d}$$
(4.3.14)

Maksimal flukstetthet i tannen er en forenkling siden fluksen som går i sporet er tatt hensyn til som én prosent av den totale fluksen. Beregninger viser at fluksen som går i sporet utgjør 0,85 % ved 1,7 tesla og 1,24 % ved 1,9 tesla. Dette er tatt med i formel (4.3.12) som faktoren 0,99. Videre er tannfluksen gitt av:

$$\hat{\Phi}_d = S_d \hat{B}_d \tag{4.3.15}.$$

Det magnetiske spenningsfallet blir på formen

$$U_{m,d} = \int_{0}^{h_d} H(\hat{B}_d) \cdot dh = \int_{0}^{h_d} (u + v\hat{B}_d + w\hat{B}_d^2 + x\hat{B}_d^3 + y\hat{B}_d^4 + z\hat{B}_d^5) \cdot dh \quad (4.3.16)$$

der

$$\hat{B}_{d} = \frac{\hat{\Phi}_{d}}{S_{d}} = \frac{\hat{\Phi}_{d}}{k_{Fe}(l - n_{v}b_{v})} \cdot \frac{1}{b_{d}(h)}$$
(4.3.17)

der

$$b_d(h) = b_{d,\min} + \left(\frac{b_{d,\max} - b_{d,\min}}{h_s}\right) \cdot h$$
(4.3.18).

Selve integralet løses ved hjelp av en quad-funksjon for å redusere tidsbruken.

Magnetisk spenningsfall for åket kan finnes som

$$U_{m,ys} = \int_{d}^{q} H(B_{ys}) dl$$
 (4.3.19)

der

$$B_{ys}(x) = \hat{B}_{ys} \sin \theta = \frac{\hat{\Phi}_m}{2S_{ys}} \sin \theta = \frac{\hat{\Phi}_m}{2k_{Fe}(l - n_v b_v) h_{ys}} \sin(\frac{\pi}{2 \cdot \tau_{ys}} \cdot x)$$
(4.3.20).

Dette gir

$$U_{m,ys} = \int_{0}^{\tau_{ys}} H(B_{ys}(x)) dx \qquad (4.3.21).$$

For å kunne beregne det magnetiske spenningsfallet i rotorpolen må først pollekkfluksen og foreløpig drivende amperevindinger beregnes. For å gjøre dette må målene for polen beregnes.

$$\gamma = \frac{180}{2p} \tag{4.3.22}$$

$$\tau_{pt} = 2\left(\frac{D_i}{2} - \delta_0 - h_{ps}\right)\sin\gamma - b_{ps}\cos\gamma$$
(4.3.23)

$$\tau_{mx} = 2(\frac{D_i}{2} - \delta_0 - h_{ps})\sin\gamma - b_{pk}\cos\gamma \qquad (4.3.24)$$

$$\tau_{md} = 2(\frac{D_i}{2} - \delta_0 - h_{ps} - \frac{h_{pk}}{2})\sin\gamma - b_{pk}\cos\gamma$$
(4.3.25)

$$\tau_{mn} = 2(\frac{D_i}{2} - \delta_0 - h_{ps} - h_{pk})\sin\gamma - b_{pk}\cos\gamma$$
(4.3.26)

Videre kan permeansen mellom polskoene og polkjernene beregnes.

$$\Lambda_{ps} = 4\mu_0 \cdot \left[l_b \left(\frac{0, 5 \cdot \delta_{mx} + h_{pt}}{\tau_{pt}} + \frac{b_{ps} - b_{pk}}{\tau_{pt} + \tau_{mx}}\right) + \frac{(h_{pt} + 2h_{ps})b_{ps}}{3(\tau_{pt} + \frac{\pi}{4}b_{ps})}\right]$$
(4.3.27)

$$\Lambda_{pk} = 4\mu_0 \cdot k_l \left(\frac{l_b h_{pk}}{\tau_{md}} + \frac{b_{pk} h_{pk}}{\tau_{md} + \frac{\pi}{4} b_{pk}}\right)$$
(4.3.28)

der

$$k_{l} = \frac{1}{a^{2}} (1 + \frac{a}{2})[a - \ln(1 + a)]$$
(4.3.29)

$$a = \frac{\tau_{mx}}{\tau_{mn}} - 1 \tag{4.3.30}$$

Den totale permeansen finnes som summen av de to permeansene.

$$\Lambda_{\sigma} = \Lambda_{ps} + \Lambda_{pk} \tag{4.3.31}$$

Høyden på rotorringen kan bestemmes ved:

$$h_{yr} = \frac{\hat{\Phi}_m}{2 \cdot k_{Fe} \cdot l_b} \tag{4.(3.32)}$$

Rotorringens ytre diameter blir:

$$D_{yr} = D_i - 2 \cdot (\delta_0 + h_{ps} + h_{pk})$$
(4.3.33)

Her beregnes også integrasjonsveien i rotorringen:

$$\tau_{yr} = \frac{\pi (D_{ryi} - h_{yr})}{2p}$$
(4.3.34)

Videre må den relative magnetiseringen beregnes. Samtidig beregnes den relative induserte spenningen. For å beregne dette trengs en foreløpig verdi for ankerreaksjonsreaktans og lekkreaktans. Til dette benyttes Westgaards beregninger.

Bestemmer først relativt spoleskritt.

$$y = \frac{W_W \cdot N_p}{Q_S} \tag{4.3.35}$$

der W_W er spoleskrittet i antall spor. Videre bestemmes ankerreaksjonens strømforslyngning.

$$F_a = \frac{2,7 \cdot k_W \cdot I_n \cdot N_S}{N_p} \tag{4.3.36}$$

Det magnetiske spenningsfallet i luftgapet kan beregnes som:

$$F_{\delta} = \frac{\hat{B}_{\delta} \cdot \delta_{0e}}{1,256 \cdot 10^{-6}}$$
(4.3.37)

Fra dette kan ankerreaksjonsreaktansen og lekkreaktansen beregnes.

$$X_{ad} = \frac{F_{a}}{F_{\delta}} \cdot 0,835$$

$$X_{\sigma} = 6,54 \cdot 10^{-7} \cdot \frac{F_{a}l_{b}}{\hat{\Phi}_{m}k_{W}^{2}} \cdot \left(\frac{N_{p}}{Q_{S}(3y+1)} \cdot \frac{(h_{s} + d_{icu} + d_{ij} + 2h_{spk})}{b_{u}} + \frac{3,6}{N_{p}}(3y+1)\frac{D_{i}}{l_{b}}\right)$$

$$+1,1 \cdot \frac{F_{a}}{F_{\delta}} \left(\frac{N_{p}}{Q_{S}}\right)^{2} + \left(\frac{N_{p}\delta_{me}}{D_{i}}\right)^{2} \cdot \frac{X_{ad}}{2}$$

$$(4.3.39)$$

Videre kan den relative magnetiseringen og den relative induserte spenningen beregnes.

$$E_{b} = \sqrt{(1 + X_{d} \sin(\arccos(\cos\phi)))^{2} + (X_{d} \cos\phi)^{2}}$$
(4.3.40)
$$E_{i} = \sqrt{(1 + X_{\sigma} \sin(\arccos(\cos\phi)))^{2} + (X_{\sigma} \cos\phi)^{2}}$$
(4.3.41)

Foreløpig drivende amperevindinger for pollekkfluksen kan nå finnes som:

$$\hat{\Theta}_{\sigma} = E_{i} \cdot \frac{\hat{U}_{m}' + \frac{\hat{\Phi}_{m}}{\mu_{r,pk} \cdot b_{pk} \cdot l_{b}} + \frac{\hat{\Phi}_{m} \tau_{yr}}{2k_{Fe}lh_{yr} \cdot \mu_{r,yr}}}{1 - \frac{(2\Lambda_{\sigma} - \Lambda_{pk})}{2\mu_{r,pk} \cdot b_{pk} \cdot l_{b}} - \frac{\Lambda_{\sigma} \tau_{yr}}{2k_{Fe}lh_{yr} \cdot \mu_{r,yr}}}$$
(4.3.42)

der

$$\hat{U}'_{m} = \hat{U}_{m\delta} + \hat{U}_{m,d} + \frac{\hat{U}_{m,ys}}{2}$$
(4.3.43)

og den relative permeabiliteten til polkjernen antas som 1000, og for rotorringen som 2000.

Fra dette kan pollekkfluksen beregnes som

$$\hat{\Phi}_{\sigma} = \Lambda_{\sigma} \hat{\Theta}_{\sigma} \tag{4.3.44}$$

For å finne flukstettheten i toppen av polen må også lekkfluksen for polskoen finnes separat.

$$\hat{\Phi}_{\sigma,ps} = \Lambda_{ps} \hat{\Theta}_{\sigma} \tag{4.3.45}$$

Fra dette kan flukstettheten i bunnen og i toppen av polkjernen finnes som maksimal og minimal flukstetthet i polkjernen.

$$\hat{B}_{dr,\max} = \frac{E_i \cdot \hat{\Phi}_m + \hat{\Phi}_{\sigma}}{b_{pk} l_b}$$

$$\hat{B}_{dr,\min} = \frac{E_i \cdot \hat{\Phi}_m + \hat{\Phi}_{\sigma,ps}}{b_{pk} l_b}$$
(4.3.46)
(4.3.47)

Bruker videre H(B) for å finne $H_{dr,max}$ og $H_{dr,min}$ når det er tatt hensyn til metningen. Det magnetiske spenningsfallet finnes til slutt som

$$U_{m,dr} = \frac{H_{dr,\max} + H_{dr,\min}}{2} \cdot h_{pk}$$
(4.3.48).

Det blir her forenklet ved å linearisere metningskurven i det aktuelle området, noe som ikke gir vesentlig store avvik. Til slutt beregnes den magnetiske spenningen i rotorringen.

$$\hat{U}_{m,yr} = \int_{q}^{d} H \cdot dl = \hat{H}_{yr}(\hat{B}_{yr}) \cdot \tau_{yr}$$
(4.3.49)

der

$$\hat{B}_{yr} = \frac{\hat{\Phi}_{p}}{2S_{yr}} = \frac{E_{i} \cdot \hat{\Phi}_{m} + \hat{\Phi}_{\sigma}}{2k_{Fe} l_{b} h_{yr}}$$
(4.3.50).

Både for rotorring og for rotorpolen må det benyttes metningskurver for det aktuelle blikket som har blitt brukt, og ikke samme metningskurve som for statorblikket.

Det totale magnetiske spenningsfallet kan finnes som

$$U_{m,tot} = I_{fDC} N_f = \hat{U}_{m,\delta} + \hat{U}_{m,d} + \hat{U}_{m,dr} + \frac{\hat{U}_{m,ys}}{2} + \frac{\hat{U}_{m,yr}}{2}$$
(4.3.51).

4.3.5. Ankerreaksjonsinduktanser [1][9][11][18]

Ankerreaksjonsreaktansen i per unit og ankerreaksjonsinduktansen finnes ut fra følgende formler:

$$X_{ma} = \frac{\mu_0 \cdot m \cdot k_W \cdot q \cdot t_{nr} \cdot I_n}{k_f \cdot p_{nr} \cdot \delta_{0e} \cdot B_{\delta}}$$

$$L_{ma} = \frac{X_{ma} R_{ref}}{\omega}$$
(4.3.52)

For å bestemme reaktansverdiene for d- og q-akse må k_d og k_q oppgis. Dette er faktorer som varierer med polskoform og luftgap. Her vil de settes til faste verdier lik $k_d=0.835$ og $k_q=0.47$. Nå kan ankerreaksjonsreaktansen i d- og q-aske beregnes.

$$X_{md} = k_d X_{ma}$$
 (4.3.54)
 $X_{ma} = k_a X_{ma}$ (4.3.55)

4.3.6. Lekkinduktanser [1][2][4][7][9][11][18]

Før magnetiseringsbehovet i fullast kan beregnes må også lekkinduktansene beregnes. Den første lekkinduktansen som beregnes er luftgaplekkinduktansen som består av både zig-zag induktansen og belt-leakage induktansen.

$$L_{\delta} = \frac{\mu_0}{\pi} \frac{m}{\delta_{def}} Dl' \left(\frac{N_s}{p}\right)^2 \sum_{\substack{\nu = -\infty \\ \nu \neq 1}}^{\nu = +\infty} \left(\frac{k_{ws\nu}}{\nu}\right)^2$$

Videre må sporlekkinduktansen beregnes.

$$L_u = \frac{4m}{Q} \mu_0 l' N^2 \lambda_u \tag{4.3}$$

For tolagsvikling blir permeansfaktoren

$$\lambda_{u} = k_{L}k_{1}\frac{h_{4}-h'}{3b_{4}} + k_{2}\left(\frac{h_{3}}{b_{4}} + \frac{h_{1}}{b_{1}} + \frac{h_{2}}{b_{4}-b_{1}}\ln\frac{b_{4}}{b_{1}}\right) + \frac{h'}{4b_{4}} \quad (4.3.58)$$

der

Figur 3 - Viser benevnelse på spordimensjoner, [2]

$$k_1 = \frac{5+3g}{8} \tag{4.3.59}$$

$$k_2 = \frac{1+g}{2} \tag{4.3.60}$$

$$g = \frac{1}{2\frac{\tau_p}{3}} \left[2\varepsilon\tau_p \cdot 0, 5 + 2\left(\frac{\tau_p}{3} - \varepsilon\tau_p\right) \cdot 1 \right] = 1 - \frac{3}{2}\varepsilon \qquad (4.3.61)$$

- ε er skrittforkortning i antall spor

$$k_{L} = \frac{1}{z_{t}^{2}} \phi'(\xi) + \frac{z_{t}^{2} - 1}{z_{t}^{2}} \psi'(\xi)$$
$$\phi'(\xi) = \frac{3}{2\xi} \left(\frac{\sinh 2\xi - \sin 2\xi}{\cosh 2\xi - \cos 2\xi} \right)$$
$$\psi'(\xi) = \frac{1}{\xi} \left(\frac{\sinh \xi + \sin \xi}{\cosh \xi + \cos \xi} \right)$$

- ξ er redusert lederhøyde
- z_t er antall delledere oppå hverandre

$$\xi = h_4 \sqrt{\omega \mu_0 \sigma \frac{b_{cu}}{2b_4}}$$

- σ er lederens spesifikke konduktivitet
- b_{cu} er bredden av lederen i sporet

Neste lekkinduktans er tannlekkinduktansen. Den beregnes på samme måte som sporlekkinduktansen, men det må finnes en ny permeansfaktor.

$$\lambda_{d} = k_{2} \frac{5\left(\frac{\delta}{b_{1}}\right)}{5 + 4\left(\frac{\delta}{b_{1}}\right)}$$
(4.3.66)

der k_2 fortsatt er gitt av

$$k_2 = (1+g)/2 \tag{4.3.67}$$

Tannlekkinduktansen finnes da fra

Figur 5 - Viser tannlekkfluksen, [2]

b1

$$L_d = \frac{4m}{Q} \mu_0 l' N^2 \lambda_d \tag{4.3.68}$$

Videre skal spolehodeinduktansen beregnes.

$$L_w = \frac{4m}{Q} q N^2 \mu_0 l_w \lambda_w \tag{4.3.69}$$

der

$$l_{w}\lambda_{w} = 2l_{ew}\lambda_{lew} + W_{ew}\lambda_{W}$$
(4.3.70)

Figur 6 - Viser benevninger i forbindelse med beregning av spolehodeinduktans, [2]

Permeansfaktorene λ_{lew} og λ_{W} kan finnes i tabellen under.

Tabell 2 - Permeansfaktorer for beregning av spolehodeinduktans [2]

Cross-section of end winding	Nonsalient-pole machine		Salient-pole machine	
	λ_{lew}	$\lambda_{ m w}$	λ_{lew}	$\lambda_{\rm w}$
Щ	0.342	0.413	0.297	0.232
	0.380	0.130	0.324	0.215
	0.371	0.166	0.324	0.243
	0.493	0.074	0.440	0.170
	0.571	0.073	0.477	0.187
	0.605	0.028	0.518	0.138

Den siste lekkinduktansen som beregnes her er vridningslekkinduktansen (skew leakage inductance) dersom dette blir benyttet i maskinen. Den kan beregnes ved

$$L_{sqv} = (1 - k_{sqv}^2) L_m \tag{4.3.71}$$

der

$$k_{sqv} = \frac{\sin\left(v\frac{s}{\tau_p}\frac{\pi}{2}\right)}{v\frac{s}{\tau_p}\frac{\pi}{2}}$$
(4.3.72)

Det må beregnes en induktans for alle

Figur 7 - Viser skewing av en stav, [2]

harmoniske som man ønsker å inkludere.

Ut fra dette kan den totale lekkinduktansen beregnes som

$$L_{\sigma} = L_{\delta} + L_{u} + L_{d} + L_{w} + L_{sq}$$
(4.3.73)

4.3.7. Totalt magnetiseringsbehov

Videre kan maskinens totale

magnetiseringsbehov beregnes. Det første som må be regnes er vinkelen $\,\delta$. Den kan be regnes som vinkelen til spenningen E_o .

$$\underline{E}_{\mathcal{Q}} = \underline{U}_n + (R_{ac} + jX_q)\underline{I}_n \tag{4.3.74}$$

Videre kan d-akse strømmen beregnes som

$$I_d = -I_n \sin\beta \tag{4.3.75}$$

$$\beta = \delta + \varphi \tag{4.3.76}$$

og

$$\varphi = \arccos(\cos \varphi_N) \tag{4.3.77}.$$

Ut fra dette kan spenningene E_f og E_i for maskinen beregnes fra formlene

$$\underline{E}_{f} = \underline{U}_{n} + R_{ac}\underline{I}_{n} + jX_{q}\underline{I}_{n} + j(X_{d} + X_{q})\underline{I}_{n} = \underline{E}_{Q} + j(X_{d} + X_{q})\underline{I}_{d}$$
(4.3.78)
$$\underline{E}_{i} = \left|\underline{U}_{n} + (R_{ac} + jX_{\sigma})\underline{I}_{n}\right|$$
(4.3.79)

Nå kan det totale magnetiseringsbehovet for maskinen i fullast finnes fra

$$\hat{\Theta}_{mn} = \left| E_f \right| \cdot \hat{\Theta}_m \tag{4.3.80}$$

Figur 8 - Vektordiagram for strømmer, spenningsfall og fluksforslyngning i en synkrongenerator med utpregede poler, [2]

4.3.8. Feltviklingens konstruksjon [1][2][11]

For å bestemme konstruksjonen av feltviklingen benyttes en empirisk formel for tillatte overflatebelastning i rotorviklingen.

$$W / cm^{2} = \left(0, 22 + 0,0055 \cdot \frac{\pi Dn}{60}\right) \left[1 + 0,016(\Delta T - 60)\right]$$
(4.3.81)

der ΔT er tillatte temperaturstigning. Etter dette må en del mål for polen og feltviklingen bestemmes. Disse målene er

- Høyde på feltkraven ($h_{kr} \approx 7mm$)
- Isolasjonstykkelse mot pol (inklusive toleranser) ($b_i \approx 4mm$)
- Vindingsisolasjon ($b_{if} \approx 0, 3mm$)
- Foreløpig tykkelse av feltspole ($b_{cuf} \approx 60mm$)
- Foreløpig tykkelse av endeplate ($L_e \approx 25mm$)

Målene gitt i parentes er veiledende mål som kan benyttes som mal. Videre oppgis et empirisk forhold mellom midlere og maksimal vindingslengde for feltviklingen.

$$\frac{L_{fmd}}{L_{fmx}} = a_f = 0,935 \tag{4.3.82}$$

Ut fra dette kan høyden av feltspolen beregnes i centimeter til

$$h_{f} = \sqrt{\frac{2,1 \cdot 10^{-8} \cdot \frac{L_{fmd}}{L_{fmx}}}{(W/cm^{2}) \cdot 0,85 \cdot b_{cuf}}} \cdot \hat{\Theta}_{mN}$$
(4.3.83).

Det kan nå finnes en ny høyde for polkjernen.

$$h_{pk} = h_f + 2h_{kr} \tag{4.3.84}$$

Denne høyden bør ikke avvike for mye fra den tidligere antatte høyden beregnet i ligning (4.3.9). I beregningsprogrammet vil det her bli gjennomført iterasjoner dersom avviket er for stort. Nå kan nødvendig kobbertverrsnitt finnes.

$$A_{f}n_{f} = \frac{2.1 \cdot 10^{-8} \Theta_{mN}^{2}}{(W/cm^{2})h_{f}} \cdot \frac{L_{fmd}}{L_{fmx}}$$
(4.3.85)

Finner midlere vindingslengde

$$\begin{split} L_{fmd} &= 2(L_f + b_f + 2b_{cuf}) \eqno(4.3.86) \\ L_f &= L_p + 2 \cdot 0.8 \eqno(4.3.87) \\ b_f &= b_{pk} + 2 \cdot 0.4 \eqno(4.3.88) \end{split}$$

Et uttrykk for feltspenningen ved 75°C kan finnes som

$$V_{f} = \frac{\rho_{cu,75^{\circ}C} \cdot l}{A} \cdot I_{f} = 2,1 \cdot 10^{-6} \frac{L_{fmd} n_{f} 2p}{A_{f}} \cdot \frac{\hat{\Theta}_{mn}}{n_{f}}$$
(4.3.89).

Bestem så ønsket feltspenning ($\approx 100V$). Antall turn i feltspolen kan dermed beregnes.

$$n_{f} = \frac{V_{f}(A_{f}n_{f})}{2,1 \cdot 10^{-8}L_{fmd} \cdot Np \cdot \hat{\Theta}_{mn}}$$
(4.3.90)

Bestemmer så høyden av hver feltvinding.

$$h_{cuf} = \frac{h_f - b_{if}(n_f - 1)}{n_f}$$
(4.3.91)

der b_{if} er vindingsisolasjonstykkelsen. Det neste er å beregne bredden av feltvindingen.

$$b_{cuf} = \frac{(A_f n_f)}{n_f h_{cuf}} \tag{4.3.92}$$

Også her bør den beregnede verdien av feltvindingsbredden sammenlignes med den tidligere antatte verdien. Tverrsnittet av feltvindingen finnes som

$$A_f = h_{cuf} \left[b_{cuf} - \left(1 - \frac{\pi}{4}\right) h_{cuf} \right]$$

$$(4.3.93).$$

Beregn ny L_{fmd} fra ligning (4.3.86), samt

$$L_{fmx} = L_{fmd} + 2 \cdot b_{cuf}$$
(4.3.94).

Finn aktuell overflatebelastning.

$$W/cm^{2} = 2,1 \cdot 10^{-8} \frac{\hat{\Theta}_{mn}^{2}}{(A_{f}n_{f})h_{f}} \cdot \frac{L_{fmd}}{L_{fmx}}$$
(4.3.95)

Denne verdien bør ikke være større enn tillatt verdi som ble beregnet i ligning (4.3.81) Beregner til slutt feltviklingens strømtetthet.

$$S_f = \frac{\hat{\Theta}_{mn}}{A_f n_f} \tag{4.3.96}$$

4.4. Tapsberegninger

Kobbertap [1] 4.4.1.

Det må beregnes kobbertap for både stator og rotorviklingen. For statorviklingen må det tas hensyn til strømfortregning. Kobbertapene for stator beregnes som

$$P_{cu,stator} = 3 \cdot R_{ac} \cdot I_n^2 \tag{4.4.1}$$

$$P_{cu,stator} = R_f \cdot I_f^2$$

$$P_{cu} = P_{cu,stator} + P_{cu,rotor}$$

$$(4.4.2)$$

der

- R_f er resistans i feltviklingen

- I_f er feltstrøm

4.4.2. *Tilleggstap* [1][2]

I tillegg til kobbertapene i stator og rotor er det virvelstrømstap i polskooverflate, endeplater, statorkonstruksjon og spolehoder. Disse tapene i tillegg til børstetap benevnes som tilleggstap. Tilleggstapene ligger vanligvis mellom 0,1 og 0,2 prosent av levert effekt for en vannkraftmaskin

$$P_{add} \approx 0,0015 \cdot S_n \cdot \cos\phi \tag{4.4.3}$$

Jerntap [1][2] 4.4.3.

Jerntapene for åket uten tenner kan beregnes som

$$P_{Fe,\hat{a}k} = k_{Fe,\hat{a}k} P_{10} \left(\frac{\hat{B}_n}{1\,T}\right)^2 m_{Fe,\hat{a}k}$$
(4.4.4)

Jerntap for tenner beregnes som

$$P_{Fe,tenner} = k_{Fe,tenner} P_{10} \left(\frac{\hat{B}_n}{1\,T}\right)^2 m_{Fe,tenner}$$
(4.4.5)

der

- k_{Fe} er en faktor som tar hensyn til metning i jernet og er ca 1,5 til 1,7 for åket og 2 for tennene.
- P_{10} er tap i W/kg oppgitt fra produsent ved 1 T

m_{Fe} er total masse til jernet

4.4.4. Mekaniske tap [1][2][8]

Mekaniske tap består hovedsakelig av lagertap, viftetap og luftfriksjonstap. Luftfriksjonstap er tap på grunn av friksjon mellom rotoren (overflatetap) og gassen rundt.

Beregning av lagertap og viftetap er vanskelig å beskrive med et generelt uttrykk. Lagertapene er i avhengig av turtall, opplagringstype, lagerdiameter og antall lager på akslingen, noe som varierer fra maskin til maskin. Viftetapene er avhengige av kjøleluftmengde og hvordan kjølekretsen er konstruert. Disse tapene må derfor undersøkes i hvert enkelt tilfelle.

Lager og viftetap kan beregnes empirisk som

$$P_{fr} \approx k_{v} \cdot D^{3} \cdot n_{s}^{2} \cdot \sqrt{l_{b}} \cdot 10^{-5} [kW]$$
(4.4.6)

Overflatetapene beregnes som

$$P_{\rho_{W1}} = \frac{1}{32} \cdot k \cdot C_M \cdot \pi \cdot \rho \cdot \Omega^3 \cdot D_r^4 \cdot l_r$$
(4.4.7)

der

- *k* er en overflatekonstant som forteller om hvor ujevn overflaten er (k=1 for en glatt overflate og ligger vanligvis mellom 1 og 1,4)
- C_M er momentkoeffisient
- ρ er tetthet for kjølemediumet
- Ω er mekanisk vinkelfrekvensen til rotor
- D_r er rotordiameter
- l_r er lengde av rotor

Momentkoeffisienten C_M er bestemt av målinger og den er avhengig av Reynolds nummer

$$R_{\ell\delta} = \frac{\rho \cdot \Omega \cdot D_r \cdot \delta}{2 \cdot \mu} \tag{4.4.8}$$

der

- δ er lengden på luftgapet
- μ er viskositeten til kjølemediet

$$C_{M} = 10 \cdot \frac{\left(2 \cdot \delta / D_{r}\right)^{0.3}}{R_{\ell\delta}}, \qquad hvis \quad R_{\ell\delta} < 64 \qquad (4.4.9)$$

$$C_{M} = 2 \cdot \frac{\left(2 \cdot \delta / D_{r}\right)^{0.3}}{R_{\ell \delta}^{0.6}}, \qquad hvis \quad 64 < R_{\ell \delta} < 5 \cdot 10^{2} \qquad (4.4.10)$$

$$C_{M} = 1,03 \cdot \frac{(2 \cdot \delta / D_{r})^{0,3}}{R_{\ell\delta}^{0,5}}, \qquad hvis \ 5 \cdot 10^{2} < R_{\ell\delta} < 10^{4}$$
(4.4.11)

$$C_{M} = 0,065 \frac{(2 \cdot \delta / D_{r})^{0.3}}{R_{\ell\delta}^{0.2}}, \qquad hvis \ 10^{4} < R_{\ell\delta}$$
(4.4.12)

Tapene i endeflatene kan beregnes som

$$P_{\rho w2} = \frac{1}{64} \cdot C_M \cdot \rho \cdot \Omega^3 \cdot (D_r^5 - D_{ri}^5)$$
(4.4.13)

der

- D_r er ytre diameter på rotor
- *D_{ri}* er diameter på aksling

$$C_{M} = \frac{3,87}{R_{\ell r}^{0.5}} \qquad hvis \qquad R_{\ell r} < 3 \cdot 10^{5} \qquad (4.4.14)$$

$$C_{M} = \frac{0,146}{R_{\ell r}^{0.2}} \qquad hvis \qquad R_{\ell r} < 3 \cdot 10^{5} \qquad (4.4.15)$$

 $R_{\ell\delta}$ er kjent som "tip Reynolds" nummer og kan skrives som

$$R_{\ell\delta} = \frac{\rho \cdot \Omega \cdot D_r^2}{4 \cdot \mu} \tag{4.4.16}$$

De totale luftfriksjonstapene kan skrives som

$$P_{\rho w} = P_{\rho w1} + P_{\rho w2} \tag{4.4.17}$$

De totale tapene for generatoren blir da

$$P_{tot} = P_{cu} + P_{Fe} + P_{fr} + P_{\rho w} + P_{add}$$
(4.4.18)

4.4.5. Tap i magnetisering [11][17]

Hvis generatoren har egen magnetiseringsmaskin kan magnetiseringstapene beregnes som 15 % [11] av kobbertap i rotor. Hvis det blir benyttet statisk magnetisering kan kobbertapene beregnes som 7 % [17] av kobbertap i rotor.

