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SUMMARY: 
This thesis demonstrates the feasibility of the application of using an optimizing process when designing 
long-span suspension bridges, using a parametric FE-model. The optimization process is tested on a 
proposed single span, twin-box suspension bridge of 2800m across Sulafjorden. In a case study, the 
parametric model is used to create an Abaqus model of a specific geometry. Multimodal flutter speed is 
computed for this design, where corresponding aerodynamic derivatives obtained by wind tunnel tests are 
used.  
 
The objective of the optimization process is to minimize the total material cost of the structure. A gradient-free 
optimization algorithm is used to optimize the tower height and the girder gap, considering total material cost. 
Three girders with different plate thicknesses are analyzed in the optimization. The main code to perform the 
optimization process is written in MATLAB, which is connected to Abaqus to obtain the responses, sectional 
forces and modal properties.   
 
In hand with the parametric model, the gradient-free optimization procedure provides essential information 
about the bridge structure, which is used to study structural behavior.   
 
The optimizing process gives a proposed tower height of 391 meters and a girder gap of 22.6 meters, when 
the smallest girder is used. However, this proposal is highly dependent on the objective function, which has 
several uncertainties. 
  
The case study evaluates the modifiability of the parametric model by creating a specific bridge design. The 
flutter speed is calculated to 67.23 m/s, which is less than the calculated criteria for flutter speed. By including 
flutter calculation into an optimization process and improving the objective function, the application of an 
optimizing process may be highly beneficial for complex bridge structures. 
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Master Thesis 2018

In order to realize the ambition to complete the E39 Coastal Highway Route as an

improved and continuous route without ferries, new bridge technology needs to be

developed for crossing the extreme fjords along the west coast. The Norwegian Public

Road Administration is conducting a feasibility study regarding a bridge crossing of

Sulafjorden. The narrowest part of the fjord is approximately 3000 meters wide and

420 meters deep. If built as a one-span suspension bridge, the Sulafjorden Bridge will

be the longest suspension bridge ever built.

It has not been performed advanced calculations related to wind-induced dynamic

response. It is therefore desirable to perform more detailed calculations of how this

bridge will behave in strong winds.

The thesis should contain the following:

• Preliminary design of the Sulafjorden Bridge.

• Parametric modeling of the bridge in Abaqus.

• Calculation of dynamic response.

• Optimization of the bridge.

• Calculation of aerodynamic stability in a case study.
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Abstract

This thesis demonstrates the feasibility of the application of using an optimizing

process when designing long-span suspension bridges, using a parametric FE-model.

The optimization process is tested on a proposed single span, twin-box suspension

bridge of 2800m across Sulafjorden. In a case study, the parametric model is used to

create an Abaqus model of a specific geometry. Multimodal flutter speed is computed

for this design, where corresponding aerodynamic derivatives obtained by wind tunnel

tests are used.

The objective of the optimization process is to minimize the total material cost of

the structure. A gradient-free optimization algorithm is used to optimize the tower

height and the girder gap, considering total material cost. Three girders with different

plate thicknesses are analyzed in the optimization. The main code to perform the

optimization process is written in MATLAB, which is connected to Abaqus to obtain

the responses, sectional forces and modal properties.

In hand with the parametric model, the gradient-free optimization procedure provides

essential information about the bridge structure, which is used to study structural

behavior.

The optimizing process gives a proposed tower height of 391 meters and a girder gap

of 22.6 meters, when the smallest girder is used. However, this proposal is highly

dependent on the objective function, which has several uncertainties.

The case study evaluates the modifiability of the parametric model by creating a

specific bridge design. The flutter speed is calculated to 67.23 m
s , which is less

than the calculated criteria for flutter speed. By including flutter calculation into

an optimization process and improving the objective function, the application of an

optimizing process may be highly beneficial for complex bridge structures.
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Sammendrag

Denne masteravhandlingen demonstrerer muligheten for å bruke en

optimeringsprosess når superlange hengebroer skal designes. Optimeringsprosessen

er testet på en hengebro over Sulafjorden med dobbel brokasse og et spenn på

2800 meter. Ved hjelp av MATLAB er en parametrisert elementmetodemodell er

laget i Abaqus. Den kritiske flutterhastigheten er beregnet i et eksempelstudie hvor

resultatene fra en vindtunneltest er brukt.

Objektivet til optimeringsprosessen er å minimere den totale materielle kostnaden til

konstruksjonen. En gradient-free optimeringsalgoritme er brukt til å optimere høyden

på tårnene og avstanden mellom brokassene. Tre brokasser med ulike platetykkelser er

analysert i optimeringen. Koden til å utføre optimeringen er laget i MATLAB, som videre

er koblet til Abaqus for å innhente responsen, seksjonskrefter og modale egenskaper.

Gradient-free optimering ved hjelp av en parametrisert modell gir verdifull informasjon

som kan brukes til å analysere komplekse konstruksjoner.

Optimeringsprosessen foreslår en tårnhøyde på 391 meter og en avstand mellom

brokassene på 22.6 meter, når den minste brukassen er valgt. Den foreslåtte geometrien

er svært avhengig av objektivfunksjonen, som har flere usikkerhetsmomenter.

Eksempelstudiet viser modifiserbarheten til modellen og hvordan den kan brukes

til å representere en bro med et spesifikt design. Flutterhastigheten er kalkulert

til 67.23 m
s , som er mindre enn det kalkulerte kravet for flutterhastighet. Ved å

inkludere flutterberegninger i optimeringsprosessen og å forbedre objektivfunksjonen,

kan bruken av optimeringsprosessen bli svært gunstig for komplekse konstruksjoner.
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1 Introduction

The Norwegian Public Road Administration is conducting a feasibility study regarding a

bridge crossing of Sulafjorden. Sulafjorden is located on the border of Sula municipality

and Hareid municipality in Møre og Romsdal. The narrowest part of the fjord is

approximately 3000 meters wide and 420 meters deep. Because of the depth of the

fjord, one of the suggested bridge types is a single-span suspension bridge. If built as

a one-span bridge, the Sulafjorden Bridge will be the longest suspension bridge ever

built, breaking the previous record of 1991 meters belonging to the Akashi Kaikyo Bridge

in Japan. By building the Sulafjorden bridge, the travel time across the fjord may be

reduced by 30 minutes.

Today, several very large scale bridges are built with success. In order to accomplish

building even larger bridges, innovative design solutions are essential. A large number

of bridge projects in this scale are now in progress. However, a great deal of research

is still required. Super long-span suspension bridges are very complex structures

and require extensive research and design development. These types of bridges have

great technical difficulty due to their slender shape. It is essential to investigate how

the enlarged span influences the behavior, properties, and response of the bridge, to

find the best design solution related to, e.g., material cost, quality or stress-state. A

parametric model is an efficient tool for investigating effects due to structural changes,

and possible design solutions can be tested.

The characteristics of the conventional design process, implying repeated analysis of

a structure and resizing of its members until a satisfactory design is obtained. In this

process, it is implicitly assumed that by satisfying as closely as possible all requirements

placed on the design this will lead to the ‘best’ design. Regarding the maximum stress

in the members, this is the well-known principle of the fully stressed design. Effective

as this method often is, common situations are identified where this does not lead to an

optimum. Furthermore, the process may be very slowly convergent. For more complex

structures, such as large suspension bridges, this conventional design method may not

be the best alternative[17].

To find a possible optimal bridge design, optimization methods can be a very efficient

tool. Design optimization in engineering has been used from around 1960. As the

computational capacity has developed, optimization tools have been more commonly

used. Today, several types of optimization procedures are in use in structural design,

also for bridges. Optimization methods provide a final design of better quality, in less

1



2 CHAPTER 1. INTRODUCTION

time, which is very cost efficient. After the design process, the designer should observe

which parameters that affects the final design, and learn [8].

Advantages of the application of an optimizing method in civil engineering:

• Time and cost saving.

• Better quality structures.

• Better understanding of structural properties.

• Re-usability of parametric models.

• Faster to test different structural concepts.

The objective of this thesis is to establish a parameterized FE-model of a one-span

suspension bridge across Sulafjorden, which is used it to optimize the bridge design

related to the total material costs. A gradient-free optimization procedure is used,

where the chosen design variables are tower height, gap between the girders and girder

plate thickness. The constraints included are displacements and accelerations.

In a case study, the parametric model is used to create an FE-model of a specific bridge

design, provided by Multiconsult. Due to available experimental obtained aerodynamic

derivatives, multimodal flutter computations are carried out, and the flutter stability is

evaluated in the case study.

This thesis starts with an introduction to suspension bridges fundamental behavior and

challenges with super long span suspension bridges. Then the theory used throughout

this thesis is presented. In chapter four, the loads are defined, and the approach of

response calculations are presented. Based on the determined loads, a preliminary

bridge design is chosen. Here, bridge geometry and design of main construction parts

are presented, in addition to simplifications. How the design of structural parts varies

along with the parametrization are also described. Based on the initial design, MATLAB

is used to create the parameterized model, which is the underlying engine behind

the bridge optimization. The optimization process is coded in MATLAB, which is

connected to Abaqus to run multiple FE-analysis and to gather the output information

which is of interest. The optimization method and challenges are presented in chapter

seven. In chapter eight, the case study is described. The geometry of the bridge used in

the case study is presented, and the method for flutter computations are shown. Next,

the optimization and flutter results are presented and discussed. At last, a conclusion

and suggested further work is given.



2 Suspension Bridges Fundamental

Behaviour

Construction of the modern suspension bridge is complex and challenging. But the

underlying physical principle is relatively simple. The idea is that the cables which are

anchored to the ground carry the bridge deck. Towers are the first step in the building

process. Steel cables (made of thousands of smaller strands) are strung from shore

to shore, resting on big saddles on top of each tower. These main cables will form a

parabola and support a series of vertical suspender cables (the hangers), which in turn

support the road deck. At each shore, huge anchorages keep the main cables in place.

Figure 2.1 and 2.2 presents the force flow in a suspension bridge [6].

Figure 2.1: Force flow in a suspension bridge [1].

3



4 CHAPTER 2. SUSPENSION BRIDGES FUNDAMENTAL BEHAVIOUR

Figure 2.2: Force flow in a suspension bridge.

2.1 Challenges of a Super Long Suspension Bridge

The longest span of a suspension bridge today is the Akashi Kaikyō Bridge with its

incredible main span of 1991 meters. The last decades it has been made lots of research

on cable-supported bridges. The planed Messina Strait Bridge has not been built, but

the project has led to lots of research on large-scale suspension bridges. This chapter

discusses some of the dominant factors affecting the design of a super long suspension

bridge.

When a suspension bridge is subject to traffic loads, the forces are carried through the

structure depending on the relative stiffness of the different elements involved. The

deck, whose stiffness is mainly related to flexure, and the main cables, whose stiffness is

instead primarily geometric. For short span bridges, the two stiffnesses are comparable

and both the deck and the cables carry significant shares of the traffic loads: the deck

is viewed as the “stiffening girder.” For increasing spans, as the deck size does not

depend directly on the span length, the relative deck stiffness decreases rapidly, and

any significant stiffening role by the deck for global loads is lost. The deck acts merely

as the element collecting live loads and distributing them between the hangers. This

trend is illustrated in Figure 2.3, which shows the proportion of the total applied load

carried by the deck as a function of span length for two different bridge deck girders.

The Akashi Bridge has a truss type of deck, and the Messina Bridge has a box girder type

of deck. The solution for The Sulafjorden Bridge in this thesis has a box girder type of

deck [1].
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Figure 2.3: Proportion of load carried by deck girder as a function of span for two
different girder types. Akashi = truss, Messina = twin-box [1].

2.2 The Problem of Scale

For a span between 2000 and 3000 meters the cables carries most of the loads and

dominates the behaviour of the structure. From Figure 2.3 it can be seen that

load carried by the girder is almost constant when the span length reaches 2000

meters. Although the transfer of stiffness towards the main cables is the most obvious

consequence of span increase, it is not the only one.

2.2.1 Scale Issue one: Cable Steel Self Weight and Quantity

It has already been proved that the cable area increases significantly with the span.

Figure 2.4 show the variation in cable tension with span due to the different loading

types: road live load, deck self-weight and cable self-weight.
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Figure 2.4: Cable axial forces related to the span for a single box girder suspension
bridge [1].

For bridges with a span of 1000 meters it can be seen from Figure 2.4 that the self-weight

of the deck is the largest contributor to the cable tension. For growing spans the

increase in the deck contribution is, as expected, proportional to the span. The road

load contribution is less than proportional, as for very large spans average live load

intensities decrease, due to standard probability considerations. By contrast, the cable

self weight contribution increases more than proportionally with increasing span. For

spans over 2000 metres, the contribution of cable self weight to cable tension surpasses

the effect of road loads, between 2000 and 2500 metres it equals the contribution of the

deck, and it becomes clearly the largest contribution for spans over 2500 metres.

The theoretical curve for the cable area approaches the maximum possible achievable

span for a suspension bridge asymptotically. One such curve, derived for the

Sulafjorden Bridge is pictured in figure 2.5, and show the maximum theoretical span

length of approximately 8800 meters. For comparison, this limit is about 7000 meters

for the Messina Bridge (because of the larger deck of the Messina Bridge). Limiting the

cable weight is thus the most fundamental design target to be achieved to deal with the

first large-scale issue, to allow the overall sustainability and financial feasibility of a very

large span bridge.
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Figure 2.5: Variation in cable size with span for the Sulafjorden bridge.

To reduce the cable area, it is multiple actions which may increase the plausibility of

building a super long suspension bridge:

• Designing the deck as lightweight as possible. With high strength materials to

reduce the weight.

• Keeping all deck fittings, surfacing and equipment at their lowest weight

consistent with suitable performance.

• Careful selection of partial safety factors.

• Designing high towers to get the sag to span ratio as high as possible. This gives

smaller cable area.

For example, the Messina Bridge has a structural deck weight of 18 t/m (ton per meter),

and an average cable weight of 32 t/m. This means that one extra kilogram of deck

weight gives more than one and a half extra kilogram in the main cable. For shorter

suspension bridges this ratio is entirely different, and usually, the deck is more massive

than the main cable per meter. For the current world record span of the Akashi Bridge,

the deck weight about 23 t/m and the cable weight about 12 t/m. This means that one

extra kilogram of deck results in only about half an extra kilogram in the main cables

[2].
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2.2.2 Scale Issue Two: Dynamic Properties and Aeroelastic Stability

It is not only the static behavior which becomes dominated by the mass of the main

cables for super long-span suspension bridges. The dynamic response is also highly

dependent on the enormous weight of the main cables. Figure 2.6 to 2.10 shows typical

dynamic mode shapes for for the Sulafjorden Bridge, which does not necessarily occur

in the order listed.

Figure 2.6: Symmetric lateral mode for the Sulafjorden Bridge.

Figure 2.7: Antisymmetric lateral mode for the Sulafjorden Bridge.
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Figure 2.8: Antisymmetric vertical mode for the Sulafjorden Bridge.

Figure 2.9: Symmetric vertical mode for the Sulafjorden Bridge.

Figure 2.10: Antisymmetric rotational mode for the Sulafjorden Bridge.
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The mass of the main cables is so much larger than the mass of the deck that they will

dominate the inertia distribution. The frequency modes pictured above will become

progressively more similar to those of stand-alone cables, for a super long suspension

bridge. This phenomenon is critical to the vertical and rotational modes, as the vertical

and rotational modes become closer for increasing spans.

"At the limit, if the two main cables were in a stand-alone, perfectly restrained condition,

the two modes (vertical and rotational) would have the same frequency, corresponding

to in-phase and out-phase oscillations of the two identical perfect cables[1]."

Similar frequency of vertical and torsional modes are far from ideal because of the most

dangerous form of aeroelastic instability, i.e., classic flutter (see Section 3.3.2). There are

numerous factors, of different significance, which contribute to maintaining a certain

frequency separation between the frequencies, the main one being:

• The ratio between torsional and vertical stiffness of the deck. This can be tuned

by modifying the design of the deck, but it is less effective with increasing spans.

• The towers properties, specifically the sag to span ratio and its stiffness for

rotation about its vertical axis.

• The connections between the deck and the main cables. At some bridges, the

main cables are connected directly to the mid-span via triangulated steel struts

and ropes. This helps to modify the relative values of vertical and rotational

stiffness in the bridge.

• Use of transversely inclined cross hangers(instead of vertical) or using a mono

cable system.

• Cross-section design (aerodynamic properties). This requires testing, but could

be the cheapest solution.