4.5. Termiske beregninger [1][2]

Det er her gjort en forenkling ved at når varmestrømmen kommer ut av blikket og over i statorrammen, vil all varmen ledes bort. Ekvivalentkretsen er bygd opp av en rekke mindre ekvivalentkretser for hver maskindel. For hver av disse må R_0 , R_1 og R_2 beregnes fra følgende formler:

$$R_{2} = \frac{1}{G}$$

$$R_{1} = \frac{1}{G} \left[\frac{\sqrt{RG}}{\sinh \sqrt{RG}} - 1 \right]$$

$$R_{0} = \sqrt{\frac{R}{G}} \tanh \frac{\sqrt{RG}}{2}$$

$$(4.5.2)$$

$$(4.5.3)$$

hvor R er varmeledningsmotstanden langs materialet og G er varmeledningskonduktansen ut av materialet. R og G er avhengig av hvilken type varmeoverføring som er gjeldende for hver del-ekvivalentkrets.

For varmeledning gjelder følgende:

$$R = \frac{l}{\lambda S} = \frac{\delta}{\lambda (h_R \cdot l_R)}$$

$$\frac{1}{G} = \frac{\delta}{\lambda h_s l} + \frac{1}{\alpha_{th} h_s l} = \left(\frac{\delta}{\lambda} + \frac{1}{\alpha_{th}}\right) \frac{1}{h_s l}$$

$$(4.5.4)$$

$$(4.5.5)$$

der λ er materialets termiske konduktivitet og α_{th} er varmeoverføringskoeffisienten mellom to medier. α_{th} er et usikkerhetsmoment i beregningene, og det vil her bli benyttet erfaringsverdier for de viktigste varmeoverføringskoeffisientene (se *Tabell 3*).

Type sammenføyning	Ekvivalent luftgaplengde [<i>mm</i>]	Varmeoverførings- koeffisient $[W/m^2K]$
Mellom statorvikling og stator kjerne	0,10-0,30	80-250
Mellom statorrammen (Al) og stator kjernen	0,03-0,04	650-870
Mellom statorrammen (Fe) og stator kjernen	0,05.0,08	350-550
Mellom rotorvikling og rotorkjerne	0,01-0,06	430-2600

Tabell 3 - Empiriske ekvivalentverdier for de viktigste sammenføyningene i maskinen, [2]

For konveksjon må man ta hensyn til turbulens i luftstrømmen. Først beregnes Taylornummeret.

$$Ta = \frac{\rho^2 \Omega^2 r_m \delta^3}{\mu^2} \tag{4.5.6}$$

der

- Ω er rotorens vinkelhastighet
- ρ er massetettheten til kjølemediet
- μ er dynamisk viskositet til kjølemediet
- r_m er gjennomsnittlig radius til stator og rotor

For å ta hensyn til radiell luftgapslengde og rotorradius beregnes et modifisert Taylornummer.

$$Ta_m = \frac{Ta}{F_g} \tag{4.5.7}$$

der

$$F_{g} = \frac{\pi^{4} \left[\frac{2r_{m} - 2,304 \cdot \delta}{2r_{m} - \delta} \right]}{1697 \left[0,0056 + 0,0571 \left(\frac{2r_{m} - 2,304 \cdot \delta}{2r_{m} - \delta} \right)^{2} \right] \left[1 - \frac{\delta}{2r_{m}} \right]^{2}}$$
(4.5.8)

Siden luftgapet er svært kort sammenlignet med rotorradiusen, forenkler vi med å si $Ta_m \approx Ta$. Dette kan imidlertid ikke gjøres for spolehodeområdene. Varmeoverføringskoeffisienten kan videre finnes som

$$\alpha_{th} = \frac{Nu\lambda}{\delta} \tag{4.5.9}$$

der Nusseltnummeret Nu kan finnes fra

Nu = 2	for	$Ta_m < 1700 \ (laminær \ strøm)$
$Nu = 0,128Ta_m^{0,367}$	for	$1700 < Ta_m < 10^4$
$Nu = 0,409Ta_m^{0,241}$	for	$10^4 < Ta_m < 10^7$

Setter så opp konduktansmatrisen for ekvivalentkretsen til systemet.

Γ					
G(1,3)	0	-G(1,3)	 0	0	0
0	G(2,3)	-G(2,3)	 0	0	0
-G(1,3)	-G(2,3)	G(1,3)+G(2,3)+G(3,4)+G(3,6)	 0	0	0
	1		I	I	1
0	0	0	 G(15,21)+G(21,22)	-G(21,22)	0
0	0	0	 -G(21,22)	G(18,22)+G(21,22)+G(22,23)	-G(22,23)
0	0	0	 0	-G(22,23)	G(22,23)

Figur 9 - Termisk konduktansmatrise for ekvivalentkretsen

der

$$G_{1,1} = G(1,3) = \frac{1}{R_1 + R_2} \tag{4.5.10}$$

$$G_{3,3} = G(1,3) + G(2,3) + G(3,4) + G(3,6)$$

$$=\frac{1}{R_1+R_2}+\frac{1}{R_3+R_4}+\frac{1}{R_5}+\frac{1}{R_6+R_7}$$
(4.5.11)

 Θ1
 P1

 Θ2
 P2

 Θ3
 P3

 I
 I

 Θ21
 P21

 Θ22
 P23

 Θ23
 P23

Figur 10 - Temperatur- og varmestrømsmatrise

Setter videre opp temperaturmatrisen og varmestrømsmatrisen. Θ_1 representerer temperaturen i node 1, og P_1 representerer varmestrømmen inn i node 1. Der varmestrømmen går ut av noden benevnes P_n som Φ_n . Dette kan skrives som

$$\begin{bmatrix} \mathbf{G} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{\Theta} \end{bmatrix} = \begin{bmatrix} \mathbf{P} \\ \begin{bmatrix} -\mathbf{\Phi}_e \end{bmatrix} \end{bmatrix} = \begin{bmatrix} \mathbf{P} \\ 0 \end{bmatrix} - \begin{bmatrix} 0 \\ \begin{bmatrix} \mathbf{\Phi}_e \end{bmatrix} \end{bmatrix}$$
(4.5.12)

Av disse er hele $[\Theta]$ og $[\Phi_e]$ ukjente verdier. Dette krever n_{Φ_e} -antall tilleggsligninger. Disse settes opp med utgangspunkt i kjølestrømskretsen slik vist under.

$$\Theta_{10} = R_q (\Phi_{11,10} + P_{\rho 10}) \tag{4.5.13}$$

$$\Theta_5 = 2R_q (\Phi_{11,10} + P_{\rho 10}) + R_q \Phi_{6,5}$$
(4.5.14)

For kjølestrømskretsen må først nødvendig kjølestrøm beregnes for å kunne beregne R_q .

$$q_{th} = \frac{P_{tot}}{\rho c_p dT_{mx}}$$

$$R_q = \frac{1}{2\rho c_p q_{th}}$$

$$(4.5.15)$$

$$(4.5.16)$$

der P_{tot} er summen av alle tap i maskinen, Θ er tillatte temperaturstigning, $\rho[kg/m^3]$ er tettheten til kjølemediet og $c_p[kJ/kgK]$ er spesifikk varmekapasitet for kjølemediet. Videre kan følgende matriser settes opp:

$$\begin{bmatrix} \boldsymbol{\Theta}_{e} \end{bmatrix} = \begin{bmatrix} \boldsymbol{R}_{e} \end{bmatrix} \cdot \begin{bmatrix} \boldsymbol{\Phi}_{e} \end{bmatrix} + \begin{bmatrix} \boldsymbol{\Theta}_{p} \end{bmatrix}$$
(4.5.17)
$$\begin{bmatrix} \boldsymbol{\Theta}_{10} \\ \boldsymbol{\Theta}_{5} \\ \dots \end{bmatrix} = \begin{bmatrix} \boldsymbol{R}_{q} & \boldsymbol{0} & \boldsymbol{0} & \dots \\ 2\boldsymbol{R}_{q} & \boldsymbol{R}_{q} & \boldsymbol{0} & \dots \\ \dots & \dots & \dots \end{bmatrix} \cdot \begin{bmatrix} \boldsymbol{\Phi}_{11,10} \\ \boldsymbol{\Phi}_{6,5} \\ \dots & \dots \end{bmatrix} + \begin{bmatrix} \boldsymbol{R}_{q} \boldsymbol{P}_{\rho 10} \\ 2\boldsymbol{R}_{q} \boldsymbol{P}_{\rho 10} \\ \dots & \dots \end{bmatrix}$$
(4.5.18)

Dette kan løses ved

$$\begin{bmatrix} \boldsymbol{\Theta} \end{bmatrix} = \begin{bmatrix} \mathbf{G} \end{bmatrix} + \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \begin{bmatrix} \mathbf{R}_e \end{bmatrix}^{-1} \end{bmatrix}^{-1} \cdot \begin{bmatrix} \mathbf{P}_{th} \end{bmatrix} \begin{bmatrix} \mathbf{R}_e \end{bmatrix}^{-1} \cdot \begin{bmatrix} \boldsymbol{\Theta}_p \end{bmatrix}$$
(4.5.19)

Fra dette finnes alle temperaturene for maskinen.

4.6. Induktanser og tidskonstanter [1][2][10][11]

Først beregnes en faktor, *a*, som beskriver avstandsforskjellen mellom polene. Denne faktoren brukes til å beregne pollekkfluksen

$$a = \frac{\tau_{mx}}{\tau_{mn}} - 1 \tag{4.5.20}$$

der

- τ_{mx} er største avstand mellom polkjernene
- τ_{mn} er minste avstand mellom polkjernene

Så blir det beregnet en reduksjonsfaktor for pollekkfluksen, k_f .
$$k'_{f} = \frac{1}{a^{3}} \cdot \left(1 + \frac{a}{8}\right) \cdot \left(\log(1 + a) + a \cdot \left(\frac{a}{2} - 1\right)\right)$$
(4.5.21)

Den totale lekkledningsevnen mellom polkjernene hvor det er tatt hensyn til stigende forslynget fluks fra bunnen av polen kan da beregnes som

$$\Lambda'_{pk} = \Lambda_{pk} \cdot \frac{k'_f}{k_l} \tag{4.5.22}$$

der

k1 er reduksjonsfaktor for pollekkfluksen -

For å beregne transient reaktans må feltviklingens relative lekkreaktans, x_{f} , og feltviklingens relative resistans, r_f , være kjent.

$$x_{f} = \frac{4}{\pi} \cdot F_{a} \cdot \frac{k_{dx}^{2}}{\hat{\Phi}_{m}} \cdot \left(\Lambda_{pk}^{\prime} + \Lambda_{ps}\right) + X_{md} \left(\left(\frac{4}{\pi}\right) \cdot k_{fi} \cdot k dx - 1\right)$$

$$r_{f} = \frac{F_{a} \cdot k_{dx}}{\hat{\Theta}_{mn}} \cdot \frac{P_{cu,rotor}}{S_{n} \cdot \cos \phi}$$

$$(4.5.24)$$

der $k_{fi} \approx 0,99$

For å beregne sub-transient reaktans må polhjulsspredningen beregnes først

$$\sigma_f = \frac{x_f}{X_{md}} \tag{4.5.25}$$

Reaktansene kan nå beregnes som

$$X'_{d} = X_{sigma} + X_{md} \cdot \frac{\sigma_{f}}{1 + \sigma_{f}}$$
(4.5.26)

$$X''_{d} \approx X_{sigma} + 0.6 \cdot X_{md} \cdot \frac{\sigma_{f}}{1 + \sigma_{f}}$$

$$X''_{a} \approx 1.15 \cdot X''_{d}$$

$$(4.5.27)$$

$$(4.5.28)$$

For å beregne tidskonstantene må induktansene for de forskjellige reaktansene beregnes

$$L_{f\sigma} = \frac{x_f \cdot R_{ref}}{\omega}$$
(4.5.29)

$$L'_d = \frac{X'_d \cdot R_{ref}}{\omega}$$
(4.5.30)

$$L''_d = \frac{X''_d \cdot R_{ref}}{\omega}$$
(4.5.31)

$$L''_q = \frac{X''_q \cdot R_{ref}}{\omega}$$
(4.5.32)

For å beregne de sub-transiente tidskonstantene i d- og q-akse må dempeviklingens resistans, R_D ', og dempeviklingens induktans, L_D ', referert til stator være kjent.

$$R'_{D} = 2 \frac{m_s}{\sigma_{Ds}} \left(\frac{a_s l_{Ds}}{N_{Ds} S_{Ds}} + \frac{D_{Dr}}{\pi p S_{Dr}} \frac{\sigma_{Ds}}{\sigma_{Dr}} \right)^2 \kappa$$
(4.5.33)

der

$$\kappa = \frac{\left(k_{ws1}N_s\right)^2}{p} \tag{4.5.34}$$

$$a_{s} = (N_{Ds} - 1)\frac{\tau_{Ds}}{\tau_{p}}$$
(4.5.35)

- m_s er antall faser i stator
- σ_{Ds} er konduktiviteten til materialet i dempeviklingen
- τ_{Ds} er spordelingen for dempeviklingen referert til statorens indre diameter
- N_{Ds} er antall dempestaver per pol
- $\sigma_{\rm Dr}$ er konduktiviteten til materialet i kortslutningsringen
- S_{Ds} er arealet av en dempestav
- l_{Ds} er lengden av en dempestav
- S_{Dr} er arealet av kortslutningsringen
- D_{Dr} er kortslutningsringens gjennomsnittlige diameter

Dempeviklingens lekkinduktans beregnes først med konstant luftgap.

$$L'_{D} = 8\mu_{0}\omega_{s}m_{s}l'\frac{a_{s}}{N_{Ds}}\left(\lambda_{Ds} + 0.133\frac{a_{s}D}{pN_{Ds}\delta_{e}}\right)^{2}\kappa \cdot 10^{-2}$$
(4.5.36)

Permeansfaktoren for en rund dempestav er

$$\lambda_{Ds} = 0,47 + 0,066 \frac{b_4}{b_1} + \frac{h_1}{b_1}$$
(4.5.37)

For generatorer med utpregede poler må L'_D bestemmes for d- og q-akse.

$$L'_{Dd} = \frac{L'_{D}}{\zeta_{d}}$$
(4.5.38)

$$L'_{Dq} = \frac{L'_D}{\zeta_q} \tag{4.5.39}$$

hvor

$$\zeta_{d} = 1,746 - 0,422 \cdot a_{s} - \frac{0,2913}{a_{s} - 0,138}$$

$$\zeta_{q} = 1,222 - 0,1 \cdot a_{s} - \frac{0,102}{a_{s} - 0,1}$$
(4.5.40)
(4.5.41)

Den transiente induktansen i q-aksen er lik den stasjonære induktansen i q-aksen siden det ikke er noen feltvikling i q-aksen.

Til slutt skal tidskonstantene til maskinen beregnes.

$$\tau_{d0}' = \frac{L_{f\sigma} + L_{md}}{r_f \cdot R_{ref}} \tag{4.5.42}$$

$$\tau'_{d} = \frac{L_{f\sigma} + \frac{L_{s\sigma}L_{md}}{L_{s\sigma} + L_{md}}}{r_{f} \cdot R_{ref}}$$
(4.5.43)

$$\tau_{d0}^{\prime\prime} = \frac{L_{Dd}^{\prime} + L_{d}^{\prime}}{R_{D}^{\prime}} \tag{4.5.44}$$

$$\tau_d'' = \tau_{d0}'' \cdot \frac{L_d''}{L_d'} \tag{4.5.45}$$

$$\tau_{q0}^{\prime\prime} = \frac{L_{Dq}^{\prime} + L_{mq}}{R_{D}^{\prime}} \tag{4.5.46}$$

$$\tau_{q}^{\prime\prime} = \tau_{q0}^{\prime\prime} \cdot \frac{L_{q}^{\prime\prime}}{L_{mq}^{\prime}} \tag{4.5.47}$$

4.7. Mekaniske beregninger [1][11]

De mekaniske beregningene er en stor del av generatorkonstruksjonen. Siden dette faller utenfor oppgavens begrensninger er det ikke lagt mye vekt på disse beregningene. Det som har blitt beregnet er maskinens vekt og svingmoment. Dette er beregnet ut i fra generelle formler.

4.8. Sluttresultat (outputs)

Her vil alle beregnede verdier som er interessante for designeren bli opplistet. Disse verdiene er ferdig behandlet av programmet, og skal oppfylle de krav og begrensninger som er gitt som inputs, samt de underliggende kravene som er innbakt i programmet. Hensikten med sluttresultatverdiene er å gi designeren alle relevante parametere for den beregnede maskinen. Ut fra disse verdiene må designeren vurdere om resultatene er tilfredsstillende. Dersom det er parametre som ikke er tilfredsstillende må det gjøres endringer i inputdata, eventuelt tilføyes flere begrensninger, før beregningsprosessen gjennomføres på nytt.

5. Resultater Program

For å kontrollere at programmet gir pålitelige resultater, er programmet kontrollert opp mot resultater fra tidligere konstruerte generatorer. Maskin 1 er en relativt hurtiggående (14 poler) motor/generator fra et pumpekraftverk. Maskin 2 er en saktegående (44 poler) generator fra et elvekraftverk. På grunn av at begge maskinene er fra 50- og 60-tallet ble magnetiseringstap og tilleggstap korrigert manuelt i programmet for å gjøre korrekte beregninger. Resultatene fra de opprinnelige og de beregnede generatorene er vist i *Tabell 4*.

		Mas	kin 1	Maskin 2	
Maskinparameter	Symbol/	Reelle	Beregnede	Reelle	Beregnede
	benevning	Verdier	Verdier	Verdier	Verdier
Tilsynelatende Effekt	S _N [MVA]	14	14	27	27
Nominell Spenning	$U_{N}[V]$	6300	6300	11000	11000
Nominell Strøm	$I_N[A]$	1283	1283	1418	1417
Effektfaktor	Cos φ	0,73	0,73	0,8	0,8
Indre Diameter	$D_i[m]$	2,5	2,5	6	6
Brutto Jernlengde	l _b [m]	1	1,048	1,2	1,24
Hovedisolasjon Stator	d _{ij} [mm]	2,5	2,5	4	4
Dellederisolasjon	d _{icu} [mm]	0,15	0,15	0,2	0,2
Sporhøyde	h _s [mm]	96	96	130,5	130,5
Sporbredde	b _u [mm]	19	19	23,4	23,4
Dellederhøyde	h _{cus} [mm]	2,5	2,5	3,6	3,6
Antall delledere	n _{dl}	22	22	22	22
Statorresistans (20°C)	R_{dc20} [m Ω]	10,83	10,83	15,6	15,5
Resistansfaktor for	K _{ra}	-	1,044	-	1,172
Vikling					
Resistansfaktor for Spor	K _{rad}	-	1,067	1,3	1,269
Resistansfaktor for	K _{max}	-	1,214	-	1,856
Øverste Delleder					
Strømtetthet i	$S_s [A/mm^2]$	-	4,03	2,62	2,61
Statorvikling					
Sportall	Qs	168	168	330	330
Spesifikke Jerntap	P ₁₀ [W/kg]	1,7	1,7	1,3	1,3
Forhold mellom	b_u/b_d	0,686	0,686	0,693	0,693
Sporbredde og					
Tannbredde					
Tanninduksjon	$B_d[T]$	-	1,82	-	1,676
Minste Luftgap	$\delta_0 [\text{mm}]$	15,5	15,5	13	13
Synkronreaktans	X _d [pu]	-	0,96	0,975	0,940
Statorviklingens	Θ_{SW} [°K]	-	46	45	45
temperaturøkning					
Rotorstrøm	I _f [A]	488	469,6	588	541
Totale Tap	P _{tot} [kW]	304,5	304,7	550	534
Virkningsgrad	η [%]	97,1	97,1	97,51	97,59

Tabell 4 – Resultat fra kontroll av GenProg mot reelle maskiner

De beregnede verdiene samsvarer godt med de reelle verdiene for generatorene. Avviket i synkronreaktans for maskin 2 skyldes blant annet forskjell i polskoform. Den oppgitte

reaktansverdien for maskin 2 er i tillegg oppgitt med en toleranse på 15 %. Videre er også magnetiseringsstrømmen for begge maskinene litt lavere enn oppgitte verdier. Dette kan skyldes egenskapene til blikket og forskjell i midlere luftgap som følge av annen polskoform.

6. Oppgradering

Norge ble store deler av vannkraftutbyggingene gjennomført i etterkrigstiden og ut over 1960- og 1970-tallet. Maskinparken som ble satt i drift i denne perioden nærmer seg nå en alder hvor det er nødvendig med rehabilitering eller oppgradering. Bakgrunnen for dette er hovedsakelig å redusere risiko for havari som kan føre til lange driftsstanser og store økonomiske tap. I tillegg til å redusere risiko kan det være ønskelig å øke generatorens ytelse.

Det første som må gjøres i rehabiliterings-/oppgraderingsprosessen er å definere mål og kostnadsramme for oppgraderingen. Som nevnt kan målene med en oppgradering være å øke driftsikkerhet, levetid og/eller ytelse. På kostnadssiden er de økonomiske rammene avgjørende for hva en eventuell oppgradering kan omfatte. Den billigste løsningen er kun å bytte vikling men beholde statorblikk og rotor. Denne løsningen hever imidlertid ikke levetiden til blikket eller rotoren, og vil kun gi en begrenset økning i driftssikkerhet. Neste alternativ er å skifte ut både statorvikling og statorblikk. Dette øker driftssikkerheten til statoren betraktelig siden de aktive delene i statoren nå er nye. En stator med moderne blikk vil ha et redusert magnetiseringsbehov som fører til en kaldere og mindre belastet rotor. Dette kan øke den resterende levetiden til rotoren, men tidligere slitasje og mulige feil i rotoren blir ikke fjernet og faren for rotorhavari er fortsatt til stede.

Før en eventuell oppgradering skal gjennomføres er det også veldig viktig at det foretas en grundig teknisk undersøkelse av generatoren. Tilstanden på generatoren er en viktig faktor som bør vurderes sammen med de økonomiske rammene og ønsket mål.

I dette kapittelet vil mulighetene ved fire forskjellige oppgraderingsalternativ bli undersøkt. Disse alternativene er:

- 1 Bytte av vikling
- 2 Bytte av statorblikk og vikling
- 3 Optimalisering ved fri spenning og sportall
- 4 Øke ytelse på generatoren

6.1. Bytte av Vikling

Dette er det enkleste inngrepet ved oppgradering av generator. I hovedsak går dette ut på å bytte den gamle viklingen med en ny vikling med moderne og tynnere isolasjon. Maskiner fra 50- og 60-tallet har ofte temperaturklasse B isolasjon som er utnyttet klasse A (se *Tabell 5*).

Tabell 5 - Temperaturklasser for isolasjon [5]

Temperaturklasse	Tillatt temperatur-
	stigning [°C]
А	65
Е	80
В	90
F	115
Н	140

Moderne isolasjon har som regel temperaturklasse F og utnyttes klasse B. Dersom denne isolasjonen benyttes i en gammel maskin hvor driftstemperaturen er tilpasset klasse A, vil dette føre til lav temperaturbelastning av isolasjonen. Dette gir redusert aldring og lengre levetid for isolasjonen. Grunnen til at isolasjonstykkelsen kan reduseres ved bruk av moderne isolasjon er at den kan belastes med høyere elektrisk feltstyrke. Den økte elektriske motstansstyrken gir også isolasjonen lavere varmeledningsevne.

Den reduserte isolasjonstykkelsen medfører at det blir bedre plass til kobber i sporet. Større kobberareal vil føre til lavere resistans og dermed lavere tap og viklingstemperatur. Ved driftstemperaturer opp i mot den tillatte temperaturstigningen for isolasjonen vil, i følge Arrhenius' lov for aldring av isolasjon ([12] s.45), en reduksjon av viklingstemperatur på 10°C medføre dobling av levetid for isolasjon. Dersom driftstemperaturen er betydelig lavere enn den tillatte temperaturstigningen for isolasjonen kan man se bort fra den termiske aldringen for isolasjonen.

Kobbertapene består av DC- og AC-tap, der DC-tap er resistive tap i viklingen. AC-tap er frekvensavhengige tilleggstap som kommer av strømfortrengning og *proximity effect* ([15] s.114-116). I de tilfellene hvor den gamle viklingen har høye AC-tap kan det benyttes lavere dellederhøyde. Dette vil bidra til å redusere AC-tapene.

Når viklingen skal byttes kan det velges et nytt spoleskritt dersom det opprinnelige ikke er optimalt. For å redusere bidrag fra 5. og 7. harmoniske bør det relative spoleskrittet velges mellom 0,8 og 0,85. Dersom spoleskrittet økes må den totale fluksen i maskinen reduseres for å beholde samme spenning. Dette fører til reduserte jerntap og rotortap. En økning i spoleskritt vil også føre til en økning i ankerreaksjonsreaktansen som følge av høyere permeans for viklingen. Her kan endringen i spoleskrittet kun gjennomføres dersom endringen i ankerreaksjonsreaktansen kan aksepteres. En økning i spoleskritt vil også gi en økning i viklingslengde og resistans.

6.2. Bytte av Statorblikk og Statorvikling

Ved å benytte dette oppgraderingsalternativet øker mulighetene for oppgradering siden flere av maskinparametrene nå kan endres. Fordelene med viklingsoppgradering gjelder fortsatt, men i tillegg har moderne blikk mindre relative tap (i W/kg) og bedre magnetiseringskarakteristikk. I dette oppgraderingsalternativet blir spenning og sportall beholdt.