The proposed Messina Bridge has a frequency ratio (rotational/vertical) of 1,36.

Existing bridges has a frequency ratio typically well over 2, with a minimum of 3,35

for the current world record holder the Akashi Bridge. Existing bridges tend to exhibit

critical wind speed for flutter of the order of 60° 70 m
s . However, this limit depends

on the geographical location of the bridge. Reaching similar values for a bridge with a

frequency ratio of 1,36 is extremely difficult. This defines the second main issue with

designing super long span bridges, namely achieving a flutter stability.

A major improvement to help solve the problem of aeroelastic instability was the

adoption of an orthotropic stiffened plate streamlined closed box deck. Such a deck

was light weight and had good torsional stiffness because of the closed box shape. This

type of deck has been very successful in the last forty years. However, the closed box

deck as its disadvantages. The flat wing shape and large solid lower surface results in
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large lift forces and thus creates problems considering the aeroelastic stability. This

type of deck is still the best option for bridges up to 1500 meters, but progressively lose

its best properties for longer spans.

It was in needed a low-weight, low-lift highly stable deck. A genuine evolution of the

concept was proposed in the early seventies by W.C. Brown with the idea of combining

low weight Severn type box decks with voids: the so called “vented deck” concept. And

it is such a type of deck which is going to be used in this thesis. A twin-box girder type of

deck is chosen because of the light-weight and stable properties. Flutter or aeroelastic

instability is not optimized in this thesis other than the choice of the twin-box deck.

Figure 2.11 shows the twin-deck of Stonecutters Bridge under construction.

Figure 2.11: Building of Stonecutters Bridge (USA 2013) [2].
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3 Theory

3.1 Theory Used for Preliminary Design

3.1.1 Cable System

Theory used to determine the theoretical quantity of cable steel are taken from "Cable

Suspension Bridges" of Gimsing and Georgakis [6]. For a single cable the theoretical

mass of cable steel can be defined by:

Qcb,1 =
∞cb

fcbd
Tcblcb (3.1)

where lcb is the cable length, Tc b is the axial force, fc b d is the design cable stress and ∞c b

is the cable density. By dividing the main cable in n cable elements the total theoretical

mass of cable steel is derived as:

Qc b ,t o t =
∞c b

fc b d

nX

i=1
Tc b ,i lc b ,i (3.2)

The cable suspension system considered is shown in Figure 3.1a, where the vertical

forces from the hangers are uniformly distributed. Based on a cable system with 2n

vertical forces P , the theoretical mass of cable steel required can be determined by a

summation of the mass in the hanger i ° i 0 and the main cable element i 0 ° (i +1)0, ref.

Figure 3.1b. This figure shows the right side of the suspension system, where ∏ is the

internal distance between each hangers, l is the length between the cable supports and

h is the cable sag.

13
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(a) Basic suspension system. (b) Geometry.

Figure 3.1: Suspension bridge concept [6].

From the geometry in Figure 3.1b the theoretical quantity is determined as [6]:

Qc b ,t o t = 2P
∞c b

fc b d

∑
1
4

n(n+1)
∏2

h
+

nX

i=1

i (i °1)
n(n +1)

h+
nX

i=1

n(n +1)
2h

µ
∏2+ 4h2

n2(n +1)2 i 2
∂∏

(3.3)

The first and the third term are related to the main cable mass, and the second term

is related to the mass of the hangers. Further, the contributions for the hangers are

neglected.

When assuming a large number of hangers (n !1), the theoretical mass of main cable

steel can be written as:

Qc b ,m a i n = pl
µ

l 2

8h

∂
∞c b

fc b d
(3.4)

where p is the load per unit length.
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3.2 Dynamic Response

Theory behind the dynamic response computations are presented in this section.

3.2.1 Background Theory

The equation of motion is given by:

Mr̈ (t )+C ṙ (t )+K r (t ) =Q(t ) (3.5)

where M ,C and K are the mass, damping and stiffness matrices related to the structure,

and r (t ) and Q(t ) are the response and load vector. The dynamic response get

contributions from each modes in the system. These modes are found by solving the

following eigenvalue problem:

(K °!2
i M)¡i = 0 (i = 1,2, ...,nmodes ) (3.6)

where !i is the eigenfrequencies and ¡i is the corresponding shape modes. Now, the

modal transformation becomes:

r i (x, t ) =¡i (x)¥i (t ) (3.7)

where ¥i (t ) are the time varying unknown values for vibration mode number i . This is

used to create a reduced order model. Equation 3.5 can be transformed to generalized

form:

M̃ ¥̈(t )+C̃ ¥̇(t )+ K̃¥(t ) = Q̃(t ) (3.8)
M̃ =¡T M¡, C̃ =¡T C¡

K̃ =¡T K¡, Q̃ =¡T Q
(3.9)

3.2.2 Buffeting Theory

The buffeting theory is used to describe the wind forces acting on the structure. Theory

in this section is taken from Strømmen [22]. The underlying assumptions behind

buffeting theory are:

• The bridge can be described with a beam-like behaviour (see Figure 3.2).

• Structural displacements and rotations are small.
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• Fluctuating wind components are small compared with the mean wind flow.

• Linearization of any fluctuating parts will render results with sufficient accuracy.

• The wind field is stationary and homogeneous.

• Quasi-steady loading. I.e. the aerodynamic forces at any time depend only on the

instantaneous position of the girder at that particular moment.

In Strømmen [22] the total wind load is derived as:

q tot = q +B q v +C ae ṙ +K ae r (3.10)

where

v =
h

u w
iT

(3.11)

r =
h

ry rz rµ
iT

(3.12)

q =

2

64
q y

q z

qµ

3

75= ΩV 2B
2

2

64
(D/B)C D

C L

BC M

3

75 (3.13)

B q = ΩV B
2

2

64
2(D/B)C D (D/B)C

0
D °C L

2C L C
0
L + (D/B)C D

2BC M BC
0
M

3

75 (3.14)

C ae =°ΩV B
2

2

64
2(D/B)C D (D/B)C

0
D °C L 0

2C L C
0
L + (D/B)C D 0

2BC M BC
0
M 0

3

75 (3.15)

K ae =°ΩV 2B
2

2

64
0 0 (D/B)C

0
D

0 0 C
0
L

0 0 BC
0
M

3

75 (3.16)

The total wind load includes one static (mean) part, q , and one fluctuating (dynamic)

part. B q v is the buffeting term, i.e. loading associated with the turbulence, while C ae ṙ

and K ae r are the motion induced load term. V is the mean wind velocity, v is the

turbulence wind velocity, Ω is the air density, and B and D are the width and height
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of the girder section. The static load coefficients is described by the following linear

approximation [22]:

Ci =Ci (Ǣ)+Æ f C
0
i (Ǣ), i = D,L, M (3.17)

Where Ǣ and Æ f are the mean value and the fluctuating part of the angle of incidence,

and where C
0
D ,C

0
L and C

0
M are the slopes of the load coefficient curves at Ǣ. D ,L and M

indicates drag, lift and moment, respectively.

Figure 3.2: Beam representation of the girder including wind fields w and u.

In order to detect the horizontal and vertical response, ry and rz , contributions from

the vertical wind field to the horizontal response are neglected, and vice versa. This

assumption is used to simplify the calculations. However, to get more accurate results,

both wind fields should be included in each directions. The system in Equation 3.8 can

be reduced to a SDOF system related to both y- and z- direction:

M̃ ¥̈(t )+ C̃ ¥̇(t )+ K̃¥(t ) = Q̃(t ) (3.18)

ry (x, t ) =¡y (x)¥y (t )

rz (x, t ) =¡z (x)¥z (t )
(3.19)
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Extracting the matrix elements from Equation 3.13-3.16 related to the corresponding

direction, leads to the following equations (not considering the static part of the

loading):

• Y-direction:

Q(x, t ) = B q[1,1]u(x, t )+C ae[1,1]ṙ y (x, t )+K ae[1,1]ry (x, t ) (3.20)

Q̃Dr ag (t ) =
ZL

0
¡y (x)ΩV DC D u(x, t )d x, K̃ae = 0

C̃ae =°ΩV
ZL

0
¡y (x)2DC D d x

(3.21)

• Z-direction:

Q(x, t ) = B q[2,2]w(x, t )+C ae[2,2]ṙz (x, t )+K ae[2,2]rz (x, t ) (3.22)

Q̃Li f t (t ) =
ZL

0
¡z (x)

1
2
ΩV (BC

0
L +DC D )w(x, t )d x, K̃ae = 0

C̃ae =°1
2
ΩV

ZL

0
¡z (x)2(BC

0
L +DC D )d x

(3.23)

By applying the Fourier transform on r (t ) and Q(t ) it can be shown from Equation 3.8

and 3.10 that the frequency response function (FRF), H̃(!), is written as:

H̃(!) = 1

(°!2M̃ + i!(C̃ °C̃ ae )+ K̃ ° K̃ ae )
(3.24)

¥(!)y/z = H̃(!)Q̃D/L(!] (3.25)

The FRF can easily be rewritten to a SDOF (Single Degree of Freedom) system related to

each direction.
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3.2.3 Fourier Transform

A function y(t ) in the time domain can be converted to a function Y (!) in the frequency

domain by the use of the Fourier transformation. The Fourier transformation splits

the function into a sum of harmonic components. For a function y(t ) the Fourier

transformation is given by Equation 3.26 and 3.27 [14]:

Y (!) =
Z1

°1
y(t )e°i!t d t (3.26) y(t ) =

Z1

°1
Y (!)ei!t d! (3.27)

3.2.4 Power spectral Density

The Power Spectral Density (PSD) gives a representation of how the power of a

signal is distributed over its frequencies. For two stochastic signals x(t) and y(t) the

cross-correlation function Rx y is defined as:

Rx y = E [x(t )y(t +ø)] (3.28)

Here ø is the time lag. The PSDs can be obtained by computing the correlation

functions first and then Fourier transforming them. This approach is known as the

Blackman-Tukey procedure [15]:

Sx y (!) =
Z1

°1
Rx y (ø)e°i!t d t (3.29)

Where Sx y is the cross-spectral density. If x = y it is called the auto-spectral density.

The auto-spectral density functions are real functions, while the cross-spectral density

functions are complex.

3.2.5 PSD relations

The auto correlation function for the generalized load related to lift or drag, Q̃L/D , can

be obtained from Equation 3.28:

RQ̃L/D
(t1, t2) = E [Q̃L/D (t1)Q̃L/D (t2)] (3.30)

When assuming a stationary and homogenious wind field, the auto correlation

functions can be written as:
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RQ̃D
(t1, t2) = (ΩV DC D )2

ZL

0

ZL

0
¡y (x1)¡y (x2)Ru(±x,ø)d x1d x2 (3.31)

RQ̃L
(t1, t2) = (

1
2
ΩV (BC

0
L +DC D ))2

ZL

0

ZL

0
¡z (x1)¡z (x2)Rw (±x,ø)d x1d x2 (3.32)

Where ø = t2 ° t1 and ±x = x2 ° x1. Inserting the obtained equations for RQ̃D/L
(ø) in

Equation 3.29 gives the following expressions for the auto spectral density:

SQ̃D
(!) = (ΩV DC D )2

ZL

0

ZL

0
¡y (x1)Su1u2 (±x,!)¡y (x2)d x1d x2 (3.33)

SQ̃L
(!) = (

1
2
ΩV (BC

0
L +DC D ))2

ZL

0

ZL

0
¡z (x1)Sw1w2 (±x,!)¡z (x2)d x1d x2 (3.34)

Where Su1u2 and Sw1w2 is the cross spectral density of the turbulence wind. From

Equation 3.25 and an alternative definition of the auto spectral density [15], the relation

between the modal FRF and the modal response spectrum can be obtained:

S¥y (!) = H̃§(!)SQ̃D
(!)H̃(!) (3.35)

S¥z (!) = H̃§(!)SQ̃L
(!)H̃(!) (3.36)

And the response spectra becomes:

Sy/z (!) =¡y/z (!)S¥y/z (!)¡y/z (3.37)

From the same alternative definition of the PDS, and the fact that ṙ = i!r , the relation

between response-PDS and acceleration-PDS are given as:

Sr̈ =!4Sr (3.38)

Further, the variance of any process, x, can be calculated from [22]:

æ2
x =

Z1

0
Sx (!)d! (3.39)
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3.2.6 Extreme Values

The fluctuating part of the response is assumed to be represented by a narrow banded

Gaussian stochastic process with zero as expected value. The maxima of such process

are Rayleigh distributed. Consider a time interval with includes N maximum values,

then the expected value of the largest maximum can be obtained as [13]:

Xmax = x +æx [
p

2l n(N )] (3.40)

where x is the static response. The time interval (or reference period), T , is chosen to

be 10 minutes in this thesis. Note that this value is uncertain.

In order to find the number of maximum values (N), i.e., the number of oscillations

within the time interval, the following relation is used:

N = T
fh

(3.41)

Where fh is the first horizontal frequency.

3.3 Motion Induced Instabilities

Long suspension bridges are in general sensitive to wind actions. Both static and

dynamic response will increase when the wind velocity increases, and in some cases,

the total response develops towards an unstable state. The instability limit is identified

as a condition where a small increase of mean wind velocity results in a rapidly

increasing response [22]. In this thesis, the instability term is only included in a case

study of a bridge where the aerodynamic coefficients are obtained from wind-tunnel

tests.

Structural instabilities can be detected by the impedance matrix which is based on the

equation of motion [22]:

Ẽ¥(!,V ) =
∑

I °K ae °
≥
! ·di ag

h 1
!i

i¥2
+2i! ·di ag

h 1
!i

i
· (≥°≥ae )

∏
(3.42)

Where:

H̃¥ = Ẽ°1
¥ (3.43)
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≥ is the damping ratio matrix and ≥ae is the aerodynamic damping ratio matrix. i

is the imaginary unit and I is the identity matrix. When the determinant of the

impedance matrix is zero, the response goes towards infinity. I.e., the structure reaches

the instability limit.

3.3.1 Aerodynamic Derivatives

For strong winds, quasi-static load coefficients are no longer working as an

approximation, due to large structural motions. When considering high wind velocities,

structural instabilities are in focus. The main use of aerodynamic derivatives (AD) lies

in the detection of unstable motions. The theory behind the aerodynamic derivatives

and their application on bridges are developed by Scanlan & Tomko [18]. This theory

takes into account the fact that the natural frequencies changes due to aerodynamic

damping and stiffness. The content of Cae and Kae are now functions of the frequency

of motion, in addition to the mean wind velocity and type of cross-section as defined in

section 3.2.2:

C ae =
ΩB 2

2
!i (V )

2

64
P§

1 P§
5 BP§

2

H§
5 H§

1 B H§
2

B A§
5 B A§

1 B 2 A§
2

3

75 (3.44)

K ae =
ΩB 2

2
!i (V )2

2

64
P§

4 P§
6 BP§

3

H§
6 H§

4 B H§
3

B A§
6 B A§

4 B 2 A§
3

3

75 (3.45)

Here !i (V ) is the mean wind velocity dependent resonance frequency associated with

mode shape i . P§
i , H§

i and A§
i , i=1,2..6, are the dimensionless ADs which are functions

of the reduced wind velocity (Vr ed = B!
V ).
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3.3.2 Flutter

Flutter is one type of instability issue related to long-span bridges, where the modes

couples. The flutter instability limit is identified as when the determinant of the

impedance matrix is zero (see Equation 3.42). Since the AD values only can be extracted

when the critical frequency and critical wind velocity are known, this is an iterative

procedure.

Typically, the coupling is related to the first vertical and first rotational mode, given that

these are shape-wise similar. The shape-wise similarity between modes is essential for

modal coupling. If two modes are dissimilar shape-wise, the off-diagonal terms in Kae

equals zero, which indicates that coupled flutter does not occur [24]. Multiple modes

can interact and couple as long as they have some shape-wise similarities.

When induced to high wind speeds the modes changes due to aerodynamic forces (Kae

changes). The rotational stiffness tends to decrease with increased wind velocity, while

the vertical stiffness is slightly increasing. This coupling effect is shown for two modes

in Figure 3.3. Note that flutter instabilities become more and more critical as the bridge

span increases, as mentioned in Section 2.2.2.