Oppvarming av statoren vil føre til raskere aldring av isolasjonen mellom blikkene. Hvis det er brukt organisk lakkisolasjon vil denne tørke ut på grunn av fordamping av bestanddeler med lav molekylær vekt [12]. Når dette inntreffer blir isolasjonen sprø, og når den i tillegg utsettes for vibrasjoner vil den ødelegges. Dette kan føre til kortsluttning mellom blikkene, økte eddystrømmer og lokal overoppheting av blikket. Bytte av blikk vil derfor redusere faren for havari. En stor forbedring med moderne blikk er de relative tapene. I maskiner frem til 50- og 60tallet kunne de relative tapene være så høye som 1,7-1,9 W/kg. I moderne blikk kan disse tapene være redusert til 0,85 W/kg. Vanlige verdier for blikk i nye vannkraftgeneratorer er mellom 1 og 1,1 W/kg. Denne forbedringen av relative tap kan redusere jerntapene betraktelig ved bytte av blikk.

På grunn av bedre metningskarakteristikk i moderne blikk vil det magnetiske spenningsfallet i blikket bli redusert. Dette fører til redusert magnetiseringsbehov i maskinen, reduserte magnetiseringstap og derfor økt levetid for rotoren på grunn av lavere driftstemperatur for feltviklingen.

Ved utskifting av blikk kan også sporformen endres. Dette kan være ønskelig for å redusere tanninduksjon, øke kobberareal eller endre sporhøyde. Endring av sporhøyde kan være fordelaktig for å redusere AC-tap eller for å påvirke lekkreaktansen og dermed den transiente ankerreaksjonsreaktansen. Lekkreaktansen endres ved å endre permeansen for sporlekkfluksen.

6.3. Optimalisering ved Fri Spenning og Sportall

Det blir her sett på forbedringspotensialet ved å velge ny spenning og/eller nytt sportall. Hvis spenningen skal endres vil det i de fleste tilfeller føre til at transformatoren må skiftes. I dette oppgraderingsalternativet vil maskinens merkeytelse og effektfaktor holdes konstant.

Dersom maskinens nominelle spenning økes vil merkestrømmen reduseres tilsvarende. Dette vil føre til at det blir større behov for isolasjon men mindre behov for kobber. Hvor mye spenningen øker, er avhengig av økning i viklingens linkede fluks. Dette kan gjøres ved å øke antall vindinger eller øke fluksen gjennom viklingen. Antall vindinger kan økes ved øke antall vindinger per vikling for formspole, eller ved å øke sportall. Fluksen gjennom viklingen kan økes ved å øke hovedfluksen i maskinen eller øke spoleskrittet. En av farene ved å øke maskinens hovedfluks er at flukstettheten i enkelte maskindeler kan bli for høy. Dette kan føre til økte tap og lokal overoppheting. I tillegg kan økt magnetiseringsstrøm føre til økte harmoniske komponenter i maskinen.

Som regel vil sportallet være valgt fornuftig ut i fra generatorens diameter, spenning og viklingstype. For å oppfylle krav til en ballansert vikling blir mulige valg av sportall begrenset av antall faser og antall parallelle kretser (Q_s må være delelig med $2 m \log p_{nr}$). Vanligvis ligger spordelingen mellom tre og sju centimeter og forholdet mellom sporbredde og tannbredde bør ligge mellom 0,45 og 0,75. Dette begrenser også mulige valg av sportall. Det er også vanlig å velge sportall der antall spor per pol og fase blir enten et heltall eller et bruddent tall der nevneren er lik to. Dersom brudden vikling med nevner ulik to benyttes er det viktig å være klar over faren for vibrasjoner på grunn av subharmoniske komponenter.

Fordelen med brudden vikling er at antall ulike spenningsvektorer per fase øker. Dette resulterer i mindre overharmoniske komponenter og en renere sinusspenning i maskinen.

Dersom dette oppgraderingsalternativet er aktuelt vil det i de fleste tilfeller være fornuftig å endre både spenning og sportall for å få et optimalt resultat.

6.4. Øke Ytelsen på Generatoren

Som en del av en kraftverkoppgradering er det av og til ønskelig å øke turbineffekten i tillegg til å oppgradere generatoren. Dette medfører at nominell ytelse eller nominell effektfaktor for generatoren må økes.

I eldre maskiner var det mer vanlig med en lavere effektfaktor. Dette førte til at maskinene ofte hadde store *strømreserver* i normal drift. Dersom ytelsen på generatoren skal økes må maskinen merkes om. Det kan da være ønskelig å øke effektfaktoren til 0,9 - 0,95.

Etter at generatoren er oppgradert er det rotoren som blir begrensende for en eventuell effektøkning. Grunnen til dette er at rotortemperaturen/rotorstrømmen ikke kan økes ut over de opprinnelige verdiene. Økt effektfaktor og nytt blikk med lavere magnetiseringsbehov bidrar til at rotoren belastes lavere. Derfor kan ytelsen på maskinen økes noe uten at rotoren overbelastes. Statortemperaturen vil normalt ikke være noe problem ved en effektøkning siden isolasjonstykkelsen er redusert og isolasjonen vanligvis har en høyere temperaturklasse enn den opprinnelige.

Det er også et alternativ å bytte feltviklingen for å ha mulighet til å øke rotortemperaturen. Dette gir mulighet til å opprettholde den opprinnelige effektfaktoren selv om ytelsen økes.

Hvis merkeytelsen på en generator skal økes er det nødvendig med en grundig analyse hvordan økningen påvirker maskinens parametere. For eksempel hvis merkestrømmen økes og spenningen holdes konstant, vil referanseverdien for generatorens synkronreaktans reduseres. Dette gir en høyere per unit verdi for reaktansen. For å opprettholde opprinnelig reaktansverdi må luftgapet økes, noe som fører til større magnetiseringsbehov og dermed varmere rotor.

7. Resultat Oppgradering

dette kapittelet blir resultatene fra oppgradering av Maskin 1 og Maskin 2 presentert. *Tabell 6* og *Tabell 7* inneholder de verdiene som er mest egnet for sammenligning av de forskjellige oppgraderingsalternativene. De komplette resultatene for maskinene er vedlagt.

7.1. Maskin 1

Alternativ 1: Ny vikling Alternativ 2: Ny vikling og nytt blikk Alternativ 3: Ny vikling og nytt blikk samt fri spenning og sportall Alternativ 4: Økt ytelse

Maskinparameter	Symbol/	Reelle	Beregnede	Alt. 1	Alt. 2	Alt. 3	Alt. 4
	benevning	Verdier	Verdier				
Tilsynelatende Effekt	$S_{N}[MVA]$	14	14	14	14	14	20
Nominell Spenning	$U_{N}[V]$	6300	6300	6300	6300	8000	8000
Nominell Strøm	$I_N[A]$	1283	1283	1283	1283	1010	1443
Effektfaktor	Cos φ	0,73	0,73	0,73	0,73	0,73	0,9
Indre Diameter	$D_i[m]$	2,5	2,5	2,5	2,5	2,5	2,5
Brutto Jernlengde	l _b [m]	1	1,048	1,048	1,052	1,052	1,052
Hovedisolasjon Stator	d _{ij} [mm]	2,5	2,5	1,8	1,8	2,2	2,2
Dellederisolasjon	d _{icu} [mm]	0,15	0,15	0,1	0,1	0,1	0,1
Sporhøyde	h _s [mm]	96	96	96	96	108	108
Sporbredde	$b_u[mm]$	19	19	19	19,8	15	15
Dellederhøyde	h _{cus} [mm]	2,5	2,5	2,4	2,4	2,4	2,4
Antall delledere	n _{dl}	22	22	26	28	32	32
Statorresistans (20°C)	$R_{dc20} [m\Omega]$	10,83	10,83	8,05	7,38	11,86	11,86
Res. faktor for Vikling	K _{ra}	-	1,044	1,074	1,086	1,075	1,075
Res. faktor for Spor	K _{rad}	-	1,067	1,112	1,138	1,118	1,118
Res. faktor for Øverste	K _{max}	-	1,214	1,358	1,439	1,376	1,376
Delleder							
Strømtetthet i Stator	$S_{s} [A/mm^{2}]$	-	4,03	3,0	2,6	2,92	4,17
Sportall	Qs	168	168	168	168	192	192
Spesifikke Jerntap	P ₁₀ [W/kg]	1,7	1,7	1,7	1,07	1,07	1,07
Forhold mellom	b_u/b_d	0,686	0,686	0,686	0,735	0,581	0,581
Sporbredde og							
Tannbredde							
Tanninduksjon	$B_d[T]$	-	1,82	1,82	1,71	1,72	1,7
Minste Luftgap	$\delta_0 [\text{mm}]$	15,5	15,5	15,5	17	14	21
Synkronreaktans	X _d [pu]	-	0,96	0,956	0,971	0,988	0,99
Statorviklingens	Θ_{SW} [°K]	-	46	35	30	38	50
temperaturøkning							
Rotorstrøm	$I_{f}[A]$	488	469,6	468,4	471,4	435,3	593,1
Totale Tap	P _{tot} [kW]	304,5	304,7	288,4	255,7	255,1	315,8
Virkningsgrad	η [%]	97,1	97,1	97,26	97,56	97,56	98,28
					(97,60)	(97,68)	(98,30)

Tabell 6 - Resultater fra oppgradering av maskin 1

7.2. Maskin 2

Alternativ 1: Ny vikling

Alternativ 2: Ny vikling og nytt blikk

Alternativ 3: Ny vikling og nytt blikk samt fri spenning og sportall

Alternativ 4: Ny generator

Maskinnarameter	Symbol/	Reelle	Beregnede	Alt 1	Alt 2	Alt 3	Alt 4
waskinparameter	benevning	Verdier	Verdier	7 111. 1	1 III. 2	7 m . 5	7 111. 4
Tilsvnelatende Effekt	S_{N} [MVA]	27	27	27	27	27	27
Nominell Spenning	$U_{N}[V]$	11000	11000	11000	11000	15000	11000
Nominell Strøm	I _N [A]	1418	1417	1417	1417	1039	1417
Effektfaktor	Cos φ	0,8	0,8	0,8	0,8	0,8	0,8
Indre Diameter	$D_i[m]$	6	6	6	6	6	4,9
Brutto Jernlengde	$l_b[m]$	1,2	1,24	1,24	1,24	1,24	1,39
Hovedisolasjon Stator	d _{ij} [mm]	4	4	3,5	3,5	3,83	2,9
Dellederisolasjon	d _{icu} [mm]	0,2	0,2	0,2	0,2	0,2	0,2
Sporhøyde	h _s [mm]	130,5	130,5	130,5	130,5	112,5	106,0
Sporbredde	b _u [mm]	23,4	23,4	23,4	25,0	21,9	18,4
Dellederhøyde	h _{cus} [mm]	3,6	3,6	1,9	1,9	2,7	2,9
Antall delledere	n _{dl}	22	22	44	44	14	24
Statorresistans (20°C)	$R_{dc20} [m\Omega]$	15,6	15,5	13,7	12,4	26,7	25,0
Resistansfaktor for	K _{ra}	-	1,172	1,059	1,064	1,096	1,107
Vikling							
Resistansfaktor for	K _{rad}	1,3	1,269	1,096	1,103	1,154	1,149
Spor							
Resistansfaktor for	K _{max}	-	1,856	1,305	1,327	1,489	1,476
Øverste Delleder							
Strømtetthet i	$S_s [A/mm^2]$	2,62	2,61	2,31	2,08	2,59	3,91
Statorvikling							
Sportall	Qs	330	330	330	330	330	330
Spesifikke Jerntap	P ₁₀ [W/kg]	1,3	1,3	1,3	1,07	1,07	1,07
Forhold mellom	b_u/b_d	0,693	0,693	0,693	0,778	0,620	0,65
Sporbredde og							
Tannbredde							
Tanninduksjon	$B_d[T]$	-	1,676	1,676	1,659	1,619	1,603
Minste Luftgap	$\delta_0 [mm]$	13	13	13	13	11	12
Synkronreaktans	X _d [pu]	0,975	0,940	0,936	0,921	0,959	1,029
Statorviklingens	Θ_{SW} [°K]	45	45	37	37	45	65
temperaturøkning							
Rotorstrøm	$I_{f}[A]$	588	541	540	537	485	608
Totale Tap	P _{tot} [kW]	550	534	507	471	461	485
Virkningsgrad	η [%]	97,51	97,59	97,71	97,86	97,91	97,81

 Tabell 7 - Resultater fra oppgradering av maskin 2

Som alternativ 4 for maskin 2 ble det valgt å beholde merkeeffekten men forsøke å redusere maskinens fysiske størrelse for å øke utnyttelsessifferet.

8. Diskusjon Program

Fremgangsmåten i GenProg er den samme som ble brukt i formelverket.

I oppgraderingsprosessen er det nødvendig å ha kjennskap til konkret oppbygning/konstruksjon for at beregningene skal gi korrekte svar. Det kan ofte være problematisk å innhente tilstrekkelig opplysninger for generatoren. Dersom ikke alle verdier blir oppgitt i input-filen, vil programmet estimere fornuftige verdier. Dette gjelder blant annet gjennomsnittelig vindingslengde og lager og viftetap. De estimerte verdiene har som regel ganske god nøyaktighet, men på grunn av forskjellige konstruksjonstyper kan det i noen tilfeller forekomme avvik. Lager og viftetap baserer seg på erfaringsmessig fornuftig kjølig og opplagring, samt for nominelle turtall mellom 300 og 500 omdreininger per minutt. Dersom maskinen avviker fra antatte verdier bør lager og viftetapene kontrolleres. Den estimerte gjennomsnittelige vindingslengden gir som regel gode resultater, men for at kobbertap i stator skal kunne garanteres må vindingslengde beregnes eksakt.

Polskoformen som blir valgt i generatorkonstruksjonsprosessen varierer for forskjellige generatorleverandører og generatorstørrelse. I GenProg blir det brukt en enbuet polskoform der overflaten på polskoen har sirkulær form med en mindre diameter en luftgapsdiameteren. Denne polskoformen vil ikke gi en optimal sinusfordelt fluks i luftgapet, men i programmet antas det at fluksen er rent sinusfordelt.

I rotorberegningene er det ikke tatt hensyn til kjølevikling ved beregning av rotorresistans. Dette vil redusere den reelle rotorresistansen siden for eksempel hver tredje vikling er bredere enn hva som er beregnet. I de termiske beregningene er kjøleviklingen tatt med ved beregning av varmeoverføringsmotstanden for feltviklingen.

Ved valg av sportall fra tabellen i *sporfil.xls* må man være klar over mulighetene for subharmoniske vibrasjoner ved valg av brudden vikling med ugunstig antall spor per pol per fase. I mange tilfeller velges brudden vikling der baseviklingen gjentar seg over to poler dersom dette er mulig ($q=q_m/2$).

Mekaniske beregninger av svingmoment og vekt av maskindeler er basert på beregninger av aktive deler av maskinen. De resterende mekaniske delene er tatt med som en prosentandel av de aktive. Dette fører til at vekter og svingmoment ikke nødvendigvis er korrekte for en konkret maskin.

For å kontrollere nøyaktigheten til programmet var det nødvendig å kontrollere GenProg opp mot tidligere konstruerte maskiner. Det ble valgt to eldre Siemens maskiner, en hurtiggående motor/generator fra 1955 (Maskin 1) og en saktegående generator fra 1964 (Maskin 2). Resultatene er vist i *Tabell 4*.

8.1. Maskin 1

Ved beregning av denne maskinen ble reelle verdier for spor og poler satt i input-filen. For at tilleggstapene for maskinen skulle stemme med oppgitte tap var det nødvendig å øke tilleggstapene over opprinnelig beregnede verdier. Dette kommer av at moderne maskiner i større grad benytter umagnetiske materialer i konstruksjonen. Rotorstrømmen som ble beregnet av programmet var noe mindre enn oppgitt verdi. Dette kan skyldes andre egenskaper til blikket, valgt polskoform eller tilsvarende. For å ta hensyn til dette ble tilleggsmagnetiseringstapene økt tilvarende. De resterende verdiene som ble beregnet av programmet stemmer godt med oppgitte verdier.

8.2. Maskin 2

Ved beregning av denne maskinen ble reelle verdier for spor og poler satt i input-filen. Jerntapene for maskinen er hentet fra tilbudspapiret, og er oppgitt for en høyere flukstetthet enn den reelle flukstettheten for maskinen. Dette førte til at de tapene som ble beregnet av programmet er noe lavere enn hva som er oppgitt. Også her ble rotorstrømmen for maskinen noe lavere enn verdien fra testrapporten. Dette skyldes polskoform, lavere magnetiseringsbehov eller tilsvarende.

Siden begge disse maskinene er fra 50- og 60-tallet ble det brukt metningskurve og relative tap for eldre blikk. Generelt stemmer resultatene bra, men på grunn av at GenProg er konstruert for moderne maskiner og som følge av de designvalgene som er gjort var det nødvendig å korrigere enkelte verdier.

9. Diskusjon Oppgradering

tgangspunktet for oppgraderingene er de oppgitte verdiene for de reelle maskinene vist i *Tabell 4*. Siden det er flere verdier for de reelle maskinene som ikke er kjent, er det nødvendig å benytte de beregnede verdiene for de opprinnelige maskinene. De komplette resultatene fra de opprinnelige maskinene, samt alle oppgraderingene, er vedlagt i sin helhet i vedlegg 2 - 21.

9.1. Maskin 1

9.1.1. Opprinnelig Maskin

Den opprinnelige maskinen er en motor/generator fra 1954. Maskinen har de vanlige trekkene fra maskiner fra denne tiden sammenlignet med moderne maskiner. Fyllfaktoren for sporene er dårlig på grunn av en mye tykkere isolasjon enn for moderne maskiner. Videre fører isolasjonsklassen til en relativt lav tilatt temperaturstigning. Dette medfører at maskinen er lite utnyttet i forhold til fysisk størrelse.

De relative blikktapene for den opprinnelige maskinen er oppgitt til 1,7 W/kg ved 1 tesla. Moderne blikk har relative tap på rundt 1,1 W/kg, og det vil her være mye å hente på å bytte blikk. Samtidig kan det nevnes at tanninduksjonen er høy, hele 1,82 tesla. Dersom blikket skal byttes bør denne reduseres noe.

Maskinen er dimensjonert med en effektfaktor på 0,73. Dette gjør at maskinen har store *strømreserver* og vil være overdimensjonert ved normal drift med en effektfaktor på 0,9 - 0,95.

9.1.2. Alternativ 1 - Bytte av Vikling

I dette oppgraderingsalternativet blir den gamle viklingen byttet ut med en moderne vikling. Siden blikket ikke byttes er spordimensjonene de samme. Den viktigste endringen som blir gjort her er å benytte en moderne isolasjon, se vedlegg 22. Siden denne er betydelig tynnere enn isolasjon fra 50-tallet kan kobberarealet i sporet økes betraktelig. De endringene som ble utført er vist i *Tabell 8*.

Ved å redusere isolasjonstykkelser, samt benytte flere delledere med litt mindre dellederhøyde, økte kobberarealet med 34,6 %. Gevinsten med dette er et redusert DC-tap i statorviklingen på 16,8 kW, og en påfølgende virkningsgradsøkning fra 97,1 % til 97,26 %. Viklingens resistansfaktor øker noe, men dette utgjør lite i direkte tap.

En annen fordel med å benytte moderne isolasjon er redusert viklingstemperatur. Selv om den termiske konduktiviteten til moderne isolasjon er lavere enn for isolasjon brukt i eldre maskiner, vil den reduserte isolasjonstykkelsen gjøre at det blir lettere å lede ut varmen som blir produsert i viklingen.

I dette tilfellet blir den nye viklingstemperaturstigningen på bare 35 °C, noe som er veldig lavt sammenlignet med tillatte temperaturstigning for isolasjon utnyttet klasse B (se *Tabell 5*). Dette fører til svært liten aldring av isolasjonen som følge av temperatur, og det kan argumenteres for å øke

		Opprinnelige mål	Alt.1
Antall delledere		22	26
Dellederhøyde	[mm]	2,5	2,4
Dellederbredde	[mm]	5,9	7
Jordisolasjon	[mm]	2,5	1,8
Dellederisolasjon	[mm]	0,15	0,1
Sporkile	[mm]	6	6
Mellomstrimmel	[mm]	5,7	5
Røbelsepparator	[mm]	0,8	0,5
Statorviklingstemp.	[°C]	46	35
Kobberareal i spor	$[mm^2]$	318	428,1

Tabell 8 - De viktigste endringene ved oppgradering 1

isolasjonstykkelsen noe for å redusere den elektriske feltstyrken i isolasjonen ytterligere for dermed å redusere den elektriske aldringen. På denne måten kan man øke levetiden for viklingen, men man må godta litt økt viklingsmotstand og tap.

I den opprinnelige maskinen ble det benyttet et spoleskritt på 9 spor. Dette tilsvarer et relativt spoleskritt på 0,75. Her kan spoleskrittet med fordel økes til 10 spor som gir et relativt spoleskritt på 0,83. Siden maskinen har skråstilte poler vil dette ha liten betydning for de harmoniske komponentene i maskinen, men det fører til redusert fluks i maskinen og dermed en lavere belastet rotor. Samtidig reduseres flukstettheten i statortennene og i åket, og jerntapene i maskinens reduseres. Dette gir en ny virkningsgrad på 97,29 %.

Bakdelene med å øke spoleskrittet er at viklingslengden og motstanden i statoren øker, samtidig som ankerreaksjonsreaktansen vil øke på grunn av økt permeans. Ved å endre spoleskrittet fra 9 til 10 spor vil synkronreaktansen øke fra 0,96 til 1,056. Her kan spoleskrittet kun økes dersom endringen i reaktansverdien er akseptabel.

9.1.3. Alternativ 2 - Bytte av Statorblikk og Vikling

Som tidligere nevnt er de relative tapene til blikket som er brukt i maskinen på hele 1,7 W/kg.

Det vil derfor være mye å hente på å bytte til et moderne blikk (se *Tabell 9*). Bortsett fra å bytte blikk er de viktigste endringene ved dette oppgraderingsalternativet å øke

OpprinneligAlt.2Blikktykkelse [mm]-0,5Relative tap[W/kg]1,71,07

Tabell 9 – Verdier for gammelt og nytt statorblikk

spoleskrittet, øke luftgapet og redusere bredden på kjølekanalene (se Tabell 10).

Ved å bytte til moderne blikk reduseres jerntapene i maskinen med 44,1 % fra 67,8 kW til 37,9 kW. Medvirkende til denne reduksjonen er økningen i spoleskrittet fra 9 til 10 spor, da dette reduserer den totale fluksen i maskinen ved merkespenning og reduserer flukstetthetene i blikket. I tillegg til dette vil både reduksjonen i kjølekanalbredden og økningen av forholdet b_u/b_d påvirke jerntapene. En reduksjon i kjølekanalbredden vil øke netto jernlengde for samme brutto jernlengde, og på den måten redusere flukstettheten i blikket. På den andre siden vil en økning i sporbredden for samme spordeling redusere tannbredden og øke flukstettheten i tennene.

Når blikket skal byttes kan spordimensjonene endres. I dette tilfellet økes sporbredden mens sporhøyden holdes konstant. Den økte sporbredden gjør at kobberarealet i sporet økes ytterligere til 493,9 mm². Selv om det økte spoleskrittet gir en liten økning i viklingslengde,

fører det økte kobberarealet til at DC-tapene i stator reduseres med 32 %, som tilsvarer 20,8 kW. Sammen med de reduserte jerntapene fører dette til en virkningsgradsøkning fra 97,1 % til 97,56 %.

Et resultat av å øke spoleskrittet er at synkronreaktansen øker på grunn av økt permeans for statorviklingen. For å holde reaktansverdien konstant må luftgapet i maskinen økes med 1,5 Tabell 10 - De viktigste endringene ved oppgradering 2

		Opprinnelig	Alt.2
Kjølekanaler	[mm]	8	6
Sporbredde	[mm]	19	19,8
Dellederbredde	[mm]	5,9	7,5
b_u/b_d	[mm]	0,686	0,735
Kobberareal i spor	$[mm^2]$	318	493,9
Spoleskritt	[mm]	9	10
Tanninduksjon	[T]	1,82	1,73
Luftgap	[mm]	15,5	17
Synkronreaktans	[p.u.]	0,96	0,971
Rotorstrøm	[A]	469,6	471,4
Virkningsgrad	[%]	97,1	97,56

mm. Selv om den reduserte fluksen på grunn av økt spoleskritt reduserer maskinens magnetiseringsbehov, fører det økte luftgapet til en liten økning i maskinens totale magnetiseringsbehov. Dette gjør at rotortemperaturen øker med 1 °C ved nominell drift.

Noe av grunnen til at rotortemperaturen øker er at bredden på kjølekanalene er redusert til 6 mm. Dette begrenser den totale luftmengden i maskinen, og dermed kjøleevnen. For at maksimale kjølelufthastighet ikke skal overskride 15 meter i sekundet [18] må kjøleluftmengden reduseres fra 11,5 m³/s til 9 m³/s. Dersom viftebladene på rotor kan justeres, vil den reduserte kjøleluftmengden føre til reduserte viftetap. Denne reduksjonen er ikke tatt hensyn til i beregningene siden den kan være vanskelig å beregne eksakt, men den kan antas å tilsvare ca. 5 kW. Dersom denne tas hensyn til vil den nye virkningsgraden være 97,61 %.

9.1.4. Alternativ 3 - Optimalisering med Fri Spenning og Sportall

Det vil her bli undersøkt om det er noe potensial for virkningsgradsøkning ved å endre spenning og sportall. Som utgangspunkt ble det gjennomført en virkningsgradsoptimalisering for spenninger fra 6 kV til 10 kV, og for sportall fra 168 til 222 spor.

Figur 11 - Optimaliseringskurve for oppgradering 3

Figur 12 - Optimaliseringskurve for oppgradering 3 sett ovenfra

Resultatene fra optimaliseringen er vist i *Figur 11* og *Figur 12*. Det kommer frem av resultatene at virkningsgraden er høyest rundt et belte som strekker seg fra 6500 volt og 168 spor, til 7800 volt og 204 spor. Denne optimaliseringsprosessen er ikke hundre prosent nøyaktig, men gir et meget godt utgangspunkt for videre optimalisering.

Som vist i resultatene fra optimaliseringen er utgangspunktet med en merkespenning på 6300 volt og 168 spor et meget godt valg. Skulle man allikevel ønske å endre spenningen bør denne økes sammen med sportallet. Det endelige valget av spenning og sportall ble 8000 volt og 192

spor (se *Tabell 11*). Dette er litt utenfor det optimale området fra optimaliseringen. Grunnen til at sportallet ble valgt litt lavere enn det som ble anbefalt var at spordelingen ble en begrensning. Dersom spordelingen blir for lav går for mye av sporet bort til isolasjon, samtidig som at flukstettheten i tennene vil bli høy. Det valgte sportallet gir en

		Opprinnelig	Alt.3
Merkespenning	[V]	6300	8000
Merkestrøm	[A]	1283	1010
Sportall		168	192
Spor per pol og fase		4	4 ⁴ / ₇
Flukstetthet i luftgap	[T]	0,812	0,893
Luftgap	[mm]	15,5	14
Synkronreaktans	[p.u.]	0,96	0,988
Virkningsgrad	[%]	97,1	97,56

Tabell 11 - De viktigste endringene ved oppgradering 3

brudden vikling. Det er da viktig å være klar over mulighetene for å introdusere subharmoniske komponenter i maskinen. Grunnen til at spenningen ble valgt litt høyere enn anbefalt var hovedsakelig at dette var ønskelig for oppgraderingsalternativ 4.