Figure 3.3: Coupling between one rotational and one vertical mode [2].
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3.3.3 Multimodal Flutter Computation in MATLAB

The multimodal flutter calculations are in this thesis based on a MATLAB script

provided by Ole Øiseth. This script uses an iterative solution method. The flutter

computations are based on the eigenvalue which comes from the homogeneous

solution of the equation of motion. It is possible to only consider the homogeneous

solution because flutter instabilities are based on self-exited forces. The homogeneous

solution can be written on the form [4]:

r (t ) =CeSt (3.46)

Where C is a constant (not considered any further). This approach gives the following

eigenvalue:

S =°≥n!n ± i!n

q
1°≥2

n (3.47)

Here n indicates the natural mode number, !n is the nth natural frequency and ≥n is

the nth damping ratio. The eigenvalues are computed for different wind velocities,

and this provides information about changes in frequencies and damping ratios with

a wind increase [3]. Eigenvalues have one real and one imaginary part. The imaginary

part gives insight into the natural frequencies, whereas the real part is related to the

damping. Flutter occurs when the damping (real part) is zero. This is illustrated in

Figure 3.4, which is the MATLAB output for an example where two modes couples.

Figure 3.4: Real and imaginary part of the eigenvalue for two modes (torsion and
vertical).



4 Loads and Response

In order to compute the static and dynamic response the loads need to be defined,

a preliminary design has to be chosen, and the FE-model have to be created. In this

section, the loads are defined and response calculation methods are presented, while

the preliminary design and the structural model are shown in later chapters.

4.1 Loads

Safety factors used in calculations are listed in Table.4.1.

Table 4.1: Safety factors

Self weight 1.2
Traffic 1.5
Wind 1.6

4.1.1 Permanent Loads

The dead loads are estimated from the weight of the specific load-bearing structure

including stiffening plates, asphalt, railings, clamps, and other equipment. The main

cable area is computed in MATLAB (see Section 5.3) and to account for non-considered

parts this value is increased by five percent. The girder and cross beam area are

computed in Cross-X. Due to additional mass, the girder mass is increased with 4262 kg
m

per girder, which is the value used for added mass in the Hardanger Bridge project

[21]. This assumption should be sufficient due to similar geometries. The mass per

unit length of each component is adjusted in the optimization process. However, the

mass related to the cross-beams are assumed to be constant equal an average value. In

Table 4.2 average mass per unit length for different components are tabulated (average

values of the design variables are used). This table shows the magnitude of the mass for

a bridge in this scale.

25
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Table 4.2: Average component mass added in Abaqus. Values are related to the smallest
girder. Steel density: Ω = 7850kg /m3.

Components Mass [kg/m]
Main cable 4782 (MATLAB) + 5%
Each girder 3474 (Cross-X) + 4262
Cross beam 1970 (Cross-X)

4.1.2 Traffic loads

Traffic loads are computed according to NS-EN 1991-2, Traffic loads on bridges. It is

assumed two driving lanes for each girder section, in total 9 meters carriageway, see

Figure 5.3. The computationally driving lane width is 3 meters. Thus, it is required to

include three driving lanes for the carriageway, but only two are loaded at the same

time. Each girder section also has a 1.5 meters wide pedestrian rail.

The traffic load models are divided into two parts: Long influence lengths and short

influence lengths. Long influence lengths are used for the global calculations in the

initial design. Horizontal traffic loads are neglected. According to the standard, the

girder is loaded as shown in Figure 4.1.

Figure 4.1: Traffic load model for long influence lines. 9kN /m on the driving lanes and
2kN /m on the pedestrian rail.
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Short influence length load models are related to the girder, cross-beams and hangers.

In this study, the cross-beams are controlled according to traffic loads from the short

influence length model. In this load-model it is possible to load all three driving lanes

at the same time.

Table 4.3: Uniformly distributed loads for short influence lengths.

Location Square load Corr-factor Width Length load
Q[kN /m2] Æ b[m] q=QbÆ[kN /m]

Lane 1 9 0.6 3 16.2
Lane 2 2.5 1.0 3 7.5
Lane 3 2.5 1.0 3 7.5

Pedestrian road - - 1.5 2 (Assumed)

The most critical load combination for the cross-beams is shown in Figure 4.2. This load

situation induces max moment along the cross-beams. The calculations are completed

in preliminary design, see Section 5.5. Note that concentrated loads due to traffic not

are considered in this thesis.

Figure 4.2: Short influence length load model: Critical load combination for the
cross-beams.
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4.1.3 Wind Loads

Static wind induces forces in the entire structure. The girder is subjected to drag, lift

and rotational forces, while the main cable is induced to drag effects, only. Static wind

loads on the pylons and the hangers are neglected.

Wind velocities:

The 10 minutes mean wind velocity are computed according to NS EN

1991-1-4:2005+NA:2009, and depend on terrain roughness, terrain shape and basic

wind velocity. The mean wind velocity are defined as:

vm(z) = cr (z)c0(z)vb (4.1)

Where cr is the roughness factor a d c0 is the terrain factor. vb is the basic wind velocity

which is defined as:

vb = cdi r cseason vb,0vpr ob (4.2)

The direction and season factor are conservatively set equal 1. The reference wind

velocity,Vb,0, varies geographically according to Table NA.4(901.1). These values are

valid for a 50 years return period. The probability factor, vpr ob , is used to adjust

reference wind velocities for other return periods, and is defined as:

vpr ob =
≥1°K ln(°l n(1°p))

1°K ln(°ln(0.98))

¥n
,K = 0.2,n = 0.5, p = 1

R
(4.3)

Where R is the return period in years. Note that vpr ob = 1 when R = 50. As

recommended in the Eurocode, the roughness factor calculations are based on a

logarithmic function:

cr (z) = kr ln(
z
z0

) (4.4)

The listed values in Table 4.4 are used in the calculations of the mean wind velocities.

Vmean is plotted in Figure 4.3. The return period is set to 50 years.
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Table 4.4: Mean wind parameters (NS-EN 1991-1-4:2005)

Terrain category kr z0[m] zmi n[m] Vb,0[ m
s ]

1 0.17 0.01 2 30

Figure 4.3: Mean wind velocity.

Girder loads:

The static wind loads are based on the buffeting theory explained in Section 3.2.2. The

mean wind velocity used in computations are related to the mean deck height. The

deck is set to vary from 57.5 m to 77.5 m above medium sea level, which results in a

mean height equal 70.8 m. From Figure 4.3 the mean wind velocity is:

vm,Gi r der (70.8) = 45.2
m
s

(4.5)

Wind force coefficients for the chosen design should be determined by wind tunnel

testing. In this study the coefficients are based on the report from Rambøll [16], due to

a similar girder design. Note that these coefficients are based on the Eurocode, and may

be inaccurate for such complex twin-deck design. Equation 3.13 is used to compute the

static wind forces.

Table 4.5: Wind force coefficients.

Structure CD CL CM C0
L C0

M
Girder 1.20 -0.15 0.30 6.30 1.00
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Figure 4.4: Static wind forces on girder.

Cable Loads:

The resulting cable drag varies for different bridge geometries due to varying cable

diameter and sag values. As a simplification the mean wind velocity is based on

the cable geometry with the lowest sag value. The mean height for 260 meter sag is

approximately 117 meter above medium sea level.

vm,C able (117) = 47.8m/s (4.6)

The drag coefficient on the main cable are computed according to NS-EN 1991-1-4

chapter 7.9: Circular Cylinders. Calculations are carried out in Mathcad, see Appendix

B. The cable diameter calculated in the preliminary design is increased with about 15%

to include the cable protection layers.

Figure 4.5: Cable drag forces.
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4.2 Static Response

To compute the static displacement due to mean wind, the forces are applied in Abaqus

as shown in Figure 4.4 and 4.5. Drag, lift and moment loads are applied as concentrated

forces in the middle of each cross-beam, i.e., 20 meters loading intervals. Drag load on

the main cables are applied to each node, i.e., for every second meter.

Displacement values from Abaqus are extracted through a MATLAB-script. In Abaqus

keyword, a node set is selected, and the displacement of these nodes can be printed

as output in the data file from Abaqus. The script reads this data file, and gather the

information. Similar methods are used to extract other information from Abaqus, such

as sectional forces.

4.3 Dynamic Response

The dynamic response is based on buffeting load theory with aerodynamic derivatives

and still-air natural frequencies. A simplified response calculation is applied to the

system: Single mode single component response calculations [22]. The underlying

assumption related to this method is that each mode shape contains only one

component, i.e., any mode shape is purely horizontal, vertical or torsional. Calculations

will be included in the optimization process. The dynamic response is computed in

order to introduce a dynamic term to the optimization. Due to limited time, only this

simplified calculation method is applied.

The variance of the fluctuating part of the response is carried in the MATLAB script

"calc_r esp_spectr a_u.m." Information about the chosen mode is gathered from

Abaqus. The modal frequency, mode shape and modal mass are extracted and used

as input in the script. Damping is set equal 0.002 for all geometries.
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Figure 4.6: Horizontal wind spectra. Figure 4.7: Generalized drag load spectra.

Figure 4.8: Frequency response function. Figure 4.9: Response spectra mid span.

To compute the standard deviation of the wind, the chapter about wind turbulence in

NS-EN 1991-1-4 is used. Further, manual N400 for bridge design is used to compute

the wind spectra. Typically low frequent wind induces the largest amount of energy to

the system. This is shown in Figure 4.6. The generalized load spectra is computed from

Equation 3.34 or 3.33, depending on which load that is of interest. The load spectra is

shown in Figure 4.7.

The FRF gives information about the relationship between load and response, related to

each mode. Abs(H̃(!)) is plotted in Figure 4.8 for the first horizontal mode. To compute

the response spectra, the FRF is used in following Equations: 3.35, 3.36 and 3.37. In

Figure 4.9 the horizontal response spectra are plotted for the mid-bridge span. Note

that the figures used for visualization in this section are based on one specific geometry:

Tower height of 340m and gap between girders of 10m.

Numerical integration of the response spectrum obtains the variance of the response.

When calculating the final dynamic response, extreme values are of interest. The

maximum response is found by using Equation 3.40.



5 Preliminary Design of the Bridge

When designing a bridge, an estimate of forces and dimensions of main structural

parts are of interest. The preliminary design is based on simplified calculations using

basic structural mechanics. These calculations are often conservative and give room

for improvements. The initial estimate is used in the design of the FE model, which is

further used to make a more accurate design of the structure.

Preliminary designs for different construction parts are presented in this section. The

design is inspired by conceptual suggestions provided by Rambøll and Multiconsult, in

addition to the Hardanger bridge project. When calculating the initial design, a worst

case scenario for each structural part (girder, hangers, cables) is considered.

Due to a parametrized bridge model, the preliminary design needs to adapt for different

geometries. How the design of each structural part is varied will be emphasized.

5.1 Geometry

The main span of the bridge is set to 2800 meters, based on Multiconsults suggestion

(see Figure 5.1) [12]. Another report created by Rambøll [16] suggest a two-span

solution where each span is around 2000 meters. However, a one-span system is chosen

in this thesis. Figure 5.1 shows the dimensions of the bridge. Dimensions related to the

girder cross-section is presented later in Section 5.4.

Figure 5.1: Sketch with dimensions

33
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5.2 Materials

The material properties for the bridge components are given in Table 5.1. Values are

taken from the Hardanger bridge project [21], except for the main cable tensile strength

which is increased to the highest available quality [12].

Table 5.1: Material properties.

[Mpa] [Gpa]
Girder fy = 355 E = 210
Cross beam fy = 355 E = 210
Main cable fu = 1860 E = 200
Hangers fu = 1570 E = 200
Pylon fck = 45 E = 40

5.3 Cables and Hangers

5.3.1 General Design

Preliminary design of the main cables is based on a suspension system with vertical

loads working on the main cable from the hangers (P +G2) in addition to the cable

self-weight (G1), as shown in Figure 5.2. Load from the hangers includes both girder

self-weight and dead load (G2), and traffic load (P ), while the hanger self-weight is

neglected. The cable self-weight is calculated based on the assumption of a parabolic

cable shape and adjusted to work as a load per unit length of the bridge. Calculations

are carried out through the MATLAB script "cablepreliminarydesign.m".

Figure 5.2: Cable loads.
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From Equation 3.4 the cable cross section area is derived:

p =G1+ (P +G2) (5.1) G1 = Am a i n ∞̂c d g (5.2)

∞̂c d = ∞c d
lc a b l e

l
(5.3) Am a i n =

Qc b ,m a i n

(l∞c b)
(5.4)

) Am a i n = (P +G2)l 2

(8h fc b d ° ∞̂c d g l 2)
(5.5)

Where g is the gravity and ∞̂cd is the cable density related to the length l between the

supports. The design stress ( fcbd ) is set equal the ultimate tensile strength divided

by the material coefficient (∞m = 2). I.e., the cables are set to 50% utilization when

subjected to traffic- and dead load.

5.3.2 Cable Variations in Parametrization

The "Cablepreliminarydesign" script is implemented in the geometry parametrization

and is used to adjust the cable area with different sag heights. As a simplification the

side cables are assumed to be equal the main cables. For the hangers, area values from

Hardanger Bridge are used. It is also created a script, "sag_calc.m", that calculates the

initial cable geometry used as Abaqus input, related to the final cable geometry after

elongation. This is necessary because the elongation of the cable varies.

5.4 Cross Section of the Girder

5.4.1 General Design

The girder design is mainly taken from Rambølls conceptual report of the Sula Bridge

Crossing [16] and the Hardanger Bridge Project [20]. The chosen design is shown in

Figure 5.3. The girder plate thicknesses, which are one of the design variables in the

optimization (see 5.4.2), is defined in Figure 5.5. The dimensions of the road rail and

pedestrian rail are assumptions, which affects the applied traffic load.

To prevent buckling, longitudinal stiffeners are added to the section. These stiffeners

are taken from the cross section of the Hardanger Bridge [21], with approximately

the same spacing. The stiffeners are assumed to be unchanged for all cross sections.

Transverse bulkheads are added to the girder with four meters intervals. These

stiffeners are also based on the Hardanger project, see Figure 5.4.
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Figure 5.3: Suggested cross section .

Figure 5.4: Stiffeners. Left: Used for the top plate. Right: Used for the remaining section
plates [21].

Figure 5.5: Girder plate thickness.

The cross section is modelled in Cross-X, see Figure 5.6. This program is used to

compute sectional parameters, but the mass of inertia has to be estimated manually.

These calculations are shown in Appendix B. It is assumed that the only contributions

are the box girder itself, in addition to the railings and slab.
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Figure 5.6: Right box girder modelled in Cross-X.

5.4.2 Girder Variations in Parametrization

The girder plate thickness is chosen to be the varying parameter related to the

cross-section. By varying the plate thickness only, it is possible to change the girder

parameters without changing the bridge geometry in Abaqus. This is mainly because

the center of mass location (where the beam is placed in Abaqus) is close to unchanged

when the thickness is increased uniformly. Due to limited time, this approach is

beneficial.

Advantages to alter the cross section parameters by varying the plate thickness:

• The aerodynamic coefficients are constant due to unchanged outer geometry

• The additional weight(asphalt, railings, etc.) are constant

• The cross section geometry implemented in Abaqus remains unchanged

• The optimization becomes less complex when the varying parameters does not

introduce other changes in the model

5.4.3 Ultimate Limit State (ULS)

Complete stress analysis of the girder could be a complicated and time-consuming

task. Optimally, a comprehensive stress analysis should have been included in each

geometrical combination. In this study, buckling and yield capacity are only controlled

for the smallest cross-section of the ones included. This reduces the complexity of the

optimization. However, this gives an indication of the girder utilization.

The main forces acting on the deck are bending moment about the horizontal and

vertical axis, and axial forces. Note that pretension forces are not included in

calculations. The design bending moment about the horizontal axis, ME d ,y , are based

on both traffic and wind loads. Sectional forces due to traffic loads are carried out using

influence lines (explained in Section 5.6.2). Here, the long influence length model is
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used as traffic load, ref. 4.1.2. Actions due to wind are extracted directly from Abaqus.

The sectional forces used in design caused by wind are reduced to Nx , My and Mz . See

Figure 5.7 for directions. Load combinations with corresponding factors are listed in

Table 5.2:

Table 5.2: Load combinations. NS-EN 1990:2002, Eq.6.10b.

Load comb.(LC) Leading live load
Load factors

Self weight Traffic Wind
1 Traffic 1.2 1.5 1.6*0.7=1.12
2 Wind 1.2 1.5*0.7=1.05 1.6

The design forces are computed for both maximum and minimum gap width, and

compared. Resulting forces are shown in Table 5.3.

Figure 5.7: Visualization of elements.

Table 5.3: Design forces in critical point(0.05*L), ref. Figure 5.18. Values extracted from
a model with tower height of 350m, and the smallest girder (w=wind, t=traffic, sw=self
weight).

LC Gap[m] El. Nx,w [kN] Mz,w [kNm] My,w [kNm] My,(t+sw) [kNm]

1
7

33 -17220 13600 4347 46327
733 17290 13600 -4551 46327

14
33 -15220 6217 3379 46327

733 15290 6200 -3402 46327

2
7

33 -23980 19390 6032 42870
733 24106 19390 -6538 42870

14
33 -21280 8850 4735 42870

733 21430 8817 -4889 42870
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Design forces are applied as sectional forces in Cross-X. All force combinations are

controlled. Figure 5.8 and 5.9 shows the resulting critical stress state for the top and

bottom plate. Note that a smaller gap between girders results in higher forces, since the

drag forces are taken up in the structure as a force pair working as axial forces. I.e., when

the gap increases, the forces are lowered. Since the drag is added in positive y-direction,

the inner girder (el. 33) is in compression whereas the outer girder (el. 733) is in tension.

Figure 5.8: CrossX: Stress distribution. Critical for top-plate.

Figure 5.9: CrossX: Stress distribution. Critical for bottom-plate.
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Buckling:

Buckling capacity are computed for the top and bottom plate in Appendix B, according

to NS-EN 1993-1-1(General rules) and NS-EN 1993-1-5(Plates). Short distance between

the transverse stiffeners make the girder plates stiff against buckling. Due to local

buckling the section will have a reduced active area, and the critical axial forces found

can be computationally equivalent to a reduced critical stress:

æ
top
cr = 261M pa, æbot tom

cr = 260M pa (5.6)

Based on the stress-distribution shown in Figure 5.8, the top plate is within the design

limits, with only 63 percent utilization. Note that point loads from local traffic not

are considered in the calculations. These loads will affect the degree of utilization

significantly for the top plate. However, due to a low utilization percent, it is assumed

that the cross-section has enough capacity.

The bottom plate is also within the limitations, and have an utilization degree of 96

percent (see Figure 5.9). Note that these simplified calculations not are sufficient, and

more detailed calculations should be carried out, e.g. in a design program. However,

these calculations provides a useful estimate of the capacity.

5.5 Cross Beams

5.5.1 General design

The design of the cross beams are also taken from Rambølls conceptual report [16]. The

stiffeners are similar the ones used for the girder top plate, see Figure 5.10. It is assumed

that each cross-beam carries load from 20 meters, since they are situated with the same

spacing as the hangers. The most critical traffic load combination are shown in Section

4.1.2, based on the short influence length load model.

Figure 5.10: Cross beam modelled in CrossX.
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The cross-sectional properties are computed in Cross-X. A simply supported beam

model is created in Robot, which is used to find the design bending moment. Figure

5.11 shows how the loads are applied, and the moment along the beam. The load

input are computed according to Figure 4.2. The span is equal to the distance

between the main cables, and it is assumed a constant stiffness along the entire

beam. The cross-beam length (gap width) does not rise any changes in moment since

contributions from self-weight are relatively small. In reality the cross-beams have

limited stiffness compared with the main girders. However, the resulting mid-span

moment is almost unaffected by a stiffness change along the loading zone of the beam

(where the girders are located).

Figure 5.11: Robot: Applied load and resulting bending moment.

The moment mid-span is applied as a section force in Cross-X. The resulting

stress-distribution is shown in Figure 5.12, and is within the design limits. Buckling is

not taken into consideration.
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Figure 5.12: CrossX: Stress distribution.

5.5.2 Girder Variations in Parametrization

The cross beam design is unchanged in the parametrization procedure, only the span

length varies. This is due to the fact that the beam forces are unaffected by the span

length. Note that buckling is more critical as the span length increases. However, this is

not in focus.

5.6 Pylons

The pylon design is taken from Multiconsults conceptual report [12] because they have

also have a one-span system. Compared with Rambølls design, with two spans, a

one-span system requires higher towers. Due to limited time, calculations related to

the pylons are not considered in this thesis. When the towers are at its highest (400m)

buckling becomes an important consideration. Computations done by Multiconsult

for a 343 meter high pylon (similar design) shows a large degree of security towards

buckling [12].
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5.6.1 Pylon Variations in Parametrization

The tower height is one of the parameterized terms in the optimization process. The

placement of the tower foundations is kept unchanged, which results in a varying tower

inclination. This is visualized in Figure 5.13. The number of transverse pylon-beams

is held constant to simplify the parametric model. Also, the cross-sections are kept

unchanged. Hence, the stiffness will be reduced as the tower height is magnified. It is

possible to make this parametrization with more accurate approaches, but it will not

affect the model significantly. Note that the distance between the tower legs is adjusted

when the box-girder gap width alters.

Figure 5.13: Visualization of varying tower inclination (height: 400-300m).
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5.6.2 Influence Lines

Influence lines are an essential tool in designing beams and trusses used in bridges. The

influence lines show where a load will create the maximum stress for a chosen part of

the bridge. Influence lines are found by loading the girder with a unit load, and noting

the force in a selected node as the unit load moves across the bridge. Influence lines are

both scalar and additive. This means that the principle of superposition is valid, and

it is possible to find the forces even if the applied load is not a unit load or if there are

multiple loads applied.

In the Abaqus model a unit load will be placed on both girders every 10th meter, i.e. at

every hanger, and once between every hanger, see Figure 5.14. Figure 5.15 shows the

process of creating influence lines in Abaqus.

Figure 5.14: The Sulafjorden bridge is shown with a unit load placed a distance x from
the left end. The influence lines is created by plotting the force in a node for each
distance x.
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Figure 5.15: Stucture of ABAQUS analysis for generating influence lines.

Influence lines for the main cable, hanger and girder are pictured in Figure 5.16, 5.17

and 5.18. Note that the maximum girder moment appears at x = 0.05 ·L and maximum

hanger stress at x = 0.5 ·L.
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Figure 5.16: Influence lines for x = 0.5 ·L.

Figure 5.17: Influence lines for x = 0.2 ·L.
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Figure 5.18: Influence lines for x = 0.05 ·L.
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6 Parametric Modelling of the

Sulafjorden Bridge

Abaqus is the chosen finite element (FE) software used to model the Sulafjorden bridge.

Instead of using Abaqus CAE (Complete Abaqus Environment), Abaqus analysis is used

(also called Keywords Edition). When using Abaqus (keywords edition), the bridge

is going to be modeled by writing the input file (.inp) directly. MATLAB is used to

define node coordinates and element properties. It is vital that the MATLAB function

that generates the nodes can tolerate changes to the geometry. See Figure 6.1 for an

illustration of one of the bridge geometries.

Figure 6.1: The sulafjorden bridge modelled in Abaqus.

6.1 Simplification of the Model

Modeling an exact copy of the original structure will obviously give the most accurate

results. However, a complex model also has its drawbacks. A large and complex model

will be very time consuming for the engineer to make. A detailed model with many

sharp edges requires a very fine mesh in order to obtain a precise solution. This again

will cause a long run time for the finite element analysis. Making decisions about

what to be simplified, without losing vital information is an important task. If the

wrong simplifications are made, the model will become inaccurate, and lose its validity

compared to the actual structure.

49
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6.1.1 Towers

A suspension bridge with such a span as the Sulafjorden bridge the towers is going to

be very tall. Even with an enormous cross-section, the towers will be able to bend.

Therefore it is essential to include the towers into the FE-model. The pylons are

modeled with a constant distance between the "tower legs". As mentioned in Section

5.6.1, the tower height is parameterized, and both the incline and the width at the top

of the tower are dependent on the width between the two girder boxes. See Figure 6.2

for a illustration of the towers and the coordinate direction. Note that the main cable

thickness is correlated with the tower height, and will change area as the tower alter

height.

Figure 6.2: One of the towers modelled in Abaqus.
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6.1.2 Twin-Box Girder

The twin-box girder will be modeled as two separate continuous beams, with

cross-beam connections situated for each 20th meter. All the mass, stiffness and other

properties will be assigned to each of the beam elements separately. The mass attached

to the beams is the mass of the steel box including the non-structural mass. In the

Abaqus model, it is assumed that the center of mass can be taken as the center of the

girder beam.

The hangers are connected to the lateral edge of the box girder. To simulate the correct

placement of the hangers, it is necessary to include some connection elements. These

elements are supposed to connect the hangers at the exact place of the girder. The

connection elements are incredibly stiff which creates the assumption that the girder is

unable to bend in z-direction, see Figure 6.3. The two girders are also connected by an

extremely rigid connection element, trying to represent the cross beam. A cross beam

is placed once for every hanger. The connection elements have zero mass, as the mass

of the connection elements is included in the girder elements.

Figure 6.3: Close up illustration of the girders with connection elements, hangers and
cables.

6.1.3 Boundary Condition

The boundary conditions (BC) at the bottom of the two towers and the end of each

side cable are fixed. Which is a good representation of the BCs in reality. In the actual

structure, the main cable can glide at the top of the towers. In the model, the cable is

just connected to the top of the tower without being able to slide.

The connection between the twin-box girder and the towers are modeled with a more



52 CHAPTER 6. PARAMETRIC MODELLING OF THE SULAFJORDEN BRIDGE

complex BC. The box girders are fixed in y- and z-direction and for rotation about the

x-direction. The structure can move in x-direction to avoid constraining forces in the

girder. See Figure 6.3 for coordinate directions.

6.2 Prestressing / Model Tensioning

The tensioning is created by the dead weight and some procedures of forced tensioning.

An illustration of how this is done for the Hardanger Bridge is shoqn in Figure 6.4. The

FE model needs to replicate this effect before running a modal analysis. By using the

same deck curvature as used at the Hardanger bridge, the Sulafjorden bridge will curve

20m upwards when exposed to gravity load. One simplified approach to obtain an

equivalent stiffness is to apply a load to induce the axial forces. The method consists

of three steps in Abaqus.

Figure 6.4: Before the cables are build, the top of the towers are pulled ca 50 cm
backwards. When the steel boxes is installed the temporary cable is slackened and the
towers goes back to it original positions (modified, [21]).

Step 1:

In the first step, the hangers and girders are removed, and the cables are affected

by gravity load. The cables will be stretched to get increased geometrical stiffness.

See Figure 6.5 for an illustration of the BCs and the load.
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Figure 6.5: Step 1 in the tensioning process.

Step 2:

In this step, the girders and hangers are added. The gravity load on the cables

is still active. Gravity load on the girders are also added. The girders is created

with a 30 meters initial curve upwards. After this step is completed, the bridge

will curve upwards by approximately 20 meters. See Figure 6.6 for the final state

of the model before the frequency analysis is done, note the curve of the bridge

deck.

Figure 6.6: Step 2 in the tensioning process.

Step 3:

After step 2 the prestressing process is finished. In step 3 the modal analysis

is carried out, and the live loads can be applied. Information related to the

modal analysis, displacements and section-forces are printed. This way the data

is gathered.
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6.3 Possible Improvements

The cross-section of the towers does not change as the towers alter height. The bridge

deck may also be more detailed modeled. This will cause a more accurate model,

but increase the complexity of the parameterization and the computational cost of the

analysis.

As the prestressing is done by applying dead weight to the main cables before adding

the bridge deck with an initial curvature, it is difficult to ensure the correct geometry

when changing parameters. As the tower height increases, the main cables gets smaller

which gives a different displacement when exposed to gravity. The complexity of the

prestressing makes the model challenging to parameterize. An alternative prestressing

method should be investigated to simplify the modeling.

The MATLAB script which generates the nodes to the parametric model does not cope

with large changes to the geometry because of the node numbering. If the bridge length

is expanded over a certain distance, the node numbering of the girders will collide with

the nodes of the main cables. The length of each girder element is 2 meters, which

will cause problems if an odd number of meters between each hanger is desired. This

problem should be solved when improving the model.



7 Optimizing the Bridge Geometry

Design optimization in engineering has been used from around 1960. As the

computational capacity has developed, optimization tools have been more commonly

used. Today, several types of optimization procedures are in use in structural design,

also for bridges. Optimization methods provide a final design of better quality, in less

time, which is very cost efficient [8].

In order to optimize a model, it needs to be parameterized. "To parameterize" by itself

means "to express in terms of parameters". In practice, this means that the model can

change geometry depending on a parameter, such as tower height or cable thickness.

7.1 Objective Function and Design Variables

Optimization includes finding best available values of some objective function given a

defined domain. The objective function, sometimes called cost function, links different

parameters together in order to compare them to each other. It is the objective function

which is going to be minimized or maximized. The different variables in the objective

function are called design variable. The chosen design variables are shown in Figure

7.1.

Figure 7.1: The design variables.

In this thesis, the different parameters will be prioritized in term of cost. The solution

of the objective function results in an estimation of the total material cost of the bridge,

who is going to be minimized. The price per kg of the different types of steel used in the

main cables, hangers, and box girders is based on the cost estimates from Multiconsults
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report of the Sula crossing. As well as the price per m3 concrete used in the towers.

These cost estimates create the basis of the objective function.

7.2 Types of Optimization Methods

There are two main types of methods used for solving optimization problems: Gradient

based method and derivative-free method. Both methods will be explained in this

section, but only a derivative-free method is used to solve the optimization problem

in this thesis.

7.2.1 Gradient Based Method

The gradient based method’s approach is to run an analysis with an initial geometry

and have an optimizing algorithm calculate the next geometry to be analyzed. This

will lead to fewer analyzes and a lot of time saved. A design optimization research of a

long-span suspension bridge is performed by Ibuki Kusano [10], where gradient based

solutions are used. The chosen design variables in this research are main cable and

girder plate thickness, where flutter constraints are included. The study tested multiple

optimization algorithms, all gradient based. A flowchart explaining this process is

shown in Figure 7.2.
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Figure 7.2: Flowchart of optimization process using gradient based optimization.
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7.2.2 Derivative-Free

In this thesis, derivative-free optimization is going to be used. When the model

can change geometry, one parameter at a time, an FE-analysis can be run on every

combination of parameters. This type of optimization process is called derivative-free

optimization [5]. The results of every parameter combination can create a response

surface. The response surface gives a great overview of how the structure reacts to

changes in parameters. The parameters may then be optimized by maximizing or

minimizing the surface. A flowchart explaining the process which is going to be used in

this thesis is shown in Figure 7.3.

Figure 7.3: Flowchart of derivative-free optimization.
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Optimally, an infinitely number of different geometries is tested and analyzed, but that

is clearly not possible. After analyzed an adequate amount of geometries, the objective

function is used to compare the parameters. An approximation is made by interpolating

the results. This creates a plot of every possible solution for the objective function in as

many dimensions as varying parameters.

Every time the optimization algorithm modifies the design variables, the MATLAB main

code carries out the following main tasks:

1. Calculate the new dimensions of the main cables area according to the tower

height and girder self-weight.

2. Perform Newton-Raphson iterations to determine the initial geometry of the

main cable. Figure 7.4 shows the initial (C 0) and final (C f ) position of the cable.

This step is necessary because any variation in tower height and cable thickness

affects the initial length and stress of the main cables, and consequently the

stiffness of the bridge.

Figure 7.4: Initial and final cable geometry (modified [10]).

3. Write the Abaqus input file. This includes the initial geometry of the structure

and element properties. The properties of the three box girders are all computed

in advantage of the optimization process.

4. MATLAB launches Abaqus nonlinear static analysis to compute stress in the

entire bridge, natural frequencies and vibration modes. This information is saved

for every parameter combination.

The derivative-free optimization process is going to be used in this thesis partly because

of its simplicity. Sometimes information about the derivative of the objective function

is unavailable, unreliable or impractical to obtain. Gradient based methods require

less computational costs, compared with the gradient-free optimization [5]. However,

since a gradient-free solution receives the results from all design combinations, this
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method provides more information about how the model responds to design variations.

Because computational cost is not considered a problem in this thesis and the great

overview of how the model responds to design variations, a derivative-free algorithm is

used.

7.3 Constraints

It is essential to have some constraints when designing structures. Constraints, in this

case, are boundaries or limits of the structure. The constraints may be physical limits

as the maximal tower height or total girder width. Serviceability constraints such as

maximal displacement and acceleration may also be a deciding limit for the design.

In this thesis the following constraints are used:

• Maximal displacement:

There are not found any specific standard value for max displacements for

bridges, but for different construction materials (wood, steel and concrete) the

value varies between L/100 – L/300. In this thesis ±= L
120 = 23m is used.