Et resultat av økt spenning er at synkronreaktansens p.u.-verdi reduseres, selv om synkroninduktansen øker som følge av økt permeans (spoleskritt) og økt antall vindinger. Dette kommer av at referanseverdien øker mer enn induktansen. For å holde reaktansverdien konstant reduseres luftgapet til 14 mm. Selv om spenningsøkningen gir økt fluks i maskinen vil det reduserte luftgapet føre til lavere magnetiseringsbehov og mindre rotortap. Dette fører isolert sett til bedre virkningsgrad og kaldere rotor.

Et annet resultat av økt spenning og fluks er at det magnetiske spenningsfallet i luftgapet øker som følge av økt flukstetthet. Dette gir større magnetiseringsbehov og økt rotortap. Videre vil den økte fluksen i maskinen gi økt flukstetthet i åket siden den ytre diameteren er fast. Dette gir større jerntap i åket. Disse økte tapene veier opp for fortjenesten fra luftgapsreduksjonen, og den resulterende virkningsgraden vil fortsatt være 97,56 %, det samme som for oppgraderingsalternativ 2.

Fordelen med oppgraderingsalternativ 3 er at man får en kaldere maskin, eventuelt at kjøleluftmengden og viftetapene reduseres ved samme maskintemperatur. Redusert kjølemengde gir en anslått virkningsgrad på 97,67 %.

Økning i spenning og sportall i forhold til oppgraderingsalternativ 2 vil gi en dyrere vikling. Den beskjedne, eller manglende, økningen i virkningsgrad sett bort fra viftetap kan vanskelig forsvare denne kostnadsøkningen.

9.1.5. Alternativ 4 - Økt Ytelse

I de foregående oppgraderingene har den opprinnelige maskinen blitt forbedret med nytt blikk og ny statorvikling uten at hoveddimensjonene har blitt endret. Dette har resultert i en kald og lite utnyttet maskin. I denne oppgraderingen vil det bli undersøkt hvor mye maskinen fra oppgradering 3 kan utnyttes, og hvordan dette påvirker maskinens egenskaper.

Den største begrensningen i oppgradering 3 er rotortemperaturen. Ved å bytte feltviklingen kan det tillates en betydelig høyere temperatur og belastning av feltviklingen. Det vil derfor bli byttet feltvikling i denne oppgraderingen for å hente ut mest mulig av maskinens potensial. Den nye feltviklingen vil ha isolasjon av klasse F, og belastes etter klasse B. Ifølge IEC 34-1 er den tillatte temperaturstigningen for denne klassen 80 °C ved resistansmåling. På grunn av levetid for viklingen er det ikke ønskelig med driftstemperaturer som ligger helt opp mot tillatte verdi, men rotortemperaturer på 60 - 65 °C er normalt.

Det ble benyttet statisk magnetisering for denne oppgraderingen da dette er mer realistisk for en moderne maskin av denne størrelsen. Dette reduserer magnetiseringstapene en del og vil føre til bedre virkningsgrad. Tilleggstapene holdes konstante.

Siden ytelsen for maskinen økes vil referanseverdien for synkronreaktansen reduseres. Dette gjør at den relative verdien for synkronreaktansen øker. For å

Tabell 12 - De	viktigste	endringene	ved	oppgradering	4
----------------	-----------	------------	-----	--------------	---

		Opprinnelig	Alt.4
Merkeytelse	[MVA]	14	20
Effektfaktor		0,73	0,9
Merkespenning	[V]	6300	8000
Merkestrøm	[A]	1283	1443
Sportall		168	192
Spor per pol og fase		4	4 ⁴ / ₇
Flukstetthet i luftgap	[T]	0,812	0,887
Luftgap	[mm]	15,5	21
Synkronreaktans	[p.u.]	0,96	0,99
Statorviklingstemp.	[°C]	46	50
Rotorviklingstemp.	[°C]	45	63
Virkningsgrad	[%]	97,1	98,28

holde reaktansverdien på opprinnelig verdi må luftgapet økes til 21 mm. Med økt luftgap øker magnetiseringsbehovet og dermed rotorbelastningen.

I dette oppgraderingsalternativet endres effektfaktor ved merkedrift fra 0,73 til 0,9, da dette er mer vanlig for merking av moderne maskiner. Dette reduserer rotorbelastningen ved merkedrift, reduserer statorstrøm ved samme leverte aktive effekt og gir dermed bedre virkningsgrad. Denne virkningsgradsøkningen er ikke reell i den forstand at det ikke er gjort noen endringer på maskinen.

Sammenlignet med maskinen fra oppgradering 3 er resultatet av denne oppgraderingen en økning i tilsynelatende effekt på 43 % og en økning i virkningsgrad fra 97,56 % til 98,28 %. Dersom man ser bort fra virkningsgradsøkningen på grunn av endret effektfaktor, statisk magnetisering, samt øker tilleggstapene proporsjonalt med ytelsen, tilsvarer den nye virkningsgraden 97,62 %. Det vil si at ved å belaste maskinen hardere øker virkningsgraden

relativt sett. Dette bekrefter at maskinen i oppgradering 3, og også de tidligere maskinene, er svært lite utnyttet.

Den nye maskinen er fortsatt ikke utnyttet maksimalt. Begrensningen ligger fortsatt i rotoren, der temperaturstigningen er 63 °C. Temperaturstigningen i statoren er ikke på mer enn 50 °C. Dette kommer av at det høye sportallet gir smale og spor og dermed god kjøling av statorstavene. Hovedgrunnen til at rotoren blir så hardt belastet er at luftgapet økes ganske mye for å holde synkronreaktansen på opprinnelig verdi. Dersom dette isteden gjøres ved å endre statorviklingen kan rotortemperaturen reduseres og stator kan belastes hardere.

Normalt vil det være uaktuelt å øke ytelsen på en maskin med hele 43 %, men resultatene i denne oppgraderingen viser at en moderne maskin med samme ytelse vil ha en betydelig mindre fysisk størrelse. Samtidig vil den moderne maskinen ha en langt bedre virkningsgrad. Dersom reduksjonen i kjølebehov tas med i beregningene blir virkningsgraden for den nye maskinen 98,30 %. Det er sannsynlig at denne kan økes ytterligere dersom det tillates at de fysiske målene på maskinen kan endres.

9.2. Maskin 2

9.2.1. Opprinnelig Maskin

Den opprinnelige maskinen er en saktegående elvekraftgenerator produsert i 1964. Som de fleste eldre generatorer er også denne lite utnyttet i forhold til fysisk størrelse (lavt utnyttelsessiffer). Dette fører til at maskinen har større diameter og lengde enn hva som er vanlig i moderne generatorkonstruksjon for samme turtall og merkeeffekt. I tillegg er driftstemperaturene lavere på grunn av at eldre isolasjon ofte har en lavere temperaturklasse samt lengre dimensjonert levetid enn moderne isolasjon.

Jordisolasjonen i maskinen er 4 mm tykk og har temperaturklasse B som er utnyttet klasse A. Siden denne maskinen har formspole vil det være noe høyere spenning mellom hver delleder enn ved bruk av røbelstav. Det er derfor brukt tilleggsisolasjon på 0,5 mm mellom hver delleder i tillegg til lakkisolasjon.

Generatoren har en ytre diameter på 6 meter og en brutto jernlengde på 1,2 meter, noe som gir et utnyttelsessiffer på 4,6. De relative jerntapene er oppgitt til 1,3 W/kg ved 1 tesla. Moderne generatorer har vanligvis noe bedre blikk med jerntap rundt 1,1 W/kg ved 1 T.

Statoren har opprinnelig 11 parallelle kretser og 11 vindinger per fase. Hver vinding er delt inn i to delledere hvorav bredden er 7 mm og høyden er 3,6 mm. Normale dellederhøyder i en statorvikling ligger vanligvis mellom 2 mm og 3 mm. Den høye dellederhøyden vil føre til betydelige AC-tap for viklingen. Resistansfaktorene K_{rad} og K_{mx} bør ikke overstige henholdsvis 1,15 og 1,5 (ref. [11][17][18]) for å unngå høye tilleggstap i sporet og problemer ved kjøling. Resultatene viser at resistansfaktorene for denne maskinen er betydelig høyere (se *Tabell 7*).

9.2.2. Alternativ 1 - Bytte av Vikling

Her blir det sett på fordelene ved å bytte ut den opprinnelige viklingen med en ny moderne vikling. Ved å velge en

moderne isolasjon med isolasjonsklasse F som blir belastet klasse B kan viklingen ha en høyere driftstemperatur. Moderne isolasjon kan også belastes med høyere elektrisk feltstryke, noe som fører til at det kan brukes tynnere isolasjon. I tillegg kan også tilleggsisolasjonen mellom

		Opprinnelige mål	Nye mål
Antall delledere		11	22
Dellederhøyde	[mm]	3,6	1,9
Dellederbredde	[mm]	7	7,5
Jordisolasjon	[mm]	4	3,5
Dellederisolasjon	[mm]	0,2	0,2
Sporkile	[mm]	5,5	5,5
Mellomstrimmel	[mm]	7	7
Statorviklingstemp.	[°C]	45	37
Kobberareal i spor	$[mm^2]$	554,4	627,0

 Tabell 13 - De viktigste endringene ved oppgradering 1

hver delleder fjernes siden lakkisolasjonen på hver delleder er nok. Resultatet blir da at fyllfaktoren for sporet øker (bedre plass til kobber) og viklingsresistansen synker.

Siden den opprinnelige dellederhøyden førte til høye AC-tap i viklingen vil det også være naturlig å bytte til en vikling

med lavere delledere.

Resultatene for maskinen med den nye viklingen er vist i *Tabell 13* og *Tabell 14*.

Etter at isolasjonstykkelsen og dellederhøyden ble redusert ble kobberarealet for sporet økt med 13 % og de totale kobbertapene for

viklingen redusert med 20 %. Ser også at resistansfaktorene er innenfor anbefalte verdier. De reduserte kobbertapene førte også til at viklingstemperaturen i stator ble redusert fra 45°C til 37°C. Dette er veldig lav temperaturbelastning for isolasjon med temperaturklasse F, noe som vil resultere i ubetydelig termisk aldring av isolasjonen. Resultatet av å bytte kun viklingen ble at virkningsgraden for maskinen ble økt fra 97,59 % til 97,71 %.

Tabell 14 - De viktigste resultatene fra oppgradering 1

		Opprinnelige	Nye
		verdier	verdier
K _{rad}		1,269	1.096
K _{mx}		1,856	1,305
P _{DC}	[kW]	113,8	100,6
P _{AC}	[kW]	19,6	6,0
Statorviklingstemp.	[°C]	45	37
Totale kobbertap	[kW]	133,4	106,6
Virkningsgrad	[%]	97,59	97,71

Figur 13 - Harmoniske komponenter i maskinen

Det relative spoleskrittet for den opprinnelige maskinen var 0,933. Fordelen med å velge et så høyt relativt spoleskritt er at mye av hovedfluksen går gjennom viklingen (høyere spenning med samme fluks). Bakdelen er at det kan bli produsert mer av lavere harmonisk fluks (se *Figur 13*). Vanligvis velges skrittet for å redusere mest mulig av 5. og 7. harmoniske. Dette tilsvarer et relativt spoleskritt mellom 0,8 og 0,85. Selv om det er høyt bidrag av lavere harmoniske blir spoleskrittet beholdt i dette oppgraderingsalternativet for å unngå å endre maskinens øvrige parametere.

9.2.3. Alternativ 2 - Bytte av Statorblikk og Statorvikling

I dette

oppgraderingsalternativet blir både statorblikk og statorvikling byttet ut. Det opprinnelige blikket med relativt jerntap på 1,3 W/kg ved 1 T ble erstattet med nytt blikk med relativt jerntap på 1,07 W/kg ved 1 T. Det nye blikket har en tykkelse på 0,5 mm (se vedlegg 23). Dette resulterte i at jerntapene ble redusert fra 129,9 kW til 106,1 kW.

I tillegg til å endre kvaliteten på blikket ble det valgt bredere blikkpakker og smalere kjølekanaler (se *Tabell 15*). Dette sammen med at jernfyllfaktoren ble økt fra 0,93 til 0,95 førte til at netto jernlengde, *l_n*, økte. Denne økningen resulterte i

Tahell I	15 -	De	viktioste	endringene	nσ	resultatene	ved	onnoraderin	σ
I ubell I	- 13	De	vikiigsie	enuringene	υg	resultatene	veu	oppgrauering	5

		Opprinnelige	Nye
		verdier	verdier
Jerntap	[kW]	129,9	106,1
Kobbertap (DC)	[kW]	113,8	90,9
Kjøleluftmengde	$[m^3/s]$	23	16
Bredde kjølekanal	[mm]	8	6
Bredde blikkpakke	[mm]	40	40
Jernfyllfaktor, k _{Fe}		0,93	0,95
Virkningsgrad		97,59	97,86

1 adell 10 – sporalmensjoner og mal jor nyl	tt spor
---	---------

		Opprinnelige mål	Nye mål
Sporhøyde	[mm]	130,5	130,5
Sporbredde	[mm]	23,4	25,0
bu/bd		0,693	0,778
Antall delledere		11	22
Dellederhøyde	[mm]	3,6	1,9
Dellederbredde	[mm]	7	8,3
Jordisolasjon	[mm]	4	3,5
Dellederisolasjon	[mm]	0,2	0,2
Sporkile	[mm]	5,5	5,5
Mellomstrimmel	[mm]	7	7
Kobberareal i spor	$[mm^2]$	554,4	693,8

at tanninduksjonen ble redusert på grunn av større areal for fluksen. Et resultat var at sporbredden kunne økes ytterligere (fra 7 mm til 8,3 mm). Verdier for det nye sporet er vist i *Tabell 16*.

Resultatet ved å skifte ut både blikk og vikling var at virkningsgraden for maskinen ble økt fra 97,59 % til 97.86 %. Dette tilsvarer en reduksjon i tap med 58,3 kW ved nominell drift. Bytte av blikk i tillegg til vikling vil derfor gi et betydelig bedre resultat enn kun bytte av vikling.

Viklingen som er brukt i oppgraderingsalternativ 1 og 2 gir en strømtetthet i stator på henholdsvis 2,31 A/mm² og 2,08 A/mm². Viklingstemperaturstigningen i stator ble da 37 °C, noe som er mye lavere enn tillatt temperaturstigning for viklingen. Det hadde derfor vært mulig å bruke en vikling med høyere resistans for denne maskinen uten å overstige tillatte temperaturer. En slik vikling ville vært billigere å produsere men ville gitt høyere kobbertap. Viklingen med lavest tap ble valgt for denne maskinen.

Ved bytte av blikk og vikling kunne kjøleluftmengden reduseres fra 23 m³/s til 16 m³/s uten at maskintemperaturene økte ut over opprinnelige verdier. Den reduserte kjøleluftmengden vil føre til at virkningsgraden for maskinen økes ytterligere.

9.2.4. Alternativ 3 - Optimalisering med Fri Spenning og Sportall

I de tilfeller hvor transformatoren skal skiftes ut samtidig med oppgradering av generatoren kan også spenningen på generatoren forandres. Dette gjør at generatordesigneren kan bruke

spenningen som en fri variabel. Ved forandring av spenning kan det også være nødvendig å forandre sportallet for å få en optimal maskin.

For å unngå at antall spor per pol og fase ble et heltall, ble sportallet for generatoren fortsatt valgt til 330 (q=2,5). De nærmeste alternativene som var aktuelle med q som et bruddent tall med 11 parallelle kretser var:

Tabell 17 -	De v	viktigste	endringene	ved	onngradering 3	3
1000111	DUV	inigsie	enaringene	vcu	oppgruuering -	·

		Opprinnelige mål	Nye mål
Sportall		330	330
Sporhøyde	[mm]	130,5	112,5
Sporbredde	[mm]	23,4	21,9
bu/bd		0,693	0,620
Antall delledere		11	14
Dellederhøyde	[mm]	3,6	2,7
Dellederbredde	[mm]	7	13,8
Jordisolasjon	[mm]	4	3,83
Dellederisolasjon	[mm]	0,2	0,2
Sporkile	[mm]	5,5	6
Mellomstrimmel	[mm]	7	7
A _{cu} per vinding	$[mm^2]$	50,4	37,3

*Q*_s=198 (*q*=1,5)

$$Q_s = 462 (q = 3, 5)$$

Disse alternativene gir enten veldig smale eller veldig brede spor og ble derfor ikke valgt.

Grunnen til at det er ønskelig å unngå q som et heltall er at dette kan føre store harmoniske flukskomponenter. Hvis q velges som et heltall hadde det blitt nødvendig å vri polene eller statorsporene for å unngå dette. Vriding (skewing) er ofte uønskelig på grunn av at produksjonskostnadene for generatoren øker.

Ved valg av ny spenning ble det forsøkt både øke og redusere spenningen i forhold til opprinnelig verdi. Det var økning av spenning som førte til best resultat. For å unngå at

dellederhøyden skulle bli like høy som opprinnelig verdi var det nødvendig å øke spenningen en del for å redusere strømmen. I tillegg var det ønskelig å bruke kun én delleder i høyden per vinding for at viklingsproduksjon skulle bli enklere. Hvis antall vindinger i serie per vikling ble økt fra 11 til 14 og

		Opprinnelige verdier	Nye verdier
Spenning	[V]	11000	15000
Strøm	[A]	1417	1039
Luftgap	[mm]	13	11
Synkronreaktans	[p.u.]	0,940	0,959
Antall vindinger, t _{nr}		11	14
Kobbertap (DC)	[kW]	113,8	105,3
Jerntap	[kW]	129,9	97,5
Virkningsgrad	[%]	97,59	97,91

Tabell 18 - De viktigste resultatene fra oppgradering 3

strømtettheten ble valgt til det samme som den opprinnelige (2,6 A/mm²), resulterte dette i en spenning på 15000 volt ved en dellederhøyde på 2,7 mm. For å kunne velge denne spenningen var det nødvendig å ha bredere tenner i tillegg til flere vindinger enn opprinnelig for å unngå metning i tennene.

Siden det ble valgt høyere spenning for denne generatoren enn den opprinnelige ble referanseverdien for synkronreaktansen økt. Dette førte til at per unit reaktansene for maskinen ble redusert. I tillegg til at synkronreaktansen ble lavere, resulterte den høye spenningen til at magnetiseringsbehovet for generatoren økte. Høyere magnetiseringsbehov førte til at driftstemperaturen for rotorviklingen økte. For å opprettholde tilnærmet samme synkronreaktans og rotortemperatur var det nødvendig å redusere luftgapet. Reduksjon i luftgap fra 13 mm til 11 mm resulterte i tilnærmet uendret reaktans og samme rotortemperatur i forhold til alternativ 2.

I dette oppgraderingsalternativet ble det ikke satt verdier for sporet i input-filen. Hvis sporet ikke blir satt vil GenProg beregne sporet ut i fra valgt dellederhøyde, strømtetthet og forholdet mellom sporbredde og tannbredde (bu/bd). Hvis antall vindinger per vikling er større enn 1 ($t_{nr} > 1$) vil programmet lage en formspolevikling. Dersom programmet benytter formspoleberegningene blir det valgt kun én delleder i bredden. Verdier som GenProg satte for sporet er vist i *Tabell 17*.

Økning i spenning, nytt blikk og ny vikling førte til at virkningsgraden for generatoren økte fra 97,59 % til 97,91 %. Dette er 0,05 % (10,8 kW) bedre enn ved bytte av kun blikk og vikling. Det er derfor ikke mye å hente på å forandre spenning, men hvis generatoren skal oppgraderes i tillegg til at transformatoren skal skiftes gir dette et bedre resultat enn de tidligere alternativene.

9.2.5. Alternativ 4 - Ny Generator

I de tre foregående oppgraderingsalternativene ble det undersøkt forskjellige muligheter for oppgradering av statoren på eksisterende maskin. Siden generatorens diameter og lengde er

bestemt var det ikke mulig å Tabell 19 - Verdier for ny generator

endre utnyttelsessifferet. En			Opprinnelige	Nve
økning av generatorens			verdier	verdier
merkeeffekt, med	Nominell Effekt	[MVA]	27	27
opprinnelig effektfaktor, var	Spenning	[V]	11000	11000
heller ikke mulig uten at	Strøm	[A]	1417	1417
rotortemperaturen ble høyere	Effektfaktor		0,8	0,8
enn opprinnelig. Resultatet	Utnyttelsessiffer		4,61	6,32
av disse	Indre Diameter	[m]	6	4,9
oppgraderingsalternativene	Brutto Jernlengde	[m]	1,24	1,39
ble derfor en lite utnyttet	Synkronreaktans	[p.u.]	0,940	1,029
magkin mad lava	Luftgap	[mm]	13	12
	Sportall		330	330
driftstemperaturer.	Rel. Spoleskritt	[p.u.]	0,933	0,800
I moderne generatordesign er	Antall Vindinger, t _{nr}		11	12
det ofte angleslig å produsere	Viklingstemp, Stator	[°C]	45	60
det offe ønskeng a produsere	Strømtetthet, Stator	$[A/mm^2]$	2,61	3,93
generatoren mindre og	Statorresistans (20°C)	$[m\Omega]$	15,5	25,0
varmere (billigere) enn hva	Kobbertap (DC)	[kW]	113,8	183,0
som var vanlig i eldre	Jerntap	[kW]	129,9	81,3
konstruksjoner. Det ble	Lager og Viftetap	[kW]	82,1	43,1
derfor i dette alternativet	Magnetiseringstap	[kW]	44,0	8,0
undersøkt hvordan en	Virkningsgrad	[%]	97,59	97,81

For at resultatene skulle være sammenlignbare ble det valgt samme effekt og effektfaktor som den opprinnelige generatoren. Siden det er krav om statisk magnetisering for generatorer over 25 MVA i det norske kraftnettet ble magnetiseringstapene beregnet av programmet i dette alternativet. Magnetiseringstapene ble derfor betydelig lavere enn i de tre foregående eksemplene.

Den største forskjellen på den nye og den opprinnelige generatoren er at diameteren ble redusert fra 6 meter til 4,9 meter. Lengden ble økt fra 1,24 til 1,39 meter for å kunne beholde samme spenning uten at flukstettheten i luftgapet skulle bli for stor. Dette resulterte i at utnyttelsessifferet økte fra 4,61 til 6,32 og driftstemperaturen for statorviklingen økte fra 45 °C til 60 °C. Siden den største kjølelufthastigheten i maskinen allerede var 14,7 m/s for denne driftstemperaturen ble ikke maskinens dimensjoner redusert ytterligere. Siden kjølelufthastigheten ikke burde overstige 15 m/s kunne kjøleluftmengden nesten ikke økes for denne maskinen. En ytterligere reduksjon av maskinens dimensjoner ville dermed resultert i en varm stator og økt termisk aldring av isolasjonen.

moderne konstruksjon ble i forhold til den opprinnelige.

Den økte strømtettheten og resistansen i statoren førte til at koppertapene økte fra 113,8 kW til 183,0 kW. Dette er ofte en bakdel med å redusere de fysiske størrelsene på generatoren. Fordelen med å redusere størrelsen på maskinen var at jerntapene ble redusert på grunn av redusert statorvolum. Flukstettheten i stator for begge generatorene er 1,2 tesla. Siden generatorens fysiske størrelser ble redusert førte dette til at vekten på generatoren reduseres. På grunn av dette ble også lager og luftfriksjonstapene ble redusert.

For å unngå at rotorviklingen ble for varm, ble luftgapet redusert fra 13 mm til 12 mm for å redusere magnetiseringsbehovet. Dette førte til at synkronreaktansen for maskinen økte fra 0,940 per unit til 1,029 per unit. For større maskiner er synkronreaktansen vanligvis rundt 1,1 per unit. Økningen i synkronreaktans vil derfor vanligvis ikke føre til noe problem siden den var så lav i utgangspunktet.

For å unngå at det blir produsert mye 5.- og 7. harmoniske ble det nye relative spoleskrittet valgt til 0,8 (opprinnelig 0,933). *Figur 14* viser at valgt spoleskritt har redusert de aktuelle harmoniske bidragene betraktelig i forhold til opprinnelig.

Resultatene for dette alternativet viser at hvis den opprinnelige generatoren har blitt erstattet med denne nye generatoren vil virkningsgraden økes fra 97,59 % til 97,81 %. På grunn av at den nye generatoren er mindre, vil den

Figur 14 - Harmoniske komponenter i maskinen

også være noe billigere å produsere i forhold til den opprinnelige generatoren. Dette fordi produksjonskostnad er avhengig av materialvekt. Å erstatte den opprinnelige generatoren med en ny generator kan derfor være ett godt alternativ.

10.Konklusjon

en første delen av prosjektet bestod av å utvikle et beregningsprogram for synkronmaskiner. Denne prosessen viste seg å være meget omfattende, og dette var den klart mest tidkrevende delen av prosjektet. Resultatet ble et beregningsprogram, GenProg, som fungerer meget bra til oppgradering av eksisterende generatorer i størrelsesorden 10 til 50 MVA. For større maskiner bør det gjennomføres kontroller av programmet før påliteligheten fastslås.

Resultatene fra beregningsprogrammet er generelt meget gode. De største avvikene kommer av at generatorenes konstruksjonsmessige valg ikke bestandig samsvarer med programmets beregningsmetode. Dette gjelder blant annet valg av polform, viklingstype, spolehodeutforming og kjølemetode. Det er ikke mulig i programmet å velge for eksempel polskoformen. Dersom dette skal være mulig for alle konstruksjonsvalg økes beregningsprogrammets kompleksitet betraktelig.

Det anbefales at brukeren leser og setter seg inn i *Vedlegg 1 - Oppstartseksempel GenProg* og kapittel 3 - *Programforklaring* før GenProg tas i bruk. Dette for å øke forståelsen for hvordan programmet fungerer, og dermed sikre best mulige resultater fra beregningene.

Andre del av prosjektet bestod av å oppgradere to maskiner fra 50- og 60-tallet. Det ble undersøkt forbedringspotensialet ved bytte av statorvikling, bytte av statorvikling og statorblikk, endring av spenning og sportall, og ved å øke maskinens utnyttelsessiffer.

Resultatene viser at den største virkningsgradsøkningen kommer ved bytte av statorvikling og

statorblikk. For viklingen kommer forbedringen av mindre isolasjon og følgelig større kobberareal i sporet. For blikket er det hovedsakelig reduksjonen av de relative tapene som utgjør forbedringen, men også muligheten for å endre for eksempel tannbredde, sporhøyde og kjølekanalene øker forbedringsmulighetene. For maskinene som ble undersøkt i dette prosjektet ga en økning i spenning liten eller ingen gevinst. Det samme gjelder for sportall, dersom sportallet ikke økes sammen med spenningen. Grunnen til at det er lite å hente på å endre spenning og sportall er at disse ofte er valgt fornuftig ut fra maskinens dimensjoner, effekt og poltall.

Tabell 20 – De viktigste resultatene fra oppgraderingene. Alternativ 1: Bytte av statorvikling. Alternativ 2: Bytte av statorvikling og blikk. Alternativ 3: Bytte av statorvikling og blikk, og med fri spenning og sportall. Alternativ 4: Økning av maskinens utnyttelsessiffer.

	Virkningsgrader [%]		
	Maskin 1	Maskin 2	
Opprinnelig	97,10	97,59	
Alt. 1	97,26	97,71	
Alt. 2	97,56	97,86	
Alt. 3	97,56	97,91	
Alt. 4	98,28	97,81	

Dersom statorvikling og statorblikk byttes vil dette

føre til en svært lite belastet maskin. Det anbefales at dersom generatorene oppgraderes bør muligheten for økning av ytelse undersøkes, selv om dette i mange tilfeller forutsetter bytte av feltvikling. For videreføring anbefales det at det også inkluderes styrkeberegninger i de mekaniske beregningene. Det anbefales også at det gjennomføres beregninger av kraftbølgene i maskinen for å kartlegge mulighetene for statorvibrasjoner som følge av subharmoniske komponenter.