• Maximal acceleration:

According to ISO 6897 [7], two curves of maximum acceleration for a given

frequency are considered the comfort-limit for humans. Curve one is for general

purpose buildings, curve two is for fixed offshore structures. Bridges can be

considered as a type two structure. This gives a conservatively acceleration limit

of 0.156 m
s2 .

• Maximum and minimum tower height:

There are no standardized limits for the height of towers in a suspension bridge.

The constraint set to prevent the optimizing process ending in infinitely tall or no

towers at all. The height of the towers must also be practical to build, outside the

boundary where the objective function is valid. In this thesis, the towers must be

between 200 and 450 meters tall (from the bridge deck to top of the tower).

• Flutter speed

The critical flutter speed is an essential constraint for long-span bridges and

works as a total cut-off criterion. Reaching a sufficient value for the critical

flutter speed can be very challenging for super long span bridges. According to

N400-Bridge Design, the critical wind velocity related to flutter,Vcr , is based on

a return period of 500 years and defined as in Equation 7.1. Note that the return

period for the wind velocity in previous computations was set to 50 years.
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Vcr ∏ ∞cr Vs (7.1)

Here, ∞cr = 1.6 and Vs is the wind velocity. The mean height above sea level is 70.8

meters, as used for the mean wind velocity computations. Equation 4.3 with a 500

years return period gives a basic wind velocity vb = 1.1223, which leads to Vs =
50.74m/s. See section 4.1.3 for the underlying equations used in this calculation.

Further, Equation 7.1 results in Vcr = 81.18m/s. However, in this thesis, the flutter

speed is included in the case study, only. To include flutter constraints in the

optimization, it is essential to have experimentally obtained flutter derivatives

for each girder design.

7.4 Challenges

7.4.1 Objective Function

The objective function creates the foundation of the optimizing process. The solution

is highly dependent on the objective function. To define a good objective function is

extremely difficult.

The objective function used in this thesis is a rough estimate only based on the price

of the physical material needed, for one specific design. Planning and execution is a

significant part of the total expenses in a large structural project. Those types of costs

may increase or decrease with changes in the geometry, but are not included in the

objective function.

7.4.2 FE-Analysis

The FE-analysis is a time-consuming job. Even with a simplified model, finding

stresses, displacements, and natural frequencies take some time. This analysis has to

be repeated for all possible combination of parameters. The range and interval each

parameter may operate in can be limited, but to get a good result, the process will still

take some time. In this thesis, it is used three different girder sizes, six different tower

heights and four gap sizes, i.e., 72 Abaqus analyses are required.
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7.4.3 Aeroelastic Coefficients

A challenge with changing the size of the deck or changing the gap between the box

girders is the aeroelastic coefficients. It has been researched how the pressure on

the box girders changes with different gap sizes, see Figure 7.5. Since the pressure

distribution along the girder surfaces varies for different gap sizes, the aerodynamic

properties also vary. I.e., for more realistic results, the aerodynamic coefficients should

depend on the gap width. In this thesis, the aerodynamic properties are kept constant

[11].

Figure 7.5: Mean pressure distribution for gap widths equivalent to 0m(a), 1m(b), 7.5(c),
14.3(d) and 21.1 m(e). Negative pressures are away from the surface[11].
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7.4.4 Comparing Frequencies

The FE-analysis returns the results of the natural frequencies sorted from lowest to

highest frequency. When reviewing this result, it is wanted to compare the same type

of modal frequency, e.g., vertical and torsional frequency modes with similar shape.

The modal assurance criterion (MAC), which is also known as mode shape correlation

coefficient (MCC), between mode i and mode j is defined as[23]:

M AC (©i ,© j ) =
ØØ©T

i © j
ØØ2

©T
i ©i©

T
j © j

(7.2)

Where©i and© j are the mode shapes for mode i and j. A MAC value close to 1 suggests

that the two modes are well correlated and a value close to 0 indicates uncorrelated

modes. Figure 7.6 illustrates the MAC number to frame 2 of different geometries. One

geometry (top left in the figure) is chosen as a reference mode and is compared to all

other geometries.

Figure 7.6: MAC number of frame 2. One geometry is chosen as a reference mode and
is compared to all other geometries.

Figure 7.6 is one of several examples that shows the order of the frequencies change

frames when the geometry change. This makes it hard to compare every frequency.

The frequencies which are going to be analyzed may be reduced to the first frequency

of each type (vertical, horizontal and torsion). In the case study, the 30 first

frames/frequencies are considered.
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8 Case Study

This case study shows how the parameterized model can be modified to represent

a specific suspension bridge design. The objective of this case study is to examine

the adaptability of the parameterized model and to include aerodynamic stability

computations for a wind tunnel tested cross-section.

A flutter computation is carried out based on the bridge design presented by

Multiconsult in their feasibility study of the Sulafjord crossing [12], see Figure 8.1 and

8.2.

Aerodynamic data related to this design are obtained from wind tunnel tests completed

by Johannes Grongstad and Oddbjørn Kildal in their master thesis[9], where the static

force coefficients and the aerodynamic derivatives are found, for the wind directions

shown in Figure 8.2. Results from these tests are added in Appendix A. Note, only

flutter computations related to wind direction 1 will be included in the results and

discussion. The access of accurate aerodynamic coefficients makes it possible to

include aerodynamic stability issues in the design. Since these coefficients vary as the

gap width changes, they are only valid for one particular gap width. It is possible to

include the gap width as an altering parameter if each geometry has one coinciding set

of aerodynamic coefficients.

8.1 Bridge Design

Figure 8.1: Sketch with dimensions.
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Figure 8.2: Wind direction and deck dimensions [mm] [12].

The cross-sectional parameters for the main components are listed in Table 8.1. The

mass of inertia, I m , for the biggest and smallest girder (see Figure 8.2) are estimated

with the same assumptions as for the original section. Computations are shown in

Appendix B.

Table 8.1: Cross-sectional parameters of cross-section in Figure 8.2 provided by
Multiconsult[12].

Param./Part Big Girder Small Girder Hanger Big Cable Small Cable
Area [m2] 6.076e-1 4.599e-1 6.333e-3 6.311e-1 6.206e-1

I33[m4] 4.768e-1 3.600e-1 3.192e-6 3.170e-2 3.065e-2
I22[m4] 1.335e+1 5.581e+0 3.192e-6 3.170e-2 3.065e-2
I23[m4] 0.0 0.0 0.0 0.0 0.0
I t [m4] 1.141e+0 1.052e+0 6.284e-6 6.34e-2 6.129e-2

Im
z [kg m2

m ] 1.050e+5 2.426e+5 - - -

Im
y [kg m2

m ] 6.000e+3 7.000e+3 - - -

The static wind coefficients related to this section are presented in Table. 8.2, and the

measurements obtained for a wind speed of 6 m
s are shown in Figure 8.3. Compared

with the static coefficients for the cross-section presented in Section 5, these values are

significantly lower.
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Figure 8.3: Wind force coefficients versus wind angle (wind direction 1).

Table 8.2: Wind force coefficients obtained from static wind tests (wind direction 1).

Structure CD (Æ=0) CL(Æ=0) CM (Æ=0) C0
L C0

M
Girder 0.70 -0.17 -0.01 0.11 0.04

8.2 Flutter Computations

Aerodynamic derivative measurements related to vertical movements are graphically

shown in Figure 8.4 (see Appendix A for all measurements). A fitted 2nd degree

function will be added to each data set in the results, both for horizontal, vertical and

rotational motions. A MATLAB program created by Ole Øiseth is used to compute the

critical multimode flutter velocity. Required inputs are the fitted AD-functions from

measurements, in addition to the vibration modes, modal mass and natural frequencies

from the Abaqus model. Background for the MATLAB-script is more closely described

in Section 3.3.3.
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Figure 8.4: Aerodynamic derivatives from vertical motion (wind direction 1).

The MATLAB-script provides information about used values along the approximated

AD-functions. This is shown graphically in Figure 8.5. The blue line shows the fitted

AD-functions and the red dots indicates values extracted in calculations.

(a) CCCC (b) VDCC

Figure 8.5: Visualization of extracted AD-values used in flutter iterations (wind
direction 1).
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8.2.1 Uncertainties in Computations

The flutter result is highly dependent on the experimental results. Flutter sensitivity

research related to the degree of details in the model used in the wind tunnel testing

shows that small geometrical changes have a significant impact on the resulting flutter

speed. The results from this research done by Siedziako [19] on the Hardanger bridge,

and are shown graphically in Figure 8.6.

Figure 8.6: Distributions of critical flutter speed for section (a), (b) and (c) for the
Hardanger bridge. [19].

The research presented above shows that when bridge deck details are added to the

section model, the critical flutter velocity will be postponed by 9.1 m/s, but that the

ADs becomes more scattered. The experimental data used in this case study is based

on forced vibrations, with no details. I.e., it could be that the resulting flutter speed will

be underestimated.
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9 Results

9.1 The Optimizing Process

The optimization are performed on the basis of the following design variables (see

Figure 7.1 for a graphical illustration):

• Tower height: 300-400m, interval: 20m.

• Gap width: 6-18m, interval: 4m.

• Box girder thickness: uniform increase with an interval of 1mm.

Multiple analysis has been completed for all design combinations. Tables 9.1-9.4 shows

how the natural frequencies change with the tower height and the gap between the

girders. Note that these results are related to the smallest girder. The corresponding

frequency ratio presented in Table 9.5. This is the ratio between the first torsional and

first vertical mode.

Table 9.1: Frequencies of the first horizontal mode [rad/s].

Tower Height / Gap [m] 6 10 14 18
300 0.2023 0.2039 0.2055 0.2072
320 0.1954 0.1970 0.1987 0.2004
340 0.1892 0.1908 0.1926 0.1944
360 0.1835 0.1852 0.1870 0.1889
380 0.1783 0.1801 0.1819 0.1839
400 0.1736 0.1754 0.1772 0.1793

Table 9.2: Frequencies of the first vertical mode [rad/s].

Tower Height / Gap [m] 6 10 14 18
300 0.3897 0.3897 0.3897 0.3897
320 0.3714 0.3714 0.3714 0.3714
340 0.3564 0.3564 0.3564 0.3564
360 0.3419 0.3419 0.3419 0.3418
380 0.3277 0.3277 0.3277 0.3276
400 0.3158 0.3158 0.3158 0.3158
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Table 9.3: Frequencies of the asymmetric torsional mode (double sine wave) [rad/s].

Tower Height / Gap [m] 6 10 14 18
300 0.9877 0.9689 0.9601 0.9519
320 1.0034 0.9821 0.9714 0.9638
340 1.0179 0.9953 0.9827 0.9745
360 1.0204 1.0072 0.9946 0.9827
380 1.0411 1.0154 1.0022 0.9865
400 1.0512 1.0248 1.0103 0.9858

Table 9.4: Frequencies of the symmetric torsional mode (single sine wave) [rad/s].

Tower Height / Gap [m] 6 10 14 18
300 0.1656 0.1587 0.1532 0.1488
320 0.1720 0.1642 0.1583 0.1535
340 0.1723 0.1657 0.1598 0.1546
360 0.1830 0.1750 0.1681 0.1627
380 0.1857 0.1784 0.1714 0.1658
400 0.1881 0.1811 0.1743 0.1685

Table 9.5: Frequency Ratio (Tor si onal/V er ti cal ).

Tower Height / Gap [m] 6 10 14 18
300 2.53 2.49 2.46 2.44
320 2.70 2.64 2.62 2.60
340 2.86 2.79 2.76 2.73
360 2.98 2.95 2.91 2.88
380 3.18 3.10 3.06 3.01
400 3.33 3.25 3.20 3.12
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In the objective function, the cost per unit of cables, hangers, towers, and the deck is

based on the cost estimates from Multiconsults conceptual report of the Sula crossing.

The unit price for concrete in the towers is adjusted relative to the height with a cubic

polynomial, whereas the other unit prices are constant. This is to compensate for the

for the cost of building very tall towers. See Table 9.6 for unit prices.

Table 9.6: Material Cost.

Component price unit
Main Cable Steel 125 kr /kg
Girder Steel 45 kr /kg
Concrete in Tower 12,5 kr /m3

Hanger Steel 150 kr /kg

Curve fitting is used to estimate the resulting cost surfaces. Figure 9.1 shows a surface

plot of the estimated total cost of the smallest girder type, whereas Figure 9.2 includes

all girder types tested. In Figure 9.4 the design variations where lateral deflections

exceeds the limitations are removed. The acceleration constraint is never violated. The

optimal geometry is shown in Figure 9.1, which is for the smallest girder type, and lies

on the displacement limit.

Figure 9.1: Estimated total cost for one type of box girder dependent on tower height
and gap between girders.
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Figure 9.2: Estimated total cost for three types of box girders dependent on tower height
and gap between girders. Girder 1=green, Girder 2=red, Girder 3=blue.

Figure 9.3: Estimated total cost for three sizes of box girders dependent on tower height
when the gap is 16m.
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Figure 9.4: Estimated total cost for three types of box girders dependent on tower height
and gap between girders. Combinations of parameters where lateral deflection exceeds
limitations are removed.

Figure 9.5: Estimated total cost for the smallest box girder. Design variations where
the lateral deflection exceeds limitations are removed. The optimal (smallest) value is
marked at gap=22.6 and tower height=391 is 3.961e+09 NOK.
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Since the optimal design lies in the interpolated area, one additional FE-analysis is

created for this design in order to obtain the modal frequencies. Results are shown

in Table 9.7.

Table 9.7: First frequency of each type for bridge with optimal geometry [rad/s]
Tower height=391 m and Gap=22.6 m.

Horizontal Vertical Torsional
0.1838 0.3200 1.003

9.2 Case Study

9.2.1 Flutter

The bridge dimensions for the case study is introduced in Section 8.1. The results

from the flutter computations are presented in this section, and are related to wind

direction 1 (see Figure 8.2). Flutter analysis is carried out for various combinations of

the natural modes. This way it is possible to investigate the modal flutter participation.

The calculated flutter conditions for the investigated mode-sets are shown in Table 9.4.

See Appendix A.1.1 for an illustration of the modes used in the flutter analysis. The

estimated frequency and damping for the modes in mode set 8 are visualized in Figure

9.6.

Note, a flutter computation related to wind direction 2 is also completed. See Appendix

A.2 for the flutter results and corresponding AD-measurements.

Table 9.8: Flutter conditions (wind direction 1).

Mode set Mode no. Velocity [m/s] Frequency [Hz] Reduced velocity
1 5,13 151.60 0.7847 5.22
2 2,13 140.35 0.8191 4.63
3 4,15 92.92 0.7297 3.44
4 2,14 76.83 0.6097 3.41
5 5,14 75.59 0.6398 3.19
6 2,5,14 71.05 0.7096 2.71
7 2,5,13,14 68.55 0.6953 2.66
8 2,5,13,14,15,18 67.69 0.6934 2.34
9 1-20 67.23 0.7701 2.36
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Figure 9.6: Real and imaginary part of the eigenvalue related to mode set number 8.
(Re=damping, Im=freq) (wind direction 1).

In Figure 9.7-9.9 the reduced velocity for mode set 8 is highlighted with a vertical dotted

line in the same plot as the real measurements are shown. Graphically, the aerodynamic

derivative used in the last flutter iteration (the one resulting in the instability state) can

be compared with the measured value (circle).

Figure 9.7: Plotted ADs related to vertical motion where the reduced velocity for mode
set 8 is shown with the vertical dotted line (wind direction 1).
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Figure 9.8: Plotted ADs related to rotational motion where the reduced velocity for
mode set 8 is shown with the vertical dotted line (wind direction 1).

Figure 9.9: Plotted ADs related to horizontal motion where the reduced velocity for
mode set 8 is shown with the vertical dotted line (wind direction 1).
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10.1 Optimization Results

The estimated cost of the materials needed for the Sulefjorden Bridge presented in

Figure 9.1 to 9.3 indicates that the optimal geometry is a tower height of 391 meters

and a gap of 22.6 meters, when choosing the smallest girder.

Figure 9.3 shows how the girder size affects the cost of the bridge. As expected, the girder

with the smallest plate thickness is the cheapest, and therefore the optimal choice.

However, it is needed to perform more detailed calculations on the girder to make

sure it is within the design limits. The smallest girder within the design limits tends

to be the optimal choice since the geometrical stiffness from the cables dominates the

bridge stiffness. Note that the only varying parameter related to the cross-section is the

thickness. A change in section height may be the ideal choice, but this is challenging to

implement in the parametric model.

Figure 9.3 also shows how the estimated cost of the bridge depends on the tower height,

for a given gap size. Taller towers tend to give lower estimated costs. By increasing the

tower height, the sag increases which reduces the forces in the main cables. Less stress

in the main cables gives the opportunity to design thinner cables, which affect the total

cost. It is also a material cost related to building taller towers, but compared to the

amount saved by getting smaller cables, it is profitable. It this thesis, it is assumed that

the cost of building towers are nonlinear. E.g., it is more expensive to increase the tower

height from 380-400m than from 300-320m.

From Figure 9.1 to 9.5 it can be seen that the total estimated cost is almost constant

when the girder gap change. The material cost of increasing the gap is negligible

compared to the price reduction of decreasing the main cable area. In the model, a

large gap is favored due to large horizontal stiffness and low cost.

The reason for having a gap between the girders is due to structural advantages related

to buffeting loads and aerodynamic stability. In the Abaqus model, the aeroelastic

characteristics (static coeff. and ADs) are kept unchanged as the gap gets more

substantial. The gap between the girders directly affects the aerodynamic properties,

as mentioned in Section 7.4.3. Obtaining the aeroelastic properties for different

cross-sections requires multiple wind tunnel experiments. Wind tunnel testing is both

expensive and time-consuming. However, since flutter computations not are included
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in this optimization process, only the buffeting loads are affected by this simplification.

The calculated optimal gap of 22.6 m may be considered too large. There have never

been built a twin-box girder with such a large gap. According to the results presented in

Section 9.1, a maximal gap constraint would give shorter towers and a more expensive

structure. Despite a theoretical more expensive material cost, a smaller gap could be

more realistic to build.

As mentioned, a gradient-free optimization method can provide structural information

about the bridge. Table 9.1-9.4 shows how the natural frequencies varies. Both the

horizontal and vertical modes is reduced by lowering the towers, which is as expected.

However, relative to the magnitude of the design variation, the frequencies do not

change in large extent. By carrying out optimization analysis related to a different set

of design variables, it could be possible to observe potential parameters with greater

influence on the natural frequencies.

Flutter calculations are not included in the optimization process, due to lack of

experimental data. However, the frequency ratio works as an indicator of the bridge’s

exposure to flutter instabilities and is desired to be as high as possible. But note that

the frequency ratio is unfit as a design criterion. The frequency ratios for different

geometries (see Table 9.5) indicates that it is most convenient to shorten the gap

and increase the tower height. By shortening the gap, the rotational mass of inertia

is reduced, which increases the torsional frequency. As the towers are enlarged the

generalized mass in the vertical direction are increased, which can explain the reduced

vertical frequency. Hence, this combination leads to the highest frequency ratio. It is

reasonable to assume that the natural frequency would have the same tendency for

similar bridges.

10.2 The Optimization Process

The objective function is based on the material prices in Table 9.6. Note that these

prices are an estimate, and are related to one specific design. The prices are based

on previous projects. The cost of the construction of the bridge is not included in the

objective function. This is not covered because of lack of information found, and it is

tough to estimate the construction cost without years of experience.

A disadvantage of the derivative-free method is the computational costs. The complete

analysis with 72 different parameter combination takes two hours (with a 2.40GHz

processor and 8GB RAM). If two parameters with five combinations each were added,

the number of analysis would be 1800. 1800 analysis would take approximately 50 hours

to complete with identical hardware. However, the time-demanding analysis is not
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considered a large problem. The analysis is only needed to be completed once, and

with current technology, a cloud-based computing service could reduce the computing

time drastically. An important advantage related to the derivative-free method is that

multiple potential solutions will be found, unlike a gradient based method where a local

minimum may be found instead of the actual solution.

10.3 Case Study

The case study shows the advantages of a parametric model and how it can be modified

to resemble a specific bridge design. Even when the new construction has different

sizes for each main cable and unsymmetrical box girders, the modification does not

require much work.

The computation of the critical flutter speed gives a critical wind speed of 67.23 m
s when

including the first 20 modes. Based on Figure 9.7 - 9.9 the estimated AD coincides well

with the measured data, which is important for the flutter computation accuracy.

The resulting flutter velocity is less than the design limit computed in Equation 7.1,

where the critical wind speed is calculated to 81.18 m
s . The design limit for flutter

speed is based on the N400-Bridge Design manual. This manual is established in 2009,

and could be intended for smaller-scaled bridges. Thus, the design limit may be too

conservative. In addition, the research presented in Section 8.2.1, indicate that the

estimated flutter speed may increase if the experimental data was obtained using a

more detailed section model. However, these results are based on a single-deck system,

and, thus, may not be valid for a twin-deck design.

To reach the required flutter speed, the shape of the girders and the gap width would

be the most expedient factors to change. These terms will directly affect the ADs, and

thus, the instability limit. Cost related to changing these parameters is mainly related

to research and not the amount of used materials.

It must be noted that for the type of cross-section used in the case study, it is challenging

to get exact results from wind tunnel testing. This is due to its smooth surface and

unsymmetrical shape. To assess the quality of the measurements and the aerodynamic

derivatives, it is essential to have an idea of what might have affected the results. Testing

at low Reynolds number, imperfections in foil application and the limited amount

of tests are believed to be the most significant sources of error in the wind tunnel

testing[9].
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11 Conclusion

This research demonstrated the feasibility of the application of using an optimizing

process when designing super long span suspension bridges. A derivative-free

optimization method is used to optimize the tower height and girder gap, considering

the total material cost. Three girders with different plate thicknesses is analyzed. A

parameterized finite element model is created in Abaqus. The optimizing process gives

a proposed tower height of 391 meters and a gap of 22.6 meters, when the smallest

girder is used. However, this proposal is highly dependent on the objective function,

which has several uncertainties.

The objective function is based on the material costs of the structure. It is simplified and

has significant shortcomings, but it shows how an objective function may be used to

optimize the structure. A more advanced objective function will give a different result,

but the approach will be the same as is this thesis.

The parametric model can be used to provide essential information when designing

complex structures, and to investigate effects of structural changes. It is shown how the

natural frequencies change with tower height and girder gap. The first vertical mode

is reduced from 0.3897 to 0.3158 r ad
s (19,0%) when the towers are increased with 100

meters (gap width do not affect this mode). The first asymmetric torsional mode is

increased from 0.9519 to 1.0512 r ad
s (10,4%) as the gap width is reduced with 12 meters

and the tower height are increased with 100 meters. Relative to the magnitude of the

design variations, the modal frequencies do not change in large extent. An optimization

related to a different set of parameters could be completed in order to investigate how

these influence the results.

Despite the fact that the optimization process is tested on a suspension bridge in this

thesis, it is reasonable to assume that the field of application could be related to other

types of civil engineering structures. The principle and the approach would be identical

as is this thesis. As parametric modeling software improves and computational

costs not being a problem in the future, designing civil engineering structures as

optimization problems may be highly beneficial.
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84 CHAPTER 11. CONCLUSION

11.1 Case Study

The case study evaluates the modifiability of the parametric model by creating a specific

bridge design. Further, flutter computations are completed, where aerodynamic

derivatives obtained from wind tunnel tests are used.

The critical flutter speed is calculated to 67.23 m
s , which is less than the calculated

criteria for flutter speed. However, the flutter criteria for such large-scale bridges

should be based on local wind measurements, and the safety factors included should

be carefully chosen. The flutter speed could be included in the optimization process as

a cut off constraint, but it requires a lot of experimental results.

11.2 Recommendations for Further Work

The parametric model should be investigated further and improved. Additional

variable parameters and more detailed modeling of towers and box girders should be

implemented. More research to improve the objective function may be conducted to

get more precise results. A gradient based optimization method should be considered

when the number of parameters increases.

To include other aeroelastic phenomena such as vortex shedding or flutter in the

optimization, it would be necessary to perform wind tunnel testing on each individual

cross-sectional design, which is very time-consuming. Otherwise, one solution is to

employ a Computational Fluid Dynamic (CFD) model whenever the bridge design

changes. The implementation of a CFD model is quite challenging for its high

computational cost. However, with the development of more powerful computers in

the future, there will be more realistic to introduce more parameters to the model and

using CFD.

Regarding the case study: Experimental data from wind tunnel tests should be obtained

for a section-model with details, in order to investigate how this will affect the critical

flutter velocity.



Bibliography

[1] Brancaleoni, F. (2016). Concepts and new perspectives for long span bridges.

Romanian journal of transport infrastructure.

[2] Brancaleoni, F., Diana, G., Faccioli, E., Fiammenghi, G., Firth, I. P., Gimsing, N. J.,

Jamiolkowski, M., Sluszka, P., Solari, G., Valensise, G., et al. (2009). The Messina Strait

Bridge: a challenge and a dream. CRC Press.

[3] Chen, X., Kareem, A., and Matsumoto, M. (2001). Multimode coupled flutter and

buffeting analysis of long span bridges. Journal of Wind Engineering and Industrial

Aerodynamics, 89(7-8):649–664.

[4] Chopra, A. K. (2014). Dynamics of structures. Pearson, 4th edition.

[5] Conn, A. R., Scheinberg, K., and Vicente, L. N. (2009). Introduction to derivative-free

optimization, volume 8. Siam.

[6] Gimsing, N. J. and Georgakis, C. T. (2012). Cable Supported Bridges. Concept and

design, Third Edition. John Wiley Sons, Hoboken, NJ.

[7] International Organization for Standardization (1984). Iso 6897. Guidelines for the

evaluation of the response of occupants of fixed structures, especially buildings and

off-shore structures, to low frequency horizontal motion(0.063 to 1Hz).

[8] Jurado, J. and Albarracín, J. Á. J. (2011). Bridge aeroelasticity: sensitivity analysis and

optimal design, volume 10. WIT press.

[9] Kildal, O. and Grongstad, J. (2018). Master thesis: Wind tunnel testing of bridge decks.

[10] Kusano, I., Baldomir, A., Jurado, J. Á., and Hernández, S. (2015). Probabilistic

optimization of the main cable and bridge deck of long-span suspension bridges

under flutter constraint. Journal of Wind Engineering and Industrial Aerodynamics,

146:59–70.

[11] Kwok, K. C., Qin, X. R., Fok, C., and Hitchcock, P. A. (2012). Wind-induced pressures

around a sectional twin-deck bridge model: Effects of gap-width on the aerodynamic

forces and vortex shedding mechanisms. Journal of wind engineering and industrial

aerodynamics, 110:50–61.

[12] Multiconsult (2015). Concept Study.

[13] Myrhaug, D. (2005). TMR4235, Stochastic Theory of Sealoads. Department of

marine technology.

85



86 BIBLIOGRAPHY

[14] Newland, D. (2014). An Introduction to Random Vibrations, Spectral Wavelet

Analysis. Dover publication, 3rd edition.

[15] Rainieri, C. and Fabbrocino, G. (2014). Operational Modal Analysis of Civil

Engineering Structures, An Introduction and Guide for Applications. Springer, 1st

edition.

[16] Rambøll (2015). Concept Study.

[17] Rothwell, A. (2017). Optimization Methods in Structural Design, volume 242.

Springer.

[18] Scanlan, Robert H and Tomo, J (2001). Airfoil and bridge deck flutter derivatives.

Engineering Mechanics Structures.

[19] Siedziako, B. and Øiseth, O. (2017). On the importance of cross-sectional details

in the wind tunnel testing of bridge deck section models. Procedia Engineering,

199:3145–3151.

[20] Statens vegvesen (2013a). Beregninger,grunnlag: Hardangerbura.

[21] Statens vegvesen (2013b). Teknisk brosjyre: Hardangerbura.

[22] Strømmen, E. (2010). Theory of Bridge Aerodynamics. Springer, 2nd edition.

[23] Wilhehnina Josefine Visser (1992). Updating Structural Dynamics Models Using

Frequency Response Data. Department of Mechanical Engineering, Imperial College

of Science, Technology and Medicine London.

[24] Øiseth, Ole and Sigbjørnsson, Ragnar (2010). An alternative analytical approach

to prediction of flutter stability limits of cable supported bridges. Department of

Structural Engineering, Norwegian University of Science and Technology.



Appendix

87



88 BIBLIOGRAPHY



A Case Study

A.1 Wind Direction 1

A.1.1 Mode Illustrations

Figure A.1: Mode 2.

Figure A.2: Mode 5.
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Figure A.3: Mode 13.

Figure A.4: Mode 15.
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Figure A.5: Mode14.

Figure A.6: Mode 18.
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A.1.2 Aerodynamic Derivatives

(a)

(b)

(c)

Figure A.7: Aerodynamic derivatives for vertical (a), horizontal (b) and rotational (c)
motions (wind direction 1).



A.2. WIND DIRECTION 2 93

A.2 Wind Direction 2

A.2.1 Flutter Results

Table A.1: Flutter conditions (wind direction 2).

Mode set Mode no. Velocity [m/s] Frequency [Hz] Reduced velocity
1 5,13 139.10 0.8508 4.42
2 2,13 122.38 0.8777 3.77
3 4,15 83.79 0.7940 2.85
4 2,14 76.21 0.6888 2.99
5 5,14 76.83 0.6841 3.04
6 2,5,14 67.46 0.7643 2.39
7 2,5,13,14 65.27 0.7496 2.35
8 2,5,13,14,15,18 64.57 0.7475 2.33
9 1-20 59.10 0.8081 1.97
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A.2.2 Aerodynamic Derivatives

(a)

(b)

(c)

Figure A.8: Aerodynamic derivatives, including fitted line(blue) and reduced velocity
value(dotted vertical line) for vertical (a), horizontal (b) and rotational (c) motions
(wind direction 2).
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Load combinations taken from NS-EN 1990-2002 +N.A.

Eq. 6.10b, tab. N.A. A1.2 (B)

Load comb 1 (Traffic leading):

Vertical load: Qvert.girder.1 1.2 qselfweigth 1.5 qtraffic+ 120.644
kN
m

=:=

Using influence lines, the design moment due to vertical loading is:

Med.1 384m2 Qvert.girder.1 4.633 104 kN m=:=

Horizontal load:
Qhor.girder.1 1.6 0.7 qwind.y 4.386

kN
m

=:=

Qhor.cable.1 1.6 0.7 qwind.cable.y 1.38
kN
m

=:=

Rotational load:
Qrot.girder.1 1.6 0.7 qwind.rot 394.722

kN
m

=:=

Qvert.girder.wind.1 1.6 0.7 qwind.z 6.579-
kN
m

=:=

Load comb 2 (Wind leading):

Vertical load: Qvert.girder.2 1.2 qselfweigth 1.5 0. qtraffic+ 90.644
kN
m

=:=

Using influence lines, the design moment due to vertical loading is:

Med.2 384m2 Qvert.girder.2 3.481 104 kN m=:=

Horizontal load:
Qhor.girder.2 1.6 qwind.y 6.265

kN
m

=:=

Qhor.cable.2 1.6 qwind.cable.y 1.972
kN
m

=:=

Rotational load:
Qrot.girder.2 1.6 qwind.rot 563.888

kN
m

=:=

Qvert.girder.wind.2 1.6 qwind.z 9.398-
kN
m

=:=
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Load combinations taken from NS-EN 1990-2002 +N.A.