11.Referanseliste

[1] – Lundseng, Vikan (2009) Beregning av Vannkraftgeneratorer (NTNU)

[2] – Pyrhönen, Jokinen, Hrabovcová (2008) *Design of Rotating Electrical Machines* (John Wiley & Sons, Ltd)

[3] – Machowski, Bialek, Bumby (2008) *Power System Dynamics, Stability and Control* (John Wiley & Sons, Ltd)

[4] – Alger (1970) *Induction Machines, Their Behavior and Uses* (Gordon and Breach Science Publishers)

[5] – IEC 34-1 (1996-11) *Rotating Electrical Machines, Part 1: Rating and Performance* (IEC)

[6] – Schuisky (1960) Berechnung Elektrischer (Wien Springer-Verlag)

[7] – Langsdorf (1955) *Theory of Alternating Current Machinery* (McGraw – Hill Book Company)

[8] – Westgaard (1955) Forelesninger i Elektromaskinbygg Grunnkurs Del 1 (NTH)

[9] – Westgaard (1957) Forelesninger i Elektromaskinbygg Grunnkurs Del 2 (NTH)

[10] – Westgaard (1957) Forelesninger i Elektromaskinbygg Særkurs (NTH)

[11] – Westgaard, Andersen (1965) Dimensjoneringseksempel for Synkronmaskin (NTH)

[12] – Stone, Boulter, Culbert, Dhirani (2004) *Electrical Insulation for Rotating Machines* (Wiley InterScience)

[13] – Ilstad (2008) *High Voltage Insulating Materials* (NTNU)

[14] – Boldea (2006) *Synchronous Generators, The Electric Generators Handbook* (CRC Press, Taylor & Francis Group)

[15] – Nilssen (2008) Electromagnetics in Power Engineering (NTNU)

[16] – Taraldsen (1985) *Statorschwingungen in Synchronmachinen mit Bruchlochwicklungen (NTNU)*

[17] - Muntlig samtale med veileder, Voith Hydro

[18] - Muntlig samtale med Professor Arne Nysveen, NTNU

12.Vedlegg

- 1. Oppstartseksempel for GenProg
- 2. Maskin 1 Opprinnelige Inputverdier
- 3. Maskin 1 Opprinnelige Outputverdier
- 4. Maskin 1 Inputverdier for Oppgraderingsalternativ 1
- 5. Maskin 1 Outputverdier for Oppgraderingsalternativ 1
- 6. Maskin 1 Inputverdier for Oppgraderingsalternativ 2
- 7. Maskin 1 Outputverdier for Oppgraderingsalternativ 2
- 8. Maskin 1 Inputverdier for Oppgraderingsalternativ 3
- 9. Maskin 1 Outputverdier for Oppgraderingsalternativ 3
- 10. Maskin 1 Inputverdier for Oppgraderingsalternativ 4
- 11. Maskin 1 Outputverdier for Oppgraderingsalternativ 4
- 12. Maskin 2 Opprinnelige Inputverdier
- 13. Maskin 2 Opprinnelige Outputverdier
- 14. Maskin 2 Inputverdier for Oppgraderingsalternativ 1
- 15. Maskin 2 Outputverdier for Oppgraderingsalternativ 1
- 16. Maskin 2 Inputverdier for Oppgraderingsalternativ 2
- 17. Maskin 2 Outputverdier for Oppgraderingsalternativ 2
- 18. Maskin 2 Inputverdier for Oppgraderingsalternativ 3
- 19. Maskin 2 Outputverdier for Oppgraderingsalternativ 3
- 20. Maskin 2 Inputverdier for Oppgraderingsalternativ 4
- 21. Maskin 2 Outputverdier for Oppgraderingsalternativ 4
- 22. Isolasjonstykkelser for hovedisolasjon
- 23. Datablad for generatorblikk M270-50A fra SURA

Vedlegg 1 Oppstartseksempel for GenProg

For at det skal være enklere å komme i gang med bruken av GenProg vil en fremgangsmåte bli beskrevet i dette kapitlet. I fremgangsmåten som blir gjennomgått er det tatt utgangspunkt i konstruksjon av en ny maskin. For mer deltaljert forklaring, se programforklaring og symbolliste.

Før beregningsprosessen starter må følgende filer plasseres i ønsket mappe:

- GenProg.m
- Input.xls
- Output.xls
- sporfil.xls
- Int.m

For at MatLab skal kunne skrive til sporfil.xls og Output.xls må filene være lukket før beregningen starter.

Beregningsprosessen kan deles inn i tre hoveddeler:

- Input
- Beregning/Simulering
- Output

Input

For å kunne simulere må alle nødvendige verdier settes i tabellen *Required Values* i *Input.xls*. Husk å lagre filen ved endring. Hvis nødvendig treghetsmoment, *M*, ikke er kjent kan denne settes lik 0. Programmet vil da velge et fornuftig treghetsmoment for maskinen.

	А	В	С	D	E
1					
2	Generator specifications				
3					
4	Required values:	71			
5	Apparent power	Sn	40	MVA	=
6	Power factor	Cosphi	0,9		
7	Frequency	f	50	Hz	
8	Number of poles	Np	16	poles	
9	Runaway speed	nr	650	rpm	
10	Maximum temperatur rise	dTmx	75		
11	Moment of inertia	M	0	tm ²	
12	Generator maximum voltage	Vmx	15	kV	
13	Maximum value of synchronous reactance	xd	1,1	pu	
14	Maximum value of transient reactance	xd1	0,4	pu	
15	Minimum value of subtransient reactance	xd2	0,15	pu	
16	Maximum tooth flux density	Btmx	1,7	Т	
17	Maximum pole core flux density	Bpmx	1,6	Т	
18	Maximum yoke flux density	Bymx	1,2	Т	
19	Specify ratio	bsdbt	0,6		
20	Core section length	bcs	0,038	m	
21	Cooling duct length	bv	0,006	m	
22	Filling factor (iron core)	kFe	0,95		
23	Current density in stator winding	Ss	4	A/mm ²	
24	Height of one strand i the statorbar	hcus	2,2	mm	
25	Required feild voltage	Vf	200	V	
26	Current density in rotor winding	Sf	3	A/mm ²	
27	Negative sequence voltage	Vnmx	20	%	
28	Skewving (in number of slots)	S	0	spor	
14	🕩 🗏 Input 🕲				▶
Rea	idy		I 100% (9 0	•

Figur 15 - Utsnitt av tabellen "Required Values" fra input-filen

Beregninger

For å starte beregningene må GenProg.m kjøres ved å velge *Run* i *Debug*-menyen. Ved beregning av ny maskin må følgende verdier velges i *MatLab*-vinduet:

- Sportall (kan velges fra sporfil.xls)
- Antall parallell kretser
- Antall vindinger per statorspole
- Spoleskritt

Hvis disse valgene gir ønskede resultat bør verdiene skrives inn i tabellen *Optional Values* i Input.xls før neste simulering. Med dette slipper man å oppgi disse €verdiene ved hver simulering. Fremdriften i programmet kan følges i *MatLab*-vinduet.

Output

De beregnede verdiene blir skrevet til filen Output.xls. Ut i fra disse verdiene kan flere inputverdier settes før neste beregning.

For å få et optimalt resultat er det ofte nødvendig at de fleste av parametrene i inputfilen er satt. Dette kan også føre til at beregningsprosessen går raskere.
Vedlegg 2 Maskin 1 - Opprinnelige Inputverdier

Generator specifications			
Required values:			
Apparent power	Sn	14	MVA
Power factor	Cosphi	0,73	
Frequency	f	50	Hz
Number of poles	Np	14	poles
Runaway speed	nr	810	rpm
Maximum temperatur rise	dTmx	60	
Moment of inertia	М	26,25	tm ²
Generator maximum voltage	Vmx	15	kV
Maximum value of synchronous reactance	xd	1	pu
Maximum value of transient reactance	xd1	0,25	pu
Minimum value of subtransient reactance	xd2	0,15	pu
Maximum tooth flux density	Bdmx	1,7	Т
Maximum pole core flux density	Bpmx	1,6	Т
Maximum yoke flux density	Bymx	1,2	Т
Specify ratio	bu/bd	0,686	
Core section length	bcs	0,04	m
Cooling duct length	bv	0,008	m
Filling factor (iron core)	kFe	0,93	
Current density in stator winding	Ss	3	A/mm²
Height of one strand i the statorbar	hcus	2,5	mm
Required feild voltage	Vf	154	V
Current density in rotor winding	Sf	2,90	A/mm²
Negative sequence voltage	Vnmx	20	%
Skewving (in number of slots)	S	0	spor

Satte verdier:			
Nominal Voltage	Un	6300 V	0=Default
Utilization factor	С	0	0=Default
Number of Slots	Qs	168	0=Default
Number of Parallel Circuits	pnr	1	0=Default
Number of Turns per Coil	tnr	1	0=Default
Coil Span	у	9 slots	0=Default
Inner Diameter of Stator	Di	2,50 m	0=Default
Gross Iron Length	lb	1 m	0=Default
Air Gap Flux Density	Βδ	0 T	0=Default
Height of rotor yoke	hyr	0 m	0=Default

A. Lundseng og I. Vikan, Vår 2010

Cooling Air Flow	qth	11,5	m³/s	0=Default
Flywheel	GD2add	0	kg	0=Default
Minimum air gap	delta0	15,5	mm	0=Default
Field Winding Width	bcuf	0,055	m	0=Default
Specific Iron Loss, at 1 Tesla	P10	1,7	W/kg	0=Default
Use old iron sheets (1950-1960)	FeOld	1	1=YES	0=Default
Average Stator Coil Length	lav	3,26	m	0=Default

Chosen Slot Dimensions				
Slot Heigth	hs	0,096	m	0=Default
Sloth Width	bu	0,019	m	0=Default
Number of strands in a Bar	ndl	22		0=Default
Number of Strands per Turn	ndlp	22		
Nr. of Strand on Top of each other per				
Turn	ndlh	11		
Total Copper Width in Slot	bcus	0,0059	m	0=Default
Distance from Slot Wedge to Air Gap	hds	0,005	m	
Slot Wedge Thickness	hspk	0,006	m	0=Default
Slot Wedge Spacer (glidestrimmel)	hgls	0	m	0=Default
Bar Separator (mellomstrimmel)	hm	0,0057	m	0=Default
Roebel Separator	drs	0,0008	m	
Earth Insulation Thickness	dij	0,0025	m	0=Default
Strand Insulation Thickness	dicu	0,00015	m	0=Default
Winding Insulation Thickness	diw	0	m	0=Default

Chosen Pole Dimensions				
Pole Shoe Width	bps	0,405	m	0=Default
Pole Shoe Heigth	hps	0,065	m	0=Default
Pole Core Width	bpk	0,27	m	0=Default
Pole Core Heigth	hpk	0,2	m	0=Default
Total Field Winding Heigth	hf	0,17	m	0=Default
Number of turns in Field Winding	nf	49		0=Default
Heigth of a Field Winding	hcuf	0,003	m	0=Default
Number of Damper Bars	NDs	10	m	0=Default
Magnetizing Losses	Pmagn	19,6	kW	0=Default
Insulation between winding and pole core	bi	0,004	m	0=Default
Field winding insulation	bif	0,00035	m	0=Default

Vedlegg 3 Maskin 1 - Opprinnelige Outputverdier

Main Data				
Apparent Power	Sn	14	MVA	
System Voltage	Un	6300	V	
Nominal Current	In	1283,0	А	
Cosphi		0,73		
Efficiency	η	97,10	%	
Rotational Speed	ns	428,6	rpm	
Stator Parameters				
Utilization Factor	С	5,12		
Armature Loading	As	548,9	A/cm	
Inner Diameter	Di	2,50	m	
Outer Diameter	Dy	3,03	m	
Gross Iron Length	lb	1,05	m	
Net Iron Length	ln	0,88	m	
Number of Slots	Qs	168	slots	
Number of Cooling Ducts	nv	21		
Number of Turns Per Phase	Ns	56		- 1113
Number of Turns per Coil	tnr	1		hspk
Number of Parallel Circuits	pnr	1		
Slots per pole and phase	q	4		\ ngis
Relative polepitch	у	0,750		\downarrow
Coil Span	Ww	9	slots	drs drs
Winding Factor	kw	0,885		
Sloth Hight	hs	96,0	mm	h
Sloth width	bu	19,0	mm	
Tooth width	bd	27,75	mm	atrand
Slot Pitch	τu	46,75	mm	
Number of strands per bar	ndl	22		
Height of a Strand	hcus	2,5	mm	
Width of a Strand	bcus	5,9	mm	
Main Insulation	dij	2,50	mm	
Strand Insulation	dicu	0,15	mm	$\leftarrow bu \rightarrow$
Winding lenght	lav	3,26	m	
Cross Section of Stator Bar	Acus	318,0	mm ²	
Stator Current Density	Ss	4,03	A/mm ²	
Stator Winding Resistance	Rdc20	0,01083	Ω	Per Phase Res. (20 °C)

Stator Winding Resistance	Rdc75	0,01317 Ω	Per Phase Res. (75 °C)
Stator Wdg. Resistance Factor	Kra	1,044	
Slot Resistance Factor	Krad	1,067	
Maximum Resistance Factor	Kmax	1,214	For the topmost strand
Skewing	S	0 slots	

Rotor Parameters				
Minimum Air Gap	δ0	15,5	mm	
Equivalent average Air Gap	δm	19,7	mm	
Pole Shoe width	bps	405,0	mm	
Pole Shoe Height	hps	65,0	mm	
Pole Core Width	bpk	270,0	mm	
Pole Core Hight	hpk	200,0	mm	
Number of Turns per Pole	nf	49		
Field Current	If	469,6	А	
Field Winding Width	bcuf	55,0	mm	
Field Winding Height	hcuf	3,0	mm	
Cross Section of Field				
Winding	Af	163,1	mm ²	
Current Density, Field				
Winding	Sf	2,88	A/mm ²	
Rotor Winding Resistance	Rf20	0,2109	Ω	Field Wind. Res. (20 °C)
Rotor Winding Resistance	Rf75	0,2565	Ω	Field Wind. Res. (75 ^{o}C)
Relative Pole				
Width	α	0,7		
Number of Damperbars	NDs	10		
Cross Section of Damper Bar	AcuD	119,7	mm ²	
Clearance, Pole Windings	polklaring	56,3	mm	

Air Gap	0,852	Т	11448	At	
Stator Core	1,200	Т	92	At	
Stator Tooth	1,820	Т	674	At	
Pole Core	1,630	Т	509	At	(max at bottom of core)
Rotor Ring	1,395	Т	364	At	
Relative Magnetization		Ef	1,789	pu	
Relative Induced Voltag	e	Ei	1,049	pu	
Total Required Magnetiz	zation	Θmn	23010	At	

Loss Calculations			
No load:			
Iron Loss Stator Core	Pfe	67,8	3 kW
Windage and Bearring Loss	Pfw	61,3	3 kW
Kopper Loss Rotor (No-load)	Prnl	32,6	5 kW
Full load:			
DC- stator loss	Pcusdc	65,1	l kW
AC-stator	Pcusac	2,9	9 kW
Additional Kopper Loss Rotor	Prfl	25,7	7 kW
Additional loss	Padd	29,8	3 kW
Magnetizing losses	Pmagn	19,6	5 kW
Total Losses	Ptot	304,7	7 kW

Reactances and Time Constants			
Armature Reaction Reactance	Xmd	0,895 pu	
	Xmq	0,504 pu	
Leakage Reactance	Χσ	0,065 pu	
Synchronous Reactance	Xd	0,960 pu	
	Xq	0,569 pu	
Transient			
Reactance	X'd	0,208 pu	
Sub-Transient Reactance	X"d	0,151 pu	
	X"q	0,173 pu	
Transient Time Constant	T'd	0 919 s	
Sub-Transient Time Constant	T"d	0,012 s	
	T"q	0,008 s	

Thermal Calculations		
Cooling Air Flow	qth	11,5 m ³ /s
Maximal Air Speed	vim	14,7 m/s
Maximal Temperature Rise in: Stator Winding Stator Tooth Stator Core Stator End Windir	ıg	46 ^o K 34 ^o K 32 ^o K 30 ^o K

45 ⁰	ЪК	
41 ⁰	ЪК	
13 ⁰	ЪК	
2 0	ЪК	
4 0	ЪК	
10 0	ЪК	
12 ⁰	ЪК	
12 ⁰	ЪК	
13 ⁰	ЪК	(Total temperature rise of air)
	$\begin{array}{c} 45 \\ 41 \\ 13 \\ 2 \\ 4 \\ 10 \\ 12 \\ 12 \\ 13 \\ 13 \\ 13 \\ 13 \\ 13 \\ 13$	45 °K 41 °K 13 °K 2 °K 4 °K 10 °K 12 °K 12 °K 13 °K

Mechanical Calculations		
Calculated Moment of Inertia	М	22,6 tm^2
Weight of Machine	m	71,3 tons

Harm.Nr.	Amplitude	
1	0,00	Amplitude of harmonic in [%]
3 5 7 9 11 13 15 17 19 21 23 25	0,00 1,57 2,08 0,00 0,44 0,37 0,00 0,86 0,41 0,00 3,85 3,54	4,50 4,00 3,50 3,00 2,50 2,00 1,50 1,00 0,50 0,00 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37
27 29 31 33 35 37	0,00 0,27 0,47 0,00 0,14 0,13	Telephone Harmonic Factor THF 0,64441 %

Vedlegg 4 Maskin 1 – Inputverdier for Oppgraderingsalternativ 1

Generator specifications			
Required values:			
Apparent power	Sn	14	MVA
Power factor	Cosphi	0,73	
Frequency	f	50	Hz
Number of poles	Np	14	poles
Runaway speed	nr	810	rpm
Maximum temperatur rise	dTmx	60	
Moment of inertia	М	26,25	tm ²
Generator maximum voltage	Vmx	15	kV
Maximum value of synchronous reactance	xd	1	pu
Maximum value of transient reactance	xd1	0,25	pu
Minimum value of subtransient reactance	xd2	0,15	pu
Maximum tooth flux density	Bdmx	1,7	Т
Maximum pole core flux density	Bpmx	1,6	Т
Maximum yoke flux density	Bymx	1,2	Т
Specify ratio	bu/bd	0,686	
Core section length	bcs	0,04	m
Cooling duct length	bv	0,008	m
Filling factor (iron core)	kFe	0,93	
Current density in stator winding	Ss	3	A/mm²
Height of one strand i the statorbar	hcus	2,4	mm
Required feild voltage	Vf	154	V
Current density in rotor winding	Sf	2,90	A/mm²
Negative sequence voltage	Vnmx	20	%
Skewving (in number of slots)	S	0	spor

Satte verdier:			
Nominal Voltage	Un	6300 V	0=Default
Utilization factor	С	0	0=Default
Number of Slots	Qs	168	0=Default
Number of Parallel Circuits	pnr	1	0=Default
Number of Turns per Coil	tnr	1	0=Default
Coil Span	у	9 slots	0=Default
Inner Diameter of Stator	Di	2,50 m	0=Default
Gross Iron Length	lb	1 m	0=Default
Air Gap Flux Density	Βδ	0 T	0=Default
Height of rotor yoke	hyr	0 m	0=Default

Cooling Air Flow	qth	11,5	m³/s	0=Default
Flywheel	GD2add	0	kg	0=Default
Minimum air gap	delta0	15,5	mm	0=Default
Field Winding Width	bcuf	0,055	m	0=Default
Specific Iron Loss, at 1 Tesla	P10	1,7	W/kg	0=Default
Use old iron sheets (1950-1960)	FeOld	1	1=YES	0=Default
Average Stator Coil Length	lav	3,26	m	0=Default

Chosen Slot Dimensions					
Slot Heigth	hs	0,096	m	0=Default	
Sloth Width	bu	0,019	m		
Number of strands in a Bar	ndl	26			
Number of Strands per Turn	ndlp	26			
Nr.of Strands on Top of each other per					
Turn	ndlh	13			
Total Copper Width of a Strand	bcus	0,007	m		
Distance from Slot Wedge to Air Gap	hds	0,005	m		
Slot Wedge Thickness	hspk	0,006	m		
Slot Wedge Spacer (glidestrimmel)	hgls	0	m		
Bar Separator (mellomstrimmel)	hm	0,005	m		
Roebel Separator	drs	0,0005	m		
Earth Insulation Thickness	dij	0,0018	m		
Strand Insulation Thickness	dicu	0,0001	m		
Winding Insulation Thickness	diw	0	m		

Chosen Pole Dimensions				
Pole Shoe Width	bps	0,405	m	0=Default
Pole Shoe Heigth	hps	0,065	m	0=Default
Pole Core Width	bpk	0,27	m	0=Default
Pole Core Heigth	hpk	0,2	m	0=Default
Total Field Winding Heigth	hf	0,17	m	0=Default
Number of turns in Field Winding	nf	49		0=Default
Heigth of a Field Winding	hcuf	0,003	m	0=Default
Number of Damper Bars	NDs	10		0=Default
Magnetizing Losses	Pmagn	19,6	kW	0=Default
Insulation between winding and pole core	bi	0,004	m	0=Default
Field winding insulation	bif	0,00035	m	0=Default

Vedlegg 5 Maskin 1 - Outputverdier for Oppgraderingsalternativ 1

Main Data				
Apparent Power	Sn	14	MVA	
System Voltage	Un	6300	V	
Nominal Current	In	1283,0	А	
Cosphi		0,73		
Efficiency	η	97,26	%	
Rotational Speed	ns	428,6	rpm	
Stator Parameters				
Utilization Factor	С	5,12		
Armature Loading	As	548,9	A/cm	
Inner Diameter	Di	2,50	m	
Outer Diameter	Dy	3,03	m	
Gross Iron Length	lb	1,05	m	
Net Iron Length	ln	0,88	m	
Number of Slots	Qs	168	slots	
Number of Cooling Ducts	nv	21		\uparrow hds
Number of Turns Per Phase	Ns	56		
Number of Turns per Coil	tnr	1		hspk
Number of Parallel Circuits	pnr	1		
Slots per pole and phase	q	4		- Ingis
Relative polepitch	у	0,750		dij
Coil Span	Ww	9	slots	\leftarrow drs
Winding Factor	kw	0,885		
Sloth Hight	hs	96,0	mm	h h
Sloth width	bu	19,0	mm	
Tooth width	bd	27,75	mm	
Slot Pitch	τυ	46,75	mm	
Number of strands per bar	ndl	26		
Height of a Strand	hcus	2,4	mm	
Width of a Strand	bcus	7,0	mm	
Main Insulation	dij	1,80	mm	
Strand Insulation	dicu	0,10	mm	$\leftarrow bu \rightarrow$
Winding lenght	lav	3,26	m	
Cross Section of Stator Bar	Acus	428,1	mm ²	
Stator Current Density	Ss	3,00	A/mm ²	
Stator Winding Resistance	Rdc20	0,00805	Ω	Per Phase Res. (20 $^{o}\!C$)

Stator Winding Resistance	Rdc75	0,00979 Ω	Per Phase Res. (75 °C)
Stator Wdg. Resistance Factor	Kra	1,074	
Slot Resistance Factor	Krad	1,112	
Maximum Resistance Factor	Kmax	1,358	For the topmost strand
Skewing	S	0 slots	

Rotor Parameters				
Minimum Air Gap	δ0	15,5	mm	
Equivalent average Air Gap	δm	19,7	mm	
Pole Shoe width	bps	405,0	mm	
Pole Shoe Height	hps	65,0	mm	
Pole Core Width	bpk	270,0	mm	
Pole Core Hight	hpk	200,0	mm	
Number of Turns per Pole	nf	49		
Field Current	If	468,4	А	
Field Winding Width	bcuf	55,0	mm	
Field Winding Height	hcuf	3,0	mm	
Cross Section of Field				
Winding	Af	163,1	mm ²	
Current Density, Field				
Winding	Sf	2,87	A/mm ²	
Rotor Winding Resistance	Rf20	0,2109	Ω	Field Wind. Res. (20 °C)
Rotor Winding Resistance	Rf75	0,2565	Ω	Field Wind. Res. (75 ^{o}C)
Relative Pole				
Width	α	0,7		
Number of Damperbars	NDs	10		
Cross Section of Damper Bar	AcuD	119,7	mm ²	
Clearance, Pole Windings	polklaring	56,3	mm	

Air Gap	0,852	Т	11448	At	
Stator Core	1,200	Т	92	At	
Stator Tooth	1,820	Т	674	At	
Pole Core	1,630	Т	508	At	(max at bottom of core)
Rotor Ring	1,395	Т	363	At	
Relative Magnetization		Ef	1,785	pu	
Relative Induced Voltag	ge	Ei	1,045	pu	
Total Required Magneti	zation	Θmn	22951	At	

Loss Calculations			
No load:			
Iron Loss Stator Core	Pfe	67,8	8 kW
Windage and Bearring Loss	Pfw	61,3	3 kW
Kopper Loss Rotor (No-load)	Prnl	32,5	5 kW
Full load:			
DC- stator loss	Pcusdc	48,3	3 kW
AC-stator	Pcusac	3,6	6 kW
Additional Kopper Loss Rotor	Prfl	25,5	5 kW
Additional loss	Padd	29,8	8 kW
Magnetizing losses	Pmagn	19,6	6 kW
Total Losses	Ptot	288,4	4 kW

Reactances and Time Constant	S	
Armature Reaction Reactance	Xmd	0,895 pu
	Xmq	0,504 pu
Leakage Reactance	Χσ	0,061 pu
Synchronous Reactance	Xd	0,956 pu
	Xq	0,564 pu
Transient		
Reactance	X'd	0,204 pu
Sub-Transient Reactance	X"d	0,146 pu
	X"q	0,168 pu
Transient Time Constant	T'd	0,904 s
Sub-Transient Time Constant	T"d	0,011 s
	T"q	0,008 s

Thermal Calculations		
Cooling Air Flow	qth	11,5 m ³ /s
Maximal Air Speed	vim	14,7 m/s
Maximal Temperature Rise in: Stator Winding Stator Tooth Stator Core Stator End Windir	ıg	35 ^o K 31 ^o K 29 ^o K 21 ^o K

	Field Winding	44	⁰ K	
-	Rotor End Winding	40	⁰ K	
	Pole core	13	⁰ K	
Air Temperat	ure Rise in:			
-	End Winding Area	2	⁰ K	
-	Air Gap Stator Winding	4	⁰ K	
	Surroundings	9	⁰ K	
	In midle of Cooling Duct	11	⁰ K	
	At end of Cooling Duct	11	⁰ K	
	Outlet	12	⁰ K	(Total temp. rise of air)

Mechanical Calculations		
Calculated Moment of Inertia	М	22,6 tm^2
Weight of Machine	m	72,3 tons

Harm.Nr.	Amplitude	
1	0,00	Amplitude of harmonic in [%]
3	0,00	
5	1,57	4,50
7	2,08	
9	0,00	3,50
11	0,44	2.50
13	0,37	2,00
15	0,00	
17	0,86	
19	0,41	
21	0,00	
23	3,85	1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37
25	3,54	
27	0,00	
29	0,27	
31	0,47	Telephone Harmonic Factor THF 0,64441 %
33	0,00	
35	0,14	