Eq. 6.10b, tab. N.A. A1.2 (B)

Load comb 1 (Traffic leading):

Vertical load: Qvert.girder.1 1.2 qselfweigth 1.5 qtraffic+ 120.644
kN
m

=:=

Using influence lines, the design moment due to vertical loading is:

Med.1 384m2 Qvert.girder.1 4.633 104 kN m=:=

Horizontal load:
Qhor.girder.1 1.6 0.7 qwind.y 4.386

kN
m

=:=

Qhor.cable.1 1.6 0.7 qwind.cable.y 1.38
kN
m

=:=

Rotational load:
Qrot.girder.1 1.6 0.7 qwind.rot 394.722

kN
m

=:=

Qvert.girder.wind.1 1.6 0.7 qwind.z 6.579-
kN
m

=:=

Load comb 2 (Wind leading):

Vertical load: Qvert.girder.2 1.2 qselfweigth 1.5 0. qtraffic+ 90.644
kN
m

=:=

Using influence lines, the design moment due to vertical loading is:

Med.2 384m2 Qvert.girder.2 3.481 104 kN m=:=

Horizontal load:
Qhor.girder.2 1.6 qwind.y 6.265

kN
m

=:=

Qhor.cable.2 1.6 qwind.cable.y 1.972
kN
m

=:=

Rotational load:
Qrot.girder.2 1.6 qwind.rot 563.888

kN
m

=:=

Qvert.girder.wind.2 1.6 qwind.z 9.398-
kN
m

=:=
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Mass of inertia estimation:

Original design

From Cross-X:

Iz 6.3188m
4

:= Iy 0.4398m
4

:=

ρ 7850
kg

m
3

:=

Assumption: Here z-direction is vertical, and y-direction is horizontal. 

mrailing 150
kg

m
:= (for each railing)

mslab
12

12
3000

kg

m
3 10

3
×

kg

m
=:= Scaled value from the Hardanger bridge 

Here: same width of the slab

y-direction:

1: Im.y.1 2 1.75
2

⋅ m
2

mrailing⋅ 918.75 kg
m

2

m
⋅⋅=:=

2: Im.y.2 1.25
2
m

2
mslab⋅ 4.688 10

3
× kg

m
2

m
⋅⋅=:=

3: Im.y.3 Iy ρ⋅ 3.452 10
3

× kg
m

2

m
⋅⋅=:=

Im.y.tot Im.y.1 Im.y.2+ Im.y.3+ 9.059 10
3

× kg
m

2

m
⋅⋅=:=
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z-direction:

1: Im.z.1 2 12
2

⋅ m
2

mrailing⋅ 4.32 10
4

× kg
m

2

m
⋅⋅=:=

2: Im.z.2
1

12
12

2
m

2
mslab⋅ 3.6 10

4
× kg

m
2

m
⋅⋅=:=

3: Im.z.3 Iz ρ⋅ 4.96 10
4

× kg
m

2

m
⋅⋅=:=

Im.z.tot Im.z.1 Im.z.2+ Im.z.3+ 1.288 10
5

× kg
m

2

m
⋅⋅=:=
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The example study - multiconsult design

From multiconsult:

Iz 5.581m
4

:= Iy 0.36m
4

:=

Assumption: Here z-direction is vertical, and y-direction is horizontal. 

mslab
10.8

12
3000

kg

m
2.7 10

3
×

kg

m
=:= Scaled value from the Hardanger bridge 

y-direction:

1: Im.y.1 2 1.458
2

⋅ m
2

mrailing⋅ 637.729 kg
m

2

m
⋅⋅=:=

2: Im.y.2 0.958
2
m

2
mslab⋅ 2.478 10

3
× kg

m
2

m
⋅⋅=:=

3: Im.y.3 Iy ρ⋅ 2.826 10
3

× kg
m

2

m
⋅⋅=:=

Im.y.tot Im.y.1 Im.y.2+ Im.y.3+ 5.942 10
3

× kg
m

2

m
⋅⋅=:=
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z-direction:

1: Im.z.1 2 10.8
2

⋅ m
2

mrailing⋅ 3.499 10
4

× kg
m

2

m
⋅⋅=:=

2: Im.z.2
1

12
10.8

2
m

2
mslab⋅ 2.624 10

4
× kg

m
2

m
⋅⋅=:=

3: Im.z.3 Iz ρ⋅ 4.381 10
4

× kg
m

2

m
⋅⋅=:=

Im.z.tot Im.z.1 Im.z.2+ Im.z.3+ 1.05 10
5

× kg
m

2

m
⋅⋅=:=
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The example study - multiconsult design

From multiconsult:

Iz 13.35m
4

:= Iy 0.4768m
4

:=

Assumption: Here z-direction is vertical, and y-direction is horizontal. 

mslab
15

12
3000

kg

m
3.75 10

3
×

kg

m
=:= Scaled value from the Hardanger bridge 

y-direction:

1: Im.y.1 2 1.364
2

⋅ m
2

mrailing⋅ 558.149 kg
m

2

m
⋅⋅=:=

2: Im.y.2 0.864
2
m

2
mslab⋅ 2.799 10

3
× kg

m
2

m
⋅⋅=:=

3: Im.y.3 Iy ρ⋅ 3.743 10
3

× kg
m

2

m
⋅⋅=:=

Im.y.tot Im.y.1 Im.y.2+ Im.y.3+ 7.1 10
3

× kg
m

2

m
⋅⋅=:=
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z-direction:

1: Im.z.1 2 15
2

⋅ m
2

mrailing⋅ 6.75 10
4

× kg
m

2

m
⋅⋅=:=

2: Im.z.2
1

12
15

2
m

2
mslab⋅ 7.031 10

4
× kg

m
2

m
⋅⋅=:=

3: Im.z.3 Iz ρ⋅ 1.048 10
5

× kg
m

2

m
⋅⋅=:=

Im.z.tot Im.z.1 Im.z.2+ Im.z.3+ 2.426 10
5

× kg
m

2

m
⋅⋅=:=
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Buckling load for plates with longidutional stiffeners:

Figure above shows the parts which are included for top and bottom plate.

The assumed boundary conditions are shown below, and is the same for both top and bottom plate. 

L 4000mm:= (This is the distance between the transverse stiffening plates along the girder)
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Bottom plate:

fy 355MPa:= E 210000MPa:=Iy.b 4.09 1010 mm4:=Cross-X gives:

Ab 1.7152 105 mm2:= fd
fy
1.05

:=

Cross section class: ε 0.81:=

NS-EN 1993-1-1, Tab.5.2
(See the preliminary design section for
dimensions)Plate: tp 8mm:= cp 450mm:=

cp
tp ε

69.444= --> Class 4

Plate 1 and 2 is identical,
i.e., the reduction is the
same

Stiffeners: 

Number 1: ts1 6mm:= cs1 260mm:=

cs1
ts1 ε

53.498= --> Class 4

ts2 6mm:= cs2 190mm:=Number 2
cs2
ts2 ε

39.095= --> Not class 4
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Plate reductions:

NS-EN 1993-1-5, 4.4 (Assumed pure pressure)

λp

cp
tp

28.4 ε 2
1.223=:=Slenderness factor:

Eq.(4.2) ρ
λp 0.055 3 1+( )-

λp
2

0.671=:=

Tab 4.1 beff ρ cp 0.302m=:=

Sets it to: beff 0.3m:=

Ac.eff.loc.plate 1.1190 105 mm2 33600mm2- 7.83 104 mm2=:= (Cross X)
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Stiffeners reduction:

NS-EN 1993-1-5, 4.4

λp

cs1
ts1

28.4 ε 2
0.942=:=Slenderness factor:

Eq.(4.2) ρ
λp 0.055 3 1+( )-

λp
2

0.814=:=

Tab 4.1 beff ρ cs1 0.212m=:=

Sets it to: beff 0.2m:=

Ac.eff.loc.tot Ab 33600mm2- 5600mm2- 1.323 105 mm2=:= (14 stiffeners)

107



Annex A: Calculations related to the bottom plate:

b 12000mm:= (The width of the bottom plate)

ν 0.3:=

Ap 1.119 105 mm2:=

Asl Ab Ap- 5.962 104 mm2=:= (The gross area of the longitudinal stiffeners)

Ip 2.74 1010 mm4:=

Isl 4.0921 1010 mm4:= (Value from Cross-X)

γ
Isl
Ip

1.493=:=

δ
Asl
Ap

0.533=:=

α
L
b

0.333=:=

ψ 1:=
kσ.p

2 1 α
2

-( )2 γ+ 1-












α
2
ψ 1+( ) 1 δ+( )

7.537=:= (Buckling factor)
α

4
γ -->

σE 190000MPa
tp
b









2

 0.084 MPa=:=

σcr.p kσ.p σE 0.636 MPa=:=
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NS-EN 1993 1-5,4.5.3

(3) σcr.sl
π
2 E Isl





Ab L
2


3.091 104 MPa=:=

NS-EN 1993 1-3,4.5.4
Interaction between column and plate buckling:

ξ
σcr.p
σcr.sl

1- 1-=:=

--> ρc 1:=

Nx.Rd fd Ac.eff.loc.tot ρc 4.474 104 kN=:=

This force is computational equivalent to a reduced critical design stress:

σcr.red
Nx.Rd
Ab

260.825 MPa=:=
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Top plate:

Iy 2020 106 mm4:=

At 24.28 104 mm2:=

Cross section class: ε 0.81:=

NS-EN 1993-1-1, Tab.5.2
(See the preliminary design section for
dimensions)Plate: tp 14mm:= cp 300mm:=

cp
tp ε

26.455= --> Not Class 4

Here plate 1 and 2 are in equal class

Stiffener 1 (See Fig.):

cs1 287mm:= ts1 6mm:=

cs1
ts1 ε

59.053= --> Class 4

Stiffener 2 (See Fig.):

cs2 135mm:= ts2 6mm:=

cs2
ts2 ε

27.778= --> Not Class 4
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Reduction of stiffener 1:

NS-EN 1993-1-5, 4-4 (Assumed pure pressure)

λp

cs1
ts1

28.4 ε 2
1.04=:=Slenderness factor:

Eq.(4.2) ρ
λp 0.055 3 1+( )-

λp
2

0.758=:=

Tab 4.1 beff ρ cs1 0.218m=:=

Sets it to: beff 0.22m:= bred 67mm:=

Ac.eff.loc.tot At 18 2 ts1 bred- 2.283 105 mm2=:= (Tot. 18 stiffeners)

111



Annex A: Calculations related to the top plate:

b 12000mm:= (The width of the bottom plate)

ν 0.3:=

Ap b tp 1.68 105 mm2=:=

Asl 244600mm2 Ap- 7.66 104 mm2=:= (The gross area of the longitudinal stiffeners)

Ip
b tp

3

12 1 ν
2

-( )
3.015 106 mm4=:=

Isl 2026.2 106 mm4:= (Value from Cross-X)

γ
Isl
Ip

671.954=:=

δ
Asl
Ap

0.456=:=

α
L
b

0.333=:=

ψ 1:=
kσ.p

2 1 α
2

-( )2 γ+ 1-












α
2
ψ 1+( ) 1 δ+( )

4.152 103=:= (Buckling factor)
α

4
γ -->

σE 190000MPa
tp
b









2

 0.259 MPa=:=

σcr.p kσ.p σE 1.074 103 MPa=:=

NS-EN 1993 1-5,4.5.3

Asl.1 244600mm2:=

E 210000MPa:=

(3) σcr.sl
π
2 E Isl





Asl.1 L
2


1.073 103 MPa=:=
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Reduction factor, χ:

i
Isl
Asl.1

91.015 mm=:= e 112.4mm:= (Cross X)

αe 0.34
0.09
i
e

+ 0.451=:=

NS-EN 1993 1-1, 6.3.1.2

Ncr
π
2 E Isl

L2
2.625 105 kN=:=

λ
Ac.eff.loc.tot fy

Ncr
0.556=:=

ϕ 0.5 1 αe λ 0.2-( )+ λ
2

+



 0.735=:=

χc
1

ϕ ϕ
2

λ
2

-+

0.823=:=

NS-EN 1993 1-3,4.5.4
Interaction between column and plate buckling:

ξ
σcr.p
σcr.sl

1- 7.406 10 4-
=:=

4.4 (2)

λp

b
tp

28.4 0.81 2
18.63=:= --> ρ

λp 0.055 4-

λp
2

0.053=:=

4.5.4: 

ρc ρ χc-( )ξ 2 ξ-( ) χc+ 0.822=:=
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Nx.Rd fd Ac.eff.loc.tot ρc 6.344 104 kN=:=

This force is computational equivalent to a reduced critical design stress:

σcr.red
Nx.Rd
At

261.285 MPa=:=
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Static load: Cables

A 0.53375m2:= (The average main cable area)

ø A
4
π










0.824m=:=

υ 15 10( ) 6-


m2

s
:=

v 45.7
m
s

:= (See wind load section)

ρ 1.25
kg

m3
:=

NS-EN 1991-1-4(7.9):

The Raynolds number becomes:

Re
ø v
υ

2.512 106=:=

Surface roughness is set equal as for the Hardanger bridge

k 0.2mm:=

k
ø

2.426 10 4-
=

Based on Figure 7.28: 
C1 0.7:=

The value is increased due to additional materials on the cables 

C1 1.0:=

The drag force becomes: 

q 0.5 ρ v2:= (Velocity pressure)

Fdrag C1 q ø 1.076 103
N
m
=:=
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C MATLAB Code

Listing C.1: generateNodes1.m

1 function [ A_chosen , sag ]= generateNodes1 ( dist , towerHeight , sag )

2 %Genererer noder og element t i l Abaqus

3 % Nullpunkt s a t t t i l senteret av brobanen i en ende av banen ( under tarn )

4

5 girderLength = 2800; %lengde av girder

6

7 %d i s t = 25; %avstand f r a senter brobane t i l senter box girder

8 connDist = 7 ; %avstand f r a senter box girder f e s t e henger ( halve bredden av en box girder )

9 connHeight = 1 . 5 ; %hoyde pa f e s t e mellom henger of box girder ( i f t . senter t i l g irder )

10 distHanger = 10; %a n t a l l elmenter mellom hengere

11 SClength = 720; %lengde ( x°retning ) sidekabler

12 %towerHeight = 350; %hoyde pa tarn ( f r a senter av brobane t i l topp tarn )

13 %sag = 320; %sag pa kabel ( avstand f r a topp kabel t i l labeste punkt pa kabel )

14 breddebunn = 80; %Avstand mellom benene pa tarn

15 ben = 35; %Avstand f r a veibane t i l bakke/ lengde pa ben

16

17 [ sag , A_chosen ] = sag_calc ( sag ) ; %k o r r i ge r e r sa f a k t i s k sag b l i r r i k t i g e t t e r prestressing

18

19 dx=2; %Spacing between nodes at girder /lengden pa element

20 N = girderLength /dx ; %Number of nodes along girder

21

22 % x =[0 ,N, girderLength ] ;

23 x =[0 , girderLength /dx , girderLength ] ;

24 y =[ towerHeight , towerHeight°sag , towerHeight ] ;

25 p= p o l y f i t ( x , y , 2 ) ;

26 y = [ 0 , 4 0 , 0 ] ;

27 q= p o l y f i t ( x , y , 2 ) ;

28

29 %lage noder t i l girderen , connection , kabler og elementene t i l connection

30 f i d =fopen ( ’ geoGirders . t x t ’ , ’w’ ) ;

31 f id2 =fopen ( ’ geoConnection . t x t ’ , ’w’ ) ;

32 j =1000;

33 k=N/2+1000;

34 f id4 =fopen ( ’ geoCable . t x t ’ , ’w’ ) ;

35 for i =1:N+1

36 b=dx* i°dx ;

37 x =( i °1)*dx ;

38

39 z=q ( 1 ) * x^2+q ( 2 ) * x+q ( 3 ) ;

40 f p r i n t f ( f id , ’%i , %f , %f , %f \ r \n ’ , i , b,°dist , z ) ;

41 f p r i n t f ( f id , ’%i , %f , %f , %f \ r \n ’ , i +N+1 ,b , dist , z ) ;

42 f p r i n t f ( f id , ’%i , %f , %f , %f \ r \n ’ , i +30000 ,b , 0 , z ) ;
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43 f p r i n t f ( fid2 , ’%i , %f , %f , %f \ r \n ’ , i +4000 ,b,°dist°connDist , z+connHeight ) ;

44 f p r i n t f ( fid2 , ’%i , %f , %f , %f \ r \n ’ , i +N+1+4000,b , d i s t +connDist , z+connHeight ) ;

45

46 j = j +1;

47 k=k +1;

48 z=p( 1 ) * x^2+p( 2 ) * x+p( 3 ) ;

49 f p r i n t f ( fid4 , ’%i , %f , %f , %f \ r \n ’ , i +10000 ,b,°dist°connDist , z ) ;

50 f p r i n t f ( fid4 , ’%i , %f , %f , %f \ r \n ’ , i +N+1+10000,b , d i s t +connDist , z ) ;

51 end

52 f p r i n t f ( f id , ’%i , %f , %f , %f \ r \n ’ , 2*N+4 ,0 ,°dist , 0 ) ;

53 f p r i n t f ( f id , ’%i , %f , %f , %f \ r \n ’ , 2*N+5 ,0 , dist , 0 ) ;

54 f p r i n t f ( f id , ’%i , %f , %f , %f \ r \n ’ , 2*N+6 ,b,°dist , 0 ) ;

55 f p r i n t f ( f id , ’%i , %f , %f , %f \ r \n ’ , 2*N+7 ,b , dist , 0 ) ;

56

57 f c l o s e ( f i d ) ; true ;

58 f c l o s e ( f id2 ) ; true ;

59 f c l o s e ( f id4 ) ; true ;

60 f i d =fopen ( ’ topTowerNodes . t x t ’ , ’w’ ) ;

61 a=10001;

62 f p r i n t f ( f id , ’%i , %i , %i , %i \ r \n ’ , a , a+N, a+N+1 ,a+2*N+1) ;

63 f c l o s e ( f i d ) ; true ;

64 f i d =fopen ( ’ girderEndNodes . t x t ’ , ’w’ ) ;

65 f p r i n t f ( f id , ’%i , %i , %i , %i \ r \n ’ , 1 ,N+1 ,N+2 ,2*N+1) ;

66 f c l o s e ( f i d ) ; true ;

67

68 %lage element t i l girder

69 f i d =fopen ( ’ elGirders1 . t x t ’ , ’w’ ) ;

70 f id3 =fopen ( ’ elGirders2 . t x t ’ , ’w’ ) ;

71 f id2 =fopen ( ’ elCable . t x t ’ , ’w’ ) ;

72 j =1;

73 k=N/2+1;

74 for i = 2 : 2 :N

75 a=i °1;

76 b= i ;

77 c= i +1;

78 f p r i n t f ( f id , ’%i , %i , %i , %i \ r \n ’ , j , a , b , c ) ;

79 f p r i n t f ( fid3 , ’%i , %i , %i , %i \ r \n ’ , k , a+N+1 ,b+N+1 ,c+N+1) ;

80 j = j +1;

81 k=k +1;

82 end

83 f c l o s e ( f i d ) ; true ;

84 f c l o s e ( f id2 ) ; true ;

85 f c l o s e ( f id3 ) ; true ;

86

87 f i d =fopen ( ’ elHangers . t x t ’ , ’w’ ) ;

88 f id2 =fopen ( ’ elConnection . t x t ’ , ’w’ ) ;

89 f id3 =fopen ( ’ elGirderConnection . t x t ’ , ’w’ ) ;

90 f id4 =fopen ( ’ midtNoder . t x t ’ , ’w’ ) ;

91 j =2000;

92 k=3000;
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93 for i =( distHanger : distHanger :N°distHanger ) +1

94 a=4000;

95 f p r i n t f ( f id , ’%i , %i , %i \ r \n ’ , j +5000 ,a+i , i +10000) ;

96 f p r i n t f ( f id , ’%i , %i , %i \ r \n ’ , k+5000 ,a+ i +N+1 , i +10000+N+1) ;

97 f p r i n t f ( fid2 , ’%i , %i , %i \ r \n ’ , j , i , i +a ) ;

98 f p r i n t f ( fid2 , ’%i , %i , %i \ r \n ’ , j +1000 , i +N+1 , i +a+N+1) ;

99

100 p=30000;

101 f p r i n t f ( fid3 , ’%i , %i , %i \ r \n ’ , j +200 , i , i +p) ;

102 f p r i n t f ( fid3 , ’%i , %i , %i \ r \n ’ , j +500 , i +p , i +N+1) ;

103 f p r i n t f ( fid4 , ’%i \ r \n ’ , i +p) ;

104

105 j = j +1;

106 k=k +1;

107 end

108 f c l o s e ( f i d ) ; true ;

109 f c l o s e ( f id2 ) ; true ;

110 f c l o s e ( f id3 ) ; true ;

111 f c l o s e ( f id4 ) ; true ;

112

113 f i d =fopen ( ’ elCable . t x t ’ , ’w’ ) ;

114 j =10000;

115 k=12000;

116 for i =1:N

117 a= i +10000;

118 % b= i +11501;

119 b= i +10001+N;

120 f p r i n t f ( f id , ’%i , %i , %i \ r \n ’ , j , a , a+1) ;

121 f p r i n t f ( f id , ’%i , %i , %i \ r \n ’ , k , b , b+1) ;

122 j = j +1;

123 k=k +1;

124 end

125 f c l o s e ( f i d ) ; true ;

126

127 %Lage noder t i l sidekabler

128 f i d =fopen ( ’ geoSideCable . t x t ’ , ’w’ ) ;

129 f id2 =fopen ( ’ elSideCable . t x t ’ , ’w’ ) ;

130 f p r i n t f ( fid2 , ’%i , %i , %i \ r \n ’ , 14999 ,15000 ,10000+2*N+2) ;

131 f p r i n t f ( fid2 , ’%i , %i , %i \ r \n ’ , 15999 ,16000 ,10000+N+1) ;

132 f p r i n t f ( fid2 , ’%i , %i , %i \ r \n ’ , 16999 ,17000 ,10000+N+2) ;

133 f p r i n t f ( fid2 , ’%i , %i , %i \ r \n ’ , 17999 ,18000 ,10001) ;

134 j =15000;

135 k=16000;

136 for i = 0 : ( SClength/dx )°1

137 a= ( i +1) *dx ;

138 b= towerHeight°dx * ( towerHeight/SClength ) * ( i +1) ;

139

140 f p r i n t f ( f id , ’%i , %f , %f , %f \ r \n ’ , i +15000 , girderLength+a , d i s t +connDist , b) ;

141 f p r i n t f ( f id , ’%i , %f , %f , %f \ r \n ’ , i +16000 , girderLength+a,°dist°connDist , b) ;

142 f p r i n t f ( f id , ’%i , %f , %f , %f \ r \n ’ , i +17000,°a , d i s t +connDist , b) ;
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143 f p r i n t f ( f id , ’%i , %f , %f , %f \ r \n ’ , i +18000,°a,°dist°connDist , b) ;

144

145 i f j ==15000+(SClength/dx )°1

146 break

147 end

148 f p r i n t f ( fid2 , ’%i , %i , %i \ r \n ’ , j , i +15000 , i +15000+1) ;

149 f p r i n t f ( fid2 , ’%i , %i , %i \ r \n ’ , k , i +16000 , i +16000+1) ;

150 f p r i n t f ( fid2 , ’%i , %i , %i \ r \n ’ , j +2000 , i +17000 , i +17000+1) ;

151 f p r i n t f ( fid2 , ’%i , %i , %i \ r \n ’ , k+2000 , i +18000 , i +18000+1) ;

152 j = j +1;

153 k=k +1;

154 end

155 f c l o s e ( f i d ) ; true ;

156 f c l o s e ( f id2 ) ; true ;

157 f i d =fopen ( ’ supportNodes . t x t ’ , ’w’ ) ;

158 a=1000;

159 f p r i n t f ( f id , ’%i , %i , %i , %i \ r \n ’ , j , j +a , j +2*a , j +3*a ) ;

160 f c l o s e ( f i d ) ; true ;

161

162 %Tarn

163 breddetopp = 2*( d i s t +connDist ) ;

164 d=(breddebunn°breddetopp ) / 2 ;

165 totthoyde = towerHeight+ben ;

166 s=d/ totthoyde ;

167 f i d =fopen ( ’ geotarn . t x t ’ , ’w’ ) ;

168 f id2 =fopen ( ’ e l tarn . t x t ’ , ’w’ ) ;

169 j =20000;

170 for i = 1 : totthoyde

171 i f i ==towerHeight

172 f p r i n t f ( fid2 , ’%s \ r \n ’ , ’ *ELEMENT, TYPE=B31 , ELSET=tarnBenElements ’ ) ;

173 end

174 h = towerHeight°i ;

175 y = ( breddetopp /2)+ i * s ;

176 f p r i n t f ( f id , ’%i , %f , %f , %f \ r \n ’ , j , 0 , y , h) ;

177 f p r i n t f ( f id , ’%i , %f , %f , %f \ r \n ’ , j +1000,0,°y , h) ;

178 f p r i n t f ( f id , ’%i , %f , %f , %f \ r \n ’ , j +2000 , girderLength , y , h) ;

179 f p r i n t f ( f id , ’%i , %f , %f , %f \ r \n ’ , j +3000 , girderLength ,°y , h) ;

180 i f i ==totthoyde

181 break

182 end

183 f p r i n t f ( fid2 , ’%i , %i , %i \ r \n ’ , j , j , j +1) ;

184 f p r i n t f ( fid2 , ’%i , %i , %i \ r \n ’ , j +1000 , j +1000 , j +1001) ;

185 f p r i n t f ( fid2 , ’%i , %i , %i \ r \n ’ , j +2000 , j +2000 , j +2001) ;

186 f p r i n t f ( fid2 , ’%i , %i , %i \ r \n ’ , j +3000 , j +3000 , j +3001) ;

187

188 j = j +1;

189 end

190 f id3 =fopen ( ’botTowerNodes . t x t ’ , ’w’ ) ;

191 f p r i n t f ( fid3 , ’%i , %i , %i , %i \ r \n ’ , j , j +1000 , j +2000 , j +3000) ;

192 f c l o s e ( f id3 ) ; true ;
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193

194 k=10001;

195 f p r i n t f ( fid2 , ’%i , %i , %i \ r \n ’ , j +1 ,20000 ,k+N+1) ;

196 f p r i n t f ( fid2 , ’%i , %i , %i \ r \n ’ , j +1001 ,21000 ,k ) ;

197 f p r i n t f ( fid2 , ’%i , %i , %i \ r \n ’ , j +2001 ,22000 ,k+2*N+1) ;

198 f p r i n t f ( fid2 , ’%i , %i , %i \ r \n ’ , j +3001 ,23000 ,k+N) ;

199

200 f c l o s e ( f i d ) ; true ;

201 f c l o s e ( f id2 ) ; true ;

202

203 f i d =fopen ( ’ e l T a r n S t i f f . t x t ’ , ’w’ ) ;

204 j =24000;

205 f p r i n t f ( f id , ’%i , %i , %i \ r \n ’ , j , k , k+N+1) ;

206 f p r i n t f ( f id , ’%i , %i , %i \ r \n ’ , j +1 ,k+N, k+2*N+1) ;%overst pa tarn

207 c=2*N+4;

208 f p r i n t f ( f id , ’%i , %i , %i \ r \n ’ , j +2,20000+towerHeight°1,c+1) ;

209 f p r i n t f ( f id , ’%i , %i , %i \ r \n ’ , j +3,21000+towerHeight°1,c ) ;

210 f p r i n t f ( f id , ’%i , %i , %i \ r \n ’ , j +4,22000+towerHeight°1,c+3) ;

211 f p r i n t f ( f id , ’%i , %i , %i \ r \n ’ , j +5,23000+towerHeight°1,c+2) ;

212 f p r i n t f ( f id , ’%i , %i , %i \ r \n ’ , j +6 ,c+1 ,c ) ;

213 f p r i n t f ( f id , ’%i , %i , %i \ r \n ’ , j +7 ,c+2 ,c+3) ;

214 j = j +6;

215 for i =20070:70:20000+70*4

216 j = j +2;

217 f p r i n t f ( f id , ’%i , %i , %i \ r \n ’ , j , i , i +1000) ;

218 f p r i n t f ( f id , ’%i , %i , %i \ r \n ’ , j +1 , i +2000 , i +3000) ;

219 end

220 f c l o s e ( f i d ) ; true ;

221

222 f i d =fopen ( ’ cablearea . t x t ’ , ’w’ ) ;

223 f p r i n t f ( f id , ’%f , 3.899e°2, 0 , 3.899e°2, 1.20e°3 ’ , A_chosen ) ;

224 f c l o s e ( f i d ) ; true ;
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Listing C.2: runMultipleAbaqus.m

1 %Run Multiple Abaqus

2 input= ’ masterAbaqusScript12 ’ ;

3 nodes = 139;

4

5 f i r s t F r e q L i s t = zeros ( 4 , 3 , 2 0 ) ;

6 %girder =[ A , I_11 , I_12 , I_22 , J , mass per length , I11 , I22 ]

7 girder1 =[0.44252 , 0.44113 , 0.23973 , 6.3628 , 1.0877 , 7734 , 8609 , 129000];

8 girder2 =[0.49860 , 0.50781 , 0.27691 , 7.2541 , 1.3028 , 8179 , 9133 , 136145];

9 d i f f =girder2°girder1 ;

10 girder3=girder2+ d i f f ;

11 girder4=girder3+ d i f f ;

12 girder = [ girder1 ; girder2 ; girder3 ] ;

13

14 t =1;

15 d=1;

16 for towerHeight = 300:20:400 %6 stk

17 f i n a l _ s a g =towerHeight°30;

18 d=1;

19 for d i s t = 7 : 2 : 1 3 %4 stk

20 A_chosen=generateNodes1 ( dist , towerHeight , f i n a l _ s a g ) ;

21

22 f i d =fopen ( ’ cablearea . t x t ’ , ’w’ ) ;

23 f p r i n t f ( f id , ’%f , 3.899e°2, 0 , 3.899e°2, 1.20e°3 ’ , A_chosen ) ;

24 f c l o s e ( f i d ) ; true ;

25

26 for g = 1 : s i z e ( girder , 1 ) %4 stk

27

28 f i d =fopen ( ’ girderInput1 . t x t ’ , ’w’ ) ;

29 f id2 =fopen ( ’ girderInput2 . t x t ’ , ’w’ ) ;

30 f p r i n t f ( f id , ’%f , %f , %f , %f , %f \ r \n ’ , girder ( g , 1 : 5 ) ) ;

31 f p r i n t f ( f id , ’ 0 ,1 ,0 \ r \n 210e9 , 81e9 \ r \n *BEAM ADDED INERTIA \ r \n ’ ) ;

32 f p r i n t f ( f id , ’%f , 0 ,0 ,0 , %f , %f \ r \n ’ , girder ( g , 6 : 7 ) ) ;

33 f p r i n t f ( fid2 , ’%f , %f , °%f , %f , %f \ r \n ’ , girder ( g , 1 : 5 ) ) ;

34 f p r i n t f ( fid2 , ’ 0 ,1 ,0 \ r \n 210e9 , 81e9 \ r \n *BEAM ADDED INERTIA \ r \n ’ ) ;

35 f p r i n t f ( fid2 , ’%f , 0 ,0 ,0 , %f , %f \ r \n ’ , girder ( g , 6 : 7 ) ) ;

36 f c l o s e ( f i d ) ; true ;

37 f c l o s e ( f id2 ) ; true ;

38 f i d =fopen ( ’ girderWeight . t x t ’ , ’w’ ) ;

39 f p r i n t f ( f id , ’ midtnoder , 3 , °%f \ r \n ’ , ( girder ( g , 6 ) *10*20*2) ) ;

40 f c l o s e ( f i d ) ; true ;

41 f i d =fopen ( ’ girderWeightMod . t x t ’ , ’w’ ) ;

42 f p r i n t f ( f id , ’ midtnoder , 3 , %f \ r \n ’ ,(° girder ( g , 6 ) *10*20*2+125310) ) ;

43 f c l o s e ( f i d ) ; true ;

44

45 NodeNumberString=[ ’d ’ num2str (d , ’%02d ’ ) ’ t ’ num2str ( t , ’%02d ’ ) ’ g ’ num2str ( g , ’%02d ’ ) ] ;

46 JobName=[ ’ parametric ’ NodeNumberString ]

47

48 system ( [ ’ abaqus job= ’ JobName ’ input= ’ input ’ i n t e r a c t i v e ’ ’ cpus=4 ’ ] )
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49

50 [ Eigenvectors , Eigenvalues ]=read_ABAQUS_dat ( [ JobName ’ . dat ’ ] , nodes ) ;

51

52 for l =1:20 %de 20 f r s t e frekvensene

53 i f g==1

54 f i r s t F r e q L i s t 1 (d , t , l ) = Eigenvalues ( l , 4 ) ;

55 e l s e i f g==2

56 f i r s t F r e q L i s t 2 (d , t , l ) = Eigenvalues ( l , 4 ) ;

57 e l s e i f g==3

58 f i r s t F r e q L i s t 3 (d , t , l ) = Eigenvalues ( l , 4 ) ;

59 e l s e i f g==4

60 f i r s t F r e q L i s t 4 (d , t , l ) = Eigenvalues ( l , 4 ) ;

61 end

62 end

63

64 movefile ( [ JobName ’ . dat ’ ] , [ cd ’ \parametricDAT ’ ] ) ;

65 movefile ( [ JobName ’ . odb ’ ] , [ cd ’ \parametricODB ’ ] ) ;

66 delete ( [ JobName ’ . s t t ’ ] ) ;

67

68

69 end

70 d=d+1;

71 end

72 t = t +1;

73 end
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