0,13

37

Vedlegg 6 Maskin 1 – Inputverdier for Oppgraderingsalternativ 2

Generator specifications

Required values:			
Apparent power	Sn	14	MVA
Power factor	Cosphi	0,73	
Frequency	f	50	Hz
Number of poles	Np	14	poles
Runaway speed	nr	810	rpm
Maximum temperatur rise	dTmx	60	
Moment of inertia	М	26,25	tm ²
Generator maximum voltage	Vmx	15	kV
Maximum value of synchronous reactance	xd	1	pu
Maximum value of transient reactance	xd1	0,25	pu
Minimum value of subtransient reactance	xd2	0,15	pu
Maximum tooth flux density	Bdmx	1,7	Т
Maximum pole core flux density	Bpmx	1,6	Т
Maximum yoke flux density	Bymx	1,1	Т
Specify ratio	bu/bd	0,735	
Core section length	bcs	0,04	m
Cooling duct length	bv	0,006	m
Filling factor (iron core)	kFe	0,93	
Current density in stator winding	Ss	3	A/mm²
Height of one strand i the statorbar	hcus	2,4	mm
Required feild voltage	Vf	154	V
Current density in rotor winding	Sf	2,90	A/mm²
Negative sequence voltage	Vnmx	20	%
Skewving (in number of slots)	S	0	spor

Un	6300 V	0=Default
С	0	0=Default
Qs	168	0=Default
pnr	1	0=Default
tnr	1	0=Default
У	10 slots	0=Default
Di	2,50 m	0=Default
lb	1 m	0=Default
Βδ	0 T	0=Default
hyr	0 m	0=Default
	Un C Qs pnr tnr y Di lb Bδ hyr	Un 6300 V C 0 0 Qs 168 0 pnr 1 1 tnr 1 1 y 10 slots Di 2,50 m lb 1 m Bδ 0 T hyr 0 m

Cooling Air Flow	qth	9	m³/s	0=Default
Flywheel	GD2add	0	kg	0=Default
Minimum air gap	delta0	17	mm	0=Default
Field Winding Width	bcuf	0,055	m	0=Default
Specific Iron Loss, at 1 Tesla	P10	1,07	W/kg	0=Default
Use old iron sheets (1950-1960)	FeOld	0	1=YES	0=Default
Average Stator Coil Length	lav	3,45	m	0=Default

Chosen Slot Dimensions				
Slot Heigth	hs	0,096	m	0=Default
Sloth Width	bu	0,0198	m	
Number of strands in a Bar	ndl	28		
Number of Strands per Turn	ndlp	28		
Nr.of Strands on Top of each other per				
Turn	ndlh	14		
Total Copper Width of a Strand	bcus	0,0075	m	
Distance from Slot Wedge to Air Gap	hds	0,001	m	
Slot Wedge Thickness	hspk	0,006	m	
Slot Wedge Spacer (glidestrimmel)	hgls	0,002	m	
Bar Separator (mellomstrimmel)	hm	0,006	m	
Roebel Separator	drs	0,0005	m	
Earth Insulation Thickness	dij	0,0018	m	
Strand Insulation Thickness	dicu	0,0001	m	
Winding Insulation Thickness	diw	0	m	

Chosen Pole Dimensions				
Pole Shoe Width	bps	0,405	m	0=Default
Pole Shoe Heigth	hps	0,065	m	0=Default
Pole Core Width	bpk	0,27	m	0=Default
Pole Core Heigth	hpk	0,2	m	0=Default
Total Field Winding Heigth	hf	0,17	m	0=Default
Number of turns in Field Winding	nf	49		0=Default
Heigth of a Field Winding	hcuf	0,003	m	0=Default
Number of Damper Bars	NDs	10		0=Default
Magnetizing Losses	Pmagn	19,6	kW	0=Default
Insulation between winding and pole core	bi	0,004	m	0=Default
Field winding insulation	bif	0,00035	m	0=Default

Vedlegg 7 Maskin 1 - Outputverdier for Oppgraderingsalternativ 2

Main Data				
Apparent Power	Sn	14	MVA	
System Voltage	Un	6300	V	
Nominal Current	In	1283,0	А	
Cosphi		0,73		
Efficiency	η	97,56	%	
Rotational Speed	ns	428,6	rpm	
Stator Parameters				
Utilization Factor	С	4,98		
Armature Loading	As	548,9	A/cm	
Inner Diameter	Di	2,50	m	
Outer Diameter	Dy	3,03	m	
Gross Iron Length	lb	1,05	m	
Net Iron Length	ln	0,92	m	
Number of Slots	Qs	168	slots	
Number of Cooling Ducts	nv	22		\uparrow hds
Number of Turns Per Phase	Ns	56		
Number of Turns per Coil	tnr	1		hspk
Number of Parallel Circuits	pnr	1		
Slots per pole and phase	q	4		\\ ngis
Relative polepitch	у	0,833		\downarrow
Coil Span	Ww	10	slots	drs
Winding Factor	kw	0,925		
Sloth Hight	hs	96,0	mm	h h
Sloth width	bu	19,8	mm	hm hm
Tooth width	bd	26,95	mm	
Slot Pitch	τυ	46,75	mm	
Number of strands per bar	ndl	28		
Height of a Strand	hcus	2,4	mm	
Width of a Strand	bcus	7,5	mm	
Main Insulation	dij	1,80	mm	
Strand Insulation	dicu	0,10	mm	$\leftarrow bu \rightarrow$
Winding lenght	lav	3,45	m	
Cross Section of Stator Bar	Acus	493,9	mm ²	
Stator Current Density	Ss	2,60	A/mm ²	
Stator Winding Resistance	Rdc20	0,00738	Ω	Per Phase Res. (20 $^{o}\!C$)

Stator Winding Resistance	Rdc75	0,00898 Ω	Per Phase Res. (75 °C)
Stator Wdg. Resistance Factor	Kra	1,086	
Slot Resistance Factor	Krad	1,138	
Maximum Resistance Factor	Kmax	1,439	For the topmost strand
Skewing	S	0 slots	

Rotor Parameters				
Minimum Air Gap	δ0	17,0	mm	
Equivalent average Air Gap	δm	21,6	mm	
Pole Shoe width	bps	405,0	mm	
Pole Shoe Height	hps	65,0	mm	
Pole Core Width	bpk	270,0	mm	
Pole Core Hight	hpk	200,0	mm	
Number of Turns per Pole	nf	49		
Field Current	If	471,4	А	
Field Winding Width	bcuf	55,0	mm	
Field Winding Height	hcuf	3,0	mm	
Cross Section of Field				
Winding	Af	163,1	mm ²	
Current Density, Field				
Winding	$\mathbf{S}\mathbf{f}$	2,89	A/mm ²	
Rotor Winding Resistance	Rf20	0,2115	Ω	Field Wind. Res. (20 °C)
Rotor Winding Resistance	Rf75	0,2573	Ω	Field Wind. Res. (75 ^{o}C)
Relative Pole				
Width	α	0,7		
Number of Damperbars	NDs	10		
Cross Section of Damper Bar	AcuD	119,7	mm ²	
Clearance, Pole Windings	polklaring	55,6	mm	

Air Gap	0,812	Т	11962	At	
Stator Core	1,100	Т	57	At	
Stator Tooth	1,714	Т	380	At	
Pole Core	1,591	Т	316	At	(max at bottom of core)
Rotor Ring	1,429	Т	312	At	
Relative Magnetization		Ef	1,799	pu	
Relative Induced Voltag	ge	Ei	1,055	pu	
Total Required Magneti	zation	Θmn	23100	At	

Loss Calculations			
No load:			
Iron Loss Stator Core	Pfe	37,9	9 kW
Windage and Bearring Loss	Pfw	61,4	4 kW
Kopper Loss Rotor (No-load)	Prnl	32,8	8 kW
Full load:			
DC- stator loss	Pcusdc	44,3	3 kW
AC-stator	Pcusac	3,8	8 kW
Additional Kopper Loss Rotor	Prfl	26,2	2 kW
Additional loss	Padd	29,8	8 kW
Magnetizing losses	Pmagn	19,6	5 kW
Total Losses	Ptot	255,7	7 kW

Reactances and Time Constants					
Armature Reaction Reactance	Xmd	0,896 pu			
	Xmq	0,504 pu			
Leakage Reactance	Χσ	0,075 pu			
Synchronous Reactance	Xd	0,971 pu			
	Xq	0,579 pu			
Transient					
Reactance	X'd	0,228 pu			
Sub-Transient Reactance	X"d	0,167 pu			
	X"q	0,192 pu			
Transient Time Constant	T'd	0,921 s			
Sub-Transient Time Constant	T"d	0,009 s			
	T"q	0,008 s			

Thermal Calculations		
Cooling Air Flow	qth	9,0 m ³ /s
Maximal Air Speed	vim	15,1 m/s
Maximal Temperature Rise in: Stator Winding Stator Tooth Stator Core Stator End Windin	ıg	30 ⁰ K 25 ⁰ K 23 ⁰ K 18 ⁰ K

	Field Winding	46	⁰ K	
	Rotor End Winding	41	⁰ K	
	Pole core	13	⁰ K	
Air Tempera	ature Rise in:			
	End Winding Area	3	⁰ K	
	Air Gap Stator Winding	5	⁰ K	
	Surroundings	11	⁰ K	
	In midle of Cooling Duct	12	⁰ K	
	At end of Cooling Duct	12	⁰ K	
	Outlet	13	⁰ K	(Total temp. rise of air)

Mechanical Calculations		
Calculated Moment of Inertia	Μ	22,3 tm^2
Weight of Machine	m	73,5 tons

Harm.Nr.	Amplitude	
1	0,00	Amplitude of harmonic in [%]
3	0,00	4.50
5	1,06	4,50
7	0,58	3 50
9	0,00	3,00
11	1,11	2 50
13	0,94	2,00
15	0,00	1.50
17	0,24	1.00
19	0,28	0,50
21	0,00	0,00 +
23	4,02	1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37
25	3,70	
27	0,00	
29	0,18	
31	0,13	Telephone Harmonic FactorTHF0,69486%
33	0,00	
35	0,35	
37	0,33	

Vedlegg 8 Maskin 1 – Inputverdier for Oppgraderingsalternativ 3

Generator specifications					
Required values:					
Apparent power	Sn	14	MVA		
Power factor	Cosphi	0,73			
Frequency	f	50	Hz		
Number of poles	Np	14	poles		
Runaway speed	nr	810	rpm		
Maximum temperatur rise	dTmx	60			
Moment of inertia	М	26,25	tm ²		
Generator maximum voltage	Vmx	15	kV		
Maximum value of synchronous reactance	xd	1	pu		
Maximum value of transient reactance	xd1	0,25	pu		
Minimum value of subtransient reactance	xd2	0,15	pu		
Maximum tooth flux density	Bdmx	1,7	Т		
Maximum pole core flux density	Bpmx	1,6	Т		
Maximum yoke flux density	Bymx	1,25	Т		
Specify ratio	bu/bd	0,581			
Core section length	bcs	0,04	m		
Cooling duct length	bv	0,006	m		
Filling factor (iron core)	kFe	0,93			
Current density in stator winding	Ss	3	A/mm²		
Height of one strand i the statorbar	hcus	2,4	mm		
Required feild voltage	Vf	154	V		
Current density in rotor winding	Sf	2,90	A/mm²		
Negative sequence voltage	Vnmx	20	%		
Skewving (in number of slots)	S	0	spor		

Satte verdier:			
Nominal Voltage	Un	8000 V	0=Default
Utilization factor	С	0	0=Default
Number of Slots	Qs	192	0=Default
Number of Parallel Circuits	pnr	1	0=Default
Number of Turns per Coil	tnr	1	0=Default
Coil Span	у	12 slots	0=Default
Inner Diameter of Stator	Di	2,49 m	0=Default
Gross Iron Length	lb	1 m	0=Default
Air Gap Flux Density	Βδ	0 T	0=Default
Height of rotor yoke	hyr	0 m	0=Default

Cooling Air Flow	qth	5,5	m³/s	0=Default
Flywheel	GD2add	0	kg	0=Default
Minimum air gap	delta0	14	mm	0=Default
Field Winding Width	bcuf	0,055	m	0=Default
Specific Iron Loss, at 1 Tesla	P10	1,07	W/kg	0=Default
Use old iron sheets (1950-1960)	FeOld	0	1=YES	0=Default
Average Stator Coil Length	lav	3,4	m	0=Default

Chosen Slot Dimensions				
Slot Heigth	hs	0,108	m	0=Default
Sloth Width	bu	0,015	m	
Number of strands in a Bar	ndl	32		
Number of Strands per Turn	ndlp	32		
Nr.of Strands on Top of each other per				
Turn	ndlh	16		
Total Copper Width of a Strand	bcus	0,0046	m	
Distance from Slot Wedge to Air Gap	hds	0,002	m	
Slot Wedge Thickness	hspk	0,006	m	
Slot Wedge Spacer (glidestrimmel)	hgls	0,002	m	
Bar Separator (mellomstrimmel)	hm	0,006	m	
Roebel Separator	drs	0,0005	m	
Earth Insulation Thickness	dij	0,0022	m	
Strand Insulation Thickness	dicu	0,0001	m	
Winding Insulation Thickness	diw	0	m	

Chosen Pole Dimensions				
Pole Shoe Width	bps	0,405	m	0=Default
Pole Shoe Heigth	hps	0,065	m	0=Default
Pole Core Width	bpk	0,27	m	0=Default
Pole Core Heigth	hpk	0,2	m	0=Default
Total Field Winding Heigth	hf	0,17	m	0=Default
Number of turns in Field Winding	nf	49		0=Default
Heigth of a Field Winding	hcuf	0,003	m	0=Default
Number of Damper Bars	NDs	10		0=Default
Magnetizing Losses	Pmagn	19,6	kW	0=Default
Insulation between winding and pole core	bi	0,004	m	0=Default
Field winding insulation	bif	0,00035	m	0=Default

Vedlegg 9 Maskin 1 - Outputverdier for Oppgraderingsalternativ 3

Main Data				
Apparent Power	Sn	14	MVA	
System Voltage	Un	8000	V	
Nominal Current	In	1010,4	А	
Cosphi		0,73		
Efficiency	η	97,56	%	
Rotational Speed	ns	428,6	rpm	
Stator Parameters				
Utilization Factor	С	4,93		
Armature Loading	As	495,2	A/cm	
Inner Diameter	Di	2,49	m	
Outer Diameter	Dy	3,03	m	
Gross Iron Length	lb	1,05	m	
Net Iron Length	ln	0,92	m	
Number of Slots	Qs	192	slots	
Number of Cooling Ducts	nv	22		\uparrow hds
Number of Turns Per Phase	Ns	64		
Number of Turns per Coil	tnr	1		hspk
Number of Parallel Circuits	pnr	1		
Slots per pole and phase	q	4,57143		\ ngis
Relative polepitch	у	0,875		dij
Coil Span	Ww	12	slots	drs
Winding Factor	kw	0,937		
Sloth Hight	hs	108,0	mm	h h
Sloth width	bu	15,0	mm	hm
Tooth width	bd	25,81	mm	
Slot Pitch	τυ	40,81	mm	
Number of strands per bar	ndl	32		
Height of a Strand	hcus	2,4	mm	
Width of a Strand	bcus	4,6	mm	
Main Insulation	dij	2,20	mm	
Strand Insulation	dicu	0,10	mm	$\longleftarrow bu \longrightarrow$
Winding lenght	lav	3,4	m	
Cross Section of Stator Bar	Acus	346,2	mm ²	
Stator Current Density	Ss	2,92	A/mm ²	
Stator Winding Resistance	Rdc20	0,01186	Ω	Per Phase Res. (20 $^{o}\!C$)

Stator Winding Resistance	Rdc75	0,01442 Ω	Per Phase Res. (75 °C)
Stator Wdg. Resistance Factor	Kra	1,075	
Slot Resistance Factor	Krad	1,118	
Maximum Resistance Factor	Kmax	1,376	For the topmost strand
Skewing	S	0 slots	

Rotor Parameters				
Minimum Air Gap	δ0	14,0	mm	
Equivalent average Air Gap	δm	17,5	mm	
Pole Shoe width	bps	405,0	mm	
Pole Shoe Height	hps	65,0	mm	
Pole Core Width	bpk	270,0	mm	
Pole Core Hight	hpk	200,0	mm	
Number of Turns per Pole	nf	49		
Field Current	If	435,3	А	
Field Winding Width	bcuf	55,0	mm	
Field Winding Height	hcuf	3,0	mm	
Cross Section of Field				
Winding	Af	163,1	mm ²	
Current Density, Field				
Winding	Sf	2,67	A/mm ²	
Rotor Winding Resistance	Rf20	0,2115	Ω	Field Wind. Res. (20 °C)
Rotor Winding Resistance	Rf75	0,2573	Ω	Field Wind. Res. (75 ^{o}C)
Relative Pole				
Width	α	0,7		
Number of Damperbars	NDs	10		
Cross Section of Damper Bar	AcuD	107,8	mm ²	
Clearance, Pole Windings	polklaring	55,6	mm	

Air Gap	0,893	Т	10668	At	
Stator Core	1,250	Т	72	At	
Stator Tooth	1,719	Т	433	At	
Pole Core	1,660	Т	525	At	(max at bottom of core)
Rotor Ring	1,358	Т	189	At	
Relative Magnetization		Ef	1,814	pu	
Relative Induced Voltag	ge	Ei	1,053	pu	
Total Required Magneti	zation	Θmn	21328	At	

Loss Calculations			
No load:			
Iron Loss Stator Core	Pfe	47,1	1 kW
Windage and Bearring Loss	Pfw	60,9	9 kW
Kopper Loss Rotor (No-load)	Prnl	27,7	7 kW
Full load:			
DC- stator loss	Pcusdc	44,2	2 kW
AC-stator	Pcusac	3,3	3 kW
Additional Kopper Loss Rotor	Prfl	22,5	5 kW
Additional loss	Padd	29,8	8 kW
Magnetizing losses	Pmagn	19,6	5 kW
Total Losses	Ptot	255,1	1 kW

Reactances and Time Constants				
Armature Reaction Reactance	Xmd	0,915 pu		
	Xmq	0,515 pu		
Leakage Reactance	Χσ	0,073 pu		
Synchronous Reactance	Xd	0,988 pu		
	Xq	0,588 pu		
Transient				
Reactance	X'd	0,208 pu		
Sub-Transient Reactance	X"d	0,154 pu		
	X"q	0,177 pu		
Transient Time Constant	T'd	0 991 s		
Sub-Transient Time Constant	T"d	0,010 s		
	T"q	0,008 s		

Thermal Calculations		
Cooling Air Flow	qth 5,5	m³/s
Maximal Air Speed	vim 8,4	m/s
Maximal Temperature Rise in: Stator Winding Stator Tooth Stator Core Stator End Windir	38 33 32 ng 21	⁰ K ⁰ K ⁰ K

Field Winding 45 ^o K	
Rotor End Winding 40 ^o K	
Pole core 15^{-0} K	
Air Temperature Rise in:	
End Winding Area 4 [°] K	
Air Gap 8 [°] K Stator Winding	
Surroundings 17 ^o K	
In midle of Cooling Duct 19^{-0} K	
At end of Cooling Duct 19^{-0} K	
Outlet 21 ^o K (Tota	al temp. rise of air)

Mechanical Calculations		
Calculated Moment of Inertia	М	22,8 tm^2
Weight of Machine	m	74,9 tons

Harm.Nr.	Amplitude	
1	0,00	Amplitude of harmonic in [%]
3	0,00	
5	2,12	2,50
7	0,38	2.00
9	0,00	
11	0,44	1,50
13	0,47	
15	0,00	1,00
17	0,33	0.50
19	0,22	0,50
21	0,00	
23	0,04	1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37
25	0,03	
27	0,00	
29	0,10	
31	0,10	Telephone Harmonic Factor THF 0,00442 %
33	0.00	

0,07

0,04

35

37

Vedlegg 10 Maskin 1 – Inputverdier for Oppgraderingsalternativ 4

Generator specifications			
Required values:			
Apparent power	Sn	20	MVA
Power factor	Cosphi	0,9	
Frequency	f	50	Hz
Number of poles	Np	14	poles
Runaway speed	nr	810	rpm
Maximum temperatur rise	dTmx	75	
Moment of inertia	М	26,25	tm ²
Generator maximum voltage	Vmx	15	kV
Maximum value of synchronous reactance	xd	1	pu
Maximum value of transient reactance	xd1	0,25	pu
Minimum value of subtransient reactance	xd2	0,15	pu
Maximum tooth flux density	Bdmx	1,7	Т
Maximum pole core flux density	Bpmx	1,6	Т
Maximum yoke flux density	Bymx	1,33	Т
Specify ratio	bu/bd	0,581	
Core section length	bcs	0,04	m
Cooling duct length	bv	0,006	m
Filling factor (iron core)	kFe	0,93	
Current density in stator winding	Ss	3	A/mm²
Height of one strand i the statorbar	hcus	2,4	mm
Required feild voltage	Vf	154	V
Current density in rotor winding	Sf	2,90	A/mm²
Negative sequence voltage	Vnmx	20	%
Skewving (in number of slots)	S	0	spor

Satte verdier:			
Nominal Voltage	Un	8000 V	0=Default
Utilization factor	С	0	0=Default
Number of Slots	Qs	192	0=Default
Number of Parallel Circuits	pnr	1	0=Default
Number of Turns per Coil	tnr	1	0=Default
Coil Span	у	12 slots	0=Default
Inner Diameter of Stator	Di	2,51 m	0=Default
Gross Iron Length	lb	1 m	0=Default
Air Gap Flux Density	Βδ	0 T	0=Default
Height of rotor yoke	hyr	0 m	0=Default

Cooling Air Flow	qth	9,9	m³/s	0=Default
Flywheel	GD2add	0	kg	0=Default
Minimum air gap	delta0	21	mm	0=Default
Field Winding Width	bcuf	0,07	m	0=Default
Specific Iron Loss, at 1 Tesla	P10	1,07	W/kg	0=Default
Use old iron sheets (1950-1960)	FeOld	0	1=YES	0=Default
Average Stator Coil Length	lav	3,4	m	0=Default

Chosen Slot Dimensions				
Slot Heigth	hs	0,108	m	0=Default
Sloth Width	bu	0,015	m	
Number of strands in a Bar	ndl	32		
Number of Strands per Turn	ndlp	32		
Nr.of Strands on Top of each other per				
Turn	ndlh	16		
Total Copper Width of a Strand	bcus	0,0046	m	
Distance from Slot Wedge to Air Gap	hds	0,001	m	
Slot Wedge Thickness	hspk	0,006	m	
Slot Wedge Spacer (glidestrimmel)	hgls	0,002	m	
Bar Separator (mellomstrimmel)	hm	0,006	m	
Roebel Separator	drs	0,0005	m	
Earth Insulation Thickness	dij	0,0022	m	
Strand Insulation Thickness	dicu	0,0001	m	
Winding Insulation Thickness	diw	0	m	

Chosen Pole Dimensions				
Pole Shoe Width	bps	0,405	m	0=Default
Pole Shoe Heigth	hps	0,065	m	0=Default
Pole Core Width	bpk	0,27	m	0=Default
Pole Core Heigth	hpk	0,2	m	0=Default
Total Field Winding Heigth	hf	0,17	m	0=Default
Number of turns in Field Winding	nf	49		0=Default
Heigth of a Field Winding	hcuf	0,003	m	0=Default
Number of Damper Bars	NDs	10		0=Default
Magnetizing Losses	Pmagn	0	kW	0=Default
Insulation between winding and pole core	bi	0,004	m	0=Default
Field winding insulation	bif	0,00035	m	0=Default

Vedlegg 11 Maskin 1 - Outputverdier for Oppgraderingsalternativ 4

Main Data				
Apparent Power	Sn	20	MVA	
System Voltage	Un	8000	V	
Nominal Current	In	1443,4	А	
Cosphi		0,9		
Efficiency	η	98,28	%	
Rotational Speed	ns	428,6	rpm	
Stator Parameters				
Utilization Factor	С	6.99		
Armature Loading	As	702.9	A/cm	
Inner Diameter	Di	2,51	m	
Outer Diameter	Dy	3,03	m	
Gross Iron Length	lb	1,05	m	
Net Iron Length	ln	0,92	m	
Number of Slots	Qs	192	slots	
Number of Cooling Ducts	nv	22		\uparrow hds
Number of Turns Per Phase	Ns	64		- 1113
Number of Turns per Coil	tnr	1		hspk
Number of Parallel Circuits	pnr	1		
Slots per pole and phase	q	4,57143		\ hgls
Relative polepitch	у	0,875		dij
Coil Span	Ww	12	slots	drs
Winding Factor	kw	0,937		
Sloth Hight	hs	108,0	mm	h.
Sloth width	bu	15,0	mm	
Tooth width	bd	26,07	mm	strand
Slot Pitch	τυ	41,07	mm	
Number of strands per bar	ndl	32		
Height of a Strand	hcus	2,4	mm	
Width of a Strand	bcus	4,6	mm	
Main Insulation	dij	2,20	mm	
Strand Insulation	dicu	0,10	mm	$\leftarrow bu \rightarrow$
Winding lenght	lav	3,4	m	
Cross Section of Stator Bar	Acus	346,2	mm ²	
Stator Current Density	Ss	4,17	A/mm ²	
Stator Winding Resistance	Rdc20	0,01186	Ω	Per Phase Res. (20 ^{o}C)

Stator Winding Resistance	Rdc75	0,01442 Ω	Per Phase Res. (75 ^o C)
Stator Wdg. Resistance Factor	Kra	1,075	
Slot Resistance Factor	Krad	1,118	
Maximum Resistance Factor	Kmax	1,376	For the topmost strand
Skewing	S	0 slots	

Rotor Parameters				
Minimum Air Gap	δ0	21,0	mm	
Equivalent average Air Gap	δm	25,7	mm	
Pole Shoe width	bps	405,0	mm	
Pole Shoe Height	hps	65,0	mm	
Pole Core Width	bpk	270,0	mm	
Pole Core Hight	hpk	200,0	mm	
Number of Turns per Pole	nf	49		
Field Current	If	593,1	А	
Field Winding Width	bcuf	70,0	mm	
Field Winding Height	hcuf	3,0	mm	
Cross Section of Field				
Winding	Af	208,1	mm ²	
Current Density, Field				
Winding	Sf	2,85	A/mm ²	
Rotor Winding Resistance	Rf20	0,1692	Ω	Field Wind. Res. (20 °C)
Rotor Winding Resistance	Rf75	0,2058	Ω	Field Wind. Res. (75 ^{o}C)
Relative Pole				
Width	α	0,7		
Number of Damperbars	NDs	10		
Cross Section of Damper Bar	AcuD	154,0	mm ²	
Clearance, Pole Windings	polklaring	26,8	mm	

Air Gap	0,887	Т	15567	At	
Stator Core	1,330	Т	91	At	
Stator Tooth	1,702	Т	391	At	
Pole Core	1,801	Т	1192	At	(max at bottom of core)
Rotor Ring	1,474	Т	434	At	
Relative Magnetization		Ef	1,669	pu	
Relative Induced Voltag	ge	Ei	1,049	pu	
Total Required Magneti	zation	Θmn	29064	At	

Loss Calculations				
No load:				
Iron Loss Stator Core	Pfe	48,7	kW	
Windage and Bearring Loss	Pfw	62,2	kW	
Kopper Loss Rotor (No-load)	Prnl	44,7	kW	
Full load:				
DC- stator loss	Pcusdc	90,1	kW	
AC-stator	Pcusac	6,7	kW	
Additional Kopper Loss Rotor	Prfl	29,9	kW	
Additional loss	Padd	28,2	kW	
Magnetizing losses	Pmagn	5,2	kW	
Total Losses	Ptot	315,8	kW	

Reactances and Time Constants				
Armature Reaction Reactance	Xmd	0,896 pu		
	Xmq	0,504 pu		
Leakage Reactance	Χσ	0,094 pu		
Synchronous Reactance	Xd	0,990 pu		
	Xq	0,599 pu		
Transient				
Reactance	X'd	0,268 pu		
Sub-Transient Reactance	X"d	0,198 pu		
	X"q	0,228 pu		
Transient Time Constant	T'd	1 149 s		
Sub-Transient Time Constant	T"d	0,018 s		
	T"q	0,015 s		

Thermal Calculations		
Cooling Air Flow	qth	9,9 m ³ /s
Maximal Air Speed	vim	15,0 m/s
Maximal Temperature Rise in: Stator Winding Stator Tooth Stator Core Stator End Windin	ıg	50 ^o K 36 ^o K 34 ^o K 31 ^o K

Field V	Vinding	63	⁰ K	
Rotor I	End Winding	56	⁰ K	
Pole co	bre	20	⁰ K	
Air Temperature Ris	se in:			
End W	inding Area	4	⁰ K	
Air Ga Stator	p Winding	6	⁰ K	
Surrou	ndings	15	⁰ K	
In mid	le of Cooling Duct	16	⁰ K	
At end	of Cooling Duct	16	⁰ K	
Outlet	-	18	⁰ K	(Total temp. rise of air)

Mechanical Calculations		
Calculated Moment of Inertia	М	24,2 tm^2
Weight of Machine	m	76,1 tons

Harm.Nr.	Amplitude	
1	0,00	Amplitude of harmonic in [%]
3	0,00	
5	2,12	2,50
7	0,38	2 00
9	0,00	2,00
11	0,44	1,50
13	0,47	
15	0,00	1,00
17	0,33	0.50
19	0,22	0,50
21	0,00	
23	0,04	1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37
25	0,03	
27	0,00	
29	0,10	
31	0,10	Telephone Harmonic FactorTHF0,00442%
33	0,00	

0,07

0,04

35

37

Vedlegg 12 Maskin 2 - Opprinnelige Inputverdier

Generator specifications			
Required values:			
Apparent power	Sn	27	MVA
Power factor	Cosphi	0,8	
Frequency	f	50	Hz
Number of poles	Np	44	poles
Runaway speed	nr	310	rpm
Maximum temperatur rise	dTmx	60	
Moment of inertia	М	800	tm ²
Generator maximum voltage	Vmx	15	kV
Maximum value of synchronous reactance	xd	1	pu
Maximum value of transient reactance	xd1	0,25	pu
Minimum value of subtransient reactance	xd2	0,15	pu
Maximum tooth flux density	Bdmx	1,7	Т
Maximum pole core flux density	Bpmx	1,6	Т
Maximum yoke flux density	Bymx	1,2	Т
Specify ratio	bu/bd	0,693	
Core section length	bcs	0,04	m
Cooling duct length	bv	0,008	m
Filling factor (iron core)	kFe	0,93	
Current density in stator winding	Ss	2,6	A/mm²
Height of one strand i the statorbar	hcus	3,6	mm
Required feild voltage	Vf	227	V
Current density in rotor winding	Sf	2	A/mm²
Negative sequence voltage	Vnmx	20	%
Skewving (in number of slots)	S	0	spor

Satte verdier:			
Nominal Voltage	Un	11000 V	0=Default
Utilization factor	С	0	0=Default
Number of Slots	Qs	330	0=Default
Number of Parallel Circuits	pnr	11	0=Default
Number of Turns per Coil	tnr	11	0=Default
Coil Span	у	7 slots	0=Default
Inner Diameter of Stator	Di	6,00 m	0=Default
Gross Iron Length	lb	1,2 m	0=Default
Air Gap Flux Density	Βδ	0 T	0=Default
Height of rotor yoke	hyr	0 m	0=Default

Cooling Air Flow	qth	23	m³/s	0=Default
Flywheel	GD2add	0	kg	0=Default
Minimum air gap	delta0	13	mm	0=Default
Field Winding Width	bcuf	0,069	m	0=Default
Specific Iron Loss, at 1 Tesla	P10	1,3	W/kg	0=Default
Use old iron sheets (1950-1960)	FeOld	1	1=YES	0=Default
Average Stator Coil Length	lav	44,7	m	0=Default

Chosen Slot Dimensions					
Slot Heigth	hs	0,1305	m	0=Default	
Sloth Width	bu	0,0234	m		
Number of strands in a Bar	ndl	22			
Number of Strands per Turn	ndlp	2			
Nr. of Strand on Top of each other per					
Turn	ndlh	1			
Total Copper Width in Slot	bcus	0,007	m		
Distance from Slot Wedge to Air Gap	hds	0	m		
Slot Wedge Thickness	hspk	0,0055	m		
Slot Wedge Spacer (glidestrimmel)	hgls	0,0026	m		
Bar Separator (mellomstrimmel)	hm	0,007	m		
Roebel Separator	drs	0	m		
Earth Insulation Thickness	dij	0,004	m		
Strand Insulation Thickness	dicu	0,0002	m		
Winding Insulation Thickness	diw	0	m		

Chosen Pole Dimensions				
Pole Shoe Width	bps	0,34	m	0=Default
Pole Shoe Heigth	hps	0,05	m	0=Default
Pole Core Width	bpk	0,21	m	0=Default
Pole Core Heigth	hpk	0,15	m	0=Default
Total Field Winding Heigth	hf	0,138	m	0=Default
Number of turns in Field Winding	nf	32		0=Default
Heigth of a Field Winding	hcuf	0,0038	m	0=Default
Number of Damper Bars	NDs	5	m	0=Default
Magnetizing Losses	Pmagn	44	kW	0=Default
Insulation between winding and pole core	bi	0,0035	m	0=Default
Field winding insulation	bif	0,00033	m	0=Default

Vedlegg 13 Maskin 2 - Opprinnelige Outputverdier

Sn	27 MVA
Un	11000 V
In	1417,1 A
	0,8
η	97,59 %
	Sn Un In η

Stator Parameters				
Utilization Factor	С	4,61		
Armature Loading	As	496,2	A/cm	
Inner Diameter	Di	6,00	m	
Outer Diameter	Dy	6,50	m	
Gross Iron Length	lb	1,24	m	
Net Iron Length	ln	1,04	m	
Number of Slots	Qs	330	slots	
Number of Cooling Ducts	nv	25		
Number of Turns Per Phase	Ns	110		\uparrow hds
Number of Turns per Coil	tnr	11		
Number of Parallel Circuits	pnr	11		hspk
Slots per pole and phase	q	2,5		
Relative polepitch	у	0,933		
Coil Span	Ww	7	slots	\leftarrow dij
Winding Factor	kw	0,951		drs
Sloth Hight	hs	130,5	mm	
Sloth width	bu	23,4	mm	h.
Tooth width	bd	33,72	mm	
Slot Pitch	τu	57,12	mm	
Number of strands per bar	ndl	22		
Height of a Strand	hcus	3,6	mm	
Width of a Strand	bcus	7,0	mm	
Main Insulation	dij	4,00	mm	
Strand Insulation	dicu	0,20	mm	
Winding lenght	lav	44,7	m	\longleftarrow bu \longrightarrow
Cross Section of Stator Bar	Acus	49,4	mm ²	
Stator Current Density	Ss	2,61	A/mm ²	
Stator Winding Resistance	Rdc20	0,01552	Ω	Per Phase Res. (20 °C)
Stator Winding Resistance	Rdc75	0,01888	Ω	Per Phase Res. (75 ^o C)

Stator Wdg. Resistance				
Factor	Kra	1,172		
Slot Resistance Factor	Krad	1,269		
Maximum Resistance Factor	Kmax	1,856		For the topmost strand
Skewing	S	0	slots	
Rotor Parameters				
Minimum Air Gap	δ0	13,0	mm	
Equivalent average Air Gap	δm	17,1	mm	
Pole Shoe width	bps	340,0	mm	
Pole Shoe Height	hps	50,0	mm	
Pole Core Width	bpk	210,0	mm	
Pole Core Hight	hpk	150,0	mm	
Number of Turns per Pole	nf	32		
Field Current	If	540,9	А	
Field Winding Width	bcuf	69,0	mm	
Field Winding Height	hcuf	3,8	mm	
Cross Section of Field				
Winding	Af	259,1	mm ²	
Current Density, Field	G (2 00	A / 2	
Winding	St	2,09	A/mm²	
Rotor Winding Resistance	Rf20	0,3025	Ω	Field Wind. Res. (20°C)
Rotor Winding Resistance	Rf75	0,3679	Ω	Field Wind. Res. $(75 {}^{\circ}\!C)$
Relative Pole		0.7		
Width	α	0,7		
Number of Damperbars	NDs	5		
Cross Section of Damper Bar	AcuD	141,7	mm ²	
Clearance, Pole Windings	polklaring	44,5	mm	

Air Gap	0,780	Т	9070	At	
Stator Core	1,200	Т	65	At	
Stator Tooth	1,676	Т	491	At	
Pole Core	1,528	Т	200	At	(max at bottom of core)
Rotor Ring	1,456	Т	476	At	
Relative Magnetiza	tion	Ef	1,725	pu	
Relative Induced V	oltage	Ei	1,068	pu	
Total Required Mag	gnetization	Θmn	17307	At	

_____ —

Loss Calculations				
No load:				
Iron Loss Stator Core	Pfe	129,9	kW	
Windage and Bearring Loss	Pfw	82,1	kW	
Kopper Loss Rotor (No-load)	Prnl	64,3	kW	
Full load:				
DC- stator loss	Pcusdc	113,8	kW	
AC-stator	Pcusac	19,6	kW	
Additional Kopper Loss				
Rotor	Prfl	46,6	kW	
Additional loss	Padd	33,6	kW	
Magnetizing losses	Pmagn	44,0	kW	
Total Losses	Ptot	533,8	kW	

Reactances and Time Constants			
Armature Reaction Reactance	Xmd	0,839 pu	
	Xmq	0,472 pu	
Leakage Reactance	Χσ	0,101 pu	
Synchronous Reactance	Xd	0,940 pu	
	Xq	0,573 pu	
Transient			
Reactance	X'd	0,257 pu	
Sub-Transient Reactance	X"d	0,194 pu	
	X"q	0,224 pu	
Transient Time Constant	T'd	1,163 s	
Sub-Transient Time Constant	T"d	0,018 s	
	T"q	0,013 s	

Thermal Calculations				
Cooling Air Flow	qth	23,0 m ³ /s		
Maximal Air				
Speed	vim	10,3 m/s		
Maximal Temperature Ris in: Stator Windin Stator Tooth Stator Core Stator End Wi	e g nding	45 [°] K 32 [°] K 28 [°] K 30 [°] K		

Fie	ld Winding	45	°К	
Rot	or End Winding	41	⁰ K	
Pol	e core	19	⁰ K	
Air Temperatur	e Rise in:			
End	l Winding			
Are	a	3	⁰ K	
Air				
Ga)	4	⁰ K	
Sta	tor Winding Surroundings	9	⁰ K	
In 1	nidle of Cooling Duct	11	⁰ K	
At	end of Cooling Duct	11	⁰ K	
Out	let	13	⁰ K	(Total temp. rise of air)

Mechanical Calculations		
Calculated Moment of Inertia	Μ	454,4 tm^2
Weight of Machine	m	181,2 tons

Harm.Nr.	Amplitude	
1	0,00	Amplitude of harmonic in [%]
3	0,00	
5	3,46	4,00
7	1,59	3,50
9	0,00	3,00
11	0,40	2,50
13	0,16	2,00
15	0,00	1,50
17	0,13	1,00
19	0,23	0.50
21	0,00	
23	0,48	1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37
25	0,69	
27	0,00	
29	3,28	
31	3,07	Telephone Harmonic Factor THF 0,55358 %
33	0,00	
35	0,49	
37	0.30	
Vedlegg 14 Maskin 2 – Inputverdier for Oppgraderingsalternativ 1

Generator specifications			
Required values:			
Apparent power	Sn	27	MVA
Power factor	Cosphi	0,8	
Frequency	f	50	Hz
Number of poles	Np	44	poles
Runaway speed	nr	310	rpm
Maximum temperatur rise	dTmx	60	
Moment of inertia	М	800	tm ²
Generator maximum voltage	Vmx	15	kV
Maximum value of synchronous reactance	xd	1	pu
Maximum value of transient reactance	xd1	0,25	pu
Minimum value of subtransient reactance	xd2	0,15	pu
Maximum tooth flux density	Bdmx	1,7	Т
Maximum pole core flux density	Bpmx	1,6	Т
Maximum yoke flux density	Bymx	1,2	Т
Specify ratio	bu/bd	0,693	
Core section length	bcs	0,04	m
Cooling duct length	bv	0,008	m
Filling factor (iron core)	kFe	0,93	
Current density in stator winding	Ss	2,6	A/mm²
Height of one strand i the statorbar	hcus	1,9	mm
Required feild voltage	Vf	227	V
Current density in rotor winding	Sf	2	A/mm²
Negative sequence voltage	Vnmx	20	%
Skewving (in number of slots)	S	0	spor

Optional values:			
Nominal Voltage	Un	11000 V	0=Default
Utilization factor	С	0	0=Default
Number of Slots	Qs	330	0=Default
Number of Parallel Circuits	pnr	11	0=Default
Number of Turns per Coil	tnr	11	0=Default
Coil Span	У	7 slots	0=Default
Inner Diameter of Stator	Di	6,00 m	0=Default
Gross Iron Length	lb	1,2 m	0=Default
Air Gap Flux Density	Βδ	0 T	0=Default
Height of rotor yoke	hyr	0 m	0=Default

Cooling Air Flow	qth	23	m³/s	0=Default
Flywheel	GD2add	0	kg	0=Default
Minimum air gap	delta0	13	mm	0=Default
Field Winding Width	bcuf	0,069	m	0=Default
Specific Iron Loss, at 1 Tesla	P10	1,3	W/kg	0=Default
Use old iron sheets (1950-1960)	FeOld	1	1=YES	0=Default
Average Stator Coil Length	lav	44,7	m	0=Default

Chosen Slot Dimensions				
Slot Heigth	hs	0,1305	m	0=Default
Sloth Width	bu	0,0234	m	
Number of strands in a Bar	ndl	44		
Number of Strands per Turn	ndlp	4		
Nr. of Strand on Top of each other per				
Turn	ndlh	2		
Total Copper Width in Slot	bcus	0,0075	m	
Distance from Slot Wedge to Air Gap	hds	0	m	
Slot Wedge Thickness	hspk	0,0055	m	
Slot Wedge Spacer (glidestrimmel)	hgls	0,0015	m	
Bar Separator (mellomstrimmel)	hm	0,007	m	
Roebel Separator	drs	0	m	
Earth Insulation Thickness	dij	0,0035	m	
Strand Insulation Thickness	dicu	0,0002	m	
Winding Insulation Thickness	diw	0	m	

Chosen Pole Dimensions				
Pole Shoe Width	bps	0,34	m	0=Default
Pole Shoe Heigth	hps	0,05	m	0=Default
Pole Core Width	bpk	0,21	m	0=Default
Pole Core Heigth	hpk	0,15	m	0=Default
Total Field Winding Heigth	hf	0,138	m	0=Default
Number of turns in Field Winding	nf	32		0=Default
Heigth of a Field Winding	hcuf	0,0038	m	0=Default
Number of Damper Bars	NDs	5	m	0=Default
Magnetizing Losses	Pmagn	44	kW	0=Default
Insulation between winding and pole core	bi	0,0035	m	0=Default
Field winding insulation	bif	0,00033	m	0=Default

Vedlegg 15 Maskin 2 - Outputverdier for Oppgraderingsalternativ 1

Calculated data				
Main Data				
Apparent Power	Sn	27	MVA	
System Voltage	Un	11000	V	
Nominal Current	In	1417,1	А	
Cosphi		0,8		
Efficiency	η	97,71	%	
Stator Parameters				
Utilization Factor	С	4,61		
Armature Loading	As	496,2	A/cm	
Inner Diameter	Di	6,00	m	
Outer Diameter	Dy	6,50	m	
Gross Iron Length	lb	1,24	m	
Net Iron Length	ln	1,04	m	
Number of Slots	Qs	330	slots	
Number of Cooling Ducts	nv	25		
Number of Turns Per Phase	Ns	110		\uparrow hds
Number of Turns per Coil	tnr	11		
Number of Parallel Circuits	pnr	11		hspk
Slots per pole and phase	q	2,5		
Relative polepitch	у	0,933		
Coil Span	Ww	7	slots	\downarrow
Winding Factor	kw	0,951		drs
Sloth Hight	hs	130,5	mm	
Sloth width	bu	23,4	mm	h
Tooth width	bd	33,72	mm	
Slot Pitch	τυ	57,12	mm	atrand
Number of strands per bar	ndl	44		
Height of a Strand	hcus	1,9	mm	
Width of a Strand	bcus	7,5	mm	
Main Insulation	dij	3,50	mm	
Strand Insulation	dicu	0,20	mm	
Winding lenght	lav	44,7	m	$\leftarrow bu \rightarrow$
Cross Section of Stator Bar	Acus	55,9	mm ²	
Stator Current Density	Ss	2,31	A/mm ²	
Stator Winding Resistance	Rdc20	0,01373	Ω	Per Phase Res. (20 °C)
Stator Winding Resistance	Rdc75	0,01669	Ω	Per Phase Res. (75 ^o C)

Stator Wdg. Resistance				
Factor	Kra	1,059		
Slot Resistance Factor	Krad	1,096		
Maximum Resistance Factor	Kmax	1,305		For the topmost strand
Skewing	S	0	slots	
Rotor Parameters				
Minimum Air Gap	δ0	13.0	mm	
Equivalent average Air Gap	δm	17,1	mm	
Pole Shoe width	bps	340,0	mm	
Pole Shoe Height	hps	50,0	mm	
Pole Core Width	bpk	210,0	mm	
Pole Core Hight	hpk	150,0	mm	
Number of Turns per Pole	nf	32		
Field Current	If	539,6	А	
Field Winding Width	bcuf	69,0	mm	
Field Winding Height	hcuf	3,8	mm	
Cross Section of Field				
Winding	Af	259,1	mm ²	
Current Density, Field	Cf	2 00	$\Lambda/mama^2$	
Winding Desistence	51 D f D 0	2,08	A/IIIII-	E and W and P and $(200^{\circ}C)$
Rotor Winding Resistance	R120 D£75	0,3023	0	Field Wind, Res. (20 C)
Rotor Winding Resistance Relative Pole	K1/3	0,3079	52	Fleia Wina. Res. (75 C)
Width	α	0.7		
Number of Damperbars	NDs	5		
Cross Section of Damper Bar	AcuD	141.7	mm ²	
Clearance, Pole Windings	polklaring	44.5	mm	
, U	. 0	,		

Air Gap	0,780	Т	9070	At	
Stator Core	1,200	Т	65	At	
Stator Tooth	1,676	Т	491	At	
Pole Core	1,528	Т	199	At	(max at bottom of core)
Rotor Ring	1,456	Т	475	At	
Relative Magnetization		Ef	1,721	pu	
Relative Induced Voltag	ge	Ei	1,064	pu	
Total Required Magneti	zation	Θmn	17266	At	

Loss Calculations				
No load:				
Iron Loss Stator Core	Pfe	129,9	kW	
Windage and Bearring Loss	Pfw	82,1	kW	
Kopper Loss Rotor (No-load)	Prnl	64,2	kW	
Full load:				
DC- stator loss	Pcusdc	100,6	kW	
AC-stator	Pcusac	6,0	kW	
Additional Kopper Loss				
Rotor	Prfl	46,3	kW	
Additional loss	Padd	33,6	kW	
Magnetizing losses	Pmagn	44,0	kW	
Total Losses	Ptot	506,5	kW	

Reactances and Time Constants				
Armature Reaction Reactance	Xmd	0,839 pu		
	Xmq	0,472 pu		
Leakage Reactance	Χσ	0,097 pu		
Synchronous Reactance	Xd	0,936 pu		
	Xq	0,569 pu		
Transient				
Reactance	X'd	0,253 pu		
Sub-Transient Reactance	X"d	0,190 pu		
	X"q	0,219 pu		
Transient Time Constant	T'd	1,150 s		
Sub-Transient Time Constant	T"d	0,017 s		
	T"q	0,012 s		

Thermal Calculations		
Cooling Air Flow	qth	23,0 m ³ /s
Maximal Air		
Speed	vim	10,3 m/s
Maximal Temperature Rise		
in:		
Stator Winding		37 ^o K
Stator Tooth		29 ^o K
Stator Core		26 ⁰ K
Stator End Windin	a	20° $^{\circ}$
Stator End winding	Б	23 K

Field Winding	45 ⁰ K	
Rotor End Winding	41 ⁰ K	
Pole Core	19 ⁰ K	
Air Temperature Rise in:		
End Winding		
Area	2 ⁰ K	
Air		
Gap	4 ⁰ K	
Stator Winding Surroundings	9 ⁰ K	
In midle of Cooling Duct	10 ⁰ K	
At end of Cooling Duct	10 ⁰ K	
Outlet	12 ^o K	(Total temp. rise of air)

Mechanical Calculations		
Calculated Moment of Inertia	М	454,4 tm^2
Weight of Machine	m	182,7 tons

Harm.Nr.	Amplitude	
1	0,00	Amplitude of harmonic in [%]
3	0,00	
5	3,46	4,00
7	1,59	3,50
9	0,00	3,00
11	0,40	2,50
13	0,16	2,00
15	0,00	1,50
17	0,13	1,00
19	0,23	0,50
21	0,00	
23	0,48	1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37
25	0,69	
27	0,00	
29	3,28	
31	3,07	Telephone Harmonic Factor THF 0,55358 %
33	0,00	
35	0,49	
37	0.30	

Vedlegg 16 Maskin 2 – Inputverdier for Oppgraderingsalternativ 2

Generator specifications			
Required values:			
Apparent power	Sn	27	MVA
Power factor	Cosphi	0,8	
Frequency	f	50	Hz
Number of poles	Np	44	poles
Runaway speed	nr	310	rpm
Maximum temperatur rise	dTmx	60	
Moment of inertia	М	800	tm ²
Generator maximum voltage	Vmx	15	kV
Maximum value of synchronous reactance	xd	1	pu
Maximum value of transient reactance	xd1	0,25	pu
Minimum value of subtransient reactance	xd2	0,15	pu
Maximum tooth flux density	Bdmx	1,7	Т
Maximum pole core flux density	Bpmx	1,6	Т
Maximum yoke flux density	Bymx	1,2	Т
Specify ratio	bu/bd	0,778	
Core section length	bcs	0,04	m
Cooling duct length	bv	0,006	m
Filling factor (iron core)	kFe	0,95	
Current density in stator winding	Ss	2,6	A/mm²
Height of one strand i the statorbar	hcus	1,9	mm
Required feild voltage	Vf	227	V
Current density in rotor winding	Sf	2	A/mm²
Negative sequence voltage	Vnmx	20	%
Skewving (in number of slots)	S	0	spor

Satte verdier:			
Nominal Voltage	Un	11000 V	0=Default
Utilization factor	С	0	0=Default
Number of Slots	Qs	330	0=Default
Number of Parallel Circuits	pnr	11	0=Default
Number of Turns per Coil	tnr	11	0=Default
Coil Span	у	7 slots	0=Default
Inner Diameter of Stator	Di	6,00 m	0=Default
Gross Iron Length	lb	1,2 m	0=Default
Air Gap Flux Density	Βδ	0 T	0=Default
Height of rotor yoke	hyr	0 m	0=Default

Cooling Air Flow	qth	16	m³/s	0=Default
Flywheel	GD2add	0	kg	0=Default
Minimum air gap	delta0	13	mm	0=Default
Field Winding Width	bcuf	0,069	m	0=Default
Specific Iron Loss, at 1 Tesla	P10	1,07	W/kg	0=Default
Use old iron sheets (1950-1960)	FeOld	0	1=YES	0=Default
Average Stator Coil Length	lav	44,7	m	0=Default

Chosen Slot Dimensions				
Slot Heigth	hs	0,1305	m	0=Default
Sloth Width	bu	0,025	m	
Number of strands in a Bar	ndl	44		
Number of Strands per Turn	ndlp	4		
Nr. of Strand on Top of each other per				
Turn	ndlh	2		
Total Copper Width in Slot	bcus	0,0083	m	
Distance from Slot Wedge to Air Gap	hds	0	m	
Slot Wedge Thickness	hspk	0,0055	m	
Slot Wedge Spacer (glidestrimmel)	hgls	0,0015	m	
Bar Separator (mellomstrimmel)	hm	0,007	m	
Roebel Separator	drs	0	m	
Earth Insulation Thickness	dij	0,0035	m	
Strand Insulation Thickness	dicu	0,0002	m	
Winding Insulation Thickness	diw	0	m	

Chosen Pole Dimensions				
Pole Shoe Width	bps	0,34	m	0=Default
Pole Shoe Heigth	hps	0,05	m	0=Default
Pole Core Width	bpk	0,21	m	0=Default
Pole Core Heigth	hpk	0,15	m	0=Default
Total Field Winding Heigth	hf	0,138	m	0=Default
Number of turns in Field Winding	nf	32		0=Default
Heigth of a Field Winding	hcuf	0,0038	m	0=Default
Number of Damper Bars	NDs	5	m	0=Default
Magnetizing Losses	Pmagn	44	kW	0=Default
Insulation between winding and pole core	bi	0,0035	m	0=Default
Field winding insulation	bif	0,00033	m	0=Default

Vedlegg 17Maskin 2 - Outputverdier for Oppgraderingsalternativ 2

Calculated data

Main Data				
Apparent Power	Sn	27	MVA	
System Voltage	Un	11000	V	
Nominal Current	In	1417,1	А	
Cosphi		0,8		
Efficiency	η	97,86	%	
Rotational Speed	ns	136,4	rpm	
Stator Parameters				
Utilization Factor	С	4,39		
Armature Loading	As	496,2	A/cm	
Inner Diameter	Di	6,00	m	
Outer Diameter	Dy	6,48	m	
Gross Iron Length	lb	1,24	m	
Net Iron Length	ln	1,08	m	
Number of Slots	Qs	330	slots	
Number of Cooling Ducts	nv	26		\uparrow hds
Number of Turns Per Phase	Ns	110		
Number of Turns per Coil	tnr	11		hspk
Number of Parallel Circuits	pnr	11		
Slots per pole and phase	q	2,5		- Ingis
Relative polepitch	у	0,933		dij
Coil Span	Ww	7	slots	drs
Winding Factor	kw	0,951		
Sloth Hight	hs	130,5	mm	h
Sloth width	bu	25,0	mm	
Tooth width	bd	32,12	mm	atrand
Slot Pitch	τυ	57,12	mm	
Number of strands per bar	ndl	44		
Height of a Strand	hcus	1,9	mm	
Width of a Strand	bcus	8,3	mm	
Main Insulation	dij	3,50	mm	
Strand Insulation	dicu	0,20	mm	k bu →
Winding lenght	lav	44,7	m	
Cross Section of Stator Bar	Acus	61,8	mm ²	
Stator Current Density	Ss	2,08	A/mm ²	
Stator Winding Resistance	Rdc20	0,01240	Ω	Per Phase Res. (20 ^{o}C)

Stator Winding Resistance Stator Wdg. Resistance	Rdc75	0,01509 Ω	Per Phase Res. (75 ^o C)
Factor	Kra	1,064	
Slot Resistance Factor	Krad	1,103	
Maximum Resistance Factor	Kmax	1,327	For the topmost strand
Skewing	S	0 slots	

Rotor Parameters				
Minimum Air Gap	δ0	13,0	mm	
Equivalent average Air Gap	δm	17,3	mm	
Pole Shoe width	bps	340,0	mm	
Pole Shoe Height	hps	50,0	mm	
Pole Core Width	bpk	210,0	mm	
Pole Core Hight	hpk	150,0	mm	
Number of Turns per Pole	nf	32		
Field Current	If	537,1	А	
Field Winding Width	bcuf	69,0	mm	
Field Winding Height	hcuf	3,8	mm	
Cross Section of Field				
Winding	Af	259,1	mm ²	
Current Density, Field				
Winding	Sf	2,07	A/mm ²	
Rotor Winding Resistance	Rf20	0,3017	Ω	Field Wind. Res. (20 $^{o}\!C$)
Rotor Winding Resistance	Rf75	0,3670	Ω	Field Wind. Res. (75 ^{o}C)
Relative Pole				
Width	α	0,7		
Number of Damperbars	NDs	5		
Cross Section of Damper Bar	AcuD	141,7	mm ²	
Clearance, Pole Windings	polklaring	44,5	mm	

Air Gap	0,782	Т	9236	At	
Stator Core	1,200	Т	46	At	
Stator Tooth	1,659	Т	460	At	
Pole Core	1,528	Т	161	At	(max at bottom of core)
Rotor Ring	1,451	Т	361	At	
Relative Magnetiza	tion	Ef	1,708	pu	
Relative Induced V	oltage	Ei	1,064	pu	
Total Required Mag	gnetization	Θmn	17186	At	

Loss Calculations				
No load:				
Iron Loss Stator Core	Pfe	106,1	kW	
Windage and Bearring Loss	Pfw	81,9	kW	
Kopper Loss Rotor (No-load)	Prnl	63,9	kW	
Full load:				
DC- stator loss	Pcusdc	90,9	kW	
AC-stator	Pcusac	5,8	kW	
Additional Kopper Loss				
Rotor	Prfl	45,3	kW	
Additional loss	Padd	33,6	kW	
Magnetizing losses	Pmagn	44,0	kW	
Total Losses	Ptot	471,4	kW	

Reactances and Time Constants				
Armature Reaction Reactance	Xmd	0,824 pu		
	Xmq	0,464 pu		
Leakage Reactance	Χσ	0,098 pu		
Synchronous Reactance	Xd	0,921 pu		
	Xq	0,561 pu		
Transient				
Reactance	X'd	0,252 pu		
Sub-Transient Reactance	X"d	0,190 pu		
	X"q	0,219 pu		
Transient Time Constant	T'd	1,149 s		
Sub-Transient Time Constant	T"d	0,018 s		
	T"q	0,013 s		

Thermal Calculations		
Cooling Air Flow Maximal Air	qth 16,0	m ³ /s
Speed	vim 9,7	m/s
Maximal Temperature Rise in: Stator Winding Stator Tooth Stator Core	37 30 27	⁰ K ⁰ K ⁰ K
Stator Tooth Stator Core	30 27	к ⁰ К ⁰ К

	Stator End Winding	22	⁰ K	
	Field Winding	46	⁰ K	
	Rotor End Winding	42	⁰ K	
	Pole core	20	⁰ K	
Air Temp	erature Rise in:			
	End Winding			
	Area	3	⁰ K	
	Air			
	Gap	5	⁰ K	
	Stator Winding Surroundings	12	⁰ K	
	In midle of Cooling Duct	13	⁰ K	
	At end of Cooling Duct	13	⁰ K	
	Outlet	15	⁰ K	(Total temp. rise of air)

Mechanical Calculations		
Calculated Moment of Inertia	М	450,0 tm^2
Weight of Machine	m	183,3 tons

Harm.Nr.	Amplitude	
1	0,00	Amplitude of harmonic in [%]
3	0,00	
5	3,46	4,00
7	1,59	3,50
9	0,00	3,00
11	0,40	2,50
13	0,16	2,00
15	0,00	1,50
17	0,13	1,00
19	0,23	0.50
21	0,00	
23	0,48	1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37
25	0,69	
27	0,00	
29	3,28	
31	3,07	Telephone Harmonic Factor THF 0,55358 %
33	0,00	
35	0,49	
37	0,30	

Vedlegg 18 Maskin 2 – Inputverdier for Oppgraderingsalternativ 3

Generator specifications			
Required values:			
Apparent power	Sn	27	MVA
Power factor	Cosphi	0,8	
Frequency	f	50	Hz
Number of poles	Np	44	poles
Runaway speed	nr	310	rpm
Maximum temperatur rise	dTmx	60	
Moment of inertia	М	800	tm ²
Generator maximum voltage	Vmx	15	kV
Maximum value of synchronous reactance	xd	1	pu
Maximum value of transient reactance	xd1	0,25	pu
Minimum value of subtransient reactance	xd2	0,15	pu
Maximum tooth flux density	Bdmx	1,7	Т
Maximum pole core flux density	Bpmx	1,6	Т
Maximum yoke flux density	Bymx	1,05	Т
Specify ratio	bu/bd	0,62	
Core section length	bcs	0,04	m
Cooling duct length	bv	0,006	m
Filling factor (iron core)	kFe	0,95	
Current density in stator winding	Ss	3,5	A/mm²
Height of one strand i the statorbar	hcus	2,7	mm
Required feild voltage	Vf	227	V
Current density in rotor winding	Sf	2	A/mm²
Negative sequence voltage	Vnmx	20	%
Skewving (in number of slots)	S	0	spor

Satte verdier:			
Nominal Voltage	Un	15000 V	0=Default
Utilization factor	С	0	0=Default
Number of Slots	Qs	330	0=Default
Number of Parallel Circuits	pnr	11	0=Default
Number of Turns per Coil	tnr	14	0=Default
Coil Span	У	7 slots	0=Default
Inner Diameter of Stator	Di	6,00 m	0=Default
Gross Iron Length	lb	1,2 m	0=Default
Air Gap Flux Density	Βδ	0 T	0=Default
Height of rotor yoke	hyr	0 m	0=Default

Cooling Air Flow	qth	15	m³/s	0=Default
Flywheel	GD2add	0	kg	0=Default
Minimum air gap	delta0	11	mm	0=Default
Field Winding Width	bcuf	0,069	m	0=Default
Specific Iron Loss, at 1 Tesla	P10	1,07	W/kg	0=Default
Use old iron sheets (1950-1960)	FeOld	0	1=YES	0=Default
Average Stator Coil Length	lav	56,9	m	0=Default

Chosen Slot Dimensions			
Slot Heigth	hs	0 m	0=Default
Sloth Width	bu	0 m	
Number of strands in a Bar	ndl	0	
Number of Strands per Turn	ndlp	0	
Nr. of Strand on Top of each other per			
Turn	ndlh	0	
Total Copper Width in Slot	bcus	0 m	
Distance from Slot Wedge to Air Gap	hds	0 m	
Slot Wedge Thickness	hspk	0 m	
Slot Wedge Spacer (glidestrimmel)	hgls	0 m	
Bar Separator (mellomstrimmel)	hm	0 m	
Roebel Separator	drs	0 m	
Earth Insulation Thickness	dij	0 m	
Strand Insulation Thickness	dicu	0 m	
Winding Insulation Thickness	diw	0 m	

Chosen Pole Dimensions				
Pole Shoe Width	bps	0,34	m	0=Default
Pole Shoe Heigth	hps	0,05	m	0=Default
Pole Core Width	bpk	0,21	m	0=Default
Pole Core Heigth	hpk	0,15	m	0=Default
Total Field Winding Heigth	hf	0,138	m	0=Default
Number of turns in Field Winding	nf	32		0=Default
Heigth of a Field Winding	hcuf	0,0038	m	0=Default
Number of Damper Bars	NDs	5		0=Default
Magnetizing Losses	Pmagn	44	kW	0=Default
Insulation between winding and pole core	bi	0,0035	m	0=Default
Field winding insulation	bif	0,00033	m	0=Default

Vedlegg 19 Maskin 2 - Outputverdier for Oppgraderingsalternativ 3

Calculated data

Main Data				
Apparent Power	Sn	27	MVA	
System Voltage	Un	15000	V	
Nominal Current	In	1039,2	А	
Cosphi		0,8		
Efficiency	η	97,91	%	
Rotational Speed	ns	136,4	rpm	
Stator Parameters				
Utilization Factor	С	4,50		
Armature Loading	As	463,1	A/cm	
Inner Diameter	Di	6,00	m	
Outer Diameter	Dy	6,50	m	
Gross Iron Length	lb	1,24	m	
Net Iron Length	ln	1,08	m	
Number of Slots	Qs	330	slots	
Number of Cooling Ducts	nv	26		\uparrow hds
Number of Turns Per Phase	Ns	140		- mus
Number of Turns per Coil	tnr	14		hspk
Number of Parallel Circuits	pnr	11		
Slots per pole and phase	q	2,5		hgls
Relative polepitch	у	0,933		dij
Coil Span	Ww	7	slots	\leftarrow drs
Winding Factor	kw	0,951		
Sloth Hight	hs	112,5	mm	h ·
Sloth width	bu	21,9	mm	hm
Tooth width	bd	35,26	mm	
Slot Pitch	τu	57,12	mm	
Number of strands per bar	ndl	14		
Height of a Strand	hcus	2,7	mm	
Width of a Strand	bcus	13,8	mm	
Main Insulation	dij	3,83	mm	
Strand Insulation	dicu	0,20	mm	$\leftarrow bu \rightarrow$
Winding lenght	lav	56,9	m	
Cross Section of Stator Bar	Acus	36,5	mm ²	
Stator Current Density	Ss	2,59	A/mm ²	
Stator Winding Resistance	Rdc20	0,02671	Ω	Per Phase Res. (20 °C)

Stator Winding Resistance Stator Wdg. Resistance	Rdc75	0,03248 Ω	Per Phase Res. (20 °C)
Factor	Kra	1,096	
Slot Resistance Factor	Krad	1,154	
Maximum Resistance Factor	Kmax	1,489	For the topmost strand
Skewing	S	0 slots	

Rotor Parameters				
Minimum Air Gap	δ0	11,0	mm	
Equivalent average Air Gap	δm	14,4	mm	
Pole Shoe width	bps	340,0	mm	
Pole Shoe Height	hps	50,0	mm	
Pole Core Width	bpk	210,0	mm	
Pole Core Hight	hpk	150,0	mm	
Number of Turns per Pole	nf	32		
Field Current	If	484,6	А	
Field Winding Width	bcuf	69,0	mm	
Field Winding Height	hcuf	3,8	mm	
Cross Section of Field				
Winding	Af	259,1	mm ²	
Current Density, Field				
Winding	Sf	1,87	A/mm ²	
Rotor Winding Resistance	Rf20	0,3017	Ω	Field Wind. Res. (20 ^{o}C)
Rotor Winding Resistance	Rf75	0,3670	Ω	Field Wind. Res. (75 ^{o}C)
Relative Pole				
Width	α	0,7		
Number of Damperbars	NDs	5		
Cross Section of Damper Bar	AcuD	132,3	mm ²	
Clearance, Pole Windings	polklaring	44,8	mm	

),838	Т	8257	At	
,050	Т	38	At	
,619	Т	328	At	
,551	Т	196	At	(max at bottom of core)
,375	Т	208	At	
	Ef	1,741	pu	
	Ei	1,066	pu	
ation	Θmn	15506	At	
)	,838 ,050 ,619 ,551 ,375 ttion	,838 T ,050 T ,619 T ,551 T ,375 T Ef Ei tion Θmn	,838 T 8257 ,050 T 38 ,619 T 328 ,551 T 196 ,375 T 208 Ef 1,741 Ei 1,066 ttion Ømn 15506	,838 T 8257 At ,050 T 38 At ,619 T 328 At ,551 T 196 At ,375 T 208 At Ef 1,741 pu Ei 1,066 pu tion Ømn 15506 At

Loss Calculations			
No load:			
Iron Loss Stator Core	Pfe	97,5	5 kW
Windage and Bearring Loss	Pfw	81,9	0 kW
Kopper Loss Rotor (No-load)	Prnl	51,0) kW
Full load:			
DC- stator loss	Pcusdc	105,3	6 kW
AC-stator	Pcusac	10,1	kW
Additional Kopper Loss			
Rotor	Prfl	37,8	3 kW
Additional loss	Padd	33,6	5 kW
Magnetizing losses	Pmagn	44,0) kW
Total Losses	Ptot	461,3	8 kW

Reactances and Time Constants				
Armature Reaction Reactance	Xmd	0,860 pu		
	Xmq	0,484 pu		
Leakage Reactance	Χσ	0,099 pu		
Synchronous Reactance	Xd	0,959 pu		
	Xq	0,583 pu		
Transient				
Reactance	X'd	0,240 pu		
Sub-Transient Reactance	X"d	0,184 pu		
	X"q	0,211 pu		
Transient Time Constant	T'd	1,229 s		
Sub-Transient Time Constant	T"d	0,018 s		
	T"q	0,012 s		

Thermal Calculations		
Cooling Air Flow Maximal Air	qth	15,0 m ³ /s
Speed	vim	8,3 m/s
Maximal Temperature Rise in:		
Stator Winding		45 ^o K
Stator Tooth		32 ^o K
Stator Core		28 ⁰ K

Stator End Winding	28 ^o K	
Field Winding	39 ^o K	
Rotor End Winding	36 ^o K	
Pole core	18 ⁰ K	
Air Temperature Rise in:		
End Winding		
Area	4 ⁰ K	
Air		
Gap	5 ⁰ K	
Stator Winding Surroundings	12 ⁰ K	
In midle of Cooling Duct	13 ^o K	
At end of Cooling Duct	13 ^o K	
Outlet	15 ⁰ K	(Total temp. rise of air)

Mechanical Calculations		
Calculated Moment of Inertia	М	462,7 tm^2
Weight of Machine	m	189,6 tons

Hormo Nr.	A manlituda	
Harm.INF.	Amplitude	
1	0,00	Amplitude of harmonic in [%]
3	0,00	
5	3,46	4,00
7	1,59	3,50
9	0,00	3,00
11	0,40	2,50
13	0,16	2,00
15	0,00	1,50
17	0,13	1,00
19	0,23	0,50
21	0,00	
23	0,48	1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37
25	0,69	
27	0,00	
29	3,28	
31	3,07	Telephone Harmonic Factor THF 0,55358 %
33	0,00	
35	0,49	
37	0,30	

Vedlegg 20 Maskin 2 – Inputverdier for Oppgraderingsalternativ 4

Generator specifications			
Required values:			
Apparent power	Sn	27	MVA
Power factor	Cosphi	0,8	
Frequency	f	50	Hz
Number of poles	Np	44	poles
Runaway speed	nr	310	rpm
Maximum temperatur rise	dTmx	75	
Moment of inertia	М	400	tm²
Generator maximum voltage	Vmx	15	kV
Maximum value of synchronous reactance	xd	1	pu
Maximum value of transient reactance	xd1	0,25	pu
Minimum value of subtransient reactance	xd2	0,15	pu
Maximum tooth flux density	Btmx	1,7	Т
Maximum pole core flux density	Bpmx	1,6	Т
Maximum yoke flux density	Bymx	1,2	Т
Specify ratio	bu/bd	0,65	
Core section length	bcs	0,042	m
Cooling duct length	bv	0,006	m
Filling factor (iron core)	kFe	0,95	
Current density in stator winding	Ss	4	A/mm²
Height of one strand i the statorbar	hcus	2,9	mm
Required feild voltage	Vf	240	V
Current density in rotor winding	Sf	2,5	A/mm²
Negative sequence voltage	Vnmx	20	%
Skewving (in number of slots)	S	0	spor

Satte verdier:			
Nominal Voltage	Un	11000 V	0=Default
Utilization factor	С	0	0=Default
Number of Slots	Qs	330	0=Default
Number of Parallel Circuits	pnr	11	0=Default
Number of Turns per Coil	tnr	12	0=Default
Coil Span	у	6 slots	0=Default
Inner Diameter of Stator	Di	4,90 m	0=Default
Gross Iron Length	lb	1,35 m	0=Default
Air Gap Flux Density	Βδ	0 T	0=Default
Height of rotor yoke	hyr	0 m	0=Default

Cooling Air Flow	qth	23	m³/s	0=Default
Flywheel	GD2add	0	kg	0=Default
Minimum air gap	delta0	12	mm	0=Default
Field Winding Width	bcuf	0,07	m	0=Default
Specific Iron Loss, at 1 Tesla	P10	0	W/kg	0=Default
Use old iron sheets (1950-1960)	FeOld	0	1=YES	0=Default
Average Stator Coil Length	lav	48	m	0=Default

Chosen Slot Dimensions				
Slot Heigth	hs	0,106	m	0=Default
Sloth Width	bu	0,0184	m	
Number of strands in a Bar	ndl	24		
Number of Strands per Turn	ndlp	2		
Nr. of Strand on Top of each other per				
Turn	ndlh	1		
Total Copper Width of a Strand	bcus	0,0058	m	
Distance from Slot Wedge to Air Gap	hds	0,001	m	
Slot Wedge Thickness	hspk	0,006	m	
Slot Wedge Spacer (glidestrimmel)	hgls	0,001	m	
Bar Separator (mellomstrimmel)	hm	0,007	m	
Roebel Separator	drs	0	m	
Earth Insulation Thickness	dij	0,0029	m	
Strand Insulation Thickness	dicu	0,0002	m	
Winding Insulation Thickness	diw	0	m	

Chosen Pole Dimensions			
Pole Shoe Width	bps	0,27 m	0=Default
Pole Shoe Heigth	hps	0,05 m	0=Default
Pole Core Width	bpk	0,17 m	0=Default
Pole Core Heigth	hpk	0,158 m	0=Default
Total Field Winding Heigth	hf	0,144 m	0=Default
Number of turns in Field Winding	nf	30	0=Default
Heigth of a Field Winding	hcuf	0,0045 m	0=Default
Number of Damper Bars	NDs	5	0=Default
Magnetizing Losses	Pmagn	8 kW	0=Default
Insulation between winding and pole core	bi	0 m	0=Default
Field winding insulation	bif	0 m	0=Default

Calculated data

Vedlegg 21 Maskin 2 – Outputverdier for Oppgraderingsalternativ 4

Main Data Apparent Power Sn 27 MVA System Voltage Un 11000 V Nominal Current 1417,1 A In Cosphi 0.8 Efficiency 97.81 % η **Rotational Speed** 136,4 rpm ns **Stator Parameters** С Utilization Factor 6,32 Armature Loading 662,8 A/cm As Inner Diameter 4,90 m Di Outer Diameter Dy 5,30 m Gross Iron Length 1,39 m lb Net Iron Length 1,22 m ln Number of Slots 330 slots Qs Number of Cooling Ducts nv 28 Number of Turns Per Phase Ns 120 Number of Turns per Coil 12 tnr Number of Parallel Circuits 11 pnr 2,5 Slots per pole and phase q Relative polepitch 0,800 У Coil Span Ww 6 slots Winding Factor 0,910 kw Sloth Hight 106,0 mm hs h_{s} hm Sloth width bu 18,4 mm Tooth width 28,25 mm bd strand Slot Pitch 46,65 mm τu Number of strands per bar 24 ndl Height of a Strand 2,9 mm hcus Width of a Strand bcus 5.8 mm Main Insulation 2,90 mm dij Strand Insulation dicu 0,20 mm buWinding lenght lav 48 m Cross Section of Stator Bar Acus 33,0 mm² Stator Current Density 3,91 A/mm² Ss

0,02497 Ω

Rdc20

Per Phase Res. (20 °C)

Stator Winding Resistance

hds

hspk

hgls

dij

drs

Stator Winding Resistance	Rdc75	0,03038 Ω	Per Phase Res. (75 °C)
Stator Wdg. Resistance Factor	Kra	1,107	
Slot Resistance Factor	Krad	1,149	
Maximum Resistance Factor	Kmax	1,476	For the topmost strand
Skewing	S	0 slots	

Rotor Parameters				
Minimum Air Gap	δ0	12,0	mm	
Equivalent average Air Gap	δm	15,5	mm	
Pole Shoe width	bps	270,0	mm	
Pole Shoe Height	hps	50,0	mm	
Pole Core Width	bpk	170,0	mm	
Pole Core Hight	hpk	158,0	mm	
Number of Turns per Pole	nf	30		
Field Current	If	607,6	А	
Field Winding Width	bcuf	70,0	mm	
Field Winding Height	hcuf	4,5	mm	
Cross Section of Field				
Winding	Af	310,7	mm ²	
Current Density, Field				
Winding	Sf	1,96	A/mm ²	
Rotor Winding Resistance	Rf20	0,2524	Ω	Field Wind. Res. (20 °C)
Rotor Winding Resistance	Rf75	0,3070	Ω	Field Wind. Res. (75 ^{o}C)
Relative Pole				
Width	α	0,7		
Number of Damperbars	NDs	5		
Cross Section of Damper Bar	AcuD	154,6	mm ²	
Clearance, Pole Windings	polklaring	2,0	mm	

Air Gap	0,819	Т	8646	At	
Stator Core	1,200	Т	37	At	
Stator Tooth	1,603	Т	263	At	
Pole Core	1,768	Т	772	At	(max at bottom of core)
Rotor Ring	1,590	Т	805	At	
Relative Magnetization		Ef	1,804	pu	
Relative Induced Voltag	ge	Ei	1,076	pu	
Total Required Magneti	zation	Θmn	18228	At	

Loss Calculations				
No load:				
Iron Loss Stator Core	Pfe	81,3	kW	
Windage and Bearring Loss	Pfw	43,1	kW	
Kopper Loss Rotor (No-load)	Prnl	64,7	kW	
Full load:				
DC- stator loss	Pcusdc	183,0	kW	
AC-stator	Pcusac	19,5	kW	
Additional Kopper Loss Rotor	Prfl	52,1	kW	
Additional loss	Padd	33,0	kW	
Magnetizing losses	Pmagn	8,0	kW	
Total Losses	Ptot	484,7	kW	

Reactances and Time Constant	S	
Armature Reaction Reactance	Xmd	0,918 pu
	Xmq	0,517 pu
Leakage Reactance	Χσ	0,111 pu
Synchronous Reactance	Xd	1,029 pu
	Xq	0,627 pu
Transient		
Reactance	X'd	0,307 pu
Sub-Transient Reactance	X"d	0,229 pu
	X"q	0,263 pu
Transient Time Constant	T'd	1,397 s
Sub-Transient Time Constant	T"d	0,022 s
	T"q	0,016 s

Thermal Calculations		
Cooling Air Flow	qth	23,0 m ³ /s
Maximal Air Speed	vim	14,7 m/s
Maximal Temperature Rise in: Stator Winding Stator Tooth Stator Core Stator End Windir	ıg	60 [°] K 35 [°] K 30 [°] K 43 [°] K

Mechanical Calculations		
Calculated Moment of Inertia	М	268,6 tm^2
Weight of Machine	m	154,7 tons

Harm.Nr.	Amplitude	
1	0,00	Amplitude of harmonic in [%]
3	0,00	
5	0,00	3,50
7	1,25	3,00
9	0,00	2,50
11	0,95	2 00
13	0,46	1.50
15	0,00	1,50
17	0,35	1,00
19	0,55	0,50
21	0,00	0.00
23	0,38	1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37
25	0,00	
27	0,00	
29	3,14	
31	2,94	Telephone Harmonic Factor THF 0,49532 %
33	0,00	
35	0,00	

0,24

37

Vedlegg 22 Isolasjonstykkelser for hovedisolasjon

2. Main Insulation

2.1. Samicatherm® range of tapes

VRI has developed a full range of Resin Rich Samicatherm[®] products fulfilling all requirements up to the highest voltages. Two types of Samicatherm are available, i.e. products made either with calcined or noncalcined mica paper (Samica).

Calcined glass-backed Samicatherm® grades

366.28	0.19 mm
366.31	0.21 mm
366.27	0.26 mm

Calcined film-backed Samicatherm® P grade (up to 11 kV) 315.20 0.16 mm

Non-calcined glass-backed Samicatherm[®] grades 366.33 0.24 mm

 366.33-62
 0.25 mm (with open-weave glass backing)

 366.32
 0.28 mm

Calcined Samica tapes have optimum electrical properties and are more suitable for use in hot climates due to the dryer surface.

Non-calcined Samica tapes are softer and more compressible.

2.2. Application

There are two ways to apply Samicatherm®:

- as a tape normally 20, 25 or 30 mm wide by hand or machine
- Section.

The decision regarding tape or sheet (foil) wrapping will be determined by several factors including:

- facilities (i.e. equipment). Taping machines are available which will tape not only the slot section but also the overhang or a part of it.
- IS slot length of coil

🕼 cost of labour

We normally recommend foil wrapping up to 1 m wide and 2 mm insulation thickness.

Samicatherm[®] should always be applied with the glass or the film to the outside after application.

For a given rated machine voltage with conventional three phase winding, the table below gives typical pressed insulation thicknesses:

Rated voltage	kV	2	3	6	10	16	25
Thickness	mm	0.8	1.0	1.8	2.8	4.0	6.0

Vedlegg 23 Datablad for generatorblikk M270-50A fra SURA

Typical data for SURA[®] M270-50A

т	W/kg at 50 Hz	VA/kg at 50 Hz	A/m at 50 Hz	W/kg at 100 Hz	W/kg at 200 Hz	W/kg at 400 Hz	W/kg at 1000 Hz	W/kg at 2500 Hz
0,1	0,02	0,07	31,5	0,04	0,10	0,29	1,40	5,75
0,2	0,07	0,18	42,0	0,17	0,43	1,15	5,01	20,1
0,3	0,14	0,32	49,4	0,35	0,91	2,48	10,2	42,4
0,4	0,23	0,48	56,1	0,58	1,51	4,17	17,2	73,7
0,5	0,33	0,67	63,1	0,85	2,24	6,24	26,1	116
0,6	0,45	0,89	70,7	1,16	3,09	8,75	37,4	173
0,7	0,58	1,14	79,5	1,51	4,07	11,7	51,4	248
0,8	0,73	1,45	90,1	1,90	5,19	15,2	68,7	344
0,9	0,90	1,80	103	2,33	6,47	19,3	89,6	468
1,0	1,07	2,25	121	2,81	7,94	24,1	115	627
1,1	1,27	2,82	145	3,36	9,61	29,7	145	
1,2	1,50	3,64	185	3,98	11,5	36,0		
1,3	1,76	5,12	273	4,71	13,6	43,3		
1,4	2,13	9,35	557	5,62	16,3	51,9		
1,5	2,52	25,3	1520	6,69	19,2	61,9		
1,6	2,87	66,0	3560					
1,7	3,13	139	6730					
1,8	3,37	257	11400					

Loss at 1.5 T , 50 Hz, W/kg	2,52
Loss at 1.0 T , 50 Hz, W/kg	1,07
Anisotropy of loss, %	10
Magnetic polarization at 50 Hz	
H = 2500 A/m, T	1,55
H = 5000 A/m, T	1,64
H = 10000 A/m, T	1,77
Coercivity (DC), A/m	30
Relative permeability at 1.5 T	770
Resistivity, μΩcm	55
Yield strength, N/mm ²	470
Tensile strength, N/mm ²	585
Young's modulus, RD, N/mm ²	175 000
Young's modulus, TD, N/mm ²	190 000
Hardness HV5 (VPN)	220

72

RD represents the rolling direction TD represents the transverse direction Values for yield strength (0.2 % proof strength) and tensile strength are given for the rolling direction Values for the transverse direction are approximately 5% higher

cogent ars Bruks AB June 2008